xref: /openbmc/linux/drivers/gpu/drm/ttm/ttm_bo.c (revision fb8d6c8d)
1 /* SPDX-License-Identifier: GPL-2.0 OR MIT */
2 /**************************************************************************
3  *
4  * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
22  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
23  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
24  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
25  * USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  **************************************************************************/
28 /*
29  * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
30  */
31 
32 #define pr_fmt(fmt) "[TTM] " fmt
33 
34 #include <drm/ttm/ttm_module.h>
35 #include <drm/ttm/ttm_bo_driver.h>
36 #include <drm/ttm/ttm_placement.h>
37 #include <linux/jiffies.h>
38 #include <linux/slab.h>
39 #include <linux/sched.h>
40 #include <linux/mm.h>
41 #include <linux/file.h>
42 #include <linux/module.h>
43 #include <linux/atomic.h>
44 #include <linux/dma-resv.h>
45 
46 static void ttm_bo_global_kobj_release(struct kobject *kobj);
47 
48 /**
49  * ttm_global_mutex - protecting the global BO state
50  */
51 DEFINE_MUTEX(ttm_global_mutex);
52 unsigned ttm_bo_glob_use_count;
53 struct ttm_bo_global ttm_bo_glob;
54 
55 static struct attribute ttm_bo_count = {
56 	.name = "bo_count",
57 	.mode = S_IRUGO
58 };
59 
60 /* default destructor */
61 static void ttm_bo_default_destroy(struct ttm_buffer_object *bo)
62 {
63 	kfree(bo);
64 }
65 
66 static inline int ttm_mem_type_from_place(const struct ttm_place *place,
67 					  uint32_t *mem_type)
68 {
69 	int pos;
70 
71 	pos = ffs(place->flags & TTM_PL_MASK_MEM);
72 	if (unlikely(!pos))
73 		return -EINVAL;
74 
75 	*mem_type = pos - 1;
76 	return 0;
77 }
78 
79 static void ttm_mem_type_debug(struct ttm_bo_device *bdev, struct drm_printer *p,
80 			       int mem_type)
81 {
82 	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
83 
84 	drm_printf(p, "    has_type: %d\n", man->has_type);
85 	drm_printf(p, "    use_type: %d\n", man->use_type);
86 	drm_printf(p, "    flags: 0x%08X\n", man->flags);
87 	drm_printf(p, "    gpu_offset: 0x%08llX\n", man->gpu_offset);
88 	drm_printf(p, "    size: %llu\n", man->size);
89 	drm_printf(p, "    available_caching: 0x%08X\n", man->available_caching);
90 	drm_printf(p, "    default_caching: 0x%08X\n", man->default_caching);
91 	if (mem_type != TTM_PL_SYSTEM)
92 		(*man->func->debug)(man, p);
93 }
94 
95 static void ttm_bo_mem_space_debug(struct ttm_buffer_object *bo,
96 					struct ttm_placement *placement)
97 {
98 	struct drm_printer p = drm_debug_printer(TTM_PFX);
99 	int i, ret, mem_type;
100 
101 	drm_printf(&p, "No space for %p (%lu pages, %luK, %luM)\n",
102 		   bo, bo->mem.num_pages, bo->mem.size >> 10,
103 		   bo->mem.size >> 20);
104 	for (i = 0; i < placement->num_placement; i++) {
105 		ret = ttm_mem_type_from_place(&placement->placement[i],
106 						&mem_type);
107 		if (ret)
108 			return;
109 		drm_printf(&p, "  placement[%d]=0x%08X (%d)\n",
110 			   i, placement->placement[i].flags, mem_type);
111 		ttm_mem_type_debug(bo->bdev, &p, mem_type);
112 	}
113 }
114 
115 static ssize_t ttm_bo_global_show(struct kobject *kobj,
116 				  struct attribute *attr,
117 				  char *buffer)
118 {
119 	struct ttm_bo_global *glob =
120 		container_of(kobj, struct ttm_bo_global, kobj);
121 
122 	return snprintf(buffer, PAGE_SIZE, "%d\n",
123 				atomic_read(&glob->bo_count));
124 }
125 
126 static struct attribute *ttm_bo_global_attrs[] = {
127 	&ttm_bo_count,
128 	NULL
129 };
130 
131 static const struct sysfs_ops ttm_bo_global_ops = {
132 	.show = &ttm_bo_global_show
133 };
134 
135 static struct kobj_type ttm_bo_glob_kobj_type  = {
136 	.release = &ttm_bo_global_kobj_release,
137 	.sysfs_ops = &ttm_bo_global_ops,
138 	.default_attrs = ttm_bo_global_attrs
139 };
140 
141 
142 static inline uint32_t ttm_bo_type_flags(unsigned type)
143 {
144 	return 1 << (type);
145 }
146 
147 static void ttm_bo_release_list(struct kref *list_kref)
148 {
149 	struct ttm_buffer_object *bo =
150 	    container_of(list_kref, struct ttm_buffer_object, list_kref);
151 	struct ttm_bo_device *bdev = bo->bdev;
152 	size_t acc_size = bo->acc_size;
153 
154 	BUG_ON(kref_read(&bo->list_kref));
155 	BUG_ON(kref_read(&bo->kref));
156 	BUG_ON(atomic_read(&bo->cpu_writers));
157 	BUG_ON(bo->mem.mm_node != NULL);
158 	BUG_ON(!list_empty(&bo->lru));
159 	BUG_ON(!list_empty(&bo->ddestroy));
160 	ttm_tt_destroy(bo->ttm);
161 	atomic_dec(&bo->bdev->glob->bo_count);
162 	dma_fence_put(bo->moving);
163 	if (!ttm_bo_uses_embedded_gem_object(bo))
164 		dma_resv_fini(&bo->base._resv);
165 	mutex_destroy(&bo->wu_mutex);
166 	bo->destroy(bo);
167 	ttm_mem_global_free(bdev->glob->mem_glob, acc_size);
168 }
169 
170 static void ttm_bo_add_mem_to_lru(struct ttm_buffer_object *bo,
171 				  struct ttm_mem_reg *mem)
172 {
173 	struct ttm_bo_device *bdev = bo->bdev;
174 	struct ttm_mem_type_manager *man;
175 
176 	dma_resv_assert_held(bo->base.resv);
177 
178 	if (!list_empty(&bo->lru))
179 		return;
180 
181 	if (mem->placement & TTM_PL_FLAG_NO_EVICT)
182 		return;
183 
184 	man = &bdev->man[mem->mem_type];
185 	list_add_tail(&bo->lru, &man->lru[bo->priority]);
186 	kref_get(&bo->list_kref);
187 
188 	if (!(man->flags & TTM_MEMTYPE_FLAG_FIXED) && bo->ttm &&
189 	    !(bo->ttm->page_flags & (TTM_PAGE_FLAG_SG |
190 				     TTM_PAGE_FLAG_SWAPPED))) {
191 		list_add_tail(&bo->swap, &bdev->glob->swap_lru[bo->priority]);
192 		kref_get(&bo->list_kref);
193 	}
194 }
195 
196 void ttm_bo_add_to_lru(struct ttm_buffer_object *bo)
197 {
198 	ttm_bo_add_mem_to_lru(bo, &bo->mem);
199 }
200 EXPORT_SYMBOL(ttm_bo_add_to_lru);
201 
202 static void ttm_bo_ref_bug(struct kref *list_kref)
203 {
204 	BUG();
205 }
206 
207 void ttm_bo_del_from_lru(struct ttm_buffer_object *bo)
208 {
209 	struct ttm_bo_device *bdev = bo->bdev;
210 	bool notify = false;
211 
212 	if (!list_empty(&bo->swap)) {
213 		list_del_init(&bo->swap);
214 		kref_put(&bo->list_kref, ttm_bo_ref_bug);
215 		notify = true;
216 	}
217 	if (!list_empty(&bo->lru)) {
218 		list_del_init(&bo->lru);
219 		kref_put(&bo->list_kref, ttm_bo_ref_bug);
220 		notify = true;
221 	}
222 
223 	if (notify && bdev->driver->del_from_lru_notify)
224 		bdev->driver->del_from_lru_notify(bo);
225 }
226 
227 void ttm_bo_del_sub_from_lru(struct ttm_buffer_object *bo)
228 {
229 	struct ttm_bo_global *glob = bo->bdev->glob;
230 
231 	spin_lock(&glob->lru_lock);
232 	ttm_bo_del_from_lru(bo);
233 	spin_unlock(&glob->lru_lock);
234 }
235 EXPORT_SYMBOL(ttm_bo_del_sub_from_lru);
236 
237 static void ttm_bo_bulk_move_set_pos(struct ttm_lru_bulk_move_pos *pos,
238 				     struct ttm_buffer_object *bo)
239 {
240 	if (!pos->first)
241 		pos->first = bo;
242 	pos->last = bo;
243 }
244 
245 void ttm_bo_move_to_lru_tail(struct ttm_buffer_object *bo,
246 			     struct ttm_lru_bulk_move *bulk)
247 {
248 	dma_resv_assert_held(bo->base.resv);
249 
250 	ttm_bo_del_from_lru(bo);
251 	ttm_bo_add_to_lru(bo);
252 
253 	if (bulk && !(bo->mem.placement & TTM_PL_FLAG_NO_EVICT)) {
254 		switch (bo->mem.mem_type) {
255 		case TTM_PL_TT:
256 			ttm_bo_bulk_move_set_pos(&bulk->tt[bo->priority], bo);
257 			break;
258 
259 		case TTM_PL_VRAM:
