1 /* SPDX-License-Identifier: GPL-2.0 OR MIT */ 2 /************************************************************************** 3 * 4 * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA 5 * All Rights Reserved. 6 * 7 * Permission is hereby granted, free of charge, to any person obtaining a 8 * copy of this software and associated documentation files (the 9 * "Software"), to deal in the Software without restriction, including 10 * without limitation the rights to use, copy, modify, merge, publish, 11 * distribute, sub license, and/or sell copies of the Software, and to 12 * permit persons to whom the Software is furnished to do so, subject to 13 * the following conditions: 14 * 15 * The above copyright notice and this permission notice (including the 16 * next paragraph) shall be included in all copies or substantial portions 17 * of the Software. 18 * 19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 21 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 22 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 23 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 24 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 25 * USE OR OTHER DEALINGS IN THE SOFTWARE. 26 * 27 **************************************************************************/ 28 /* 29 * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com> 30 */ 31 32 #define pr_fmt(fmt) "[TTM] " fmt 33 34 #include <drm/ttm/ttm_module.h> 35 #include <drm/ttm/ttm_bo_driver.h> 36 #include <drm/ttm/ttm_placement.h> 37 #include <linux/jiffies.h> 38 #include <linux/slab.h> 39 #include <linux/sched.h> 40 #include <linux/mm.h> 41 #include <linux/file.h> 42 #include <linux/module.h> 43 #include <linux/atomic.h> 44 #include <linux/dma-resv.h> 45 46 static void ttm_bo_global_kobj_release(struct kobject *kobj); 47 48 /** 49 * ttm_global_mutex - protecting the global BO state 50 */ 51 DEFINE_MUTEX(ttm_global_mutex); 52 unsigned ttm_bo_glob_use_count; 53 struct ttm_bo_global ttm_bo_glob; 54 EXPORT_SYMBOL(ttm_bo_glob); 55 56 static struct attribute ttm_bo_count = { 57 .name = "bo_count", 58 .mode = S_IRUGO 59 }; 60 61 /* default destructor */ 62 static void ttm_bo_default_destroy(struct ttm_buffer_object *bo) 63 { 64 kfree(bo); 65 } 66 67 static void ttm_bo_mem_space_debug(struct ttm_buffer_object *bo, 68 struct ttm_placement *placement) 69 { 70 struct drm_printer p = drm_debug_printer(TTM_PFX); 71 struct ttm_resource_manager *man; 72 int i, mem_type; 73 74 drm_printf(&p, "No space for %p (%lu pages, %luK, %luM)\n", 75 bo, bo->mem.num_pages, bo->mem.size >> 10, 76 bo->mem.size >> 20); 77 for (i = 0; i < placement->num_placement; i++) { 78 mem_type = placement->placement[i].mem_type; 79 drm_printf(&p, " placement[%d]=0x%08X (%d)\n", 80 i, placement->placement[i].flags, mem_type); 81 man = ttm_manager_type(bo->bdev, mem_type); 82 ttm_resource_manager_debug(man, &p); 83 } 84 } 85 86 static ssize_t ttm_bo_global_show(struct kobject *kobj, 87 struct attribute *attr, 88 char *buffer) 89 { 90 struct ttm_bo_global *glob = 91 container_of(kobj, struct ttm_bo_global, kobj); 92 93 return snprintf(buffer, PAGE_SIZE, "%d\n", 94 atomic_read(&glob->bo_count)); 95 } 96 97 static struct attribute *ttm_bo_global_attrs[] = { 98 &ttm_bo_count, 99 NULL 100 }; 101 102 static const struct sysfs_ops ttm_bo_global_ops = { 103 .show = &ttm_bo_global_show 104 }; 105 106 static struct kobj_type ttm_bo_glob_kobj_type = { 107 .release = &ttm_bo_global_kobj_release, 108 .sysfs_ops = &ttm_bo_global_ops, 109 .default_attrs = ttm_bo_global_attrs 110 }; 111 112 static void ttm_bo_add_mem_to_lru(struct ttm_buffer_object *bo, 113 struct ttm_resource *mem) 114 { 115 struct ttm_bo_device *bdev = bo->bdev; 116 struct ttm_resource_manager *man; 117 118 if (!list_empty(&bo->lru) || bo->pin_count) 119 return; 120 121 man = ttm_manager_type(bdev, mem->mem_type); 122 list_add_tail(&bo->lru, &man->lru[bo->priority]); 123 124 if (man->use_tt && bo->ttm && 125 !(bo->ttm->page_flags & (TTM_PAGE_FLAG_SG | 126 TTM_PAGE_FLAG_SWAPPED))) { 127 list_add_tail(&bo->swap, &ttm_bo_glob.swap_lru[bo->priority]); 128 } 129 } 130 131 static void ttm_bo_del_from_lru(struct ttm_buffer_object *bo) 132 { 133 struct ttm_bo_device *bdev = bo->bdev; 134 bool notify = false; 135 136 if (!list_empty(&bo->swap)) { 137 list_del_init(&bo->swap); 138 notify = true; 139 } 140 if (!list_empty(&bo->lru)) { 141 list_del_init(&bo->lru); 142 notify = true; 143 } 144 145 if (notify && bdev->driver->del_from_lru_notify) 146 bdev->driver->del_from_lru_notify(bo); 147 } 148 149 static void ttm_bo_bulk_move_set_pos(struct ttm_lru_bulk_move_pos *pos, 150 struct ttm_buffer_object *bo) 151 { 152 if (!pos->first) 153 pos->first = bo; 154 pos->last = bo; 155 } 156 157 void ttm_bo_move_to_lru_tail(struct ttm_buffer_object *bo, 158 struct ttm_lru_bulk_move *bulk) 159 { 160 dma_resv_assert_held(bo->base.resv); 161 162 ttm_bo_del_from_lru(bo); 163 ttm_bo_add_mem_to_lru(bo, &bo->mem); 164 165 if (bulk && !bo->pin_count) { 166 switch (bo->mem.mem_type) { 167 case TTM_PL_TT: 168 ttm_bo_bulk_move_set_pos(&bulk->tt[bo->priority], bo); 169 break; 170 171 case TTM_PL_VRAM: 172 ttm_bo_bulk_move_set_pos(&bulk->vram[bo->priority], bo); 173 break; 174 } 175 if (bo->ttm && !