xref: /openbmc/linux/drivers/gpu/drm/ttm/ttm_bo.c (revision dfd4f649)
1 /* SPDX-License-Identifier: GPL-2.0 OR MIT */
2 /**************************************************************************
3  *
4  * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
22  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
23  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
24  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
25  * USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  **************************************************************************/
28 /*
29  * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
30  */
31 
32 #define pr_fmt(fmt) "[TTM] " fmt
33 
34 #include <drm/ttm/ttm_module.h>
35 #include <drm/ttm/ttm_bo_driver.h>
36 #include <drm/ttm/ttm_placement.h>
37 #include <linux/jiffies.h>
38 #include <linux/slab.h>
39 #include <linux/sched.h>
40 #include <linux/mm.h>
41 #include <linux/file.h>
42 #include <linux/module.h>
43 #include <linux/atomic.h>
44 #include <linux/reservation.h>
45 
46 static void ttm_bo_global_kobj_release(struct kobject *kobj);
47 
48 /**
49  * ttm_global_mutex - protecting the global BO state
50  */
51 DEFINE_MUTEX(ttm_global_mutex);
52 struct ttm_bo_global ttm_bo_glob = {
53 	.use_count = 0
54 };
55 
56 static struct attribute ttm_bo_count = {
57 	.name = "bo_count",
58 	.mode = S_IRUGO
59 };
60 
61 /* default destructor */
62 static void ttm_bo_default_destroy(struct ttm_buffer_object *bo)
63 {
64 	kfree(bo);
65 }
66 
67 static inline int ttm_mem_type_from_place(const struct ttm_place *place,
68 					  uint32_t *mem_type)
69 {
70 	int pos;
71 
72 	pos = ffs(place->flags & TTM_PL_MASK_MEM);
73 	if (unlikely(!pos))
74 		return -EINVAL;
75 
76 	*mem_type = pos - 1;
77 	return 0;
78 }
79 
80 static void ttm_mem_type_debug(struct ttm_bo_device *bdev, struct drm_printer *p,
81 			       int mem_type)
82 {
83 	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
84 
85 	drm_printf(p, "    has_type: %d\n", man->has_type);
86 	drm_printf(p, "    use_type: %d\n", man->use_type);
87 	drm_printf(p, "    flags: 0x%08X\n", man->flags);
88 	drm_printf(p, "    gpu_offset: 0x%08llX\n", man->gpu_offset);
89 	drm_printf(p, "    size: %llu\n", man->size);
90 	drm_printf(p, "    available_caching: 0x%08X\n", man->available_caching);
91 	drm_printf(p, "    default_caching: 0x%08X\n", man->default_caching);
92 	if (mem_type != TTM_PL_SYSTEM)
93 		(*man->func->debug)(man, p);
94 }
95 
96 static void ttm_bo_mem_space_debug(struct ttm_buffer_object *bo,
97 					struct ttm_placement *placement)
98 {
99 	struct drm_printer p = drm_debug_printer(TTM_PFX);
100 	int i, ret, mem_type;
101 
102 	drm_printf(&p, "No space for %p (%lu pages, %luK, %luM)\n",
103 		   bo, bo->mem.num_pages, bo->mem.size >> 10,
104 		   bo->mem.size >> 20);
105 	for (i = 0; i < placement->num_placement; i++) {
106 		ret = ttm_mem_type_from_place(&placement->placement[i],
107 						&mem_type);
108 		if (ret)
109 			return;
110 		drm_printf(&p, "  placement[%d]=0x%08X (%d)\n",
111 			   i, placement->placement[i].flags, mem_type);
112 		ttm_mem_type_debug(bo->bdev, &p, mem_type);
113 	}
114 }
115 
116 static ssize_t ttm_bo_global_show(struct kobject *kobj,
117 				  struct attribute *attr,
118 				  char *buffer)
119 {
120 	struct ttm_bo_global *glob =
121 		container_of(kobj, struct ttm_bo_global, kobj);
122 
123 	return snprintf(buffer, PAGE_SIZE, "%d\n",
124 				atomic_read(&glob->bo_count));
125 }
126 
127 static struct attribute *ttm_bo_global_attrs[] = {
128 	&ttm_bo_count,
129 	NULL
130 };
131 
132 static const struct sysfs_ops ttm_bo_global_ops = {
133 	.show = &ttm_bo_global_show
134 };
135 
136 static struct kobj_type ttm_bo_glob_kobj_type  = {
137 	.release = &ttm_bo_global_kobj_release,
138 	.sysfs_ops = &ttm_bo_global_ops,
139 	.default_attrs = ttm_bo_global_attrs
140 };
141 
142 
143 static inline uint32_t ttm_bo_type_flags(unsigned type)
144 {
145 	return 1 << (type);
146 }
147 
148 static void ttm_bo_release_list(struct kref *list_kref)
149 {
150 	struct ttm_buffer_object *bo =
151 	    container_of(list_kref, struct ttm_buffer_object, list_kref);
152 	struct ttm_bo_device *bdev = bo->bdev;
153 	size_t acc_size = bo->acc_size;
154 
155 	BUG_ON(kref_read(&bo->list_kref));
156 	BUG_ON(kref_read(&bo->kref));
157 	BUG_ON(atomic_read(&bo->cpu_writers));
158 	BUG_ON(bo->mem.mm_node != NULL);
159 	BUG_ON(!list_empty(&bo->lru));
160 	BUG_ON(!list_empty(&bo->ddestroy));
161 	ttm_tt_destroy(bo->ttm);
162 	atomic_dec(&bo->bdev->glob->bo_count);
163 	dma_fence_put(bo->moving);
164 	reservation_object_fini(&bo->ttm_resv);
165 	mutex_destroy(&bo->wu_mutex);
166 	bo->destroy(bo);
167 	ttm_mem_global_free(bdev->glob->mem_glob, acc_size);
168 }
169 
170 void ttm_bo_add_to_lru(struct ttm_buffer_object *bo)
171 {
172 	struct ttm_bo_device *bdev = bo->bdev;
173 	struct ttm_mem_type_manager *man;
174 
175 	reservation_object_assert_held(bo->resv);
176 
177 	if (!(bo->mem.placement & TTM_PL_FLAG_NO_EVICT)) {
178 		BUG_ON(!list_empty(&bo->lru));
179 
180 		man = &bdev->man[bo->mem.mem_type];
181 		list_add_tail(&bo->lru, &man->lru[bo->priority]);
182 		kref_get(&bo->list_kref);
183 
184 		if (bo->ttm && !(bo->ttm->page_flags &
185 				 (TTM_PAGE_FLAG_SG | TTM_PAGE_FLAG_SWAPPED))) {
186 			list_add_tail(&bo->swap,
187 				      &bdev->glob->swap_lru[bo->priority]);
188 			kref_get(&bo->list_kref);
189 		}
190 	}
191 }
192 EXPORT_SYMBOL(ttm_bo_add_to_lru);
193 
194 static void ttm_bo_ref_bug(struct kref *list_kref)
195 {
196 	BUG();
197 }
198 
199 void ttm_bo_del_from_lru(struct ttm_buffer_object *bo)
200 {
201 	struct ttm_bo_device *bdev = bo->bdev;
202 	bool notify = false;
203 
204 	if (!list_empty(&bo->swap)) {
205 		list_del_init(&bo->swap);
206 		kref_put(&bo->list_kref, ttm_bo_ref_bug);
207 		notify = true;
208 	}
209 	if (!list_empty(&bo->lru)) {
210 		list_del_init(&bo->lru);
211 		kref_put(&bo->list_kref, ttm_bo_ref_bug);
212 		notify = true;
213 	}
214 
215 	if (notify && bdev->driver->del_from_lru_notify)
216 		bdev->driver->del_from_lru_notify(bo);
217 }
218 
219 void ttm_bo_del_sub_from_lru(struct ttm_buffer_object *bo)
220 {
221 	struct ttm_bo_global *glob = bo->bdev->glob;
222 
223 	spin_lock(&glob->lru_lock);
224 	ttm_bo_del_from_lru(bo);
225 	spin_unlock(&glob->lru_lock);
226 }
227 EXPORT_SYMBOL(ttm_bo_del_sub_from_lru);
228 
229 static void ttm_bo_bulk_move_set_pos(struct ttm_lru_bulk_move_pos *pos,
230 				     struct ttm_buffer_object *bo)
231 {
232 	if (!pos->first)
233 		pos->first = bo;
234 	pos->last = bo;
235 }
236 
237 void ttm_bo_move_to_lru_tail(struct ttm_buffer_object *bo,
238 			     struct ttm_lru_bulk_move *bulk)
239 {
240 	reservation_object_assert_held(bo->resv);
241 
242 	ttm_bo_del_from_lru(bo);
243 	ttm_bo_add_to_lru(bo);
244 
245 	if (bulk && !(bo->mem.placement & TTM_PL_FLAG_NO_EVICT)) {
246 		switch (bo->mem.mem_type) {
247 		case TTM_PL_TT:
248 			ttm_bo_bulk_move_set_pos(&bulk->tt[bo->priority], bo);
249 			break;
250 
251 		case TTM_PL_VRAM:
252 			ttm_bo_bulk_move_set_pos(&bulk->vram[bo->priority], bo);
253 			break;
254 		}
255 		if (bo->ttm && !(bo->ttm->page_flags &
256 				 (TTM_PAGE_FLAG_SG | TTM_PAGE_FLAG_SWAPPED)))
