xref: /openbmc/linux/drivers/gpu/drm/ttm/ttm_bo_util.c (revision b240b419db5d624ce7a5a397d6f62a1a686009ec)
1 /**************************************************************************
2  *
3  * Copyright (c) 2007-2009 VMware, Inc., Palo Alto, CA., USA
4  * All Rights Reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24  * USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  **************************************************************************/
27 /*
28  * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
29  */
30 
31 #include <drm/ttm/ttm_bo_driver.h>
32 #include <drm/ttm/ttm_placement.h>
33 #include <drm/drm_vma_manager.h>
34 #include <linux/io.h>
35 #include <linux/highmem.h>
36 #include <linux/wait.h>
37 #include <linux/slab.h>
38 #include <linux/vmalloc.h>
39 #include <linux/module.h>
40 #include <linux/reservation.h>
41 
42 void ttm_bo_free_old_node(struct ttm_buffer_object *bo)
43 {
44 	ttm_bo_mem_put(bo, &bo->mem);
45 }
46 
47 int ttm_bo_move_ttm(struct ttm_buffer_object *bo,
48 		   struct ttm_operation_ctx *ctx,
49 		    struct ttm_mem_reg *new_mem)
50 {
51 	struct ttm_tt *ttm = bo->ttm;
52 	struct ttm_mem_reg *old_mem = &bo->mem;
53 	int ret;
54 
55 	if (old_mem->mem_type != TTM_PL_SYSTEM) {
56 		ret = ttm_bo_wait(bo, ctx->interruptible, ctx->no_wait_gpu);
57 
58 		if (unlikely(ret != 0)) {
59 			if (ret != -ERESTARTSYS)
60 				pr_err("Failed to expire sync object before unbinding TTM\n");
61 			return ret;
62 		}
63 
64 		ttm_tt_unbind(ttm);
65 		ttm_bo_free_old_node(bo);
66 		ttm_flag_masked(&old_mem->placement, TTM_PL_FLAG_SYSTEM,
67 				TTM_PL_MASK_MEM);
68 		old_mem->mem_type = TTM_PL_SYSTEM;
69 	}
70 
71 	ret = ttm_tt_set_placement_caching(ttm, new_mem->placement);
72 	if (unlikely(ret != 0))
73 		return ret;
74 
75 	if (new_mem->mem_type != TTM_PL_SYSTEM) {
76 		ret = ttm_tt_bind(ttm, new_mem, ctx);
77 		if (unlikely(ret != 0))
78 			return ret;
79 	}
80 
81 	*old_mem = *new_mem;
82 	new_mem->mm_node = NULL;
83 
84 	return 0;
85 }
86 EXPORT_SYMBOL(ttm_bo_move_ttm);
87 
88 int ttm_mem_io_lock(struct ttm_mem_type_manager *man, bool interruptible)
89 {
90 	if (likely(man->io_reserve_fastpath))
91 		return 0;
92 
93 	if (interruptible)
94 		return mutex_lock_interruptible(&man->io_reserve_mutex);
95 
96 	mutex_lock(&man->io_reserve_mutex);
97 	return 0;
98 }
99 EXPORT_SYMBOL(ttm_mem_io_lock);
100 
101 void ttm_mem_io_unlock(struct ttm_mem_type_manager *man)
102 {
103 	if (likely(man->io_reserve_fastpath))
104 		return;
105 
106 	mutex_unlock(&man->io_reserve_mutex);
107 }
108 EXPORT_SYMBOL(ttm_mem_io_unlock);
109 
110 static int ttm_mem_io_evict(struct ttm_mem_type_manager *man)
111 {
112 	struct ttm_buffer_object *bo;