260 			ttm_bo_bulk_move_set_pos(&bulk->vram[bo->priority], bo);
261 			break;
262 		}
263 		if (bo->ttm && !(bo->ttm->page_flags &
264 				 (TTM_PAGE_FLAG_SG | TTM_PAGE_FLAG_SWAPPED)))
265 			ttm_bo_bulk_move_set_pos(&bulk->swap[bo->priority], bo);
266 	}
267 }
268 EXPORT_SYMBOL(ttm_bo_move_to_lru_tail);
269 
270 void ttm_bo_bulk_move_lru_tail(struct ttm_lru_bulk_move *bulk)
271 {
272 	unsigned i;
273 
274 	for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) {
275 		struct ttm_lru_bulk_move_pos *pos = &bulk->tt[i];
276 		struct ttm_mem_type_manager *man;
277 
278 		if (!pos->first)
279 			continue;
280 
281 		dma_resv_assert_held(pos->first->base.resv);
282 		dma_resv_assert_held(pos->last->base.resv);
283 
284 		man = &pos->first->bdev->man[TTM_PL_TT];
285 		list_bulk_move_tail(&man->lru[i], &pos->first->lru,
286 				    &pos->last->lru);
287 	}
288 
289 	for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) {
290 		struct ttm_lru_bulk_move_pos *pos = &bulk->vram[i];
291 		struct ttm_mem_type_manager *man;
292 
293 		if (!pos->first)
294 			continue;
295 
296 		dma_resv_assert_held(pos->first->base.resv);
297 		dma_resv_assert_held(pos->last->base.resv);
298 
299 		man = &pos->first->bdev->man[TTM_PL_VRAM];
300 		list_bulk_move_tail(&man->lru[i], &pos->first->lru,
301 				    &pos->last->lru);
302 	}
303 
304 	for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) {
305 		struct ttm_lru_bulk_move_pos *pos = &bulk->swap[i];
306 		struct list_head *lru;
307 
308 		if (!pos->first)
309 			continue;
310 
311 		dma_resv_assert_held(pos->first->base.resv);
312 		dma_resv_assert_held(pos->last->base.resv);
313 
314 		lru = &pos->first->bdev->glob->swap_lru[i];
315 		list_bulk_move_tail(lru, &pos->first->swap, &pos->last->swap);
316 	}
317 }
318 EXPORT_SYMBOL(ttm_bo_bulk_move_lru_tail);
319 
320 static int ttm_bo_handle_move_mem(struct ttm_buffer_object *bo,
321 				  struct ttm_mem_reg *mem, bool evict,
322 				  struct ttm_operation_ctx *ctx)
323 {
324 	struct ttm_bo_device *bdev = bo->bdev;
325 	bool old_is_pci = ttm_mem_reg_is_pci(bdev, &bo->mem);
326 	bool new_is_pci = ttm_mem_reg_is_pci(bdev, mem);
327 	struct ttm_mem_type_manager *old_man = &bdev->man[bo->mem.mem_type];
328 	struct ttm_mem_type_manager *new_man = &bdev->man[mem->mem_type];
329 	int ret = 0;
330 
331 	if (old_is_pci || new_is_pci ||
332 	    ((mem->placement & bo->mem.placement & TTM_PL_MASK_CACHING) == 0)) {
333 		ret = ttm_mem_io_lock(old_man, true);
334 		if (unlikely(ret != 0))
335 			goto out_err;
336 		ttm_bo_unmap_virtual_locked(bo);
337 		ttm_mem_io_unlock(old_man);
338 	}
339 
340 	/*
341 	 * Create and bind a ttm if required.
342 	 */
343 
344 	if (!(new_man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
345 		if (bo->ttm == NULL) {
346 			bool zero = !(old_man->flags & TTM_MEMTYPE_FLAG_FIXED);
347 			ret = ttm_tt_create(bo, zero);
348 			if (ret)
349 				goto out_err;
350 		}
351 
352 		ret = ttm_tt_set_placement_caching(bo->ttm, mem->placement);
353 		if (ret)
354 			goto out_err;
355 
356 		if (mem->mem_type != TTM_PL_SYSTEM) {
357 			ret = ttm_tt_bind(bo->ttm, mem, ctx);
358 			if (ret)
359 				goto out_err;
360 		}
361 
362 		if (bo->mem.mem_type == TTM_PL_SYSTEM) {
363 			if (bdev->driver->move_notify)
364 				bdev->driver->move_notify(bo, evict, mem);
365 			bo->mem = *mem;
366 			mem->mm_node = NULL;
367 			goto moved;
368 		}
369 	}
370 
371 	if (bdev->driver->move_notify)
372 		bdev->driver->move_notify(bo, evict, mem);
373 
374 	if (!(old_man->flags & TTM_MEMTYPE_FLAG_FIXED) &&
375 	    !(new_man->flags & TTM_MEMTYPE_FLAG_FIXED))
376 		ret = ttm_bo_move_ttm(bo, ctx, mem);
377 	else if (bdev->driver->move)
378 		ret = bdev->driver->move(bo, evict, ctx, mem);
379 	else
380 		ret = ttm_bo_move_memcpy(bo, ctx, mem);
381 
382 	if (ret) {
383 		if (bdev->driver->move_notify) {
384 			swap(*mem, bo->mem);
385 			bdev->driver->move_notify(bo, false, mem);
386 			swap(*mem, bo->mem);
387 		}
388 
389 		goto out_err;
390 	}
391 
392 moved:
393 	if (bo->evicted) {
394 		if (bdev->driver->invalidate_caches) {
395 			ret = bdev->driver->invalidate_caches(bdev, bo->mem.placement);
396 			if (ret)
397 				pr_err("Can not flush read caches\n");
398 		}
399 		bo->evicted = false;
400 	}
401 
402 	if (bo->mem.mm_node)
403 		bo->offset = (bo->mem.start << PAGE_SHIFT) +
404 		    bdev->man[bo->mem.mem_type].gpu_offset;
405 	else
406 		bo->offset = 0;
407 
408 	ctx->bytes_moved += bo->num_pages << PAGE_SHIFT;
409 	return 0;
410 
411 out_err:
412 	new_man = &bdev->man[bo->mem.mem_type];
413 	if (new_man->flags & TTM_MEMTYPE_FLAG_FIXED) {
414 		ttm_tt_destroy(bo->ttm);
415 		bo->ttm = NULL;
416 	}
417 
418 	return ret;
419 }
420 
421 /**
422  * Call bo::reserved.
423  * Will release GPU memory type usage on destruction.
424  * This is the place to put in driver specific hooks to release
425  * driver private resources.
426  * Will release the bo::reserved lock.
427  */
428 
429 static void ttm_bo_cleanup_memtype_use(struct ttm_buffer_object *bo)
430 {
431 	if (bo->bdev->driver->move_notify)
432 		bo->bdev->driver->move_notify(bo, false, NULL);
433 
434 	ttm_tt_destroy(bo->ttm);
435 	bo->ttm = NULL;
436 	ttm_bo_mem_put(bo, &bo->mem);
437 }
438 
439 static int ttm_bo_individualize_resv(struct ttm_buffer_object *bo)
440 {
441 	int r;
442 
443 	if (bo->base.resv == &bo->base._resv)
444 		return 0;
445 
446 	BUG_ON(!dma_resv_trylock(&bo->base._resv));
447 
448 	r = dma_resv_copy_fences(&bo->base._resv, bo->base.resv);
449 	if (r)
450 		dma_resv_unlock(&bo->base._resv);
451 
452 	return r;
453 }
454 
455 static void ttm_bo_flush_all_fences(struct ttm_buffer_object *bo)
456 {
457 	struct dma_resv_list *fobj;
458 	struct dma_fence *fence;
459 	int i;
460 
461 	fobj = dma_resv_get_list(&bo->base._resv);
462 	fence = dma_resv_get_excl(&bo->base._resv);
463 	if (fence && !fence->ops->signaled)
464 		dma_fence_enable_sw_signaling(fence);
465 
466 	for (i = 0; fobj && i < fobj->shared_count; ++i) {
467 		fence = rcu_dereference_protected(fobj->shared[i],
468 					dma_resv_held(bo->base.resv));
469 
470 		if (!fence->ops->signaled)
471 			dma_fence_enable_sw_signaling(fence);
472 	}
473 }
474 
475 static void ttm_bo_cleanup_refs_or_queue(struct ttm_buffer_object *bo)
476 {
477 	struct ttm_bo_device *bdev = bo->bdev;
478 	struct ttm_bo_global *glob = bdev->glob;
479 	int ret;
480 
481 	ret = ttm_bo_individualize_resv(bo);
482 	if (ret) {
483 		/* Last resort, if we fail to allocate memory for the
484 		 * fences block for the BO to become idle
485 		 */
486 		dma_resv_wait_timeout_rcu(bo->base.resv, true, false,
487 						    30 * HZ);
488 		spin_lock(&glob->lru_lock);
489 		goto error;
490 	}
491 
492 	spin_lock(&glob->lru_lock);
493 	ret = dma_resv_trylock(bo->base.resv) ? 0 : -EBUSY;
494 	if (!ret) {
495 		if (dma_resv_test_signaled_rcu(&bo->base._resv, true)) {
496 			ttm_bo_del_from_lru(bo);
497 			spin_unlock(&glob->lru_lock);
498 			if (bo->base.resv != &bo->base._resv)
499 				dma_resv_unlock(&bo->base._resv);
500 
501 			ttm_bo_cleanup_memtype_use(bo);
502 			dma_resv_unlock(bo->base.resv);
503 			return;
504 		}
505 
506 		ttm_bo_flush_all_fences(bo);
507 
508 		/*
509 		 * Make NO_EVICT bos immediately available to
510 		 * shrinkers, now that they are queued for
511 		 * destruction.
