1 /* SPDX-License-Identifier: GPL-2.0 OR MIT */ 2 /************************************************************************** 3 * 4 * Copyright (c) 2007-2009 VMware, Inc., Palo Alto, CA., USA 5 * All Rights Reserved. 6 * 7 * Permission is hereby granted, free of charge, to any person obtaining a 8 * copy of this software and associated documentation files (the 9 * "Software"), to deal in the Software without restriction, including 10 * without limitation the rights to use, copy, modify, merge, publish, 11 * distribute, sub license, and/or sell copies of the Software, and to 12 * permit persons to whom the Software is furnished to do so, subject to 13 * the following conditions: 14 * 15 * The above copyright notice and this permission notice (including the 16 * next paragraph) shall be included in all copies or substantial portions 17 * of the Software. 18 * 19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 21 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 22 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 23 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 24 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 25 * USE OR OTHER DEALINGS IN THE SOFTWARE. 26 * 27 **************************************************************************/ 28 /* 29 * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com> 30 */ 31 32 #include <drm/ttm/ttm_bo_driver.h> 33 #include <drm/ttm/ttm_placement.h> 34 #include <drm/drm_cache.h> 35 #include <drm/drm_vma_manager.h> 36 #include <linux/iosys-map.h> 37 #include <linux/io.h> 38 #include <linux/highmem.h> 39 #include <linux/wait.h> 40 #include <linux/slab.h> 41 #include <linux/vmalloc.h> 42 #include <linux/module.h> 43 #include <linux/dma-resv.h> 44 45 struct ttm_transfer_obj { 46 struct ttm_buffer_object base; 47 struct ttm_buffer_object *bo; 48 }; 49 50 int ttm_mem_io_reserve(struct ttm_device *bdev, 51 struct ttm_resource *mem) 52 { 53 if (mem->bus.offset || mem->bus.addr) 54 return 0; 55 56 mem->bus.is_iomem = false; 57 if (!bdev->funcs->io_mem_reserve) 58 return 0; 59 60 return bdev->funcs->io_mem_reserve(bdev, mem); 61 } 62 63 void ttm_mem_io_free(struct ttm_device *bdev, 64 struct ttm_resource *mem) 65 { 66 if (!mem) 67 return; 68 69 if (!mem->bus.offset && !mem->bus.addr) 70 return; 71 72 if (bdev->funcs->io_mem_free) 73 bdev->funcs->io_mem_free(bdev, mem); 74 75 mem->bus.offset = 0; 76 mem->bus.addr = NULL; 77 } 78 79 /** 80 * ttm_move_memcpy - Helper to perform a memcpy ttm move operation. 81 * @clear: Whether to clear rather than copy. 82 * @num_pages: Number of pages of the operation. 83 * @dst_iter: A struct ttm_kmap_iter representing the destination resource. 84 * @src_iter: A struct ttm_kmap_iter representing the source resource. 85 * 86 * This function is intended to be able to move out async under a 87 * dma-fence if desired. 