113 
114 	if (!man->use_io_reserve_lru || list_empty(&man->io_reserve_lru))
115 		return -EAGAIN;
116 
117 	bo = list_first_entry(&man->io_reserve_lru,
118 			      struct ttm_buffer_object,
119 			      io_reserve_lru);
120 	list_del_init(&bo->io_reserve_lru);
121 	ttm_bo_unmap_virtual_locked(bo);
122 
123 	return 0;
124 }
125 
126 
127 int ttm_mem_io_reserve(struct ttm_bo_device *bdev,
128 		       struct ttm_mem_reg *mem)
129 {
130 	struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
131 	int ret = 0;
132 
133 	if (!bdev->driver->io_mem_reserve)
134 		return 0;
135 	if (likely(man->io_reserve_fastpath))
136 		return bdev->driver->io_mem_reserve(bdev, mem);
137 
138 	if (bdev->driver->io_mem_reserve &&
139 	    mem->bus.io_reserved_count++ == 0) {
140 retry:
141 		ret = bdev->driver->io_mem_reserve(bdev, mem);
142 		if (ret == -EAGAIN) {
143 			ret = ttm_mem_io_evict(man);
144 			if (ret == 0)
145 				goto retry;
146 		}
147 	}
148 	return ret;
149 }
150 EXPORT_SYMBOL(ttm_mem_io_reserve);
151 
152 void ttm_mem_io_free(struct ttm_bo_device *bdev,
153 		     struct ttm_mem_reg *mem)
154 {
155 	struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
156 
157 	if (likely(man->io_reserve_fastpath))
158 		return;
159 
160 	if (bdev->driver->io_mem_reserve &&
161 	    --mem->bus.io_reserved_count == 0 &&
162 	    bdev->driver->io_mem_free)
163 		bdev->driver->io_mem_free(bdev, mem);
164 
165 }
166 EXPORT_SYMBOL(ttm_mem_io_free);
167 
168 int ttm_mem_io_reserve_vm(struct ttm_buffer_object *bo)
169 {
170 	struct ttm_mem_reg *mem = &bo->mem;
171 	int ret;
172 
173 	if (!mem->bus.io_reserved_vm) {
174 		struct ttm_mem_type_manager *man =
175 			&bo->bdev->man[mem->mem_type];
176 
177 		ret = ttm_mem_io_reserve(bo->bdev, mem);
178 		if (unlikely(ret != 0))
179 			return ret;
180 		mem->bus.io_reserved_vm = true;
181 		if (man->use_io_reserve_lru)
182 			list_add_tail(&bo->io_reserve_lru,
183 				      &man->io_reserve_lru);
184 	}
185 	return 0;
186 }
187 
188 void ttm_mem_io_free_vm(struct ttm_buffer_object *bo)
189 {
190 	struct ttm_mem_reg *mem = &bo->mem;
191 
192 	if (mem->bus.io_reserved_vm) {
193 		mem->bus.io_reserved_vm = false;
194 		list_del_init(&bo->io_reserve_lru);
195 		ttm_mem_io_free(bo->bdev, mem);
196 	}
197 }
198 
199 static int ttm_mem_reg_ioremap(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem,
200 			void **virtual)
201 {
202 	struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
203 	int ret;
204 	void *addr;
205 
206 	*virtual = NULL;
207 	(void) ttm_mem_io_lock(man, false);
208 	ret = ttm_mem_io_reserve(bdev, mem);
209 	ttm_mem_io_unlock(man);
210 	if (ret || !mem->bus.is_iomem)
211 		return ret;
212 
