1 /* SPDX-License-Identifier: GPL-2.0 OR MIT */ 2 /************************************************************************** 3 * 4 * Copyright (c) 2007-2009 VMware, Inc., Palo Alto, CA., USA 5 * All Rights Reserved. 6 * 7 * Permission is hereby granted, free of charge, to any person obtaining a 8 * copy of this software and associated documentation files (the 9 * "Software"), to deal in the Software without restriction, including 10 * without limitation the rights to use, copy, modify, merge, publish, 11 * distribute, sub license, and/or sell copies of the Software, and to 12 * permit persons to whom the Software is furnished to do so, subject to 13 * the following conditions: 14 * 15 * The above copyright notice and this permission notice (including the 16 * next paragraph) shall be included in all copies or substantial portions 17 * of the Software. 18 * 19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 21 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 22 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 23 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 24 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 25 * USE OR OTHER DEALINGS IN THE SOFTWARE. 26 * 27 **************************************************************************/ 28 /* 29 * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com> 30 */ 31 32 #include <drm/ttm/ttm_bo_driver.h> 33 #include <drm/ttm/ttm_placement.h> 34 #include <drm/drm_vma_manager.h> 35 #include <linux/io.h> 36 #include <linux/highmem.h> 37 #include <linux/wait.h> 38 #include <linux/slab.h> 39 #include <linux/vmalloc.h> 40 #include <linux/module.h> 41 #include <linux/dma-resv.h> 42 43 struct ttm_transfer_obj { 44 struct ttm_buffer_object base; 45 struct ttm_buffer_object *bo; 46 }; 47 48 void ttm_bo_free_old_node(struct ttm_buffer_object *bo) 49 { 50 ttm_resource_free(bo, &bo->mem); 51 } 52 53 int ttm_bo_move_ttm(struct ttm_buffer_object *bo, 54 struct ttm_operation_ctx *ctx, 55 struct ttm_resource *new_mem) 56 { 57 struct ttm_tt *ttm = bo->ttm; 58 struct ttm_resource *old_mem = &bo->mem; 59 int ret; 60 61 if (old_mem->mem_type != TTM_PL_SYSTEM) { 62 ret = ttm_bo_wait(bo, ctx->interruptible, ctx->no_wait_gpu); 63 64 if (unlikely(ret != 0)) { 65 if (ret != -ERESTARTSYS) 66 pr_err("Failed to expire sync object before unbinding TTM\n"); 67 return ret; 68 } 69 70 ttm_tt_unbind(ttm); 71 ttm_bo_free_old_node(bo); 72 ttm_flag_masked(&old_mem->placement, TTM_PL_FLAG_SYSTEM, 73 TTM_PL_MASK_MEM); 74 old_mem->mem_type = TTM_PL_SYSTEM; 75 } 76 77 ret = ttm_tt_set_placement_caching(ttm, new_mem->placement); 78 if (unlikely(ret != 0)) 79 return ret; 80 81 if (new_mem->mem_type != TTM_PL_SYSTEM) { 82 ret = ttm_tt_bind(ttm, new_mem, ctx); 83 if (unlikely(ret != 0)) 84 return ret; 85 } 86 87 *old_mem = *new_mem; 88 new_mem->mm_node = NULL; 89 90 return 0; 91 } 92 EXPORT_SYMBOL(ttm_bo_move_ttm); 93 94 int ttm_mem_io_lock(struct ttm_resource_manager *man, bool interruptible) 95 { 96 if (likely(!man->use_io_reserve_lru)) 97 return 0; 98 99 if (interruptible) 100 return mutex_lock_interruptible(&man->io_reserve_mutex); 101 102 mutex_lock(&man->io_reserve_mutex); 103 return 0; 104 } 105 106 void ttm_mem_io_unlock(struct ttm_resource_manager *man) 107 { 108 if (likely(!man->use_io_reserve_lru)) 109 return; 110 111 mutex_unlock(&man->io_reserve_mutex); 112 } 113 114 static int ttm_mem_io_evict(struct ttm_resource_manager *man) 115 { 116 struct ttm_buffer_object *bo; 117 118 bo = list_first_entry_or_null(&man->io_reserve_lru, 119 struct ttm_buffer_object, 120 io_reserve_lru); 121 if (!bo) 122 return -ENOSPC; 123 124 list_del_init(&bo->io_reserve_lru); 125 ttm_bo_unmap_virtual_locked(bo); 126 return 0; 127 } 128 129 int ttm_mem_io_reserve(struct ttm_bo_device *bdev, 130 struct ttm_resource *mem) 131 { 132 struct ttm_resource_manager *man = ttm_manager_type(bdev, mem->mem_type); 133 int ret; 134 135 if (mem->bus.io_reserved_count++) 136 return 0; 137 138 if (!bdev->driver->io_mem_reserve) 139 return 0; 140 141 mem->bus.addr = NULL; 142 mem->bus.offset = 0; 143 mem->bus.base = 0; 144 mem->bus.is_iomem = false; 145 retry: 146 ret = bdev->driver->io_mem_reserve(bdev, mem); 147 if (ret == -ENOSPC) { 148 ret = ttm_mem_io_evict(man); 149 if (ret == 0) 150 goto retry; 151 } 152 return ret; 153 } 154 155 void ttm_mem_io_free(struct ttm_bo_device *bdev, 156 struct ttm_resource *mem) 157 { 158 if (--mem->bus.io_reserved_count) 159 return; 160 161 if (!bdev->driver->io_mem_free) 162 return; 163 164 bdev->driver->io_mem_free(bdev, mem); 165 } 166 167 int ttm_mem_io_reserve_vm(struct ttm_buffer_object *bo) 168 { 169 struct ttm_resource_manager *man = ttm_manager_type(bo->bdev, bo->mem.mem_type); 170 struct ttm_resource *mem = &bo->mem; 171 int ret; 172 173 if (mem->bus.io_reserved_vm) 174 return 0; 175 176 ret = ttm_mem_io_reserve(bo->bdev, mem); 177 if (unlikely(ret != 0)) 178 return ret; 179 mem->bus.io_reserved_vm = true; 180 if (man->use_io_reserve_lru) 181 list_add_tail(&bo->io_reserve_lru, 182 &man->io_reserve_lru); 183 return 0; 184 } 185 186 void ttm_mem_io_free_vm(struct ttm_buffer_object *bo) 187 { 188 struct ttm_resource *mem = &bo->mem; 189 190 if (!mem->bus.io_reserved_vm) 191 return; 192 193 mem->bus.io_reserved_vm = false; 194 list_del_init(&bo->io_reserve_lru); 195 ttm_mem_io_free(bo->bdev, mem); 196 } 197 198 static int ttm_resource_ioremap(struct ttm_bo_device *bdev, 199 struct ttm_resource *mem, 200 void **virtual) 201 { 202 struct ttm_resource_manager *man = ttm_manager_type(bdev, mem->mem_type); 203 int ret; 204 void *addr; 205 206 *virtual = NULL; 207 (void) ttm_mem_io_lock(man, false); 208 ret = ttm_mem_io_reserve(bdev, mem); 209 ttm_mem_io_unlock(man); 210 if (ret || !mem->bus.is_iomem) 211 return ret; 212 213 if (mem->bus.addr) { 214 addr = mem->bus.addr; 215 } else { 216 size_t bus_size = (size_t)mem->num_pages << PAGE_SHIFT; 217 218 if (mem->placement & TTM_PL_FLAG_WC) 219 addr = ioremap_wc(mem->bus.base + mem->bus.offset, 220 bus_size); 