257 			ttm_bo_bulk_move_set_pos(&bulk->swap[bo->priority], bo);
258 	}
259 }
260 EXPORT_SYMBOL(ttm_bo_move_to_lru_tail);
261 
262 void ttm_bo_bulk_move_lru_tail(struct ttm_lru_bulk_move *bulk)
263 {
264 	unsigned i;
265 
266 	for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) {
267 		struct ttm_lru_bulk_move_pos *pos = &bulk->tt[i];
268 		struct ttm_mem_type_manager *man;
269 
270 		if (!pos->first)
271 			continue;
272 
273 		reservation_object_assert_held(pos->first->resv);
274 		reservation_object_assert_held(pos->last->resv);
275 
276 		man = &pos->first->bdev->man[TTM_PL_TT];
277 		list_bulk_move_tail(&man->lru[i], &pos->first->lru,
278 				    &pos->last->lru);
279 	}
280 
281 	for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) {
282 		struct ttm_lru_bulk_move_pos *pos = &bulk->vram[i];
283 		struct ttm_mem_type_manager *man;
284 
285 		if (!pos->first)
286 			continue;
287 
288 		reservation_object_assert_held(pos->first->resv);
289 		reservation_object_assert_held(pos->last->resv);
290 
291 		man = &pos->first->bdev->man[TTM_PL_VRAM];
292 		list_bulk_move_tail(&man->lru[i], &pos->first->lru,
293 				    &pos->last->lru);
294 	}
295 
296 	for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) {
297 		struct ttm_lru_bulk_move_pos *pos = &bulk->swap[i];
298 		struct list_head *lru;
299 
300 		if (!pos->first)
301 			continue;
302 
303 		reservation_object_assert_held(pos->first->resv);
304 		reservation_object_assert_held(pos->last->resv);
305 
306 		lru = &pos->first->bdev->glob->swap_lru[i];
307 		list_bulk_move_tail(lru, &pos->first->swap, &pos->last->swap);
308 	}
309 }
310 EXPORT_SYMBOL(ttm_bo_bulk_move_lru_tail);
311 
312 static int ttm_bo_handle_move_mem(struct ttm_buffer_object *bo,
313 				  struct ttm_mem_reg *mem, bool evict,
314 				  struct ttm_operation_ctx *ctx)
315 {
316 	struct ttm_bo_device *bdev = bo->bdev;
317 	bool old_is_pci = ttm_mem_reg_is_pci(bdev, &bo->mem);
318 	bool new_is_pci = ttm_mem_reg_is_pci(bdev, mem);
319 	struct ttm_mem_type_manager *old_man = &bdev->man[bo->mem.mem_type];
320 	struct ttm_mem_type_manager *new_man = &bdev->man[mem->mem_type];
321 	int ret = 0;
322 
323 	if (old_is_pci || new_is_pci ||
324 	    ((mem->placement & bo->mem.placement & TTM_PL_MASK_CACHING) == 0)) {
325 		ret = ttm_mem_io_lock(old_man, true);
326 		if (unlikely(ret != 0))
327 			goto out_err;
328 		ttm_bo_unmap_virtual_locked(bo);
329 		ttm_mem_io_unlock(old_man);
330 	}
331 
332 	/*
333 	 * Create and bind a ttm if required.
334 	 */
335 
336 	if (!(new_man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
337 		if (bo->ttm == NULL) {
338 			bool zero = !(old_man->flags & TTM_MEMTYPE_FLAG_FIXED);
339 			ret = ttm_tt_create(bo, zero);
340 			if (ret)
341 				goto out_err;
342 		}
343 
344 		ret = ttm_tt_set_placement_caching(bo->ttm, mem->placement);
345 		if (ret)
346 			goto out_err;
347 
348 		if (mem->mem_type != TTM_PL_SYSTEM) {
349 			ret = ttm_tt_bind(bo->ttm, mem, ctx);
350 			if (ret)
351 				goto out_err;
352 		}
353 
354 		if (bo->mem.mem_type == TTM_PL_SYSTEM) {
355 			if (bdev->driver->move_notify)
356 				bdev->driver->move_notify(bo, evict, mem);
357 			bo->mem = *mem;
358 			mem->mm_node = NULL;
359 			goto moved;
360 		}
361 	}
362 
363 	if (bdev->driver->move_notify)
364 		bdev->driver->move_notify(bo, evict, mem);
365 
366 	if (!(old_man->flags & TTM_MEMTYPE_FLAG_FIXED) &&
367 	    !(new_man->flags & TTM_MEMTYPE_FLAG_FIXED))
368 		ret = ttm_bo_move_ttm(bo, ctx, mem);
369 	else if (bdev->driver->move)
370 		ret = bdev->driver->move(bo, evict, ctx, mem);
371 	else
372 		ret = ttm_bo_move_memcpy(bo, ctx, mem);
373 
374 	if (ret) {
375 		if (bdev->driver->move_notify) {
376 			swap(*mem, bo->mem);
377 			bdev->driver->move_notify(bo, false, mem);
378 			swap(*mem, bo->mem);
379 		}
380 
381 		goto out_err;
382 	}
383 
384 moved:
385 	if (bo->evicted) {
386 		if (bdev->driver->invalidate_caches) {
387 			ret = bdev->driver->invalidate_caches(bdev, bo->mem.placement);
388 			if (ret)
389 				pr_err("Can not flush read caches\n");
390 		}
391 		bo->evicted = false;
392 	}
393 
394 	if (bo->mem.mm_node)
395 		bo->offset = (bo->mem.start << PAGE_SHIFT) +
396 		    bdev->man[bo->mem.mem_type].gpu_offset;
397 	else
398 		bo->offset = 0;
399 
400 	ctx->bytes_moved += bo->num_pages << PAGE_SHIFT;
401 	return 0;
402 
403 out_err:
404 	new_man = &bdev->man[bo->mem.mem_type];
405 	if (new_man->flags & TTM_MEMTYPE_FLAG_FIXED) {
406 		ttm_tt_destroy(bo->ttm);
407 		bo->ttm = NULL;
408 	}
409 
410 	return ret;
411 }
412 
413 /**
414  * Call bo::reserved.
415  * Will release GPU memory type usage on destruction.
416  * This is the place to put in driver specific hooks to release
417  * driver private resources.
418  * Will release the bo::reserved lock.
419  */
420 
421 static void ttm_bo_cleanup_memtype_use(struct ttm_buffer_object *bo)
422 {
423 	if (bo->bdev->driver->move_notify)
424 		bo->bdev->driver->move_notify(bo, false, NULL);
425 
426 	ttm_tt_destroy(bo->ttm);
427 	bo->ttm = NULL;
428 	ttm_bo_mem_put(bo, &bo->mem);
429 }
430 
431 static int ttm_bo_individualize_resv(struct ttm_buffer_object *bo)
432 {
433 	int r;
434 
435 	if (bo->resv == &bo->ttm_resv)
436 		return 0;
437 
438 	BUG_ON(!reservation_object_trylock(&bo->ttm_resv));
439 
440 	r = reservation_object_copy_fences(&bo->ttm_resv, bo->resv);
441 	if (r)
442 		reservation_object_unlock(&bo->ttm_resv);
443 
444 	return r;
445 }
446 
447 static void ttm_bo_flush_all_fences(struct ttm_buffer_object *bo)
448 {
449 	struct reservation_object_list *fobj;
450 	struct dma_fence *fence;
451 	int i;
452 
453 	fobj = reservation_object_get_list(&bo->ttm_resv);
454 	fence = reservation_object_get_excl(&bo->ttm_resv);
455 	if (fence && !fence->ops->signaled)
456 		dma_fence_enable_sw_signaling(fence);
457 
458 	for (i = 0; fobj && i < fobj->shared_count; ++i) {
459 		fence = rcu_dereference_protected(fobj->shared[i],
460 					reservation_object_held(bo->resv));
461 
462 		if (!fence->ops->signaled)
463 			dma_fence_enable_sw_signaling(fence);
464 	}
465 }
466 
467 static void ttm_bo_cleanup_refs_or_queue(struct ttm_buffer_object *bo)
468 {
469 	struct ttm_bo_device *bdev = bo->bdev;
470 	struct ttm_bo_global *glob = bdev->glob;
471 	int ret;
472 
473 	ret = ttm_bo_individualize_resv(bo);
474 	if (ret) {
475 		/* Last resort, if we fail to allocate memory for the
476 		 * fences block for the BO to become idle
477 		 */
478 		reservation_object_wait_timeout_rcu(bo->resv, true, false,
479 						    30 * HZ);
480 		spin_lock(&glob->lru_lock);
481 		goto error;
482 	}
483 
484 	spin_lock(&glob->lru_lock);
485 	ret = reservation_object_trylock(bo->resv) ? 0 : -EBUSY;
486 	if (!ret) {
487 		if (reservation_object_test_signaled_rcu(&bo->ttm_resv, true)) {
488 			ttm_bo_del_from_lru(bo);
489 			spin_unlock(&glob->lru_lock);
490 			if (bo->resv != &bo->ttm_resv)
491 				reservation_object_unlock(&bo->ttm_resv);
492 
493 			ttm_bo_cleanup_memtype_use(bo);
494 			reservation_object_unlock(bo->resv);
495 			return;
496 		}
497 
498 		ttm_bo_flush_all_fences(bo);
499 
500 		/*
501 		 * Make NO_EVICT bos immediately available to
502 		 * shrinkers, now that they are queued for
503 		 * destruction.
