1 /* SPDX-License-Identifier: GPL-2.0 OR MIT */ 2 /************************************************************************** 3 * 4 * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA 5 * All Rights Reserved. 6 * 7 * Permission is hereby granted, free of charge, to any person obtaining a 8 * copy of this software and associated documentation files (the 9 * "Software"), to deal in the Software without restriction, including 10 * without limitation the rights to use, copy, modify, merge, publish, 11 * distribute, sub license, and/or sell copies of the Software, and to 12 * permit persons to whom the Software is furnished to do so, subject to 13 * the following conditions: 14 * 15 * The above copyright notice and this permission notice (including the 16 * next paragraph) shall be included in all copies or substantial portions 17 * of the Software. 18 * 19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 21 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 22 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 23 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 24 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 25 * USE OR OTHER DEALINGS IN THE SOFTWARE. 26 * 27 **************************************************************************/ 28 /* 29 * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com> 30 */ 31 32 #define pr_fmt(fmt) "[TTM] " fmt 33 34 #include <drm/ttm/ttm_module.h> 35 #include <drm/ttm/ttm_bo_driver.h> 36 #include <drm/ttm/ttm_placement.h> 37 #include <linux/jiffies.h> 38 #include <linux/slab.h> 39 #include <linux/sched.h> 40 #include <linux/mm.h> 41 #include <linux/file.h> 42 #include <linux/module.h> 43 #include <linux/atomic.h> 44 #include <linux/reservation.h> 45 46 static void ttm_bo_global_kobj_release(struct kobject *kobj); 47 48 /** 49 * ttm_global_mutex - protecting the global BO state 50 */ 51 DEFINE_MUTEX(ttm_global_mutex); 52 struct ttm_bo_global ttm_bo_glob = { 53 .use_count = 0 54 }; 55 56 static struct attribute ttm_bo_count = { 57 .name = "bo_count", 58 .mode = S_IRUGO 59 }; 60 61 /* default destructor */ 62 static void ttm_bo_default_destroy(struct ttm_buffer_object *bo) 63 { 64 kfree(bo); 65 } 66 67 static inline int ttm_mem_type_from_place(const struct ttm_place *place, 68 uint32_t *mem_type) 69 { 70 int pos; 71 72 pos = ffs(place->flags & TTM_PL_MASK_MEM); 73 if (unlikely(!pos)) 74 return -EINVAL; 75 76 *mem_type = pos - 1; 77 return 0; 78 } 79 80 static void ttm_mem_type_debug(struct ttm_bo_device *bdev, struct drm_printer *p, 81 int mem_type) 82 { 83 struct ttm_mem_type_manager *man = &bdev->man[mem_type]; 84 85 drm_printf(p, " has_type: %d\n", man->has_type); 86 drm_printf(p, " use_type: %d\n", man->use_type); 87 drm_printf(p, " flags: 0x%08X\n", man->flags); 88 drm_printf(p, " gpu_offset: 0x%08llX\n", man->gpu_offset); 89 drm_printf(p, " size: %llu\n", man->size); 90 drm_printf(p, " available_caching: 0x%08X\n", man->available_caching); 91 drm_printf(p, " default_caching: 0x%08X\n", man->default_caching); 92 if (mem_type != TTM_PL_SYSTEM) 93 (*man->func->debug)(man, p); 94 } 95 96 static void ttm_bo_mem_space_debug(struct ttm_buffer_object *bo, 97 struct ttm_placement *placement) 98 { 99 struct drm_printer p = drm_debug_printer(TTM_PFX); 100 int i, ret, mem_type; 101 102 drm_printf(&p, "No space for %p (%lu pages, %luK, %luM)\n", 103 bo, bo->mem.num_pages, bo->mem.size >> 10, 104 bo->mem.size >> 20); 105 for (i = 0; i < placement->num_placement; i++) { 106 ret = ttm_mem_type_from_place(&placement->placement[i], 107 &mem_type); 108 if (ret) 109 return; 110 drm_printf(&p, " placement[%d]=0x%08X (%d)\n", 111 i, placement->placement[i].flags, mem_type); 112 ttm_mem_type_debug(bo->bdev, &p, mem_type); 113 } 114 } 115 116 static ssize_t ttm_bo_global_show(struct kobject *kobj, 117 struct attribute *attr, 118 char *buffer) 119 { 120 struct ttm_bo_global *glob = 121 container_of(kobj, struct ttm_bo_global, kobj); 122 123 return snprintf(buffer, PAGE_SIZE, "%d\n", 124 atomic_read(&glob->bo_count)); 125 } 126 127 static struct attribute *ttm_bo_global_attrs[] = { 128 &ttm_bo_count, 129 NULL 130 }; 131 132 static const struct sysfs_ops ttm_bo_global_ops = { 133 .show = &ttm_bo_global_show 134 }; 135 136 static struct kobj_type ttm_bo_glob_kobj_type = { 137 .release = &ttm_bo_global_kobj_release, 138 .sysfs_ops = &ttm_bo_global_ops, 139 .default_attrs = ttm_bo_global_attrs 140 }; 141 142 143 static inline uint32_t ttm_bo_type_flags(unsigned type) 144 { 145 return 1 << (type); 146 } 147 148 static void ttm_bo_release_list(struct kref *list_kref) 149 { 150 struct ttm_buffer_object *bo = 151 container_of(list_kref, struct ttm_buffer_object, list_kref); 152 struct ttm_bo_device *bdev = bo->bdev; 153 size_t acc_size = bo->acc_size; 154 155 BUG_ON(kref_read(&bo->list_kref)); 156 BUG_ON(kref_read(&bo->kref)); 157 BUG_ON(atomic_read(&bo->cpu_writers)); 158 BUG_ON(bo->mem.mm_node != NULL); 159 BUG_ON(!list_empty(&bo->lru)); 160 BUG_ON(!list_empty(&bo->ddestroy)); 161 ttm_tt_destroy(bo->ttm); 162 atomic_dec(&bo->bdev->glob->bo_count); 163 dma_fence_put(bo->moving); 164 reservation_object_fini(&bo->ttm_resv); 165 mutex_destroy(&bo->wu_mutex); 166 bo->destroy(bo); 167 ttm_mem_global_free(bdev->glob->mem_glob, acc_size); 168 } 169 170 void ttm_bo_add_to_lru(struct ttm_buffer_object *bo) 171 { 172 struct ttm_bo_device *bdev = bo->bdev; 173 struct ttm_mem_type_manager *man; 174 175 reservation_object_assert_held(bo->resv); 176 177 if (!(bo->mem.placement & TTM_PL_FLAG_NO_EVICT)) { 178 BUG_ON(!list_empty(&bo->lru)); 179 180 man = &bdev->man[bo->mem.mem_type]; 181 list_add_tail(&bo->lru, &man->lru[bo->priority]); 182 kref_get(&bo->list_kref); 183 184 if (bo->ttm && !(bo->ttm->page_flags & 185 (TTM_PAGE_FLAG_SG | TTM_PAGE_FLAG_SWAPPED))) { 186 list_add_tail(&bo->swap, 187 &bdev->glob->swap_lru[bo->priority]); 188 kref_get(&bo->list_kref); 189 } 190 } 191 } 192 EXPORT_SYMBOL(ttm_bo_add_to_lru); 193 194 static void ttm_bo_ref_bug(struct kref *list_kref) 195 { 196 BUG(); 197 } 198 199 void ttm_bo_del_from_lru(struct ttm_buffer_object *bo) 200 { 201 struct ttm_bo_device *bdev = bo->bdev; 202 bool notify = false; 203 204 if (!list_empty(&bo->swap)) { 205 list_del_init(&bo->swap); 206 kref_put(&bo->list_kref, ttm_bo_ref_bug); 207 notify = true; 208 } 209 if (!list_empty(&bo->lru)) { 210 list_del_init(&bo->lru); 211 kref_put(&bo->list_kref, ttm_bo_ref_bug); 212 notify = true; 213 } 214 215 if (notify && bdev->driver->del_from_lru_notify) 216 bdev->driver->del_from_lru_notify(bo); 217 } 218 219 void ttm_bo_del_sub_from_lru(struct ttm_buffer_object *bo) 220 { 221 struct ttm_bo_global *glob = bo->bdev->glob; 222 223 spin_lock(&glob->lru_lock); 224 ttm_bo_del_from_lru(bo); 225 spin_unlock(&glob->lru_lock); 226 } 227 EXPORT_SYMBOL(ttm_bo_del_sub_from_lru); 228 229 static void ttm_bo_bulk_move_set_pos(struct ttm_lru_bulk_move_pos *pos, 230 struct ttm_buffer_object *bo) 231 { 232 if (!pos->first) 233 pos->first = bo; 234 pos->last = bo; 235 } 236 237 void ttm_bo_move_to_lru_tail(struct ttm_buffer_object *bo, 238 struct ttm_lru_bulk_move *bulk) 239 { 240 reservation_object_assert_held(bo->resv); 241 242 ttm_bo_del_from_lru(bo); 243 ttm_bo_add_to_lru(bo); 244 245 if (bulk && !