1 /* SPDX-License-Identifier: GPL-2.0 OR MIT */ 2 /************************************************************************** 3 * 4 * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA 5 * All Rights Reserved. 6 * 7 * Permission is hereby granted, free of charge, to any person obtaining a 8 * copy of this software and associated documentation files (the 9 * "Software"), to deal in the Software without restriction, including 10 * without limitation the rights to use, copy, modify, merge, publish, 11 * distribute, sub license, and/or sell copies of the Software, and to 12 * permit persons to whom the Software is furnished to do so, subject to 13 * the following conditions: 14 * 15 * The above copyright notice and this permission notice (including the 16 * next paragraph) shall be included in all copies or substantial portions 17 * of the Software. 18 * 19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 21 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 22 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 23 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 24 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 25 * USE OR OTHER DEALINGS IN THE SOFTWARE. 26 * 27 **************************************************************************/ 28 /* 29 * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com> 30 */ 31 32 #define pr_fmt(fmt) "[TTM] " fmt 33 34 #include <drm/ttm/ttm_module.h> 35 #include <drm/ttm/ttm_bo_driver.h> 36 #include <drm/ttm/ttm_placement.h> 37 #include <linux/jiffies.h> 38 #include <linux/slab.h> 39 #include <linux/sched.h> 40 #include <linux/mm.h> 41 #include <linux/file.h> 42 #include <linux/module.h> 43 #include <linux/atomic.h> 44 #include <linux/dma-resv.h> 45 46 static void ttm_bo_global_kobj_release(struct kobject *kobj); 47 48 /** 49 * ttm_global_mutex - protecting the global BO state 50 */ 51 DEFINE_MUTEX(ttm_global_mutex); 52 unsigned ttm_bo_glob_use_count; 53 struct ttm_bo_global ttm_bo_glob; 54 EXPORT_SYMBOL(ttm_bo_glob); 55 56 static struct attribute ttm_bo_count = { 57 .name = "bo_count", 58 .mode = S_IRUGO 59 }; 60 61 /* default destructor */ 62 static void ttm_bo_default_destroy(struct ttm_buffer_object *bo) 63 { 64 kfree(bo); 65 } 66 67 static inline int ttm_mem_type_from_place(const struct ttm_place *place, 68 uint32_t *mem_type) 69 { 70 int pos; 71 72 pos = ffs(place->flags & TTM_PL_MASK_MEM); 73 if (unlikely(!pos)) 74 return -EINVAL; 75 76 *mem_type = pos - 1; 77 return 0; 78 } 79 80 static void ttm_mem_type_debug(struct ttm_bo_device *bdev, struct drm_printer *p, 81 int mem_type) 82 { 83 struct ttm_mem_type_manager *man = &bdev->man[mem_type]; 84 85 drm_printf(p, " has_type: %d\n", man->has_type); 86 drm_printf(p, " use_type: %d\n", man->use_type); 87 drm_printf(p, " flags: 0x%08X\n", man->flags); 88 drm_printf(p, " size: %llu\n", man->size); 89 drm_printf(p, " available_caching: 0x%08X\n", man->available_caching); 90 drm_printf(p, " default_caching: 0x%08X\n", man->default_caching); 91 if (mem_type != TTM_PL_SYSTEM) 92 (*man->func->debug)(man, p); 93 } 94 95 static void ttm_bo_mem_space_debug(struct ttm_buffer_object *bo, 96 struct ttm_placement *placement) 97 { 98 struct drm_printer p = drm_debug_printer(TTM_PFX); 99 int i, ret, mem_type; 100 101 drm_printf(&p, "No space for %p (%lu pages, %luK, %luM)\n", 102 bo, bo->mem.num_pages, bo->mem.size >> 10, 103 bo->mem.size >> 20); 104 for (i = 0; i < placement->num_placement; i++) { 105 ret = ttm_mem_type_from_place(&placement->placement[i], 106 &mem_type); 107 if (ret) 108 return; 109 drm_printf(&p, " placement[%d]=0x%08X (%d)\n", 110 i, placement->placement[i].flags, mem_type); 111 ttm_mem_type_debug(bo->bdev, &p, mem_type); 112 } 113 } 114 115 static ssize_t ttm_bo_global_show(struct kobject *kobj, 116 struct attribute *attr, 117 char *buffer) 118 { 119 struct ttm_bo_global *glob = 120 container_of(kobj, struct ttm_bo_global, kobj); 121 122 return snprintf(buffer, PAGE_SIZE, "%d\n", 123 atomic_read(&glob->bo_count)); 124 } 125 126 static struct attribute *ttm_bo_global_attrs[] = { 127 &ttm_bo_count, 128 NULL 129 }; 130 131 static const struct sysfs_ops ttm_bo_global_ops = { 132 .show = &ttm_bo_global_show 133 }; 134 135 static struct kobj_type ttm_bo_glob_kobj_type = { 136 .release = &ttm_bo_global_kobj_release, 137 .sysfs_ops = &ttm_bo_global_ops, 138 .default_attrs = ttm_bo_global_attrs 139 }; 140 141 142 static inline uint32_t ttm_bo_type_flags(unsigned type) 143 { 144 return 1 << (type); 145 } 146 147 static void ttm_bo_add_mem_to_lru(struct ttm_buffer_object *bo, 148 struct ttm_mem_reg *mem) 149 { 150 struct ttm_bo_device *bdev = bo->bdev; 151 struct ttm_mem_type_manager *man; 152 153 if (!list_empty(&bo->lru)) 154 return; 155 156 if (mem->placement & TTM_PL_FLAG_NO_EVICT) 157 return; 158 159 man = &bdev->man[mem->mem_type]; 160 list_add_tail(&bo->lru, &man->lru[bo->priority]); 161 162 if (!(man->flags & TTM_MEMTYPE_FLAG_FIXED) && bo->ttm && 163 !(bo->ttm->page_flags & (TTM_PAGE_FLAG_SG | 164 TTM_PAGE_FLAG_SWAPPED))) { 165 list_add_tail(&bo->swap, &ttm_bo_glob.swap_lru[bo->priority]); 166 } 167 } 168 169 static void ttm_bo_del_from_lru(struct ttm_buffer_object *bo) 170 { 171 struct ttm_bo_device *bdev = bo->bdev; 172 bool notify = false; 173 174 if (!list_empty(&bo->swap)) { 175 list_del_init(&bo->swap); 176 notify = true; 177 } 178 if (!list_empty(&bo->lru)) { 179 list_del_init(&bo->lru); 180 notify = true; 181 } 182 183 if (notify && bdev->driver->del_from_lru_notify) 184 bdev->driver->del_from_lru_notify(bo); 185 } 186 187 static void ttm_bo_bulk_move_set_pos(struct ttm_lru_bulk_move_pos *pos, 188 struct ttm_buffer_object *bo) 189 { 190 if (!pos->first) 191 pos->first = bo; 192 pos->last = bo; 193 } 194 195 void ttm_bo_move_to_lru_tail(struct ttm_buffer_object *bo, 196 struct ttm_lru_bulk_move *bulk) 197 { 198 dma_resv_assert_held(bo->base.resv); 199 200 ttm_bo_del_from_lru(bo); 201 ttm_bo_add_mem_to_lru(bo, &bo->mem); 202 203 if (bulk && !(bo->mem.placement & TTM_PL_FLAG_NO_EVICT)) { 204 switch (bo->mem.mem_type) { 205 case TTM_PL_TT: 206 ttm_bo_bulk_move_set_pos(&bulk->tt[bo->priority], bo); 207 break; 208 209 case TTM_PL_VRAM: 210 ttm_bo_bulk_move_set_pos(&bulk->vram[bo->priority], bo); 211 break; 212 } 213 if (bo->ttm && !