xref: /openbmc/linux/drivers/gpu/drm/ttm/ttm_bo_util.c (revision dc6a81c3)
1 /* SPDX-License-Identifier: GPL-2.0 OR MIT */
2 /**************************************************************************
3  *
4  * Copyright (c) 2007-2009 VMware, Inc., Palo Alto, CA., USA
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
22  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
23  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
24  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
25  * USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  **************************************************************************/
28 /*
29  * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
30  */
31 
32 #include <drm/ttm/ttm_bo_driver.h>
33 #include <drm/ttm/ttm_placement.h>
34 #include <drm/drm_vma_manager.h>
35 #include <linux/io.h>
36 #include <linux/highmem.h>
37 #include <linux/wait.h>
38 #include <linux/slab.h>
39 #include <linux/vmalloc.h>
40 #include <linux/module.h>
41 #include <linux/dma-resv.h>
42 
43 struct ttm_transfer_obj {
44 	struct ttm_buffer_object base;
45 	struct ttm_buffer_object *bo;
46 };
47 
48 void ttm_bo_free_old_node(struct ttm_buffer_object *bo)
49 {
50 	ttm_bo_mem_put(bo, &bo->mem);
51 }
52 
53 int ttm_bo_move_ttm(struct ttm_buffer_object *bo,
54 		   struct ttm_operation_ctx *ctx,
55 		    struct ttm_mem_reg *new_mem)
56 {
57 	struct ttm_tt *ttm = bo->ttm;
58 	struct ttm_mem_reg *old_mem = &bo->mem;
59 	int ret;
60 
61 	if (old_mem->mem_type != TTM_PL_SYSTEM) {
62 		ret = ttm_bo_wait(bo, ctx->interruptible, ctx->no_wait_gpu);
63 
64 		if (unlikely(ret != 0)) {
65 			if (ret != -ERESTARTSYS)
66 				pr_err("Failed to expire sync object before unbinding TTM\n");
67 			return ret;
68 		}
69 
70 		ttm_tt_unbind(ttm);
71 		ttm_bo_free_old_node(bo);
72 		ttm_flag_masked(&old_mem->placement, TTM_PL_FLAG_SYSTEM,
73 				TTM_PL_MASK_MEM);
74 		old_mem->mem_type = TTM_PL_SYSTEM;
75 	}
76 
77 	ret = ttm_tt_set_placement_caching(ttm, new_mem->placement);
78 	if (unlikely(ret != 0))
79 		return ret;
80 
81 	if (new_mem->mem_type != TTM_PL_SYSTEM) {
82 		ret = ttm_tt_bind(ttm, new_mem, ctx);
83 		if (unlikely(ret != 0))
84 			return ret;
85 	}
86 
87 	*old_mem = *new_mem;
88 	new_mem->mm_node = NULL;
89 
90 	return 0;
91 }
92 EXPORT_SYMBOL(ttm_bo_move_ttm);
93 
94 int ttm_mem_io_lock(struct ttm_mem_type_manager *man, bool interruptible)
95 {
96 	if (likely(man->io_reserve_fastpath))
97 		return 0;
98 
99 	if (interruptible)
100 		return mutex_lock_interruptible(&man->io_reserve_mutex);
101 
102 	mutex_lock(&man->io_reserve_mutex);
103 	return 0;
104 }
105 
106 void ttm_mem_io_unlock(struct ttm_mem_type_manager *man)
107 {
108 	if (likely(man->io_reserve_fastpath))
109 		return;
110 
111 	mutex_unlock(&man->io_reserve_mutex);
112 }
113 
114 static int ttm_mem_io_evict(struct ttm_mem_type_manager *man)
115 {
116 	struct ttm_buffer_object *bo;
117 
118 	if (!man->use_io_reserve_lru || list_empty(&man->io_reserve_lru))
119 		return -EAGAIN;
120 