512 		 */
513 		if (bo->mem.placement & TTM_PL_FLAG_NO_EVICT) {
514 			bo->mem.placement &= ~TTM_PL_FLAG_NO_EVICT;
515 			ttm_bo_add_to_lru(bo);
516 		}
517 
518 		dma_resv_unlock(bo->base.resv);
519 	}
520 	if (bo->base.resv != &bo->base._resv)
521 		dma_resv_unlock(&bo->base._resv);
522 
523 error:
524 	kref_get(&bo->list_kref);
525 	list_add_tail(&bo->ddestroy, &bdev->ddestroy);
526 	spin_unlock(&glob->lru_lock);
527 
528 	schedule_delayed_work(&bdev->wq,
529 			      ((HZ / 100) < 1) ? 1 : HZ / 100);
530 }
531 
532 /**
533  * function ttm_bo_cleanup_refs
534  * If bo idle, remove from delayed- and lru lists, and unref.
535  * If not idle, do nothing.
536  *
537  * Must be called with lru_lock and reservation held, this function
538  * will drop the lru lock and optionally the reservation lock before returning.
539  *
540  * @interruptible         Any sleeps should occur interruptibly.
541  * @no_wait_gpu           Never wait for gpu. Return -EBUSY instead.
542  * @unlock_resv           Unlock the reservation lock as well.
543  */
544 
545 static int ttm_bo_cleanup_refs(struct ttm_buffer_object *bo,
546 			       bool interruptible, bool no_wait_gpu,
547 			       bool unlock_resv)
548 {
549 	struct ttm_bo_global *glob = bo->bdev->glob;
550 	struct dma_resv *resv;
551 	int ret;
552 
553 	if (unlikely(list_empty(&bo->ddestroy)))
554 		resv = bo->base.resv;
555 	else
556 		resv = &bo->base._resv;
557 
558 	if (dma_resv_test_signaled_rcu(resv, true))
559 		ret = 0;
560 	else
561 		ret = -EBUSY;
562 
563 	if (ret && !no_wait_gpu) {
564 		long lret;
565 
566 		if (unlock_resv)
567 			dma_resv_unlock(bo->base.resv);
568 		spin_unlock(&glob->lru_lock);
569 
570 		lret = dma_resv_wait_timeout_rcu(resv, true,
571 							   interruptible,
572 							   30 * HZ);
573 
574 		if (lret < 0)
575 			return lret;
576 		else if (lret == 0)
577 			return -EBUSY;
578 
579 		spin_lock(&glob->lru_lock);
580 		if (unlock_resv && !dma_resv_trylock(bo->base.resv)) {
581 			/*
582 			 * We raced, and lost, someone else holds the reservation now,
583 			 * and is probably busy in ttm_bo_cleanup_memtype_use.
584 			 *
585 			 * Even if it's not the case, because we finished waiting any
586 			 * delayed destruction would succeed, so just return success
587 			 * here.
588 			 */
589 			spin_unlock(&glob->lru_lock);
590 			return 0;
591 		}
592 		ret = 0;
593 	}
594 
595 	if (ret || unlikely(list_empty(&bo->ddestroy))) {
596 		if (unlock_resv)
597 			dma_resv_unlock(bo->base.resv);
598 		spin_unlock(&glob->lru_lock);
599 		return ret;
600 	}
601 
602 	ttm_bo_del_from_lru(bo);
603 	list_del_init(&bo->ddestroy);
604 	kref_put(&bo->list_kref, ttm_bo_ref_bug);
605 
606 	spin_unlock(&glob->lru_lock);
607 	ttm_bo_cleanup_memtype_use(bo);
608 
609 	if (unlock_resv)
610 		dma_resv_unlock(bo->base.resv);
611 
612 	return 0;
613 }
614 
615 /**
616  * Traverse the delayed list, and call ttm_bo_cleanup_refs on all
617  * encountered buffers.
618  */
619 static bool ttm_bo_delayed_delete(struct ttm_bo_device *bdev, bool remove_all)
620 {
621 	struct ttm_bo_global *glob = bdev->glob;
622 	struct list_head removed;
623 	bool empty;
624 
625 	INIT_LIST_HEAD(&removed);
626 
627 	spin_lock(&glob->lru_lock);
628 	while (!list_empty(&bdev->ddestroy)) {
629 		struct ttm_buffer_object *bo;
630 
631 		bo = list_first_entry(&bdev->ddestroy, struct ttm_buffer_object,
632 				      ddestroy);
633 		kref_get(&bo->list_kref);
634 		list_move_tail(&bo->ddestroy, &removed);
635 
636 		if (remove_all || bo->base.resv != &bo->base._resv) {
637 			spin_unlock(&glob->lru_lock);
638 			dma_resv_lock(bo->base.resv, NULL);
639 
640 			spin_lock(&glob->lru_lock);
641 			ttm_bo_cleanup_refs(bo, false, !remove_all, true);
642 
643 		} else if (dma_resv_trylock(bo->base.resv)) {
644 			ttm_bo_cleanup_refs(bo, false, !remove_all, true);
645 		} else {
646 			spin_unlock(&glob->lru_lock);
647 		}
648 
649 		kref_put(&bo->list_kref, ttm_bo_release_list);
650 		spin_lock(&glob->lru_lock);
651 	}
652 	list_splice_tail(&removed, &bdev->ddestroy);
653 	empty = list_empty(&bdev->ddestroy);
654 	spin_unlock(&glob->lru_lock);
655 
656 	return empty;
657 }
658 
659 static void ttm_bo_delayed_workqueue(struct work_struct *work)
660 {
661 	struct ttm_bo_device *bdev =
662 	    container_of(work, struct ttm_bo_device, wq.work);
663 
664 	if (!ttm_bo_delayed_delete(bdev, false))
665 		schedule_delayed_work(&bdev->wq,
666 				      ((HZ / 100) < 1) ? 1 : HZ / 100);
667 }
668 
669 static void ttm_bo_release(struct kref *kref)
670 {
671 	struct ttm_buffer_object *bo =
672 	    container_of(kref, struct ttm_buffer_object, kref);
673 	struct ttm_bo_device *bdev = bo->bdev;
674 	struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
675 
676 	if (bo->bdev->driver->release_notify)
677 		bo->bdev->driver->release_notify(bo);
678 
679 	drm_vma_offset_remove(&bdev->vma_manager, &bo->base.vma_node);
680 	ttm_mem_io_lock(man, false);
681 	ttm_mem_io_free_vm(bo);
682 	ttm_mem_io_unlock(man);
683 	ttm_bo_cleanup_refs_or_queue(bo);
684 	kref_put(&bo->list_kref, ttm_bo_release_list);
685 }
686 
687 void ttm_bo_put(struct ttm_buffer_object *bo)
688 {
689 	kref_put(&bo->kref, ttm_bo_release);
690 }
691 EXPORT_SYMBOL(ttm_bo_put);
692 
693 int ttm_bo_lock_delayed_workqueue(struct ttm_bo_device *bdev)
694 {
695 	return cancel_delayed_work_sync(&bdev->wq);
696 }
697 EXPORT_SYMBOL(ttm_bo_lock_delayed_workqueue);
698 
699 void ttm_bo_unlock_delayed_workqueue(struct ttm_bo_device *bdev, int resched)
700 {
701 	if (resched)
702 		schedule_delayed_work(&bdev->wq,
703 				      ((HZ / 100) < 1) ? 1 : HZ / 100);
704 }
705 EXPORT_SYMBOL(ttm_bo_unlock_delayed_workqueue);
706 
707 static int ttm_bo_evict(struct ttm_buffer_object *bo,
708 			struct ttm_operation_ctx *ctx)
709 {
710 	struct ttm_bo_device *bdev = bo->bdev;
711 	struct ttm_mem_reg evict_mem;
712 	struct ttm_placement placement;
713 	int ret = 0;
714 
715 	dma_resv_assert_held(bo->base.resv);
716 
717 	placement.num_placement = 0;
718 	placement.num_busy_placement = 0;
719 	bdev->driver->evict_flags(bo, &placement);
720 
721 	if (!placement.num_placement && !placement.num_busy_placement) {
722 		ret = ttm_bo_pipeline_gutting(bo);
723 		if (ret)
724 			return ret;
725 
726 		return ttm_tt_create(bo, false);
727 	}
728 
729 	evict_mem = bo->mem;
730 	evict_mem.mm_node = NULL;
731 	evict_mem.bus.io_reserved_vm = false;
732 	evict_mem.bus.io_reserved_count = 0;
733 
734 	ret = ttm_bo_mem_space(bo, &placement, &evict_mem, ctx);
735 	if (ret) {
736 		if (ret != -ERESTARTSYS) {
737 			pr_err("Failed to find memory space for buffer 0x%p eviction\n",
738 			       bo);
739 			ttm_bo_mem_space_debug(bo, &placement);
740 		}
741 		goto out;
742 	}
743 
744 	ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, ctx);
745 	if (unlikely(ret)) {
746 		if (ret != -ERESTARTSYS)
747 			pr_err("Buffer eviction failed\n");
748 		ttm_bo_mem_put(bo, &evict_mem);
749 		goto out;
750 	}
751 	bo->evicted = true;
752 out:
753 	return ret;
754 }
755 
756 bool ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
757 			      const struct ttm_place *place)
758 {
759 	/* Don't evict this BO if it's outside of the
760 	 * requested placement range
761 	 */
762 	if (place->fpfn >= (bo->mem.start + bo->mem.size) ||
763 	    (place->lpfn && place->lpfn <= bo->mem.start))
764 		return false;
765 
766 	return true;
767 }
768 EXPORT_SYMBOL(ttm_bo_eviction_valuable);
769 
770 /**
771  * Check the target bo is allowable to be evicted or swapout, including cases:
772  *
773  * a. if share same reservation object with ctx->resv, have assumption
774  * reservation objects should already be locked, so not lock again and
775  * return true directly when either the opreation allow_reserved_eviction
776  * or the target bo already is in delayed free list;
777  *
778  * b. Otherwise, trylock it.