504 		 */
505 		if (bo->mem.placement & TTM_PL_FLAG_NO_EVICT) {
506 			bo->mem.placement &= ~TTM_PL_FLAG_NO_EVICT;
507 			ttm_bo_add_to_lru(bo);
508 		}
509 
510 		reservation_object_unlock(bo->resv);
511 	}
512 	if (bo->resv != &bo->ttm_resv)
513 		reservation_object_unlock(&bo->ttm_resv);
514 
515 error:
516 	kref_get(&bo->list_kref);
517 	list_add_tail(&bo->ddestroy, &bdev->ddestroy);
518 	spin_unlock(&glob->lru_lock);
519 
520 	schedule_delayed_work(&bdev->wq,
521 			      ((HZ / 100) < 1) ? 1 : HZ / 100);
522 }
523 
524 /**
525  * function ttm_bo_cleanup_refs
526  * If bo idle, remove from delayed- and lru lists, and unref.
527  * If not idle, do nothing.
528  *
529  * Must be called with lru_lock and reservation held, this function
530  * will drop the lru lock and optionally the reservation lock before returning.
531  *
532  * @interruptible         Any sleeps should occur interruptibly.
533  * @no_wait_gpu           Never wait for gpu. Return -EBUSY instead.
534  * @unlock_resv           Unlock the reservation lock as well.
535  */
536 
537 static int ttm_bo_cleanup_refs(struct ttm_buffer_object *bo,
538 			       bool interruptible, bool no_wait_gpu,
539 			       bool unlock_resv)
540 {
541 	struct ttm_bo_global *glob = bo->bdev->glob;
542 	struct reservation_object *resv;
543 	int ret;
544 
545 	if (unlikely(list_empty(&bo->ddestroy)))
546 		resv = bo->resv;
547 	else
548 		resv = &bo->ttm_resv;
549 
550 	if (reservation_object_test_signaled_rcu(resv, true))
551 		ret = 0;
552 	else
553 		ret = -EBUSY;
554 
555 	if (ret && !no_wait_gpu) {
556 		long lret;
557 
558 		if (unlock_resv)
559 			reservation_object_unlock(bo->resv);
560 		spin_unlock(&glob->lru_lock);
561 
562 		lret = reservation_object_wait_timeout_rcu(resv, true,
563 							   interruptible,
564 							   30 * HZ);
565 
566 		if (lret < 0)
567 			return lret;
568 		else if (lret == 0)
569 			return -EBUSY;
570 
571 		spin_lock(&glob->lru_lock);
572 		if (unlock_resv && !reservation_object_trylock(bo->resv)) {
573 			/*
574 			 * We raced, and lost, someone else holds the reservation now,
575 			 * and is probably busy in ttm_bo_cleanup_memtype_use.
576 			 *
577 			 * Even if it's not the case, because we finished waiting any
578 			 * delayed destruction would succeed, so just return success
579 			 * here.
580 			 */
581 			spin_unlock(&glob->lru_lock);
582 			return 0;
583 		}
584 		ret = 0;
585 	}
586 
587 	if (ret || unlikely(list_empty(&bo->ddestroy))) {
588 		if (unlock_resv)
589 			reservation_object_unlock(bo->resv);
590 		spin_unlock(&glob->lru_lock);
591 		return ret;
592 	}
593 
594 	ttm_bo_del_from_lru(bo);
595 	list_del_init(&bo->ddestroy);
596 	kref_put(&bo->list_kref, ttm_bo_ref_bug);
597 
598 	spin_unlock(&glob->lru_lock);
599 	ttm_bo_cleanup_memtype_use(bo);
600 
601 	if (unlock_resv)
602 		reservation_object_unlock(bo->resv);
603 
604 	return 0;
605 }
606 
607 /**
608  * Traverse the delayed list, and call ttm_bo_cleanup_refs on all
609  * encountered buffers.
610  */
611 static bool ttm_bo_delayed_delete(struct ttm_bo_device *bdev, bool remove_all)
612 {
613 	struct ttm_bo_global *glob = bdev->glob;
614 	struct list_head removed;
615 	bool empty;
616 
617 	INIT_LIST_HEAD(&removed);
618 
619 	spin_lock(&glob->lru_lock);
620 	while (!list_empty(&bdev->ddestroy)) {
621 		struct ttm_buffer_object *bo;
622 
623 		bo = list_first_entry(&bdev->ddestroy, struct ttm_buffer_object,
624 				      ddestroy);
625 		kref_get(&bo->list_kref);
626 		list_move_tail(&bo->ddestroy, &removed);
627 
628 		if (remove_all || bo->resv != &bo->ttm_resv) {
629 			spin_unlock(&glob->lru_lock);
630 			reservation_object_lock(bo->resv, NULL);
631 
632 			spin_lock(&glob->lru_lock);
633 			ttm_bo_cleanup_refs(bo, false, !remove_all, true);
634 
635 		} else if (reservation_object_trylock(bo->resv)) {
636 			ttm_bo_cleanup_refs(bo, false, !remove_all, true);
637 		} else {
638 			spin_unlock(&glob->lru_lock);
639 		}
640 
641 		kref_put(&bo->list_kref, ttm_bo_release_list);
642 		spin_lock(&glob->lru_lock);
643 	}
644 	list_splice_tail(&removed, &bdev->ddestroy);
645 	empty = list_empty(&bdev->ddestroy);
646 	spin_unlock(&glob->lru_lock);
647 
648 	return empty;
649 }
650 
651 static void ttm_bo_delayed_workqueue(struct work_struct *work)
652 {
653 	struct ttm_bo_device *bdev =
654 	    container_of(work, struct ttm_bo_device, wq.work);
655 
656 	if (!ttm_bo_delayed_delete(bdev, false))
657 		schedule_delayed_work(&bdev->wq,
658 				      ((HZ / 100) < 1) ? 1 : HZ / 100);
659 }
660 
661 static void ttm_bo_release(struct kref *kref)
662 {
663 	struct ttm_buffer_object *bo =
664 	    container_of(kref, struct ttm_buffer_object, kref);
665 	struct ttm_bo_device *bdev = bo->bdev;
666 	struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
667 
668 	drm_vma_offset_remove(&bdev->vma_manager, &bo->vma_node);
669 	ttm_mem_io_lock(man, false);
670 	ttm_mem_io_free_vm(bo);
671 	ttm_mem_io_unlock(man);
672 	ttm_bo_cleanup_refs_or_queue(bo);
673 	kref_put(&bo->list_kref, ttm_bo_release_list);
674 }
675 
676 void ttm_bo_put(struct ttm_buffer_object *bo)
677 {
678 	kref_put(&bo->kref, ttm_bo_release);
679 }
680 EXPORT_SYMBOL(ttm_bo_put);
681 
682 int ttm_bo_lock_delayed_workqueue(struct ttm_bo_device *bdev)
683 {
684 	return cancel_delayed_work_sync(&bdev->wq);
685 }
686 EXPORT_SYMBOL(ttm_bo_lock_delayed_workqueue);
687 
688 void ttm_bo_unlock_delayed_workqueue(struct ttm_bo_device *bdev, int resched)
689 {
690 	if (resched)
691 		schedule_delayed_work(&bdev->wq,
692 				      ((HZ / 100) < 1) ? 1 : HZ / 100);
693 }
694 EXPORT_SYMBOL(ttm_bo_unlock_delayed_workqueue);
695 
696 static int ttm_bo_evict(struct ttm_buffer_object *bo,
697 			struct ttm_operation_ctx *ctx)
698 {
699 	struct ttm_bo_device *bdev = bo->bdev;
700 	struct ttm_mem_reg evict_mem;
701 	struct ttm_placement placement;
702 	int ret = 0;
703 
704 	reservation_object_assert_held(bo->resv);
705 
706 	placement.num_placement = 0;
707 	placement.num_busy_placement = 0;
708 	bdev->driver->evict_flags(bo, &placement);
709 
710 	if (!placement.num_placement && !placement.num_busy_placement) {
711 		ret = ttm_bo_pipeline_gutting(bo);
712 		if (ret)
713 			return ret;
714 
715 		return ttm_tt_create(bo, false);
716 	}
717 
718 	evict_mem = bo->mem;
719 	evict_mem.mm_node = NULL;
720 	evict_mem.bus.io_reserved_vm = false;
721 	evict_mem.bus.io_reserved_count = 0;
722 
723 	ret = ttm_bo_mem_space(bo, &placement, &evict_mem, ctx);
724 	if (ret) {
725 		if (ret != -ERESTARTSYS) {
726 			pr_err("Failed to find memory space for buffer 0x%p eviction\n",
727 			       bo);
728 			ttm_bo_mem_space_debug(bo, &placement);
729 		}
730 		goto out;
731 	}
732 
733 	ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, ctx);
734 	if (unlikely(ret)) {
735 		if (ret != -ERESTARTSYS)
736 			pr_err("Buffer eviction failed\n");
737 		ttm_bo_mem_put(bo, &evict_mem);
738 		goto out;
739 	}
740 	bo->evicted = true;
741 out:
742 	return ret;
743 }
744 
745 bool ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
746 			      const struct ttm_place *place)
747 {
748 	/* Don't evict this BO if it's outside of the
749 	 * requested placement range
750 	 */
751 	if (place->fpfn >= (bo->mem.start + bo->mem.size) ||
752 	    (place->lpfn && place->lpfn <= bo->mem.start))
753 		return false;
754 
755 	return true;
756 }
757 EXPORT_SYMBOL(ttm_bo_eviction_valuable);
758 
759 /**
760  * Check the target bo is allowable to be evicted or swapout, including cases:
761  *
762  * a. if share same reservation object with ctx->resv, have assumption
763  * reservation objects should already be locked, so not lock again and
764  * return true directly when either the opreation allow_reserved_eviction
765  * or the target bo already is in delayed free list;
766  *
767  * b. Otherwise, trylock it.