121 	bo = list_first_entry(&man->io_reserve_lru,
122 			      struct ttm_buffer_object,
123 			      io_reserve_lru);
124 	list_del_init(&bo->io_reserve_lru);
125 	ttm_bo_unmap_virtual_locked(bo);
126 
127 	return 0;
128 }
129 
130 
131 int ttm_mem_io_reserve(struct ttm_bo_device *bdev,
132 		       struct ttm_mem_reg *mem)
133 {
134 	struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
135 	int ret = 0;
136 
137 	if (!bdev->driver->io_mem_reserve)
138 		return 0;
139 	if (likely(man->io_reserve_fastpath))
140 		return bdev->driver->io_mem_reserve(bdev, mem);
141 
142 	if (bdev->driver->io_mem_reserve &&
143 	    mem->bus.io_reserved_count++ == 0) {
144 retry:
145 		ret = bdev->driver->io_mem_reserve(bdev, mem);
146 		if (ret == -EAGAIN) {
147 			ret = ttm_mem_io_evict(man);
148 			if (ret == 0)
149 				goto retry;
150 		}
151 	}
152 	return ret;
153 }
154 
155 void ttm_mem_io_free(struct ttm_bo_device *bdev,
156 		     struct ttm_mem_reg *mem)
157 {
158 	struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
159 
160 	if (likely(man->io_reserve_fastpath))
161 		return;
162 
163 	if (bdev->driver->io_mem_reserve &&
164 	    --mem->bus.io_reserved_count == 0 &&
165 	    bdev->driver->io_mem_free)
166 		bdev->driver->io_mem_free(bdev, mem);
167 
168 }
169 
170 int ttm_mem_io_reserve_vm(struct ttm_buffer_object *bo)
171 {
172 	struct ttm_mem_reg *mem = &bo->mem;
173 	int ret;
174 
175 	if (!mem->bus.io_reserved_vm) {
176 		struct ttm_mem_type_manager *man =
177 			&bo->bdev->man[mem->mem_type];
178 
179 		ret = ttm_mem_io_reserve(bo->bdev, mem);
180 		if (unlikely(ret != 0))
181 			return ret;
182 		mem->bus.io_reserved_vm = true;
183 		if (man->use_io_reserve_lru)
184 			list_add_tail(&bo->io_reserve_lru,
185 				      &man->io_reserve_lru);
186 	}
187 	return 0;
188 }
189 
190 void ttm_mem_io_free_vm(struct ttm_buffer_object *bo)
191 {
192 	struct ttm_mem_reg *mem = &bo->mem;
193 
194 	if (mem->bus.io_reserved_vm) {
195 		mem->bus.io_reserved_vm = false;
196 		list_del_init(&bo->io_reserve_lru);
197 		ttm_mem_io_free(bo->bdev, mem);
198 	}
199 }
200 
201 static int ttm_mem_reg_ioremap(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem,
202 			void **virtual)
203 {
204 	struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
205 	int ret;
206 	void *addr;
207 
208 	*virtual = NULL;
209 	(void) ttm_mem_io_lock(man, false);
210 	ret = ttm_mem_io_reserve(bdev, mem);
211 	ttm_mem_io_unlock(man);
212 	if (ret || !mem->bus.is_iomem)
213 		return ret;
214 
215 	if (mem->bus.addr) {
216 		addr = mem->bus.addr;
217 	} else {
218 		if (mem->placement & TTM_PL_FLAG_WC)
219 			addr = ioremap_wc(mem->bus.base + mem->bus.offset, mem->bus.size);
220 		else
221 			addr = ioremap(mem->bus.base + mem->bus.offset, mem->bus.size);
222 		if (!addr) {
223 			(void) ttm_mem_io_lock(man, false);
224 			ttm_mem_io_free(bdev, mem);
225 			ttm_mem_io_unlock(man);
226 			return -ENOMEM;
227 		}
228 	}
229 	*virtual = addr;
230 	return 0;
231 }
232 