779  */
780 static bool ttm_bo_evict_swapout_allowable(struct ttm_buffer_object *bo,
781 			struct ttm_operation_ctx *ctx, bool *locked, bool *busy)
782 {
783 	bool ret = false;
784 
785 	if (bo->base.resv == ctx->resv) {
786 		dma_resv_assert_held(bo->base.resv);
787 		if (ctx->flags & TTM_OPT_FLAG_ALLOW_RES_EVICT
788 		    || !list_empty(&bo->ddestroy))
789 			ret = true;
790 		*locked = false;
791 		if (busy)
792 			*busy = false;
793 	} else {
794 		ret = dma_resv_trylock(bo->base.resv);
795 		*locked = ret;
796 		if (busy)
797 			*busy = !ret;
798 	}
799 
800 	return ret;
801 }
802 
803 /**
804  * ttm_mem_evict_wait_busy - wait for a busy BO to become available
805  *
806  * @busy_bo: BO which couldn't be locked with trylock
807  * @ctx: operation context
808  * @ticket: acquire ticket
809  *
810  * Try to lock a busy buffer object to avoid failing eviction.
811  */
812 static int ttm_mem_evict_wait_busy(struct ttm_buffer_object *busy_bo,
813 				   struct ttm_operation_ctx *ctx,
814 				   struct ww_acquire_ctx *ticket)
815 {
816 	int r;
817 
818 	if (!busy_bo || !ticket)
819 		return -EBUSY;
820 
821 	if (ctx->interruptible)
822 		r = dma_resv_lock_interruptible(busy_bo->base.resv,
823 							  ticket);
824 	else
825 		r = dma_resv_lock(busy_bo->base.resv, ticket);
826 
827 	/*
828 	 * TODO: It would be better to keep the BO locked until allocation is at
829 	 * least tried one more time, but that would mean a much larger rework
830 	 * of TTM.
831 	 */
832 	if (!r)
833 		dma_resv_unlock(busy_bo->base.resv);
834 
835 	return r == -EDEADLK ? -EBUSY : r;
836 }
837 
838 static int ttm_mem_evict_first(struct ttm_bo_device *bdev,
839 			       uint32_t mem_type,
840 			       const struct ttm_place *place,
841 			       struct ttm_operation_ctx *ctx,
842 			       struct ww_acquire_ctx *ticket)
843 {
844 	struct ttm_buffer_object *bo = NULL, *busy_bo = NULL;
845 	struct ttm_bo_global *glob = bdev->glob;
846 	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
847 	bool locked = false;
848 	unsigned i;
849 	int ret;
850 
851 	spin_lock(&glob->lru_lock);
852 	for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) {
853 		list_for_each_entry(bo, &man->lru[i], lru) {
854 			bool busy;
855 
856 			if (!ttm_bo_evict_swapout_allowable(bo, ctx, &locked,
857 							    &busy)) {
858 				if (busy && !busy_bo && ticket !=
859 				    dma_resv_locking_ctx(bo->base.resv))
860 					busy_bo = bo;
861 				continue;
862 			}
863 
864 			if (place && !bdev->driver->eviction_valuable(bo,
865 								      place)) {
866 				if (locked)
867 					dma_resv_unlock(bo->base.resv);
868 				continue;
869 			}
870 			break;
871 		}
872 
873 		/* If the inner loop terminated early, we have our candidate */
874 		if (&bo->lru != &man->lru[i])
875 			break;
876 
877 		bo = NULL;
878 	}
879 
880 	if (!bo) {
881 		if (busy_bo)
882 			kref_get(&busy_bo->list_kref);
883 		spin_unlock(&glob->lru_lock);
884 		ret = ttm_mem_evict_wait_busy(busy_bo, ctx, ticket);
885 		if (busy_bo)
886 			kref_put(&busy_bo->list_kref, ttm_bo_release_list);
887 		return ret;
888 	}
889 
890 	kref_get(&bo->list_kref);
891 
892 	if (!list_empty(&bo->ddestroy)) {
893 		ret = ttm_bo_cleanup_refs(bo, ctx->interruptible,
894 					  ctx->no_wait_gpu, locked);
895 		kref_put(&bo->list_kref, ttm_bo_release_list);
896 		return ret;
897 	}
898 
899 	ttm_bo_del_from_lru(bo);
900 	spin_unlock(&glob->lru_lock);
901 
902 	ret = ttm_bo_evict(bo, ctx);
903 	if (locked) {
904 		ttm_bo_unreserve(bo);
905 	} else {
906 		spin_lock(&glob->lru_lock);
907 		ttm_bo_add_to_lru(bo);
908 		spin_unlock(&glob->lru_lock);
909 	}
910 
911 	kref_put(&bo->list_kref, ttm_bo_release_list);
912 	return ret;
913 }
914 
915 void ttm_bo_mem_put(struct ttm_buffer_object *bo, struct ttm_mem_reg *mem)
916 {
917 	struct ttm_mem_type_manager *man = &bo->bdev->man[mem->mem_type];
918 
919 	if (mem->mm_node)
920 		(*man->func->put_node)(man, mem);
921 }
922 EXPORT_SYMBOL(ttm_bo_mem_put);
923 
924 /**
925  * Add the last move fence to the BO and reserve a new shared slot.
926  */
927 static int ttm_bo_add_move_fence(struct ttm_buffer_object *bo,
928 				 struct ttm_mem_type_manager *man,
929 				 struct ttm_mem_reg *mem)
930 {
931 	struct dma_fence *fence;
932 	int ret;
933 
934 	spin_lock(&man->move_lock);
935 	fence = dma_fence_get(man->move);
936 	spin_unlock(&man->move_lock);
937 
938 	if (fence) {
939 		dma_resv_add_shared_fence(bo->base.resv, fence);
940 
941 		ret = dma_resv_reserve_shared(bo->base.resv, 1);
942 		if (unlikely(ret)) {
943 			dma_fence_put(fence);
944 			return ret;
945 		}
946 
947 		dma_fence_put(bo->moving);
948 		bo->moving = fence;
949 	}
950 
951 	return 0;
952 }
953 
954 /**
955  * Repeatedly evict memory from the LRU for @mem_type until we create enough
956  * space, or we've evicted everything and there isn't enough space.
957  */
958 static int ttm_bo_mem_force_space(struct ttm_buffer_object *bo,
959 				  const struct ttm_place *place,
960 				  struct ttm_mem_reg *mem,
961 				  struct ttm_operation_ctx *ctx)
962 {
963 	struct ttm_bo_device *bdev = bo->bdev;
964 	struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
965 	struct ww_acquire_ctx *ticket;
966 	int ret;
967 
968 	ticket = dma_resv_locking_ctx(bo->base.resv);
969 	do {
970 		ret = (*man->func->get_node)(man, bo, place, mem);
971 		if (unlikely(ret != 0))
972 			return ret;
973 		if (mem->mm_node)
974 			break;
975 		ret = ttm_mem_evict_first(bdev, mem->mem_type, place, ctx,
976 					  ticket);
977 		if (unlikely(ret != 0))
978 			return ret;
979 	} while (1);
980 
981 	return ttm_bo_add_move_fence(bo, man, mem);
982 }
983 
984 static uint32_t ttm_bo_select_caching(struct ttm_mem_type_manager *man,
985 				      uint32_t cur_placement,
986 				      uint32_t proposed_placement)
987 {
988 	uint32_t caching = proposed_placement & TTM_PL_MASK_CACHING;
989 	uint32_t result = proposed_placement & ~TTM_PL_MASK_CACHING;
990 
991 	/**
992 	 * Keep current caching if possible.
