1 /************************************************************************** 2 * 3 * Copyright (c) 2007-2009 VMware, Inc., Palo Alto, CA., USA 4 * All Rights Reserved. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the 8 * "Software"), to deal in the Software without restriction, including 9 * without limitation the rights to use, copy, modify, merge, publish, 10 * distribute, sub license, and/or sell copies of the Software, and to 11 * permit persons to whom the Software is furnished to do so, subject to 12 * the following conditions: 13 * 14 * The above copyright notice and this permission notice (including the 15 * next paragraph) shall be included in all copies or substantial portions 16 * of the Software. 17 * 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 20 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 21 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 22 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 23 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 24 * USE OR OTHER DEALINGS IN THE SOFTWARE. 25 * 26 **************************************************************************/ 27 /* 28 * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com> 29 */ 30 31 #include "ttm/ttm_bo_driver.h" 32 #include "ttm/ttm_placement.h" 33 #include <linux/io.h> 34 #include <linux/highmem.h> 35 #include <linux/wait.h> 36 #include <linux/slab.h> 37 #include <linux/vmalloc.h> 38 #include <linux/module.h> 39 40 void ttm_bo_free_old_node(struct ttm_buffer_object *bo) 41 { 42 ttm_bo_mem_put(bo, &bo->mem); 43 } 44 45 int ttm_bo_move_ttm(struct ttm_buffer_object *bo, 46 bool evict, bool no_wait_reserve, 47 bool no_wait_gpu, struct ttm_mem_reg *new_mem) 48 { 49 struct ttm_tt *ttm = bo->ttm; 50 struct ttm_mem_reg *old_mem = &bo->mem; 51 int ret; 52 53 if (old_mem->mem_type != TTM_PL_SYSTEM) { 54 ttm_tt_unbind(ttm); 55 ttm_bo_free_old_node(bo); 56 ttm_flag_masked(&old_mem->placement, TTM_PL_FLAG_SYSTEM, 57 TTM_PL_MASK_MEM); 58 old_mem->mem_type = TTM_PL_SYSTEM; 59 } 60 61 ret = ttm_tt_set_placement_caching(ttm, new_mem->placement); 62 if (unlikely(ret != 0)) 63 return ret; 64 65 if (new_mem->mem_type != TTM_PL_SYSTEM) { 66 ret = ttm_tt_bind(ttm, new_mem); 67 if (unlikely(ret != 0)) 68 return ret; 69 } 70 71 *old_mem = *new_mem; 72 new_mem->mm_node = NULL; 73 74 return 0; 75 } 76 EXPORT_SYMBOL(ttm_bo_move_ttm); 77 78 int ttm_mem_io_reserve(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem) 79 { 80 int ret; 81 82 if (!mem->bus.io_reserved) { 83 mem->bus.io_reserved = true; 84 ret = bdev->driver->io_mem_reserve(bdev, mem); 85 if (unlikely(ret != 0)) 86 return ret; 87 } 88 return 0; 89 } 90 91 void ttm_mem_io_free(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem) 92 { 93 if (bdev->driver->io_mem_reserve) { 94 if (mem->bus.io_reserved) { 95 mem->bus.io_reserved = false; 96 bdev->driver->io_mem_free(bdev, mem); 97 } 98 } 99 } 100 101 int ttm_mem_reg_ioremap(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem, 102 void **virtual) 103 { 104 int ret; 105 void *addr; 106 107 *virtual = NULL; 108 ret = ttm_mem_io_reserve(bdev, mem); 109 if (ret || !mem->bus.is_iomem) 110 return ret; 111 112 if (mem->bus.addr) { 113 addr = mem->bus.addr; 114 } else { 115 if (mem->placement & TTM_PL_FLAG_WC) 116 addr = ioremap_wc(mem->bus.base + mem->bus.offset, mem->bus.size); 117 else 118 addr = ioremap_nocache(mem->bus.base + mem->bus.offset, mem->bus.size); 119 if (!addr) { 120 ttm_mem_io_free(bdev, mem); 121 return -ENOMEM; 122 } 123 } 124 *virtual = addr; 125 return 0; 126 } 127 128 void ttm_mem_reg_iounmap(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem, 129 void *virtual) 130 { 131 struct ttm_mem_type_manager *man; 132 133 man = &bdev->man[mem->mem_type]; 134 135 if (virtual && mem->bus.addr == NULL) 136 iounmap(virtual); 137 ttm_mem_io_free(bdev, mem); 138 } 139 140 static int ttm_copy_io_page(void *dst, void *src, unsigned long page) 141 { 142 uint32_t *dstP = 143 (uint32_t *) ((unsigned long)dst + (page << PAGE_SHIFT)); 144 uint32_t *srcP = 145 (uint32_t *) ((unsigned long)src + (page << PAGE_SHIFT)); 146 147 int i; 148 for (i = 0; i < PAGE_SIZE / sizeof(uint32_t); ++i) 149 iowrite32(ioread32(srcP++), dstP++); 150 return 0; 151 } 152 153 static int ttm_copy_io_ttm_page(struct ttm_tt *ttm, void *src, 154 unsigned long page, 155 pgprot_t prot) 156 { 157 struct page *d = ttm_tt_get_page(ttm, page); 158 void *dst; 159 160 if (!d) 161 return -ENOMEM; 162 163 src = (void *)((unsigned long)src + (page << PAGE_SHIFT)); 164 165 #ifdef CONFIG_X86 166 dst = kmap_atomic_prot(d, prot); 167 #else 168 if (pgprot_val(prot) != pgprot_val(PAGE_KERNEL)) 169 dst = vmap(&d, 1, 0, prot); 170 else 171 dst = kmap(d); 172 #endif 173 if (!dst) 174 return -ENOMEM; 175 176 memcpy_fromio(dst, src, PAGE_SIZE); 177 178 #ifdef CONFIG_X86 179 kunmap_atomic(dst); 180 #else 181 if (pgprot_val(prot) != pgprot_val(PAGE_KERNEL)) 182 vunmap(dst); 183 else 184 kunmap(d); 185 #endif 186 187 return 0; 188 } 189 190 static int ttm_copy_ttm_io_page(struct ttm_tt *ttm, void *dst, 191 unsigned long page, 192 pgprot_t prot) 193 { 194 struct page *s = ttm_tt_get_page(ttm, page); 195 void *src; 196 197 if (!s) 198 return -ENOMEM; 199 200 dst = (void *)((unsigned long)dst + (page << PAGE_SHIFT)); 201 #ifdef CONFIG_X86 202 src = kmap_atomic_prot(s, prot); 203 #else 204 if (pgprot_val(prot) != pgprot_val(PAGE_KERNEL)) 205 src = vmap(&s, 1, 0, prot); 206 else 207 src = kmap(s); 208 #endif 209 if (!src) 210 return -ENOMEM; 211 212 memcpy_toio(dst, src, PAGE_SIZE); 213 214 #ifdef CONFIG_X86 215 kunmap_atomic(src); 216 #else 217 if (pgprot_val(prot) != pgprot_val(PAGE_KERNEL)) 218 vunmap(src); 219 else 220 kunmap(s); 221 #endif 222 223 return 0; 224 } 225 226 int ttm_bo_move_memcpy(struct ttm_buffer_object *bo, 227 bool evict, bool no_wait_reserve, bool no_wait_gpu, 228 struct ttm_mem_reg *new_mem) 229 { 230 struct ttm_bo_device *bdev = bo->bdev; 231 struct ttm_mem_type_manager *man = &bdev->man[new_mem->mem_type]; 232 struct ttm_tt *ttm = bo->ttm; 233 struct ttm_mem_reg *old_mem = &bo->mem; 234 struct ttm_mem_reg old_copy = *old_mem; 235 void *old_iomap; 236 void *new_iomap; 237 