xref: /openbmc/linux/drivers/gpu/drm/ttm/ttm_bo_util.c (revision c83eeec79ff64f777cbd59a8bd15d0a3fe1f92c0)
1 /* SPDX-License-Identifier: GPL-2.0 OR MIT */
2 /**************************************************************************
3  *
4  * Copyright (c) 2007-2009 VMware, Inc., Palo Alto, CA., USA
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
22  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
23  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
24  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
25  * USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  **************************************************************************/
28 /*
29  * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
30  */
31 
32 #include <drm/ttm/ttm_bo_driver.h>
33 #include <drm/ttm/ttm_placement.h>
34 #include <drm/drm_cache.h>
35 #include <drm/drm_vma_manager.h>
36 #include <linux/dma-buf-map.h>
37 #include <linux/io.h>
38 #include <linux/highmem.h>
39 #include <linux/wait.h>
40 #include <linux/slab.h>
41 #include <linux/vmalloc.h>
42 #include <linux/module.h>
43 #include <linux/dma-resv.h>
44 
45 struct ttm_transfer_obj {
46 	struct ttm_buffer_object base;
47 	struct ttm_buffer_object *bo;
48 };
49 
50 int ttm_mem_io_reserve(struct ttm_device *bdev,
51 		       struct ttm_resource *mem)
52 {
53 	if (mem->bus.offset || mem->bus.addr)
54 		return 0;
55 
56 	mem->bus.is_iomem = false;
57 	if (!bdev->funcs->io_mem_reserve)
58 		return 0;
59 
60 	return bdev->funcs->io_mem_reserve(bdev, mem);
61 }
62 
63 void ttm_mem_io_free(struct ttm_device *bdev,
64 		     struct ttm_resource *mem)
65 {
66 	if (!mem)
67 		return;
68 
69 	if (!mem->bus.offset && !mem->bus.addr)
70 		return;
71 
72 	if (bdev->funcs->io_mem_free)
73 		bdev->funcs->io_mem_free(bdev, mem);
74 
75 	mem->bus.offset = 0;
76 	mem->bus.addr = NULL;
77 }
78 
79 /**
80  * ttm_move_memcpy - Helper to perform a memcpy ttm move operation.
81  * @clear: Whether to clear rather than copy.
82  * @num_pages: Number of pages of the operation.
83  * @dst_iter: A struct ttm_kmap_iter representing the destination resource.
84  * @src_iter: A struct ttm_kmap_iter representing the source resource.
85  *
86  * This function is intended to be able to move out async under a
87  * dma-fence if desired.
88  */
89 void ttm_move_memcpy(bool clear,
90 		     u32 num_pages,
91 		     struct ttm_kmap_iter *dst_iter,
92 		     struct ttm_kmap_iter *src_iter)
93 {
94 	const struct ttm_kmap_iter_ops *dst_ops = dst_iter->ops;
95 	const struct ttm_kmap_iter_ops *src_ops = src_iter->ops;
96 	struct dma_buf_map src_map, dst_map;
97 	pgoff_t i;
98 
99 	/* Single TTM move. NOP */
100 	if (dst_ops->maps_tt && src_ops->maps_tt)
101 		return;
102 
103 	/* Don't move nonexistent data. Clear destination instead. */
104 	if (clear) {
105 		for (i = 0; i < num_pages; ++i) {
106 			dst_ops->map_local(dst_iter, &dst_map, i);
107 			if (dst_map.is_iomem)
108 				memset_io(dst_map.vaddr_iomem, 0, PAGE_SIZE);
109 			else
110 				memset(dst_map.vaddr, 0, PAGE_SIZE);
111 			if (dst_ops->unmap_local)
112 				dst_ops->unmap_local(dst_iter, &dst_map);
113 		}
114 		return;
115 	}
116 
117 	for (i = 0; i < num_pages; ++i) {
