1 /* SPDX-License-Identifier: GPL-2.0 OR MIT */ 2 /************************************************************************** 3 * 4 * Copyright (c) 2007-2009 VMware, Inc., Palo Alto, CA., USA 5 * All Rights Reserved. 6 * 7 * Permission is hereby granted, free of charge, to any person obtaining a 8 * copy of this software and associated documentation files (the 9 * "Software"), to deal in the Software without restriction, including 10 * without limitation the rights to use, copy, modify, merge, publish, 11 * distribute, sub license, and/or sell copies of the Software, and to 12 * permit persons to whom the Software is furnished to do so, subject to 13 * the following conditions: 14 * 15 * The above copyright notice and this permission notice (including the 16 * next paragraph) shall be included in all copies or substantial portions 17 * of the Software. 18 * 19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 21 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 22 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 23 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 24 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 25 * USE OR OTHER DEALINGS IN THE SOFTWARE. 26 * 27 **************************************************************************/ 28 /* 29 * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com> 30 */ 31 32 #include <drm/ttm/ttm_bo_driver.h> 33 #include <drm/ttm/ttm_placement.h> 34 #include <drm/drm_cache.h> 35 #include <drm/drm_vma_manager.h> 36 #include <linux/dma-buf-map.h> 37 #include <linux/io.h> 38 #include <linux/highmem.h> 39 #include <linux/wait.h> 40 #include <linux/slab.h> 41 #include <linux/vmalloc.h> 42 #include <linux/module.h> 43 #include <linux/dma-resv.h> 44 45 struct ttm_transfer_obj { 46 struct ttm_buffer_object base; 47 struct ttm_buffer_object *bo; 48 }; 49 50 int ttm_mem_io_reserve(struct ttm_device *bdev, 51 struct ttm_resource *mem) 52 { 53 if (mem->bus.offset || mem->bus.addr) 54 return 0; 55 56 mem->bus.is_iomem = false; 57 if (!bdev->funcs->io_mem_reserve) 58 return 0; 59 60 return bdev->funcs->io_mem_reserve(bdev, mem); 61 } 62 63 void ttm_mem_io_free(struct ttm_device *bdev, 64 struct ttm_resource *mem) 65 { 66 if (!mem) 67 return; 68 69 if (!mem->bus.offset && !mem->bus.addr) 70 return; 71 72 if (bdev->funcs->io_mem_free) 73 bdev->funcs->io_mem_free(bdev, mem); 74 75 mem->bus.offset = 0; 76 mem->bus.addr = NULL; 77 } 78 79 /** 80 * ttm_move_memcpy - Helper to perform a memcpy ttm move operation. 81 * @bo: The struct ttm_buffer_object. 82 * @new_mem: The struct ttm_resource we're moving to (copy destination). 83 * @new_iter: A struct ttm_kmap_iter representing the destination resource. 84 * @src_iter: A struct ttm_kmap_iter representing the source resource. 85 * 86 * This function is intended to be able to move out async under a 87 * dma-fence if desired. 