int ret; 238 unsigned long i; 239 unsigned long page; 240 unsigned long add = 0; 241 int dir; 242 243 ret = ttm_mem_reg_ioremap(bdev, old_mem, &old_iomap); 244 if (ret) 245 return ret; 246 ret = ttm_mem_reg_ioremap(bdev, new_mem, &new_iomap); 247 if (ret) 248 goto out; 249 250 if (old_iomap == NULL && new_iomap == NULL) 251 goto out2; 252 if (old_iomap == NULL && ttm == NULL) 253 goto out2; 254 255 add = 0; 256 dir = 1; 257 258 if ((old_mem->mem_type == new_mem->mem_type) && 259 (new_mem->start < old_mem->start + old_mem->size)) { 260 dir = -1; 261 add = new_mem->num_pages - 1; 262 } 263 264 for (i = 0; i < new_mem->num_pages; ++i) { 265 page = i * dir + add; 266 if (old_iomap == NULL) { 267 pgprot_t prot = ttm_io_prot(old_mem->placement, 268 PAGE_KERNEL); 269 ret = ttm_copy_ttm_io_page(ttm, new_iomap, page, 270 prot); 271 } else if (new_iomap == NULL) { 272 pgprot_t prot = ttm_io_prot(new_mem->placement, 273 PAGE_KERNEL); 274 ret = ttm_copy_io_ttm_page(ttm, old_iomap, page, 275 prot); 276 } else 277 ret = ttm_copy_io_page(new_iomap, old_iomap, page); 278 if (ret) 279 goto out1; 280 } 281 mb(); 282 out2: 283 ttm_bo_free_old_node(bo); 284 285 *old_mem = *new_mem; 286 new_mem->mm_node = NULL; 287 288 if ((man->flags & TTM_MEMTYPE_FLAG_FIXED) && (ttm != NULL)) { 289 ttm_tt_unbind(ttm); 290 ttm_tt_destroy(ttm); 291 bo->ttm = NULL; 292 } 293 294 out1: 295 ttm_mem_reg_iounmap(bdev, new_mem, new_iomap); 296 out: 297 ttm_mem_reg_iounmap(bdev, &old_copy, old_iomap); 298 return ret; 299 } 300 EXPORT_SYMBOL(ttm_bo_move_memcpy); 301 302 static void ttm_transfered_destroy(struct ttm_buffer_object *bo) 303 { 304 kfree(bo); 305 } 306 307 /** 308 * ttm_buffer_object_transfer 309 * 310 * @bo: A pointer to a struct ttm_buffer_object. 311 * @new_obj: A pointer to a pointer to a newly created ttm_buffer_object, 312 * holding the data of @bo with the old placement. 313 * 314 * This is a utility function that may be called after an accelerated move 315 * has been scheduled. A new buffer object is created as a placeholder for 316 * the old data while it's being copied. When that buffer object is idle, 317 * it can be destroyed, releasing the space of the old placement. 318 * Returns: 319 * !0: Failure. 320 */ 321 322 static int ttm_buffer_object_transfer(struct ttm_buffer_object *bo, 323 struct ttm_buffer_object **new_obj) 324 { 325 struct ttm_buffer_object *fbo; 326 struct ttm_bo_device *bdev = bo->bdev; 327 struct ttm_bo_driver *driver = bdev->driver; 328 329 fbo = kzalloc(sizeof(*fbo), GFP_KERNEL); 330 if (!fbo) 331 return -ENOMEM; 332 333 *fbo = *bo; 334 335 /** 336 * Fix up members that we shouldn't copy directly: 337 * TODO: Explicit member copy would probably be better here. 338 */ 339 340 spin_lock_init(&fbo->lock); 341 init_waitqueue_head(&fbo->event_queue); 342 INIT_LIST_HEAD(&fbo->ddestroy); 343 INIT_LIST_HEAD(&fbo->lru); 344 INIT_LIST_HEAD(&fbo->swap); 345 fbo->vm_node = NULL; 346 atomic_set(&fbo->cpu_writers, 0); 347 348 fbo->sync_obj = driver->sync_obj_ref(bo->sync_obj); 349 kref_init(&fbo->list_kref); 350 kref_init(&fbo->kref); 351 fbo->destroy = &ttm_transfered_destroy; 352 353 *new_obj = fbo; 354 return 0; 355 } 356 357 pgprot_t ttm_io_prot(uint32_t caching_flags, pgprot_t tmp) 358 { 359 #if defined(__i386__) || defined(__x86_64__) 360 if (caching_flags & TTM_PL_FLAG_WC) 361 tmp = pgprot_writecombine(tmp); 362 else if (boot_cpu_data.x86 > 3) 363 tmp = pgprot_noncached(tmp); 364 365 #elif defined(__powerpc__) 366 if (!