118 		dst_ops->map_local(dst_iter, &dst_map, i);
119 		src_ops->map_local(src_iter, &src_map, i);
120 
121 		drm_memcpy_from_wc(&dst_map, &src_map, PAGE_SIZE);
122 
123 		if (src_ops->unmap_local)
124 			src_ops->unmap_local(src_iter, &src_map);
125 		if (dst_ops->unmap_local)
126 			dst_ops->unmap_local(dst_iter, &dst_map);
127 	}
128 }
129 EXPORT_SYMBOL(ttm_move_memcpy);
130 
131 int ttm_bo_move_memcpy(struct ttm_buffer_object *bo,
132 		       struct ttm_operation_ctx *ctx,
133 		       struct ttm_resource *dst_mem)
134 {
135 	struct ttm_device *bdev = bo->bdev;
136 	struct ttm_resource_manager *dst_man =
137 		ttm_manager_type(bo->bdev, dst_mem->mem_type);
138 	struct ttm_tt *ttm = bo->ttm;
139 	struct ttm_resource *src_mem = bo->resource;
140 	struct ttm_resource_manager *src_man =
141 		ttm_manager_type(bdev, src_mem->mem_type);
142 	union {
143 		struct ttm_kmap_iter_tt tt;
144 		struct ttm_kmap_iter_linear_io io;
145 	} _dst_iter, _src_iter;
146 	struct ttm_kmap_iter *dst_iter, *src_iter;
147 	bool clear;
148 	int ret = 0;
149 
150 	if (ttm && ((ttm->page_flags & TTM_TT_FLAG_SWAPPED) ||
151 		    dst_man->use_tt)) {
152 		ret = ttm_tt_populate(bdev, ttm, ctx);
153 		if (ret)
154 			return ret;
155 	}
156 
157 	dst_iter = ttm_kmap_iter_linear_io_init(&_dst_iter.io, bdev, dst_mem);
158 	if (PTR_ERR(dst_iter) == -EINVAL && dst_man->use_tt)
159 		dst_iter = ttm_kmap_iter_tt_init(&_dst_iter.tt, bo->ttm);
160 	if (IS_ERR(dst_iter))
161 		return PTR_ERR(dst_iter);
162 
163 	src_iter = ttm_kmap_iter_linear_io_init(&_src_iter.io, bdev, src_mem);
164 	if (PTR_ERR(src_iter) == -EINVAL && src_man->use_tt)
165 		src_iter = ttm_kmap_iter_tt_init(&_src_iter.tt, bo->ttm);
166 	if (IS_ERR(src_iter)) {
167 		ret = PTR_ERR(src_iter);
168 		goto out_src_iter;
169 	}
170 
171 	clear = src_iter->ops->maps_tt && (!ttm || !ttm_tt_is_populated(ttm));
172 	if (!(clear && ttm && !(ttm->page_flags & TTM_TT_FLAG_ZERO_ALLOC)))
173 		ttm_move_memcpy(clear, dst_mem->num_pages, dst_iter, src_iter);
174 
175 	if (!src_iter->ops->maps_tt)
176 		ttm_kmap_iter_linear_io_fini(&_src_iter.io, bdev, src_mem);
177 	ttm_bo_move_sync_cleanup(bo, dst_mem);
178 
179 out_src_iter:
180 	if (!dst_iter->ops->maps_tt)
181 		ttm_kmap_iter_linear_io_fini(&_dst_iter.io, bdev, dst_mem);
182 
183 	return ret;
184 }
185 EXPORT_SYMBOL(ttm_bo_move_memcpy);
186 
187 static void ttm_transfered_destroy(struct ttm_buffer_object *bo)
188 {
189 	struct ttm_transfer_obj *fbo;
190 
191 	fbo = container_of(bo, struct ttm_transfer_obj, base);
192 	dma_resv_fini(&fbo->base.base._resv);
193 	ttm_bo_put(fbo->bo);
194 	kfree(fbo);
195 }
196 
197 /**
198  * ttm_buffer_object_transfer
199  *
200  * @bo: A pointer to a struct ttm_buffer_object.
201  * @new_obj: A pointer to a pointer to a newly created ttm_buffer_object,
202  * holding the data of @bo with the old placement.
203  *
204  * This is a utility function that may be called after an accelerated move
205  * has been scheduled. A new buffer object is created as a placeholder for
206  * the old data while it's being copied. When that buffer object is idle,
207  * it can be destroyed, releasing the space of the old placement.
208  * Returns:
209  * !0: Failure.
