xref: /openbmc/linux/drivers/gpu/drm/ttm/ttm_bo_util.c (revision 5e18b9737004ef6f34862f6fb39d3c9027a4044a)
1 /* SPDX-License-Identifier: GPL-2.0 OR MIT */
2 /**************************************************************************
3  *
4  * Copyright (c) 2007-2009 VMware, Inc., Palo Alto, CA., USA
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
22  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
23  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
24  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
25  * USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  **************************************************************************/
28 /*
29  * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
30  */
31 
32 #include <drm/ttm/ttm_bo_driver.h>
33 #include <drm/ttm/ttm_placement.h>
34 #include <drm/drm_cache.h>
35 #include <drm/drm_vma_manager.h>
36 #include <linux/dma-buf-map.h>
37 #include <linux/io.h>
38 #include <linux/highmem.h>
39 #include <linux/wait.h>
40 #include <linux/slab.h>
41 #include <linux/vmalloc.h>
42 #include <linux/module.h>
43 #include <linux/dma-resv.h>
44 
45 struct ttm_transfer_obj {
46 	struct ttm_buffer_object base;
47 	struct ttm_buffer_object *bo;
48 };
49 
50 int ttm_mem_io_reserve(struct ttm_device *bdev,
51 		       struct ttm_resource *mem)
52 {
53 	if (mem->bus.offset || mem->bus.addr)
54 		return 0;
55 
56 	mem->bus.is_iomem = false;
57 	if (!bdev->funcs->io_mem_reserve)
58 		return 0;
59 
60 	return bdev->funcs->io_mem_reserve(bdev, mem);
61 }
62 
63 void ttm_mem_io_free(struct ttm_device *bdev,
64 		     struct ttm_resource *mem)
65 {
66 	if (!mem)
67 		return;
68 
69 	if (!mem->bus.offset && !mem->bus.addr)
70 		return;
71 
72 	if (bdev->funcs->io_mem_free)
73 		bdev->funcs->io_mem_free(bdev, mem);
74 
75 	mem->bus.offset = 0;
76 	mem->bus.addr = NULL;
77 }
78 
79 /**
80  * ttm_move_memcpy - Helper to perform a memcpy ttm move operation.
81  * @clear: Whether to clear rather than copy.
82  * @num_pages: Number of pages of the operation.
83  * @dst_iter: A struct ttm_kmap_iter representing the destination resource.
84  * @src_iter: A struct ttm_kmap_iter representing the source resource.
85  *
86  * This function is intended to be able to move out async under a
87  * dma-fence if desired.
88  */
89 void ttm_move_memcpy(bool clear,
90 		     u32 num_pages,
91 		     struct ttm_kmap_iter *dst_iter,
92 		     struct ttm_kmap_iter *src_iter)
93 {
94 	const struct ttm_kmap_iter_ops *dst_ops = dst_iter->ops;
95 	const struct ttm_kmap_iter_ops *src_ops = src_iter->ops;
96 	struct dma_buf_map src_map, dst_map;
97 	pgoff_t i;
98 
99 	/* Single TTM move. NOP */
100 	if (dst_ops->maps_tt && src_ops->maps_tt)
101 		return;
102 
103 	/* Don't move nonexistent data. Clear destination instead. */
104 	if (clear) {
105 		for (i = 0; i < num_pages; ++i) {
106 			dst_ops->map_local(dst_iter, &dst_map, i);
107 			if (dst_map.is_iomem)
108 				memset_io(dst_map.vaddr_iomem, 0, PAGE_SIZE);
109 			else
110 				memset(dst_map.vaddr, 0, PAGE_SIZE);
111 			if (dst_ops->unmap_local)
112 				dst_ops->unmap_local(dst_iter, &dst_map);
113 		}
114 		return;
115 	}
116 
117 	for (i = 0; i < num_pages; ++i) {