(bo->mem.placement & TTM_PL_FLAG_NO_EVICT)) { 246 switch (bo->mem.mem_type) { 247 case TTM_PL_TT: 248 ttm_bo_bulk_move_set_pos(&bulk->tt[bo->priority], bo); 249 break; 250 251 case TTM_PL_VRAM: 252 ttm_bo_bulk_move_set_pos(&bulk->vram[bo->priority], bo); 253 break; 254 } 255 if (bo->ttm && !(bo->ttm->page_flags & 256 (TTM_PAGE_FLAG_SG | TTM_PAGE_FLAG_SWAPPED))) 257 ttm_bo_bulk_move_set_pos(&bulk->swap[bo->priority], bo); 258 } 259 } 260 EXPORT_SYMBOL(ttm_bo_move_to_lru_tail); 261 262 void ttm_bo_bulk_move_lru_tail(struct ttm_lru_bulk_move *bulk) 263 { 264 unsigned i; 265 266 for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) { 267 struct ttm_lru_bulk_move_pos *pos = &bulk->tt[i]; 268 struct ttm_mem_type_manager *man; 269 270 if (!pos->first) 271 continue; 272 273 reservation_object_assert_held(pos->first->resv); 274 reservation_object_assert_held(pos->last->resv); 275 276 man = &pos->first->bdev->man[TTM_PL_TT]; 277 list_bulk_move_tail(&man->lru[i], &pos->first->lru, 278 &pos->last->lru); 279 } 280 281 for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) { 282 struct ttm_lru_bulk_move_pos *pos = &bulk->vram[i]; 283 struct ttm_mem_type_manager *man; 284 285 if (!pos->first) 286 continue; 287 288 reservation_object_assert_held(pos->first->resv); 289 reservation_object_assert_held(pos->last->resv); 290 291 man = &pos->first->bdev->man[TTM_PL_VRAM]; 292 list_bulk_move_tail(&man->lru[i], &pos->first->lru, 293 &pos->last->lru); 294 } 295 296 for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) { 297 struct ttm_lru_bulk_move_pos *pos = &bulk->swap[i]; 298 struct list_head *lru; 299 300 if (!pos->first) 301 continue; 302 303 reservation_object_assert_held(pos->first->resv); 304 reservation_object_assert_held(pos->last->resv); 305 306 lru = &pos->first->bdev->glob->swap_lru[i]; 307 list_bulk_move_tail(lru, &pos->first->swap, &pos->last->swap); 308 } 309 } 310 EXPORT_SYMBOL(ttm_bo_bulk_move_lru_tail); 311 312 static int ttm_bo_handle_move_mem(struct ttm_buffer_object *bo, 313 struct ttm_mem_reg *mem, bool evict, 314 struct ttm_operation_ctx *ctx) 315 { 316 struct ttm_bo_device *bdev = bo->bdev; 317 bool old_is_pci = ttm_mem_reg_is_pci(bdev, &bo->mem); 318 bool new_is_pci = ttm_mem_reg_is_pci(bdev, mem); 319 struct ttm_mem_type_manager *old_man = &bdev->man[bo->mem.mem_type]; 320 struct ttm_mem_type_manager *new_man = &bdev->man[mem->mem_type]; 321 int ret = 0; 322 323 if (old_is_pci || new_is_pci || 324 ((mem->placement & bo->mem.placement & TTM_PL_MASK_CACHING) == 0)) { 325 ret = ttm_mem_io_lock(old_man, true); 326 if (unlikely(ret != 0)) 327 goto out_err; 328 ttm_bo_unmap_virtual_locked(bo); 329 ttm_mem_io_unlock(old_man); 330 } 331 332 /* 333 * Create and bind a ttm if required. 334 */ 335 336 if (!(new_man->flags & TTM_MEMTYPE_FLAG_FIXED)) { 337 if (bo->ttm == NULL) { 338 bool zero = !(old_man->flags & TTM_MEMTYPE_FLAG_FIXED); 339 ret = ttm_tt_create(bo, zero); 340 if (ret) 341 goto out_err; 342 } 343 344 ret = ttm_tt_set_placement_caching(bo->ttm, mem->placement); 345 if (ret) 346 goto out_err; 347 348 if (mem->mem_type != TTM_PL_SYSTEM) { 349 ret = ttm_tt_bind(bo->ttm, mem, ctx); 350 if (ret) 351 goto out_err; 352 } 353 354 if (bo->mem.mem_type == TTM_PL_SYSTEM) { 355 if (bdev->driver->move_notify) 356 bdev->driver->move_notify(bo, evict, mem); 357 bo->mem = *mem; 358 mem->mm_node = NULL; 359 goto moved; 360 } 361 } 362 363 if (bdev->driver->move_notify) 364 bdev->driver->move_notify(bo, evict, mem); 365 366 if (!(old_man->flags & TTM_MEMTYPE_FLAG_FIXED) && 367 !(new_man->flags & TTM_MEMTYPE_FLAG_FIXED)) 368 ret = ttm_bo_move_ttm(bo, ctx, mem); 369 else if (bdev->driver->move) 370 ret = bdev->driver->move(bo, evict, ctx, mem); 371 else 372 ret = ttm_bo_move_memcpy(bo, ctx, mem); 373 374 if (ret) { 375 if (bdev->driver->move_notify) { 376 swap(*mem, bo->mem); 377 bdev->driver->move_notify(bo, false, mem); 378 swap(*mem, bo->mem); 379 } 380 381 goto out_err; 382 } 383 384 moved: 385 if (bo->evicted) { 386 if (bdev->driver->invalidate_caches) { 387 ret = bdev->driver->invalidate_caches(bdev, bo->mem.placement); 388 if (ret) 389 pr_err("Can not flush read caches\n"); 390 } 391 bo->evicted = false; 392 } 393 394 if (bo->mem.mm_node) 395 bo->offset = (bo->mem.start << PAGE_SHIFT) + 396 bdev->man[bo->mem.mem_type].gpu_offset; 397 else 398 bo->offset = 0; 399 400 ctx->bytes_moved += bo->num_pages << PAGE_SHIFT; 401 return 0; 402 403 out_err: 404 new_man = &bdev->man[bo->mem.mem_type]; 405 if (new_man->flags & TTM_MEMTYPE_FLAG_FIXED) { 406 ttm_tt_destroy(bo->ttm); 407 bo->ttm = NULL; 408 } 409 410 return ret; 411 } 412 413 /** 414 * Call bo::reserved. 415 * Will release GPU memory type usage on destruction. 416 * This is the place to put in driver specific hooks to release 417 * driver private resources. 418 * Will release the bo::reserved lock. 419 */ 420 421 static void ttm_bo_cleanup_memtype_use(struct ttm_buffer_object *bo) 422 { 423 if (bo->bdev->driver->move_notify) 424 bo->bdev->driver->move_notify(bo, false, NULL); 425 426 ttm_tt_destroy(bo->ttm); 427 bo->ttm = NULL; 428 ttm_bo_mem_put(bo, &bo->mem); 429 } 430 431 static int ttm_bo_individualize_resv(struct ttm_buffer_object *bo) 432 { 433 int r; 434 435 if (bo->resv == &bo->ttm_resv) 436 return 0; 437 438 BUG_ON(!reservation_object_trylock(&bo->ttm_resv)); 439 440 r = reservation_object_copy_fences(&bo->ttm_resv, bo->resv); 441 if (r) 442 reservation_object_unlock(&bo->ttm_resv); 443 444 return r; 445 } 446 447 static void ttm_bo_flush_all_fences(struct ttm_buffer_object *bo) 448 { 449 struct reservation_object_list *fobj; 450 struct dma_fence *fence; 451 int i; 452 453 fobj = reservation_object_get_list(&bo->ttm_resv); 454 fence = reservation_object_get_excl(&bo->ttm_resv); 455 if (fence && !fence->ops->signaled) 456 dma_fence_enable_sw_signaling(fence); 457 458 for (i = 0; fobj && i < fobj->shared_count; ++i) { 459 fence = rcu_dereference_protected(fobj->shared[i], 460 reservation_object_held(bo->resv)); 461 462 if (!fence->ops->signaled) 463 dma_fence_enable_sw_signaling(fence); 464 } 465 } 466 467 static void ttm_bo_cleanup_refs_or_queue(struct ttm_buffer_object *bo) 468 { 469 struct ttm_bo_device *bdev = bo->bdev; 470 struct ttm_bo_global *glob = bdev->glob; 471 int ret; 472 473 ret = ttm_bo_individualize_resv(bo); 474 if (ret) { 475 /* Last resort, if we fail to allocate memory for the 476 * fences block for the BO to become idle 477 */ 478 reservation_object_wait_timeout_rcu(bo->resv, true, false, 479 30 * HZ); 480 spin_lock(&glob->lru_lock); 481 goto error; 482 } 483 484 spin_lock(&glob->lru_lock); 485 ret = reservation_object_trylock(bo->resv) ? 