(bo->ttm->page_flags & 176 (TTM_PAGE_FLAG_SG | TTM_PAGE_FLAG_SWAPPED))) 177 ttm_bo_bulk_move_set_pos(&bulk->swap[bo->priority], bo); 178 } 179 } 180 EXPORT_SYMBOL(ttm_bo_move_to_lru_tail); 181 182 void ttm_bo_bulk_move_lru_tail(struct ttm_lru_bulk_move *bulk) 183 { 184 unsigned i; 185 186 for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) { 187 struct ttm_lru_bulk_move_pos *pos = &bulk->tt[i]; 188 struct ttm_resource_manager *man; 189 190 if (!pos->first) 191 continue; 192 193 dma_resv_assert_held(pos->first->base.resv); 194 dma_resv_assert_held(pos->last->base.resv); 195 196 man = ttm_manager_type(pos->first->bdev, TTM_PL_TT); 197 list_bulk_move_tail(&man->lru[i], &pos->first->lru, 198 &pos->last->lru); 199 } 200 201 for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) { 202 struct ttm_lru_bulk_move_pos *pos = &bulk->vram[i]; 203 struct ttm_resource_manager *man; 204 205 if (!pos->first) 206 continue; 207 208 dma_resv_assert_held(pos->first->base.resv); 209 dma_resv_assert_held(pos->last->base.resv); 210 211 man = ttm_manager_type(pos->first->bdev, TTM_PL_VRAM); 212 list_bulk_move_tail(&man->lru[i], &pos->first->lru, 213 &pos->last->lru); 214 } 215 216 for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) { 217 struct ttm_lru_bulk_move_pos *pos = &bulk->swap[i]; 218 struct list_head *lru; 219 220 if (!pos->first) 221 continue; 222 223 dma_resv_assert_held(pos->first->base.resv); 224 dma_resv_assert_held(pos->last->base.resv); 225 226 lru = &ttm_bo_glob.swap_lru[i]; 227 list_bulk_move_tail(lru, &pos->first->swap, &pos->last->swap); 228 } 229 } 230 EXPORT_SYMBOL(ttm_bo_bulk_move_lru_tail); 231 232 static int ttm_bo_handle_move_mem(struct ttm_buffer_object *bo, 233 struct ttm_resource *mem, bool evict, 234 struct ttm_operation_ctx *ctx) 235 { 236 struct ttm_bo_device *bdev = bo->bdev; 237 struct ttm_resource_manager *old_man = ttm_manager_type(bdev, bo->mem.mem_type); 238 struct ttm_resource_manager *new_man = ttm_manager_type(bdev, mem->mem_type); 239 int ret; 240 241 ttm_bo_unmap_virtual(bo); 242 243 /* 244 * Create and bind a ttm if required. 245 */ 246 247 if (new_man->use_tt) { 248 /* Zero init the new TTM structure if the old location should 249 * have used one as well. 250 */ 251 ret = ttm_tt_create(bo, old_man->use_tt); 252 if (ret) 253 goto out_err; 254 255 if (mem->mem_type != TTM_PL_SYSTEM) { 256 ret = ttm_tt_populate(bo->bdev, bo->ttm, ctx); 257 if (ret) 258 goto out_err; 259 } 260 } 261 262 ret = bdev->driver->move(bo, evict, ctx, mem); 263 if (ret) 264 goto out_err; 265 266 ctx->bytes_moved += bo->num_pages << PAGE_SHIFT; 267 return 0; 268 269 out_err: 270 new_man = ttm_manager_type(bdev, bo->mem.mem_type); 271 if (!new_man->use_tt) 272 ttm_bo_tt_destroy(bo); 273 274 return ret; 275 } 276 277 /** 278 * Call bo::reserved. 279 * Will release GPU memory type usage on destruction. 280 * This is the place to put in driver specific hooks to release 281 * driver private resources. 282 * Will release the bo::reserved lock. 283 */ 284 285 static void ttm_bo_cleanup_memtype_use(struct ttm_buffer_object *bo) 286 { 287 if (bo->bdev->driver->delete_mem_notify) 288 bo->bdev->driver->delete_mem_notify(bo); 289 290 ttm_bo_tt_destroy(bo); 291 ttm_resource_free(bo, &bo->mem); 292 } 293 294 static int ttm_bo_individualize_resv(struct ttm_buffer_object *bo) 295 { 296 int r; 297 298 if (bo->base.resv == &bo->base._resv) 299 return 0; 300 301 BUG_ON(!dma_resv_trylock(&bo->base._resv)); 302 303 r = dma_resv_copy_fences(&bo->base._resv, bo->base.resv); 304 dma_resv_unlock(&bo->base._resv); 305 if (r) 306 return r; 307 308 if (bo->type != ttm_bo_type_sg) { 309 /* This works because the BO is about to be destroyed and nobody 310 * reference it any more. The only tricky case is the trylock on 311 * the resv object while holding the lru_lock. 312 */ 313 spin_lock(&ttm_bo_glob.lru_lock); 314 bo->base.resv = &bo->base._resv; 315 spin_unlock(&ttm_bo_glob.lru_lock); 316 } 317 318 return r; 319 } 320 321 static void ttm_bo_flush_all_fences(struct ttm_buffer_object *bo) 322 { 323 struct dma_resv *resv = &bo->base._resv; 324 struct dma_resv_list *fobj; 325 struct dma_fence *fence; 326 int i; 327 328 rcu_read_lock(); 329 fobj = rcu_dereference(resv->fence); 330 fence = rcu_dereference(resv->fence_excl); 331 if (fence && !fence->ops->signaled) 332 dma_fence_enable_sw_signaling(fence); 333 334 for (i = 0; fobj && i < fobj->shared_count; ++i) { 335 fence = rcu_dereference(fobj->shared[i]); 336 337 if (!fence->ops->signaled) 338 dma_fence_enable_sw_signaling(fence); 339 } 340 rcu_read_unlock(); 341 } 342 343 /** 344 * function ttm_bo_cleanup_refs 345 * If bo idle, remove from lru lists, and unref. 346 * If not idle, block if possible. 