210  */
211 
212 static int ttm_buffer_object_transfer(struct ttm_buffer_object *bo,
213 				      struct ttm_buffer_object **new_obj)
214 {
215 	struct ttm_transfer_obj *fbo;
216 	int ret;
217 
218 	fbo = kmalloc(sizeof(*fbo), GFP_KERNEL);
219 	if (!fbo)
220 		return -ENOMEM;
221 
222 	fbo->base = *bo;
223 
224 	ttm_bo_get(bo);
225 	fbo->bo = bo;
226 
227 	/**
228 	 * Fix up members that we shouldn't copy directly:
229 	 * TODO: Explicit member copy would probably be better here.
230 	 */
231 
232 	atomic_inc(&ttm_glob.bo_count);
233 	INIT_LIST_HEAD(&fbo->base.ddestroy);
234 	INIT_LIST_HEAD(&fbo->base.lru);
235 	fbo->base.moving = NULL;
236 	drm_vma_node_reset(&fbo->base.base.vma_node);
237 
238 	kref_init(&fbo->base.kref);
239 	fbo->base.destroy = &ttm_transfered_destroy;
240 	fbo->base.pin_count = 0;
241 	if (bo->type != ttm_bo_type_sg)
242 		fbo->base.base.resv = &fbo->base.base._resv;
243 
244 	dma_resv_init(&fbo->base.base._resv);
245 	fbo->base.base.dev = NULL;
246 	ret = dma_resv_trylock(&fbo->base.base._resv);
247 	WARN_ON(!ret);
248 
249 	ttm_bo_move_to_lru_tail_unlocked(&fbo->base);
250 
251 	*new_obj = &fbo->base;
252 	return 0;
253 }
254 
255 pgprot_t ttm_io_prot(struct ttm_buffer_object *bo, struct ttm_resource *res,
256 		     pgprot_t tmp)
257 {
258 	struct ttm_resource_manager *man;
259 	enum ttm_caching caching;
260 
261 	man = ttm_manager_type(bo->bdev, res->mem_type);
262 	caching = man->use_tt ? bo->ttm->caching : res->bus.caching;
263 
264 	return ttm_prot_from_caching(caching, tmp);
265 }
266 EXPORT_SYMBOL(ttm_io_prot);
267 
268 static int ttm_bo_ioremap(struct ttm_buffer_object *bo,
269 			  unsigned long offset,
270 			  unsigned long size,
271 			  struct ttm_bo_kmap_obj *map)
272 {
273 	struct ttm_resource *mem = bo->resource;
274 
275 	if (bo->resource->bus.addr) {
276 		map->bo_kmap_type = ttm_bo_map_premapped;
277 		map->virtual = ((u8 *)bo->resource->bus.addr) + offset;
278 	} else {
279 		resource_size_t res = bo->resource->bus.offset + offset;
280 
281 		map->bo_kmap_type = ttm_bo_map_iomap;
282 		if (mem->bus.caching == ttm_write_combined)
283 			map->virtual = ioremap_wc(res, size);
284 #ifdef CONFIG_X86
285 		else if (mem->bus.caching == ttm_cached)
286 			map->virtual = ioremap_cache(res, size);
287 #endif
288 		else
289 			map->virtual = ioremap(res, size);
290 	}
291 	return (!map->virtual) ? -ENOMEM : 0;
292 }
293 
294 static int ttm_bo_kmap_ttm(struct ttm_buffer_object *bo,
295 			   unsigned long start_page,
296 			   unsigned long num_pages,
297 			   struct ttm_bo_kmap_obj *map)
298 {
299 	struct ttm_resource *mem = bo->resource;
300 	struct ttm_operation_ctx ctx = {
301 		.interruptible = false,
302 		.no_wait_gpu = false
303 	};
304 	struct ttm_tt *ttm = bo->ttm;
305 	pgprot_t prot;
306 	int ret;
307 
308 	BUG_ON(!ttm);
309 
310 	ret = ttm_tt_populate(bo->bdev, ttm, &ctx);
311 	if (ret)
312 		return ret;
313 
314 	if (num_pages == 1 && ttm->caching == ttm_cached) {
315 		/*
316 		 * We're mapping a single page, and the desired
317 		 * page protection is consistent with the bo.