0 : -EBUSY; 486 if (!ret) { 487 if (reservation_object_test_signaled_rcu(&bo->ttm_resv, true)) { 488 ttm_bo_del_from_lru(bo); 489 spin_unlock(&glob->lru_lock); 490 if (bo->resv != &bo->ttm_resv) 491 reservation_object_unlock(&bo->ttm_resv); 492 493 ttm_bo_cleanup_memtype_use(bo); 494 reservation_object_unlock(bo->resv); 495 return; 496 } 497 498 ttm_bo_flush_all_fences(bo); 499 500 /* 501 * Make NO_EVICT bos immediately available to 502 * shrinkers, now that they are queued for 503 * destruction. 504 */ 505 if (bo->mem.placement & TTM_PL_FLAG_NO_EVICT) { 506 bo->mem.placement &= ~TTM_PL_FLAG_NO_EVICT; 507 ttm_bo_add_to_lru(bo); 508 } 509 510 reservation_object_unlock(bo->resv); 511 } 512 if (bo->resv != &bo->ttm_resv) 513 reservation_object_unlock(&bo->ttm_resv); 514 515 error: 516 kref_get(&bo->list_kref); 517 list_add_tail(&bo->ddestroy, &bdev->ddestroy); 518 spin_unlock(&glob->lru_lock); 519 520 schedule_delayed_work(&bdev->wq, 521 ((HZ / 100) < 1) ? 1 : HZ / 100); 522 } 523 524 /** 525 * function ttm_bo_cleanup_refs 526 * If bo idle, remove from delayed- and lru lists, and unref. 527 * If not idle, do nothing. 528 * 529 * Must be called with lru_lock and reservation held, this function 530 * will drop the lru lock and optionally the reservation lock before returning. 531 * 532 * @interruptible Any sleeps should occur interruptibly. 533 * @no_wait_gpu Never wait for gpu. Return -EBUSY instead. 534 * @unlock_resv Unlock the reservation lock as well. 535 */ 536 537 static int ttm_bo_cleanup_refs(struct ttm_buffer_object *bo, 538 bool interruptible, bool no_wait_gpu, 539 bool unlock_resv) 540 { 541 struct ttm_bo_global *glob = bo->bdev->glob; 542 struct reservation_object *resv; 543 int ret; 544 545 if (unlikely(list_empty(&bo->ddestroy))) 546 resv = bo->resv; 547 else 548 resv = &bo->ttm_resv; 549 550 if (reservation_object_test_signaled_rcu(resv, true)) 551 ret = 0; 552 else 553 ret = -EBUSY; 554 555 if (ret && !no_wait_gpu) { 556 long lret; 557 558 if (unlock_resv) 559 reservation_object_unlock(bo->resv); 560 spin_unlock(&glob->lru_lock); 561 562 lret = reservation_object_wait_timeout_rcu(resv, true, 563 interruptible, 564 30 * HZ); 565 566 if (lret < 0) 567 return lret; 568 else if (lret == 0) 569 return -EBUSY; 570 571 spin_lock(&glob->lru_lock); 572 if (unlock_resv && !reservation_object_trylock(bo->resv)) { 573 /* 574 * We raced, and lost, someone else holds the reservation now, 575 * and is probably busy in ttm_bo_cleanup_memtype_use. 576 * 577 * Even if it's not the case, because we finished waiting any 578 * delayed destruction would succeed, so just return success 579 * here. 580 */ 581 spin_unlock(&glob->lru_lock); 582 return 0; 583 } 584 ret = 0; 585 } 586 587 if (ret || unlikely(list_empty(&bo->ddestroy))) { 588 if (unlock_resv) 589 reservation_object_unlock(bo->resv); 590 spin_unlock(&glob->lru_lock); 591 return ret; 592 } 593 594 ttm_bo_del_from_lru(bo); 595 list_del_init(&bo->ddestroy); 596 kref_put(&bo->list_kref, ttm_bo_ref_bug); 597 598 spin_unlock(&glob->lru_lock); 599 ttm_bo_cleanup_memtype_use(bo); 600 601 if (unlock_resv) 602 reservation_object_unlock(bo->resv); 603 604 return 0; 605 } 606 607 /** 608 * Traverse the delayed list, and call ttm_bo_cleanup_refs on all 609 * encountered buffers. 610 */ 611 static bool ttm_bo_delayed_delete(struct ttm_bo_device *bdev, bool remove_all) 612 { 613 struct ttm_bo_global *glob = bdev->glob; 614 struct list_head removed; 615 bool empty; 616 617 INIT_LIST_HEAD(&removed); 618 619 spin_lock(&glob->lru_lock); 620 while (!list_empty(&bdev->ddestroy)) { 621 struct ttm_buffer_object *bo; 622 623 bo = list_first_entry(&bdev->ddestroy, struct ttm_buffer_object, 624 ddestroy); 625 kref_get(&bo->list_kref); 626 list_move_tail(&bo->ddestroy, &removed); 627 628 if (remove_all || bo->resv != &bo->ttm_resv) { 629 spin_unlock(&glob->lru_lock); 630 reservation_object_lock(bo->resv, NULL); 631 632 spin_lock(&glob->lru_lock); 633 ttm_bo_cleanup_refs(bo, false, !remove_all, true); 634 635 } else if (reservation_object_trylock(bo->resv)) { 636 ttm_bo_cleanup_refs(bo, false, !remove_all, true); 637 } else { 638 spin_unlock(&glob->lru_lock); 639 } 640 641 kref_put(&bo->list_kref, ttm_bo_release_list); 642 spin_lock(&glob->lru_lock); 643 } 644 list_splice_tail(&removed, &bdev->ddestroy); 645 empty = list_empty(&bdev->ddestroy); 646 spin_unlock(&glob->lru_lock); 647 648 return empty; 649 } 650 651 static void ttm_bo_delayed_workqueue(struct work_struct *work) 652 { 653 struct ttm_bo_device *bdev = 654 container_of(work, struct ttm_bo_device, wq.work); 655 656 if (!ttm_bo_delayed_delete(bdev, false)) 657 schedule_delayed_work(&bdev->wq, 658 ((HZ / 100) < 1) ? 1 : HZ / 100); 659 } 660 661 static void ttm_bo_release(struct kref *kref) 662 { 663 struct ttm_buffer_object *bo = 664 container_of(kref, struct ttm_buffer_object, kref); 665 struct ttm_bo_device *bdev = bo->bdev; 666 struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type]; 667 668 drm_vma_offset_remove(&bdev->vma_manager, &bo->vma_node); 669 ttm_mem_io_lock(man, false); 670 ttm_mem_io_free_vm(bo); 671 ttm_mem_io_unlock(man); 672 ttm_bo_cleanup_refs_or_queue(bo); 673 kref_put(&bo->list_kref, ttm_bo_release_list); 674 } 675 676 void ttm_bo_put(struct ttm_buffer_object *bo) 677 { 678 kref_put(&bo->kref, ttm_bo_release); 679 } 680 EXPORT_SYMBOL(ttm_bo_put); 681 682 int ttm_bo_lock_delayed_workqueue(struct ttm_bo_device *bdev) 683 { 684 return cancel_delayed_work_sync(&bdev->wq); 685 } 686 EXPORT_SYMBOL(ttm_bo_lock_delayed_workqueue); 687 688 void ttm_bo_unlock_delayed_workqueue(struct ttm_bo_device *bdev, int resched) 689 { 690 if (resched) 691 schedule_delayed_work(&bdev->wq, 692 ((HZ / 100) < 1) ? 