1 /* SPDX-License-Identifier: GPL-2.0 OR MIT */ 2 /************************************************************************** 3 * 4 * Copyright (c) 2007-2009 VMware, Inc., Palo Alto, CA., USA 5 * All Rights Reserved. 6 * 7 * Permission is hereby granted, free of charge, to any person obtaining a 8 * copy of this software and associated documentation files (the 9 * "Software"), to deal in the Software without restriction, including 10 * without limitation the rights to use, copy, modify, merge, publish, 11 * distribute, sub license, and/or sell copies of the Software, and to 12 * permit persons to whom the Software is furnished to do so, subject to 13 * the following conditions: 14 * 15 * The above copyright notice and this permission notice (including the 16 * next paragraph) shall be included in all copies or substantial portions 17 * of the Software. 18 * 19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 21 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 22 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 23 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 24 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 25 * USE OR OTHER DEALINGS IN THE SOFTWARE. 26 * 27 **************************************************************************/ 28 /* 29 * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com> 30 */ 31 32 #include <drm/ttm/ttm_bo_driver.h> 33 #include <drm/ttm/ttm_placement.h> 34 #include <drm/drm_cache.h> 35 #include <drm/drm_vma_manager.h> 36 #include <linux/dma-buf-map.h> 37 #include <linux/io.h> 38 #include <linux/highmem.h> 39 #include <linux/wait.h> 40 #include <linux/slab.h> 41 #include <linux/vmalloc.h> 42 #include <linux/module.h> 43 #include <linux/dma-resv.h> 44 45 struct ttm_transfer_obj { 46 struct ttm_buffer_object base; 47 struct ttm_buffer_object *bo; 48 }; 49 50 int ttm_mem_io_reserve(struct ttm_device *bdev, 51 struct ttm_resource *mem) 52 { 53 if (mem->bus.offset || mem->bus.addr) 54 return 0; 55 56 mem->bus.is_iomem = false; 57 if (!bdev->funcs->io_mem_reserve) 58 return 0; 59 60 return bdev->funcs->io_mem_reserve(bdev, mem); 61 } 62 63 void ttm_mem_io_free(struct ttm_device *bdev, 64 struct ttm_resource *mem) 65 { 66 if (!mem) 67 return; 68 69 if (!mem->bus.offset && !mem->bus.addr) 70 return; 71 72 if (bdev->funcs->io_mem_free) 73 bdev->funcs->io_mem_free(bdev, mem); 74 75 mem->bus.offset = 0; 76 mem->bus.addr = NULL; 77 } 78 79 /** 80 * ttm_move_memcpy - Helper to perform a memcpy ttm move operation. 81 * @clear: Whether to clear rather than copy. 82 * @num_pages: Number of pages of the operation. 83 * @dst_iter: A struct ttm_kmap_iter representing the destination resource. 84 * @src_iter: A struct ttm_kmap_iter representing the source resource. 85 * 86 * This function is intended to be able to move out async under a 87 * dma-fence if desired. 