768  */
769 static bool ttm_bo_evict_swapout_allowable(struct ttm_buffer_object *bo,
770 			struct ttm_operation_ctx *ctx, bool *locked)
771 {
772 	bool ret = false;
773 
774 	*locked = false;
775 	if (bo->resv == ctx->resv) {
776 		reservation_object_assert_held(bo->resv);
777 		if (ctx->flags & TTM_OPT_FLAG_ALLOW_RES_EVICT
778 		    || !list_empty(&bo->ddestroy))
779 			ret = true;
780 	} else {
781 		*locked = reservation_object_trylock(bo->resv);
782 		ret = *locked;
783 	}
784 
785 	return ret;
786 }
787 
788 static int ttm_mem_evict_first(struct ttm_bo_device *bdev,
789 			       uint32_t mem_type,
790 			       const struct ttm_place *place,
791 			       struct ttm_operation_ctx *ctx)
792 {
793 	struct ttm_bo_global *glob = bdev->glob;
794 	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
795 	struct ttm_buffer_object *bo = NULL;
796 	bool locked = false;
797 	unsigned i;
798 	int ret;
799 
800 	spin_lock(&glob->lru_lock);
801 	for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) {
802 		list_for_each_entry(bo, &man->lru[i], lru) {
803 			if (!ttm_bo_evict_swapout_allowable(bo, ctx, &locked))
804 				continue;
805 
806 			if (place && !bdev->driver->eviction_valuable(bo,
807 								      place)) {
808 				if (locked)
809 					reservation_object_unlock(bo->resv);
810 				continue;
811 			}
812 			break;
813 		}
814 
815 		/* If the inner loop terminated early, we have our candidate */
816 		if (&bo->lru != &man->lru[i])
817 			break;
818 
819 		bo = NULL;
820 	}
821 
822 	if (!bo) {
823 		spin_unlock(&glob->lru_lock);
824 		return -EBUSY;
825 	}
826 
827 	kref_get(&bo->list_kref);
828 
829 	if (!list_empty(&bo->ddestroy)) {
830 		ret = ttm_bo_cleanup_refs(bo, ctx->interruptible,
831 					  ctx->no_wait_gpu, locked);
832 		kref_put(&bo->list_kref, ttm_bo_release_list);
833 		return ret;
834 	}
835 
836 	ttm_bo_del_from_lru(bo);
837 	spin_unlock(&glob->lru_lock);
838 
839 	ret = ttm_bo_evict(bo, ctx);
840 	if (locked) {
841 		ttm_bo_unreserve(bo);
842 	} else {
843 		spin_lock(&glob->lru_lock);
844 		ttm_bo_add_to_lru(bo);
845 		spin_unlock(&glob->lru_lock);
846 	}
847 
848 	kref_put(&bo->list_kref, ttm_bo_release_list);
849 	return ret;
850 }
851 
852 void ttm_bo_mem_put(struct ttm_buffer_object *bo, struct ttm_mem_reg *mem)
853 {
854 	struct ttm_mem_type_manager *man = &bo->bdev->man[mem->mem_type];
855 
856 	if (mem->mm_node)
857 		(*man->func->put_node)(man, mem);
858 }
859 EXPORT_SYMBOL(ttm_bo_mem_put);
860 
861 /**
862  * Add the last move fence to the BO and reserve a new shared slot.
863  */
864 static int ttm_bo_add_move_fence(struct ttm_buffer_object *bo,
865 				 struct ttm_mem_type_manager *man,
866 				 struct ttm_mem_reg *mem)
867 {
868 	struct dma_fence *fence;
869 	int ret;
870 
871 	spin_lock(&man->move_lock);
872 	fence = dma_fence_get(man->move);
873 	spin_unlock(&man->move_lock);
874 
875 	if (fence) {
876 		reservation_object_add_shared_fence(bo->resv, fence);
877 
878 		ret = reservation_object_reserve_shared(bo->resv, 1);
879 		if (unlikely(ret))
880 			return ret;
881 
882 		dma_fence_put(bo->moving);
883 		bo->moving = fence;
884 	}
885 
886 	return 0;
887 }
888 
889 /**
890  * Repeatedly evict memory from the LRU for @mem_type until we create enough
891  * space, or we've evicted everything and there isn't enough space.
892  */
893 static int ttm_bo_mem_force_space(struct ttm_buffer_object *bo,
894 					uint32_t mem_type,
895 					const struct ttm_place *place,
896 					struct ttm_mem_reg *mem,
897 					struct ttm_operation_ctx *ctx)
898 {
899 	struct ttm_bo_device *bdev = bo->bdev;
900 	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
901 	int ret;
902 
903 	do {
904 		ret = (*man->func->get_node)(man, bo, place, mem);
905 		if (unlikely(ret != 0))
906 			return ret;
907 		if (mem->mm_node)
908 			break;
909 		ret = ttm_mem_evict_first(bdev, mem_type, place, ctx);
910 		if (unlikely(ret != 0))
911 			return ret;
912 	} while (1);
913 	mem->mem_type = mem_type;
914 	return ttm_bo_add_move_fence(bo, man, mem);
915 }
916 
917 static uint32_t ttm_bo_select_caching(struct ttm_mem_type_manager *man,
918 				      uint32_t cur_placement,
919 				      uint32_t proposed_placement)
920 {
921 	uint32_t caching = proposed_placement & TTM_PL_MASK_CACHING;
922 	uint32_t result = proposed_placement & ~TTM_PL_MASK_CACHING;
923 
924 	/**
925 	 * Keep current caching if possible.
926 	 */
927 
928 	if ((cur_placement & caching) != 0)
929 		result |= (cur_placement & caching);
930 	else if ((man->default_caching & caching) != 0)
931 		result |= man->default_caching;
932 	else if ((TTM_PL_FLAG_CACHED & caching) != 0)
933 		result |= TTM_PL_FLAG_CACHED;
934 	else if ((TTM_PL_FLAG_WC & caching) != 0)
935 		result |= TTM_PL_FLAG_WC;
936 	else if ((TTM_PL_FLAG_UNCACHED & caching) != 0)
937 		result |= TTM_PL_FLAG_UNCACHED;
938 
939 	return result;
940 }
941 
942 static bool ttm_bo_mt_compatible(struct ttm_mem_type_manager *man,
943 				 uint32_t mem_type,
944 				 const struct ttm_place *place,
945 				 uint32_t *masked_placement)
946 {
947 	uint32_t cur_flags = ttm_bo_type_flags(mem_type);
948 
949 	if ((cur_flags & place->flags & TTM_PL_MASK_MEM) == 0)
950 		return false;
951 
952 	if ((place->flags & man->available_caching) == 0)
953 		return false;
954 
955 	cur_flags |= (place->flags & man->available_caching);
956 
957 	*masked_placement = cur_flags;
958 	return true;
959 }
960 
961 /**
962  * Creates space for memory region @mem according to its type.