(bo->ttm->page_flags & 214 (TTM_PAGE_FLAG_SG | TTM_PAGE_FLAG_SWAPPED))) 215 ttm_bo_bulk_move_set_pos(&bulk->swap[bo->priority], bo); 216 } 217 } 218 EXPORT_SYMBOL(ttm_bo_move_to_lru_tail); 219 220 void ttm_bo_bulk_move_lru_tail(struct ttm_lru_bulk_move *bulk) 221 { 222 unsigned i; 223 224 for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) { 225 struct ttm_lru_bulk_move_pos *pos = &bulk->tt[i]; 226 struct ttm_mem_type_manager *man; 227 228 if (!pos->first) 229 continue; 230 231 dma_resv_assert_held(pos->first->base.resv); 232 dma_resv_assert_held(pos->last->base.resv); 233 234 man = &pos->first->bdev->man[TTM_PL_TT]; 235 list_bulk_move_tail(&man->lru[i], &pos->first->lru, 236 &pos->last->lru); 237 } 238 239 for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) { 240 struct ttm_lru_bulk_move_pos *pos = &bulk->vram[i]; 241 struct ttm_mem_type_manager *man; 242 243 if (!pos->first) 244 continue; 245 246 dma_resv_assert_held(pos->first->base.resv); 247 dma_resv_assert_held(pos->last->base.resv); 248 249 man = &pos->first->bdev->man[TTM_PL_VRAM]; 250 list_bulk_move_tail(&man->lru[i], &pos->first->lru, 251 &pos->last->lru); 252 } 253 254 for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) { 255 struct ttm_lru_bulk_move_pos *pos = &bulk->swap[i]; 256 struct list_head *lru; 257 258 if (!pos->first) 259 continue; 260 261 dma_resv_assert_held(pos->first->base.resv); 262 dma_resv_assert_held(pos->last->base.resv); 263 264 lru = &ttm_bo_glob.swap_lru[i]; 265 list_bulk_move_tail(lru, &pos->first->swap, &pos->last->swap); 266 } 267 } 268 EXPORT_SYMBOL(ttm_bo_bulk_move_lru_tail); 269 270 static int ttm_bo_handle_move_mem(struct ttm_buffer_object *bo, 271 struct ttm_mem_reg *mem, bool evict, 272 struct ttm_operation_ctx *ctx) 273 { 274 struct ttm_bo_device *bdev = bo->bdev; 275 struct ttm_mem_type_manager *old_man = &bdev->man[bo->mem.mem_type]; 276 struct ttm_mem_type_manager *new_man = &bdev->man[mem->mem_type]; 277 int ret; 278 279 ret = ttm_mem_io_lock(old_man, true); 280 if (unlikely(ret != 0)) 281 goto out_err; 282 ttm_bo_unmap_virtual_locked(bo); 283 ttm_mem_io_unlock(old_man); 284 285 /* 286 * Create and bind a ttm if required. 287 */ 288 289 if (!(new_man->flags & TTM_MEMTYPE_FLAG_FIXED)) { 290 if (bo->ttm == NULL) { 291 bool zero = !(old_man->flags & TTM_MEMTYPE_FLAG_FIXED); 292 ret = ttm_tt_create(bo, zero); 293 if (ret) 294 goto out_err; 295 } 296 297 ret = ttm_tt_set_placement_caching(bo->ttm, mem->placement); 298 if (ret) 299 goto out_err; 300 301 if (mem->mem_type != TTM_PL_SYSTEM) { 302 ret = ttm_tt_bind(bo->ttm, mem, ctx); 303 if (ret) 304 goto out_err; 305 } 306 307 if (bo->mem.mem_type == TTM_PL_SYSTEM) { 308 if (bdev->driver->move_notify) 309 bdev->driver->move_notify(bo, evict, mem); 310 bo->mem = *mem; 311 goto moved; 312 } 313 } 314 315 if (bdev->driver->move_notify) 316 bdev->driver->move_notify(bo, evict, mem); 317 318 if (!(old_man->flags & TTM_MEMTYPE_FLAG_FIXED) && 319 !(new_man->flags & TTM_MEMTYPE_FLAG_FIXED)) 320 ret = ttm_bo_move_ttm(bo, ctx, mem); 321 else if (bdev->driver->move) 322 ret = bdev->driver->move(bo, evict, ctx, mem); 323 else 324 ret = ttm_bo_move_memcpy(bo, ctx, mem); 325 326 if (ret) { 327 if (bdev->driver->move_notify) { 328 swap(*mem, bo->mem); 329 bdev->driver->move_notify(bo, false, mem); 330 swap(*mem, bo->mem); 331 } 332 333 goto out_err; 334 } 335 336 moved: 337 bo->evicted = false; 338 339 ctx->bytes_moved += bo->num_pages << PAGE_SHIFT; 340 return 0; 341 342 out_err: 343 new_man = &bdev->man[bo->mem.mem_type]; 344 if (new_man->flags & TTM_MEMTYPE_FLAG_FIXED) { 345 ttm_tt_destroy(bo->ttm); 346 bo->ttm = NULL; 347 } 348 349 return ret; 350 } 351 352 /** 353 * Call bo::reserved. 354 * Will release GPU memory type usage on destruction. 355 * This is the place to put in driver specific hooks to release 356 * driver private resources. 357 * Will release the bo::reserved lock. 358 */ 359 360 static void ttm_bo_cleanup_memtype_use(struct ttm_buffer_object *bo) 361 { 362 if (bo->bdev->driver->move_notify) 363 bo->bdev->driver->move_notify(bo, false, NULL); 364 365 ttm_tt_destroy(bo->ttm); 366 bo->ttm = NULL; 367 ttm_bo_mem_put(bo, &bo->mem); 368 } 369 370 static int ttm_bo_individualize_resv(struct ttm_buffer_object *bo) 371 { 372 int r; 373 374 if (bo->base.resv == &bo->base._resv) 375 return 0; 376 377 BUG_ON(!dma_resv_trylock(&bo->base._resv)); 378 379 r = dma_resv_copy_fences(&bo->base._resv, bo->base.resv); 380 dma_resv_unlock(&bo->base._resv); 381 if (r) 382 return r; 383 384 if (bo->type != ttm_bo_type_sg) { 385 /* This works because the BO is about to be destroyed and nobody 386 * reference it any more. The only tricky case is the trylock on 387 * the resv object while holding the lru_lock. 388 */ 389 spin_lock(&ttm_bo_glob.lru_lock); 390 bo->base.resv = &bo->base._resv; 391 spin_unlock(&ttm_bo_glob.lru_lock); 392 } 393 394 return r; 395 } 396 397 static void ttm_bo_flush_all_fences(struct ttm_buffer_object *bo) 398 { 399 struct dma_resv *resv = &bo->base._resv; 400 struct dma_resv_list *fobj; 401 struct dma_fence *fence; 402 int i; 403 404 rcu_read_lock(); 405 fobj = rcu_dereference(resv->fence); 406 fence = rcu_dereference(resv->fence_excl); 407 if (fence && !fence->ops->signaled) 408 dma_fence_enable_sw_signaling(fence); 409 410 for (i = 0; fobj && i < fobj->shared_count; ++i) { 411 fence = rcu_dereference(fobj->shared[i]); 412 413 if (!fence->ops->signaled) 414 dma_fence_enable_sw_signaling(fence); 415 } 416 rcu_read_unlock(); 417 } 418 419 /** 420 * function ttm_bo_cleanup_refs 421 * If bo idle, remove from lru lists, and unref. 422 * If not idle, block if possible. 423 * 424 * Must be called with lru_lock and reservation held, this function 425 * will drop the lru lock and optionally the reservation lock before returning. 426 * 427 * @interruptible Any sleeps should occur interruptibly. 428 * @no_wait_gpu Never wait for gpu. Return -EBUSY instead. 