88 */ 89 void ttm_move_memcpy(bool clear, 90 u32 num_pages, 91 struct ttm_kmap_iter *dst_iter, 92 struct ttm_kmap_iter *src_iter) 93 { 94 const struct ttm_kmap_iter_ops *dst_ops = dst_iter->ops; 95 const struct ttm_kmap_iter_ops *src_ops = src_iter->ops; 96 struct dma_buf_map src_map, dst_map; 97 pgoff_t i; 98 99 /* Single TTM move. NOP */ 100 if (dst_ops->maps_tt && src_ops->maps_tt) 101 return; 102 103 /* Don't move nonexistent data. Clear destination instead. */ 104 if (clear) { 105 for (i = 0; i < num_pages; ++i) { 106 dst_ops->map_local(dst_iter, &dst_map, i); 107 if (dst_map.is_iomem) 108 memset_io(dst_map.vaddr_iomem, 0, PAGE_SIZE); 109 else 110 memset(dst_map.vaddr, 0, PAGE_SIZE); 111 if (dst_ops->unmap_local) 112 dst_ops->unmap_local(dst_iter, &dst_map); 113 } 114 return; 115 } 116 117 for (i = 0; i < num_pages; ++i) { 118 dst_ops->map_local(dst_iter, &dst_map, i); 119 src_ops->map_local(src_iter, &src_map, i); 120 121 drm_memcpy_from_wc(&dst_map, &src_map, PAGE_SIZE); 122 123 if (src_ops->unmap_local) 124 src_ops->unmap_local(src_iter, &src_map); 125 if (dst_ops->unmap_local) 126 dst_ops->unmap_local(dst_iter, &dst_map); 127 } 128 } 129 EXPORT_SYMBOL(ttm_move_memcpy); 130 131 int ttm_bo_move_memcpy(struct ttm_buffer_object *bo, 132 struct ttm_operation_ctx *ctx, 133 struct ttm_resource *dst_mem) 134 { 135 struct ttm_device *bdev = bo->bdev; 136 struct ttm_resource_manager *dst_man = 137 ttm_manager_type(bo->bdev, dst_mem->mem_type); 138 struct ttm_tt *ttm = bo->ttm; 139 struct ttm_resource *src_mem = bo->resource; 140 struct ttm_resource_manager *src_man = 141 ttm_manager_type(bdev, src_mem->mem_type); 142 union { 143 struct ttm_kmap_iter_tt tt; 144 struct ttm_kmap_iter_linear_io io; 145 } _dst_iter, _src_iter; 146 struct ttm_kmap_iter *dst_iter, *src_iter; 147 bool clear; 148 int ret = 0; 149 150 if (ttm && ((ttm->page_flags & TTM_TT_FLAG_SWAPPED) || 151 dst_man->use_tt)) { 152 ret = ttm_tt_populate(bdev, ttm, ctx); 153 if (ret) 154 return ret; 155 } 156 157 dst_iter = ttm_kmap_iter_linear_io_init(&_dst_iter.io, bdev, dst_mem); 158 if (PTR_ERR(dst_iter) == -EINVAL && dst_man->use_tt) 159 dst_iter = ttm_kmap_iter_tt_init(&_dst_iter.tt, bo->ttm); 160 if (IS_ERR(dst_iter)) 161 return PTR_ERR(dst_iter); 162 163 src_iter = ttm_kmap_iter_linear_io_init(&_src_iter.io, bdev, src_mem); 164 if (PTR_ERR(src_iter) == -EINVAL && src_man->use_tt) 165 src_iter = ttm_kmap_iter_tt_init(&_src_iter.tt, bo->ttm); 166 if (IS_ERR(src_iter)) { 167 ret = PTR_ERR(src_iter); 168 goto out_src_iter; 169 } 170 171 clear = src_iter->ops->maps_tt && (!ttm || !ttm_tt_is_populated(ttm)); 172 if (!(clear && ttm && !(ttm->page_flags & TTM_TT_FLAG_ZERO_ALLOC))) 173 ttm_move_memcpy(clear, dst_mem->num_pages, dst_iter, src_iter); 174 175 if (!src_iter->ops->maps_tt) 176 ttm_kmap_iter_linear_io_fini(&_src_iter.io, bdev, src_mem); 177 ttm_bo_move_sync_cleanup(bo, dst_mem); 178 179 out_src_iter: 180 if (!dst_iter->ops->maps_tt) 181 ttm_kmap_iter_linear_io_fini(&_dst_iter.io, bdev, dst_mem); 182 183 return ret; 184 } 185 EXPORT_SYMBOL(ttm_bo_move_memcpy); 186 187 static void ttm_transfered_destroy(struct ttm_buffer_object *bo) 188 { 189 struct ttm_transfer_obj *fbo; 190 191 fbo = container_of(bo, struct ttm_transfer_obj, base); 192 dma_resv_fini(&fbo->base.base._resv); 193 ttm_bo_put(fbo->bo); 194 kfree(fbo); 195 } 196 197 /** 198 * ttm_buffer_object_transfer 199 * 200 * @bo: A pointer to a struct ttm_buffer_object. 