318 		 */
319 
320 		map->bo_kmap_type = ttm_bo_map_kmap;
321 		map->page = ttm->pages[start_page];
322 		map->virtual = kmap(map->page);
323 	} else {
324 		/*
325 		 * We need to use vmap to get the desired page protection
326 		 * or to make the buffer object look contiguous.
327 		 */
328 		prot = ttm_io_prot(bo, mem, PAGE_KERNEL);
329 		map->bo_kmap_type = ttm_bo_map_vmap;
330 		map->virtual = vmap(ttm->pages + start_page, num_pages,
331 				    0, prot);
332 	}
333 	return (!map->virtual) ? -ENOMEM : 0;
334 }
335 
336 int ttm_bo_kmap(struct ttm_buffer_object *bo,
337 		unsigned long start_page, unsigned long num_pages,
338 		struct ttm_bo_kmap_obj *map)
339 {
340 	unsigned long offset, size;
341 	int ret;
342 
343 	map->virtual = NULL;
344 	map->bo = bo;
345 	if (num_pages > bo->resource->num_pages)
346 		return -EINVAL;
347 	if ((start_page + num_pages) > bo->resource->num_pages)
348 		return -EINVAL;
349 
350 	ret = ttm_mem_io_reserve(bo->bdev, bo->resource);
351 	if (ret)
352 		return ret;
353 	if (!bo->resource->bus.is_iomem) {
354 		return ttm_bo_kmap_ttm(bo, start_page, num_pages, map);
355 	} else {
356 		offset = start_page << PAGE_SHIFT;
357 		size = num_pages << PAGE_SHIFT;
358 		return ttm_bo_ioremap(bo, offset, size, map);
359 	}
360 }
361 EXPORT_SYMBOL(ttm_bo_kmap);
362 
363 void ttm_bo_kunmap(struct ttm_bo_kmap_obj *map)
364 {
365 	if (!map->virtual)
366 		return;
367 	switch (map->bo_kmap_type) {
368 	case ttm_bo_map_iomap:
369 		iounmap(map->virtual);
370 		break;
371 	case ttm_bo_map_vmap:
372 		vunmap(map->virtual);
373 		break;
374 	case ttm_bo_map_kmap:
375 		kunmap(map->page);
376 		break;
377 	case ttm_bo_map_premapped:
378 		break;
379 	default:
380 		BUG();
381 	}
382 	ttm_mem_io_free(map->bo->bdev, map->bo->resource);
383 	map->virtual = NULL;
384 	map->page = NULL;
385 }
386 EXPORT_SYMBOL(ttm_bo_kunmap);
387 
388 int ttm_bo_vmap(struct ttm_buffer_object *bo, struct dma_buf_map *map)
389 {
390 	struct ttm_resource *mem = bo->resource;
391 	int ret;
392 
393 	ret = ttm_mem_io_reserve(bo->bdev, mem);
394 	if (ret)
395 		return ret;
396 
397 	if (mem->bus.is_iomem) {
398 		void __iomem *vaddr_iomem;
399 
400 		if (mem->bus.addr)
401 			vaddr_iomem = (void __iomem *)mem->bus.addr;
402 		else if (mem->bus.caching == ttm_write_combined)
403 			vaddr_iomem = ioremap_wc(mem->bus.offset,
404 						 bo->base.size);
405 #ifdef CONFIG_X86
406 		else if (mem->bus.caching == ttm_cached)
407 			vaddr_iomem = ioremap_cache(mem->bus.offset,
408 						  bo->base.size);
409 #endif
410 		else
411 			vaddr_iomem = ioremap(mem->bus.offset, bo->base.size);
412 
413 		if (!vaddr_iomem)
414 			return -ENOMEM;
415 
416 		dma_buf_map_set_vaddr_iomem(map, vaddr_iomem);
417 
418 	} else {
419 		struct ttm_operation_ctx ctx = {
420 			.interruptible = false,
421 			.no_wait_gpu = false
422 		};
423 		struct ttm_tt *ttm = bo->ttm;
424 		pgprot_t prot;
425 		void *vaddr;
426 
427 		ret = ttm_tt_populate(bo->bdev, ttm, &ctx);
428 		if (ret)
429 			return ret;
430 
431 		/*
432 		 * We need to use vmap to get the desired page protection
433 		 * or to make the buffer object look contiguous.