221 else 222 addr = ioremap(mem->bus.base + mem->bus.offset, 223 bus_size); 224 if (!addr) { 225 (void) ttm_mem_io_lock(man, false); 226 ttm_mem_io_free(bdev, mem); 227 ttm_mem_io_unlock(man); 228 return -ENOMEM; 229 } 230 } 231 *virtual = addr; 232 return 0; 233 } 234 235 static void ttm_resource_iounmap(struct ttm_bo_device *bdev, 236 struct ttm_resource *mem, 237 void *virtual) 238 { 239 struct ttm_resource_manager *man; 240 241 man = ttm_manager_type(bdev, mem->mem_type); 242 243 if (virtual && mem->bus.addr == NULL) 244 iounmap(virtual); 245 (void) ttm_mem_io_lock(man, false); 246 ttm_mem_io_free(bdev, mem); 247 ttm_mem_io_unlock(man); 248 } 249 250 static int ttm_copy_io_page(void *dst, void *src, unsigned long page) 251 { 252 uint32_t *dstP = 253 (uint32_t *) ((unsigned long)dst + (page << PAGE_SHIFT)); 254 uint32_t *srcP = 255 (uint32_t *) ((unsigned long)src + (page << PAGE_SHIFT)); 256 257 int i; 258 for (i = 0; i < PAGE_SIZE / sizeof(uint32_t); ++i) 259 iowrite32(ioread32(srcP++), dstP++); 260 return 0; 261 } 262 263 static int ttm_copy_io_ttm_page(struct ttm_tt *ttm, void *src, 264 unsigned long page, 265 pgprot_t prot) 266 { 267 struct page *d = ttm->pages[page]; 268 void *dst; 269 270 if (!d) 271 return -ENOMEM; 272 273 src = (void *)((unsigned long)src + (page << PAGE_SHIFT)); 274 dst = kmap_atomic_prot(d, prot); 275 if (!dst) 276 return -ENOMEM; 277 278 memcpy_fromio(dst, src, PAGE_SIZE); 279 280 kunmap_atomic(dst); 281 282 return 0; 283 } 284 285 static int ttm_copy_ttm_io_page(struct ttm_tt *ttm, void *dst, 286 unsigned long page, 287 pgprot_t prot) 288 { 289 struct page *s = ttm->pages[page]; 290 void *src; 291 292 if (!s) 293 return -ENOMEM; 294 295 dst = (void *)((unsigned long)dst + (page << PAGE_SHIFT)); 296 src = kmap_atomic_prot(s, prot); 297 if (!src) 298 return -ENOMEM; 299 300 memcpy_toio(dst, src, PAGE_SIZE); 301 302 kunmap_atomic(src); 303 304 return 0; 305 } 306 307 int ttm_bo_move_memcpy(struct ttm_buffer_object *bo, 308 struct ttm_operation_ctx *ctx, 309 struct ttm_resource *new_mem) 310 { 311 struct ttm_bo_device *bdev = bo->bdev; 312 struct ttm_resource_manager *man = ttm_manager_type(bdev, new_mem->mem_type); 313 struct ttm_tt *ttm = bo->ttm; 314 struct ttm_resource *old_mem = &bo->mem; 315 struct ttm_resource old_copy = *old_mem; 316 void *old_iomap; 317 void *new_iomap; 318 int ret; 319 unsigned long i; 320 unsigned long page; 321 unsigned long add = 0; 322 int dir; 323 324 ret = ttm_bo_wait(bo, ctx->interruptible, ctx->no_wait_gpu); 325 if (ret) 326 return ret; 327 328 ret = ttm_resource_ioremap(bdev, old_mem, &old_iomap); 329 if (ret) 330 return ret; 331 ret = ttm_resource_ioremap(bdev, new_mem, &new_iomap); 332 if (ret) 333 goto out; 334 335 /* 336 * Single TTM move. NOP. 337 */ 338 if (old_iomap == NULL && new_iomap == NULL) 339 goto out2; 340 341 /* 342 * Don't move nonexistent data. Clear destination instead. 343 */ 344 if (old_iomap == NULL && 345 (ttm == NULL || (ttm->state == tt_unpopulated && 346 !