201 * @new_obj: A pointer to a pointer to a newly created ttm_buffer_object, 202 * holding the data of @bo with the old placement. 203 * 204 * This is a utility function that may be called after an accelerated move 205 * has been scheduled. A new buffer object is created as a placeholder for 206 * the old data while it's being copied. When that buffer object is idle, 207 * it can be destroyed, releasing the space of the old placement. 208 * Returns: 209 * !0: Failure. 210 */ 211 212 static int ttm_buffer_object_transfer(struct ttm_buffer_object *bo, 213 struct ttm_buffer_object **new_obj) 214 { 215 struct ttm_transfer_obj *fbo; 216 int ret; 217 218 fbo = kmalloc(sizeof(*fbo), GFP_KERNEL); 219 if (!fbo) 220 return -ENOMEM; 221 222 fbo->base = *bo; 223 224 ttm_bo_get(bo); 225 fbo->bo = bo; 226 227 /** 228 * Fix up members that we shouldn't copy directly: 229 * TODO: Explicit member copy would probably be better here. 230 */ 231 232 atomic_inc(&ttm_glob.bo_count); 233 INIT_LIST_HEAD(&fbo->base.ddestroy); 234 INIT_LIST_HEAD(&fbo->base.lru); 235 fbo->base.moving = NULL; 236 drm_vma_node_reset(&fbo->base.base.vma_node); 237 238 kref_init(&fbo->base.kref); 239 fbo->base.destroy = &ttm_transfered_destroy; 240 fbo->base.pin_count = 0; 241 if (bo->type != ttm_bo_type_sg) 242 fbo->base.base.resv = &fbo->base.base._resv; 243 244 dma_resv_init(&fbo->base.base._resv); 245 fbo->base.base.dev = NULL; 246 ret = dma_resv_trylock(&fbo->base.base._resv); 247 WARN_ON(!ret); 248 249 ttm_bo_move_to_lru_tail_unlocked(&fbo->base); 250 251 *new_obj = &fbo->base; 252 return 0; 253 } 254 255 pgprot_t ttm_io_prot(struct ttm_buffer_object *bo, struct ttm_resource *res, 256 pgprot_t tmp) 257 { 258 struct ttm_resource_manager *man; 259 enum ttm_caching caching; 260 261 man = ttm_manager_type(bo->bdev, res->mem_type); 262 caching = man->use_tt ? bo->ttm->caching : res->bus.caching; 263 264 return ttm_prot_from_caching(caching, tmp); 265 } 266 EXPORT_SYMBOL(ttm_io_prot); 267 268 static int ttm_bo_ioremap(struct ttm_buffer_object *bo, 269 unsigned long offset, 270 unsigned long size, 271 struct ttm_bo_kmap_obj *map) 272 { 273 struct ttm_resource *mem = bo->resource; 274 275 if (bo->resource->bus.addr) { 276 map->bo_kmap_type = ttm_bo_map_premapped; 277 map->virtual = ((u8 *)bo->resource->bus.addr) + offset; 278 } else { 279 resource_size_t res = bo->resource->bus.offset + offset; 280 281 map->bo_kmap_type = ttm_bo_map_iomap; 282 if (mem->bus.caching == ttm_write_combined) 283 map->virtual = ioremap_wc(res, size); 284 #ifdef CONFIG_X86 285 else if (mem->bus.caching == ttm_cached) 286 map->virtual = ioremap_cache(res, size); 287 #endif 288 else 289 map->virtual = ioremap(res, size); 290 } 291 return (!map->virtual) ? -ENOMEM : 0; 292 } 293 294 static int ttm_bo_kmap_ttm(struct ttm_buffer_object *bo, 295 unsigned long start_page, 296 unsigned long num_pages, 297 struct ttm_bo_kmap_obj *map) 298 { 299 