347 * 348 * Must be called with lru_lock and reservation held, this function 349 * will drop the lru lock and optionally the reservation lock before returning. 350 * 351 * @interruptible Any sleeps should occur interruptibly. 352 * @no_wait_gpu Never wait for gpu. Return -EBUSY instead. 353 * @unlock_resv Unlock the reservation lock as well. 354 */ 355 356 static int ttm_bo_cleanup_refs(struct ttm_buffer_object *bo, 357 bool interruptible, bool no_wait_gpu, 358 bool unlock_resv) 359 { 360 struct dma_resv *resv = &bo->base._resv; 361 int ret; 362 363 if (dma_resv_test_signaled_rcu(resv, true)) 364 ret = 0; 365 else 366 ret = -EBUSY; 367 368 if (ret && !no_wait_gpu) { 369 long lret; 370 371 if (unlock_resv) 372 dma_resv_unlock(bo->base.resv); 373 spin_unlock(&ttm_bo_glob.lru_lock); 374 375 lret = dma_resv_wait_timeout_rcu(resv, true, interruptible, 376 30 * HZ); 377 378 if (lret < 0) 379 return lret; 380 else if (lret == 0) 381 return -EBUSY; 382 383 spin_lock(&ttm_bo_glob.lru_lock); 384 if (unlock_resv && !dma_resv_trylock(bo->base.resv)) { 385 /* 386 * We raced, and lost, someone else holds the reservation now, 387 * and is probably busy in ttm_bo_cleanup_memtype_use. 388 * 389 * Even if it's not the case, because we finished waiting any 390 * delayed destruction would succeed, so just return success 391 * here. 392 */ 393 spin_unlock(&ttm_bo_glob.lru_lock); 394 return 0; 395 } 396 ret = 0; 397 } 398 399 if (ret || unlikely(list_empty(&bo->ddestroy))) { 400 if (unlock_resv) 401 dma_resv_unlock(bo->base.resv); 402 spin_unlock(&ttm_bo_glob.lru_lock); 403 return ret; 404 } 405 406 ttm_bo_del_from_lru(bo); 407 list_del_init(&bo->ddestroy); 408 spin_unlock(&ttm_bo_glob.lru_lock); 409 ttm_bo_cleanup_memtype_use(bo); 410 411 if (unlock_resv) 412 dma_resv_unlock(bo->base.resv); 413 414 ttm_bo_put(bo); 415 416 return 0; 417 } 418 419 /** 420 * Traverse the delayed list, and call ttm_bo_cleanup_refs on all 421 * encountered buffers. 422 */ 423 static bool ttm_bo_delayed_delete(struct ttm_bo_device *bdev, bool remove_all) 424 { 425 struct ttm_bo_global *glob = &ttm_bo_glob; 426 struct list_head removed; 427 bool empty; 428 429 INIT_LIST_HEAD(&removed); 430 431 spin_lock(&glob->lru_lock); 432 while (!list_empty(&bdev->ddestroy)) { 433 struct ttm_buffer_object *bo; 434 435 bo = list_first_entry(&bdev->ddestroy, struct ttm_buffer_object, 436 ddestroy); 437 list_move_tail(&bo->ddestroy, &removed); 438 if (!ttm_bo_get_unless_zero(bo)) 439 continue; 440 441 if (remove_all || bo->base.resv != &bo->base._resv) { 442 spin_unlock(&glob->lru_lock); 443 dma_resv_lock(bo->base.resv, NULL); 444 445 spin_lock(&glob->lru_lock); 446 ttm_bo_cleanup_refs(bo, false, !remove_all, true); 447 448 } else if (dma_resv_trylock(bo->base.resv)) { 449 ttm_bo_cleanup_refs(bo, false, !remove_all, true); 450 } else { 451 spin_unlock(&glob->lru_lock); 452 } 453 454 ttm_bo_put(bo); 455 spin_lock(&glob->lru_lock); 456 } 457 list_splice_tail(&removed, &bdev->ddestroy); 458 empty = list_empty(&bdev->ddestroy); 459 spin_unlock(&glob->lru_lock); 460 461 return empty; 462 } 463 464 static void ttm_bo_delayed_workqueue(struct work_struct *work) 465 { 466 struct ttm_bo_device *bdev = 467 container_of(work, struct ttm_bo_device, wq.work); 468 469 if (!ttm_bo_delayed_delete(bdev, false)) 470 schedule_delayed_work(&bdev->wq, 471 ((HZ / 100) < 1) ? 1 : HZ / 100); 472 } 473 474 static void ttm_bo_release(struct kref *kref) 475 { 476 struct ttm_buffer_object *bo = 477 container_of(kref, struct ttm_buffer_object, kref); 478 struct ttm_bo_device *bdev = bo->bdev; 479 size_t acc_size = bo->acc_size; 480 int ret; 481 482 if (!bo->deleted) { 483 ret = ttm_bo_individualize_resv(bo); 484 if (ret) { 485 /* Last resort, if we fail to allocate memory for the 486 * fences block for the BO to become idle 487 */ 488 dma_resv_wait_timeout_rcu(bo->base.resv, true, false, 489 30 * HZ); 490 } 491 492 if (bo->bdev->driver->release_notify) 493 bo->bdev->driver->release_notify(bo); 494 495 drm_vma_offset_remove(bdev->vma_manager, &bo->base.vma_node); 496 ttm_mem_io_free(bdev, &bo->mem); 497 } 498 499 if (!dma_resv_test_signaled_rcu(bo->base.resv, true) || 500 !dma_resv_trylock(bo->base.resv)) { 501 /* The BO is not idle, resurrect it for delayed destroy */ 502 ttm_bo_flush_all_fences(bo); 503 bo->deleted = true; 504 505 spin_lock(&ttm_bo_glob.lru_lock); 506 507 /* 508 * Make pinned bos immediately available to 509 * shrinkers, now that they are queued for 510 * destruction. 511 */ 512 if (bo->pin_count) { 513 bo->pin_count = 0; 514 ttm_bo_del_from_lru(bo); 515 ttm_bo_add_mem_to_lru(bo, &bo->mem); 516 } 517 518 kref_init(&bo->kref); 519 list_add_tail(&bo->ddestroy, &bdev->ddestroy); 520 spin_unlock(&ttm_bo_glob.lru_lock); 521 522 schedule_delayed_work(&bdev->wq, 523 ((HZ / 100) < 1) ? 