(caching_flags & TTM_PL_FLAG_CACHED)) { 367 pgprot_val(tmp) |= _PAGE_NO_CACHE; 368 if (caching_flags & TTM_PL_FLAG_UNCACHED) 369 pgprot_val(tmp) |= _PAGE_GUARDED; 370 } 371 #endif 372 #if defined(__ia64__) 373 if (caching_flags & TTM_PL_FLAG_WC) 374 tmp = pgprot_writecombine(tmp); 375 else 376 tmp = pgprot_noncached(tmp); 377 #endif 378 #if defined(__sparc__) 379 if (!(caching_flags & TTM_PL_FLAG_CACHED)) 380 tmp = pgprot_noncached(tmp); 381 #endif 382 return tmp; 383 } 384 EXPORT_SYMBOL(ttm_io_prot); 385 386 static int ttm_bo_ioremap(struct ttm_buffer_object *bo, 387 unsigned long offset, 388 unsigned long size, 389 struct ttm_bo_kmap_obj *map) 390 { 391 struct ttm_mem_reg *mem = &bo->mem; 392 393 if (bo->mem.bus.addr) { 394 map->bo_kmap_type = ttm_bo_map_premapped; 395 map->virtual = (void *)(((u8 *)bo->mem.bus.addr) + offset); 396 } else { 397 map->bo_kmap_type = ttm_bo_map_iomap; 398 if (mem->placement & TTM_PL_FLAG_WC) 399 map->virtual = ioremap_wc(bo->mem.bus.base + bo->mem.bus.offset + offset, 400 size); 401 else 402 map->virtual = ioremap_nocache(bo->mem.bus.base + bo->mem.bus.offset + offset, 403 size); 404 } 405 return (!map->virtual) ? -ENOMEM : 0; 406 } 407 408 static int ttm_bo_kmap_ttm(struct ttm_buffer_object *bo, 409 unsigned long start_page, 410 unsigned long num_pages, 411 struct ttm_bo_kmap_obj *map) 412 { 413 struct ttm_mem_reg *mem = &bo->mem; pgprot_t prot; 414 struct ttm_tt *ttm = bo->ttm; 415 struct page *d; 416 int i; 417 418 BUG_ON(!ttm); 419 if (num_pages == 1 && (mem->placement & TTM_PL_FLAG_CACHED)) { 420 /* 421 * We're mapping a single page, and the desired 422 * page protection is consistent with the bo. 423 */ 424 425 map->bo_kmap_type = ttm_bo_map_kmap; 426 map->page = ttm_tt_get_page(ttm, start_page); 427 map->virtual = kmap(map->page); 428 } else { 429 /* 430 * Populate the part we're mapping; 431 */ 432 for (i = start_page; i < start_page + num_pages; ++i) { 433 d = ttm_tt_get_page(ttm, i); 434 if (!d) 435 return -ENOMEM; 436 } 437 438 /* 439 * We need to use vmap to get the desired page protection 440 * or to make the buffer object look contiguous. 441 */ 442 prot = (mem->placement & TTM_PL_FLAG_CACHED) ? 443 PAGE_KERNEL : 444 ttm_io_prot(mem->placement, PAGE_KERNEL); 445 map->bo_kmap_type = ttm_bo_map_vmap; 446 map->virtual = vmap(ttm->pages + start_page, num_pages, 447 0, prot); 448 } 449 return (!map->virtual) ? -ENOMEM : 0; 450 } 451 452 int ttm_bo_kmap(struct ttm_buffer_object *bo, 453 unsigned long start_page, unsigned long num_pages, 454 struct ttm_bo_kmap_obj *map) 455 { 456 unsigned long offset, size; 457 int ret; 458 459 BUG_ON(!list_empty(&bo->swap)); 460 map->virtual = NULL; 461 map->bo = bo; 