88 */ 89 void ttm_move_memcpy(struct ttm_buffer_object *bo, 90 u32 num_pages, 91 struct ttm_kmap_iter *dst_iter, 92 struct ttm_kmap_iter *src_iter) 93 { 94 const struct ttm_kmap_iter_ops *dst_ops = dst_iter->ops; 95 const struct ttm_kmap_iter_ops *src_ops = src_iter->ops; 96 struct ttm_tt *ttm = bo->ttm; 97 struct dma_buf_map src_map, dst_map; 98 pgoff_t i; 99 100 /* Single TTM move. NOP */ 101 if (dst_ops->maps_tt && src_ops->maps_tt) 102 return; 103 104 /* Don't move nonexistent data. Clear destination instead. */ 105 if (src_ops->maps_tt && (!ttm || !ttm_tt_is_populated(ttm))) { 106 if (ttm && !(ttm->page_flags & TTM_PAGE_FLAG_ZERO_ALLOC)) 107 return; 108 109 for (i = 0; i < num_pages; ++i) { 110 dst_ops->map_local(dst_iter, &dst_map, i); 111 if (dst_map.is_iomem) 112 memset_io(dst_map.vaddr_iomem, 0, PAGE_SIZE); 113 else 114 memset(dst_map.vaddr, 0, PAGE_SIZE); 115 if (dst_ops->unmap_local) 116 dst_ops->unmap_local(dst_iter, &dst_map); 117 } 118 return; 119 } 120 121 for (i = 0; i < num_pages; ++i) { 122 dst_ops->map_local(dst_iter, &dst_map, i); 123 src_ops->map_local(src_iter, &src_map, i); 124 125 drm_memcpy_from_wc(&dst_map, &src_map, PAGE_SIZE); 126 127 if (src_ops->unmap_local) 128 src_ops->unmap_local(src_iter, &src_map); 129 if (dst_ops->unmap_local) 130 dst_ops->unmap_local(dst_iter, &dst_map); 131 } 132 } 133 EXPORT_SYMBOL(ttm_move_memcpy); 134 135 int ttm_bo_move_memcpy(struct ttm_buffer_object *bo, 136 struct ttm_operation_ctx *ctx, 137 struct ttm_resource *dst_mem) 138 { 139 struct ttm_device *bdev = bo->bdev; 140 struct ttm_resource_manager *dst_man = 141 ttm_manager_type(bo->bdev, dst_mem->mem_type); 142 struct ttm_tt *ttm = bo->ttm; 143 struct ttm_resource *src_mem = bo->resource; 144 struct ttm_resource_manager *src_man = 145 ttm_manager_type(bdev, src_mem->mem_type); 146 struct ttm_resource src_copy = *src_mem; 147 union { 148 struct ttm_kmap_iter_tt tt; 149 struct ttm_kmap_iter_linear_io io; 150 } _dst_iter, _src_iter; 151 struct ttm_kmap_iter *dst_iter, *src_iter; 152 int ret = 0; 153 154 if (ttm && ((ttm->page_flags & TTM_PAGE_FLAG_SWAPPED) || 155 dst_man->use_tt)) { 156 ret = ttm_tt_populate(bdev, ttm, ctx); 157 if (ret) 158 return ret; 159 } 160 161 dst_iter = ttm_kmap_iter_linear_io_init(&_dst_iter.io, bdev, dst_mem); 162 if (PTR_ERR(dst_iter) == -EINVAL && dst_man->use_tt) 163 dst_iter = ttm_kmap_iter_tt_init(&_dst_iter.tt, bo->ttm); 164 if (IS_ERR(dst_iter)) 165 return PTR_ERR(dst_iter); 166 167 src_iter = ttm_kmap_iter_linear_io_init(&_src_iter.io, bdev, src_mem); 168 if (PTR_ERR(src_iter) == -EINVAL && src_man->use_tt) 169 src_iter = ttm_kmap_iter_tt_init(&_src_iter.tt, bo->ttm); 170 if (IS_ERR(src_iter)) { 171 ret = PTR_ERR(src_iter); 172 goto out_src_iter; 173 } 174 175 ttm_move_memcpy(bo, dst_mem->num_pages, dst_iter, src_iter); 176 src_copy = *src_mem; 177 ttm_bo_move_sync_cleanup(bo, dst_mem); 178 179 if (!src_iter->ops->maps_tt) 180 ttm_kmap_iter_linear_io_fini(&_src_iter.io, bdev, &src_copy); 181 out_src_iter: 182 if (!dst_iter->ops->maps_tt) 183 ttm_kmap_iter_linear_io_fini(&_dst_iter.io, bdev, dst_mem); 184 185 return ret; 186 } 187 EXPORT_SYMBOL(ttm_bo_move_memcpy); 188 189 static void ttm_transfered_destroy(struct ttm_buffer_object *bo) 190 { 191 struct ttm_transfer_obj *fbo; 192 193 fbo = container_of(bo, struct ttm_transfer_obj, base); 194 ttm_bo_put(fbo->bo); 195 kfree(fbo); 196 } 197 198 /** 199 * ttm_buffer_object_transfer 200 * 201 * @bo: A pointer to a struct ttm_buffer_object. 