118 		dst_ops->map_local(dst_iter, &dst_map, i);
119 		src_ops->map_local(src_iter, &src_map, i);
120 
121 		drm_memcpy_from_wc(&dst_map, &src_map, PAGE_SIZE);
122 
123 		if (src_ops->unmap_local)
124 			src_ops->unmap_local(src_iter, &src_map);
125 		if (dst_ops->unmap_local)
126 			dst_ops->unmap_local(dst_iter, &dst_map);
127 	}
128 }
129 EXPORT_SYMBOL(ttm_move_memcpy);
130 
131 int ttm_bo_move_memcpy(struct ttm_buffer_object *bo,
132 		       struct ttm_operation_ctx *ctx,
133 		       struct ttm_resource *dst_mem)
134 {
135 	struct ttm_device *bdev = bo->bdev;
136 	struct ttm_resource_manager *dst_man =
137 		ttm_manager_type(bo->bdev, dst_mem->mem_type);
138 	struct ttm_tt *ttm = bo->ttm;
139 	struct ttm_resource *src_mem = bo->resource;
140 	struct ttm_resource_manager *src_man =
141 		ttm_manager_type(bdev, src_mem->mem_type);
142 	union {
143 		struct ttm_kmap_iter_tt tt;
144 		struct ttm_kmap_iter_linear_io io;
145 	} _dst_iter, _src_iter;
146 	struct ttm_kmap_iter *dst_iter, *src_iter;
147 	bool clear;
148 	int ret = 0;
149 
150 	if (ttm && ((ttm->page_flags & TTM_TT_FLAG_SWAPPED) ||
151 		    dst_man->use_tt)) {
152 		ret = ttm_tt_populate(bdev, ttm, ctx);
153 		if (ret)
154 			return ret;
155 	}
156 
157 	dst_iter = ttm_kmap_iter_linear_io_init(&_dst_iter.io, bdev, dst_mem);
158 	if (PTR_ERR(dst_iter) == -EINVAL && dst_man->use_tt)
159 		dst_iter = ttm_kmap_iter_tt_init(&_dst_iter.tt, bo->ttm);
160 	if (IS_ERR(dst_iter))
161 		return PTR_ERR(dst_iter);
162 
163 	src_iter = ttm_kmap_iter_linear_io_init(&_src_iter.io, bdev, src_mem);
164 	if (PTR_ERR(src_iter) == -EINVAL && src_man->use_tt)
165 		src_iter = ttm_kmap_iter_tt_init(&_src_iter.tt, bo->ttm);
166 	if (IS_ERR(src_iter)) {
167 		ret = PTR_ERR(src_iter);
168 		goto out_src_iter;
169 	}
170 
171 	clear = src_iter->ops->maps_tt && (!ttm || !ttm_tt_is_populated(ttm));
172 	if (!(clear && ttm && !(ttm->page_flags & TTM_TT_FLAG_ZERO_ALLOC)))
173 		ttm_move_memcpy(clear, dst_mem->num_pages, dst_iter, src_iter);
174 
175 	if (!src_iter->ops->maps_tt)
176 		ttm_kmap_iter_linear_io_fini(&_src_iter.io, bdev, src_mem);
177 	ttm_bo_move_sync_cleanup(bo, dst_mem);
178 
179 out_src_iter:
180 	if (!dst_iter->ops->maps_tt)
181 		ttm_kmap_iter_linear_io_fini(&_dst_iter.io, bdev, dst_mem);
182 
183 	return ret;
184 }
185 EXPORT_SYMBOL(ttm_bo_move_memcpy);
186 
187 static void ttm_transfered_destroy(struct ttm_buffer_object *bo)
188 {
189 	struct ttm_transfer_obj *fbo;
190 
191 	fbo = container_of(bo, struct ttm_transfer_obj, base);
192 	ttm_bo_put(fbo->bo);
193 	kfree(fbo);
194 }
195 
196 /**
197  * ttm_buffer_object_transfer
198  *
199  * @bo: A pointer to a struct ttm_buffer_object.
200  * @new_obj: A pointer to a pointer to a newly created ttm_buffer_object,
201  * holding the data of @bo with the old placement.
202  *
203  * This is a utility function that may be called after an accelerated move
204  * has been scheduled. A new buffer object is created as a placeholder for
205  * the old data while it's being copied. When that buffer object is idle,
206  * it can be destroyed, releasing the space of the old placement.
207  * Returns:
208  * !0: Failure.