434 		 */
435 		prot = ttm_io_prot(bo, mem, PAGE_KERNEL);
436 		vaddr = vmap(ttm->pages, ttm->num_pages, 0, prot);
437 		if (!vaddr)
438 			return -ENOMEM;
439 
440 		dma_buf_map_set_vaddr(map, vaddr);
441 	}
442 
443 	return 0;
444 }
445 EXPORT_SYMBOL(ttm_bo_vmap);
446 
447 void ttm_bo_vunmap(struct ttm_buffer_object *bo, struct dma_buf_map *map)
448 {
449 	struct ttm_resource *mem = bo->resource;
450 
451 	if (dma_buf_map_is_null(map))
452 		return;
453 
454 	if (!map->is_iomem)
455 		vunmap(map->vaddr);
456 	else if (!mem->bus.addr)
457 		iounmap(map->vaddr_iomem);
458 	dma_buf_map_clear(map);
459 
460 	ttm_mem_io_free(bo->bdev, bo->resource);
461 }
462 EXPORT_SYMBOL(ttm_bo_vunmap);
463 
464 static int ttm_bo_wait_free_node(struct ttm_buffer_object *bo,
465 				 bool dst_use_tt)
466 {
467 	int ret;
468 	ret = ttm_bo_wait(bo, false, false);
469 	if (ret)
470 		return ret;
471 
472 	if (!dst_use_tt)
473 		ttm_bo_tt_destroy(bo);
474 	ttm_resource_free(bo, &bo->resource);
475 	return 0;
476 }
477 
478 static int ttm_bo_move_to_ghost(struct ttm_buffer_object *bo,
479 				struct dma_fence *fence,
480 				bool dst_use_tt)
481 {
482 	struct ttm_buffer_object *ghost_obj;
483 	int ret;
484 
485 	/**
486 	 * This should help pipeline ordinary buffer moves.
487 	 *
488 	 * Hang old buffer memory on a new buffer object,
489 	 * and leave it to be released when the GPU
490 	 * operation has completed.
491 	 */
492 
493 	dma_fence_put(bo->moving);
494 	bo->moving = dma_fence_get(fence);
495 
496 	ret = ttm_buffer_object_transfer(bo, &ghost_obj);
497 	if (ret)
498 		return ret;
499 
500 	dma_resv_add_excl_fence(&ghost_obj->base._resv, fence);
501 
502 	/**
503 	 * If we're not moving to fixed memory, the TTM object
504 	 * needs to stay alive. Otherwhise hang it on the ghost
505 	 * bo to be unbound and destroyed.
506 	 */
507 
508 	if (dst_use_tt)
509 		ghost_obj->ttm = NULL;
510 	else
511 		bo->ttm = NULL;
512 	bo->resource = NULL;
513 
514 	dma_resv_unlock(&ghost_obj->base._resv);
515 	ttm_bo_put(ghost_obj);
516 	return 0;
517 }
518 
519 static void ttm_bo_move_pipeline_evict(struct ttm_buffer_object *bo,
520 				       struct dma_fence *fence)
521 {
522 	struct ttm_device *bdev = bo->bdev;
523 	struct ttm_resource_manager *from;
524 
525 	from = ttm_manager_type(bdev, bo->resource->mem_type);
526 
527 	/**
528 	 * BO doesn't have a TTM we need to bind/unbind. Just remember
529 	 * this eviction and free up the allocation
530 	 */
531 	spin_lock(&from->move_lock);
532 	if (!from->move || dma_fence_is_later(fence, from->move)) {
533 		dma_fence_put(from->move);
534 		from->move = dma_fence_get(fence);
535 	}
536 	spin_unlock(&from->move_lock);
537 
538 	ttm_resource_free(bo, &bo->resource);
539 
540 	dma_fence_put(bo->moving);
541 	bo->moving = dma_fence_get(fence);
542 }
543 
544 int ttm_bo_move_accel_cleanup(struct ttm_buffer_object *bo,
545 			      struct dma_fence *fence,
546 			      bool evict,
547 			      bool pipeline,
548 			      struct ttm_resource *new_mem)
549 {
550 	struct ttm_device *bdev = bo->bdev;
551 	struct ttm_resource_manager *from = ttm_manager_type(bdev, bo->resource->mem_type);
552 	struct ttm_resource_manager *man = ttm_manager_type(bdev, new_mem->mem_type);
553 	int ret = 0;
554 
555 	dma_resv_add_excl_fence(bo->base.resv, fence);
556 	if (!evict)
557 		ret = ttm_bo_move_to_ghost(bo, fence, man->use_tt);
558 	else if (!from->use_tt && pipeline)
559 		ttm_bo_move_pipeline_evict(bo, fence);
560 	else
561 		ret = ttm_bo_wait_free_node(bo, man->use_tt);
562 
563 	if (ret)
564 		return ret;
565 
566 	ttm_bo_assign_mem(bo, new_mem);
567 
568 	return 0;
569 }
570 EXPORT_SYMBOL(ttm_bo_move_accel_cleanup);
571 
572 /**
573  * ttm_bo_pipeline_gutting - purge the contents of a bo
574  * @bo: The buffer object
575  *
576  * Purge the contents of a bo, async if the bo is not idle.