213 	if (mem->bus.addr) {
214 		addr = mem->bus.addr;
215 	} else {
216 		if (mem->placement & TTM_PL_FLAG_WC)
217 			addr = ioremap_wc(mem->bus.base + mem->bus.offset, mem->bus.size);
218 		else
219 			addr = ioremap_nocache(mem->bus.base + mem->bus.offset, mem->bus.size);
220 		if (!addr) {
221 			(void) ttm_mem_io_lock(man, false);
222 			ttm_mem_io_free(bdev, mem);
223 			ttm_mem_io_unlock(man);
224 			return -ENOMEM;
225 		}
226 	}
227 	*virtual = addr;
228 	return 0;
229 }
230 
231 static void ttm_mem_reg_iounmap(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem,
232 			 void *virtual)
233 {
234 	struct ttm_mem_type_manager *man;
235 
236 	man = &bdev->man[mem->mem_type];
237 
238 	if (virtual && mem->bus.addr == NULL)
239 		iounmap(virtual);
240 	(void) ttm_mem_io_lock(man, false);
241 	ttm_mem_io_free(bdev, mem);
242 	ttm_mem_io_unlock(man);
243 }
244 
245 static int ttm_copy_io_page(void *dst, void *src, unsigned long page)
246 {
247 	uint32_t *dstP =
248 	    (uint32_t *) ((unsigned long)dst + (page << PAGE_SHIFT));
249 	uint32_t *srcP =
250 	    (uint32_t *) ((unsigned long)src + (page << PAGE_SHIFT));
251 
252 	int i;
253 	for (i = 0; i < PAGE_SIZE / sizeof(uint32_t); ++i)
254 		iowrite32(ioread32(srcP++), dstP++);
255 	return 0;
256 }
257 
258 #ifdef CONFIG_X86
259 #define __ttm_kmap_atomic_prot(__page, __prot) kmap_atomic_prot(__page, __prot)
260 #define __ttm_kunmap_atomic(__addr) kunmap_atomic(__addr)
261 #else
262 #define __ttm_kmap_atomic_prot(__page, __prot) vmap(&__page, 1, 0,  __prot)
263 #define __ttm_kunmap_atomic(__addr) vunmap(__addr)
264 #endif
265 
266 
267 /**
268  * ttm_kmap_atomic_prot - Efficient kernel map of a single page with
269  * specified page protection.
270  *
271  * @page: The page to map.
272  * @prot: The page protection.
273  *
274  * This function maps a TTM page using the kmap_atomic api if available,
275  * otherwise falls back to vmap. The user must make sure that the
276  * specified page does not have an aliased mapping with a different caching
277  * policy unless the architecture explicitly allows it. Also mapping and
278  * unmapping using this api must be correctly nested. Unmapping should
279  * occur in the reverse order of mapping.
280  */
281 void *ttm_kmap_atomic_prot(struct page *page, pgprot_t prot)
282 {
283 	if (pgprot_val(prot) == pgprot_val(PAGE_KERNEL))
284 		return kmap_atomic(page);
285 	else
286 		return __ttm_kmap_atomic_prot(page, prot);
287 }
288 EXPORT_SYMBOL(ttm_kmap_atomic_prot);
289 
290 /**
291  * ttm_kunmap_atomic_prot - Unmap a page that was mapped using
292  * ttm_kmap_atomic_prot.
293  *
294  * @addr: The virtual address from the map.
295  * @prot: The page protection.