209  */
210 
211 static int ttm_buffer_object_transfer(struct ttm_buffer_object *bo,
212 				      struct ttm_buffer_object **new_obj)
213 {
214 	struct ttm_transfer_obj *fbo;
215 	int ret;
216 
217 	fbo = kmalloc(sizeof(*fbo), GFP_KERNEL);
218 	if (!fbo)
219 		return -ENOMEM;
220 
221 	fbo->base = *bo;
222 
223 	ttm_bo_get(bo);
224 	fbo->bo = bo;
225 
226 	/**
227 	 * Fix up members that we shouldn't copy directly:
228 	 * TODO: Explicit member copy would probably be better here.
229 	 */
230 
231 	atomic_inc(&ttm_glob.bo_count);
232 	INIT_LIST_HEAD(&fbo->base.ddestroy);
233 	INIT_LIST_HEAD(&fbo->base.lru);
234 	fbo->base.moving = NULL;
235 	drm_vma_node_reset(&fbo->base.base.vma_node);
236 
237 	kref_init(&fbo->base.kref);
238 	fbo->base.destroy = &ttm_transfered_destroy;
239 	fbo->base.pin_count = 0;
240 	if (bo->type != ttm_bo_type_sg)
241 		fbo->base.base.resv = &fbo->base.base._resv;
242 
243 	dma_resv_init(&fbo->base.base._resv);
244 	fbo->base.base.dev = NULL;
245 	ret = dma_resv_trylock(&fbo->base.base._resv);
246 	WARN_ON(!ret);
247 
248 	ttm_bo_move_to_lru_tail_unlocked(&fbo->base);
249 
250 	*new_obj = &fbo->base;
251 	return 0;
252 }
253 
254 pgprot_t ttm_io_prot(struct ttm_buffer_object *bo, struct ttm_resource *res,
255 		     pgprot_t tmp)
256 {
257 	struct ttm_resource_manager *man;
258 	enum ttm_caching caching;
259 
260 	man = ttm_manager_type(bo->bdev, res->mem_type);
261 	caching = man->use_tt ? bo->ttm->caching : res->bus.caching;
262 
263 	return ttm_prot_from_caching(caching, tmp);
264 }
265 EXPORT_SYMBOL(ttm_io_prot);
266 
267 static int ttm_bo_ioremap(struct ttm_buffer_object *bo,
268 			  unsigned long offset,
269 			  unsigned long size,
270 			  struct ttm_bo_kmap_obj *map)
271 {
272 	struct ttm_resource *mem = bo->resource;
273 
274 	if (bo->resource->bus.addr) {
275 		map->bo_kmap_type = ttm_bo_map_premapped;
276 		map->virtual = ((u8 *)bo->resource->bus.addr) + offset;
277 	} else {
278 		resource_size_t res = bo->resource->bus.offset + offset;
279 
280 		map->bo_kmap_type = ttm_bo_map_iomap;
281 		if (mem->bus.caching == ttm_write_combined)
282 			map->virtual = ioremap_wc(res, size);
283 #ifdef CONFIG_X86
284 		else if (mem->bus.caching == ttm_cached)
285 			map->virtual = ioremap_cache(res, size);
286 #endif
287 		else
288 			map->virtual = ioremap(res, size);
289 	}
290 	return (!map->virtual) ? -ENOMEM : 0;
291 }
292 
293 static int ttm_bo_kmap_ttm(struct ttm_buffer_object *bo,
294 			   unsigned long start_page,
295 			   unsigned long num_pages,
296 			   struct ttm_bo_kmap_obj *map)
297 {
298 	struct ttm_resource *mem = bo->resource;
299 	struct ttm_operation_ctx ctx = {
300 		.interruptible = false,
301 		.no_wait_gpu = false
302 	};
303 	struct ttm_tt *ttm = bo->ttm;
304 	pgprot_t prot;
305 	int ret;
306 
307 	BUG_ON(!ttm);
308 
309 	ret = ttm_tt_populate(bo->bdev, ttm, &ctx);
310 	if (ret)
311 		return ret;
312 
313 	if (num_pages == 1 && ttm->caching == ttm_cached) {
314 		/*
315 		 * We're mapping a single page, and the desired
316 		 * page protection is consistent with the bo.