88 */ 89 void ttm_move_memcpy(bool clear, 90 u32 num_pages, 91 struct ttm_kmap_iter *dst_iter, 92 struct ttm_kmap_iter *src_iter) 93 { 94 const struct ttm_kmap_iter_ops *dst_ops = dst_iter->ops; 95 const struct ttm_kmap_iter_ops *src_ops = src_iter->ops; 96 struct iosys_map src_map, dst_map; 97 pgoff_t i; 98 99 /* Single TTM move. NOP */ 100 if (dst_ops->maps_tt && src_ops->maps_tt) 101 return; 102 103 /* Don't move nonexistent data. Clear destination instead. */ 104 if (clear) { 105 for (i = 0; i < num_pages; ++i) { 106 dst_ops->map_local(dst_iter, &dst_map, i); 107 if (dst_map.is_iomem) 108 memset_io(dst_map.vaddr_iomem, 0, PAGE_SIZE); 109 else 110 memset(dst_map.vaddr, 0, PAGE_SIZE); 111 if (dst_ops->unmap_local) 112 dst_ops->unmap_local(dst_iter, &dst_map); 113 } 114 return; 115 } 116 117 for (i = 0; i < num_pages; ++i) { 118 dst_ops->map_local(dst_iter, &dst_map, i); 119 src_ops->map_local(src_iter, &src_map, i); 120 121 drm_memcpy_from_wc(&dst_map, &src_map, PAGE_SIZE); 122 123 if (src_ops->unmap_local) 124 src_ops->unmap_local(src_iter, &src_map); 125 if (dst_ops->unmap_local) 126 dst_ops->unmap_local(dst_iter, &dst_map); 127 } 128 } 129 EXPORT_SYMBOL(ttm_move_memcpy); 130 131 int ttm_bo_move_memcpy(struct ttm_buffer_object *bo, 132 struct ttm_operation_ctx *ctx, 133 struct ttm_resource *dst_mem) 134 { 135 struct ttm_device *bdev = bo->bdev; 136 struct ttm_resource_manager *dst_man = 137 ttm_manager_type(bo->bdev, dst_mem->mem_type); 138 struct ttm_tt *ttm = bo->ttm; 139 struct ttm_resource *src_mem = bo->resource; 140 struct ttm_resource_manager *src_man = 141 ttm_manager_type(bdev, src_mem->mem_type); 142 union { 143 struct ttm_kmap_iter_tt tt; 144 struct ttm_kmap_iter_linear_io io; 145 } _dst_iter, _src_iter; 146 struct ttm_kmap_iter *dst_iter, *src_iter; 147 bool clear; 148 int ret = 0; 149 150 if (ttm && ((ttm->page_flags & TTM_TT_FLAG_SWAPPED) || 151 dst_man->use_tt)) { 152 ret = ttm_tt_populate(bdev, ttm, ctx); 153 if (ret) 154 return ret; 155 } 156 157 dst_iter = ttm_kmap_iter_linear_io_init(&_dst_iter.io, bdev, dst_mem); 158 if (PTR_ERR(dst_iter) == -EINVAL && dst_man->use_tt) 159 dst_iter = ttm_kmap_iter_tt_init(&_dst_iter.tt, bo->ttm); 160 if (IS_ERR(dst_iter)) 161 return PTR_ERR(dst_iter); 162 163 src_iter = ttm_kmap_iter_linear_io_init(&_src_iter.io, bdev, src_mem); 164 if (PTR_ERR(src_iter) == -EINVAL && src_man->use_tt) 165 src_iter = ttm_kmap_iter_tt_init(&_src_iter.tt, bo->ttm); 166 if (IS_ERR(src_iter)) { 167 ret = PTR_ERR(src_iter); 168 goto out_src_iter; 169 } 170 171 clear = src_iter->ops->maps_tt && (!ttm || !ttm_tt_is_populated(ttm)); 172 if (!(clear && ttm && !(ttm->page_flags & TTM_TT_FLAG_ZERO_ALLOC))) 173 ttm_move_memcpy(clear, dst_mem->num_pages, dst_iter, src_iter); 174 175 if (!src_iter->ops->maps_tt) 176 ttm_kmap_iter_linear_io_fini(&_src_iter.io, bdev, src_mem); 177 ttm_bo_move_sync_cleanup(bo, dst_mem); 178 179 out_src_iter: 180 if (!dst_iter->ops->maps_tt) 181 ttm_kmap_iter_linear_io_fini(&_dst_iter.io, bdev, dst_mem); 182 183 return ret; 184 } 185 EXPORT_SYMBOL(ttm_bo_move_memcpy); 186 187 static void ttm_transfered_destroy(struct ttm_buffer_object *bo) 188 { 189 struct ttm_transfer_obj *fbo; 190 191 fbo = container_of(bo, struct ttm_transfer_obj, base); 192 dma_resv_fini(&fbo->base.base._resv); 193 ttm_bo_put(fbo->bo); 194 kfree(fbo); 195 } 196 197 /** 198 * ttm_buffer_object_transfer 199 * 200 * @bo: A pointer to a struct ttm_buffer_object. 