202 * @new_obj: A pointer to a pointer to a newly created ttm_buffer_object, 203 * holding the data of @bo with the old placement. 204 * 205 * This is a utility function that may be called after an accelerated move 206 * has been scheduled. A new buffer object is created as a placeholder for 207 * the old data while it's being copied. When that buffer object is idle, 208 * it can be destroyed, releasing the space of the old placement. 209 * Returns: 210 * !0: Failure. 211 */ 212 213 static int ttm_buffer_object_transfer(struct ttm_buffer_object *bo, 214 struct ttm_buffer_object **new_obj) 215 { 216 struct ttm_transfer_obj *fbo; 217 int ret; 218 219 fbo = kmalloc(sizeof(*fbo), GFP_KERNEL); 220 if (!fbo) 221 return -ENOMEM; 222 223 fbo->base = *bo; 224 225 ttm_bo_get(bo); 226 fbo->bo = bo; 227 228 /** 229 * Fix up members that we shouldn't copy directly: 230 * TODO: Explicit member copy would probably be better here. 231 */ 232 233 atomic_inc(&ttm_glob.bo_count); 234 INIT_LIST_HEAD(&fbo->base.ddestroy); 235 INIT_LIST_HEAD(&fbo->base.lru); 236 fbo->base.moving = NULL; 237 drm_vma_node_reset(&fbo->base.base.vma_node); 238 239 kref_init(&fbo->base.kref); 240 fbo->base.destroy = &ttm_transfered_destroy; 241 fbo->base.pin_count = 0; 242 if (bo->type != ttm_bo_type_sg) 243 fbo->base.base.resv = &fbo->base.base._resv; 244 245 dma_resv_init(&fbo->base.base._resv); 246 fbo->base.base.dev = NULL; 247 ret = dma_resv_trylock(&fbo->base.base._resv); 248 WARN_ON(!ret); 249 250 ttm_bo_move_to_lru_tail_unlocked(&fbo->base); 251 252 *new_obj = &fbo->base; 253 return 0; 254 } 255 256 pgprot_t ttm_io_prot(struct ttm_buffer_object *bo, struct ttm_resource *res, 257 pgprot_t tmp) 258 { 259 struct ttm_resource_manager *man; 260 enum ttm_caching caching; 261 262 man = ttm_manager_type(bo->bdev, res->mem_type); 263 caching = man->use_tt ? bo->ttm->caching : res->bus.caching; 264 265 return ttm_prot_from_caching(caching, tmp); 266 } 267 EXPORT_SYMBOL(ttm_io_prot); 268 269 static int ttm_bo_ioremap(struct ttm_buffer_object *bo, 270 unsigned long offset, 271 unsigned long size, 272 struct ttm_bo_kmap_obj *map) 273 { 274 struct ttm_resource *mem = bo->resource; 275 276 if (bo->resource->bus.addr) { 277 map->bo_kmap_type = ttm_bo_map_premapped; 278 map->virtual = ((u8 *)bo->resource->bus.addr) + offset; 279 } else { 280 resource_size_t res = bo->resource->bus.offset + offset; 281 282 map->bo_kmap_type = ttm_bo_map_iomap; 283 if (mem->bus.caching == ttm_write_combined) 284 map->virtual = ioremap_wc(res, size); 285 #ifdef CONFIG_X86 286 else if (mem->bus.caching == ttm_cached) 287 map->virtual = ioremap_cache(res, size); 288 #endif 289 else 290 map->virtual = ioremap(res, size); 291 } 292 return (!map->virtual) ? -ENOMEM : 0; 293 } 294 295 static int ttm_bo_kmap_ttm(struct ttm_buffer_object *bo, 296 unsigned long start_page, 297 unsigned long num_pages, 298 struct