233 static void ttm_mem_reg_iounmap(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem,
234 			 void *virtual)
235 {
236 	struct ttm_mem_type_manager *man;
237 
238 	man = &bdev->man[mem->mem_type];
239 
240 	if (virtual && mem->bus.addr == NULL)
241 		iounmap(virtual);
242 	(void) ttm_mem_io_lock(man, false);
243 	ttm_mem_io_free(bdev, mem);
244 	ttm_mem_io_unlock(man);
245 }
246 
247 static int ttm_copy_io_page(void *dst, void *src, unsigned long page)
248 {
249 	uint32_t *dstP =
250 	    (uint32_t *) ((unsigned long)dst + (page << PAGE_SHIFT));
251 	uint32_t *srcP =
252 	    (uint32_t *) ((unsigned long)src + (page << PAGE_SHIFT));
253 
254 	int i;
255 	for (i = 0; i < PAGE_SIZE / sizeof(uint32_t); ++i)
256 		iowrite32(ioread32(srcP++), dstP++);
257 	return 0;
258 }
259 
260 #ifdef CONFIG_X86
261 #define __ttm_kmap_atomic_prot(__page, __prot) kmap_atomic_prot(__page, __prot)
262 #define __ttm_kunmap_atomic(__addr) kunmap_atomic(__addr)
263 #else
264 #define __ttm_kmap_atomic_prot(__page, __prot) vmap(&__page, 1, 0,  __prot)
265 #define __ttm_kunmap_atomic(__addr) vunmap(__addr)
266 #endif
267 
268 
269 /**
270  * ttm_kmap_atomic_prot - Efficient kernel map of a single page with
271  * specified page protection.
272  *
273  * @page: The page to map.
274  * @prot: The page protection.
275  *
276  * This function maps a TTM page using the kmap_atomic api if available,
277  * otherwise falls back to vmap. The user must make sure that the
278  * specified page does not have an aliased mapping with a different caching
279  * policy unless the architecture explicitly allows it. Also mapping and
280  * unmapping using this api must be correctly nested. Unmapping should
281  * occur in the reverse order of mapping.
282  */
283 void *ttm_kmap_atomic_prot(struct page *page, pgprot_t prot)
284 {
285 	if (pgprot_val(prot) == pgprot_val(PAGE_KERNEL))
286 		return kmap_atomic(page);
287 	else
288 		return __ttm_kmap_atomic_prot(page, prot);
289 }
290 EXPORT_SYMBOL(ttm_kmap_atomic_prot);
291 
292 /**
293  * ttm_kunmap_atomic_prot - Unmap a page that was mapped using
294  * ttm_kmap_atomic_prot.
295  *
296  * @addr: The virtual address from the map.
297  * @prot: The page protection.
298  */
299 void ttm_kunmap_atomic_prot(void *addr, pgprot_t prot)
300 {
301 	if (pgprot_val(prot) == pgprot_val(PAGE_KERNEL))
302 		kunmap_atomic(addr);
303 	else
304 		__ttm_kunmap_atomic(addr);
305 }
306 EXPORT_SYMBOL(ttm_kunmap_atomic_prot);
307 
308 static int ttm_copy_io_ttm_page(struct ttm_tt *ttm, void *src,
309 				unsigned long page,
310 				pgprot_t prot)
311 {
312 	struct page *d = ttm->pages[page];
313 	void *dst;
314 
315 	if (!d)
316 		return -ENOMEM;
317 
318 	src = (void *)((unsigned long)src + (page << PAGE_SHIFT));
319 	dst = ttm_kmap_atomic_prot(d, prot);
320 	if (!dst)
321 		return -ENOMEM;
322 
323 	memcpy_fromio(dst, src, PAGE_SIZE);
324 
325 	ttm_kunmap_atomic_prot(dst, prot);
326 
327 	return 0;
328 }
329 
330 static int ttm_copy_ttm_io_page(struct ttm_tt *ttm, void *dst,
331 				unsigned long page,