317 		 */
318 
319 		map->bo_kmap_type = ttm_bo_map_kmap;
320 		map->page = ttm->pages[start_page];
321 		map->virtual = kmap(map->page);
322 	} else {
323 		/*
324 		 * We need to use vmap to get the desired page protection
325 		 * or to make the buffer object look contiguous.
326 		 */
327 		prot = ttm_io_prot(bo, mem, PAGE_KERNEL);
328 		map->bo_kmap_type = ttm_bo_map_vmap;
329 		map->virtual = vmap(ttm->pages + start_page, num_pages,
330 				    0, prot);
331 	}
332 	return (!map->virtual) ? -ENOMEM : 0;
333 }
334 
335 int ttm_bo_kmap(struct ttm_buffer_object *bo,
336 		unsigned long start_page, unsigned long num_pages,
337 		struct ttm_bo_kmap_obj *map)
338 {
339 	unsigned long offset, size;
340 	int ret;
341 
342 	map->virtual = NULL;
343 	map->bo = bo;
344 	if (num_pages > bo->resource->num_pages)
345 		return -EINVAL;
346 	if ((start_page + num_pages) > bo->resource->num_pages)
347 		return -EINVAL;
348 
349 	ret = ttm_mem_io_reserve(bo->bdev, bo->resource);
350 	if (ret)
351 		return ret;
352 	if (!bo->resource->bus.is_iomem) {
353 		return ttm_bo_kmap_ttm(bo, start_page, num_pages, map);
354 	} else {
355 		offset = start_page << PAGE_SHIFT;
356 		size = num_pages << PAGE_SHIFT;
357 		return ttm_bo_ioremap(bo, offset, size, map);
358 	}
359 }
360 EXPORT_SYMBOL(ttm_bo_kmap);
361 
362 void ttm_bo_kunmap(struct ttm_bo_kmap_obj *map)
363 {
364 	if (!map->virtual)
365 		return;
366 	switch (map->bo_kmap_type) {
367 	case ttm_bo_map_iomap:
368 		iounmap(map->virtual);
369 		break;
370 	case ttm_bo_map_vmap:
371 		vunmap(map->virtual);
372 		break;
373 	case ttm_bo_map_kmap:
374 		kunmap(map->page);
375 		break;
376 	case ttm_bo_map_premapped:
377 		break;
378 	default:
379 		BUG();
380 	}
381 	ttm_mem_io_free(map->bo->bdev, map->bo->resource);
382 	map->virtual = NULL;
383 	map->page = NULL;
384 }
385 EXPORT_SYMBOL(ttm_bo_kunmap);
386 
387 int ttm_bo_vmap(struct ttm_buffer_object *bo, struct dma_buf_map *map)
388 {
389 	struct ttm_resource *mem = bo->resource;
390 	int ret;
391 
392 	ret = ttm_mem_io_reserve(bo->bdev, mem);
393 	if (ret)
394 		return ret;
395 
396 	if (mem->bus.is_iomem) {
397 		void __iomem *vaddr_iomem;
398 
399 		if (mem->bus.addr)
400 			vaddr_iomem = (void __iomem *)mem->bus.addr;
401 		else if (mem->bus.caching == ttm_write_combined)
402 			vaddr_iomem = ioremap_wc(mem->bus.offset,
403 						 bo->base.size);
404 #ifdef CONFIG_X86
405 		else if (mem->bus.caching == ttm_cached)
406 			vaddr_iomem = ioremap_cache(mem->bus.offset,
407 						  bo->base.size);
408 #endif
409 		else
410 			vaddr_iomem = ioremap(mem->bus.offset, bo->base.size);
411 
412 		if (!vaddr_iomem)
413 			return -ENOMEM;
414 
415 		dma_buf_map_set_vaddr_iomem(map, vaddr_iomem);
416 
417 	} else {
418 		struct ttm_operation_ctx ctx = {
419 			.interruptible = false,
420 			.no_wait_gpu = false
421 		};
422 		struct ttm_tt *ttm = bo->ttm;
423 		pgprot_t prot;
424 		void *vaddr;
425 
426 		ret = ttm_tt_populate(bo->bdev, ttm, &ctx);
427 		if (ret)
428 			return ret;
429 
430 		/*
431 		 * We need to use vmap to get the desired page protection
432 		 * or to make the buffer object look contiguous.