963  *
964  * This function first searches for free space in compatible memory types in
965  * the priority order defined by the driver.  If free space isn't found, then
966  * ttm_bo_mem_force_space is attempted in priority order to evict and find
967  * space.
968  */
969 int ttm_bo_mem_space(struct ttm_buffer_object *bo,
970 			struct ttm_placement *placement,
971 			struct ttm_mem_reg *mem,
972 			struct ttm_operation_ctx *ctx)
973 {
974 	struct ttm_bo_device *bdev = bo->bdev;
975 	struct ttm_mem_type_manager *man;
976 	uint32_t mem_type = TTM_PL_SYSTEM;
977 	uint32_t cur_flags = 0;
978 	bool type_found = false;
979 	bool type_ok = false;
980 	bool has_erestartsys = false;
981 	int i, ret;
982 
983 	ret = reservation_object_reserve_shared(bo->resv, 1);
984 	if (unlikely(ret))
985 		return ret;
986 
987 	mem->mm_node = NULL;
988 	for (i = 0; i < placement->num_placement; ++i) {
989 		const struct ttm_place *place = &placement->placement[i];
990 
991 		ret = ttm_mem_type_from_place(place, &mem_type);
992 		if (ret)
993 			return ret;
994 		man = &bdev->man[mem_type];
995 		if (!man->has_type || !man->use_type)
996 			continue;
997 
998 		type_ok = ttm_bo_mt_compatible(man, mem_type, place,
999 						&cur_flags);
1000 
1001 		if (!type_ok)
1002 			continue;
1003 
1004 		type_found = true;
1005 		cur_flags = ttm_bo_select_caching(man, bo->mem.placement,
1006 						  cur_flags);
1007 		/*
1008 		 * Use the access and other non-mapping-related flag bits from
1009 		 * the memory placement flags to the current flags
1010 		 */
1011 		ttm_flag_masked(&cur_flags, place->flags,
1012 				~TTM_PL_MASK_MEMTYPE);
1013 
1014 		if (mem_type == TTM_PL_SYSTEM)
1015 			break;
1016 
1017 		ret = (*man->func->get_node)(man, bo, place, mem);
1018 		if (unlikely(ret))
1019 			return ret;
1020 
1021 		if (mem->mm_node) {
1022 			ret = ttm_bo_add_move_fence(bo, man, mem);
1023 			if (unlikely(ret)) {
1024 				(*man->func->put_node)(man, mem);
1025 				return ret;
1026 			}
1027 			break;
1028 		}
1029 	}
1030 
1031 	if ((type_ok && (mem_type == TTM_PL_SYSTEM)) || mem->mm_node) {
1032 		mem->mem_type = mem_type;
1033 		mem->placement = cur_flags;
1034 		return 0;
1035 	}
1036 
1037 	for (i = 0; i < placement->num_busy_placement; ++i) {
1038 		const struct ttm_place *place = &placement->busy_placement[i];
1039 
1040 		ret = ttm_mem_type_from_place(place, &mem_type);
1041 		if (ret)
1042 			return ret;
1043 		man = &bdev->man[mem_type];
1044 		if (!man->has_type || !man->use_type)
1045 			continue;
1046 		if (!ttm_bo_mt_compatible(man, mem_type, place, &cur_flags))
1047 			continue;
1048 
1049 		type_found = true;
1050 		cur_flags = ttm_bo_select_caching(man, bo->mem.placement,
1051 						  cur_flags);
1052 		/*
1053 		 * Use the access and other non-mapping-related flag bits from
1054 		 * the memory placement flags to the current flags
1055 		 */
1056 		ttm_flag_masked(&cur_flags, place->flags,
1057 				~TTM_PL_MASK_MEMTYPE);
1058 
1059 		if (mem_type == TTM_PL_SYSTEM) {
1060 			mem->mem_type = mem_type;
1061 			mem->placement = cur_flags;
1062 			mem->mm_node = NULL;
1063 			return 0;
1064 		}
1065 
1066 		ret = ttm_bo_mem_force_space(bo, mem_type, place, mem, ctx);
1067 		if (ret == 0 && mem->mm_node) {
1068 			mem->placement = cur_flags;
1069 			return 0;
1070 		}
1071 		if (ret == -ERESTARTSYS)
1072 			has_erestartsys = true;
1073 	}
1074 
1075 	if (!type_found) {
1076 		pr_err(TTM_PFX "No compatible memory type found\n");
1077 		return -EINVAL;
1078 	}
1079 
1080 	return (has_erestartsys) ? -ERESTARTSYS : -ENOMEM;
1081 }
1082 EXPORT_SYMBOL(ttm_bo_mem_space);
1083 
1084 static int ttm_bo_move_buffer(struct ttm_buffer_object *bo,
1085 			      struct ttm_placement *placement,
1086 			      struct ttm_operation_ctx *ctx)
1087 {
1088 	int ret = 0;
1089 	struct ttm_mem_reg mem;
1090 
1091 	reservation_object_assert_held(bo->resv);
1092 
1093 	mem.num_pages = bo->num_pages;
1094 	mem.size = mem.num_pages << PAGE_SHIFT;
1095 	mem.page_alignment = bo->mem.page_alignment;
1096 	mem.bus.io_reserved_vm = false;
1097 	mem.bus.io_reserved_count = 0;
1098 	/*
1099 	 * Determine where to move the buffer.
1100 	 */
1101 	ret = ttm_bo_mem_space(bo, placement, &mem, ctx);
1102 	if (ret)
1103 		goto out_unlock;
1104 	ret = ttm_bo_handle_move_mem(bo, &mem, false, ctx);
1105 out_unlock:
1106 	if (ret && mem.mm_node)
1107 		ttm_bo_mem_put(bo, &mem);
1108 	return ret;
1109 }
1110 
1111 static bool ttm_bo_places_compat(const struct ttm_place *places,
1112 				 unsigned num_placement,
1113 				 struct ttm_mem_reg *mem,
1114 				 uint32_t *new_flags)
1115 {
1116 	unsigned i;
1117 
1118 	for (i = 0; i < num_placement; i++) {
1119 		const struct ttm_place *heap = &places[i];
1120 
1121 		if (mem->mm_node && (mem->start < heap->fpfn ||
1122 		     (heap->lpfn != 0 && (mem->start + mem->num_pages) > heap->lpfn)))
1123 			continue;
1124 
1125 		*new_flags = heap->flags;
1126 		if ((*new_flags & mem->placement & TTM_PL_MASK_CACHING) &&
1127 		    (*new_flags & mem->placement & TTM_PL_MASK_MEM) &&
1128 		    (!(*new_flags & TTM_PL_FLAG_CONTIGUOUS) ||
1129 		     (mem->placement & TTM_PL_FLAG_CONTIGUOUS)))
1130 			return true;
1131 	}
1132 	return false;
1133 }
1134 
1135 bool ttm_bo_mem_compat(struct ttm_placement *placement,
1136 		       struct ttm_mem_reg *mem,
1137 		       uint32_t *new_flags)
1138 {
1139 	if (ttm_bo_places_compat(placement->placement, placement->num_placement,
1140 				 mem, new_flags))
1141 		return true;
1142 
1143 	if ((placement->busy_placement != placement->placement ||
1144 	     placement->num_busy_placement > placement->num_placement) &&
1145 	    ttm_bo_places_compat(placement->busy_placement,
1146 				 placement->num_busy_placement,
1147 				 mem, new_flags))
1148 		return true;
1149 
1150 	return false;
1151 }
1152 EXPORT_SYMBOL(ttm_bo_mem_compat);
1153 
1154 int ttm_bo_validate(struct ttm_buffer_object *bo,
1155 		    struct ttm_placement *placement,
1156 		    struct ttm_operation_ctx *ctx)
1157 {
1158 	int ret;
1159 	uint32_t new_flags;
1160 
1161 	reservation_object_assert_held(bo->resv);
1162 	/*
1163 	 * Check whether we need to move buffer.
1164 	 */
1165 	if (!ttm_bo_mem_compat(placement, &bo->mem, &new_flags)) {
1166 		ret = ttm_bo_move_buffer(bo, placement, ctx);
1167 		if (ret)
1168 			return ret;
1169 	} else {
1170 		/*
1171 		 * Use the access and other non-mapping-related flag bits from
1172 		 * the compatible memory placement flags to the active flags
1173 		 */
1174 		ttm_flag_masked(&bo->mem.placement, new_flags,
1175 				~TTM_PL_MASK_MEMTYPE);
1176 	}
1177 	/*
1178 	 * We might need to add a TTM.