1 : HZ / 100); 693 } 694 EXPORT_SYMBOL(ttm_bo_unlock_delayed_workqueue); 695 696 static int ttm_bo_evict(struct ttm_buffer_object *bo, 697 struct ttm_operation_ctx *ctx) 698 { 699 struct ttm_bo_device *bdev = bo->bdev; 700 struct ttm_mem_reg evict_mem; 701 struct ttm_placement placement; 702 int ret = 0; 703 704 reservation_object_assert_held(bo->resv); 705 706 placement.num_placement = 0; 707 placement.num_busy_placement = 0; 708 bdev->driver->evict_flags(bo, &placement); 709 710 if (!placement.num_placement && !placement.num_busy_placement) { 711 ret = ttm_bo_pipeline_gutting(bo); 712 if (ret) 713 return ret; 714 715 return ttm_tt_create(bo, false); 716 } 717 718 evict_mem = bo->mem; 719 evict_mem.mm_node = NULL; 720 evict_mem.bus.io_reserved_vm = false; 721 evict_mem.bus.io_reserved_count = 0; 722 723 ret = ttm_bo_mem_space(bo, &placement, &evict_mem, ctx); 724 if (ret) { 725 if (ret != -ERESTARTSYS) { 726 pr_err("Failed to find memory space for buffer 0x%p eviction\n", 727 bo); 728 ttm_bo_mem_space_debug(bo, &placement); 729 } 730 goto out; 731 } 732 733 ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, ctx); 734 if (unlikely(ret)) { 735 if (ret != -ERESTARTSYS) 736 pr_err("Buffer eviction failed\n"); 737 ttm_bo_mem_put(bo, &evict_mem); 738 goto out; 739 } 740 bo->evicted = true; 741 out: 742 return ret; 743 } 744 745 bool ttm_bo_eviction_valuable(struct ttm_buffer_object *bo, 746 const struct ttm_place *place) 747 { 748 /* Don't evict this BO if it's outside of the 749 * requested placement range 750 */ 751 if (place->fpfn >= (bo->mem.start + bo->mem.size) || 752 (place->lpfn && place->lpfn <= bo->mem.start)) 753 return false; 754 755 return true; 756 } 757 EXPORT_SYMBOL(ttm_bo_eviction_valuable); 758 759 /** 760 * Check the target bo is allowable to be evicted or swapout, including cases: 761 * 762 * a. if share same reservation object with ctx->resv, have assumption 763 * reservation objects should already be locked, so not lock again and 764 * return true directly when either the opreation allow_reserved_eviction 765 * or the target bo already is in delayed free list; 766 * 767 * b. Otherwise, trylock it. 768 */ 769 static bool ttm_bo_evict_swapout_allowable(struct ttm_buffer_object *bo, 770 struct ttm_operation_ctx *ctx, bool *locked) 771 { 772 bool ret = false; 773 774 *locked = false; 775 if (bo->resv == ctx->resv) { 776 reservation_object_assert_held(bo->resv); 777 if (ctx->flags & TTM_OPT_FLAG_ALLOW_RES_EVICT 778 || !list_empty(&bo->ddestroy)) 779 ret = true; 780 } else { 781 *locked = reservation_object_trylock(bo->resv); 782 ret = *locked; 783 } 784 785 return ret; 786 } 787 788 static int ttm_mem_evict_first(struct ttm_bo_device *bdev, 789 uint32_t mem_type, 790 const struct ttm_place *place, 791 struct ttm_operation_ctx *ctx) 792 { 793 struct ttm_bo_global *glob = bdev->glob; 794 struct ttm_mem_type_manager *man = &bdev->man[mem_type]; 795 struct ttm_buffer_object *bo = NULL; 796 bool locked = false; 797 unsigned i; 798 int ret; 799 800 spin_lock(&glob->lru_lock); 801 for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) { 802 list_for_each_entry(bo, &man->lru[i], lru) { 803 if (!ttm_bo_evict_swapout_allowable(bo, ctx, &locked)) 804 continue; 805 806 if (place && !bdev->driver->eviction_valuable(bo, 807 place)) { 808 if (locked) 809 reservation_object_unlock(bo->resv); 810 continue; 811 } 812 break; 813 } 814 815 /* If the inner loop terminated early, we have our candidate */ 816 if (&bo->lru != &man->lru[i]) 817 break; 818 819 bo = NULL; 820 } 821 822 if (!bo) { 823 spin_unlock(&glob->lru_lock); 824 return -EBUSY; 825 } 826 827 kref_get(&bo->list_kref); 828 829 if (!list_empty(&bo->ddestroy)) { 830 ret = ttm_bo_cleanup_refs(bo, ctx->interruptible, 831 ctx->no_wait_gpu, locked); 832 kref_put(&bo->list_kref, ttm_bo_release_list); 833 return ret; 834 } 835 836 ttm_bo_del_from_lru(bo); 837 spin_unlock(&glob->lru_lock); 838 839 ret = ttm_bo_evict(bo, ctx); 840 if (locked) { 841 ttm_bo_unreserve(bo); 842 } else { 843 spin_lock(&glob->lru_lock); 844 ttm_bo_add_to_lru(bo); 845 spin_unlock(&glob->lru_lock); 846 } 847 848 kref_put(&bo->list_kref, ttm_bo_release_list); 849 return ret; 850 } 851 852 void ttm_bo_mem_put(struct ttm_buffer_object *bo, struct ttm_mem_reg *mem) 853 { 854 struct ttm_mem_type_manager *man = &bo->bdev->man[mem->mem_type]; 855 856 if (mem->mm_node) 857 (*man->func->put_node)(man, mem); 858 } 859 EXPORT_SYMBOL(ttm_bo_mem_put); 860 861 /** 862 * Add the last move fence to the BO and reserve a new shared slot. 863 */ 864 static int ttm_bo_add_move_fence(struct ttm_buffer_object *bo, 865 struct ttm_mem_type_manager *man, 866 struct ttm_mem_reg *mem) 867 { 868 struct dma_fence *fence; 869 int ret; 870 871 spin_lock(&man->move_lock); 872 fence = dma_fence_get(man->move); 873 spin_unlock(&man->move_lock); 874 875 if (fence) { 876 reservation_object_add_shared_fence(bo->resv, fence); 877 878 ret = reservation_object_reserve_shared(bo->resv, 1); 879 if (unlikely(ret)) 880 return ret; 881 882 dma_fence_put(bo->moving); 883 bo->moving = fence; 884 } 885 886 return 0; 887 } 888 889 /** 890 * Repeatedly evict memory from the LRU for @mem_type until we create enough 891 * space, or we've evicted everything and there isn't enough space. 892 */ 893 static int ttm_bo_mem_force_space(struct ttm_buffer_object *bo, 894 uint32_t mem_type, 895 const struct ttm_place *place, 896 struct ttm_mem_reg *mem, 897 struct ttm_operation_ctx *ctx) 898 { 899 struct ttm_bo_device *bdev = bo->bdev; 900 struct ttm_mem_type_manager *man = &bdev->man[mem_type]; 901 int ret; 902 903 do { 904 ret = (*man->func->get_node)(man, bo, place, mem); 905 if (unlikely(ret != 0)) 906 return ret; 907 if (mem->mm_node) 908 break; 909 ret = ttm_mem_evict_first(bdev, mem_type, place, ctx); 910 if (unlikely(ret != 0)) 911 return ret; 912 } while (1); 913 mem->mem_type = mem_type; 914 return ttm_bo_add_move_fence(bo, man, mem); 915 } 916 917 static uint32_t ttm_bo_select_caching(struct ttm_mem_type_manager *man, 918 uint32_t cur_placement, 919 uint32_t proposed_placement) 920 { 921 uint32_t caching = proposed_placement & TTM_PL_MASK_CACHING; 922 uint32_t result = proposed_placement & ~TTM_PL_MASK_CACHING; 923 924 /** 925 * Keep current caching if possible. 