462 if (num_pages > bo->num_pages) 463 return -EINVAL; 464 if (start_page > bo->num_pages) 465 return -EINVAL; 466 #if 0 467 if (num_pages > 1 && !DRM_SUSER(DRM_CURPROC)) 468 return -EPERM; 469 #endif 470 ret = ttm_mem_io_reserve(bo->bdev, &bo->mem); 471 if (ret) 472 return ret; 473 if (!bo->mem.bus.is_iomem) { 474 return ttm_bo_kmap_ttm(bo, start_page, num_pages, map); 475 } else { 476 offset = start_page << PAGE_SHIFT; 477 size = num_pages << PAGE_SHIFT; 478 return ttm_bo_ioremap(bo, offset, size, map); 479 } 480 } 481 EXPORT_SYMBOL(ttm_bo_kmap); 482 483 void ttm_bo_kunmap(struct ttm_bo_kmap_obj *map) 484 { 485 if (!map->virtual) 486 return; 487 switch (map->bo_kmap_type) { 488 case ttm_bo_map_iomap: 489 iounmap(map->virtual); 490 ttm_mem_io_free(map->bo->bdev, &map->bo->mem); 491 break; 492 case ttm_bo_map_vmap: 493 vunmap(map->virtual); 494 break; 495 case ttm_bo_map_kmap: 496 kunmap(map->page); 497 break; 498 case ttm_bo_map_premapped: 499 break; 500 default: 501 BUG(); 502 } 503 map->virtual = NULL; 504 map->page = NULL; 505 } 506 EXPORT_SYMBOL(ttm_bo_kunmap); 507 508 int ttm_bo_move_accel_cleanup(struct ttm_buffer_object *bo, 509 void *sync_obj, 510 void *sync_obj_arg, 511 bool evict, bool no_wait_reserve, 512 bool no_wait_gpu, 513 struct ttm_mem_reg *new_mem) 514 { 515 struct ttm_bo_device *bdev = bo->bdev; 516 struct ttm_bo_driver *driver = bdev->driver; 517 struct ttm_mem_type_manager *man = &bdev->man[new_mem->mem_type]; 518 struct ttm_mem_reg *old_mem = &bo->mem; 519 int ret; 520 struct ttm_buffer_object *ghost_obj; 521 void *tmp_obj = NULL; 522 523 spin_lock(&bo->lock); 524 if (bo->sync_obj) { 525 tmp_obj = bo->sync_obj; 526 bo->sync_obj = NULL; 527 } 528 bo->sync_obj = driver->sync_obj_ref(sync_obj); 529 bo->sync_obj_arg = sync_obj_arg; 530 if (evict) { 531 ret = ttm_bo_wait(bo, false, false, false); 532 spin_unlock(&bo->lock); 533 if (tmp_obj) 534 driver->sync_obj_unref(&tmp_obj); 535 if (ret) 536 return ret; 537 538 ttm_bo_free_old_node(bo); 539 if ((man->flags & TTM_MEMTYPE_FLAG_FIXED) && 540 (bo->ttm != NULL)) { 541 ttm_tt_unbind(bo->ttm); 542 ttm_tt_destroy(bo->ttm); 543 bo->ttm = NULL; 544 } 545 } else { 546 /** 547 * This should help pipeline ordinary buffer moves. 548 * 549 * Hang old buffer memory on a new buffer object, 550 * and leave it to be released when the GPU 551 * operation has completed. 552 */ 553 554 set_bit(TTM_BO_PRIV_FLAG_MOVING, &bo->priv_flags); 555 spin_unlock(&bo->lock); 556 if (tmp_obj) 557 driver->sync_obj_unref(&tmp_obj); 558 559 ret = ttm_buffer_object_transfer(bo, &ghost_obj); 560 if (ret) 561 return ret; 562 563 /** 564 * If we're not moving to fixed memory, the TTM object 565 * needs to stay alive. Otherwhise hang it on the ghost 566 * bo to be unbound and destroyed. 567 */ 568 569 if (!(man->flags & TTM_MEMTYPE_FLAG_FIXED)) 570 ghost_obj->ttm = NULL; 571 else 572 bo->ttm = NULL; 573 574 ttm_bo_unreserve(ghost_obj); 575 ttm_bo_unref(&ghost_obj); 576 } 577 578 *old_mem = *new_mem; 579 new_mem->mm_node = NULL; 580 581 return 0; 582 } 583 EXPORT_SYMBOL(ttm_bo_move_accel_cleanup); 584