1179 	 */
1180 	if (bo->mem.mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
1181 		ret = ttm_tt_create(bo, true);
1182 		if (ret)
1183 			return ret;
1184 	}
1185 	return 0;
1186 }
1187 EXPORT_SYMBOL(ttm_bo_validate);
1188 
1189 int ttm_bo_init_reserved(struct ttm_bo_device *bdev,
1190 			 struct ttm_buffer_object *bo,
1191 			 unsigned long size,
1192 			 enum ttm_bo_type type,
1193 			 struct ttm_placement *placement,
1194 			 uint32_t page_alignment,
1195 			 struct ttm_operation_ctx *ctx,
1196 			 size_t acc_size,
1197 			 struct sg_table *sg,
1198 			 struct reservation_object *resv,
1199 			 void (*destroy) (struct ttm_buffer_object *))
1200 {
1201 	int ret = 0;
1202 	unsigned long num_pages;
1203 	struct ttm_mem_global *mem_glob = bdev->glob->mem_glob;
1204 	bool locked;
1205 
1206 	ret = ttm_mem_global_alloc(mem_glob, acc_size, ctx);
1207 	if (ret) {
1208 		pr_err("Out of kernel memory\n");
1209 		if (destroy)
1210 			(*destroy)(bo);
1211 		else
1212 			kfree(bo);
1213 		return -ENOMEM;
1214 	}
1215 
1216 	num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1217 	if (num_pages == 0) {
1218 		pr_err("Illegal buffer object size\n");
1219 		if (destroy)
1220 			(*destroy)(bo);
1221 		else
1222 			kfree(bo);
1223 		ttm_mem_global_free(mem_glob, acc_size);
1224 		return -EINVAL;
1225 	}
1226 	bo->destroy = destroy ? destroy : ttm_bo_default_destroy;
1227 
1228 	kref_init(&bo->kref);
1229 	kref_init(&bo->list_kref);
1230 	atomic_set(&bo->cpu_writers, 0);
1231 	INIT_LIST_HEAD(&bo->lru);
1232 	INIT_LIST_HEAD(&bo->ddestroy);
1233 	INIT_LIST_HEAD(&bo->swap);
1234 	INIT_LIST_HEAD(&bo->io_reserve_lru);
1235 	mutex_init(&bo->wu_mutex);
1236 	bo->bdev = bdev;
1237 	bo->type = type;
1238 	bo->num_pages = num_pages;
1239 	bo->mem.size = num_pages << PAGE_SHIFT;
1240 	bo->mem.mem_type = TTM_PL_SYSTEM;
1241 	bo->mem.num_pages = bo->num_pages;
1242 	bo->mem.mm_node = NULL;
1243 	bo->mem.page_alignment = page_alignment;
1244 	bo->mem.bus.io_reserved_vm = false;
1245 	bo->mem.bus.io_reserved_count = 0;
1246 	bo->moving = NULL;
1247 	bo->mem.placement = (TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED);
1248 	bo->acc_size = acc_size;
1249 	bo->sg = sg;
1250 	if (resv) {
1251 		bo->resv = resv;
1252 		reservation_object_assert_held(bo->resv);
1253 	} else {
1254 		bo->resv = &bo->ttm_resv;
1255 	}
1256 	reservation_object_init(&bo->ttm_resv);
1257 	atomic_inc(&bo->bdev->glob->bo_count);
1258 	drm_vma_node_reset(&bo->vma_node);
1259 
1260 	/*
1261 	 * For ttm_bo_type_device buffers, allocate
1262 	 * address space from the device.
1263 	 */
1264 	if (bo->type == ttm_bo_type_device ||
1265 	    bo->type == ttm_bo_type_sg)
1266 		ret = drm_vma_offset_add(&bdev->vma_manager, &bo->vma_node,
1267 					 bo->mem.num_pages);
1268 
1269 	/* passed reservation objects should already be locked,
1270 	 * since otherwise lockdep will be angered in radeon.
1271 	 */
1272 	if (!resv) {
1273 		locked = reservation_object_trylock(bo->resv);
1274 		WARN_ON(!locked);
1275 	}
1276 
1277 	if (likely(!ret))
1278 		ret = ttm_bo_validate(bo, placement, ctx);
1279 
1280 	if (unlikely(ret)) {
1281 		if (!resv)
1282 			ttm_bo_unreserve(bo);
1283 
1284 		ttm_bo_put(bo);
1285 		return ret;
1286 	}
1287 
1288 	if (resv && !(bo->mem.placement & TTM_PL_FLAG_NO_EVICT)) {
1289 		spin_lock(&bdev->glob->lru_lock);
1290 		ttm_bo_add_to_lru(bo);
1291 		spin_unlock(&bdev->glob->lru_lock);
1292 	}
1293 
1294 	return ret;
1295 }
1296 EXPORT_SYMBOL(ttm_bo_init_reserved);
1297 
1298 int ttm_bo_init(struct ttm_bo_device *bdev,
1299 		struct ttm_buffer_object *bo,
1300 		unsigned long size,
1301 		enum ttm_bo_type type,
1302 		struct ttm_placement *placement,
1303 		uint32_t page_alignment,
1304 		bool interruptible,
1305 		size_t acc_size,
1306 		struct sg_table *sg,
1307 		struct reservation_object *resv,
1308 		void (*destroy) (struct ttm_buffer_object *))
1309 {
1310 	struct ttm_operation_ctx ctx = { interruptible, false };
1311 	int ret;
1312 
1313 	ret = ttm_bo_init_reserved(bdev, bo, size, type, placement,
1314 				   page_alignment, &ctx, acc_size,
1315 				   sg, resv, destroy);
1316 	if (ret)
1317 		return ret;
1318 
1319 	if (!resv)
1320 		ttm_bo_unreserve(bo);
1321 
1322 	return 0;
1323 }
1324 EXPORT_SYMBOL(ttm_bo_init);
1325 
1326 size_t ttm_bo_acc_size(struct ttm_bo_device *bdev,
1327 		       unsigned long bo_size,
1328 		       unsigned struct_size)
1329 {
1330 	unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT;
1331 	size_t size = 0;
1332 
1333 	size += ttm_round_pot(struct_size);
1334 	size += ttm_round_pot(npages * sizeof(void *));
1335 	size += ttm_round_pot(sizeof(struct ttm_tt));
1336 	return size;
1337 }
1338 EXPORT_SYMBOL(ttm_bo_acc_size);
1339 
1340 size_t ttm_bo_dma_acc_size(struct ttm_bo_device *bdev,
1341 			   unsigned long bo_size,
1342 			   unsigned struct_size)
1343 {
1344 	unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT;
1345 	size_t size = 0;
1346 
1347 	size += ttm_round_pot(struct_size);
1348 	size += ttm_round_pot(npages * (2*sizeof(void *) + sizeof(dma_addr_t)));
1349 	size += ttm_round_pot(sizeof(struct ttm_dma_tt));
1350 	return size;
1351 }
1352 EXPORT_SYMBOL(ttm_bo_dma_acc_size);
1353 
1354 int ttm_bo_create(struct ttm_bo_device *bdev,
1355 			unsigned long size,
1356 			enum ttm_bo_type type,
1357 			struct ttm_placement *placement,
1358 			uint32_t page_alignment,
1359 			bool interruptible,
1360 			struct ttm_buffer_object **p_bo)
1361 {
1362 	struct ttm_buffer_object *bo;
1363 	size_t acc_size;
1364 	int ret;
1365 
1366 	bo = kzalloc(sizeof(*bo), GFP_KERNEL);
1367 	if (unlikely(bo == NULL))
1368 		return -ENOMEM;
1369 
1370 	acc_size = ttm_bo_acc_size(bdev, size, sizeof(struct ttm_buffer_object));
1371 	ret = ttm_bo_init(bdev, bo, size, type, placement, page_alignment,
1372 			  interruptible, acc_size,
1373 			  NULL, NULL, NULL);
1374 	if (likely(ret == 0))
1375 		*p_bo = bo;
1376 
1377 	return ret;
1378 }
1379 EXPORT_SYMBOL(ttm_bo_create);
1380 
1381 static int ttm_bo_force_list_clean(struct ttm_bo_device *bdev,
1382 				   unsigned mem_type)
1383 {
1384 	struct ttm_operation_ctx ctx = {
1385 		.interruptible = false,
1386 		.no_wait_gpu = false,
1387 		.flags = TTM_OPT_FLAG_FORCE_ALLOC
1388 	};
1389 	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1390 	struct ttm_bo_global *glob = bdev->glob;
1391 	struct dma_fence *fence;
1392 	int ret;
1393 	unsigned i;
1394 
1395 	/*
1396 	 * Can't use standard list traversal since we're unlocking.