struct ttm_resource *mem = bo->resource; 300 struct ttm_operation_ctx ctx = { 301 .interruptible = false, 302 .no_wait_gpu = false 303 }; 304 struct ttm_tt *ttm = bo->ttm; 305 pgprot_t prot; 306 int ret; 307 308 BUG_ON(!ttm); 309 310 ret = ttm_tt_populate(bo->bdev, ttm, &ctx); 311 if (ret) 312 return ret; 313 314 if (num_pages == 1 && ttm->caching == ttm_cached) { 315 /* 316 * We're mapping a single page, and the desired 317 * page protection is consistent with the bo. 318 */ 319 320 map->bo_kmap_type = ttm_bo_map_kmap; 321 map->page = ttm->pages[start_page]; 322 map->virtual = kmap(map->page); 323 } else { 324 /* 325 * We need to use vmap to get the desired page protection 326 * or to make the buffer object look contiguous. 327 */ 328 prot = ttm_io_prot(bo, mem, PAGE_KERNEL); 329 map->bo_kmap_type = ttm_bo_map_vmap; 330 map->virtual = vmap(ttm->pages + start_page, num_pages, 331 0, prot); 332 } 333 return (!map->virtual) ? -ENOMEM : 0; 334 } 335 336 int ttm_bo_kmap(struct ttm_buffer_object *bo, 337 unsigned long start_page, unsigned long num_pages, 338 struct ttm_bo_kmap_obj *map) 339 { 340 unsigned long offset, size; 341 int ret; 342 343 map->virtual = NULL; 344 map->bo = bo; 345 if (num_pages > bo->resource->num_pages) 346 return -EINVAL; 347 if ((start_page + num_pages) > bo->resource->num_pages) 348 return -EINVAL; 349 350 ret = ttm_mem_io_reserve(bo->bdev, bo->resource); 351 if (ret) 352 return ret; 353 if (!bo->resource->bus.is_iomem) { 354 return ttm_bo_kmap_ttm(bo, start_page, num_pages, map); 355 } else { 356 offset = start_page << PAGE_SHIFT; 357 size = num_pages << PAGE_SHIFT; 358 return ttm_bo_ioremap(bo, offset, size, map); 359 } 360 } 361 EXPORT_SYMBOL(ttm_bo_kmap); 362 363 void ttm_bo_kunmap(struct ttm_bo_kmap_obj *map) 364 { 365 if (!map->virtual) 366 return; 367 switch (map->bo_kmap_type) { 368 case ttm_bo_map_iomap: 369 iounmap(map->virtual); 370 break; 371 case ttm_bo_map_vmap: 372 vunmap(map->virtual); 373 break; 374 case ttm_bo_map_kmap: 375 kunmap(map->page); 376 break; 377 case ttm_bo_map_premapped: 378 break; 379 default: 380 BUG(); 381 } 382 ttm_mem_io_free(map->bo->bdev, map->bo->resource); 383 map->virtual = NULL; 384 map->page = NULL; 385 } 386 EXPORT_SYMBOL(ttm_bo_kunmap); 387 388 int ttm_bo_vmap(struct ttm_buffer_object *bo, struct dma_buf_map *map) 389 { 390 struct ttm_resource *mem = bo->resource; 391 int ret; 392 393 ret = ttm_mem_io_reserve(bo->bdev, mem); 394 if (ret) 395 return ret; 396 397 if (mem->bus.is_iomem) { 398 void __iomem *vaddr_iomem; 399 400 if (mem->bus.addr) 401 vaddr_iomem = (void __iomem *)mem->bus.addr; 402 else if (mem->bus.caching == ttm_write_combined) 403 vaddr_iomem = ioremap_wc(mem->bus.offset, 404 bo->base.size); 405 #ifdef CONFIG_X86 406 else if (mem->bus.caching == ttm_cached) 407 vaddr_iomem = ioremap_cache(mem->bus.offset, 408 bo->base.size); 409 #endif 410 else 411 vaddr_iomem = ioremap(mem->bus.offset, bo->base.size); 412 413 if (!vaddr_iomem) 414 return -ENOMEM; 415 416 dma_buf_map_set_vaddr_iomem(map, vaddr_iomem); 417 418 } else { 419 struct ttm_operation_ctx ctx = { 420 .interruptible = false, 421 .no_wait_gpu = false 422 }; 423 struct ttm_tt *ttm = bo->ttm; 424 pgprot_t prot; 425 void *vaddr; 426 427 ret = ttm_tt_populate(bo->bdev, ttm, &ctx); 428 if (ret) 429 return ret; 430 431 /* 432 * We need to use vmap to get the desired page protection 433 * or to make the buffer object look contiguous. 