201 * @new_obj: A pointer to a pointer to a newly created ttm_buffer_object, 202 * holding the data of @bo with the old placement. 203 * 204 * This is a utility function that may be called after an accelerated move 205 * has been scheduled. A new buffer object is created as a placeholder for 206 * the old data while it's being copied. When that buffer object is idle, 207 * it can be destroyed, releasing the space of the old placement. 208 * Returns: 209 * !0: Failure. 210 */ 211 212 static int ttm_buffer_object_transfer(struct ttm_buffer_object *bo, 213 struct ttm_buffer_object **new_obj) 214 { 215 struct ttm_transfer_obj *fbo; 216 int ret; 217 218 fbo = kmalloc(sizeof(*fbo), GFP_KERNEL); 219 if (!fbo) 220 return -ENOMEM; 221 222 fbo->base = *bo; 223 224 ttm_bo_get(bo); 225 fbo->bo = bo; 226 227 /** 228 * Fix up members that we shouldn't copy directly: 229 * TODO: Explicit member copy would probably be better here. 230 */ 231 232 atomic_inc(&ttm_glob.bo_count); 233 INIT_LIST_HEAD(&fbo->base.ddestroy); 234 INIT_LIST_HEAD(&fbo->base.lru); 235 fbo->base.moving = NULL; 236 drm_vma_node_reset(&fbo->base.base.vma_node); 237 238 kref_init(&fbo->base.kref); 239 fbo->base.destroy = &ttm_transfered_destroy; 240 fbo->base.pin_count = 0; 241 if (bo->type != ttm_bo_type_sg) 242 fbo->base.base.resv = &fbo->base.base._resv; 243 244 if (fbo->base.resource) { 245 ttm_resource_set_bo(fbo->base.resource, &fbo->base); 246 bo->resource = NULL; 247 } 248 249 dma_resv_init(&fbo->base.base._resv); 250 fbo->base.base.dev = NULL; 251 ret = dma_resv_trylock(&fbo->base.base._resv); 252 WARN_ON(!ret); 253 254 ttm_bo_move_to_lru_tail_unlocked(&fbo->base); 255 256 *new_obj = &fbo->base; 257 return 0; 258 } 259 260 pgprot_t ttm_io_prot(struct ttm_buffer_object *bo, struct ttm_resource *res, 261 pgprot_t tmp) 262 { 263 struct ttm_resource_manager *man; 264 enum ttm_caching caching; 265 266 man = ttm_manager_type(bo->bdev, res->mem_type); 267 caching = man->use_tt ? bo->ttm->caching : res->bus.caching; 268 269 return ttm_prot_from_caching(caching, tmp); 270 } 271 EXPORT_SYMBOL(ttm_io_prot); 272 273 static int ttm_bo_ioremap(struct ttm_buffer_object *bo, 274 unsigned long offset, 275 unsigned long size, 276 struct ttm_bo_kmap_obj *map) 277 { 278 struct ttm_resource *mem = bo->resource; 279 280 if (bo->resource->bus.addr) { 281 map->bo_kmap_type = ttm_bo_map_premapped; 282 map->virtual = ((u8 *)bo->resource->bus.addr) + offset; 283 } else { 284 resource_size_t res = bo->resource->bus.offset + offset; 285 286 map->bo_kmap_type = ttm_bo_map_iomap; 287 if (mem->bus.caching == ttm_write_combined) 288 map->virtual = ioremap_wc(res, size); 289 #ifdef CONFIG_X86 290 else if (mem->bus.caching == ttm_cached) 291 map->virtual = ioremap_cache(res, size); 292 #endif 293 else 294 map->virtual = ioremap(res, size); 295 } 296 return (!map->virtual) ? -ENOMEM : 0; 297 } 298 299 static int ttm_bo_kmap_ttm(struct ttm_buffer_object *bo, 300 unsigned