433 		 */
434 		prot = ttm_io_prot(bo, mem, PAGE_KERNEL);
435 		vaddr = vmap(ttm->pages, ttm->num_pages, 0, prot);
436 		if (!vaddr)
437 			return -ENOMEM;
438 
439 		dma_buf_map_set_vaddr(map, vaddr);
440 	}
441 
442 	return 0;
443 }
444 EXPORT_SYMBOL(ttm_bo_vmap);
445 
446 void ttm_bo_vunmap(struct ttm_buffer_object *bo, struct dma_buf_map *map)
447 {
448 	struct ttm_resource *mem = bo->resource;
449 
450 	if (dma_buf_map_is_null(map))
451 		return;
452 
453 	if (!map->is_iomem)
454 		vunmap(map->vaddr);
455 	else if (!mem->bus.addr)
456 		iounmap(map->vaddr_iomem);
457 	dma_buf_map_clear(map);
458 
459 	ttm_mem_io_free(bo->bdev, bo->resource);
460 }
461 EXPORT_SYMBOL(ttm_bo_vunmap);
462 
463 static int ttm_bo_wait_free_node(struct ttm_buffer_object *bo,
464 				 bool dst_use_tt)
465 {
466 	int ret;
467 	ret = ttm_bo_wait(bo, false, false);
468 	if (ret)
469 		return ret;
470 
471 	if (!dst_use_tt)
472 		ttm_bo_tt_destroy(bo);
473 	ttm_resource_free(bo, &bo->resource);
474 	return 0;
475 }
476 
477 static int ttm_bo_move_to_ghost(struct ttm_buffer_object *bo,
478 				struct dma_fence *fence,
479 				bool dst_use_tt)
480 {
481 	struct ttm_buffer_object *ghost_obj;
482 	int ret;
483 
484 	/**
485 	 * This should help pipeline ordinary buffer moves.
486 	 *
487 	 * Hang old buffer memory on a new buffer object,
488 	 * and leave it to be released when the GPU
489 	 * operation has completed.
490 	 */
491 
492 	dma_fence_put(bo->moving);
493 	bo->moving = dma_fence_get(fence);
494 
495 	ret = ttm_buffer_object_transfer(bo, &ghost_obj);
496 	if (ret)
497 		return ret;
498 
499 	dma_resv_add_excl_fence(&ghost_obj->base._resv, fence);
500 
501 	/**
502 	 * If we're not moving to fixed memory, the TTM object
503 	 * needs to stay alive. Otherwhise hang it on the ghost
504 	 * bo to be unbound and destroyed.
505 	 */
506 
507 	if (dst_use_tt)
508 		ghost_obj->ttm = NULL;
509 	else
510 		bo->ttm = NULL;
511 	bo->resource = NULL;
512 
513 	dma_resv_unlock(&ghost_obj->base._resv);
514 	ttm_bo_put(ghost_obj);
515 	return 0;
516 }
517 
518 static void ttm_bo_move_pipeline_evict(struct ttm_buffer_object *bo,
519 				       struct dma_fence *fence)
520 {
521 	struct ttm_device *bdev = bo->bdev;
522 	struct ttm_resource_manager *from;
523 
524 	from = ttm_manager_type(bdev, bo->resource->mem_type);
525 
526 	/**
527 	 * BO doesn't have a TTM we need to bind/unbind. Just remember
528 	 * this eviction and free up the allocation
529 	 */
530 	spin_lock(&from->move_lock);
531 	if (!from->move || dma_fence_is_later(fence, from->move)) {
532 		dma_fence_put(from->move);
533 		from->move = dma_fence_get(fence);
534 	}
535 	spin_unlock(&from->move_lock);
536 
537 	ttm_resource_free(bo, &bo->resource);
538 
539 	dma_fence_put(bo->moving);
540 	bo->moving = dma_fence_get(fence);
541 }
542 
543 int ttm_bo_move_accel_cleanup(struct ttm_buffer_object *bo,
544 			      struct dma_fence *fence,
545 			      bool evict,
546 			      bool pipeline,
547 			      struct ttm_resource *new_mem)
548 {
549 	struct ttm_device *bdev = bo->bdev;
550 	struct ttm_resource_manager *from = ttm_manager_type(bdev, bo->resource->mem_type);
551 	struct ttm_resource_manager *man = ttm_manager_type(bdev, new_mem->mem_type);
552 	int ret = 0;
553 
554 	dma_resv_add_excl_fence(bo->base.resv, fence);
555 	if (!evict)
556 		ret = ttm_bo_move_to_ghost(bo, fence, man->use_tt);
557 	else if (!from->use_tt && pipeline)
558 		ttm_bo_move_pipeline_evict(bo, fence);
559 	else
560 		ret = ttm_bo_wait_free_node(bo, man->use_tt);
561 
562 	if (ret)
563 		return ret;
564 
565 	ttm_bo_assign_mem(bo, new_mem);
566 
567 	return 0;
568 }
569 EXPORT_SYMBOL(ttm_bo_move_accel_cleanup);
570 
571 /**
572  * ttm_bo_pipeline_gutting - purge the contents of a bo
573  * @bo: The buffer object
574  *
575  * Purge the contents of a bo, async if the bo is not idle.