(ttm->page_flags & TTM_PAGE_FLAG_SWAPPED)))) { 347 memset_io(new_iomap, 0, new_mem->num_pages*PAGE_SIZE); 348 goto out2; 349 } 350 351 /* 352 * TTM might be null for moves within the same region. 353 */ 354 if (ttm) { 355 ret = ttm_tt_populate(ttm, ctx); 356 if (ret) 357 goto out1; 358 } 359 360 add = 0; 361 dir = 1; 362 363 if ((old_mem->mem_type == new_mem->mem_type) && 364 (new_mem->start < old_mem->start + old_mem->size)) { 365 dir = -1; 366 add = new_mem->num_pages - 1; 367 } 368 369 for (i = 0; i < new_mem->num_pages; ++i) { 370 page = i * dir + add; 371 if (old_iomap == NULL) { 372 pgprot_t prot = ttm_io_prot(old_mem->placement, 373 PAGE_KERNEL); 374 ret = ttm_copy_ttm_io_page(ttm, new_iomap, page, 375 prot); 376 } else if (new_iomap == NULL) { 377 pgprot_t prot = ttm_io_prot(new_mem->placement, 378 PAGE_KERNEL); 379 ret = ttm_copy_io_ttm_page(ttm, old_iomap, page, 380 prot); 381 } else { 382 ret = ttm_copy_io_page(new_iomap, old_iomap, page); 383 } 384 if (ret) 385 goto out1; 386 } 387 mb(); 388 out2: 389 old_copy = *old_mem; 390 *old_mem = *new_mem; 391 new_mem->mm_node = NULL; 392 393 if (!man->use_tt) { 394 ttm_tt_destroy(ttm); 395 bo->ttm = NULL; 396 } 397 398 out1: 399 ttm_resource_iounmap(bdev, old_mem, new_iomap); 400 out: 401 ttm_resource_iounmap(bdev, &old_copy, old_iomap); 402 403 /* 404 * On error, keep the mm node! 405 */ 406 if (!ret) 407 ttm_resource_free(bo, &old_copy); 408 return ret; 409 } 410 EXPORT_SYMBOL(ttm_bo_move_memcpy); 411 412 static void ttm_transfered_destroy(struct ttm_buffer_object *bo) 413 { 414 struct ttm_transfer_obj *fbo; 415 416 fbo = container_of(bo, struct ttm_transfer_obj, base); 417 ttm_bo_put(fbo->bo); 418 kfree(fbo); 419 } 420 421 /** 422 * ttm_buffer_object_transfer 423 * 424 * @bo: A pointer to a struct ttm_buffer_object. 425 * @new_obj: A pointer to a pointer to a newly created ttm_buffer_object, 426 * holding the data of @bo with the old placement. 427 * 428 * This is a utility function that may be called after an accelerated move 429 * has been scheduled. A new buffer object is created as a placeholder for 430 * the old data while it's being copied. When that buffer object is idle, 431 * it can be destroyed, releasing the space of the old placement. 432 * Returns: 433 * !0: Failure. 434 */ 435 436 static int ttm_buffer_object_transfer(struct ttm_buffer_object *bo, 437 struct ttm_buffer_object **new_obj) 438 { 439 struct ttm_transfer_obj *fbo; 440 int ret; 441 442 fbo = kmalloc(sizeof(*fbo), GFP_KERNEL); 443 if (!fbo) 444 return -ENOMEM; 445 446 fbo->base = *bo; 447 fbo->base.mem.placement |= TTM_PL_FLAG_NO_EVICT; 448 449 ttm_bo_get(bo); 450 fbo->bo = bo; 451 452 /** 453 * Fix up members that we shouldn't copy directly: 454 * TODO: Explicit member copy would probably be better here. 455 */ 456 457 atomic_inc(&ttm_bo_glob.bo_count); 458 INIT_LIST_HEAD(&fbo->base.ddestroy); 459 INIT_LIST_HEAD(&fbo->base.lru); 460 INIT_LIST_HEAD(&fbo->base.swap); 461 INIT_LIST_HEAD(&fbo->base.io_reserve_lru); 462 