ttm_bo_kmap_obj *map) 299 { 300 struct ttm_resource *mem = bo->resource; 301 struct ttm_operation_ctx ctx = { 302 .interruptible = false, 303 .no_wait_gpu = false 304 }; 305 struct ttm_tt *ttm = bo->ttm; 306 pgprot_t prot; 307 int ret; 308 309 BUG_ON(!ttm); 310 311 ret = ttm_tt_populate(bo->bdev, ttm, &ctx); 312 if (ret) 313 return ret; 314 315 if (num_pages == 1 && ttm->caching == ttm_cached) { 316 /* 317 * We're mapping a single page, and the desired 318 * page protection is consistent with the bo. 319 */ 320 321 map->bo_kmap_type = ttm_bo_map_kmap; 322 map->page = ttm->pages[start_page]; 323 map->virtual = kmap(map->page); 324 } else { 325 /* 326 * We need to use vmap to get the desired page protection 327 * or to make the buffer object look contiguous. 328 */ 329 prot = ttm_io_prot(bo, mem, PAGE_KERNEL); 330 map->bo_kmap_type = ttm_bo_map_vmap; 331 map->virtual = vmap(ttm->pages + start_page, num_pages, 332 0, prot); 333 } 334 return (!map->virtual) ? -ENOMEM : 0; 335 } 336 337 int ttm_bo_kmap(struct ttm_buffer_object *bo, 338 unsigned long start_page, unsigned long num_pages, 339 struct ttm_bo_kmap_obj *map) 340 { 341 unsigned long offset, size; 342 int ret; 343 344 map->virtual = NULL; 345 map->bo = bo; 346 if (num_pages > bo->resource->num_pages) 347 return -EINVAL; 348 if ((start_page + num_pages) > bo->resource->num_pages) 349 return -EINVAL; 350 351 ret = ttm_mem_io_reserve(bo->bdev, bo->resource); 352 if (ret) 353 return ret; 354 if (!bo->resource->bus.is_iomem) { 355 return ttm_bo_kmap_ttm(bo, start_page, num_pages, map); 356 } else { 357 offset = start_page << PAGE_SHIFT; 358 size = num_pages << PAGE_SHIFT; 359 return ttm_bo_ioremap(bo, offset, size, map); 360 } 361 } 362 EXPORT_SYMBOL(ttm_bo_kmap); 363 364 void ttm_bo_kunmap(struct ttm_bo_kmap_obj *map) 365 { 366 if (!map->virtual) 367 return; 368 switch (map->bo_kmap_type) { 369 case ttm_bo_map_iomap: 370 iounmap(map->virtual); 371 break; 372 case ttm_bo_map_vmap: 373 vunmap(map->virtual); 374 break; 375 case ttm_bo_map_kmap: 376 kunmap(map->page); 377 break; 378 case ttm_bo_map_premapped: 379 break; 380 default: 381 BUG(); 382 } 383 ttm_mem_io_free(map->bo->bdev, map->bo->resource); 384 map->virtual = NULL; 385 map->page = NULL; 386 } 387 EXPORT_SYMBOL(ttm_bo_kunmap); 388 389 int ttm_bo_vmap(struct ttm_buffer_object *bo, struct dma_buf_map *map) 390 { 391 struct ttm_resource *mem = bo->resource; 392 int ret; 393 394 ret = ttm_mem_io_reserve(bo->bdev, mem); 395 if (ret) 396 return ret; 397 398 if (mem->bus.is_iomem) { 399 void __iomem *vaddr_iomem; 400 401 if (mem->bus.addr) 402 vaddr_iomem = (void __iomem *)mem->bus.addr; 403 else if (mem->bus.caching == ttm_write_combined) 404 vaddr_iomem = ioremap_wc(mem->bus.offset, 405 bo->base.size); 406 #ifdef CONFIG_X86 407 else if (mem->bus.caching == ttm_cached) 408 vaddr_iomem = ioremap_cache(mem->bus.offset, 409 bo->base.size); 410 #endif 411 else 412 vaddr_iomem = ioremap(mem->bus.offset, bo->base.size); 413 414 if (!vaddr_iomem) 415 return -ENOMEM; 416 417 dma_buf_map_set_vaddr_iomem(map, vaddr_iomem); 418 419 } else { 420 struct ttm_operation_ctx ctx = { 421 .interruptible = false, 422 .no_wait_gpu = false 423 }; 424 struct ttm_tt *ttm = bo->ttm; 425 pgprot_t prot; 426 void *vaddr; 427 428 ret = ttm_tt_populate(bo->bdev, ttm, &ctx); 429 if (ret) 430 return ret; 431 432 /* 433 * We need to use vmap to get the desired page protection 434 * or to make the buffer object look contiguous. 