993 	 */
994 
995 	if ((cur_placement & caching) != 0)
996 		result |= (cur_placement & caching);
997 	else if ((man->default_caching & caching) != 0)
998 		result |= man->default_caching;
999 	else if ((TTM_PL_FLAG_CACHED & caching) != 0)
1000 		result |= TTM_PL_FLAG_CACHED;
1001 	else if ((TTM_PL_FLAG_WC & caching) != 0)
1002 		result |= TTM_PL_FLAG_WC;
1003 	else if ((TTM_PL_FLAG_UNCACHED & caching) != 0)
1004 		result |= TTM_PL_FLAG_UNCACHED;
1005 
1006 	return result;
1007 }
1008 
1009 static bool ttm_bo_mt_compatible(struct ttm_mem_type_manager *man,
1010 				 uint32_t mem_type,
1011 				 const struct ttm_place *place,
1012 				 uint32_t *masked_placement)
1013 {
1014 	uint32_t cur_flags = ttm_bo_type_flags(mem_type);
1015 
1016 	if ((cur_flags & place->flags & TTM_PL_MASK_MEM) == 0)
1017 		return false;
1018 
1019 	if ((place->flags & man->available_caching) == 0)
1020 		return false;
1021 
1022 	cur_flags |= (place->flags & man->available_caching);
1023 
1024 	*masked_placement = cur_flags;
1025 	return true;
1026 }
1027 
1028 /**
1029  * ttm_bo_mem_placement - check if placement is compatible
1030  * @bo: BO to find memory for
1031  * @place: where to search
1032  * @mem: the memory object to fill in
1033  * @ctx: operation context
1034  *
1035  * Check if placement is compatible and fill in mem structure.
1036  * Returns -EBUSY if placement won't work or negative error code.
1037  * 0 when placement can be used.
1038  */
1039 static int ttm_bo_mem_placement(struct ttm_buffer_object *bo,
1040 				const struct ttm_place *place,
1041 				struct ttm_mem_reg *mem,
1042 				struct ttm_operation_ctx *ctx)
1043 {
1044 	struct ttm_bo_device *bdev = bo->bdev;
1045 	uint32_t mem_type = TTM_PL_SYSTEM;
1046 	struct ttm_mem_type_manager *man;
1047 	uint32_t cur_flags = 0;
1048 	int ret;
1049 
1050 	ret = ttm_mem_type_from_place(place, &mem_type);
1051 	if (ret)
1052 		return ret;
1053 
1054 	man = &bdev->man[mem_type];
1055 	if (!man->has_type || !man->use_type)
1056 		return -EBUSY;
1057 
1058 	if (!ttm_bo_mt_compatible(man, mem_type, place, &cur_flags))
1059 		return -EBUSY;
1060 
1061 	cur_flags = ttm_bo_select_caching(man, bo->mem.placement, cur_flags);
1062 	/*
1063 	 * Use the access and other non-mapping-related flag bits from
1064 	 * the memory placement flags to the current flags
1065 	 */
1066 	ttm_flag_masked(&cur_flags, place->flags, ~TTM_PL_MASK_MEMTYPE);
1067 
1068 	mem->mem_type = mem_type;
1069 	mem->placement = cur_flags;
1070 
1071 	if (bo->mem.mem_type < mem_type && !list_empty(&bo->lru)) {
1072 		spin_lock(&bo->bdev->glob->lru_lock);
1073 		ttm_bo_del_from_lru(bo);
1074 		ttm_bo_add_mem_to_lru(bo, mem);
1075 		spin_unlock(&bo->bdev->glob->lru_lock);
1076 	}
1077 
1078 	return 0;
1079 }
1080 
1081 /**
1082  * Creates space for memory region @mem according to its type.
1083  *
1084  * This function first searches for free space in compatible memory types in
1085  * the priority order defined by the driver.  If free space isn't found, then
1086  * ttm_bo_mem_force_space is attempted in priority order to evict and find
1087  * space.
1088  */
1089 int ttm_bo_mem_space(struct ttm_buffer_object *bo,
1090 			struct ttm_placement *placement,
1091 			struct ttm_mem_reg *mem,
1092 			struct ttm_operation_ctx *ctx)
1093 {
1094 	struct ttm_bo_device *bdev = bo->bdev;
1095 	bool type_found = false;
1096 	int i, ret;
1097 
1098 	ret = dma_resv_reserve_shared(bo->base.resv, 1);
1099 	if (unlikely(ret))
1100 		return ret;
1101 
1102 	mem->mm_node = NULL;
1103 	for (i = 0; i < placement->num_placement; ++i) {
1104 		const struct ttm_place *place = &placement->placement[i];
1105 		struct ttm_mem_type_manager *man;
1106 
1107 		ret = ttm_bo_mem_placement(bo, place, mem, ctx);
1108 		if (ret == -EBUSY)
1109 			continue;
1110 		if (ret)
1111 			goto error;
1112 
1113 		type_found = true;
1114 		mem->mm_node = NULL;
1115 		if (mem->mem_type == TTM_PL_SYSTEM)
1116 			return 0;
1117 
1118 		man = &bdev->man[mem->mem_type];
1119 		ret = (*man->func->get_node)(man, bo, place, mem);
1120 		if (unlikely(ret))
1121 			goto error;
1122 
1123 		if (mem->mm_node) {
1124 			ret = ttm_bo_add_move_fence(bo, man, mem);
1125 			if (unlikely(ret)) {
1126 				(*man->func->put_node)(man, mem);
1127 				goto error;
1128 			}
1129 			return 0;
1130 		}
1131 	}
1132 
1133 	for (i = 0; i < placement->num_busy_placement; ++i) {
1134 		const struct ttm_place *place = &placement->busy_placement[i];
1135 
1136 		ret = ttm_bo_mem_placement(bo, place, mem, ctx);
1137 		if (ret == -EBUSY)
1138 			continue;
1139 		if (ret)
1140 			goto error;
1141 
1142 		type_found = true;
1143 		mem->mm_node = NULL;
1144 		if (mem->mem_type == TTM_PL_SYSTEM)
1145 			return 0;
1146 
1147 		ret = ttm_bo_mem_force_space(bo, place, mem, ctx);
1148 		if (ret == 0 && mem->mm_node)
1149 			return 0;
1150 
1151 		if (ret && ret != -EBUSY)
1152 			goto error;
1153 	}
1154 
1155 	ret = -ENOMEM;
1156 	if (!type_found) {
1157 		pr_err(TTM_PFX "No compatible memory type found\n");
1158 		ret = -EINVAL;
1159 	}
1160 
1161 error:
1162 	if (bo->mem.mem_type == TTM_PL_SYSTEM && !list_empty(&bo->lru)) {
1163 		spin_lock(&bo->bdev->glob->lru_lock);
1164 		ttm_bo_move_to_lru_tail(bo, NULL);
1165 		spin_unlock(&bo->bdev->glob->lru_lock);
1166 	}
1167 
1168 	return ret;
1169 }
1170 EXPORT_SYMBOL(ttm_bo_mem_space);
1171 
1172 static int ttm_bo_move_buffer(struct ttm_buffer_object *bo,
1173 			      struct ttm_placement *placement,
1174 			      struct ttm_operation_ctx *ctx)
1175 {
1176 	int ret = 0;
1177 	struct ttm_mem_reg mem;
1178 
1179 	dma_resv_assert_held(bo->base.resv);
1180 
1181 	mem.num_pages = bo->num_pages;
1182 	mem.size = mem.num_pages << PAGE_SHIFT;
1183 	mem.page_alignment = bo->mem.page_alignment;
1184 	mem.bus.io_reserved_vm = false;
1185 	mem.bus.io_reserved_count = 0;
1186 	/*
1187 	 * Determine where to move the buffer.
1188 	 */
1189 	ret = ttm_bo_mem_space(bo, placement, &mem, ctx);
1190 	if (ret)
1191 		goto out_unlock;
1192 	ret = ttm_bo_handle_move_mem(bo, &mem, false, ctx);
1193 out_unlock:
1194 	if (ret && mem.mm_node)
1195 		ttm_bo_mem_put(bo, &mem);
1196 	return ret;
1197 }
1198 
1199 static bool ttm_bo_places_compat(const struct ttm_place *places,
1200 				 unsigned num_placement,
1201 				 struct ttm_mem_reg *mem,
1202 				 uint32_t *new_flags)
1203 {
1204 	unsigned i;
1205 
1206 	for (i = 0; i < num_placement; i++) {
1207 		const struct ttm_place *heap = &places[i];
1208 
1209 		if (mem->mm_node && (mem->start < heap->fpfn ||
1210 		     (heap->lpfn != 0 && (mem->start + mem->num_pages) > heap->lpfn)))
1211 			continue;
1212 
1213 		*new_flags = heap->flags;
1214 		if ((*new_flags & mem->placement & TTM_PL_MASK_CACHING) &&
1215 		    (*new_flags & mem->placement & TTM_PL_MASK_MEM) &&
1216 		    (!(*new_flags & TTM_PL_FLAG_CONTIGUOUS) ||
1217 		     (mem->placement & TTM_PL_FLAG_CONTIGUOUS)))
1218 			return true;
1219 	}
1220 	return false;
1221 }
1222 
1223 bool ttm_bo_mem_compat(struct ttm_placement *placement,
1224 		       struct ttm_mem_reg *mem,
1225 		       uint32_t *new_flags)
1226 {
1227 	if (ttm_bo_places_compat(placement->placement, placement->num_placement,
1228 				 mem, new_flags))
1229 		return true;
1230 
1231 	if ((placement->busy_placement != placement->placement ||
1232 	     placement->num_busy_placement > placement->num_placement) &&
1233 	    ttm_bo_places_compat(placement->busy_placement,
1234 				 placement->num_busy_placement,
1235 				 mem, new_flags))
1236 		return true;
1237 
1238 	return false;
1239 }
1240 EXPORT_SYMBOL(ttm_bo_mem_compat);
1241 
1242 int ttm_bo_validate(struct ttm_buffer_object *bo,
1243 		    struct ttm_placement *placement,
1244 		    struct ttm_operation_ctx *ctx)
1245 {
1246 	int ret;
1247 	uint32_t new_flags;
1248 
1249 	dma_resv_assert_held(bo->base.resv);
1250 	/*
1251 	 * Check whether we need to move buffer.