296  */
297 void ttm_kunmap_atomic_prot(void *addr, pgprot_t prot)
298 {
299 	if (pgprot_val(prot) == pgprot_val(PAGE_KERNEL))
300 		kunmap_atomic(addr);
301 	else
302 		__ttm_kunmap_atomic(addr);
303 }
304 EXPORT_SYMBOL(ttm_kunmap_atomic_prot);
305 
306 static int ttm_copy_io_ttm_page(struct ttm_tt *ttm, void *src,
307 				unsigned long page,
308 				pgprot_t prot)
309 {
310 	struct page *d = ttm->pages[page];
311 	void *dst;
312 
313 	if (!d)
314 		return -ENOMEM;
315 
316 	src = (void *)((unsigned long)src + (page << PAGE_SHIFT));
317 	dst = ttm_kmap_atomic_prot(d, prot);
318 	if (!dst)
319 		return -ENOMEM;
320 
321 	memcpy_fromio(dst, src, PAGE_SIZE);
322 
323 	ttm_kunmap_atomic_prot(dst, prot);
324 
325 	return 0;
326 }
327 
328 static int ttm_copy_ttm_io_page(struct ttm_tt *ttm, void *dst,
329 				unsigned long page,
330 				pgprot_t prot)
331 {
332 	struct page *s = ttm->pages[page];
333 	void *src;
334 
335 	if (!s)
336 		return -ENOMEM;
337 
338 	dst = (void *)((unsigned long)dst + (page << PAGE_SHIFT));
339 	src = ttm_kmap_atomic_prot(s, prot);
340 	if (!src)
341 		return -ENOMEM;
342 
343 	memcpy_toio(dst, src, PAGE_SIZE);
344 
345 	ttm_kunmap_atomic_prot(src, prot);
346 
347 	return 0;
348 }
349 
350 int ttm_bo_move_memcpy(struct ttm_buffer_object *bo,
351 		       struct ttm_operation_ctx *ctx,
352 		       struct ttm_mem_reg *new_mem)
353 {
354 	struct ttm_bo_device *bdev = bo->bdev;
355 	struct ttm_mem_type_manager *man = &bdev->man[new_mem->mem_type];
356 	struct ttm_tt *ttm = bo->ttm;
357 	struct ttm_mem_reg *old_mem = &bo->mem;
358 	struct ttm_mem_reg old_copy = *old_mem;
359 	void *old_iomap;
360 	void *new_iomap;
361 	int ret;
362 	unsigned long i;
363 	unsigned long page;
364 	unsigned long add = 0;
365 	int dir;
366 
367 	ret = ttm_bo_wait(bo, ctx->interruptible, ctx->no_wait_gpu);
368 	if (ret)
369 		return ret;
370 
371 	ret = ttm_mem_reg_ioremap(bdev, old_mem, &old_iomap);
372 	if (ret)
373 		return ret;
374 	ret = ttm_mem_reg_ioremap(bdev, new_mem, &new_iomap);
375 	if (ret)
376 		goto out;
377 
378 	/*
379 	 * Single TTM move. NOP.
380 	 */
381 	if (old_iomap == NULL && new_iomap == NULL)
382 		goto out2;
383 
384 	/*
385 	 * Don't move nonexistent data. Clear destination instead.
386 	 */
387 	if (old_iomap == NULL &&
388 	    (ttm == NULL || (ttm->state == tt_unpopulated &&
389 			     !(ttm->page_flags & TTM_PAGE_FLAG_SWAPPED)))) {
390 		memset_io(new_iomap, 0, new_mem->num_pages*PAGE_SIZE);
391 		goto out2;
392 	}
393 
394 	/*
395 	 * TTM might be null for moves within the same region.
396 	 */
397 	if (ttm) {
398 		ret = ttm_tt_populate(ttm, ctx);
399 		if (ret)
400 			goto out1;
401 	}
402 
403 	add = 0;
404 	dir = 1;
405 
406 	if ((old_mem->mem_type == new_mem->mem_type) &&
407 	    (new_mem->start < old_mem->start + old_mem->size)) {
408 		dir = -1;
409 		add = new_mem->num_pages - 1;
410 	}
411 
412 	for (i = 0; i < new_mem->num_pages; ++i) {
413 		page = i * dir + add;
414 		if (old_iomap == NULL) {
415 			pgprot_t prot = ttm_io_prot(old_mem->placement,
416 						    PAGE_KERNEL);
417 			ret = ttm_copy_ttm_io_page(ttm, new_iomap, page,
418 						   prot);
419 		} else if (new_iomap == NULL) {
420 			pgprot_t prot = ttm_io_prot(new_mem->placement,
421 						    PAGE_KERNEL);
422 			ret = ttm_copy_io_ttm_page(ttm, old_iomap, page,
423 						   prot);
424 		} else {
425 			ret = ttm_copy_io_page(new_iomap, old_iomap, page);
426 		}
427 		if (ret)
428 			goto out1;
429 	}
430 	mb();
431 out2:
432 	old_copy = *old_mem;
433 	*old_mem = *new_mem;
434 	new_mem->mm_node = NULL;
435 
436 	if (man->flags & TTM_MEMTYPE_FLAG_FIXED) {
437 		ttm_tt_destroy(ttm);
438 		bo->ttm = NULL;
439 	}
440 
441 out1:
442 	ttm_mem_reg_iounmap(bdev, old_mem, new_iomap);
443 out:
444 	ttm_mem_reg_iounmap(bdev, &old_copy, old_iomap);
445 
446 	/*
447 	 * On error, keep the mm node!