1 : HZ / 100); 524 return; 525 } 526 527 spin_lock(&ttm_bo_glob.lru_lock); 528 ttm_bo_del_from_lru(bo); 529 list_del(&bo->ddestroy); 530 spin_unlock(&ttm_bo_glob.lru_lock); 531 532 ttm_bo_cleanup_memtype_use(bo); 533 dma_resv_unlock(bo->base.resv); 534 535 atomic_dec(&ttm_bo_glob.bo_count); 536 dma_fence_put(bo->moving); 537 if (!ttm_bo_uses_embedded_gem_object(bo)) 538 dma_resv_fini(&bo->base._resv); 539 bo->destroy(bo); 540 ttm_mem_global_free(&ttm_mem_glob, acc_size); 541 } 542 543 void ttm_bo_put(struct ttm_buffer_object *bo) 544 { 545 kref_put(&bo->kref, ttm_bo_release); 546 } 547 EXPORT_SYMBOL(ttm_bo_put); 548 549 int ttm_bo_lock_delayed_workqueue(struct ttm_bo_device *bdev) 550 { 551 return cancel_delayed_work_sync(&bdev->wq); 552 } 553 EXPORT_SYMBOL(ttm_bo_lock_delayed_workqueue); 554 555 void ttm_bo_unlock_delayed_workqueue(struct ttm_bo_device *bdev, int resched) 556 { 557 if (resched) 558 schedule_delayed_work(&bdev->wq, 559 ((HZ / 100) < 1) ? 1 : HZ / 100); 560 } 561 EXPORT_SYMBOL(ttm_bo_unlock_delayed_workqueue); 562 563 static int ttm_bo_evict(struct ttm_buffer_object *bo, 564 struct ttm_operation_ctx *ctx) 565 { 566 struct ttm_bo_device *bdev = bo->bdev; 567 struct ttm_resource evict_mem; 568 struct ttm_placement placement; 569 int ret = 0; 570 571 dma_resv_assert_held(bo->base.resv); 572 573 placement.num_placement = 0; 574 placement.num_busy_placement = 0; 575 bdev->driver->evict_flags(bo, &placement); 576 577 if (!placement.num_placement && !placement.num_busy_placement) { 578 ttm_bo_wait(bo, false, false); 579 580 ttm_bo_cleanup_memtype_use(bo); 581 return ttm_tt_create(bo, false); 582 } 583 584 evict_mem = bo->mem; 585 evict_mem.mm_node = NULL; 586 evict_mem.bus.offset = 0; 587 evict_mem.bus.addr = NULL; 588 589 ret = ttm_bo_mem_space(bo, &placement, &evict_mem, ctx); 590 if (ret) { 591 if (ret != -ERESTARTSYS) { 592 pr_err("Failed to find memory space for buffer 0x%p eviction\n", 593 bo); 594 ttm_bo_mem_space_debug(bo, &placement); 595 } 596 goto out; 597 } 598 599 ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, ctx); 600 if (unlikely(ret)) { 601 if (ret != -ERESTARTSYS) 602 pr_err("Buffer eviction failed\n"); 603 ttm_resource_free(bo, &evict_mem); 604 } 605 out: 606 return ret; 607 } 608 609 bool ttm_bo_eviction_valuable(struct ttm_buffer_object *bo, 610 const struct ttm_place *place) 611 { 612 /* Don't evict this BO if it's outside of the 613 * requested placement range 614 */ 615 if (place->fpfn >= (bo->mem.start + bo->mem.num_pages) || 616 (place->lpfn && place->lpfn <= bo->mem.start)) 617 return false; 618 619 return true; 620 } 621 EXPORT_SYMBOL(ttm_bo_eviction_valuable); 622 623 /** 624 * Check the target bo is allowable to be evicted or swapout, including cases: 625 * 626 * a. if share same reservation object with ctx->resv, have assumption 627 * reservation objects should already be locked, so not lock again and 628 * return true directly when either the opreation allow_reserved_eviction 629 * or the target bo already is in delayed free list; 630 * 631 * b. Otherwise, trylock it. 632 */ 633 static bool ttm_bo_evict_swapout_allowable(struct ttm_buffer_object *bo, 634 struct ttm_operation_ctx *ctx, bool *locked, bool *busy) 635 { 636 bool ret = false; 637 638 if (bo->base.resv == ctx->resv) { 639 dma_resv_assert_held(bo->base.resv); 640 if (ctx->allow_res_evict) 641 ret = true; 642 *locked = false; 643 if (busy) 644 *busy = false; 645 } else { 646 ret = dma_resv_trylock(bo->base.resv); 647 *locked = ret; 648 if (busy) 649 *busy = !ret; 650 } 651 652 return ret; 653 } 654 655 /** 656 * ttm_mem_evict_wait_busy - wait for a busy BO to become available 657 * 658 * @busy_bo: BO which couldn't be locked with trylock 659 * @ctx: operation context 660 * @ticket: acquire ticket 661 * 662 * Try to lock a busy buffer object to avoid failing eviction. 663 */ 664 static int ttm_mem_evict_wait_busy(struct ttm_buffer_object *busy_bo, 665 struct ttm_operation_ctx *ctx, 666 struct ww_acquire_ctx *ticket) 667 { 668 int r; 669 670 if (!busy_bo || !ticket) 671 return -EBUSY; 672 673 if (ctx->interruptible) 674 r = dma_resv_lock_interruptible(busy_bo->base.resv, 675 ticket); 676 else 677 r = dma_resv_lock(busy_bo->base.resv, ticket); 678 679 /* 680 * TODO: It would be better to keep the BO locked until allocation is at 681 * least tried one more time, but that would mean a much larger rework 682 * of TTM. 683 */ 684 if (!r) 685 dma_resv_unlock(busy_bo->base.resv); 686 687 return r == -EDEADLK ? -EBUSY : r; 688 } 689 690 int ttm_mem_evict_first(struct ttm_bo_device *bdev, 691 struct ttm_resource_manager *man, 692 const struct ttm_place *place, 693 struct ttm_operation_ctx *ctx, 694 struct ww_acquire_ctx *ticket) 695 { 696 struct ttm_buffer_object *bo = NULL, *busy_bo = NULL; 697 bool locked = false; 698 unsigned i; 699 int ret; 700 701 spin_lock(&ttm_bo_glob.lru_lock); 702 for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) { 703 list_for_each_entry(bo, &man->lru[i], lru) { 704 bool busy; 705 706 if (!ttm_bo_evict_swapout_allowable(bo, ctx, &locked, 707 &busy)) { 708 if (busy && !busy_bo && ticket != 709 dma_resv_locking_ctx(bo->base.resv)) 710 busy_bo = bo; 711 