1252 	 */
1253 	if (!ttm_bo_mem_compat(placement, &bo->mem, &new_flags)) {
1254 		ret = ttm_bo_move_buffer(bo, placement, ctx);
1255 		if (ret)
1256 			return ret;
1257 	} else {
1258 		/*
1259 		 * Use the access and other non-mapping-related flag bits from
1260 		 * the compatible memory placement flags to the active flags
1261 		 */
1262 		ttm_flag_masked(&bo->mem.placement, new_flags,
1263 				~TTM_PL_MASK_MEMTYPE);
1264 	}
1265 	/*
1266 	 * We might need to add a TTM.
1267 	 */
1268 	if (bo->mem.mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
1269 		ret = ttm_tt_create(bo, true);
1270 		if (ret)
1271 			return ret;
1272 	}
1273 	return 0;
1274 }
1275 EXPORT_SYMBOL(ttm_bo_validate);
1276 
1277 int ttm_bo_init_reserved(struct ttm_bo_device *bdev,
1278 			 struct ttm_buffer_object *bo,
1279 			 unsigned long size,
1280 			 enum ttm_bo_type type,
1281 			 struct ttm_placement *placement,
1282 			 uint32_t page_alignment,
1283 			 struct ttm_operation_ctx *ctx,
1284 			 size_t acc_size,
1285 			 struct sg_table *sg,
1286 			 struct dma_resv *resv,
1287 			 void (*destroy) (struct ttm_buffer_object *))
1288 {
1289 	int ret = 0;
1290 	unsigned long num_pages;
1291 	struct ttm_mem_global *mem_glob = bdev->glob->mem_glob;
1292 	bool locked;
1293 
1294 	ret = ttm_mem_global_alloc(mem_glob, acc_size, ctx);
1295 	if (ret) {
1296 		pr_err("Out of kernel memory\n");
1297 		if (destroy)
1298 			(*destroy)(bo);
1299 		else
1300 			kfree(bo);
1301 		return -ENOMEM;
1302 	}
1303 
1304 	num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1305 	if (num_pages == 0) {
1306 		pr_err("Illegal buffer object size\n");
1307 		if (destroy)
1308 			(*destroy)(bo);
1309 		else
1310 			kfree(bo);
1311 		ttm_mem_global_free(mem_glob, acc_size);
1312 		return -EINVAL;
1313 	}
1314 	bo->destroy = destroy ? destroy : ttm_bo_default_destroy;
1315 
1316 	kref_init(&bo->kref);
1317 	kref_init(&bo->list_kref);
1318 	atomic_set(&bo->cpu_writers, 0);
1319 	INIT_LIST_HEAD(&bo->lru);
1320 	INIT_LIST_HEAD(&bo->ddestroy);
1321 	INIT_LIST_HEAD(&bo->swap);
1322 	INIT_LIST_HEAD(&bo->io_reserve_lru);
1323 	mutex_init(&bo->wu_mutex);
1324 	bo->bdev = bdev;
1325 	bo->type = type;
1326 	bo->num_pages = num_pages;
1327 	bo->mem.size = num_pages << PAGE_SHIFT;
1328 	bo->mem.mem_type = TTM_PL_SYSTEM;
1329 	bo->mem.num_pages = bo->num_pages;
1330 	bo->mem.mm_node = NULL;
1331 	bo->mem.page_alignment = page_alignment;
1332 	bo->mem.bus.io_reserved_vm = false;
1333 	bo->mem.bus.io_reserved_count = 0;
1334 	bo->moving = NULL;
1335 	bo->mem.placement = (TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED);
1336 	bo->acc_size = acc_size;
1337 	bo->sg = sg;
1338 	if (resv) {
1339 		bo->base.resv = resv;
1340 		dma_resv_assert_held(bo->base.resv);
1341 	} else {
1342 		bo->base.resv = &bo->base._resv;
1343 	}
1344 	if (!ttm_bo_uses_embedded_gem_object(bo)) {
1345 		/*
1346 		 * bo.gem is not initialized, so we have to setup the
1347 		 * struct elements we want use regardless.
1348 		 */
1349 		dma_resv_init(&bo->base._resv);
1350 		drm_vma_node_reset(&bo->base.vma_node);
1351 	}
1352 	atomic_inc(&bo->bdev->glob->bo_count);
1353 
1354 	/*
1355 	 * For ttm_bo_type_device buffers, allocate
1356 	 * address space from the device.
1357 	 */
1358 	if (bo->type == ttm_bo_type_device ||
1359 	    bo->type == ttm_bo_type_sg)
1360 		ret = drm_vma_offset_add(&bdev->vma_manager, &bo->base.vma_node,
1361 					 bo->mem.num_pages);
1362 
1363 	/* passed reservation objects should already be locked,
1364 	 * since otherwise lockdep will be angered in radeon.
1365 	 */
1366 	if (!resv) {
1367 		locked = dma_resv_trylock(bo->base.resv);
1368 		WARN_ON(!locked);
1369 	}
1370 
1371 	if (likely(!ret))
1372 		ret = ttm_bo_validate(bo, placement, ctx);
1373 
1374 	if (unlikely(ret)) {
1375 		if (!resv)
1376 			ttm_bo_unreserve(bo);
1377 
1378 		ttm_bo_put(bo);
1379 		return ret;
1380 	}
1381 
1382 	if (resv && !(bo->mem.placement & TTM_PL_FLAG_NO_EVICT)) {
1383 		spin_lock(&bdev->glob->lru_lock);
1384 		ttm_bo_add_to_lru(bo);
1385 		spin_unlock(&bdev->glob->lru_lock);
1386 	}
1387 
1388 	return ret;
1389 }
1390 EXPORT_SYMBOL(ttm_bo_init_reserved);
1391 
1392 int ttm_bo_init(struct ttm_bo_device *bdev,
1393 		struct ttm_buffer_object *bo,
1394 		unsigned long size,
1395 		enum ttm_bo_type type,
1396 		struct ttm_placement *placement,
1397 		uint32_t page_alignment,
1398 		bool interruptible,
1399 		size_t acc_size,
1400 		struct sg_table *sg,
1401 		struct dma_resv *resv,
1402 		void (*destroy) (struct ttm_buffer_object *))
1403 {
1404 	struct ttm_operation_ctx ctx = { interruptible, false };
1405 	int ret;
1406 
1407 	ret = ttm_bo_init_reserved(bdev, bo, size, type, placement,
1408 				   page_alignment, &ctx, acc_size,
1409 				   sg, resv, destroy);
1410 	if (ret)
1411 		return ret;
1412 
1413 	if (!resv)
1414 		ttm_bo_unreserve(bo);
1415 
1416 	return 0;
1417 }
1418 EXPORT_SYMBOL(ttm_bo_init);
1419 
1420 size_t ttm_bo_acc_size(struct ttm_bo_device *bdev,
1421 		       unsigned long bo_size,
1422 		       unsigned struct_size)
1423 {
1424 	unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT;
1425 	size_t size = 0;
1426 
1427 	size += ttm_round_pot(struct_size);
1428 	size += ttm_round_pot(npages * sizeof(void *));
1429 	size += ttm_round_pot(sizeof(struct ttm_tt));
1430 	return size;
1431 }
1432 EXPORT_SYMBOL(ttm_bo_acc_size);
1433 
1434 size_t ttm_bo_dma_acc_size(struct ttm_bo_device *bdev,
1435 			   unsigned long bo_size,
1436 			   unsigned struct_size)
1437 {
1438 	unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT;
1439 	size_t size = 0;
1440 
1441 	size += ttm_round_pot(struct_size);
1442 	size += ttm_round_pot(npages * (2*sizeof(void *) + sizeof(dma_addr_t)));
1443 	size += ttm_round_pot(sizeof(struct ttm_dma_tt));
1444 	return size;
1445 }
1446 EXPORT_SYMBOL(ttm_bo_dma_acc_size);
1447 
1448 int ttm_bo_create(struct ttm_bo_device *bdev,
1449 			unsigned long size,
1450 			enum ttm_bo_type type,
1451 			struct ttm_placement *placement,
1452 			uint32_t page_alignment,
1453 			bool interruptible,
1454 			struct ttm_buffer_object **p_bo)
1455 {
1456 	struct ttm_buffer_object *bo;
1457 	size_t acc_size;
1458 	int ret;
1459 
1460 	bo = kzalloc(sizeof(*bo), GFP_KERNEL);
1461 	if (unlikely(bo == NULL))
1462 		return -ENOMEM;
1463 
1464 	acc_size = ttm_bo_acc_size(bdev, size, sizeof(struct ttm_buffer_object));
1465 	ret = ttm_bo_init(bdev, bo, size, type, placement, page_alignment,
1466 			  interruptible, acc_size,
1467 			  NULL, NULL, NULL);
1468 	if (likely(ret == 0))
1469 		*p_bo = bo;
1470 
1471 	return ret;
1472 }
1473 EXPORT_SYMBOL(ttm_bo_create);
1474 
1475 static int ttm_bo_force_list_clean(struct ttm_bo_device *bdev,
1476 				   unsigned mem_type)
1477 {
1478 	struct ttm_operation_ctx ctx = {
1479 		.interruptible = false,
1480 		.no_wait_gpu = false,
1481 		.flags = TTM_OPT_FLAG_FORCE_ALLOC
1482 	};
1483 	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1484 	struct ttm_bo_global *glob = bdev->glob;
1485 	struct dma_fence *fence;
1486 	int ret;
1487 	unsigned i;
1488 
1489 	/*
1490 	 * Can't use standard list traversal since we're unlocking.