448 	 */
449 	if (!ret)
450 		ttm_bo_mem_put(bo, &old_copy);
451 	return ret;
452 }
453 EXPORT_SYMBOL(ttm_bo_move_memcpy);
454 
455 static void ttm_transfered_destroy(struct ttm_buffer_object *bo)
456 {
457 	kfree(bo);
458 }
459 
460 /**
461  * ttm_buffer_object_transfer
462  *
463  * @bo: A pointer to a struct ttm_buffer_object.
464  * @new_obj: A pointer to a pointer to a newly created ttm_buffer_object,
465  * holding the data of @bo with the old placement.
466  *
467  * This is a utility function that may be called after an accelerated move
468  * has been scheduled. A new buffer object is created as a placeholder for
469  * the old data while it's being copied. When that buffer object is idle,
470  * it can be destroyed, releasing the space of the old placement.
471  * Returns:
472  * !0: Failure.
473  */
474 
475 static int ttm_buffer_object_transfer(struct ttm_buffer_object *bo,
476 				      struct ttm_buffer_object **new_obj)
477 {
478 	struct ttm_buffer_object *fbo;
479 	int ret;
480 
481 	fbo = kmalloc(sizeof(*fbo), GFP_KERNEL);
482 	if (!fbo)
483 		return -ENOMEM;
484 
485 	*fbo = *bo;
486 
487 	/**
488 	 * Fix up members that we shouldn't copy directly:
489 	 * TODO: Explicit member copy would probably be better here.
490 	 */
491 
492 	atomic_inc(&bo->bdev->glob->bo_count);
493 	INIT_LIST_HEAD(&fbo->ddestroy);
494 	INIT_LIST_HEAD(&fbo->lru);
495 	INIT_LIST_HEAD(&fbo->swap);
496 	INIT_LIST_HEAD(&fbo->io_reserve_lru);
497 	mutex_init(&fbo->wu_mutex);
498 	fbo->moving = NULL;
499 	drm_vma_node_reset(&fbo->vma_node);
500 	atomic_set(&fbo->cpu_writers, 0);
501 
502 	kref_init(&fbo->list_kref);
503 	kref_init(&fbo->kref);
504 	fbo->destroy = &ttm_transfered_destroy;
505 	fbo->acc_size = 0;
506 	fbo->resv = &fbo->ttm_resv;
507 	reservation_object_init(fbo->resv);
508 	ret = reservation_object_trylock(fbo->resv);
509 	WARN_ON(!ret);
510 
511 	*new_obj = fbo;
512 	return 0;
513 }
514 
515 pgprot_t ttm_io_prot(uint32_t caching_flags, pgprot_t tmp)
516 {
517 	/* Cached mappings need no adjustment */
518 	if (caching_flags & TTM_PL_FLAG_CACHED)
519 		return tmp;
520 
521 #if defined(__i386__) || defined(__x86_64__)
522 	if (caching_flags & TTM_PL_FLAG_WC)
523 		tmp = pgprot_writecombine(tmp);
524 	else if (boot_cpu_data.x86 > 3)
525 		tmp = pgprot_noncached(tmp);
526 #endif
527 #if defined(__ia64__) || defined(__arm__) || defined(__aarch64__) || \
528     defined(__powerpc__)
529 	if (caching_flags & TTM_PL_FLAG_WC)
530 		tmp = pgprot_writecombine(tmp);
531 	else
532 		tmp = pgprot_noncached(tmp);
533 #endif
534 #if defined(__sparc__) || defined(__mips__)
535 	tmp = pgprot_noncached(tmp);
536 #endif
537 	return tmp;
538 }
539 EXPORT_SYMBOL(ttm_io_prot);
540 
541 static int ttm_bo_ioremap(struct ttm_buffer_object *bo,
542 			  unsigned long offset,
543 			  unsigned long size,
544 			  struct ttm_bo_kmap_obj *map)
545 {
546 	struct ttm_mem_reg *mem = &bo->mem;