332 				pgprot_t prot)
333 {
334 	struct page *s = ttm->pages[page];
335 	void *src;
336 
337 	if (!s)
338 		return -ENOMEM;
339 
340 	dst = (void *)((unsigned long)dst + (page << PAGE_SHIFT));
341 	src = ttm_kmap_atomic_prot(s, prot);
342 	if (!src)
343 		return -ENOMEM;
344 
345 	memcpy_toio(dst, src, PAGE_SIZE);
346 
347 	ttm_kunmap_atomic_prot(src, prot);
348 
349 	return 0;
350 }
351 
352 int ttm_bo_move_memcpy(struct ttm_buffer_object *bo,
353 		       struct ttm_operation_ctx *ctx,
354 		       struct ttm_mem_reg *new_mem)
355 {
356 	struct ttm_bo_device *bdev = bo->bdev;
357 	struct ttm_mem_type_manager *man = &bdev->man[new_mem->mem_type];
358 	struct ttm_tt *ttm = bo->ttm;
359 	struct ttm_mem_reg *old_mem = &bo->mem;
360 	struct ttm_mem_reg old_copy = *old_mem;
361 	void *old_iomap;
362 	void *new_iomap;
363 	int ret;
364 	unsigned long i;
365 	unsigned long page;
366 	unsigned long add = 0;
367 	int dir;
368 
369 	ret = ttm_bo_wait(bo, ctx->interruptible, ctx->no_wait_gpu);
370 	if (ret)
371 		return ret;
372 
373 	ret = ttm_mem_reg_ioremap(bdev, old_mem, &old_iomap);
374 	if (ret)
375 		return ret;
376 	ret = ttm_mem_reg_ioremap(bdev, new_mem, &new_iomap);
377 	if (ret)
378 		goto out;
379 
380 	/*
381 	 * Single TTM move. NOP.
382 	 */
383 	if (old_iomap == NULL && new_iomap == NULL)
384 		goto out2;
385 
386 	/*
387 	 * Don't move nonexistent data. Clear destination instead.
388 	 */
389 	if (old_iomap == NULL &&
390 	    (ttm == NULL || (ttm->state == tt_unpopulated &&
391 			     !(ttm->page_flags & TTM_PAGE_FLAG_SWAPPED)))) {
392 		memset_io(new_iomap, 0, new_mem->num_pages*PAGE_SIZE);
393 		goto out2;
394 	}
395 
396 	/*
397 	 * TTM might be null for moves within the same region.
398 	 */
399 	if (ttm) {
400 		ret = ttm_tt_populate(ttm, ctx);
401 		if (ret)
402 			goto out1;
403 	}
404 
405 	add = 0;
406 	dir = 1;
407 
408 	if ((old_mem->mem_type == new_mem->mem_type) &&
409 	    (new_mem->start < old_mem->start + old_mem->size)) {
410 		dir = -1;
411 		add = new_mem->num_pages - 1;
412 	}
413 
414 	for (i = 0; i < new_mem->num_pages; ++i) {
415 		page = i * dir + add;
416 		if (old_iomap == NULL) {
417 			pgprot_t prot = ttm_io_prot(old_mem->placement,
418 						    PAGE_KERNEL);
419 			ret = ttm_copy_ttm_io_page(ttm, new_iomap, page,
420 						   prot);
421 		} else if (new_iomap == NULL) {
422 			pgprot_t prot = ttm_io_prot(new_mem->placement,
423 						    PAGE_KERNEL);
424 			ret = ttm_copy_io_ttm_page(ttm, old_iomap, page,
425 						   prot);
426 		} else {
427 			ret = ttm_copy_io_page(new_iomap, old_iomap, page);
428 		}
429 		if (ret)
430 			goto out1;
431 	}
432 	mb();
433 out2:
434 	old_copy = *old_mem;
435 	*old_mem = *new_mem;
436 	new_mem->mm_node = NULL;
437 
438 	if (man->flags & TTM_MEMTYPE_FLAG_FIXED) {
439 		ttm_tt_destroy(ttm);
440 		bo->ttm = NULL;
441 	}
442 
443 out1:
444 	ttm_mem_reg_iounmap(bdev, old_mem, new_iomap);
445 out:
446 	ttm_mem_reg_iounmap(bdev, &old_copy, old_iomap);
447 
448 	/*
449 	 * On error, keep the mm node!