1397 	 */
1398 
1399 	spin_lock(&glob->lru_lock);
1400 	for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) {
1401 		while (!list_empty(&man->lru[i])) {
1402 			spin_unlock(&glob->lru_lock);
1403 			ret = ttm_mem_evict_first(bdev, mem_type, NULL, &ctx);
1404 			if (ret)
1405 				return ret;
1406 			spin_lock(&glob->lru_lock);
1407 		}
1408 	}
1409 	spin_unlock(&glob->lru_lock);
1410 
1411 	spin_lock(&man->move_lock);
1412 	fence = dma_fence_get(man->move);
1413 	spin_unlock(&man->move_lock);
1414 
1415 	if (fence) {
1416 		ret = dma_fence_wait(fence, false);
1417 		dma_fence_put(fence);
1418 		if (ret)
1419 			return ret;
1420 	}
1421 
1422 	return 0;
1423 }
1424 
1425 int ttm_bo_clean_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1426 {
1427 	struct ttm_mem_type_manager *man;
1428 	int ret = -EINVAL;
1429 
1430 	if (mem_type >= TTM_NUM_MEM_TYPES) {
1431 		pr_err("Illegal memory type %d\n", mem_type);
1432 		return ret;
1433 	}
1434 	man = &bdev->man[mem_type];
1435 
1436 	if (!man->has_type) {
1437 		pr_err("Trying to take down uninitialized memory manager type %u\n",
1438 		       mem_type);
1439 		return ret;
1440 	}
1441 
1442 	man->use_type = false;
1443 	man->has_type = false;
1444 
1445 	ret = 0;
1446 	if (mem_type > 0) {
1447 		ret = ttm_bo_force_list_clean(bdev, mem_type);
1448 		if (ret) {
1449 			pr_err("Cleanup eviction failed\n");
1450 			return ret;
1451 		}
1452 
1453 		ret = (*man->func->takedown)(man);
1454 	}
1455 
1456 	dma_fence_put(man->move);
1457 	man->move = NULL;
1458 
1459 	return ret;
1460 }
1461 EXPORT_SYMBOL(ttm_bo_clean_mm);
1462 
1463 int ttm_bo_evict_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1464 {
1465 	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1466 
1467 	if (mem_type == 0 || mem_type >= TTM_NUM_MEM_TYPES) {
1468 		pr_err("Illegal memory manager memory type %u\n", mem_type);
1469 		return -EINVAL;
1470 	}
1471 
1472 	if (!man->has_type) {
1473 		pr_err("Memory type %u has not been initialized\n", mem_type);
1474 		return 0;
1475 	}
1476 
1477 	return ttm_bo_force_list_clean(bdev, mem_type);
1478 }
1479 EXPORT_SYMBOL(ttm_bo_evict_mm);
1480 
1481 int ttm_bo_init_mm(struct ttm_bo_device *bdev, unsigned type,
1482 			unsigned long p_size)
1483 {
1484 	int ret;
1485 	struct ttm_mem_type_manager *man;
1486 	unsigned i;
1487 
1488 	BUG_ON(type >= TTM_NUM_MEM_TYPES);
1489 	man = &bdev->man[type];
1490 	BUG_ON(man->has_type);
1491 	man->io_reserve_fastpath = true;
1492 	man->use_io_reserve_lru = false;
1493 	mutex_init(&man->io_reserve_mutex);
1494 	spin_lock_init(&man->move_lock);
1495 	INIT_LIST_HEAD(&man->io_reserve_lru);
1496 
1497 	ret = bdev->driver->init_mem_type(bdev, type, man);
1498 	if (ret)
1499 		return ret;
1500 	man->bdev = bdev;
1501 
1502 	if (type != TTM_PL_SYSTEM) {
1503 		ret = (*man->func->init)(man, p_size);
1504 		if (ret)
1505 			return ret;
1506 	}
1507 	man->has_type = true;
1508 	man->use_type = true;
1509 	man->size = p_size;
1510 
1511 	for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i)
1512 		INIT_LIST_HEAD(&man->lru[i]);
1513 	man->move = NULL;
1514 
1515 	return 0;
1516 }
1517 EXPORT_SYMBOL(ttm_bo_init_mm);
1518 
1519 static void ttm_bo_global_kobj_release(struct kobject *kobj)
1520 {
1521 	struct ttm_bo_global *glob =
1522 		container_of(kobj, struct ttm_bo_global, kobj);
1523 
1524 	__free_page(glob->dummy_read_page);
1525 }
1526 
1527 static void ttm_bo_global_release(void)
1528 {
1529 	struct ttm_bo_global *glob = &ttm_bo_glob;
1530 
1531 	mutex_lock(&ttm_global_mutex);
1532 	if (--glob->use_count > 0)
1533 		goto out;
1534 
1535 	kobject_del(&glob->kobj);
1536 	kobject_put(&glob->kobj);
1537 	ttm_mem_global_release(&ttm_mem_glob);
1538 out:
1539 	mutex_unlock(&ttm_global_mutex);
1540 }
1541 
1542 static int ttm_bo_global_init(void)
1543 {
1544 	struct ttm_bo_global *glob = &ttm_bo_glob;
1545 	int ret = 0;
1546 	unsigned i;
1547 
1548 	mutex_lock(&ttm_global_mutex);
1549 	if (++glob->use_count > 1)
1550 		goto out;
1551 
1552 	ret = ttm_mem_global_init(&ttm_mem_glob);
1553 	if (ret)
1554 		goto out;
1555 
1556 	spin_lock_init(&glob->lru_lock);
1557 	glob->mem_glob = &ttm_mem_glob;
1558 	glob->mem_glob->bo_glob = glob;
1559 	glob->dummy_read_page = alloc_page(__GFP_ZERO | GFP_DMA32);
1560 
1561 	if (unlikely(glob->dummy_read_page == NULL)) {
1562 		ret = -ENOMEM;
1563 		goto out;
1564 	}
1565 
1566 	for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i)
1567 		INIT_LIST_HEAD(&glob->swap_lru[i]);
1568 	INIT_LIST_HEAD(&glob->device_list);
1569 	atomic_set(&glob->bo_count, 0);
1570 
1571 	ret = kobject_init_and_add(
1572 		&glob->kobj, &ttm_bo_glob_kobj_type, ttm_get_kobj(), "buffer_objects");
1573 	if (unlikely(ret != 0))
1574 		kobject_put(&glob->kobj);
1575 out:
1576 	mutex_unlock(&ttm_global_mutex);
1577 	return ret;
1578 }
1579 
1580 int ttm_bo_device_release(struct ttm_bo_device *bdev)
1581 {
1582 	int ret = 0;
1583 	unsigned i = TTM_NUM_MEM_TYPES;
1584 	struct ttm_mem_type_manager *man;
1585 	struct ttm_bo_global *glob = bdev->glob;
1586 
1587 	while (i--) {
1588 		man = &bdev->man[i];
1589 		if (man->has_type) {
1590 			man->use_type = false;
1591 			if ((i != TTM_PL_SYSTEM) && ttm_bo_clean_mm(bdev, i)) {
1592 				ret = -EBUSY;
1593 				pr_err("DRM memory manager type %d is not clean\n",
1594 				       i);
1595 			}
1596 			man->has_type = false;
1597 		}
1598 	}
1599 
1600 	mutex_lock(&ttm_global_mutex);
1601 	list_del(&bdev->device_list);
1602 	mutex_unlock(&ttm_global_mutex);
1603 
1604 	cancel_delayed_work_sync(&bdev->wq);
1605 
1606 	if (ttm_bo_delayed_delete(bdev, true))
1607 		pr_debug("Delayed destroy list was clean\n");
1608 
1609 	spin_lock(&glob->lru_lock);
1610 	for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i)
1611 		if (list_empty(&bdev->man[0].lru[0]))
1612 			pr_debug("Swap list %d was clean\n", i);
1613 	spin_unlock(&glob->lru_lock);
1614 
1615 	drm_vma_offset_manager_destroy(&bdev->vma_manager);
1616 
1617 	if (!ret)
1618 		ttm_bo_global_release();
1619 
1620 	return ret;
1621 }
1622 EXPORT_SYMBOL(ttm_bo_device_release);
1623 
1624 int ttm_bo_device_init(struct ttm_bo_device *bdev,
1625 		       struct ttm_bo_driver *driver,
1626 		       struct address_space *mapping,
1627 		       uint64_t file_page_offset,
1628 		       bool need_dma32)
1629 {
1630 	struct ttm_bo_global *glob = &ttm_bo_glob;
1631 	int ret;
1632 
1633 	ret = ttm_bo_global_init();
1634 	if (ret)
1635 		return ret;
1636 
1637 	bdev->driver = driver;
1638 
1639 	memset(bdev->man, 0, sizeof(bdev->man));
1640 
1641 	/*
1642 	 * Initialize the system memory buffer type.
1643 	 * Other types need to be driver / IOCTL initialized.