fbo->base.moving = NULL; 463 drm_vma_node_reset(&fbo->base.base.vma_node); 464 465 kref_init(&fbo->base.kref); 466 fbo->base.destroy = &ttm_transfered_destroy; 467 fbo->base.acc_size = 0; 468 if (bo->type != ttm_bo_type_sg) 469 fbo->base.base.resv = &fbo->base.base._resv; 470 471 dma_resv_init(&fbo->base.base._resv); 472 fbo->base.base.dev = NULL; 473 ret = dma_resv_trylock(&fbo->base.base._resv); 474 WARN_ON(!ret); 475 476 *new_obj = &fbo->base; 477 return 0; 478 } 479 480 pgprot_t ttm_io_prot(uint32_t caching_flags, pgprot_t tmp) 481 { 482 /* Cached mappings need no adjustment */ 483 if (caching_flags & TTM_PL_FLAG_CACHED) 484 return tmp; 485 486 #if defined(__i386__) || defined(__x86_64__) 487 if (caching_flags & TTM_PL_FLAG_WC) 488 tmp = pgprot_writecombine(tmp); 489 else if (boot_cpu_data.x86 > 3) 490 tmp = pgprot_noncached(tmp); 491 #endif 492 #if defined(__ia64__) || defined(__arm__) || defined(__aarch64__) || \ 493 defined(__powerpc__) || defined(__mips__) 494 if (caching_flags & TTM_PL_FLAG_WC) 495 tmp = pgprot_writecombine(tmp); 496 else 497 tmp = pgprot_noncached(tmp); 498 #endif 499 #if defined(__sparc__) 500 tmp = pgprot_noncached(tmp); 501 #endif 502 return tmp; 503 } 504 EXPORT_SYMBOL(ttm_io_prot); 505 506 static int ttm_bo_ioremap(struct ttm_buffer_object *bo, 507 unsigned long offset, 508 unsigned long size, 509 struct ttm_bo_kmap_obj *map) 510 { 511 struct ttm_resource *mem = &bo->mem; 512 513 if (bo->mem.bus.addr) { 514 map->bo_kmap_type = ttm_bo_map_premapped; 515 map->virtual = (void *)(((u8 *)bo->mem.bus.addr) + offset); 516 } else { 517 map->bo_kmap_type = ttm_bo_map_iomap; 518 if (mem->placement & TTM_PL_FLAG_WC) 519 map->virtual = ioremap_wc(bo->mem.bus.base + 520 bo->mem.bus.offset + offset, 521 size); 522 else 523 map->virtual = ioremap(bo->mem.bus.base + 524 bo->mem.bus.offset + offset, 525 size); 526 } 527 return (!map->virtual) ? -ENOMEM : 0; 528 } 529 530 static int ttm_bo_kmap_ttm(struct ttm_buffer_object *bo, 531 unsigned long start_page, 532 unsigned long num_pages, 533 struct ttm_bo_kmap_obj *map) 534 { 535 struct ttm_resource *mem = &bo->mem; 536 struct ttm_operation_ctx ctx = { 537 .interruptible = false, 538 .no_wait_gpu = false 539 }; 540 struct ttm_tt *ttm = bo->ttm; 541 pgprot_t prot; 542 int ret; 543 544 BUG_ON(!ttm); 545 546 ret = ttm_tt_populate(ttm, &ctx); 547 if (ret) 548 return ret; 549 550 if (num_pages == 1 && (mem->placement & TTM_PL_FLAG_CACHED)) { 551 /* 552 * We're mapping a single page, and the desired 553 * page protection is consistent with the bo. 554 */ 555 556 map->bo_kmap_type = ttm_bo_map_kmap; 557 map->page = ttm->pages[start_page]; 558 map->virtual = kmap(map->page); 559 } else { 560 /* 561 * We need to use vmap to get the desired page protection 562 * or to make the buffer object look contiguous. 