long start_page, 301 unsigned long num_pages, 302 struct ttm_bo_kmap_obj *map) 303 { 304 struct ttm_resource *mem = bo->resource; 305 struct ttm_operation_ctx ctx = { 306 .interruptible = false, 307 .no_wait_gpu = false 308 }; 309 struct ttm_tt *ttm = bo->ttm; 310 pgprot_t prot; 311 int ret; 312 313 BUG_ON(!ttm); 314 315 ret = ttm_tt_populate(bo->bdev, ttm, &ctx); 316 if (ret) 317 return ret; 318 319 if (num_pages == 1 && ttm->caching == ttm_cached) { 320 /* 321 * We're mapping a single page, and the desired 322 * page protection is consistent with the bo. 323 */ 324 325 map->bo_kmap_type = ttm_bo_map_kmap; 326 map->page = ttm->pages[start_page]; 327 map->virtual = kmap(map->page); 328 } else { 329 /* 330 * We need to use vmap to get the desired page protection 331 * or to make the buffer object look contiguous. 332 */ 333 prot = ttm_io_prot(bo, mem, PAGE_KERNEL); 334 map->bo_kmap_type = ttm_bo_map_vmap; 335 map->virtual = vmap(ttm->pages + start_page, num_pages, 336 0, prot); 337 } 338 return (!map->virtual) ? -ENOMEM : 0; 339 } 340 341 int ttm_bo_kmap(struct ttm_buffer_object *bo, 342 unsigned long start_page, unsigned long num_pages, 343 struct ttm_bo_kmap_obj *map) 344 { 345 unsigned long offset, size; 346 int ret; 347 348 map->virtual = NULL; 349 map->bo = bo; 350 if (num_pages > bo->resource->num_pages) 351 return -EINVAL; 352 if ((start_page + num_pages) > bo->resource->num_pages) 353 return -EINVAL; 354 355 ret = ttm_mem_io_reserve(bo->bdev, bo->resource); 356 if (ret) 357 return ret; 358 if (!bo->resource->bus.is_iomem) { 359 return ttm_bo_kmap_ttm(bo, start_page, num_pages, map); 360 } else { 361 offset = start_page << PAGE_SHIFT; 362 size = num_pages << PAGE_SHIFT; 363 return ttm_bo_ioremap(bo, offset, size, map); 364 } 365 } 366 EXPORT_SYMBOL(ttm_bo_kmap); 367 368 void ttm_bo_kunmap(struct ttm_bo_kmap_obj *map) 369 { 370 if (!map->virtual) 371 return; 372 switch (map->bo_kmap_type) { 373 case ttm_bo_map_iomap: 374 iounmap(map->virtual); 375 break; 376 case ttm_bo_map_vmap: 377 vunmap(map->virtual); 378 break; 379 case ttm_bo_map_kmap: 380 kunmap(map->page); 381 break; 382 case ttm_bo_map_premapped: 383 break; 384 default: 385 BUG(); 386 } 387 ttm_mem_io_free(map->bo->bdev, map->bo->resource); 388 map->virtual = NULL; 389 map->page = NULL; 390 } 391 EXPORT_SYMBOL(ttm_bo_kunmap); 392 393 int ttm_bo_vmap(struct ttm_buffer_object *bo, struct iosys_map *map) 394 { 395 struct ttm_resource *mem = bo->resource; 396 int ret; 397 398 ret = ttm_mem_io_reserve(bo->bdev, mem); 399 if (ret) 400 return ret; 401 402 if (mem->bus.is_iomem) { 403 void __iomem *vaddr_iomem; 404 405 if (mem->bus.addr) 406 vaddr_iomem = (void __iomem *)mem->bus.addr; 407 else if (mem->bus.caching == ttm_write_combined) 408 vaddr_iomem = ioremap_wc(mem->bus.offset, 409 bo->base.size); 410 #ifdef CONFIG_X86 411 else if (mem->bus.caching == ttm_cached) 412 vaddr_iomem = ioremap_cache(mem->bus.offset, 413 bo->base.size); 414 #endif 415 else 416 vaddr_iomem = ioremap(mem->bus.offset, bo->base.size); 417 418 if (!vaddr_iomem) 419 return -ENOMEM; 420 421 iosys_map_set_vaddr_iomem(map, vaddr_iomem); 422 423 } else { 424 struct ttm_operation_ctx ctx = { 425 .interruptible = false, 426 .no_wait_gpu = false 427 }; 428 struct ttm_tt *ttm = bo->ttm; 429 pgprot_t prot; 430 void *vaddr; 431 432 ret = ttm_tt_populate(bo->bdev, ttm, &ctx); 433 if (ret) 434 return ret; 435 436 /* 437 * We need to use vmap to get the desired page protection 438 * or to make the buffer object look contiguous. 