429 * @unlock_resv Unlock the reservation lock as well. 430 */ 431 432 static int ttm_bo_cleanup_refs(struct ttm_buffer_object *bo, 433 bool interruptible, bool no_wait_gpu, 434 bool unlock_resv) 435 { 436 struct dma_resv *resv = &bo->base._resv; 437 int ret; 438 439 if (dma_resv_test_signaled_rcu(resv, true)) 440 ret = 0; 441 else 442 ret = -EBUSY; 443 444 if (ret && !no_wait_gpu) { 445 long lret; 446 447 if (unlock_resv) 448 dma_resv_unlock(bo->base.resv); 449 spin_unlock(&ttm_bo_glob.lru_lock); 450 451 lret = dma_resv_wait_timeout_rcu(resv, true, interruptible, 452 30 * HZ); 453 454 if (lret < 0) 455 return lret; 456 else if (lret == 0) 457 return -EBUSY; 458 459 spin_lock(&ttm_bo_glob.lru_lock); 460 if (unlock_resv && !dma_resv_trylock(bo->base.resv)) { 461 /* 462 * We raced, and lost, someone else holds the reservation now, 463 * and is probably busy in ttm_bo_cleanup_memtype_use. 464 * 465 * Even if it's not the case, because we finished waiting any 466 * delayed destruction would succeed, so just return success 467 * here. 468 */ 469 spin_unlock(&ttm_bo_glob.lru_lock); 470 return 0; 471 } 472 ret = 0; 473 } 474 475 if (ret || unlikely(list_empty(&bo->ddestroy))) { 476 if (unlock_resv) 477 dma_resv_unlock(bo->base.resv); 478 spin_unlock(&ttm_bo_glob.lru_lock); 479 return ret; 480 } 481 482 ttm_bo_del_from_lru(bo); 483 list_del_init(&bo->ddestroy); 484 spin_unlock(&ttm_bo_glob.lru_lock); 485 ttm_bo_cleanup_memtype_use(bo); 486 487 if (unlock_resv) 488 dma_resv_unlock(bo->base.resv); 489 490 ttm_bo_put(bo); 491 492 return 0; 493 } 494 495 /** 496 * Traverse the delayed list, and call ttm_bo_cleanup_refs on all 497 * encountered buffers. 498 */ 499 static bool ttm_bo_delayed_delete(struct ttm_bo_device *bdev, bool remove_all) 500 { 501 struct ttm_bo_global *glob = &ttm_bo_glob; 502 struct list_head removed; 503 bool empty; 504 505 INIT_LIST_HEAD(&removed); 506 507 spin_lock(&glob->lru_lock); 508 while (!list_empty(&bdev->ddestroy)) { 509 struct ttm_buffer_object *bo; 510 511 bo = list_first_entry(&bdev->ddestroy, struct ttm_buffer_object, 512 ddestroy); 513 list_move_tail(&bo->ddestroy, &removed); 514 if (!ttm_bo_get_unless_zero(bo)) 515 continue; 516 517 if (remove_all || bo->base.resv != &bo->base._resv) { 518 spin_unlock(&glob->lru_lock); 519 dma_resv_lock(bo->base.resv, NULL); 520 521 spin_lock(&glob->lru_lock); 522 ttm_bo_cleanup_refs(bo, false, !remove_all, true); 523 524 } else if (dma_resv_trylock(bo->base.resv)) { 525 ttm_bo_cleanup_refs(bo, false, !remove_all, true); 526 } else { 527 spin_unlock(&glob->lru_lock); 528 } 529 530 ttm_bo_put(bo); 531 spin_lock(&glob->lru_lock); 532 } 533 list_splice_tail(&removed, &bdev->ddestroy); 534 empty = list_empty(&bdev->ddestroy); 535 spin_unlock(&glob->lru_lock); 536 537 return empty; 538 } 539 540 static void ttm_bo_delayed_workqueue(struct work_struct *work) 541 { 542 struct ttm_bo_device *bdev = 543 container_of(work, struct ttm_bo_device, wq.work); 544 545 if (!ttm_bo_delayed_delete(bdev, false)) 546 schedule_delayed_work(&bdev->wq, 547 ((HZ / 100) < 1) ? 1 : HZ / 100); 548 } 549 550 static void ttm_bo_release(struct kref *kref) 551 { 552 struct ttm_buffer_object *bo = 553 container_of(kref, struct ttm_buffer_object, kref); 554 struct ttm_bo_device *bdev = bo->bdev; 555 struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type]; 556 size_t acc_size = bo->acc_size; 557 int ret; 558 559 if (!bo->deleted) { 560 ret = ttm_bo_individualize_resv(bo); 561 if (ret) { 562 /* Last resort, if we fail to allocate memory for the 563 * fences block for the BO to become idle 564 */ 565 dma_resv_wait_timeout_rcu(bo->base.resv, true, false, 566 30 * HZ); 567 } 568 569 if (bo->bdev->driver->release_notify) 570 bo->bdev->driver->release_notify(bo); 571 572 drm_vma_offset_remove(bdev->vma_manager, &bo->base.vma_node); 573 ttm_mem_io_lock(man, false); 574 ttm_mem_io_free_vm(bo); 575 ttm_mem_io_unlock(man); 576 } 577 578 if (!dma_resv_test_signaled_rcu(bo->base.resv, true) || 579 !dma_resv_trylock(bo->base.resv)) { 580 /* The BO is not idle, resurrect it for delayed destroy */ 581 ttm_bo_flush_all_fences(bo); 582 bo->deleted = true; 583 584 spin_lock(&ttm_bo_glob.lru_lock); 585 586 /* 587 * Make NO_EVICT bos immediately available to 588 * shrinkers, now that they are queued for 589 * destruction. 590 */ 591 if (bo->mem.placement & TTM_PL_FLAG_NO_EVICT) { 592 bo->mem.placement &= ~TTM_PL_FLAG_NO_EVICT; 593 ttm_bo_del_from_lru(bo); 594 ttm_bo_add_mem_to_lru(bo, &bo->mem); 595 } 596 597 kref_init(&bo->kref); 598 list_add_tail(&bo->ddestroy, &bdev->ddestroy); 599 spin_unlock(&ttm_bo_glob.lru_lock); 600 601 schedule_delayed_work(&bdev->wq, 602 ((HZ / 100) < 1) ? 1 : HZ / 100); 603 return; 604 } 605 606 spin_lock(&ttm_bo_glob.lru_lock); 607 ttm_bo_del_from_lru(bo); 608 list_del(&bo->ddestroy); 609 spin_unlock(&ttm_bo_glob.lru_lock); 610 611 ttm_bo_cleanup_memtype_use(bo); 612 dma_resv_unlock(bo->base.resv); 613 614 atomic_dec(&ttm_bo_glob.bo_count); 615 dma_fence_put(bo->moving); 616 if (!ttm_bo_uses_embedded_gem_object(bo)) 617 dma_resv_fini(&bo->base._resv); 618 bo->destroy(bo); 619 ttm_mem_global_free(&ttm_mem_glob, acc_size); 620 } 621 622 void ttm_bo_put(struct ttm_buffer_object *bo) 623 { 624 kref_put(&bo->kref, ttm_bo_release); 625 } 626 EXPORT_SYMBOL(ttm_bo_put); 627 628 int ttm_bo_lock_delayed_workqueue(struct ttm_bo_device *bdev) 629 { 630 return cancel_delayed_work_sync(&bdev->wq); 631 } 632 EXPORT_SYMBOL(ttm_bo_lock_delayed_workqueue); 633 634 void ttm_bo_unlock_delayed_workqueue(struct ttm_bo_device *bdev, int resched) 635 { 636 if (resched) 637 schedule_delayed_work(&bdev->wq, 638 ((HZ / 100) < 1) ? 1 : HZ / 100); 639 } 640 EXPORT_SYMBOL(ttm_bo_unlock_delayed_workqueue); 641 642 static int ttm_bo_evict(struct ttm_buffer_object *bo, 643 struct ttm_operation_ctx *ctx) 644 { 645 struct ttm_bo_device *bdev = bo->bdev; 646 struct ttm_mem_reg evict_mem; 647 struct ttm_placement placement; 648 int ret = 0; 649 650 dma_resv_assert_held(bo->base.resv); 651 652 placement.num_placement = 0; 653 placement.num_busy_placement = 0; 654 bdev->driver->evict_flags(bo, &placement); 655 656 if (!placement.num_placement && !placement.num_busy_placement) { 657 ret = ttm_bo_pipeline_gutting(bo); 658 if (ret) 659 return ret; 660 661 return ttm_tt_create(bo, false); 662 } 663 664 evict_mem = bo->mem; 665 evict_mem.mm_node = NULL; 666 evict_mem.bus.io_reserved_vm = false; 667 evict_mem.bus.io_reserved_count = 0; 668 669 ret = ttm_bo_mem_space(bo, &placement, &evict_mem, ctx); 670 if (ret) { 671 if (ret != -ERESTARTSYS) { 672 pr_err("Failed to find memory space for buffer 0x%p eviction\n", 673 bo); 674 ttm_bo_mem_space_debug(bo, &placement); 675 } 676 goto out; 677 } 678 679 ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, ctx); 