435 */ 436 prot = ttm_io_prot(bo, mem, PAGE_KERNEL); 437 vaddr = vmap(ttm->pages, ttm->num_pages, 0, prot); 438 if (!vaddr) 439 return -ENOMEM; 440 441 dma_buf_map_set_vaddr(map, vaddr); 442 } 443 444 return 0; 445 } 446 EXPORT_SYMBOL(ttm_bo_vmap); 447 448 void ttm_bo_vunmap(struct ttm_buffer_object *bo, struct dma_buf_map *map) 449 { 450 struct ttm_resource *mem = bo->resource; 451 452 if (dma_buf_map_is_null(map)) 453 return; 454 455 if (!map->is_iomem) 456 vunmap(map->vaddr); 457 else if (!mem->bus.addr) 458 iounmap(map->vaddr_iomem); 459 dma_buf_map_clear(map); 460 461 ttm_mem_io_free(bo->bdev, bo->resource); 462 } 463 EXPORT_SYMBOL(ttm_bo_vunmap); 464 465 static int ttm_bo_wait_free_node(struct ttm_buffer_object *bo, 466 bool dst_use_tt) 467 { 468 int ret; 469 ret = ttm_bo_wait(bo, false, false); 470 if (ret) 471 return ret; 472 473 if (!dst_use_tt) 474 ttm_bo_tt_destroy(bo); 475 ttm_resource_free(bo, &bo->resource); 476 return 0; 477 } 478 479 static int ttm_bo_move_to_ghost(struct ttm_buffer_object *bo, 480 struct dma_fence *fence, 481 bool dst_use_tt) 482 { 483 struct ttm_buffer_object *ghost_obj; 484 int ret; 485 486 /** 487 * This should help pipeline ordinary buffer moves. 488 * 489 * Hang old buffer memory on a new buffer object, 490 * and leave it to be released when the GPU 491 * operation has completed. 492 */ 493 494 dma_fence_put(bo->moving); 495 bo->moving = dma_fence_get(fence); 496 497 ret = ttm_buffer_object_transfer(bo, &ghost_obj); 498 if (ret) 499 return ret; 500 501 dma_resv_add_excl_fence(&ghost_obj->base._resv, fence); 502 503 /** 504 * If we're not moving to fixed memory, the TTM object 505 * needs to stay alive. Otherwhise hang it on the ghost 506 * bo to be unbound and destroyed. 507 */ 508 509 if (dst_use_tt) 510 ghost_obj->ttm = NULL; 511 else 512 bo->ttm = NULL; 513 bo->resource = NULL; 514 515 dma_resv_unlock(&ghost_obj->base._resv); 516 ttm_bo_put(ghost_obj); 517 return 0; 518 } 519 520 static void ttm_bo_move_pipeline_evict(struct ttm_buffer_object *bo, 521 struct dma_fence *fence) 522 { 523 struct ttm_device *bdev = bo->bdev; 524 struct ttm_resource_manager *from; 525 526 from = ttm_manager_type(bdev, bo->resource->mem_type); 527 528 /** 529 * BO doesn't have a TTM we need to bind/unbind. Just remember 530 * this eviction and free up the allocation 531 */ 532 spin_lock(&from->move_lock); 533 if (!from->move || dma_fence_is_later(fence, from->move)) { 534 dma_fence_put(from->move); 535 from->move = dma_fence_get(fence); 536 } 537 spin_unlock(&from->move_lock); 538 539 ttm_resource_free(bo, &bo->resource); 540 541 dma_fence_put(bo->moving); 542 bo->moving = dma_fence_get(fence); 543 } 544 545 int ttm_bo_move_accel_cleanup(struct