576  * After a successful call, the bo is left unpopulated in
577  * system placement. The function may wait uninterruptible
578  * for idle on OOM.
579  *
580  * Return: 0 if successful, negative error code on failure.
581  */
582 int ttm_bo_pipeline_gutting(struct ttm_buffer_object *bo)
583 {
584 	static const struct ttm_place sys_mem = { .mem_type = TTM_PL_SYSTEM };
585 	struct ttm_buffer_object *ghost;
586 	struct ttm_resource *sys_res;
587 	struct ttm_tt *ttm;
588 	int ret;
589 
590 	ret = ttm_resource_alloc(bo, &sys_mem, &sys_res);
591 	if (ret)
592 		return ret;
593 
594 	/* If already idle, no need for ghost object dance. */
595 	ret = ttm_bo_wait(bo, false, true);
596 	if (ret != -EBUSY) {
597 		if (!bo->ttm) {
598 			/* See comment below about clearing. */
599 			ret = ttm_tt_create(bo, true);
600 			if (ret)
601 				goto error_free_sys_mem;
602 		} else {
603 			ttm_tt_unpopulate(bo->bdev, bo->ttm);
604 			if (bo->type == ttm_bo_type_device)
605 				ttm_tt_mark_for_clear(bo->ttm);
606 		}
607 		ttm_resource_free(bo, &bo->resource);
608 		ttm_bo_assign_mem(bo, sys_res);
609 		return 0;
610 	}
611 
612 	/*
613 	 * We need an unpopulated ttm_tt after giving our current one,
614 	 * if any, to the ghost object. And we can't afford to fail
615 	 * creating one *after* the operation. If the bo subsequently gets
616 	 * resurrected, make sure it's cleared (if ttm_bo_type_device)
617 	 * to avoid leaking sensitive information to user-space.
618 	 */
619 
620 	ttm = bo->ttm;
621 	bo->ttm = NULL;
622 	ret = ttm_tt_create(bo, true);
623 	swap(bo->ttm, ttm);
624 	if (ret)
625 		goto error_free_sys_mem;
626 
627 	ret = ttm_buffer_object_transfer(bo, &ghost);
628 	if (ret)
629 		goto error_destroy_tt;
630 
631 	ret = dma_resv_copy_fences(&ghost->base._resv, bo->base.resv);
632 	/* Last resort, wait for the BO to be idle when we are OOM */
633 	if (ret)
634 		ttm_bo_wait(bo, false, false);
635 
636 	dma_resv_unlock(&ghost->base._resv);
637 	ttm_bo_put(ghost);
638 	bo->ttm = ttm;
639 	bo->resource = NULL;
640 	ttm_bo_assign_mem(bo, sys_res);
641 	return 0;
642 
643 error_destroy_tt:
644 	ttm_tt_destroy(bo->bdev, ttm);
645 
646 error_free_sys_mem:
647 	ttm_resource_free(bo, &sys_res);
648 	return ret;
649 }
650