680 if (unlikely(ret)) { 681 if (ret != -ERESTARTSYS) 682 pr_err("Buffer eviction failed\n"); 683 ttm_bo_mem_put(bo, &evict_mem); 684 goto out; 685 } 686 bo->evicted = true; 687 out: 688 return ret; 689 } 690 691 bool ttm_bo_eviction_valuable(struct ttm_buffer_object *bo, 692 const struct ttm_place *place) 693 { 694 /* Don't evict this BO if it's outside of the 695 * requested placement range 696 */ 697 if (place->fpfn >= (bo->mem.start + bo->mem.size) || 698 (place->lpfn && place->lpfn <= bo->mem.start)) 699 return false; 700 701 return true; 702 } 703 EXPORT_SYMBOL(ttm_bo_eviction_valuable); 704 705 /** 706 * Check the target bo is allowable to be evicted or swapout, including cases: 707 * 708 * a. if share same reservation object with ctx->resv, have assumption 709 * reservation objects should already be locked, so not lock again and 710 * return true directly when either the opreation allow_reserved_eviction 711 * or the target bo already is in delayed free list; 712 * 713 * b. Otherwise, trylock it. 714 */ 715 static bool ttm_bo_evict_swapout_allowable(struct ttm_buffer_object *bo, 716 struct ttm_operation_ctx *ctx, bool *locked, bool *busy) 717 { 718 bool ret = false; 719 720 if (bo->base.resv == ctx->resv) { 721 dma_resv_assert_held(bo->base.resv); 722 if (ctx->flags & TTM_OPT_FLAG_ALLOW_RES_EVICT) 723 ret = true; 724 *locked = false; 725 if (busy) 726 *busy = false; 727 } else { 728 ret = dma_resv_trylock(bo->base.resv); 729 *locked = ret; 730 if (busy) 731 *busy = !ret; 732 } 733 734 return ret; 735 } 736 737 /** 738 * ttm_mem_evict_wait_busy - wait for a busy BO to become available 739 * 740 * @busy_bo: BO which couldn't be locked with trylock 741 * @ctx: operation context 742 * @ticket: acquire ticket 743 * 744 * Try to lock a busy buffer object to avoid failing eviction. 745 */ 746 static int ttm_mem_evict_wait_busy(struct ttm_buffer_object *busy_bo, 747 struct ttm_operation_ctx *ctx, 748 struct ww_acquire_ctx *ticket) 749 { 750 int r; 751 752 if (!busy_bo || !ticket) 753 return -EBUSY; 754 755 if (ctx->interruptible) 756 r = dma_resv_lock_interruptible(busy_bo->base.resv, 757 ticket); 758 else 759 r = dma_resv_lock(busy_bo->base.resv, ticket); 760 761 /* 762 * TODO: It would be better to keep the BO locked until allocation is at 763 * least tried one more time, but that would mean a much larger rework 764 * of TTM. 765 */ 766 if (!r) 767 dma_resv_unlock(busy_bo->base.resv); 768 769 return r == -EDEADLK ? -EBUSY : r; 770 } 771 772 static int ttm_mem_evict_first(struct ttm_bo_device *bdev, 773 uint32_t mem_type, 774 const struct ttm_place *place, 775 struct ttm_operation_ctx *ctx, 776 struct ww_acquire_ctx *ticket) 777 { 778 struct ttm_buffer_object *bo = NULL, *busy_bo = NULL; 779 struct ttm_mem_type_manager *man = &bdev->man[mem_type]; 780 bool locked = false; 781 unsigned i; 782 int ret; 783 784 spin_lock(&ttm_bo_glob.lru_lock); 785 for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) { 786 list_for_each_entry(bo, &man->lru[i], lru) { 787 bool busy; 788 789 if (!ttm_bo_evict_swapout_allowable(bo, ctx, &locked, 790 &busy)) { 791 if (busy && !busy_bo && ticket != 792 dma_resv_locking_ctx(bo->base.resv)) 793 busy_bo = bo; 794 continue; 795 } 796 797 if (place && !bdev->driver->eviction_valuable(bo, 798 place)) { 799 if (locked) 800 dma_resv_unlock(bo->base.resv); 801 continue; 802 } 803 if (!ttm_bo_get_unless_zero(bo)) { 804 if (locked) 805 dma_resv_unlock(bo->base.resv); 806 continue; 807 } 808 break; 809 } 810 811 /* If the inner loop terminated early, we have our candidate */ 812 if (&bo->lru != &man->lru[i]) 813 break; 814 815 bo = NULL; 816 } 817 818 if (!bo) { 819 if (busy_bo && !ttm_bo_get_unless_zero(busy_bo)) 820 busy_bo = NULL; 821 spin_unlock(&ttm_bo_glob.lru_lock); 822 ret = ttm_mem_evict_wait_busy(busy_bo, ctx, ticket); 823 if (busy_bo) 824 ttm_bo_put(busy_bo); 825 return ret; 826 } 827 828 if (bo->deleted) { 829 ret = ttm_bo_cleanup_refs(bo, ctx->interruptible, 830 ctx->no_wait_gpu, locked); 831 ttm_bo_put(bo); 832 return ret; 833 } 834 835 spin_unlock(&ttm_bo_glob.lru_lock); 836 837 ret = ttm_bo_evict(bo, ctx); 838 if (locked) 839 ttm_bo_unreserve(bo); 840 841 ttm_bo_put(bo); 842 return ret; 843 } 844 845 static int ttm_bo_mem_get(struct ttm_buffer_object *bo, 846 const struct ttm_place *place, 847 struct ttm_mem_reg *mem) 848 { 849 struct ttm_mem_type_manager *man = &bo->bdev->man[mem->mem_type]; 850 851 mem->mm_node = NULL; 852 if (!man->func || !man->func->get_node) 853 return 0; 854 855 return man->func->get_node(man, bo, place, mem); 856 } 857 858 void ttm_bo_mem_put(struct ttm_buffer_object *bo, struct ttm_mem_reg *mem) 859 { 860 struct ttm_mem_type_manager *man = &bo->bdev->man[mem->mem_type]; 861 862 if (!man->func || !man->func->put_node) 863 return; 864 865 man->func->put_node(man, mem); 866 mem->mm_node = NULL; 867 mem->mem_type = TTM_PL_SYSTEM; 868 } 869 EXPORT_SYMBOL(ttm_bo_mem_put); 870 871 /** 872 * Add the last move fence to the BO and reserve a new shared slot. 873 */ 874 static int ttm_bo_add_move_fence(struct ttm_buffer_object *bo, 875 struct ttm_mem_type_manager *man, 876 struct ttm_mem_reg *mem, 877 bool no_wait_gpu) 878 { 879 struct dma_fence *fence; 880 int ret; 881 882 spin_lock(&man->move_lock); 883 fence = dma_fence_get(man->move); 884 spin_unlock(&man->move_lock); 885 886 if (!fence) 887 return 0; 888 889 if (no_wait_gpu) { 890 dma_fence_put(fence); 891 return -EBUSY; 892 } 893 894 dma_resv_add_shared_fence(bo->base.resv, fence); 895 896 ret = dma_resv_reserve_shared(bo->base.resv, 1); 897 if (unlikely(ret)) { 898 dma_fence_put(fence); 899 return ret; 900 } 901 902 dma_fence_put(bo->moving); 903 bo->moving = fence; 904 return 0; 905 } 906 907 /** 908 * Repeatedly evict memory from the LRU for @mem_type until we create enough 909 * space, or we've evicted everything and there isn't enough space. 