1491 	 */
1492 
1493 	spin_lock(&glob->lru_lock);
1494 	for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) {
1495 		while (!list_empty(&man->lru[i])) {
1496 			spin_unlock(&glob->lru_lock);
1497 			ret = ttm_mem_evict_first(bdev, mem_type, NULL, &ctx,
1498 						  NULL);
1499 			if (ret)
1500 				return ret;
1501 			spin_lock(&glob->lru_lock);
1502 		}
1503 	}
1504 	spin_unlock(&glob->lru_lock);
1505 
1506 	spin_lock(&man->move_lock);
1507 	fence = dma_fence_get(man->move);
1508 	spin_unlock(&man->move_lock);
1509 
1510 	if (fence) {
1511 		ret = dma_fence_wait(fence, false);
1512 		dma_fence_put(fence);
1513 		if (ret)
1514 			return ret;
1515 	}
1516 
1517 	return 0;
1518 }
1519 
1520 int ttm_bo_clean_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1521 {
1522 	struct ttm_mem_type_manager *man;
1523 	int ret = -EINVAL;
1524 
1525 	if (mem_type >= TTM_NUM_MEM_TYPES) {
1526 		pr_err("Illegal memory type %d\n", mem_type);
1527 		return ret;
1528 	}
1529 	man = &bdev->man[mem_type];
1530 
1531 	if (!man->has_type) {
1532 		pr_err("Trying to take down uninitialized memory manager type %u\n",
1533 		       mem_type);
1534 		return ret;
1535 	}
1536 
1537 	man->use_type = false;
1538 	man->has_type = false;
1539 
1540 	ret = 0;
1541 	if (mem_type > 0) {
1542 		ret = ttm_bo_force_list_clean(bdev, mem_type);
1543 		if (ret) {
1544 			pr_err("Cleanup eviction failed\n");
1545 			return ret;
1546 		}
1547 
1548 		ret = (*man->func->takedown)(man);
1549 	}
1550 
1551 	dma_fence_put(man->move);
1552 	man->move = NULL;
1553 
1554 	return ret;
1555 }
1556 EXPORT_SYMBOL(ttm_bo_clean_mm);
1557 
1558 int ttm_bo_evict_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1559 {
1560 	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1561 
1562 	if (mem_type == 0 || mem_type >= TTM_NUM_MEM_TYPES) {
1563 		pr_err("Illegal memory manager memory type %u\n", mem_type);
1564 		return -EINVAL;
1565 	}
1566 
1567 	if (!man->has_type) {
1568 		pr_err("Memory type %u has not been initialized\n", mem_type);
1569 		return 0;
1570 	}
1571 
1572 	return ttm_bo_force_list_clean(bdev, mem_type);
1573 }
1574 EXPORT_SYMBOL(ttm_bo_evict_mm);
1575 
1576 int ttm_bo_init_mm(struct ttm_bo_device *bdev, unsigned type,
1577 			unsigned long p_size)
1578 {
1579 	int ret;
1580 	struct ttm_mem_type_manager *man;
1581 	unsigned i;
1582 
1583 	BUG_ON(type >= TTM_NUM_MEM_TYPES);
1584 	man = &bdev->man[type];
1585 	BUG_ON(man->has_type);
1586 	man->io_reserve_fastpath = true;
1587 	man->use_io_reserve_lru = false;
1588 	mutex_init(&man->io_reserve_mutex);
1589 	spin_lock_init(&man->move_lock);
1590 	INIT_LIST_HEAD(&man->io_reserve_lru);
1591 
1592 	ret = bdev->driver->init_mem_type(bdev, type, man);
1593 	if (ret)
1594 		return ret;
1595 	man->bdev = bdev;
1596 
1597 	if (type != TTM_PL_SYSTEM) {
1598 		ret = (*man->func->init)(man, p_size);
1599 		if (ret)
1600 			return ret;
1601 	}
1602 	man->has_type = true;
1603 	man->use_type = true;
1604 	man->size = p_size;
1605 
1606 	for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i)
1607 		INIT_LIST_HEAD(&man->lru[i]);
1608 	man->move = NULL;
1609 
1610 	return 0;
1611 }
1612 EXPORT_SYMBOL(ttm_bo_init_mm);
1613 
1614 static void ttm_bo_global_kobj_release(struct kobject *kobj)
1615 {
1616 	struct ttm_bo_global *glob =
1617 		container_of(kobj, struct ttm_bo_global, kobj);
1618 
1619 	__free_page(glob->dummy_read_page);
1620 }
1621 
1622 static void ttm_bo_global_release(void)
1623 {
1624 	struct ttm_bo_global *glob = &ttm_bo_glob;
1625 
1626 	mutex_lock(&ttm_global_mutex);
1627 	if (--ttm_bo_glob_use_count > 0)
1628 		goto out;
1629 
1630 	kobject_del(&glob->kobj);
1631 	kobject_put(&glob->kobj);
1632 	ttm_mem_global_release(&ttm_mem_glob);
1633 	memset(glob, 0, sizeof(*glob));
1634 out:
1635 	mutex_unlock(&ttm_global_mutex);
1636 }
1637 
1638 static int ttm_bo_global_init(void)
1639 {
1640 	struct ttm_bo_global *glob = &ttm_bo_glob;
1641 	int ret = 0;
1642 	unsigned i;
1643 
1644 	mutex_lock(&ttm_global_mutex);
1645 	if (++ttm_bo_glob_use_count > 1)
1646 		goto out;
1647 
1648 	ret = ttm_mem_global_init(&ttm_mem_glob);
1649 	if (ret)
1650 		goto out;
1651 
1652 	spin_lock_init(&glob->lru_lock);
1653 	glob->mem_glob = &ttm_mem_glob;
1654 	glob->mem_glob->bo_glob = glob;
1655 	glob->dummy_read_page = alloc_page(__GFP_ZERO | GFP_DMA32);
1656 
1657 	if (unlikely(glob->dummy_read_page == NULL)) {
1658 		ret = -ENOMEM;
1659 		goto out;
1660 	}
1661 
1662 	for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i)
1663 		INIT_LIST_HEAD(&glob->swap_lru[i]);
1664 	INIT_LIST_HEAD(&glob->device_list);
1665 	atomic_set(&glob->bo_count, 0);
1666 
1667 	ret = kobject_init_and_add(
1668 		&glob->kobj, &ttm_bo_glob_kobj_type, ttm_get_kobj(), "buffer_objects");
1669 	if (unlikely(ret != 0))
1670 		kobject_put(&glob->kobj);
1671 out:
1672 	mutex_unlock(&ttm_global_mutex);
1673 	return ret;
1674 }
1675 
1676 int ttm_bo_device_release(struct ttm_bo_device *bdev)
1677 {
1678 	int ret = 0;
1679 	unsigned i = TTM_NUM_MEM_TYPES;
1680 	struct ttm_mem_type_manager *man;
1681 	struct ttm_bo_global *glob = bdev->glob;
1682 
1683 	while (i--) {
1684 		man = &bdev->man[i];
1685 		if (man->has_type) {
1686 			man->use_type = false;
1687 			if ((i != TTM_PL_SYSTEM) && ttm_bo_clean_mm(bdev, i)) {
1688 				ret = -EBUSY;
1689 				pr_err("DRM memory manager type %d is not clean\n",
1690 				       i);
1691 			}
1692 			man->has_type = false;
1693 		}
1694 	}
1695 
1696 	mutex_lock(&ttm_global_mutex);
1697 	list_del(&bdev->device_list);
1698 	mutex_unlock(&ttm_global_mutex);
1699 
1700 	cancel_delayed_work_sync(&bdev->wq);
1701 
1702 	if (ttm_bo_delayed_delete(bdev, true))
1703 		pr_debug("Delayed destroy list was clean\n");
1704 
1705 	spin_lock(&glob->lru_lock);
1706 	for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i)
1707 		if (list_empty(&bdev->man[0].lru[0]))
1708 			pr_debug("Swap list %d was clean\n", i);
1709 	spin_unlock(&glob->lru_lock);
1710 
1711 	drm_vma_offset_manager_destroy(&bdev->vma_manager);
1712 
1713 	if (!ret)
1714 		ttm_bo_global_release();
1715 
1716 	return ret;
1717 }
1718 EXPORT_SYMBOL(ttm_bo_device_release);
1719 
1720 int ttm_bo_device_init(struct ttm_bo_device *bdev,
1721 		       struct ttm_bo_driver *driver,
1722 		       struct address_space *mapping,
1723 		       bool need_dma32)
1724 {
1725 	struct ttm_bo_global *glob = &ttm_bo_glob;
1726 	int ret;
1727 
1728 	ret = ttm_bo_global_init();
1729 	if (ret)
1730 		return ret;
1731 
1732 	bdev->driver = driver;
1733 
1734 	memset(bdev->man, 0, sizeof(bdev->man));
1735 
1736 	/*
1737 	 * Initialize the system memory buffer type.
1738 	 * Other types need to be driver / IOCTL initialized.