1644 	 */
1645 	ret = ttm_bo_init_mm(bdev, TTM_PL_SYSTEM, 0);
1646 	if (unlikely(ret != 0))
1647 		goto out_no_sys;
1648 
1649 	drm_vma_offset_manager_init(&bdev->vma_manager, file_page_offset,
1650 				    0x10000000);
1651 	INIT_DELAYED_WORK(&bdev->wq, ttm_bo_delayed_workqueue);
1652 	INIT_LIST_HEAD(&bdev->ddestroy);
1653 	bdev->dev_mapping = mapping;
1654 	bdev->glob = glob;
1655 	bdev->need_dma32 = need_dma32;
1656 	mutex_lock(&ttm_global_mutex);
1657 	list_add_tail(&bdev->device_list, &glob->device_list);
1658 	mutex_unlock(&ttm_global_mutex);
1659 
1660 	return 0;
1661 out_no_sys:
1662 	ttm_bo_global_release();
1663 	return ret;
1664 }
1665 EXPORT_SYMBOL(ttm_bo_device_init);
1666 
1667 /*
1668  * buffer object vm functions.
1669  */
1670 
1671 bool ttm_mem_reg_is_pci(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
1672 {
1673 	struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
1674 
1675 	if (!(man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
1676 		if (mem->mem_type == TTM_PL_SYSTEM)
1677 			return false;
1678 
1679 		if (man->flags & TTM_MEMTYPE_FLAG_CMA)
1680 			return false;
1681 
1682 		if (mem->placement & TTM_PL_FLAG_CACHED)
1683 			return false;
1684 	}
1685 	return true;
1686 }
1687 
1688 void ttm_bo_unmap_virtual_locked(struct ttm_buffer_object *bo)
1689 {
1690 	struct ttm_bo_device *bdev = bo->bdev;
1691 
1692 	drm_vma_node_unmap(&bo->vma_node, bdev->dev_mapping);
1693 	ttm_mem_io_free_vm(bo);
1694 }
1695 
1696 void ttm_bo_unmap_virtual(struct ttm_buffer_object *bo)
1697 {
1698 	struct ttm_bo_device *bdev = bo->bdev;
1699 	struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
1700 
1701 	ttm_mem_io_lock(man, false);
1702 	ttm_bo_unmap_virtual_locked(bo);
1703 	ttm_mem_io_unlock(man);
1704 }
1705 
1706 
1707 EXPORT_SYMBOL(ttm_bo_unmap_virtual);
1708 
1709 int ttm_bo_wait(struct ttm_buffer_object *bo,
1710 		bool interruptible, bool no_wait)
1711 {
1712 	long timeout = 15 * HZ;
1713 
1714 	if (no_wait) {
1715 		if (reservation_object_test_signaled_rcu(bo->resv, true))
1716 			return 0;
1717 		else
1718 			return -EBUSY;
1719 	}
1720 
1721 	timeout = reservation_object_wait_timeout_rcu(bo->resv, true,
1722 						      interruptible, timeout);
1723 	if (timeout < 0)
1724 		return timeout;
1725 
1726 	if (timeout == 0)
1727 		return -EBUSY;
1728 
1729 	reservation_object_add_excl_fence(bo->resv, NULL);
1730 	return 0;
1731 }
1732 EXPORT_SYMBOL(ttm_bo_wait);
1733 
1734 int ttm_bo_synccpu_write_grab(struct ttm_buffer_object *bo, bool no_wait)
1735 {
1736 	int ret = 0;
1737 
1738 	/*
1739 	 * Using ttm_bo_reserve makes sure the lru lists are updated.
1740 	 */
1741 
1742 	ret = ttm_bo_reserve(bo, true, no_wait, NULL);
1743 	if (unlikely(ret != 0))
1744 		return ret;
1745 	ret = ttm_bo_wait(bo, true, no_wait);
1746 	if (likely(ret == 0))
1747 		atomic_inc(&bo->cpu_writers);
1748 	ttm_bo_unreserve(bo);
1749 	return ret;
1750 }
1751 EXPORT_SYMBOL(ttm_bo_synccpu_write_grab);
1752 
1753 void ttm_bo_synccpu_write_release(struct ttm_buffer_object *bo)
1754 {
1755 	atomic_dec(&bo->cpu_writers);
1756 }
1757 EXPORT_SYMBOL(ttm_bo_synccpu_write_release);
1758 
1759 /**
1760  * A buffer object shrink method that tries to swap out the first
1761  * buffer object on the bo_global::swap_lru list.
1762  */
1763 int ttm_bo_swapout(struct ttm_bo_global *glob, struct ttm_operation_ctx *ctx)
1764 {
1765 	struct ttm_buffer_object *bo;
1766 	int ret = -EBUSY;
1767 	bool locked;
1768 	unsigned i;
1769 
1770 	spin_lock(&glob->lru_lock);
1771 	for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) {
1772 		list_for_each_entry(bo, &glob->swap_lru[i], swap) {
1773 			if (ttm_bo_evict_swapout_allowable(bo, ctx, &locked)) {
1774 				ret = 0;
1775 				break;
1776 			}
1777 		}
1778 		if (!ret)
1779 			break;
1780 	}
1781 
1782 	if (ret) {
1783 		spin_unlock(&glob->lru_lock);
1784 		return ret;
1785 	}
1786 
1787 	kref_get(&bo->list_kref);
1788 
1789 	if (!list_empty(&bo->ddestroy)) {
1790 		ret = ttm_bo_cleanup_refs(bo, false, false, locked);
1791 		kref_put(&bo->list_kref, ttm_bo_release_list);
1792 		return ret;
1793 	}
1794 
1795 	ttm_bo_del_from_lru(bo);
1796 	spin_unlock(&glob->lru_lock);
1797 
1798 	/**
1799 	 * Move to system cached
1800 	 */
1801 
1802 	if (bo->mem.mem_type != TTM_PL_SYSTEM ||
1803 	    bo->ttm->caching_state != tt_cached) {
1804 		struct ttm_operation_ctx ctx = { false, false };
1805 		struct ttm_mem_reg evict_mem;
1806 
1807 		evict_mem = bo->mem;
1808 		evict_mem.mm_node = NULL;
1809 		evict_mem.placement = TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED;
1810 		evict_mem.mem_type = TTM_PL_SYSTEM;
1811 
1812 		ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, &ctx);
1813 		if (unlikely(ret != 0))
1814 			goto out;
1815 	}
1816 
1817 	/**
1818 	 * Make sure BO is idle.
1819 	 */
1820 
1821 	ret = ttm_bo_wait(bo, false, false);
1822 	if (unlikely(ret != 0))
1823 		goto out;
1824 
1825 	ttm_bo_unmap_virtual(bo);
1826 
1827 	/**
1828 	 * Swap out. Buffer will be swapped in again as soon as
1829 	 * anyone tries to access a ttm page.
1830 	 */
1831 
1832 	if (bo->bdev->driver->swap_notify)
1833 		bo->bdev->driver->swap_notify(bo);
1834 
1835 	ret = ttm_tt_swapout(bo->ttm, bo->persistent_swap_storage);
1836 out:
1837 
1838 	/**
1839 	 *
1840 	 * Unreserve without putting on LRU to avoid swapping out an
1841 	 * already swapped buffer.
1842 	 */
1843 	if (locked)
1844 		reservation_object_unlock(bo->resv);
1845 	kref_put(&bo->list_kref, ttm_bo_release_list);
1846 	return ret;
1847 }
1848 EXPORT_SYMBOL(ttm_bo_swapout);
1849 
1850 void ttm_bo_swapout_all(struct ttm_bo_device *bdev)
1851 {
1852 	struct ttm_operation_ctx ctx = {
1853 		.interruptible = false,
1854 		.no_wait_gpu = false
1855 	};
1856 
1857 	while (ttm_bo_swapout(bdev->glob, &ctx) == 0)
1858 		;
1859 }
1860 EXPORT_SYMBOL(ttm_bo_swapout_all);
1861 
1862 /**
1863  * ttm_bo_wait_unreserved - interruptible wait for a buffer object to become
1864  * unreserved
1865  *
1866  * @bo: Pointer to buffer
1867  */
1868 int ttm_bo_wait_unreserved(struct ttm_buffer_object *bo)
1869 {
1870 	int ret;
1871 
1872 	/*
1873 	 * In the absense of a wait_unlocked API,
1874 	 * Use the bo::wu_mutex to avoid triggering livelocks due to
1875 	 * concurrent use of this function. Note that this use of
1876 	 * bo::wu_mutex can go away if we change locking order to
1877 	 * mmap_sem -> bo::reserve.
1878 	 */
1879 	ret = mutex_lock_interruptible(&bo->wu_mutex);
1880 	if (unlikely(ret != 0))
1881 		return -ERESTARTSYS;
1882 	if (!ww_mutex_is_locked(&bo->resv->lock))
1883 		goto out_unlock;
1884 	ret = reservation_object_lock_interruptible(bo->resv, NULL);
1885 	if (ret == -EINTR)
1886 		ret = -ERESTARTSYS;
1887 	if (unlikely(ret != 0))
1888 		goto out_unlock;
1889 	reservation_object_unlock(bo->resv);
1890 
1891 out_unlock:
1892 	mutex_unlock(&bo->wu_mutex);
1893 	return ret;
1894 }
1895