439 */ 440 prot = ttm_io_prot(bo, mem, PAGE_KERNEL); 441 vaddr = vmap(ttm->pages, ttm->num_pages, 0, prot); 442 if (!vaddr) 443 return -ENOMEM; 444 445 iosys_map_set_vaddr(map, vaddr); 446 } 447 448 return 0; 449 } 450 EXPORT_SYMBOL(ttm_bo_vmap); 451 452 void ttm_bo_vunmap(struct ttm_buffer_object *bo, struct iosys_map *map) 453 { 454 struct ttm_resource *mem = bo->resource; 455 456 if (iosys_map_is_null(map)) 457 return; 458 459 if (!map->is_iomem) 460 vunmap(map->vaddr); 461 else if (!mem->bus.addr) 462 iounmap(map->vaddr_iomem); 463 iosys_map_clear(map); 464 465 ttm_mem_io_free(bo->bdev, bo->resource); 466 } 467 EXPORT_SYMBOL(ttm_bo_vunmap); 468 469 static int ttm_bo_wait_free_node(struct ttm_buffer_object *bo, 470 bool dst_use_tt) 471 { 472 int ret; 473 ret = ttm_bo_wait(bo, false, false); 474 if (ret) 475 return ret; 476 477 if (!dst_use_tt) 478 ttm_bo_tt_destroy(bo); 479 ttm_resource_free(bo, &bo->resource); 480 return 0; 481 } 482 483 static int ttm_bo_move_to_ghost(struct ttm_buffer_object *bo, 484 struct dma_fence *fence, 485 bool dst_use_tt) 486 { 487 struct ttm_buffer_object *ghost_obj; 488 int ret; 489 490 /** 491 * This should help pipeline ordinary buffer moves. 492 * 493 * Hang old buffer memory on a new buffer object, 494 * and leave it to be released when the GPU 495 * operation has completed. 496 */ 497 498 dma_fence_put(bo->moving); 499 bo->moving = dma_fence_get(fence); 500 501 ret = ttm_buffer_object_transfer(bo, &ghost_obj); 502 if (ret) 503 return ret; 504 505 dma_resv_add_excl_fence(&ghost_obj->base._resv, fence); 506 507 /** 508 * If we're not moving to fixed memory, the TTM object 509 * needs to stay alive. Otherwhise hang it on the ghost 510 * bo to be unbound and destroyed. 511 */ 512 513 if (dst_use_tt) 514 ghost_obj->ttm = NULL; 515 else 516 bo->ttm = NULL; 517 518 dma_resv_unlock(&ghost_obj->base._resv); 519 ttm_bo_put(ghost_obj); 520 return 0; 521 } 522 523 static void ttm_bo_move_pipeline_evict(struct ttm_buffer_object *bo, 524 struct dma_fence *fence) 525 { 526 struct ttm_device *bdev = bo->bdev; 527 struct ttm_resource_manager *from; 528 529 from = ttm_manager_type(bdev, bo->resource->mem_type); 530 531 /** 532 * BO doesn't have a TTM we need to bind/unbind. Just remember 533 * this eviction and free up the allocation 534 */ 535 spin_lock(&from->move_lock); 536 if (!from->move || dma_fence_is_later(fence, from->move)) { 537 dma_fence_put(from->move); 538 from->move = dma_fence_get(fence); 539 } 540 spin_unlock(&from->move_lock); 541 542 ttm_resource_free(bo, &bo->resource); 543 544 dma_fence_put(bo->moving); 545 bo->moving = dma_fence_get(fence); 546 } 547 548 int