continue; 712 } 713 714 if (place && !bdev->driver->eviction_valuable(bo, 715 place)) { 716 if (locked) 717 dma_resv_unlock(bo->base.resv); 718 continue; 719 } 720 if (!ttm_bo_get_unless_zero(bo)) { 721 if (locked) 722 dma_resv_unlock(bo->base.resv); 723 continue; 724 } 725 break; 726 } 727 728 /* If the inner loop terminated early, we have our candidate */ 729 if (&bo->lru != &man->lru[i]) 730 break; 731 732 bo = NULL; 733 } 734 735 if (!bo) { 736 if (busy_bo && !ttm_bo_get_unless_zero(busy_bo)) 737 busy_bo = NULL; 738 spin_unlock(&ttm_bo_glob.lru_lock); 739 ret = ttm_mem_evict_wait_busy(busy_bo, ctx, ticket); 740 if (busy_bo) 741 ttm_bo_put(busy_bo); 742 return ret; 743 } 744 745 if (bo->deleted) { 746 ret = ttm_bo_cleanup_refs(bo, ctx->interruptible, 747 ctx->no_wait_gpu, locked); 748 ttm_bo_put(bo); 749 return ret; 750 } 751 752 spin_unlock(&ttm_bo_glob.lru_lock); 753 754 ret = ttm_bo_evict(bo, ctx); 755 if (locked) 756 ttm_bo_unreserve(bo); 757 758 ttm_bo_put(bo); 759 return ret; 760 } 761 762 /** 763 * Add the last move fence to the BO and reserve a new shared slot. 764 */ 765 static int ttm_bo_add_move_fence(struct ttm_buffer_object *bo, 766 struct ttm_resource_manager *man, 767 struct ttm_resource *mem, 768 bool no_wait_gpu) 769 { 770 struct dma_fence *fence; 771 int ret; 772 773 spin_lock(&man->move_lock); 774 fence = dma_fence_get(man->move); 775 spin_unlock(&man->move_lock); 776 777 if (!fence) 778 return 0; 779 780 if (no_wait_gpu) { 781 dma_fence_put(fence); 782 return -EBUSY; 783 } 784 785 dma_resv_add_shared_fence(bo->base.resv, fence); 786 787 ret = dma_resv_reserve_shared(bo->base.resv, 1); 788 if (unlikely(ret)) { 789 dma_fence_put(fence); 790 return ret; 791 } 792 793 dma_fence_put(bo->moving); 794 bo->moving = fence; 795 return 0; 796 } 797 798 /** 799 * Repeatedly evict memory from the LRU for @mem_type until we create enough 800 * space, or we've evicted everything and there isn't enough space. 801 */ 802 static int ttm_bo_mem_force_space(struct ttm_buffer_object *bo, 803 const struct ttm_place *place, 804 struct ttm_resource *mem, 805 struct ttm_operation_ctx *ctx) 806 { 807 struct ttm_bo_device *bdev = bo->bdev; 808 struct ttm_resource_manager *man = ttm_manager_type(bdev, mem->mem_type); 809 struct ww_acquire_ctx *ticket; 810 int ret; 811 812 ticket = dma_resv_locking_ctx(bo->base.resv); 813 do { 814 ret = ttm_resource_alloc(bo, place, mem); 815 if (likely(!ret)) 816 break; 817 if (unlikely(ret != -ENOSPC)) 818 return ret; 819 ret = ttm_mem_evict_first(bdev, man, place, ctx, 820 ticket); 821 if (unlikely(ret != 0)) 822 return ret; 823 } while (1); 824 825 return ttm_bo_add_move_fence(bo, man, mem, ctx->no_wait_gpu); 826 } 827 828 /** 829 * ttm_bo_mem_placement - check if placement is compatible 830 * @bo: BO to find memory for 831 * @place: where to search 832 * @mem: the memory object to fill in 833 * 834 * Check if placement is compatible and fill in mem structure. 835 * Returns -EBUSY if placement won't work or negative error code. 836 * 0 when placement can be used. 837 */ 838 static int ttm_bo_mem_placement(struct ttm_buffer_object *bo, 839 const struct ttm_place *place, 840 struct ttm_resource *mem) 841 { 842 struct ttm_bo_device *bdev = bo->bdev; 843 struct ttm_resource_manager *man; 844 845 man = ttm_manager_type(bdev, place->mem_type); 846 if (!man || !ttm_resource_manager_used(man)) 847 return -EBUSY; 848 849 mem->mem_type = place->mem_type; 850 mem->placement = place->flags; 851 852 spin_lock(&ttm_bo_glob.lru_lock); 853 ttm_bo_del_from_lru(bo); 854 ttm_bo_add_mem_to_lru(bo, mem); 855 spin_unlock(&ttm_bo_glob.lru_lock); 856 857 return 0; 858 } 859 860 /** 861 * Creates space for memory region @mem according to its type. 862 * 863 * This function first searches for free space in compatible memory types in 864 * the priority order defined by the driver. If free space isn't found, then 865 * ttm_bo_mem_force_space is attempted in priority order to evict and find 866 * space. 867 */ 868 int ttm_bo_mem_space(struct ttm_buffer_object *bo, 869 struct ttm_placement *placement, 870 struct ttm_resource *mem, 871 struct ttm_operation_ctx *ctx) 872 { 873 struct ttm_bo_device *bdev = bo->bdev; 874 bool type_found = false; 875 int i, ret; 876 877 ret = dma_resv_reserve_shared(bo->base.resv, 1); 878 if (unlikely(ret)) 879 return ret; 880 881 for (i = 0; i < placement->num_placement; ++i) { 882 const struct ttm_place *place = &placement->placement[i]; 883 struct ttm_resource_manager *man; 884 885 ret = ttm_bo_mem_placement(bo, place, mem); 886 if (ret) 887 continue; 888 889 type_found = true; 890 ret = ttm_resource_alloc(bo, place, mem); 891 if (ret == -ENOSPC) 892 continue; 893 if (unlikely(ret)) 894 goto error; 895 896 man = ttm_manager_type(bdev, mem->mem_type); 897 ret = ttm_bo_add_move_fence(bo, man, mem, ctx->no_wait_gpu); 898 if (unlikely(ret)) { 899 ttm_resource_free(bo, mem); 900 if (ret == -EBUSY) 901 continue; 902 903 goto error; 904 } 905 return 0; 906 } 907 908 for (i = 0; i < placement->num_busy_placement; ++i) { 909 const struct ttm_place *place = &placement->busy_placement[i]; 910 911 ret = ttm_bo_mem_placement(bo, place, mem); 912 if (ret) 913 continue; 914 915 type_found = true; 916 ret = ttm_bo_mem_force_space(bo, place, mem, ctx); 917 if (likely(!ret)) 918 return 0; 919 920 if (ret && ret != -EBUSY) 921 goto error; 922 } 923 924 ret = -ENOMEM; 925 if (!type_found) { 926 pr_err(TTM_PFX "No compatible memory type found\n"); 927 ret = -EINVAL; 928 } 929 930 error: 931 if (bo->mem.mem_type == TTM_PL_SYSTEM && !list_empty(&bo->lru)) { 932 ttm_bo_move_to_lru_tail_unlocked(bo); 933 } 934 935 return ret; 936 } 937 EXPORT_SYMBOL(ttm_bo_mem_space); 938 939 static int ttm_bo_move_buffer(struct ttm_buffer_object *bo, 940 struct ttm_placement *placement, 941 struct ttm_operation_ctx *ctx) 942 { 943 int ret = 0; 944 struct ttm_resource mem; 945 946 dma_resv_assert_held(bo->base.resv); 947 948 mem.num_pages = bo->num_pages; 949 mem.size = mem.num_pages << PAGE_SHIFT; 950 mem.page_alignment = bo->mem.page_alignment; 951 mem.bus.offset = 0; 952 mem.bus.addr = NULL; 953 mem.mm_node = NULL; 954 955 /* 956 * Determine where to move the buffer. 957 */ 958 ret = ttm_bo_mem_space(bo, placement, &mem, ctx); 959 if (ret) 960 goto out_unlock; 961 ret = ttm_bo_handle_move_mem(bo, &mem, false, ctx); 962 out_unlock: 963 if (ret) 964 ttm_resource_free(bo, &mem); 965 return ret; 966 } 967 968 static bool ttm_bo_places_compat(const struct ttm_place *places, 969 unsigned num_placement, 970 struct ttm_resource *mem, 971 uint32_t *new_flags) 972 { 973 unsigned i; 974 975 for (i = 0; i < num_placement; i++) { 976 const struct ttm_place *heap = &places[i]; 977 978 if ((mem->start < heap->fpfn || 979 (heap->lpfn != 0 && (mem->start + mem->num_pages) > heap->lpfn))) 980 continue; 981 982 *new_flags = heap->flags; 983 if ((mem->mem_type == heap->mem_type) && 984 (!(*new_flags & TTM_PL_FLAG_CONTIGUOUS) || 985 (mem->placement & TTM_PL_FLAG_CONTIGUOUS))) 986 return true; 987 } 988 return false; 989 } 990 991 bool ttm_bo_mem_compat(struct ttm_placement *placement, 992 struct ttm_resource *mem, 993 uint32_t *new_flags) 994 { 995 if (ttm_bo_places_compat(placement->placement, placement->num_placement, 996 mem, new_flags)) 997 return true; 998 999 if ((placement->busy_placement != placement->placement || 1000 placement->num_busy_placement > placement->num_placement) && 1001 ttm_bo_places_compat(placement->busy_placement, 1002 placement->num_busy_placement, 1003 mem, new_flags)) 1004 return true; 1005 1006 return false; 1007 } 1008 EXPORT_SYMBOL(ttm_bo_mem_compat); 1009 1010 int ttm_bo_validate(struct ttm_buffer_object *bo, 1011 struct ttm_placement *placement, 1012 struct ttm_operation_ctx *ctx) 1013 { 1014 int ret; 1015 uint32_t new_flags; 1016 1017 dma_resv_assert_held(bo->base.resv); 1018 1019 /* 1020 * Remove the backing store if no placement is given. 1021 */ 1022 if (!placement->num_placement && !placement->num_busy_placement) { 1023 ret = ttm_bo_pipeline_gutting(bo); 1024 if (ret) 1025 return ret; 1026 1027 return ttm_tt_create(bo, false); 1028 } 1029 1030 /* 1031 * Check whether we need to move buffer. 1032 */ 1033 if (!ttm_bo_mem_compat(placement, &bo->mem, &new_flags)) { 1034 ret = ttm_bo_move_buffer(bo, placement, ctx); 1035 if (ret) 1036 return ret; 1037 } 1038 /* 1039 * We might need to add a TTM. 1040 */ 1041 if (bo->mem.mem_type == TTM_PL_SYSTEM) { 1042 ret = ttm_tt_create(bo, true); 1043 if (ret) 1044 return ret; 1045 } 1046 return 0; 1047 } 1048 EXPORT_SYMBOL(ttm_bo_validate); 1049 1050 int ttm_bo_init_reserved(struct ttm_bo_device *bdev, 1051 struct ttm_buffer_object *bo, 1052 unsigned long size, 1053 enum ttm_bo_type type, 1054 struct ttm_placement *placement, 1055 uint32_t page_alignment, 1056 struct ttm_operation_ctx *ctx, 1057 size_t acc_size, 1058 struct sg_table *sg, 1059 struct dma_resv *resv, 1060 void (*destroy) (struct ttm_buffer_object *)) 1061 { 1062 struct ttm_mem_global *mem_glob = &ttm_mem_glob; 1063 int ret = 0; 1064 unsigned long num_pages; 1065 bool locked; 1066 1067 ret = ttm_mem_global_alloc(mem_glob, acc_size, ctx); 1068 if (ret) { 1069 pr_err("Out of kernel memory\n"); 1070 if (destroy) 1071 (*destroy)(bo); 1072 else 1073 kfree(bo); 1074 return -ENOMEM; 1075 } 1076 1077 num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 1078 if (num_pages == 0) { 1079 pr_err("Illegal buffer object size\n"); 1080 if (destroy) 1081 (*destroy)(bo); 1082 else 1083 kfree(bo); 1084 ttm_mem_global_free(mem_glob, acc_size); 1085 return -EINVAL; 1086 } 1087 bo->destroy = destroy ? destroy : ttm_bo_default_destroy; 1088 1089 kref_init(&bo->kref); 1090 INIT_LIST_HEAD(&bo->lru); 1091 INIT_LIST_HEAD(&bo->ddestroy); 1092 INIT_LIST_HEAD(&bo->swap); 1093 bo->bdev = bdev; 1094 bo->type = type; 1095 bo->num_pages = num_pages; 1096 bo->mem.size = num_pages << PAGE_SHIFT; 1097 bo->mem.mem_type = TTM_PL_SYSTEM; 1098 bo->mem.num_pages = bo->num_pages; 1099 bo->mem.mm_node = NULL; 1100 bo->mem.page_alignment = page_alignment; 1101 bo->mem.bus.offset = 0; 1102 bo->mem.bus.addr = NULL; 1103 bo->moving = NULL; 1104 bo->mem.placement = 0; 1105 bo->acc_size = acc_size; 1106 bo->pin_count = 0; 1107 bo->sg = sg; 1108 if (resv) { 1109 bo->base.resv = resv; 1110 dma_resv_assert_held(bo->base.resv); 1111 } else { 1112 bo->base.resv = &bo->base._resv; 1113 } 1114 if (!ttm_bo_uses_embedded_gem_object(bo)) { 1115 /* 1116 * bo.gem is not initialized, so we have to setup the 1117 * struct elements we want use regardless. 