926 */ 927 928 if ((cur_placement & caching) != 0) 929 result |= (cur_placement & caching); 930 else if ((man->default_caching & caching) != 0) 931 result |= man->default_caching; 932 else if ((TTM_PL_FLAG_CACHED & caching) != 0) 933 result |= TTM_PL_FLAG_CACHED; 934 else if ((TTM_PL_FLAG_WC & caching) != 0) 935 result |= TTM_PL_FLAG_WC; 936 else if ((TTM_PL_FLAG_UNCACHED & caching) != 0) 937 result |= TTM_PL_FLAG_UNCACHED; 938 939 return result; 940 } 941 942 static bool ttm_bo_mt_compatible(struct ttm_mem_type_manager *man, 943 uint32_t mem_type, 944 const struct ttm_place *place, 945 uint32_t *masked_placement) 946 { 947 uint32_t cur_flags = ttm_bo_type_flags(mem_type); 948 949 if ((cur_flags & place->flags & TTM_PL_MASK_MEM) == 0) 950 return false; 951 952 if ((place->flags & man->available_caching) == 0) 953 return false; 954 955 cur_flags |= (place->flags & man->available_caching); 956 957 *masked_placement = cur_flags; 958 return true; 959 } 960 961 /** 962 * Creates space for memory region @mem according to its type. 963 * 964 * This function first searches for free space in compatible memory types in 965 * the priority order defined by the driver. If free space isn't found, then 966 * ttm_bo_mem_force_space is attempted in priority order to evict and find 967 * space. 968 */ 969 int ttm_bo_mem_space(struct ttm_buffer_object *bo, 970 struct ttm_placement *placement, 971 struct ttm_mem_reg *mem, 972 struct ttm_operation_ctx *ctx) 973 { 974 struct ttm_bo_device *bdev = bo->bdev; 975 struct ttm_mem_type_manager *man; 976 uint32_t mem_type = TTM_PL_SYSTEM; 977 uint32_t cur_flags = 0; 978 bool type_found = false; 979 bool type_ok = false; 980 bool has_erestartsys = false; 981 int i, ret; 982 983 ret = reservation_object_reserve_shared(bo->resv, 1); 984 if (unlikely(ret)) 985 return ret; 986 987 mem->mm_node = NULL; 988 for (i = 0; i < placement->num_placement; ++i) { 989 const struct ttm_place *place = &placement->placement[i]; 990 991 ret = ttm_mem_type_from_place(place, &mem_type); 992 if (ret) 993 return ret; 994 man = &bdev->man[mem_type]; 995 if (!man->has_type || !man->use_type) 996 continue; 997 998 type_ok = ttm_bo_mt_compatible(man, mem_type, place, 999 &cur_flags); 1000 1001 if (!type_ok) 1002 continue; 1003 1004 type_found = true; 1005 cur_flags = ttm_bo_select_caching(man, bo->mem.placement, 1006 cur_flags); 1007 /* 1008 * Use the access and other non-mapping-related flag bits from 1009 * the memory placement flags to the current flags 1010 */ 1011 ttm_flag_masked(&cur_flags, place->flags, 1012 ~TTM_PL_MASK_MEMTYPE); 1013 1014 if (mem_type == TTM_PL_SYSTEM) 1015 break; 1016 1017 ret = (*man->func->get_node)(man, bo, place, mem); 1018 if (unlikely(ret)) 1019 return ret; 1020 1021 if (mem->mm_node) { 1022 ret = ttm_bo_add_move_fence(bo, man, mem); 1023 if (unlikely(ret)) { 1024 (*man->func->put_node)(man, mem); 1025 return ret; 1026 } 1027 break; 1028 } 1029 } 1030 1031 if ((type_ok && (mem_type == TTM_PL_SYSTEM)) || mem->mm_node) { 1032 mem->mem_type = mem_type; 1033 mem->placement = cur_flags; 1034 return 0; 1035 } 1036 1037 for (i = 0; i < placement->num_busy_placement; ++i) { 1038 const struct ttm_place *place = &placement->busy_placement[i]; 1039 1040 ret = ttm_mem_type_from_place(place, &mem_type); 1041 if (ret) 1042 return ret; 1043 man = &bdev->man[mem_type]; 1044 if (!man->has_type || !man->use_type) 1045 continue; 1046 if (!ttm_bo_mt_compatible(man, mem_type, place, &cur_flags)) 1047 continue; 1048 1049 type_found = true; 1050 cur_flags = ttm_bo_select_caching(man, bo->mem.placement, 1051 cur_flags); 1052 /* 1053 * Use the access and other non-mapping-related flag bits from 1054 * the memory placement flags to the current flags 1055 */ 1056 ttm_flag_masked(&cur_flags, place->flags, 1057 ~TTM_PL_MASK_MEMTYPE); 1058 1059 if (mem_type == TTM_PL_SYSTEM) { 1060 mem->mem_type = mem_type; 1061 mem->placement = cur_flags; 1062 mem->mm_node = NULL; 1063 return 0; 1064 } 1065 1066 ret = ttm_bo_mem_force_space(bo, mem_type, place, mem, ctx); 1067 if (ret == 0 && mem->mm_node) { 1068 mem->placement = cur_flags; 1069 return 0; 1070 } 1071 if (ret == -ERESTARTSYS) 1072 has_erestartsys = true; 1073 } 1074 1075 if (!type_found) { 1076 pr_err(TTM_PFX "No compatible memory type found\n"); 1077 return -EINVAL; 1078 } 1079 1080 return (has_erestartsys) ? -ERESTARTSYS : -ENOMEM; 1081 } 1082 EXPORT_SYMBOL(ttm_bo_mem_space); 1083 1084 static int ttm_bo_move_buffer(struct ttm_buffer_object *bo, 1085 struct ttm_placement *placement, 1086 struct ttm_operation_ctx *ctx) 1087 { 1088 int ret = 0; 1089 struct ttm_mem_reg mem; 1090 1091 reservation_object_assert_held(bo->resv); 1092 1093 mem.num_pages = bo->num_pages; 1094 mem.size = mem.num_pages << PAGE_SHIFT; 1095 mem.page_alignment = bo->mem.page_alignment; 1096 mem.bus.io_reserved_vm = false; 1097 mem.bus.io_reserved_count = 0; 1098 /* 1099 * Determine where to move the buffer. 1100 */ 1101 ret = ttm_bo_mem_space(bo, placement, &mem, ctx); 1102 if (ret) 1103 goto out_unlock; 1104 ret = ttm_bo_handle_move_mem(bo, &mem, false, ctx); 1105 out_unlock: 1106 if (ret && mem.mm_node) 1107 ttm_bo_mem_put(bo, &mem); 1108 return ret; 1109 } 1110 1111 static bool ttm_bo_places_compat(const struct ttm_place *places, 1112 unsigned num_placement, 1113 struct ttm_mem_reg *mem, 1114 uint32_t *new_flags) 1115 { 1116 unsigned i; 1117 1118 for (i = 0; i < num_placement; i++) { 1119 const struct ttm_place *heap = &places[i]; 1120 1121 if (mem->mm_node && (mem->start < heap->fpfn || 1122 (heap->lpfn != 0 && (mem->start + mem->num_pages) > heap->lpfn))) 1123 continue; 1124 1125 *new_flags = heap->flags; 1126 if ((*new_flags & mem->placement & TTM_PL_MASK_CACHING) && 1127 (*new_flags & mem->placement & TTM_PL_MASK_MEM) && 1128 (!(*new_flags & TTM_PL_FLAG_CONTIGUOUS) || 1129 (mem->placement & TTM_PL_FLAG_CONTIGUOUS))) 1130 return true; 1131 } 1132 return false; 1133 } 1134 1135 bool ttm_bo_mem_compat(struct ttm_placement *placement, 1136 struct ttm_mem_reg *mem, 1137 uint32_t *new_flags) 1138 { 1139 if (ttm_bo_places_compat(placement->placement, placement->num_placement, 1140 mem, new_flags)) 1141 return true; 1142 1143 if ((placement->busy_placement != placement->placement || 1144 placement->num_busy_placement > placement->num_placement) && 1145 ttm_bo_places_compat(placement->busy_placement, 1146 placement->num_busy_placement, 1147 mem, new_flags)) 1148 return true; 1149 1150 return false; 1151 } 1152 EXPORT_SYMBOL(ttm_bo_mem_compat); 1153 1154 int ttm_bo_validate(struct ttm_buffer_object *bo, 1155 struct ttm_placement *placement, 1156 struct ttm_operation_ctx *ctx) 1157 { 1158 int ret; 1159 uint32_t new_flags; 1160 1161 reservation_object_assert_held(bo->resv); 1162 /* 1163 * Check whether we need to move buffer. 