450 	 */
451 	if (!ret)
452 		ttm_bo_mem_put(bo, &old_copy);
453 	return ret;
454 }
455 EXPORT_SYMBOL(ttm_bo_move_memcpy);
456 
457 static void ttm_transfered_destroy(struct ttm_buffer_object *bo)
458 {
459 	struct ttm_transfer_obj *fbo;
460 
461 	fbo = container_of(bo, struct ttm_transfer_obj, base);
462 	ttm_bo_put(fbo->bo);
463 	kfree(fbo);
464 }
465 
466 /**
467  * ttm_buffer_object_transfer
468  *
469  * @bo: A pointer to a struct ttm_buffer_object.
470  * @new_obj: A pointer to a pointer to a newly created ttm_buffer_object,
471  * holding the data of @bo with the old placement.
472  *
473  * This is a utility function that may be called after an accelerated move
474  * has been scheduled. A new buffer object is created as a placeholder for
475  * the old data while it's being copied. When that buffer object is idle,
476  * it can be destroyed, releasing the space of the old placement.
477  * Returns:
478  * !0: Failure.
479  */
480 
481 static int ttm_buffer_object_transfer(struct ttm_buffer_object *bo,
482 				      struct ttm_buffer_object **new_obj)
483 {
484 	struct ttm_transfer_obj *fbo;
485 	int ret;
486 
487 	fbo = kmalloc(sizeof(*fbo), GFP_KERNEL);
488 	if (!fbo)
489 		return -ENOMEM;
490 
491 	fbo->base = *bo;
492 	fbo->base.mem.placement |= TTM_PL_FLAG_NO_EVICT;
493 
494 	ttm_bo_get(bo);
495 	fbo->bo = bo;
496 
497 	/**
498 	 * Fix up members that we shouldn't copy directly:
499 	 * TODO: Explicit member copy would probably be better here.
500 	 */
501 
502 	atomic_inc(&ttm_bo_glob.bo_count);
503 	INIT_LIST_HEAD(&fbo->base.ddestroy);
504 	INIT_LIST_HEAD(&fbo->base.lru);
505 	INIT_LIST_HEAD(&fbo->base.swap);
506 	INIT_LIST_HEAD(&fbo->base.io_reserve_lru);
507 	fbo->base.moving = NULL;
508 	drm_vma_node_reset(&fbo->base.base.vma_node);
509 
510 	kref_init(&fbo->base.list_kref);
511 	kref_init(&fbo->base.kref);
512 	fbo->base.destroy = &ttm_transfered_destroy;
513 	fbo->base.acc_size = 0;
514 	if (bo->base.resv == &bo->base._resv)
515 		fbo->base.base.resv = &fbo->base.base._resv;
516 
517 	dma_resv_init(&fbo->base.base._resv);
518 	ret = dma_resv_trylock(&fbo->base.base._resv);
519 	WARN_ON(!ret);
520 
521 	*new_obj = &fbo->base;
522 	return 0;
523 }
524 
525 pgprot_t ttm_io_prot(uint32_t caching_flags, pgprot_t tmp)
526 {
527 	/* Cached mappings need no adjustment */
528 	if (caching_flags & TTM_PL_FLAG_CACHED)
529 		return tmp;
530 
531 #if defined(__i386__) || defined(__x86_64__)
532 	if (caching_flags & TTM_PL_FLAG_WC)
533 		tmp = pgprot_writecombine(tmp);
534 	else if (boot_cpu_data.x86 > 3)
535 		tmp = pgprot_noncached(tmp);
536 #endif
537 #if defined(__ia64__) || defined(__arm__) || defined(__aarch64__) || \
538     defined(__powerpc__) || defined(__mips__)
539 	if (caching_flags & TTM_PL_FLAG_WC)
540 		tmp = pgprot_writecombine(tmp);
541 	else
542 		tmp = pgprot_noncached(tmp);
543 #endif
544 #if defined(__sparc__)
545 	tmp = pgprot_noncached(tmp);
546 #endif
547 	return tmp;
548 }