ttm_bo_move_accel_cleanup(struct ttm_buffer_object *bo, 549 struct dma_fence *fence, 550 bool evict, 551 bool pipeline, 552 struct ttm_resource *new_mem) 553 { 554 struct ttm_device *bdev = bo->bdev; 555 struct ttm_resource_manager *from = ttm_manager_type(bdev, bo->resource->mem_type); 556 struct ttm_resource_manager *man = ttm_manager_type(bdev, new_mem->mem_type); 557 int ret = 0; 558 559 dma_resv_add_excl_fence(bo->base.resv, fence); 560 if (!evict) 561 ret = ttm_bo_move_to_ghost(bo, fence, man->use_tt); 562 else if (!from->use_tt && pipeline) 563 ttm_bo_move_pipeline_evict(bo, fence); 564 else 565 ret = ttm_bo_wait_free_node(bo, man->use_tt); 566 567 if (ret) 568 return ret; 569 570 ttm_bo_assign_mem(bo, new_mem); 571 572 return 0; 573 } 574 EXPORT_SYMBOL(ttm_bo_move_accel_cleanup); 575 576 /** 577 * ttm_bo_pipeline_gutting - purge the contents of a bo 578 * @bo: The buffer object 579 * 580 * Purge the contents of a bo, async if the bo is not idle. 581 * After a successful call, the bo is left unpopulated in 582 * system placement. The function may wait uninterruptible 583 * for idle on OOM. 584 * 585 * Return: 0 if successful, negative error code on failure. 586 */ 587 int ttm_bo_pipeline_gutting(struct ttm_buffer_object *bo) 588 { 589 static const struct ttm_place sys_mem = { .mem_type = TTM_PL_SYSTEM }; 590 struct ttm_buffer_object *ghost; 591 struct ttm_resource *sys_res; 592 struct ttm_tt *ttm; 593 int ret; 594 595 ret = ttm_resource_alloc(bo, &sys_mem, &sys_res); 596 if (ret) 597 return ret; 598 599 /* If already idle, no need for ghost object dance. */ 600 ret = ttm_bo_wait(bo, false, true); 601 if (ret != -EBUSY) { 602 if (!bo->ttm) { 603 /* See comment below about clearing. */ 604 ret = ttm_tt_create(bo, true); 605 if (ret) 606 goto error_free_sys_mem; 607 } else { 608 ttm_tt_unpopulate(bo->bdev, bo->ttm); 609 if (bo->type == ttm_bo_type_device) 610 ttm_tt_mark_for_clear(bo->ttm); 611 } 612 ttm_resource_free(bo, &bo->resource); 613 ttm_bo_assign_mem(bo, sys_res); 614 return 0; 615 } 616 617 /* 618 * We need an unpopulated ttm_tt after giving our current one, 619 * if any, to the ghost object. And we can't afford to fail 620 * creating one *after* the operation. If the bo subsequently gets 621 * resurrected, make sure it's cleared (if ttm_bo_type_device) 622 * to avoid leaking sensitive information to user-space. 623 */ 624 625 ttm = bo->ttm; 626 bo->ttm = NULL; 627 ret = ttm_tt_create(bo, true); 628 swap(bo->ttm, ttm); 629 if (ret) 630 goto error_free_sys_mem; 631 632 ret = ttm_buffer_object_transfer(bo, &ghost); 633 if (ret) 634 goto error_destroy_tt; 635 636 ret = dma_resv_copy_fences(&ghost->base._resv, bo->base.resv); 637 /* Last resort, wait for the BO to be idle when we are OOM */ 638 if (ret) 639 ttm_bo_wait(bo, false, false); 640 641 dma_resv_unlock(&ghost->base._resv); 642 ttm_bo_put(ghost); 643 bo->ttm = ttm; 644 ttm_bo_assign_mem(bo, sys_res); 645 return 0; 646 647 error_destroy_tt: 648 ttm_tt_destroy(bo->bdev, ttm); 649 650 error_free_sys_mem: 651 ttm_resource_free(bo, &sys_res); 652 return ret; 653 } 654