547 
548 	if (bo->mem.bus.addr) {
549 		map->bo_kmap_type = ttm_bo_map_premapped;
550 		map->virtual = (void *)(((u8 *)bo->mem.bus.addr) + offset);
551 	} else {
552 		map->bo_kmap_type = ttm_bo_map_iomap;
553 		if (mem->placement & TTM_PL_FLAG_WC)
554 			map->virtual = ioremap_wc(bo->mem.bus.base + bo->mem.bus.offset + offset,
555 						  size);
556 		else
557 			map->virtual = ioremap_nocache(bo->mem.bus.base + bo->mem.bus.offset + offset,
558 						       size);
559 	}
560 	return (!map->virtual) ? -ENOMEM : 0;
561 }
562 
563 static int ttm_bo_kmap_ttm(struct ttm_buffer_object *bo,
564 			   unsigned long start_page,
565 			   unsigned long num_pages,
566 			   struct ttm_bo_kmap_obj *map)
567 {
568 	struct ttm_mem_reg *mem = &bo->mem;
569 	struct ttm_operation_ctx ctx = {
570 		.interruptible = false,
571 		.no_wait_gpu = false
572 	};
573 	struct ttm_tt *ttm = bo->ttm;
574 	pgprot_t prot;
575 	int ret;
576 
577 	BUG_ON(!ttm);
578 
579 	ret = ttm_tt_populate(ttm, &ctx);
580 	if (ret)
581 		return ret;
582 
583 	if (num_pages == 1 && (mem->placement & TTM_PL_FLAG_CACHED)) {
584 		/*
585 		 * We're mapping a single page, and the desired
586 		 * page protection is consistent with the bo.
587 		 */
588 
589 		map->bo_kmap_type = ttm_bo_map_kmap;
590 		map->page = ttm->pages[start_page];
591 		map->virtual = kmap(map->page);
592 	} else {
593 		/*
594 		 * We need to use vmap to get the desired page protection
595 		 * or to make the buffer object look contiguous.
596 		 */
597 		prot = ttm_io_prot(mem->placement, PAGE_KERNEL);
598 		map->bo_kmap_type = ttm_bo_map_vmap;
599 		map->virtual = vmap(ttm->pages + start_page, num_pages,
600 				    0, prot);
601 	}
602 	return (!map->virtual) ? -ENOMEM : 0;
603 }
604 
605 int ttm_bo_kmap(struct ttm_buffer_object *bo,
606 		unsigned long start_page, unsigned long num_pages,
607 		struct ttm_bo_kmap_obj *map)
608 {
609 	struct ttm_mem_type_manager *man =
610 		&bo->bdev->man[bo->mem.mem_type];
611 	unsigned long offset, size;
612 	int ret;
613 
614 	map->virtual = NULL;
615 	map->bo = bo;
616 	if (num_pages > bo->num_pages)
617 		return -EINVAL;
618 	if (start_page > bo->num_pages)
619 		return -EINVAL;
620 #if 0
621 	if (num_pages > 1 && !capable(CAP_SYS_ADMIN))
622 		return -EPERM;
623 #endif
624 	(void) ttm_mem_io_lock(man, false);
625 	ret = ttm_mem_io_reserve(bo->bdev, &bo->mem);
626 	ttm_mem_io_unlock(man);
627 	if (ret)
628 		return ret;
629 	if (!bo->mem.bus.is_iomem) {
630 		return ttm_bo_kmap_ttm(bo, start_page, num_pages, map);
631 	} else {
632 		offset = start_page << PAGE_SHIFT;
633 		size = num_pages << PAGE_SHIFT;
634 		return ttm_bo_ioremap(bo, offset, size, map);
635 	}
636 }
637 EXPORT_SYMBOL(ttm_bo_kmap);
638 
639 void ttm_bo_kunmap(struct ttm_bo_kmap_obj *map)
640 {
641 	struct ttm_buffer_object *bo = map->bo;
642 	struct ttm_mem_type_manager *man =
643 		&bo->bdev->man[bo->mem.mem_type];