577  * After a successful call, the bo is left unpopulated in
578  * system placement. The function may wait uninterruptible
579  * for idle on OOM.
580  *
581  * Return: 0 if successful, negative error code on failure.
582  */
583 int ttm_bo_pipeline_gutting(struct ttm_buffer_object *bo)
584 {
585 	static const struct ttm_place sys_mem = { .mem_type = TTM_PL_SYSTEM };
586 	struct ttm_buffer_object *ghost;
587 	struct ttm_resource *sys_res;
588 	struct ttm_tt *ttm;
589 	int ret;
590 
591 	ret = ttm_resource_alloc(bo, &sys_mem, &sys_res);
592 	if (ret)
593 		return ret;
594 
595 	/* If already idle, no need for ghost object dance. */
596 	ret = ttm_bo_wait(bo, false, true);
597 	if (ret != -EBUSY) {
598 		if (!bo->ttm) {
599 			/* See comment below about clearing. */
600 			ret = ttm_tt_create(bo, true);
601 			if (ret)
602 				goto error_free_sys_mem;
603 		} else {
604 			ttm_tt_unpopulate(bo->bdev, bo->ttm);
605 			if (bo->type == ttm_bo_type_device)
606 				ttm_tt_mark_for_clear(bo->ttm);
607 		}
608 		ttm_resource_free(bo, &bo->resource);
609 		ttm_bo_assign_mem(bo, sys_res);
610 		return 0;
611 	}
612 
613 	/*
614 	 * We need an unpopulated ttm_tt after giving our current one,
615 	 * if any, to the ghost object. And we can't afford to fail
616 	 * creating one *after* the operation. If the bo subsequently gets
617 	 * resurrected, make sure it's cleared (if ttm_bo_type_device)
618 	 * to avoid leaking sensitive information to user-space.
619 	 */
620 
621 	ttm = bo->ttm;
622 	bo->ttm = NULL;
623 	ret = ttm_tt_create(bo, true);
624 	swap(bo->ttm, ttm);
625 	if (ret)
626 		goto error_free_sys_mem;
627 
628 	ret = ttm_buffer_object_transfer(bo, &ghost);
629 	if (ret)
630 		goto error_destroy_tt;
631 
632 	ret = dma_resv_copy_fences(&ghost->base._resv, bo->base.resv);
633 	/* Last resort, wait for the BO to be idle when we are OOM */
634 	if (ret)
635 		ttm_bo_wait(bo, false, false);
636 
637 	dma_resv_unlock(&ghost->base._resv);
638 	ttm_bo_put(ghost);
639 	bo->ttm = ttm;
640 	bo->resource = NULL;
641 	ttm_bo_assign_mem(bo, sys_res);
642 	return 0;
643 
644 error_destroy_tt:
645 	ttm_tt_destroy(bo->bdev, ttm);
646 
647 error_free_sys_mem:
648 	ttm_resource_free(bo, &sys_res);
649 	return ret;
650 }
651