910 */ 911 static int ttm_bo_mem_force_space(struct ttm_buffer_object *bo, 912 const struct ttm_place *place, 913 struct ttm_mem_reg *mem, 914 struct ttm_operation_ctx *ctx) 915 { 916 struct ttm_bo_device *bdev = bo->bdev; 917 struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type]; 918 struct ww_acquire_ctx *ticket; 919 int ret; 920 921 ticket = dma_resv_locking_ctx(bo->base.resv); 922 do { 923 ret = ttm_bo_mem_get(bo, place, mem); 924 if (likely(!ret)) 925 break; 926 if (unlikely(ret != -ENOSPC)) 927 return ret; 928 ret = ttm_mem_evict_first(bdev, mem->mem_type, place, ctx, 929 ticket); 930 if (unlikely(ret != 0)) 931 return ret; 932 } while (1); 933 934 return ttm_bo_add_move_fence(bo, man, mem, ctx->no_wait_gpu); 935 } 936 937 static uint32_t ttm_bo_select_caching(struct ttm_mem_type_manager *man, 938 uint32_t cur_placement, 939 uint32_t proposed_placement) 940 { 941 uint32_t caching = proposed_placement & TTM_PL_MASK_CACHING; 942 uint32_t result = proposed_placement & ~TTM_PL_MASK_CACHING; 943 944 /** 945 * Keep current caching if possible. 946 */ 947 948 if ((cur_placement & caching) != 0) 949 result |= (cur_placement & caching); 950 else if ((man->default_caching & caching) != 0) 951 result |= man->default_caching; 952 else if ((TTM_PL_FLAG_CACHED & caching) != 0) 953 result |= TTM_PL_FLAG_CACHED; 954 else if ((TTM_PL_FLAG_WC & caching) != 0) 955 result |= TTM_PL_FLAG_WC; 956 else if ((TTM_PL_FLAG_UNCACHED & caching) != 0) 957 result |= TTM_PL_FLAG_UNCACHED; 958 959 return result; 960 } 961 962 static bool ttm_bo_mt_compatible(struct ttm_mem_type_manager *man, 963 uint32_t mem_type, 964 const struct ttm_place *place, 965 uint32_t *masked_placement) 966 { 967 uint32_t cur_flags = ttm_bo_type_flags(mem_type); 968 969 if ((cur_flags & place->flags & TTM_PL_MASK_MEM) == 0) 970 return false; 971 972 if ((place->flags & man->available_caching) == 0) 973 return false; 974 975 cur_flags |= (place->flags & man->available_caching); 976 977 *masked_placement = cur_flags; 978 return true; 979 } 980 981 /** 982 * ttm_bo_mem_placement - check if placement is compatible 983 * @bo: BO to find memory for 984 * @place: where to search 985 * @mem: the memory object to fill in 986 * @ctx: operation context 987 * 988 * Check if placement is compatible and fill in mem structure. 989 * Returns -EBUSY if placement won't work or negative error code. 990 * 0 when placement can be used. 991 */ 992 static int ttm_bo_mem_placement(struct ttm_buffer_object *bo, 993 const struct ttm_place *place, 994 struct ttm_mem_reg *mem, 995 struct ttm_operation_ctx *ctx) 996 { 997 struct ttm_bo_device *bdev = bo->bdev; 998 uint32_t mem_type = TTM_PL_SYSTEM; 999 struct ttm_mem_type_manager *man; 1000 uint32_t cur_flags = 0; 1001 int ret; 1002 1003 ret = ttm_mem_type_from_place(place, &mem_type); 1004 if (ret) 1005 return ret; 1006 1007 man = &bdev->man[mem_type]; 1008 if (!man->has_type || !man->use_type) 1009 return -EBUSY; 1010 1011 if (!ttm_bo_mt_compatible(man, mem_type, place, &cur_flags)) 1012 return -EBUSY; 1013 1014 cur_flags = ttm_bo_select_caching(man, bo->mem.placement, cur_flags); 1015 /* 1016 * Use the access and other non-mapping-related flag bits from 1017 * the memory placement flags to the current flags 1018 */ 1019 ttm_flag_masked(&cur_flags, place->flags, ~TTM_PL_MASK_MEMTYPE); 1020 1021 mem->mem_type = mem_type; 1022 mem->placement = cur_flags; 1023 1024 spin_lock(&ttm_bo_glob.lru_lock); 1025 ttm_bo_del_from_lru(bo); 1026 ttm_bo_add_mem_to_lru(bo, mem); 1027 spin_unlock(&ttm_bo_glob.lru_lock); 1028 1029 return 0; 1030 } 1031 1032 /** 1033 * Creates space for memory region @mem according to its type. 1034 * 1035 * This function first searches for free space in compatible memory types in 1036 * the priority order defined by the driver. If free space isn't found, then 1037 * ttm_bo_mem_force_space is attempted in priority order to evict and find 1038 * space. 1039 */ 1040 int ttm_bo_mem_space(struct ttm_buffer_object *bo, 1041 struct ttm_placement *placement, 1042 struct ttm_mem_reg *mem, 1043 struct ttm_operation_ctx *ctx) 1044 { 1045 struct ttm_bo_device *bdev = bo->bdev; 1046 bool type_found = false; 1047 int i, ret; 1048 1049 ret = dma_resv_reserve_shared(bo->base.resv, 1); 1050 if (unlikely(ret)) 1051 return ret; 1052 1053 for (i = 0; i < placement->num_placement; ++i) { 1054 const struct ttm_place *place = &placement->placement[i]; 1055 struct ttm_mem_type_manager *man; 1056 1057 ret = ttm_bo_mem_placement(bo, place, mem, ctx); 1058 if (ret == -EBUSY) 1059 continue; 1060 if (ret) 1061 goto error; 1062 1063 type_found = true; 1064 ret = ttm_bo_mem_get(bo, place, mem); 1065 if (ret == -ENOSPC) 1066 continue; 1067 if (unlikely(ret)) 1068 goto error; 1069 1070 man = &bdev->man[mem->mem_type]; 1071 ret = ttm_bo_add_move_fence(bo, man, mem, ctx->no_wait_gpu); 1072 if (unlikely(ret)) { 1073 ttm_bo_mem_put(bo, mem); 1074 if (ret == -EBUSY) 1075 continue; 1076 1077 goto error; 1078 } 1079 return 0; 1080 } 1081 1082 for (i = 0; i < placement->num_busy_placement; ++i) { 1083 const struct ttm_place *place = &placement->busy_placement[i]; 1084 1085 ret = ttm_bo_mem_placement(bo, place, mem, ctx); 1086 if (ret == -EBUSY) 1087 continue; 1088 if (ret) 1089 goto error; 1090 1091 type_found = true; 1092 ret = ttm_bo_mem_force_space(bo, place, mem, ctx); 1093 if (likely(!ret)) 1094 return 0; 1095 1096 if (ret && ret != -EBUSY) 1097 goto error; 1098 } 1099 1100 ret = -ENOMEM; 1101 if (!type_found) { 1102 pr_err(TTM_PFX "No compatible memory type found\n"); 1103 ret = -EINVAL; 1104 } 1105 1106 error: 1107 if (bo->mem.mem_type == TTM_PL_SYSTEM && !list_empty(&bo->lru)) { 1108 spin_lock(&ttm_bo_glob.lru_lock); 1109 ttm_bo_move_to_lru_tail(bo, NULL); 1110 spin_unlock(&ttm_bo_glob.lru_lock); 1111 } 1112 1113 return ret; 1114 } 1115 EXPORT_SYMBOL(ttm_bo_mem_space); 1116 1117 static int ttm_bo_move_buffer(struct ttm_buffer_object *bo, 1118 struct ttm_placement *placement, 1119 struct ttm_operation_ctx *ctx) 1120 { 1121 int ret = 0; 1122 struct ttm_mem_reg mem; 1123 1124 dma_resv_assert_held(bo->base.resv); 1125 1126 mem.num_pages = bo->num_pages; 1127 mem.size = mem.num_pages << PAGE_SHIFT; 1128 mem.page_alignment = bo->mem.page_alignment; 1129 mem.bus.io_reserved_vm = false; 1130 mem.bus.io_reserved_count = 0; 1131 mem.mm_node = NULL; 1132 1133 /* 1134 * Determine where to move the buffer. 