1739 	 */
1740 	ret = ttm_bo_init_mm(bdev, TTM_PL_SYSTEM, 0);
1741 	if (unlikely(ret != 0))
1742 		goto out_no_sys;
1743 
1744 	drm_vma_offset_manager_init(&bdev->vma_manager,
1745 				    DRM_FILE_PAGE_OFFSET_START,
1746 				    DRM_FILE_PAGE_OFFSET_SIZE);
1747 	INIT_DELAYED_WORK(&bdev->wq, ttm_bo_delayed_workqueue);
1748 	INIT_LIST_HEAD(&bdev->ddestroy);
1749 	bdev->dev_mapping = mapping;
1750 	bdev->glob = glob;
1751 	bdev->need_dma32 = need_dma32;
1752 	mutex_lock(&ttm_global_mutex);
1753 	list_add_tail(&bdev->device_list, &glob->device_list);
1754 	mutex_unlock(&ttm_global_mutex);
1755 
1756 	return 0;
1757 out_no_sys:
1758 	ttm_bo_global_release();
1759 	return ret;
1760 }
1761 EXPORT_SYMBOL(ttm_bo_device_init);
1762 
1763 /*
1764  * buffer object vm functions.
1765  */
1766 
1767 bool ttm_mem_reg_is_pci(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
1768 {
1769 	struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
1770 
1771 	if (!(man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
1772 		if (mem->mem_type == TTM_PL_SYSTEM)
1773 			return false;
1774 
1775 		if (man->flags & TTM_MEMTYPE_FLAG_CMA)
1776 			return false;
1777 
1778 		if (mem->placement & TTM_PL_FLAG_CACHED)
1779 			return false;
1780 	}
1781 	return true;
1782 }
1783 
1784 void ttm_bo_unmap_virtual_locked(struct ttm_buffer_object *bo)
1785 {
1786 	struct ttm_bo_device *bdev = bo->bdev;
1787 
1788 	drm_vma_node_unmap(&bo->base.vma_node, bdev->dev_mapping);
1789 	ttm_mem_io_free_vm(bo);
1790 }
1791 
1792 void ttm_bo_unmap_virtual(struct ttm_buffer_object *bo)
1793 {
1794 	struct ttm_bo_device *bdev = bo->bdev;
1795 	struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
1796 
1797 	ttm_mem_io_lock(man, false);
1798 	ttm_bo_unmap_virtual_locked(bo);
1799 	ttm_mem_io_unlock(man);
1800 }
1801 
1802 
1803 EXPORT_SYMBOL(ttm_bo_unmap_virtual);
1804 
1805 int ttm_bo_wait(struct ttm_buffer_object *bo,
1806 		bool interruptible, bool no_wait)
1807 {
1808 	long timeout = 15 * HZ;
1809 
1810 	if (no_wait) {
1811 		if (dma_resv_test_signaled_rcu(bo->base.resv, true))
1812 			return 0;
1813 		else
1814 			return -EBUSY;
1815 	}
1816 
1817 	timeout = dma_resv_wait_timeout_rcu(bo->base.resv, true,
1818 						      interruptible, timeout);
1819 	if (timeout < 0)
1820 		return timeout;
1821 
1822 	if (timeout == 0)
1823 		return -EBUSY;
1824 
1825 	dma_resv_add_excl_fence(bo->base.resv, NULL);
1826 	return 0;
1827 }
1828 EXPORT_SYMBOL(ttm_bo_wait);
1829 
1830 int ttm_bo_synccpu_write_grab(struct ttm_buffer_object *bo, bool no_wait)
1831 {
1832 	int ret = 0;
1833 
1834 	/*
1835 	 * Using ttm_bo_reserve makes sure the lru lists are updated.
1836 	 */
1837 
1838 	ret = ttm_bo_reserve(bo, true, no_wait, NULL);
1839 	if (unlikely(ret != 0))
1840 		return ret;
1841 	ret = ttm_bo_wait(bo, true, no_wait);
1842 	if (likely(ret == 0))
1843 		atomic_inc(&bo->cpu_writers);
1844 	ttm_bo_unreserve(bo);
1845 	return ret;
1846 }
1847 EXPORT_SYMBOL(ttm_bo_synccpu_write_grab);
1848 
1849 void ttm_bo_synccpu_write_release(struct ttm_buffer_object *bo)
1850 {
1851 	atomic_dec(&bo->cpu_writers);
1852 }
1853 EXPORT_SYMBOL(ttm_bo_synccpu_write_release);
1854 
1855 /**
1856  * A buffer object shrink method that tries to swap out the first
1857  * buffer object on the bo_global::swap_lru list.
1858  */
1859 int ttm_bo_swapout(struct ttm_bo_global *glob, struct ttm_operation_ctx *ctx)
1860 {
1861 	struct ttm_buffer_object *bo;
1862 	int ret = -EBUSY;
1863 	bool locked;
1864 	unsigned i;
1865 
1866 	spin_lock(&glob->lru_lock);
1867 	for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) {
1868 		list_for_each_entry(bo, &glob->swap_lru[i], swap) {
1869 			if (ttm_bo_evict_swapout_allowable(bo, ctx, &locked,
1870 							   NULL)) {
1871 				ret = 0;
1872 				break;
1873 			}
1874 		}
1875 		if (!ret)
1876 			break;
1877 	}
1878 
1879 	if (ret) {
1880 		spin_unlock(&glob->lru_lock);
1881 		return ret;
1882 	}
1883 
1884 	kref_get(&bo->list_kref);
1885 
1886 	if (!list_empty(&bo->ddestroy)) {
1887 		ret = ttm_bo_cleanup_refs(bo, false, false, locked);
1888 		kref_put(&bo->list_kref, ttm_bo_release_list);
1889 		return ret;
1890 	}
1891 
1892 	ttm_bo_del_from_lru(bo);
1893 	spin_unlock(&glob->lru_lock);
1894 
1895 	/**
1896 	 * Move to system cached
1897 	 */
1898 
1899 	if (bo->mem.mem_type != TTM_PL_SYSTEM ||
1900 	    bo->ttm->caching_state != tt_cached) {
1901 		struct ttm_operation_ctx ctx = { false, false };
1902 		struct ttm_mem_reg evict_mem;
1903 
1904 		evict_mem = bo->mem;
1905 		evict_mem.mm_node = NULL;
1906 		evict_mem.placement = TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED;
1907 		evict_mem.mem_type = TTM_PL_SYSTEM;
1908 
1909 		ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, &ctx);
1910 		if (unlikely(ret != 0))
1911 			goto out;
1912 	}
1913 
1914 	/**
1915 	 * Make sure BO is idle.
1916 	 */
1917 
1918 	ret = ttm_bo_wait(bo, false, false);
1919 	if (unlikely(ret != 0))
1920 		goto out;
1921 
1922 	ttm_bo_unmap_virtual(bo);
1923 
1924 	/**
1925 	 * Swap out. Buffer will be swapped in again as soon as
1926 	 * anyone tries to access a ttm page.
1927 	 */
1928 
1929 	if (bo->bdev->driver->swap_notify)
1930 		bo->bdev->driver->swap_notify(bo);
1931 
1932 	ret = ttm_tt_swapout(bo->ttm, bo->persistent_swap_storage);
1933 out:
1934 
1935 	/**
1936 	 *
1937 	 * Unreserve without putting on LRU to avoid swapping out an
1938 	 * already swapped buffer.
1939 	 */
1940 	if (locked)
1941 		dma_resv_unlock(bo->base.resv);
1942 	kref_put(&bo->list_kref, ttm_bo_release_list);
1943 	return ret;
1944 }
1945 EXPORT_SYMBOL(ttm_bo_swapout);
1946 
1947 void ttm_bo_swapout_all(struct ttm_bo_device *bdev)
1948 {
1949 	struct ttm_operation_ctx ctx = {
1950 		.interruptible = false,
1951 		.no_wait_gpu = false
1952 	};
1953 
1954 	while (ttm_bo_swapout(bdev->glob, &ctx) == 0)
1955 		;
1956 }
1957 EXPORT_SYMBOL(ttm_bo_swapout_all);
1958 
1959 /**
1960  * ttm_bo_wait_unreserved - interruptible wait for a buffer object to become
1961  * unreserved
1962  *
1963  * @bo: Pointer to buffer
1964  */
1965 int ttm_bo_wait_unreserved(struct ttm_buffer_object *bo)
1966 {
1967 	int ret;
1968 
1969 	/*
1970 	 * In the absense of a wait_unlocked API,
1971 	 * Use the bo::wu_mutex to avoid triggering livelocks due to
1972 	 * concurrent use of this function. Note that this use of
1973 	 * bo::wu_mutex can go away if we change locking order to
1974 	 * mmap_sem -> bo::reserve.
1975 	 */
1976 	ret = mutex_lock_interruptible(&bo->wu_mutex);
1977 	if (unlikely(ret != 0))
1978 		return -ERESTARTSYS;
1979 	if (!dma_resv_is_locked(bo->base.resv))
1980 		goto out_unlock;
1981 	ret = dma_resv_lock_interruptible(bo->base.resv, NULL);
1982 	if (ret == -EINTR)
1983 		ret = -ERESTARTSYS;
1984 	if (unlikely(ret != 0))
1985 		goto out_unlock;
1986 	dma_resv_unlock(bo->base.resv);
1987 
1988 out_unlock:
1989 	mutex_unlock(&bo->wu_mutex);
1990 	return ret;
1991 }
1992