1164 */ 1165 if (!ttm_bo_mem_compat(placement, &bo->mem, &new_flags)) { 1166 ret = ttm_bo_move_buffer(bo, placement, ctx); 1167 if (ret) 1168 return ret; 1169 } else { 1170 /* 1171 * Use the access and other non-mapping-related flag bits from 1172 * the compatible memory placement flags to the active flags 1173 */ 1174 ttm_flag_masked(&bo->mem.placement, new_flags, 1175 ~TTM_PL_MASK_MEMTYPE); 1176 } 1177 /* 1178 * We might need to add a TTM. 1179 */ 1180 if (bo->mem.mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) { 1181 ret = ttm_tt_create(bo, true); 1182 if (ret) 1183 return ret; 1184 } 1185 return 0; 1186 } 1187 EXPORT_SYMBOL(ttm_bo_validate); 1188 1189 int ttm_bo_init_reserved(struct ttm_bo_device *bdev, 1190 struct ttm_buffer_object *bo, 1191 unsigned long size, 1192 enum ttm_bo_type type, 1193 struct ttm_placement *placement, 1194 uint32_t page_alignment, 1195 struct ttm_operation_ctx *ctx, 1196 size_t acc_size, 1197 struct sg_table *sg, 1198 struct reservation_object *resv, 1199 void (*destroy) (struct ttm_buffer_object *)) 1200 { 1201 int ret = 0; 1202 unsigned long num_pages; 1203 struct ttm_mem_global *mem_glob = bdev->glob->mem_glob; 1204 bool locked; 1205 1206 ret = ttm_mem_global_alloc(mem_glob, acc_size, ctx); 1207 if (ret) { 1208 pr_err("Out of kernel memory\n"); 1209 if (destroy) 1210 (*destroy)(bo); 1211 else 1212 kfree(bo); 1213 return -ENOMEM; 1214 } 1215 1216 num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 1217 if (num_pages == 0) { 1218 pr_err("Illegal buffer object size\n"); 1219 if (destroy) 1220 (*destroy)(bo); 1221 else 1222 kfree(bo); 1223 ttm_mem_global_free(mem_glob, acc_size); 1224 return -EINVAL; 1225 } 1226 bo->destroy = destroy ? destroy : ttm_bo_default_destroy; 1227 1228 kref_init(&bo->kref); 1229 kref_init(&bo->list_kref); 1230 atomic_set(&bo->cpu_writers, 0); 1231 INIT_LIST_HEAD(&bo->lru); 1232 INIT_LIST_HEAD(&bo->ddestroy); 1233 INIT_LIST_HEAD(&bo->swap); 1234 INIT_LIST_HEAD(&bo->io_reserve_lru); 1235 mutex_init(&bo->wu_mutex); 1236 bo->bdev = bdev; 1237 bo->type = type; 1238 bo->num_pages = num_pages; 1239 bo->mem.size = num_pages << PAGE_SHIFT; 1240 bo->mem.mem_type = TTM_PL_SYSTEM; 1241 bo->mem.num_pages = bo->num_pages; 1242 bo->mem.mm_node = NULL; 1243 bo->mem.page_alignment = page_alignment; 1244 bo->mem.bus.io_reserved_vm = false; 1245 bo->mem.bus.io_reserved_count = 0; 1246 bo->moving = NULL; 1247 bo->mem.placement = (TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED); 1248 bo->acc_size = acc_size; 1249 bo->sg = sg; 1250 if (resv) { 1251 bo->resv = resv; 1252 reservation_object_assert_held(bo->resv); 1253 } else { 1254 bo->resv = &bo->ttm_resv; 1255 } 1256 reservation_object_init(&bo->ttm_resv); 1257 atomic_inc(&bo->bdev->glob->bo_count); 1258 drm_vma_node_reset(&bo->vma_node); 1259 1260 /* 1261 * For ttm_bo_type_device buffers, allocate 1262 * address space from the device. 1263 */ 1264 if (bo->type == ttm_bo_type_device || 1265 bo->type == ttm_bo_type_sg) 1266 ret = drm_vma_offset_add(&bdev->vma_manager, &bo->vma_node, 1267 bo->mem.num_pages); 1268 1269 /* passed reservation objects should already be locked, 1270 * since otherwise lockdep will be angered in radeon. 1271 */ 1272 if (!resv) { 1273 locked = reservation_object_trylock(bo->resv); 1274 WARN_ON(!locked); 1275 } 1276 1277 if (likely(!ret)) 1278 ret = ttm_bo_validate(bo, placement, ctx); 1279 1280 if (unlikely(ret)) { 1281 if (!resv) 1282 ttm_bo_unreserve(bo); 1283 1284 ttm_bo_put(bo); 1285 return ret; 1286 } 1287 1288 if (resv && !(bo->mem.placement & TTM_PL_FLAG_NO_EVICT)) { 1289 spin_lock(&bdev->glob->lru_lock); 1290 ttm_bo_add_to_lru(bo); 1291 spin_unlock(&bdev->glob->lru_lock); 1292 } 1293 1294 return ret; 1295 } 1296 EXPORT_SYMBOL(ttm_bo_init_reserved); 1297 1298 int ttm_bo_init(struct ttm_bo_device *bdev, 1299 struct ttm_buffer_object *bo, 1300 unsigned long size, 1301 enum ttm_bo_type type, 1302 struct ttm_placement *placement, 1303 uint32_t page_alignment, 1304 bool interruptible, 1305 size_t acc_size, 1306 struct sg_table *sg, 1307 struct reservation_object *resv, 1308 void (*destroy) (struct ttm_buffer_object *)) 1309 { 1310 struct ttm_operation_ctx ctx = { interruptible, false }; 1311 int ret; 1312 1313 ret = ttm_bo_init_reserved(bdev, bo, size, type, placement, 1314 page_alignment, &ctx, acc_size, 1315 sg, resv, destroy); 1316 if (ret) 1317 return ret; 1318 1319 if (!resv) 1320 ttm_bo_unreserve(bo); 1321 1322 return 0; 1323 } 1324 EXPORT_SYMBOL(ttm_bo_init); 1325 1326 size_t ttm_bo_acc_size(struct ttm_bo_device *bdev, 1327 unsigned long bo_size, 1328 unsigned struct_size) 1329 { 1330 unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT; 1331 size_t size = 0; 1332 1333 size += ttm_round_pot(struct_size); 1334 size += ttm_round_pot(npages * sizeof(void *)); 1335 size += ttm_round_pot(sizeof(struct ttm_tt)); 1336 return size; 1337 } 1338 EXPORT_SYMBOL(ttm_bo_acc_size); 1339 1340 size_t ttm_bo_dma_acc_size(struct ttm_bo_device *bdev, 1341 unsigned long bo_size, 1342 unsigned struct_size) 1343 { 1344 unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT; 1345 size_t size = 0; 1346 1347 size += ttm_round_pot(struct_size); 1348 size += ttm_round_pot(npages * (2*sizeof(void *) + sizeof(dma_addr_t))); 1349 size += ttm_round_pot(sizeof(struct ttm_dma_tt)); 1350 return size; 1351 } 1352 EXPORT_SYMBOL(ttm_bo_dma_acc_size); 1353 1354 int ttm_bo_create(struct ttm_bo_device *bdev, 1355 unsigned long size, 1356 enum ttm_bo_type type, 1357 struct ttm_placement *placement, 1358 uint32_t page_alignment, 1359 bool interruptible, 1360 struct ttm_buffer_object **p_bo) 1361 { 1362 struct ttm_buffer_object *bo; 1363 size_t acc_size; 1364 int ret; 1365 1366 bo = kzalloc(sizeof(*bo), GFP_KERNEL); 1367 if (unlikely(bo == NULL)) 1368 return -ENOMEM; 1369 1370 acc_size = ttm_bo_acc_size(bdev, size, sizeof(struct ttm_buffer_object)); 1371 ret = ttm_bo_init(bdev, bo, size, type, placement, page_alignment, 1372 interruptible, acc_size, 1373 NULL, NULL, NULL); 1374 if (likely(ret == 0)) 1375 *p_bo = bo; 1376 1377 return ret; 1378 } 1379 EXPORT_SYMBOL(ttm_bo_create); 1380 1381 static int ttm_bo_force_list_clean(struct ttm_bo_device *bdev, 1382 unsigned mem_type) 1383 { 1384 struct ttm_operation_ctx ctx = { 1385 .interruptible = false, 1386 .no_wait_gpu = false, 1387 .flags = TTM_OPT_FLAG_FORCE_ALLOC 1388 }; 1389 struct ttm_mem_type_manager *man = &bdev->man[mem_type]; 1390 struct ttm_bo_global *glob = bdev->glob; 1391 struct dma_fence *fence; 1392 int ret; 1393 unsigned i; 1394 1395 /* 1396 * Can't use standard list traversal since we're unlocking. 