434 */ 435 prot = ttm_io_prot(bo, mem, PAGE_KERNEL); 436 vaddr = vmap(ttm->pages, ttm->num_pages, 0, prot); 437 if (!vaddr) 438 return -ENOMEM; 439 440 dma_buf_map_set_vaddr(map, vaddr); 441 } 442 443 return 0; 444 } 445 EXPORT_SYMBOL(ttm_bo_vmap); 446 447 void ttm_bo_vunmap(struct ttm_buffer_object *bo, struct dma_buf_map *map) 448 { 449 struct ttm_resource *mem = bo->resource; 450 451 if (dma_buf_map_is_null(map)) 452 return; 453 454 if (!map->is_iomem) 455 vunmap(map->vaddr); 456 else if (!mem->bus.addr) 457 iounmap(map->vaddr_iomem); 458 dma_buf_map_clear(map); 459 460 ttm_mem_io_free(bo->bdev, bo->resource); 461 } 462 EXPORT_SYMBOL(ttm_bo_vunmap); 463 464 static int ttm_bo_wait_free_node(struct ttm_buffer_object *bo, 465 bool dst_use_tt) 466 { 467 int ret; 468 ret = ttm_bo_wait(bo, false, false); 469 if (ret) 470 return ret; 471 472 if (!dst_use_tt) 473 ttm_bo_tt_destroy(bo); 474 ttm_resource_free(bo, &bo->resource); 475 return 0; 476 } 477 478 static int ttm_bo_move_to_ghost(struct ttm_buffer_object *bo, 479 struct dma_fence *fence, 480 bool dst_use_tt) 481 { 482 struct ttm_buffer_object *ghost_obj; 483 int ret; 484 485 /** 486 * This should help pipeline ordinary buffer moves. 487 * 488 * Hang old buffer memory on a new buffer object, 489 * and leave it to be released when the GPU 490 * operation has completed. 491 */ 492 493 dma_fence_put(bo->moving); 494 bo->moving = dma_fence_get(fence); 495 496 ret = ttm_buffer_object_transfer(bo, &ghost_obj); 497 if (ret) 498 return ret; 499 500 dma_resv_add_excl_fence(&ghost_obj->base._resv, fence); 501 502 /** 503 * If we're not moving to fixed memory, the TTM object 504 * needs to stay alive. Otherwhise hang it on the ghost 505 * bo to be unbound and destroyed. 506 */ 507 508 if (dst_use_tt) 509 ghost_obj->ttm = NULL; 510 else 511 bo->ttm = NULL; 512 bo->resource = NULL; 513 514 dma_resv_unlock(&ghost_obj->base._resv); 515 ttm_bo_put(ghost_obj); 516 return 0; 517 } 518 519 static void ttm_bo_move_pipeline_evict(struct ttm_buffer_object *bo, 520 struct dma_fence *fence) 521 { 522 struct ttm_device *bdev = bo->bdev; 523 struct ttm_resource_manager *from; 524 525 from = ttm_manager_type(bdev, bo->resource->mem_type); 526 527 /** 528 * BO doesn't have a TTM we need to bind/unbind. Just remember 529 * this eviction and free up the allocation 530 */ 531 spin_lock(&from->move_lock); 532 if (!from->move || dma_fence_is_later(fence, from->move)) { 533 dma_fence_put(from->move); 534 from->move = dma_fence_get(fence); 535 } 536 spin_unlock(&from->move_lock); 537 538 ttm_resource_free(bo, &bo->resource); 539 540 dma_fence_put(bo->moving); 541 bo->moving = dma_fence_get(fence); 542 } 543 544 int ttm_bo_move_accel_cleanup(struct