549 EXPORT_SYMBOL(ttm_io_prot);
550 
551 static int ttm_bo_ioremap(struct ttm_buffer_object *bo,
552 			  unsigned long offset,
553 			  unsigned long size,
554 			  struct ttm_bo_kmap_obj *map)
555 {
556 	struct ttm_mem_reg *mem = &bo->mem;
557 
558 	if (bo->mem.bus.addr) {
559 		map->bo_kmap_type = ttm_bo_map_premapped;
560 		map->virtual = (void *)(((u8 *)bo->mem.bus.addr) + offset);
561 	} else {
562 		map->bo_kmap_type = ttm_bo_map_iomap;
563 		if (mem->placement & TTM_PL_FLAG_WC)
564 			map->virtual = ioremap_wc(bo->mem.bus.base + bo->mem.bus.offset + offset,
565 						  size);
566 		else
567 			map->virtual = ioremap(bo->mem.bus.base + bo->mem.bus.offset + offset,
568 						       size);
569 	}
570 	return (!map->virtual) ? -ENOMEM : 0;
571 }
572 
573 static int ttm_bo_kmap_ttm(struct ttm_buffer_object *bo,
574 			   unsigned long start_page,
575 			   unsigned long num_pages,
576 			   struct ttm_bo_kmap_obj *map)
577 {
578 	struct ttm_mem_reg *mem = &bo->mem;
579 	struct ttm_operation_ctx ctx = {
580 		.interruptible = false,
581 		.no_wait_gpu = false
582 	};
583 	struct ttm_tt *ttm = bo->ttm;
584 	pgprot_t prot;
585 	int ret;
586 
587 	BUG_ON(!ttm);
588 
589 	ret = ttm_tt_populate(ttm, &ctx);
590 	if (ret)
591 		return ret;
592 
593 	if (num_pages == 1 && (mem->placement & TTM_PL_FLAG_CACHED)) {
594 		/*
595 		 * We're mapping a single page, and the desired
596 		 * page protection is consistent with the bo.
597 		 */
598 
599 		map->bo_kmap_type = ttm_bo_map_kmap;
600 		map->page = ttm->pages[start_page];
601 		map->virtual = kmap(map->page);
602 	} else {
603 		/*
604 		 * We need to use vmap to get the desired page protection
605 		 * or to make the buffer object look contiguous.
606 		 */
607 		prot = ttm_io_prot(mem->placement, PAGE_KERNEL);
608 		map->bo_kmap_type = ttm_bo_map_vmap;
609 		map->virtual = vmap(ttm->pages + start_page, num_pages,
610 				    0, prot);
611 	}
612 	return (!map->virtual) ? -ENOMEM : 0;
613 }
614 
615 int ttm_bo_kmap(struct ttm_buffer_object *bo,
616 		unsigned long start_page, unsigned long num_pages,
617 		struct ttm_bo_kmap_obj *map)
618 {
619 	struct ttm_mem_type_manager *man =
620 		&bo->bdev->man[bo->mem.mem_type];
621 	unsigned long offset, size;
622 	int ret;
623 
624 	map->virtual = NULL;
625 	map->bo = bo;
626 	if (num_pages > bo->num_pages)
627 		return -EINVAL;
628 	if (start_page > bo->num_pages)
629 		return -EINVAL;
630 
631 	(void) ttm_mem_io_lock(man, false);
632 	ret = ttm_mem_io_reserve(bo->bdev, &bo->mem);
633 	ttm_mem_io_unlock(man);
634 	if (ret)
635 		return ret;
636 	if (!bo->mem.bus.is_iomem) {
637 		return ttm_bo_kmap_ttm(bo, start_page, num_pages, map);
638 	} else {
639 		offset = start_page << PAGE_SHIFT;
640 		size = num_pages << PAGE_SHIFT;
641 		return ttm_bo_ioremap(bo, offset, size, map);
642 	}
643 }
644 EXPORT_SYMBOL(ttm_bo_kmap);
645 
646 void ttm_bo_kunmap(struct ttm_bo_kmap_obj *map)
647 {
648 	struct ttm_buffer_object *bo = map->bo;