1135 */ 1136 ret = ttm_bo_mem_space(bo, placement, &mem, ctx); 1137 if (ret) 1138 goto out_unlock; 1139 ret = ttm_bo_handle_move_mem(bo, &mem, false, ctx); 1140 out_unlock: 1141 if (ret) 1142 ttm_bo_mem_put(bo, &mem); 1143 return ret; 1144 } 1145 1146 static bool ttm_bo_places_compat(const struct ttm_place *places, 1147 unsigned num_placement, 1148 struct ttm_mem_reg *mem, 1149 uint32_t *new_flags) 1150 { 1151 unsigned i; 1152 1153 for (i = 0; i < num_placement; i++) { 1154 const struct ttm_place *heap = &places[i]; 1155 1156 if ((mem->start < heap->fpfn || 1157 (heap->lpfn != 0 && (mem->start + mem->num_pages) > heap->lpfn))) 1158 continue; 1159 1160 *new_flags = heap->flags; 1161 if ((*new_flags & mem->placement & TTM_PL_MASK_CACHING) && 1162 (*new_flags & mem->placement & TTM_PL_MASK_MEM) && 1163 (!(*new_flags & TTM_PL_FLAG_CONTIGUOUS) || 1164 (mem->placement & TTM_PL_FLAG_CONTIGUOUS))) 1165 return true; 1166 } 1167 return false; 1168 } 1169 1170 bool ttm_bo_mem_compat(struct ttm_placement *placement, 1171 struct ttm_mem_reg *mem, 1172 uint32_t *new_flags) 1173 { 1174 if (ttm_bo_places_compat(placement->placement, placement->num_placement, 1175 mem, new_flags)) 1176 return true; 1177 1178 if ((placement->busy_placement != placement->placement || 1179 placement->num_busy_placement > placement->num_placement) && 1180 ttm_bo_places_compat(placement->busy_placement, 1181 placement->num_busy_placement, 1182 mem, new_flags)) 1183 return true; 1184 1185 return false; 1186 } 1187 EXPORT_SYMBOL(ttm_bo_mem_compat); 1188 1189 int ttm_bo_validate(struct ttm_buffer_object *bo, 1190 struct ttm_placement *placement, 1191 struct ttm_operation_ctx *ctx) 1192 { 1193 int ret; 1194 uint32_t new_flags; 1195 1196 dma_resv_assert_held(bo->base.resv); 1197 1198 /* 1199 * Remove the backing store if no placement is given. 1200 */ 1201 if (!placement->num_placement && !placement->num_busy_placement) { 1202 ret = ttm_bo_pipeline_gutting(bo); 1203 if (ret) 1204 return ret; 1205 1206 return ttm_tt_create(bo, false); 1207 } 1208 1209 /* 1210 * Check whether we need to move buffer. 1211 */ 1212 if (!ttm_bo_mem_compat(placement, &bo->mem, &new_flags)) { 1213 ret = ttm_bo_move_buffer(bo, placement, ctx); 1214 if (ret) 1215 return ret; 1216 } else { 1217 /* 1218 * Use the access and other non-mapping-related flag bits from 1219 * the compatible memory placement flags to the active flags 1220 */ 1221 ttm_flag_masked(&bo->mem.placement, new_flags, 1222 ~TTM_PL_MASK_MEMTYPE); 1223 } 1224 /* 1225 * We might need to add a TTM. 1226 */ 1227 if (bo->mem.mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) { 1228 ret = ttm_tt_create(bo, true); 1229 if (ret) 1230 return ret; 1231 } 1232 return 0; 1233 } 1234 EXPORT_SYMBOL(ttm_bo_validate); 1235 1236 int ttm_bo_init_reserved(struct ttm_bo_device *bdev, 1237 struct ttm_buffer_object *bo, 1238 unsigned long size, 1239 enum ttm_bo_type type, 1240 struct ttm_placement *placement, 1241 uint32_t page_alignment, 1242 struct ttm_operation_ctx *ctx, 1243 size_t acc_size, 1244 struct sg_table *sg, 1245 struct dma_resv *resv, 1246 void (*destroy) (struct ttm_buffer_object *)) 1247 { 1248 struct ttm_mem_global *mem_glob = &ttm_mem_glob; 1249 int ret = 0; 1250 unsigned long num_pages; 1251 bool locked; 1252 1253 ret = ttm_mem_global_alloc(mem_glob, acc_size, ctx); 1254 if (ret) { 1255 pr_err("Out of kernel memory\n"); 1256 if (destroy) 1257 (*destroy)(bo); 1258 else 1259 kfree(bo); 1260 return -ENOMEM; 1261 } 1262 1263 num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 1264 if (num_pages == 0) { 1265 pr_err("Illegal buffer object size\n"); 1266 if (destroy) 1267 (*destroy)(bo); 1268 else 1269 kfree(bo); 1270 ttm_mem_global_free(mem_glob, acc_size); 1271 return -EINVAL; 1272 } 1273 bo->destroy = destroy ? destroy : ttm_bo_default_destroy; 1274 1275 kref_init(&bo->kref); 1276 INIT_LIST_HEAD(&bo->lru); 1277 INIT_LIST_HEAD(&bo->ddestroy); 1278 INIT_LIST_HEAD(&bo->swap); 1279 INIT_LIST_HEAD(&bo->io_reserve_lru); 1280 bo->bdev = bdev; 1281 bo->type = type; 1282 bo->num_pages = num_pages; 1283 bo->mem.size = num_pages << PAGE_SHIFT; 1284 bo->mem.mem_type = TTM_PL_SYSTEM; 1285 bo->mem.num_pages = bo->num_pages; 1286 bo->mem.mm_node = NULL; 1287 bo->mem.page_alignment = page_alignment; 1288 bo->mem.bus.io_reserved_vm = false; 1289 bo->mem.bus.io_reserved_count = 0; 1290 bo->moving = NULL; 1291 bo->mem.placement = (TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED); 1292 bo->acc_size = acc_size; 1293 bo->sg = sg; 1294 if (resv) { 1295 bo->base.resv = resv; 1296 dma_resv_assert_held(bo->base.resv); 1297 } else { 1298 bo->base.resv = &bo->base._resv; 1299 } 1300 if (!ttm_bo_uses_embedded_gem_object(bo)) { 1301 /* 1302 * bo.gem is not initialized, so we have to setup the 1303 * struct elements we want use regardless. 1304 */ 1305 dma_resv_init(&bo->base._resv); 1306 drm_vma_node_reset(&bo->base.vma_node); 1307 } 1308 atomic_inc(&ttm_bo_glob.bo_count); 1309 1310 /* 1311 * For ttm_bo_type_device buffers, allocate 1312 * address space from the device. 1313 */ 1314 if (bo->type == ttm_bo_type_device || 1315 bo->type == ttm_bo_type_sg) 1316 ret = drm_vma_offset_add(bdev->vma_manager, &bo->base.vma_node, 1317 bo->mem.num_pages); 1318 1319 /* passed reservation objects should already be locked, 1320 * since otherwise lockdep will be angered in radeon. 1321 */ 1322 if (!resv) { 1323 locked = dma_resv_trylock(bo->base.resv); 1324 WARN_ON(!locked); 1325 } 1326 1327 if (likely(!ret)) 1328 ret = ttm_bo_validate(bo, placement, ctx); 1329 1330 if (unlikely(ret)) { 1331 if (!resv) 1332 ttm_bo_unreserve(bo); 1333 1334 ttm_bo_put(bo); 1335 return ret; 1336 } 1337 1338 spin_lock(&ttm_bo_glob.lru_lock); 1339 ttm_bo_move_to_lru_tail(bo, NULL); 1340 spin_unlock(&ttm_bo_glob.lru_lock); 1341 1342 return ret; 1343 } 1344 EXPORT_SYMBOL(ttm_bo_init_reserved); 1345 1346 int ttm_bo_init(struct ttm_bo_device *bdev, 1347 struct ttm_buffer_object *bo, 1348 unsigned long size, 1349 enum ttm_bo_type type, 1350 struct ttm_placement *placement, 1351 uint32_t page_alignment, 1352 bool interruptible, 1353 size_t acc_size, 1354 struct sg_table *sg, 1355 struct dma_resv *resv, 1356 void (*destroy) (struct ttm_buffer_object *)) 1357 { 1358 struct ttm_operation_ctx ctx = { interruptible, false }; 1359 int ret; 1360 1361 ret = ttm_bo_init_reserved(bdev, bo, size, type, placement, 1362 page_alignment, &ctx, acc_size, 1363 sg, resv, destroy); 1364 if (ret) 1365 return ret; 1366 1367 if (!resv) 1368 ttm_bo_unreserve(bo); 1369 1370 return 0; 1371 } 1372 EXPORT_SYMBOL(ttm_bo_init); 1373 1374 size_t ttm_bo_acc_size(struct ttm_bo_device *bdev, 1375 unsigned long bo_size, 1376 unsigned struct_size) 1377 { 