1397 */ 1398 1399 spin_lock(&glob->lru_lock); 1400 for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) { 1401 while (!list_empty(&man->lru[i])) { 1402 spin_unlock(&glob->lru_lock); 1403 ret = ttm_mem_evict_first(bdev, mem_type, NULL, &ctx); 1404 if (ret) 1405 return ret; 1406 spin_lock(&glob->lru_lock); 1407 } 1408 } 1409 spin_unlock(&glob->lru_lock); 1410 1411 spin_lock(&man->move_lock); 1412 fence = dma_fence_get(man->move); 1413 spin_unlock(&man->move_lock); 1414 1415 if (fence) { 1416 ret = dma_fence_wait(fence, false); 1417 dma_fence_put(fence); 1418 if (ret) 1419 return ret; 1420 } 1421 1422 return 0; 1423 } 1424 1425 int ttm_bo_clean_mm(struct ttm_bo_device *bdev, unsigned mem_type) 1426 { 1427 struct ttm_mem_type_manager *man; 1428 int ret = -EINVAL; 1429 1430 if (mem_type >= TTM_NUM_MEM_TYPES) { 1431 pr_err("Illegal memory type %d\n", mem_type); 1432 return ret; 1433 } 1434 man = &bdev->man[mem_type]; 1435 1436 if (!man->has_type) { 1437 pr_err("Trying to take down uninitialized memory manager type %u\n", 1438 mem_type); 1439 return ret; 1440 } 1441 1442 man->use_type = false; 1443 man->has_type = false; 1444 1445 ret = 0; 1446 if (mem_type > 0) { 1447 ret = ttm_bo_force_list_clean(bdev, mem_type); 1448 if (ret) { 1449 pr_err("Cleanup eviction failed\n"); 1450 return ret; 1451 } 1452 1453 ret = (*man->func->takedown)(man); 1454 } 1455 1456 dma_fence_put(man->move); 1457 man->move = NULL; 1458 1459 return ret; 1460 } 1461 EXPORT_SYMBOL(ttm_bo_clean_mm); 1462 1463 int ttm_bo_evict_mm(struct ttm_bo_device *bdev, unsigned mem_type) 1464 { 1465 struct ttm_mem_type_manager *man = &bdev->man[mem_type]; 1466 1467 if (mem_type == 0 || mem_type >= TTM_NUM_MEM_TYPES) { 1468 pr_err("Illegal memory manager memory type %u\n", mem_type); 1469 return -EINVAL; 1470 } 1471 1472 if (!man->has_type) { 1473 pr_err("Memory type %u has not been initialized\n", mem_type); 1474 return 0; 1475 } 1476 1477 return ttm_bo_force_list_clean(bdev, mem_type); 1478 } 1479 EXPORT_SYMBOL(ttm_bo_evict_mm); 1480 1481 int ttm_bo_init_mm(struct ttm_bo_device *bdev, unsigned type, 1482 unsigned long p_size) 1483 { 1484 int ret; 1485 struct ttm_mem_type_manager *man; 1486 unsigned i; 1487 1488 BUG_ON(type >= TTM_NUM_MEM_TYPES); 1489 man = &bdev->man[type]; 1490 BUG_ON(man->has_type); 1491 man->io_reserve_fastpath = true; 1492 man->use_io_reserve_lru = false; 1493 mutex_init(&man->io_reserve_mutex); 1494 spin_lock_init(&man->move_lock); 1495 INIT_LIST_HEAD(&man->io_reserve_lru); 1496 1497 ret = bdev->driver->init_mem_type(bdev, type, man); 1498 if (ret) 1499 return ret; 1500 man->bdev = bdev; 1501 1502 if (type != TTM_PL_SYSTEM) { 1503 ret = (*man->func->init)(man, p_size); 1504 if (ret) 1505 return ret; 1506 } 1507 man->has_type = true; 1508 man->use_type = true; 1509 man->size = p_size; 1510 1511 for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) 1512 INIT_LIST_HEAD(&man->lru[i]); 1513 man->move = NULL; 1514 1515 return 0; 1516 } 1517 EXPORT_SYMBOL(ttm_bo_init_mm); 1518 1519 static void ttm_bo_global_kobj_release(struct kobject *kobj) 1520 { 1521 struct ttm_bo_global *glob = 1522 container_of(kobj, struct ttm_bo_global, kobj); 1523 1524 __free_page(glob->dummy_read_page); 1525 } 1526 1527 static void ttm_bo_global_release(void) 1528 { 1529 struct ttm_bo_global *glob = &ttm_bo_glob; 1530 1531 mutex_lock(&ttm_global_mutex); 1532 if (--glob->use_count > 0) 1533 goto out; 1534 1535 kobject_del(&glob->kobj); 1536 kobject_put(&glob->kobj); 1537 ttm_mem_global_release(&ttm_mem_glob); 1538 out: 1539 mutex_unlock(&ttm_global_mutex); 1540 } 1541 1542 static int ttm_bo_global_init(void) 1543 { 1544 struct ttm_bo_global *glob = &ttm_bo_glob; 1545 int ret = 0; 1546 unsigned i; 1547 1548 mutex_lock(&ttm_global_mutex); 1549 if (++glob->use_count > 1) 1550 goto out; 1551 1552 ret = ttm_mem_global_init(&ttm_mem_glob); 1553 if (ret) 1554 goto out; 1555 1556 spin_lock_init(&glob->lru_lock); 1557 glob->mem_glob = &ttm_mem_glob; 1558 glob->mem_glob->bo_glob = glob; 1559 glob->dummy_read_page = alloc_page(__GFP_ZERO | GFP_DMA32); 1560 1561 if (unlikely(glob->dummy_read_page == NULL)) { 1562 ret = -ENOMEM; 1563 goto out; 1564 } 1565 1566 for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) 1567 INIT_LIST_HEAD(&glob->swap_lru[i]); 1568 INIT_LIST_HEAD(&glob->device_list); 1569 atomic_set(&glob->bo_count, 0); 1570 1571 ret = kobject_init_and_add( 1572 &glob->kobj, &ttm_bo_glob_kobj_type, ttm_get_kobj(), "buffer_objects"); 1573 if (unlikely(ret != 0)) 1574 kobject_put(&glob->kobj); 1575 out: 1576 mutex_unlock(&ttm_global_mutex); 1577 return ret; 1578 } 1579 1580 int ttm_bo_device_release(struct ttm_bo_device *bdev) 1581 { 1582 int ret = 0; 1583 unsigned i = TTM_NUM_MEM_TYPES; 1584 struct ttm_mem_type_manager *man; 1585 struct ttm_bo_global *glob = bdev->glob; 1586 1587 while (i--) { 1588 man = &bdev->man[i]; 1589 if (man->has_type) { 1590 man->use_type = false; 1591 if ((i != TTM_PL_SYSTEM) && ttm_bo_clean_mm(bdev, i)) { 1592 ret = -EBUSY; 1593 pr_err("DRM memory manager type %d is not clean\n", 1594 i); 1595 } 1596 man->has_type = false; 1597 } 1598 } 1599 1600 mutex_lock(&ttm_global_mutex); 1601 list_del(&bdev->device_list); 1602 mutex_unlock(&ttm_global_mutex); 1603 1604 cancel_delayed_work_sync(&bdev->wq); 1605 1606 if (ttm_bo_delayed_delete(bdev, true)) 1607 pr_debug("Delayed destroy list was clean\n"); 1608 1609 spin_lock(&glob->lru_lock); 1610 for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) 1611 if (list_empty(&bdev->man[0].lru[0])) 1612 pr_debug("Swap list %d was clean\n", i); 1613 spin_unlock(&glob->lru_lock); 1614 1615 drm_vma_offset_manager_destroy(&bdev->vma_manager); 1616 1617 if (!ret) 1618 ttm_bo_global_release(); 1619 1620 return ret; 1621 } 1622 EXPORT_SYMBOL(ttm_bo_device_release); 1623 1624 int ttm_bo_device_init(struct ttm_bo_device *bdev, 1625 struct ttm_bo_driver *driver, 1626 struct address_space *mapping, 1627 uint64_t file_page_offset, 1628 bool need_dma32) 1629 { 1630 struct ttm_bo_global *glob = &ttm_bo_glob; 1631 int ret; 1632 1633 ret = ttm_bo_global_init(); 1634 if (ret) 1635 return ret; 1636 1637 bdev->driver = driver; 1638 1639 memset(bdev->man, 0, sizeof(bdev->man)); 1640 1641 /* 1642 * Initialize the system memory buffer type. 1643 * Other types need to be driver / IOCTL initialized. 