ttm_buffer_object *bo, 546 struct dma_fence *fence, 547 bool evict, 548 bool pipeline, 549 struct ttm_resource *new_mem) 550 { 551 struct ttm_device *bdev = bo->bdev; 552 struct ttm_resource_manager *from = ttm_manager_type(bdev, bo->resource->mem_type); 553 struct ttm_resource_manager *man = ttm_manager_type(bdev, new_mem->mem_type); 554 int ret = 0; 555 556 dma_resv_add_excl_fence(bo->base.resv, fence); 557 if (!evict) 558 ret = ttm_bo_move_to_ghost(bo, fence, man->use_tt); 559 else if (!from->use_tt && pipeline) 560 ttm_bo_move_pipeline_evict(bo, fence); 561 else 562 ret = ttm_bo_wait_free_node(bo, man->use_tt); 563 564 if (ret) 565 return ret; 566 567 ttm_bo_assign_mem(bo, new_mem); 568 569 return 0; 570 } 571 EXPORT_SYMBOL(ttm_bo_move_accel_cleanup); 572 573 /** 574 * ttm_bo_pipeline_gutting - purge the contents of a bo 575 * @bo: The buffer object 576 * 577 * Purge the contents of a bo, async if the bo is not idle. 578 * After a successful call, the bo is left unpopulated in 579 * system placement. The function may wait uninterruptible 580 * for idle on OOM. 581 * 582 * Return: 0 if successful, negative error code on failure. 583 */ 584 int ttm_bo_pipeline_gutting(struct ttm_buffer_object *bo) 585 { 586 static const struct ttm_place sys_mem = { .mem_type = TTM_PL_SYSTEM }; 587 struct ttm_buffer_object *ghost; 588 struct ttm_resource *sys_res; 589 struct ttm_tt *ttm; 590 int ret; 591 592 ret = ttm_resource_alloc(bo, &sys_mem, &sys_res); 593 if (ret) 594 return ret; 595 596 /* If already idle, no need for ghost object dance. */ 597 ret = ttm_bo_wait(bo, false, true); 598 if (ret != -EBUSY) { 599 if (!bo->ttm) { 600 /* See comment below about clearing. */ 601 ret = ttm_tt_create(bo, true); 602 if (ret) 603 goto error_free_sys_mem; 604 } else { 605 ttm_tt_unpopulate(bo->bdev, bo->ttm); 606 if (bo->type == ttm_bo_type_device) 607 ttm_tt_mark_for_clear(bo->ttm); 608 } 609 ttm_resource_free(bo, &bo->resource); 610 ttm_bo_assign_mem(bo, sys_res); 611 return 0; 612 } 613 614 /* 615 * We need an unpopulated ttm_tt after giving our current one, 616 * if any, to the ghost object. And we can't afford to fail 617 * creating one *after* the operation. If the bo subsequently gets 618 * resurrected, make sure it's cleared (if ttm_bo_type_device) 619 * to avoid leaking sensitive information to user-space. 620 */ 621 622 ttm = bo->ttm; 623 bo->ttm = NULL; 624 ret = ttm_tt_create(bo, true); 625 swap(bo->ttm, ttm); 626 if (ret) 627 goto error_free_sys_mem; 628 629 ret = ttm_buffer_object_transfer(bo, &ghost); 630 if (ret) 631 goto error_destroy_tt; 632 633 ret = dma_resv_copy_fences(&ghost->base._resv, bo->base.resv); 634 /* Last resort, wait for the BO to be idle when we are OOM */ 635 if (ret) 636 ttm_bo_wait(bo, false, false); 637 638 dma_resv_unlock(&ghost->base._resv); 639 ttm_bo_put(ghost); 640 bo->ttm = ttm; 641 bo->resource = NULL; 642 ttm_bo_assign_mem(bo, sys_res); 643 return 0; 644 645 error_destroy_tt: 646 ttm_tt_destroy(bo->bdev, ttm); 647 648 error_free_sys_mem: 649 ttm_resource_free(bo, &sys_res); 650 return ret; 651 } 652