1118 */ 1119 dma_resv_init(&bo->base._resv); 1120 drm_vma_node_reset(&bo->base.vma_node); 1121 } 1122 atomic_inc(&ttm_bo_glob.bo_count); 1123 1124 /* 1125 * For ttm_bo_type_device buffers, allocate 1126 * address space from the device. 1127 */ 1128 if (bo->type == ttm_bo_type_device || 1129 bo->type == ttm_bo_type_sg) 1130 ret = drm_vma_offset_add(bdev->vma_manager, &bo->base.vma_node, 1131 bo->mem.num_pages); 1132 1133 /* passed reservation objects should already be locked, 1134 * since otherwise lockdep will be angered in radeon. 1135 */ 1136 if (!resv) { 1137 locked = dma_resv_trylock(bo->base.resv); 1138 WARN_ON(!locked); 1139 } 1140 1141 if (likely(!ret)) 1142 ret = ttm_bo_validate(bo, placement, ctx); 1143 1144 if (unlikely(ret)) { 1145 if (!resv) 1146 ttm_bo_unreserve(bo); 1147 1148 ttm_bo_put(bo); 1149 return ret; 1150 } 1151 1152 ttm_bo_move_to_lru_tail_unlocked(bo); 1153 1154 return ret; 1155 } 1156 EXPORT_SYMBOL(ttm_bo_init_reserved); 1157 1158 int ttm_bo_init(struct ttm_bo_device *bdev, 1159 struct ttm_buffer_object *bo, 1160 unsigned long size, 1161 enum ttm_bo_type type, 1162 struct ttm_placement *placement, 1163 uint32_t page_alignment, 1164 bool interruptible, 1165 size_t acc_size, 1166 struct sg_table *sg, 1167 struct dma_resv *resv, 1168 void (*destroy) (struct ttm_buffer_object *)) 1169 { 1170 struct ttm_operation_ctx ctx = { interruptible, false }; 1171 int ret; 1172 1173 ret = ttm_bo_init_reserved(bdev, bo, size, type, placement, 1174 page_alignment, &ctx, acc_size, 1175 sg, resv, destroy); 1176 if (ret) 1177 return ret; 1178 1179 if (!resv) 1180 ttm_bo_unreserve(bo); 1181 1182 return 0; 1183 } 1184 EXPORT_SYMBOL(ttm_bo_init); 1185 1186 size_t ttm_bo_dma_acc_size(struct ttm_bo_device *bdev, 1187 unsigned long bo_size, 1188 unsigned struct_size) 1189 { 1190 unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT; 1191 size_t size = 0; 1192 1193 size += ttm_round_pot(struct_size); 1194 size += ttm_round_pot(npages * (2*sizeof(void *) + sizeof(dma_addr_t))); 1195 size += ttm_round_pot(sizeof(struct ttm_tt)); 1196 return size; 1197 } 1198 EXPORT_SYMBOL(ttm_bo_dma_acc_size); 1199 1200 static void ttm_bo_global_kobj_release(struct kobject *kobj) 1201 { 1202 struct ttm_bo_global *glob = 1203 container_of(kobj, struct ttm_bo_global, kobj); 1204 1205 __free_page(glob->dummy_read_page); 1206 } 1207 1208 static void ttm_bo_global_release(void) 1209 { 1210 struct ttm_bo_global *glob = &ttm_bo_glob; 1211 1212 mutex_lock(&ttm_global_mutex); 1213 if (--ttm_bo_glob_use_count > 0) 1214 goto out; 1215 1216 kobject_del(&glob->kobj); 1217 kobject_put(&glob->kobj); 1218 ttm_mem_global_release(&ttm_mem_glob); 1219 memset(glob, 0, sizeof(*glob)); 1220 out: 1221 mutex_unlock(&ttm_global_mutex); 1222 } 1223 1224 static int ttm_bo_global_init(void) 1225 { 1226 struct ttm_bo_global *glob = &ttm_bo_glob; 1227 int ret = 0; 1228 unsigned i; 1229 1230 mutex_lock(&ttm_global_mutex); 1231 if (++ttm_bo_glob_use_count > 1) 1232 goto out; 1233 1234 ret = ttm_mem_global_init(&ttm_mem_glob); 1235 if (ret) 1236 goto out; 1237 1238 spin_lock_init(&glob->lru_lock); 1239 glob->dummy_read_page = alloc_page(__GFP_ZERO | GFP_DMA32); 1240 1241 if (unlikely(glob->dummy_read_page == NULL)) { 1242 ret = -ENOMEM; 1243 goto out; 1244 } 1245 1246 for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) 1247 INIT_LIST_HEAD(&glob->swap_lru[i]); 1248 INIT_LIST_HEAD(&glob->device_list); 1249 atomic_set(&glob->bo_count, 0); 1250 1251 ret = kobject_init_and_add( 1252 &glob->kobj, &ttm_bo_glob_kobj_type, ttm_get_kobj(), "buffer_objects"); 1253 if (unlikely(ret != 0)) 1254 kobject_put(&glob->kobj); 1255 out: 1256 mutex_unlock(&ttm_global_mutex); 1257 return ret; 1258 } 1259 1260 int ttm_bo_device_release(struct ttm_bo_device *bdev) 1261 { 1262 struct ttm_bo_global *glob = &ttm_bo_glob; 1263 int ret = 0; 1264 unsigned i; 1265 struct ttm_resource_manager *man; 1266 1267 man = ttm_manager_type(bdev, TTM_PL_SYSTEM); 1268 ttm_resource_manager_set_used(man, false); 1269 ttm_set_driver_manager(bdev, TTM_PL_SYSTEM, NULL); 1270 1271 mutex_lock(&ttm_global_mutex); 1272 list_del(&bdev->device_list); 1273 mutex_unlock(&ttm_global_mutex); 1274 1275 cancel_delayed_work_sync(&bdev->wq); 1276 1277 if (ttm_bo_delayed_delete(bdev, true)) 1278 pr_debug("Delayed destroy list was clean\n"); 1279 1280 spin_lock(&glob->lru_lock); 1281 for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) 1282 if (list_empty(&man->lru[0])) 1283 pr_debug("Swap list %d was clean\n", i); 1284 spin_unlock(&glob->lru_lock); 1285 1286 ttm_pool_fini(&bdev->pool); 1287 1288 if (!ret) 1289 ttm_bo_global_release(); 1290 1291 return ret; 1292 } 1293 EXPORT_SYMBOL(ttm_bo_device_release); 1294 1295 static void ttm_bo_init_sysman(struct ttm_bo_device *bdev) 1296 { 1297 struct ttm_resource_manager *man = &bdev->sysman; 1298 1299 /* 1300 * Initialize the system memory buffer type. 1301 * Other types need to be driver / IOCTL initialized. 