1644 */ 1645 ret = ttm_bo_init_mm(bdev, TTM_PL_SYSTEM, 0); 1646 if (unlikely(ret != 0)) 1647 goto out_no_sys; 1648 1649 drm_vma_offset_manager_init(&bdev->vma_manager, file_page_offset, 1650 0x10000000); 1651 INIT_DELAYED_WORK(&bdev->wq, ttm_bo_delayed_workqueue); 1652 INIT_LIST_HEAD(&bdev->ddestroy); 1653 bdev->dev_mapping = mapping; 1654 bdev->glob = glob; 1655 bdev->need_dma32 = need_dma32; 1656 mutex_lock(&ttm_global_mutex); 1657 list_add_tail(&bdev->device_list, &glob->device_list); 1658 mutex_unlock(&ttm_global_mutex); 1659 1660 return 0; 1661 out_no_sys: 1662 ttm_bo_global_release(); 1663 return ret; 1664 } 1665 EXPORT_SYMBOL(ttm_bo_device_init); 1666 1667 /* 1668 * buffer object vm functions. 1669 */ 1670 1671 bool ttm_mem_reg_is_pci(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem) 1672 { 1673 struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type]; 1674 1675 if (!(man->flags & TTM_MEMTYPE_FLAG_FIXED)) { 1676 if (mem->mem_type == TTM_PL_SYSTEM) 1677 return false; 1678 1679 if (man->flags & TTM_MEMTYPE_FLAG_CMA) 1680 return false; 1681 1682 if (mem->placement & TTM_PL_FLAG_CACHED) 1683 return false; 1684 } 1685 return true; 1686 } 1687 1688 void ttm_bo_unmap_virtual_locked(struct ttm_buffer_object *bo) 1689 { 1690 struct ttm_bo_device *bdev = bo->bdev; 1691 1692 drm_vma_node_unmap(&bo->vma_node, bdev->dev_mapping); 1693 ttm_mem_io_free_vm(bo); 1694 } 1695 1696 void ttm_bo_unmap_virtual(struct ttm_buffer_object *bo) 1697 { 1698 struct ttm_bo_device *bdev = bo->bdev; 1699 struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type]; 1700 1701 ttm_mem_io_lock(man, false); 1702 ttm_bo_unmap_virtual_locked(bo); 1703 ttm_mem_io_unlock(man); 1704 } 1705 1706 1707 EXPORT_SYMBOL(ttm_bo_unmap_virtual); 1708 1709 int ttm_bo_wait(struct ttm_buffer_object *bo, 1710 bool interruptible, bool no_wait) 1711 { 1712 long timeout = 15 * HZ; 1713 1714 if (no_wait) { 1715 if (reservation_object_test_signaled_rcu(bo->resv, true)) 1716 return 0; 1717 else 1718 return -EBUSY; 1719 } 1720 1721 timeout = reservation_object_wait_timeout_rcu(bo->resv, true, 1722 interruptible, timeout); 1723 if (timeout < 0) 1724 return timeout; 1725 1726 if (timeout == 0) 1727 return -EBUSY; 1728 1729 reservation_object_add_excl_fence(bo->resv, NULL); 1730 return 0; 1731 } 1732 EXPORT_SYMBOL(ttm_bo_wait); 1733 1734 int ttm_bo_synccpu_write_grab(struct ttm_buffer_object *bo, bool no_wait) 1735 { 1736 int ret = 0; 1737 1738 /* 1739 * Using ttm_bo_reserve makes sure the lru lists are updated. 1740 */ 1741 1742 ret = ttm_bo_reserve(bo, true, no_wait, NULL); 1743 if (unlikely(ret != 0)) 1744 return ret; 1745 ret = ttm_bo_wait(bo, true, no_wait); 1746 if (likely(ret == 0)) 1747 atomic_inc(&bo->cpu_writers); 1748 ttm_bo_unreserve(bo); 1749 return ret; 1750 } 1751 EXPORT_SYMBOL(ttm_bo_synccpu_write_grab); 1752 1753 void ttm_bo_synccpu_write_release(struct ttm_buffer_object *bo) 1754 { 1755 atomic_dec(&bo->cpu_writers); 1756 } 1757 EXPORT_SYMBOL(ttm_bo_synccpu_write_release); 1758 1759 /** 1760 * A buffer object shrink method that tries to swap out the first 1761 * buffer object on the bo_global::swap_lru list. 1762 */ 1763 int ttm_bo_swapout(struct ttm_bo_global *glob, struct ttm_operation_ctx *ctx) 1764 { 1765 struct ttm_buffer_object *bo; 1766 int ret = -EBUSY; 1767 bool locked; 1768 unsigned i; 1769 1770 spin_lock(&glob->lru_lock); 1771 for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) { 1772 list_for_each_entry(bo, &glob->swap_lru[i], swap) { 1773 if (ttm_bo_evict_swapout_allowable(bo, ctx, &locked)) { 1774 ret = 0; 1775 break; 1776 } 1777 } 1778 if (!ret) 1779 break; 1780 } 1781 1782 if (ret) { 1783 spin_unlock(&glob->lru_lock); 1784 return ret; 1785 } 1786 1787 kref_get(&bo->list_kref); 1788 1789 if (!list_empty(&bo->ddestroy)) { 1790 ret = ttm_bo_cleanup_refs(bo, false, false, locked); 1791 kref_put(&bo->list_kref, ttm_bo_release_list); 1792 return ret; 1793 } 1794 1795 ttm_bo_del_from_lru(bo); 1796 spin_unlock(&glob->lru_lock); 1797 1798 /** 1799 * Move to system cached 1800 */ 1801 1802 if (bo->mem.mem_type != TTM_PL_SYSTEM || 1803 bo->ttm->caching_state != tt_cached) { 1804 struct ttm_operation_ctx ctx = { false, false }; 1805 struct ttm_mem_reg evict_mem; 1806 1807 evict_mem = bo->mem; 1808 evict_mem.mm_node = NULL; 1809 evict_mem.placement = TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED; 1810 evict_mem.mem_type = TTM_PL_SYSTEM; 1811 1812 ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, &ctx); 1813 if (unlikely(ret != 0)) 1814 goto out; 1815 } 1816 1817 /** 1818 * Make sure BO is idle. 1819 */ 1820 1821 ret = ttm_bo_wait(bo, false, false); 1822 if (unlikely(ret != 0)) 1823 goto out; 1824 1825 ttm_bo_unmap_virtual(bo); 1826 1827 /** 1828 * Swap out. Buffer will be swapped in again as soon as 1829 * anyone tries to access a ttm page. 1830 */ 1831 1832 if (bo->bdev->driver->swap_notify) 1833 bo->bdev->driver->swap_notify(bo); 1834 1835 ret = ttm_tt_swapout(bo->ttm, bo->persistent_swap_storage); 1836 out: 1837 1838 /** 1839 * 1840 * Unreserve without putting on LRU to avoid swapping out an 1841 * already swapped buffer. 1842 */ 1843 if (locked) 1844 reservation_object_unlock(bo->resv); 1845 kref_put(&bo->list_kref, ttm_bo_release_list); 1846 return ret; 1847 } 1848 EXPORT_SYMBOL(ttm_bo_swapout); 1849 1850 void ttm_bo_swapout_all(struct ttm_bo_device *bdev) 1851 { 1852 struct ttm_operation_ctx ctx = { 1853 .interruptible = false, 1854 .no_wait_gpu = false 1855 }; 1856 1857 while (ttm_bo_swapout(bdev->glob, &ctx) == 0) 1858 ; 1859 } 1860 EXPORT_SYMBOL(ttm_bo_swapout_all); 1861 1862 /** 1863 * ttm_bo_wait_unreserved - interruptible wait for a buffer object to become 1864 * unreserved 1865 * 1866 * @bo: Pointer to buffer 1867 */ 1868 int ttm_bo_wait_unreserved(struct ttm_buffer_object *bo) 1869 { 1870 int ret; 1871 1872 /* 1873 * In the absense of a wait_unlocked API, 1874 * Use the bo::wu_mutex to avoid triggering livelocks due to 1875 * concurrent use of this function. Note that this use of 1876 * bo::wu_mutex can go away if we change locking order to 1877 * mmap_sem -> bo::reserve. 1878 */ 1879 ret = mutex_lock_interruptible(&bo->wu_mutex); 1880 if (unlikely(ret != 0)) 1881 return -ERESTARTSYS; 1882 if (!ww_mutex_is_locked(&bo->resv->lock)) 1883 goto out_unlock; 1884 ret = reservation_object_lock_interruptible(bo->resv, NULL); 1885 if (ret == -EINTR) 1886 ret = -ERESTARTSYS; 1887 if (unlikely(ret != 0)) 1888 goto out_unlock; 1889 reservation_object_unlock(bo->resv); 1890 1891 out_unlock: 1892 mutex_unlock(&bo->wu_mutex); 1893 return ret; 1894 } 1895