644 
645 	if (!map->virtual)
646 		return;
647 	switch (map->bo_kmap_type) {
648 	case ttm_bo_map_iomap:
649 		iounmap(map->virtual);
650 		break;
651 	case ttm_bo_map_vmap:
652 		vunmap(map->virtual);
653 		break;
654 	case ttm_bo_map_kmap:
655 		kunmap(map->page);
656 		break;
657 	case ttm_bo_map_premapped:
658 		break;
659 	default:
660 		BUG();
661 	}
662 	(void) ttm_mem_io_lock(man, false);
663 	ttm_mem_io_free(map->bo->bdev, &map->bo->mem);
664 	ttm_mem_io_unlock(man);
665 	map->virtual = NULL;
666 	map->page = NULL;
667 }
668 EXPORT_SYMBOL(ttm_bo_kunmap);
669 
670 int ttm_bo_move_accel_cleanup(struct ttm_buffer_object *bo,
671 			      struct dma_fence *fence,
672 			      bool evict,
673 			      struct ttm_mem_reg *new_mem)
674 {
675 	struct ttm_bo_device *bdev = bo->bdev;
676 	struct ttm_mem_type_manager *man = &bdev->man[new_mem->mem_type];
677 	struct ttm_mem_reg *old_mem = &bo->mem;
678 	int ret;
679 	struct ttm_buffer_object *ghost_obj;
680 
681 	reservation_object_add_excl_fence(bo->resv, fence);
682 	if (evict) {
683 		ret = ttm_bo_wait(bo, false, false);
684 		if (ret)
685 			return ret;
686 
687 		if (man->flags & TTM_MEMTYPE_FLAG_FIXED) {
688 			ttm_tt_destroy(bo->ttm);
689 			bo->ttm = NULL;
690 		}
691 		ttm_bo_free_old_node(bo);
692 	} else {
693 		/**
694 		 * This should help pipeline ordinary buffer moves.
695 		 *
696 		 * Hang old buffer memory on a new buffer object,
697 		 * and leave it to be released when the GPU
698 		 * operation has completed.
699 		 */
700 
701 		dma_fence_put(bo->moving);
702 		bo->moving = dma_fence_get(fence);
703 
704 		ret = ttm_buffer_object_transfer(bo, &ghost_obj);
705 		if (ret)
706 			return ret;
707 
708 		reservation_object_add_excl_fence(ghost_obj->resv, fence);
709 
710 		/**
711 		 * If we're not moving to fixed memory, the TTM object
712 		 * needs to stay alive. Otherwhise hang it on the ghost
713 		 * bo to be unbound and destroyed.
714 		 */
715 
716 		if (!(man->flags & TTM_MEMTYPE_FLAG_FIXED))
717 			ghost_obj->ttm = NULL;
718 		else
719 			bo->ttm = NULL;
720 
721 		ttm_bo_unreserve(ghost_obj);
722 		ttm_bo_unref(&ghost_obj);
723 	}
724 
725 	*old_mem = *new_mem;
726 	new_mem->mm_node = NULL;
727 
728 	return 0;
729 }
730 EXPORT_SYMBOL(ttm_bo_move_accel_cleanup);
731 
732 int ttm_bo_pipeline_move(struct ttm_buffer_object *bo,
733 			 struct dma_fence *fence, bool evict,
734 			 struct ttm_mem_reg *new_mem)
735 {
736 	struct ttm_bo_device *bdev = bo->bdev;
737 	struct ttm_mem_reg *old_mem = &bo->mem;
738 
739 	struct ttm_mem_type_manager *from = &bdev->man[old_mem->mem_type];
740 	struct ttm_mem_type_manager *to = &bdev->man[new_mem->mem_type];
741 
742 	int ret;
743 
744 	reservation_object_add_excl_fence(bo->resv, fence);
745 
746 	if (!evict) {
747 		struct ttm_buffer_object *ghost_obj;
748 
749 		/**
750 		 * This should help pipeline ordinary buffer moves.