563 */ 564 prot = ttm_io_prot(mem->placement, PAGE_KERNEL); 565 map->bo_kmap_type = ttm_bo_map_vmap; 566 map->virtual = vmap(ttm->pages + start_page, num_pages, 567 0, prot); 568 } 569 return (!map->virtual) ? -ENOMEM : 0; 570 } 571 572 int ttm_bo_kmap(struct ttm_buffer_object *bo, 573 unsigned long start_page, unsigned long num_pages, 574 struct ttm_bo_kmap_obj *map) 575 { 576 struct ttm_resource_manager *man = 577 ttm_manager_type(bo->bdev, bo->mem.mem_type); 578 unsigned long offset, size; 579 int ret; 580 581 map->virtual = NULL; 582 map->bo = bo; 583 if (num_pages > bo->num_pages) 584 return -EINVAL; 585 if (start_page > bo->num_pages) 586 return -EINVAL; 587 588 (void) ttm_mem_io_lock(man, false); 589 ret = ttm_mem_io_reserve(bo->bdev, &bo->mem); 590 ttm_mem_io_unlock(man); 591 if (ret) 592 return ret; 593 if (!bo->mem.bus.is_iomem) { 594 return ttm_bo_kmap_ttm(bo, start_page, num_pages, map); 595 } else { 596 offset = start_page << PAGE_SHIFT; 597 size = num_pages << PAGE_SHIFT; 598 return ttm_bo_ioremap(bo, offset, size, map); 599 } 600 } 601 EXPORT_SYMBOL(ttm_bo_kmap); 602 603 void ttm_bo_kunmap(struct ttm_bo_kmap_obj *map) 604 { 605 struct ttm_buffer_object *bo = map->bo; 606 struct ttm_resource_manager *man = 607 ttm_manager_type(bo->bdev, bo->mem.mem_type); 608 609 if (!map->virtual) 610 return; 611 switch (map->bo_kmap_type) { 612 case ttm_bo_map_iomap: 613 iounmap(map->virtual); 614 break; 615 case ttm_bo_map_vmap: 616 vunmap(map->virtual); 617 break; 618 case ttm_bo_map_kmap: 619 kunmap(map->page); 620 break; 621 case ttm_bo_map_premapped: 622 break; 623 default: 624 BUG(); 625 } 626 (void) ttm_mem_io_lock(man, false); 627 ttm_mem_io_free(map->bo->bdev, &map->bo->mem); 628 ttm_mem_io_unlock(man); 629 map->virtual = NULL; 630 map->page = NULL; 631 } 632 EXPORT_SYMBOL(ttm_bo_kunmap); 633 634 int ttm_bo_move_accel_cleanup(struct ttm_buffer_object *bo, 635 struct dma_fence *fence, 636 bool evict, 637 struct ttm_resource *new_mem) 638 { 639 struct ttm_bo_device *bdev = bo->bdev; 640 struct ttm_resource_manager *man = ttm_manager_type(bdev, new_mem->mem_type); 641 struct ttm_resource *old_mem = &bo->mem; 642 int ret; 643 struct ttm_buffer_object *ghost_obj; 644 645 dma_resv_add_excl_fence(bo->base.resv, fence); 646 if (evict) { 647 ret = ttm_bo_wait(bo, false, false); 648 if (ret) 649 return ret; 650 651 if (!man->use_tt) { 652 ttm_tt_destroy(bo->ttm); 653 bo->ttm = NULL; 654 } 655 ttm_bo_free_old_node(bo); 656 } else { 657 /** 658 * This should help pipeline ordinary buffer moves. 659 * 660 * Hang old buffer memory on a new buffer object, 661 * and leave it to be released when the GPU 662 * operation has completed. 663 */ 664 665 dma_fence_put(bo->moving); 666 bo->moving = dma_fence_get(fence); 667 668 ret = ttm_buffer_object_transfer(bo, &ghost_obj); 669 if (ret) 670 return ret; 671 672 dma_resv_add_excl_fence(&ghost_obj->base._resv, fence); 673 674 /** 675 * If we're not moving to fixed memory, the TTM object 676 * needs to stay alive. Otherwhise hang it on the ghost 677 * bo to be unbound and destroyed. 