1378 unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT; 1379 size_t size = 0; 1380 1381 size += ttm_round_pot(struct_size); 1382 size += ttm_round_pot(npages * sizeof(void *)); 1383 size += ttm_round_pot(sizeof(struct ttm_tt)); 1384 return size; 1385 } 1386 EXPORT_SYMBOL(ttm_bo_acc_size); 1387 1388 size_t ttm_bo_dma_acc_size(struct ttm_bo_device *bdev, 1389 unsigned long bo_size, 1390 unsigned struct_size) 1391 { 1392 unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT; 1393 size_t size = 0; 1394 1395 size += ttm_round_pot(struct_size); 1396 size += ttm_round_pot(npages * (2*sizeof(void *) + sizeof(dma_addr_t))); 1397 size += ttm_round_pot(sizeof(struct ttm_dma_tt)); 1398 return size; 1399 } 1400 EXPORT_SYMBOL(ttm_bo_dma_acc_size); 1401 1402 int ttm_bo_create(struct ttm_bo_device *bdev, 1403 unsigned long size, 1404 enum ttm_bo_type type, 1405 struct ttm_placement *placement, 1406 uint32_t page_alignment, 1407 bool interruptible, 1408 struct ttm_buffer_object **p_bo) 1409 { 1410 struct ttm_buffer_object *bo; 1411 size_t acc_size; 1412 int ret; 1413 1414 bo = kzalloc(sizeof(*bo), GFP_KERNEL); 1415 if (unlikely(bo == NULL)) 1416 return -ENOMEM; 1417 1418 acc_size = ttm_bo_acc_size(bdev, size, sizeof(struct ttm_buffer_object)); 1419 ret = ttm_bo_init(bdev, bo, size, type, placement, page_alignment, 1420 interruptible, acc_size, 1421 NULL, NULL, NULL); 1422 if (likely(ret == 0)) 1423 *p_bo = bo; 1424 1425 return ret; 1426 } 1427 EXPORT_SYMBOL(ttm_bo_create); 1428 1429 static int ttm_bo_force_list_clean(struct ttm_bo_device *bdev, 1430 unsigned mem_type) 1431 { 1432 struct ttm_operation_ctx ctx = { 1433 .interruptible = false, 1434 .no_wait_gpu = false, 1435 .flags = TTM_OPT_FLAG_FORCE_ALLOC 1436 }; 1437 struct ttm_mem_type_manager *man = &bdev->man[mem_type]; 1438 struct ttm_bo_global *glob = &ttm_bo_glob; 1439 struct dma_fence *fence; 1440 int ret; 1441 unsigned i; 1442 1443 /* 1444 * Can't use standard list traversal since we're unlocking. 1445 */ 1446 1447 spin_lock(&glob->lru_lock); 1448 for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) { 1449 while (!list_empty(&man->lru[i])) { 1450 spin_unlock(&glob->lru_lock); 1451 ret = ttm_mem_evict_first(bdev, mem_type, NULL, &ctx, 1452 NULL); 1453 if (ret) 1454 return ret; 1455 spin_lock(&glob->lru_lock); 1456 } 1457 } 1458 spin_unlock(&glob->lru_lock); 1459 1460 spin_lock(&man->move_lock); 1461 fence = dma_fence_get(man->move); 1462 spin_unlock(&man->move_lock); 1463 1464 if (fence) { 1465 ret = dma_fence_wait(fence, false); 1466 dma_fence_put(fence); 1467 if (ret) 1468 return ret; 1469 } 1470 1471 return 0; 1472 } 1473 1474 int ttm_bo_clean_mm(struct ttm_bo_device *bdev, unsigned mem_type) 1475 { 1476 struct ttm_mem_type_manager *man; 1477 int ret = -EINVAL; 1478 1479 if (mem_type >= TTM_NUM_MEM_TYPES) { 1480 pr_err("Illegal memory type %d\n", mem_type); 1481 return ret; 1482 } 1483 man = &bdev->man[mem_type]; 1484 1485 if (!man->has_type) { 1486 pr_err("Trying to take down uninitialized memory manager type %u\n", 1487 mem_type); 1488 return ret; 1489 } 1490 1491 man->use_type = false; 1492 man->has_type = false; 1493 1494 ret = 0; 1495 if (mem_type > 0) { 1496 ret = ttm_bo_force_list_clean(bdev, mem_type); 1497 if (ret) { 1498 pr_err("Cleanup eviction failed\n"); 1499 return ret; 1500 } 1501 1502 ret = (*man->func->takedown)(man); 1503 } 1504 1505 dma_fence_put(man->move); 1506 man->move = NULL; 1507 1508 return ret; 1509 } 1510 EXPORT_SYMBOL(ttm_bo_clean_mm); 1511 1512 int ttm_bo_evict_mm(struct ttm_bo_device *bdev, unsigned mem_type) 1513 { 1514 struct ttm_mem_type_manager *man = &bdev->man[mem_type]; 1515 1516 if (mem_type == 0 || mem_type >= TTM_NUM_MEM_TYPES) { 1517 pr_err("Illegal memory manager memory type %u\n", mem_type); 1518 return -EINVAL; 1519 } 1520 1521 if (!man->has_type) { 1522 pr_err("Memory type %u has not been initialized\n", mem_type); 1523 return 0; 1524 } 1525 1526 return ttm_bo_force_list_clean(bdev, mem_type); 1527 } 1528 EXPORT_SYMBOL(ttm_bo_evict_mm); 1529 1530 int ttm_bo_init_mm(struct ttm_bo_device *bdev, unsigned type, 1531 unsigned long p_size) 1532 { 1533 int ret; 1534 struct ttm_mem_type_manager *man; 1535 unsigned i; 1536 1537 BUG_ON(type >= TTM_NUM_MEM_TYPES); 1538 man = &bdev->man[type]; 1539 BUG_ON(man->has_type); 1540 man->use_io_reserve_lru = false; 1541 mutex_init(&man->io_reserve_mutex); 1542 spin_lock_init(&man->move_lock); 1543 INIT_LIST_HEAD(&man->io_reserve_lru); 1544 1545 ret = bdev->driver->init_mem_type(bdev, type, man); 1546 if (ret) 1547 return ret; 1548 man->bdev = bdev; 1549 1550 if (type != TTM_PL_SYSTEM) { 1551 ret = (*man->func->init)(man, p_size); 1552 if (ret) 1553 return ret; 1554 } 1555 man->has_type = true; 1556 man->use_type = true; 1557 man->size = p_size; 1558 1559 for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) 1560 INIT_LIST_HEAD(&man->lru[i]); 1561 man->move = NULL; 1562 1563 return 0; 1564 } 1565 EXPORT_SYMBOL(ttm_bo_init_mm); 1566 1567 static void ttm_bo_global_kobj_release(struct kobject *kobj) 1568 { 1569 struct ttm_bo_global *glob = 1570 container_of(kobj, struct ttm_bo_global, kobj); 1571 1572 __free_page(glob->dummy_read_page); 1573 } 1574 1575 static void ttm_bo_global_release(void) 1576 { 1577 struct ttm_bo_global *glob = &ttm_bo_glob; 1578 1579 mutex_lock(&ttm_global_mutex); 1580 if (--ttm_bo_glob_use_count > 0) 1581 goto out; 1582 1583 kobject_del(&glob->kobj); 1584 kobject_put(&glob->kobj); 1585 ttm_mem_global_release(&ttm_mem_glob); 1586 memset(glob, 0, sizeof(*glob)); 1587 out: 1588 mutex_unlock(&ttm_global_mutex); 1589 } 1590 1591 static int ttm_bo_global_init(void) 1592 { 1593 struct ttm_bo_global *glob = &ttm_bo_glob; 1594 int ret = 0; 1595 unsigned i; 1596 1597 mutex_lock(&ttm_global_mutex); 1598 if (++ttm_bo_glob_use_count > 1) 1599 goto out; 1600 1601 ret = ttm_mem_global_init(&ttm_mem_glob); 1602 if (ret) 1603 goto out; 1604 1605 spin_lock_init(&glob->lru_lock); 1606 glob->dummy_read_page = alloc_page(__GFP_ZERO | GFP_DMA32); 1607 1608 if (unlikely(glob->dummy_read_page == NULL)) { 1609 ret = -ENOMEM; 1610 goto out; 1611 } 1612 1613 for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) 1614 INIT_LIST_HEAD(&glob->swap_lru[i]); 1615 INIT_LIST_HEAD(&glob->device_list); 1616 atomic_set(&glob->bo_count, 0); 1617 1618 ret = kobject_init_and_add( 