649 	struct ttm_mem_type_manager *man =
650 		&bo->bdev->man[bo->mem.mem_type];
651 
652 	if (!map->virtual)
653 		return;
654 	switch (map->bo_kmap_type) {
655 	case ttm_bo_map_iomap:
656 		iounmap(map->virtual);
657 		break;
658 	case ttm_bo_map_vmap:
659 		vunmap(map->virtual);
660 		break;
661 	case ttm_bo_map_kmap:
662 		kunmap(map->page);
663 		break;
664 	case ttm_bo_map_premapped:
665 		break;
666 	default:
667 		BUG();
668 	}
669 	(void) ttm_mem_io_lock(man, false);
670 	ttm_mem_io_free(map->bo->bdev, &map->bo->mem);
671 	ttm_mem_io_unlock(man);
672 	map->virtual = NULL;
673 	map->page = NULL;
674 }
675 EXPORT_SYMBOL(ttm_bo_kunmap);
676 
677 int ttm_bo_move_accel_cleanup(struct ttm_buffer_object *bo,
678 			      struct dma_fence *fence,
679 			      bool evict,
680 			      struct ttm_mem_reg *new_mem)
681 {
682 	struct ttm_bo_device *bdev = bo->bdev;
683 	struct ttm_mem_type_manager *man = &bdev->man[new_mem->mem_type];
684 	struct ttm_mem_reg *old_mem = &bo->mem;
685 	int ret;
686 	struct ttm_buffer_object *ghost_obj;
687 
688 	dma_resv_add_excl_fence(bo->base.resv, fence);
689 	if (evict) {
690 		ret = ttm_bo_wait(bo, false, false);
691 		if (ret)
692 			return ret;
693 
694 		if (man->flags & TTM_MEMTYPE_FLAG_FIXED) {
695 			ttm_tt_destroy(bo->ttm);
696 			bo->ttm = NULL;
697 		}
698 		ttm_bo_free_old_node(bo);
699 	} else {
700 		/**
701 		 * This should help pipeline ordinary buffer moves.
702 		 *
703 		 * Hang old buffer memory on a new buffer object,
704 		 * and leave it to be released when the GPU
705 		 * operation has completed.
706 		 */
707 
708 		dma_fence_put(bo->moving);
709 		bo->moving = dma_fence_get(fence);
710 
711 		ret = ttm_buffer_object_transfer(bo, &ghost_obj);
712 		if (ret)
713 			return ret;
714 
715 		dma_resv_add_excl_fence(&ghost_obj->base._resv, fence);
716 
717 		/**
718 		 * If we're not moving to fixed memory, the TTM object
719 		 * needs to stay alive. Otherwhise hang it on the ghost
720 		 * bo to be unbound and destroyed.
721 		 */
722 
723 		if (!(man->flags & TTM_MEMTYPE_FLAG_FIXED))
724 			ghost_obj->ttm = NULL;
725 		else
726 			bo->ttm = NULL;
727 
728 		dma_resv_unlock(&ghost_obj->base._resv);
729 		ttm_bo_put(ghost_obj);
730 	}
731 
732 	*old_mem = *new_mem;
733 	new_mem->mm_node = NULL;
734 
735 	return 0;
736 }
737 EXPORT_SYMBOL(ttm_bo_move_accel_cleanup);
738 
739 int ttm_bo_pipeline_move(struct ttm_buffer_object *bo,
740 			 struct dma_fence *fence, bool evict,
741 			 struct ttm_mem_reg *new_mem)
742 {
743 	struct ttm_bo_device *bdev = bo->bdev;
744 	struct ttm_mem_reg *old_mem = &bo->mem;
745 
746 	struct ttm_mem_type_manager *from = &bdev->man[old_mem->mem_type];
747 	struct ttm_mem_type_manager *to = &bdev->man[new_mem->mem_type];
748 
749 	int ret;
750 
751 	dma_resv_add_excl_fence(bo->base.resv, fence);
752 
753 	if (!evict) {
754 		struct ttm_buffer_object *ghost_obj;
755 
756 		/**
757 		 * This should help pipeline ordinary buffer moves.