678 */ 679 680 if (man->use_tt) 681 ghost_obj->ttm = NULL; 682 else 683 bo->ttm = NULL; 684 685 dma_resv_unlock(&ghost_obj->base._resv); 686 ttm_bo_put(ghost_obj); 687 } 688 689 *old_mem = *new_mem; 690 new_mem->mm_node = NULL; 691 692 return 0; 693 } 694 EXPORT_SYMBOL(ttm_bo_move_accel_cleanup); 695 696 int ttm_bo_pipeline_move(struct ttm_buffer_object *bo, 697 struct dma_fence *fence, bool evict, 698 struct ttm_resource *new_mem) 699 { 700 struct ttm_bo_device *bdev = bo->bdev; 701 struct ttm_resource *old_mem = &bo->mem; 702 703 struct ttm_resource_manager *from = ttm_manager_type(bdev, old_mem->mem_type); 704 struct ttm_resource_manager *to = ttm_manager_type(bdev, new_mem->mem_type); 705 706 int ret; 707 708 dma_resv_add_excl_fence(bo->base.resv, fence); 709 710 if (!evict) { 711 struct ttm_buffer_object *ghost_obj; 712 713 /** 714 * This should help pipeline ordinary buffer moves. 715 * 716 * Hang old buffer memory on a new buffer object, 717 * and leave it to be released when the GPU 718 * operation has completed. 719 */ 720 721 dma_fence_put(bo->moving); 722 bo->moving = dma_fence_get(fence); 723 724 ret = ttm_buffer_object_transfer(bo, &ghost_obj); 725 if (ret) 726 return ret; 727 728 dma_resv_add_excl_fence(&ghost_obj->base._resv, fence); 729 730 /** 731 * If we're not moving to fixed memory, the TTM object 732 * needs to stay alive. Otherwhise hang it on the ghost 733 * bo to be unbound and destroyed. 734 */ 735 736 if (to->use_tt) 737 ghost_obj->ttm = NULL; 738 else 739 bo->ttm = NULL; 740 741 dma_resv_unlock(&ghost_obj->base._resv); 742 ttm_bo_put(ghost_obj); 743 744 } else if (!from->use_tt) { 745 746 /** 747 * BO doesn't have a TTM we need to bind/unbind. Just remember 748 * this eviction and free up the allocation 749 */ 750 751 spin_lock(&from->move_lock); 752 if (!from->move || dma_fence_is_later(fence, from->move)) { 753 dma_fence_put(from->move); 754 from->move = dma_fence_get(fence); 755 } 756 spin_unlock(&from->move_lock); 757 758 ttm_bo_free_old_node(bo); 759 760 dma_fence_put(bo->moving); 761 bo->moving = dma_fence_get(fence); 762 763 } else { 764 /** 765 * Last resort, wait for the move to be completed. 766 * 767 * Should never happen in pratice. 768 */ 769 770 ret = ttm_bo_wait(bo, false, false); 771 if (ret) 772 return ret; 773 774 if (!to->use_tt) { 775 ttm_tt_destroy(bo->ttm); 776 bo->ttm = NULL; 777 } 778 ttm_bo_free_old_node(bo); 779 } 780 781 *old_mem = *new_mem; 782 new_mem->mm_node = NULL; 783 784 return 0; 785 } 786 EXPORT_SYMBOL(ttm_bo_pipeline_move); 787 788 int ttm_bo_pipeline_gutting(struct ttm_buffer_object *bo) 789 { 790 struct ttm_buffer_object *ghost; 791 int ret; 792 793 ret = ttm_buffer_object_transfer(bo, &ghost); 794 if (ret) 795 return ret; 796 797 ret = dma_resv_copy_fences(&ghost->base._resv, bo->base.resv); 798 /* Last resort, wait for the BO to be idle when we are OOM */ 799 if (ret) 800 ttm_bo_wait(bo, false, false); 801 802 memset(&bo->mem, 0, sizeof(bo->mem)); 803 bo->mem.mem_type = TTM_PL_SYSTEM; 804 bo->ttm = NULL; 805 806 dma_resv_unlock(&ghost->base._resv); 807 ttm_bo_put(ghost); 808 809 return 0; 810 } 811