751 		 *
752 		 * Hang old buffer memory on a new buffer object,
753 		 * and leave it to be released when the GPU
754 		 * operation has completed.
755 		 */
756 
757 		dma_fence_put(bo->moving);
758 		bo->moving = dma_fence_get(fence);
759 
760 		ret = ttm_buffer_object_transfer(bo, &ghost_obj);
761 		if (ret)
762 			return ret;
763 
764 		reservation_object_add_excl_fence(ghost_obj->resv, fence);
765 
766 		/**
767 		 * If we're not moving to fixed memory, the TTM object
768 		 * needs to stay alive. Otherwhise hang it on the ghost
769 		 * bo to be unbound and destroyed.
770 		 */
771 
772 		if (!(to->flags & TTM_MEMTYPE_FLAG_FIXED))
773 			ghost_obj->ttm = NULL;
774 		else
775 			bo->ttm = NULL;
776 
777 		ttm_bo_unreserve(ghost_obj);
778 		ttm_bo_unref(&ghost_obj);
779 
780 	} else if (from->flags & TTM_MEMTYPE_FLAG_FIXED) {
781 
782 		/**
783 		 * BO doesn't have a TTM we need to bind/unbind. Just remember
784 		 * this eviction and free up the allocation
785 		 */
786 
787 		spin_lock(&from->move_lock);
788 		if (!from->move || dma_fence_is_later(fence, from->move)) {
789 			dma_fence_put(from->move);
790 			from->move = dma_fence_get(fence);
791 		}
792 		spin_unlock(&from->move_lock);
793 
794 		ttm_bo_free_old_node(bo);
795 
796 		dma_fence_put(bo->moving);
797 		bo->moving = dma_fence_get(fence);
798 
799 	} else {
800 		/**
801 		 * Last resort, wait for the move to be completed.
802 		 *
803 		 * Should never happen in pratice.
804 		 */
805 
806 		ret = ttm_bo_wait(bo, false, false);
807 		if (ret)
808 			return ret;
809 
810 		if (to->flags & TTM_MEMTYPE_FLAG_FIXED) {
811 			ttm_tt_destroy(bo->ttm);
812 			bo->ttm = NULL;
813 		}
814 		ttm_bo_free_old_node(bo);
815 	}
816 
817 	*old_mem = *new_mem;
818 	new_mem->mm_node = NULL;
819 
820 	return 0;
821 }
822 EXPORT_SYMBOL(ttm_bo_pipeline_move);
823 
824 int ttm_bo_pipeline_gutting(struct ttm_buffer_object *bo)
825 {
826 	struct ttm_buffer_object *ghost;
827 	int ret;
828 
829 	ret = ttm_buffer_object_transfer(bo, &ghost);
830 	if (ret)
831 		return ret;
832 
833 	ret = reservation_object_copy_fences(ghost->resv, bo->resv);
834 	/* Last resort, wait for the BO to be idle when we are OOM */
835 	if (ret)
836 		ttm_bo_wait(bo, false, false);
837 
838 	memset(&bo->mem, 0, sizeof(bo->mem));
839 	bo->mem.mem_type = TTM_PL_SYSTEM;
840 	bo->ttm = NULL;
841 
842 	ttm_bo_unreserve(ghost);
843 	ttm_bo_unref(&ghost);
844 
845 	return 0;
846 }
847