758 		 *
759 		 * Hang old buffer memory on a new buffer object,
760 		 * and leave it to be released when the GPU
761 		 * operation has completed.
762 		 */
763 
764 		dma_fence_put(bo->moving);
765 		bo->moving = dma_fence_get(fence);
766 
767 		ret = ttm_buffer_object_transfer(bo, &ghost_obj);
768 		if (ret)
769 			return ret;
770 
771 		dma_resv_add_excl_fence(&ghost_obj->base._resv, fence);
772 
773 		/**
774 		 * If we're not moving to fixed memory, the TTM object
775 		 * needs to stay alive. Otherwhise hang it on the ghost
776 		 * bo to be unbound and destroyed.
777 		 */
778 
779 		if (!(to->flags & TTM_MEMTYPE_FLAG_FIXED))
780 			ghost_obj->ttm = NULL;
781 		else
782 			bo->ttm = NULL;
783 
784 		dma_resv_unlock(&ghost_obj->base._resv);
785 		ttm_bo_put(ghost_obj);
786 
787 	} else if (from->flags & TTM_MEMTYPE_FLAG_FIXED) {
788 
789 		/**
790 		 * BO doesn't have a TTM we need to bind/unbind. Just remember
791 		 * this eviction and free up the allocation
792 		 */
793 
794 		spin_lock(&from->move_lock);
795 		if (!from->move || dma_fence_is_later(fence, from->move)) {
796 			dma_fence_put(from->move);
797 			from->move = dma_fence_get(fence);
798 		}
799 		spin_unlock(&from->move_lock);
800 
801 		ttm_bo_free_old_node(bo);
802 
803 		dma_fence_put(bo->moving);
804 		bo->moving = dma_fence_get(fence);
805 
806 	} else {
807 		/**
808 		 * Last resort, wait for the move to be completed.
809 		 *
810 		 * Should never happen in pratice.
811 		 */
812 
813 		ret = ttm_bo_wait(bo, false, false);
814 		if (ret)
815 			return ret;
816 
817 		if (to->flags & TTM_MEMTYPE_FLAG_FIXED) {
818 			ttm_tt_destroy(bo->ttm);
819 			bo->ttm = NULL;
820 		}
821 		ttm_bo_free_old_node(bo);
822 	}
823 
824 	*old_mem = *new_mem;
825 	new_mem->mm_node = NULL;
826 
827 	return 0;
828 }
829 EXPORT_SYMBOL(ttm_bo_pipeline_move);
830 
831 int ttm_bo_pipeline_gutting(struct ttm_buffer_object *bo)
832 {
833 	struct ttm_buffer_object *ghost;
834 	int ret;
835 
836 	ret = ttm_buffer_object_transfer(bo, &ghost);
837 	if (ret)
838 		return ret;
839 
840 	ret = dma_resv_copy_fences(&ghost->base._resv, bo->base.resv);
841 	/* Last resort, wait for the BO to be idle when we are OOM */
842 	if (ret)
843 		ttm_bo_wait(bo, false, false);
844 
845 	memset(&bo->mem, 0, sizeof(bo->mem));
846 	bo->mem.mem_type = TTM_PL_SYSTEM;
847 	bo->ttm = NULL;
848 
849 	dma_resv_unlock(&ghost->base._resv);
850 	ttm_bo_put(ghost);
851 
852 	return 0;
853 }
854