1619 &glob->kobj, &ttm_bo_glob_kobj_type, ttm_get_kobj(), "buffer_objects"); 1620 if (unlikely(ret != 0)) 1621 kobject_put(&glob->kobj); 1622 out: 1623 mutex_unlock(&ttm_global_mutex); 1624 return ret; 1625 } 1626 1627 int ttm_bo_device_release(struct ttm_bo_device *bdev) 1628 { 1629 struct ttm_bo_global *glob = &ttm_bo_glob; 1630 int ret = 0; 1631 unsigned i = TTM_NUM_MEM_TYPES; 1632 struct ttm_mem_type_manager *man; 1633 1634 while (i--) { 1635 man = &bdev->man[i]; 1636 if (man->has_type) { 1637 man->use_type = false; 1638 if ((i != TTM_PL_SYSTEM) && ttm_bo_clean_mm(bdev, i)) { 1639 ret = -EBUSY; 1640 pr_err("DRM memory manager type %d is not clean\n", 1641 i); 1642 } 1643 man->has_type = false; 1644 } 1645 } 1646 1647 mutex_lock(&ttm_global_mutex); 1648 list_del(&bdev->device_list); 1649 mutex_unlock(&ttm_global_mutex); 1650 1651 cancel_delayed_work_sync(&bdev->wq); 1652 1653 if (ttm_bo_delayed_delete(bdev, true)) 1654 pr_debug("Delayed destroy list was clean\n"); 1655 1656 spin_lock(&glob->lru_lock); 1657 for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) 1658 if (list_empty(&bdev->man[0].lru[0])) 1659 pr_debug("Swap list %d was clean\n", i); 1660 spin_unlock(&glob->lru_lock); 1661 1662 if (!ret) 1663 ttm_bo_global_release(); 1664 1665 return ret; 1666 } 1667 EXPORT_SYMBOL(ttm_bo_device_release); 1668 1669 int ttm_bo_device_init(struct ttm_bo_device *bdev, 1670 struct ttm_bo_driver *driver, 1671 struct address_space *mapping, 1672 struct drm_vma_offset_manager *vma_manager, 1673 bool need_dma32) 1674 { 1675 struct ttm_bo_global *glob = &ttm_bo_glob; 1676 int ret; 1677 1678 if (WARN_ON(vma_manager == NULL)) 1679 return -EINVAL; 1680 1681 ret = ttm_bo_global_init(); 1682 if (ret) 1683 return ret; 1684 1685 bdev->driver = driver; 1686 1687 memset(bdev->man, 0, sizeof(bdev->man)); 1688 1689 /* 1690 * Initialize the system memory buffer type. 1691 * Other types need to be driver / IOCTL initialized. 1692 */ 1693 ret = ttm_bo_init_mm(bdev, TTM_PL_SYSTEM, 0); 1694 if (unlikely(ret != 0)) 1695 goto out_no_sys; 1696 1697 bdev->vma_manager = vma_manager; 1698 INIT_DELAYED_WORK(&bdev->wq, ttm_bo_delayed_workqueue); 1699 INIT_LIST_HEAD(&bdev->ddestroy); 1700 bdev->dev_mapping = mapping; 1701 bdev->need_dma32 = need_dma32; 1702 mutex_lock(&ttm_global_mutex); 1703 list_add_tail(&bdev->device_list, &glob->device_list); 1704 mutex_unlock(&ttm_global_mutex); 1705 1706 return 0; 1707 out_no_sys: 1708 ttm_bo_global_release(); 1709 return ret; 1710 } 1711 EXPORT_SYMBOL(ttm_bo_device_init); 1712 1713 /* 1714 * buffer object vm functions. 1715 */ 1716 1717 void ttm_bo_unmap_virtual_locked(struct ttm_buffer_object *bo) 1718 { 1719 struct ttm_bo_device *bdev = bo->bdev; 1720 1721 drm_vma_node_unmap(&bo->base.vma_node, bdev->dev_mapping); 1722 ttm_mem_io_free_vm(bo); 1723 } 1724 1725 void ttm_bo_unmap_virtual(struct ttm_buffer_object *bo) 1726 { 1727 struct ttm_bo_device *bdev = bo->bdev; 1728 struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type]; 1729 1730 ttm_mem_io_lock(man, false); 1731 ttm_bo_unmap_virtual_locked(bo); 1732 ttm_mem_io_unlock(man); 1733 } 1734 1735 1736 EXPORT_SYMBOL(ttm_bo_unmap_virtual); 1737 1738 int ttm_bo_wait(struct ttm_buffer_object *bo, 1739 bool interruptible, bool no_wait) 1740 { 1741 long timeout = 15 * HZ; 1742 1743 if (no_wait) { 1744 if (dma_resv_test_signaled_rcu(bo->base.resv, true)) 1745 return 0; 1746 else 1747 return -EBUSY; 1748 } 1749 1750 timeout = dma_resv_wait_timeout_rcu(bo->base.resv, true, 1751 interruptible, timeout); 1752 if (timeout < 0) 1753 return timeout; 1754 1755 if (timeout == 0) 1756 return -EBUSY; 1757 1758 dma_resv_add_excl_fence(bo->base.resv, NULL); 1759 return 0; 1760 } 1761 EXPORT_SYMBOL(ttm_bo_wait); 1762 1763 /** 1764 * A buffer object shrink method that tries to swap out the first 1765 * buffer object on the bo_global::swap_lru list. 1766 */ 1767 int ttm_bo_swapout(struct ttm_bo_global *glob, struct ttm_operation_ctx *ctx) 1768 { 1769 struct ttm_buffer_object *bo; 1770 int ret = -EBUSY; 1771 bool locked; 1772 unsigned i; 1773 1774 spin_lock(&glob->lru_lock); 1775 for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) { 1776 list_for_each_entry(bo, &glob->swap_lru[i], swap) { 1777 if (!ttm_bo_evict_swapout_allowable(bo, ctx, &locked, 1778 NULL)) 1779 continue; 1780 1781 if (!ttm_bo_get_unless_zero(bo)) { 1782 if (locked) 1783 dma_resv_unlock(bo->base.resv); 1784 continue; 1785 } 1786 1787 ret = 0; 1788 break; 1789 } 1790 if (!ret) 1791 break; 1792 } 1793 1794 if (ret) { 1795 spin_unlock(&glob->lru_lock); 1796 return ret; 1797 } 1798 1799 if (bo->deleted) { 1800 ret = ttm_bo_cleanup_refs(bo, false, false, locked); 1801 ttm_bo_put(bo); 1802 return ret; 1803 } 1804 1805 ttm_bo_del_from_lru(bo); 1806 spin_unlock(&glob->lru_lock); 1807 1808 /** 1809 * Move to system cached 1810 */ 1811 1812 if (bo->mem.mem_type != TTM_PL_SYSTEM || 1813 bo->ttm->caching_state != tt_cached) { 1814 struct ttm_operation_ctx ctx = { false, false }; 1815 struct ttm_mem_reg evict_mem; 1816 1817 evict_mem = bo->mem; 1818 evict_mem.mm_node = NULL; 1819 evict_mem.placement = TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED; 1820 evict_mem.mem_type = TTM_PL_SYSTEM; 1821 1822 ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, &ctx); 1823 if (unlikely(ret != 0)) 1824 goto out; 1825 } 1826 1827 /** 1828 * Make sure BO is idle. 1829 */ 1830 1831 ret = ttm_bo_wait(bo, false, false); 1832 if (unlikely(ret != 0)) 1833 goto out; 1834 1835 ttm_bo_unmap_virtual(bo); 1836 1837 /** 1838 * Swap out. Buffer will be swapped in again as soon as 1839 * anyone tries to access a ttm page. 1840 */ 1841 1842 if (bo->bdev->driver->swap_notify) 1843 bo->bdev->driver->swap_notify(bo); 1844 1845 ret = ttm_tt_swapout(bo->ttm, bo->persistent_swap_storage); 1846 out: 1847 1848 /** 1849 * 1850 * Unreserve without putting on LRU to avoid swapping out an 1851 * already swapped buffer. 1852 */ 1853 if (locked) 1854 dma_resv_unlock(bo->base.resv); 1855 ttm_bo_put(bo); 1856 return ret; 1857 } 1858 EXPORT_SYMBOL(ttm_bo_swapout); 1859 1860 void ttm_bo_swapout_all(void) 1861 { 1862 struct ttm_operation_ctx ctx = { 1863 .interruptible = false, 1864 .no_wait_gpu = false 1865 }; 1866 1867 while (ttm_bo_swapout(&ttm_bo_glob, &ctx) == 0); 1868 } 1869 EXPORT_SYMBOL(ttm_bo_swapout_all); 1870