ttm_buffer_object *bo, 545 struct dma_fence *fence, 546 bool evict, 547 bool pipeline, 548 struct ttm_resource *new_mem) 549 { 550 struct ttm_device *bdev = bo->bdev; 551 struct ttm_resource_manager *from = ttm_manager_type(bdev, bo->resource->mem_type); 552 struct ttm_resource_manager *man = ttm_manager_type(bdev, new_mem->mem_type); 553 int ret = 0; 554 555 dma_resv_add_excl_fence(bo->base.resv, fence); 556 if (!evict) 557 ret = ttm_bo_move_to_ghost(bo, fence, man->use_tt); 558 else if (!from->use_tt && pipeline) 559 ttm_bo_move_pipeline_evict(bo, fence); 560 else 561 ret = ttm_bo_wait_free_node(bo, man->use_tt); 562 563 if (ret) 564 return ret; 565 566 ttm_bo_assign_mem(bo, new_mem); 567 568 return 0; 569 } 570 EXPORT_SYMBOL(ttm_bo_move_accel_cleanup); 571 572 /** 573 * ttm_bo_pipeline_gutting - purge the contents of a bo 574 * @bo: The buffer object 575 * 576 * Purge the contents of a bo, async if the bo is not idle. 577 * After a successful call, the bo is left unpopulated in 578 * system placement. The function may wait uninterruptible 579 * for idle on OOM. 580 * 581 * Return: 0 if successful, negative error code on failure. 582 */ 583 int ttm_bo_pipeline_gutting(struct ttm_buffer_object *bo) 584 { 585 static const struct ttm_place sys_mem = { .mem_type = TTM_PL_SYSTEM }; 586 struct ttm_buffer_object *ghost; 587 struct ttm_resource *sys_res; 588 struct ttm_tt *ttm; 589 int ret; 590 591 ret = ttm_resource_alloc(bo, &sys_mem, &sys_res); 592 if (ret) 593 return ret; 594 595 /* If already idle, no need for ghost object dance. */ 596 ret = ttm_bo_wait(bo, false, true); 597 if (ret != -EBUSY) { 598 if (!bo->ttm) { 599 /* See comment below about clearing. */ 600 ret = ttm_tt_create(bo, true); 601 if (ret) 602 goto error_free_sys_mem; 603 } else { 604 ttm_tt_unpopulate(bo->bdev, bo->ttm); 605 if (bo->type == ttm_bo_type_device) 606 ttm_tt_mark_for_clear(bo->ttm); 607 } 608 ttm_resource_free(bo, &bo->resource); 609 ttm_bo_assign_mem(bo, sys_res); 610 return 0; 611 } 612 613 /* 614 * We need an unpopulated ttm_tt after giving our current one, 615 * if any, to the ghost object. And we can't afford to fail 616 * creating one *after* the operation. If the bo subsequently gets 617 * resurrected, make sure it's cleared (if ttm_bo_type_device) 618 * to avoid leaking sensitive information to user-space. 619 */ 620 621 ttm = bo->ttm; 622 bo->ttm = NULL; 623 ret = ttm_tt_create(bo, true); 624 swap(bo->ttm, ttm); 625 if (ret) 626 goto error_free_sys_mem; 627 628 ret = ttm_buffer_object_transfer(bo, &ghost); 629 if (ret) 630 goto error_destroy_tt; 631 632 ret = dma_resv_copy_fences(&ghost->base._resv, bo->base.resv); 633 /* Last resort, wait for the BO to be idle when we are OOM */ 634 if (ret) 635 ttm_bo_wait(bo, false, false); 636 637 dma_resv_unlock(&ghost->base._resv); 638 ttm_bo_put(ghost); 639 bo->ttm = ttm; 640 bo->resource = NULL; 641 ttm_bo_assign_mem(bo, sys_res); 642 return 0; 643 644 error_destroy_tt: 645 ttm_tt_destroy(bo->bdev, ttm); 646 647 error_free_sys_mem: 648 ttm_resource_free(bo, &sys_res); 649 return ret; 650 } 651