1302 */ 1303 man->use_tt = true; 1304 1305 ttm_resource_manager_init(man, 0); 1306 ttm_set_driver_manager(bdev, TTM_PL_SYSTEM, man); 1307 ttm_resource_manager_set_used(man, true); 1308 } 1309 1310 int ttm_bo_device_init(struct ttm_bo_device *bdev, 1311 struct ttm_bo_driver *driver, 1312 struct device *dev, 1313 struct address_space *mapping, 1314 struct drm_vma_offset_manager *vma_manager, 1315 bool use_dma_alloc, bool use_dma32) 1316 { 1317 struct ttm_bo_global *glob = &ttm_bo_glob; 1318 int ret; 1319 1320 if (WARN_ON(vma_manager == NULL)) 1321 return -EINVAL; 1322 1323 ret = ttm_bo_global_init(); 1324 if (ret) 1325 return ret; 1326 1327 bdev->driver = driver; 1328 1329 ttm_bo_init_sysman(bdev); 1330 ttm_pool_init(&bdev->pool, dev, use_dma_alloc, use_dma32); 1331 1332 bdev->vma_manager = vma_manager; 1333 INIT_DELAYED_WORK(&bdev->wq, ttm_bo_delayed_workqueue); 1334 INIT_LIST_HEAD(&bdev->ddestroy); 1335 bdev->dev_mapping = mapping; 1336 mutex_lock(&ttm_global_mutex); 1337 list_add_tail(&bdev->device_list, &glob->device_list); 1338 mutex_unlock(&ttm_global_mutex); 1339 1340 return 0; 1341 } 1342 EXPORT_SYMBOL(ttm_bo_device_init); 1343 1344 /* 1345 * buffer object vm functions. 1346 */ 1347 1348 void ttm_bo_unmap_virtual(struct ttm_buffer_object *bo) 1349 { 1350 struct ttm_bo_device *bdev = bo->bdev; 1351 1352 drm_vma_node_unmap(&bo->base.vma_node, bdev->dev_mapping); 1353 ttm_mem_io_free(bdev, &bo->mem); 1354 } 1355 EXPORT_SYMBOL(ttm_bo_unmap_virtual); 1356 1357 int ttm_bo_wait(struct ttm_buffer_object *bo, 1358 bool interruptible, bool no_wait) 1359 { 1360 long timeout = 15 * HZ; 1361 1362 if (no_wait) { 1363 if (dma_resv_test_signaled_rcu(bo->base.resv, true)) 1364 return 0; 1365 else 1366 return -EBUSY; 1367 } 1368 1369 timeout = dma_resv_wait_timeout_rcu(bo->base.resv, true, 1370 interruptible, timeout); 1371 if (timeout < 0) 1372 return timeout; 1373 1374 if (timeout == 0) 1375 return -EBUSY; 1376 1377 dma_resv_add_excl_fence(bo->base.resv, NULL); 1378 return 0; 1379 } 1380 EXPORT_SYMBOL(ttm_bo_wait); 1381 1382 /** 1383 * A buffer object shrink method that tries to swap out the first 1384 * buffer object on the bo_global::swap_lru list. 1385 */ 1386 int ttm_bo_swapout(struct ttm_operation_ctx *ctx) 1387 { 1388 struct ttm_bo_global *glob = &ttm_bo_glob; 1389 struct ttm_buffer_object *bo; 1390 int ret = -EBUSY; 1391 bool locked; 1392 unsigned i; 1393 1394 spin_lock(&glob->lru_lock); 1395 for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) { 1396 list_for_each_entry(bo, &glob->swap_lru[i], swap) { 1397 if (!ttm_bo_evict_swapout_allowable(bo, ctx, &locked, 1398 NULL)) 1399 continue; 1400 1401 if (!ttm_bo_get_unless_zero(bo)) { 1402 if (locked) 1403 dma_resv_unlock(bo->base.resv); 1404 continue; 1405 } 1406 1407 ret = 0; 1408 break; 1409 } 1410 if (!ret) 1411 break; 1412 } 1413 1414 if (ret) { 1415 spin_unlock(&glob->lru_lock); 1416 return ret; 1417 } 1418 1419 if (bo->deleted) { 1420 ret = ttm_bo_cleanup_refs(bo, false, false, locked); 1421 ttm_bo_put(bo); 1422 return ret; 1423 } 1424 1425 ttm_bo_del_from_lru(bo); 1426 spin_unlock(&glob->lru_lock); 1427 1428 /** 1429 * Move to system cached 1430 */ 1431 1432 if (bo->mem.mem_type != TTM_PL_SYSTEM) { 1433 struct ttm_operation_ctx ctx = { false, false }; 1434 struct ttm_resource evict_mem; 1435 1436 evict_mem = bo->mem; 1437 evict_mem.mm_node = NULL; 1438 evict_mem.placement = 0; 1439 evict_mem.mem_type = TTM_PL_SYSTEM; 1440 1441 ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, &ctx); 1442 if (unlikely(ret != 0)) 1443 goto out; 1444 } 1445 1446 /** 1447 * Make sure BO is idle. 1448 */ 1449 1450 ret = ttm_bo_wait(bo, false, false); 1451 if (unlikely(ret != 0)) 1452 goto out; 1453 1454 ttm_bo_unmap_virtual(bo); 1455 1456 /** 1457 * Swap out. Buffer will be swapped in again as soon as 1458 * anyone tries to access a ttm page. 1459 */ 1460 1461 if (bo->bdev->driver->swap_notify) 1462 bo->bdev->driver->swap_notify(bo); 1463 1464 ret = ttm_tt_swapout(bo->bdev, bo->ttm); 1465 out: 1466 1467 /** 1468 * 1469 * Unreserve without putting on LRU to avoid swapping out an 1470 * already swapped buffer. 1471 */ 1472 if (locked) 1473 dma_resv_unlock(bo->base.resv); 1474 ttm_bo_put(bo); 1475 return ret; 1476 } 1477 EXPORT_SYMBOL(ttm_bo_swapout); 1478 1479 void ttm_bo_tt_destroy(struct ttm_buffer_object *bo) 1480 { 1481 if (bo->ttm == NULL) 1482 return; 1483 1484 ttm_tt_destroy(bo->bdev, bo->ttm); 1485 bo->ttm = NULL; 1486 } 1487 1488