xref: /openbmc/linux/drivers/gpu/drm/ttm/ttm_bo.c (revision 9d749629)
1 /**************************************************************************
2  *
3  * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
4  * All Rights Reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24  * USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  **************************************************************************/
27 /*
28  * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
29  */
30 
31 #define pr_fmt(fmt) "[TTM] " fmt
32 
33 #include <drm/ttm/ttm_module.h>
34 #include <drm/ttm/ttm_bo_driver.h>
35 #include <drm/ttm/ttm_placement.h>
36 #include <linux/jiffies.h>
37 #include <linux/slab.h>
38 #include <linux/sched.h>
39 #include <linux/mm.h>
40 #include <linux/file.h>
41 #include <linux/module.h>
42 #include <linux/atomic.h>
43 
44 #define TTM_ASSERT_LOCKED(param)
45 #define TTM_DEBUG(fmt, arg...)
46 #define TTM_BO_HASH_ORDER 13
47 
48 static int ttm_bo_setup_vm(struct ttm_buffer_object *bo);
49 static int ttm_bo_swapout(struct ttm_mem_shrink *shrink);
50 static void ttm_bo_global_kobj_release(struct kobject *kobj);
51 
52 static struct attribute ttm_bo_count = {
53 	.name = "bo_count",
54 	.mode = S_IRUGO
55 };
56 
57 static inline int ttm_mem_type_from_flags(uint32_t flags, uint32_t *mem_type)
58 {
59 	int i;
60 
61 	for (i = 0; i <= TTM_PL_PRIV5; i++)
62 		if (flags & (1 << i)) {
63 			*mem_type = i;
64 			return 0;
65 		}
66 	return -EINVAL;
67 }
68 
69 static void ttm_mem_type_debug(struct ttm_bo_device *bdev, int mem_type)
70 {
71 	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
72 
73 	pr_err("    has_type: %d\n", man->has_type);
74 	pr_err("    use_type: %d\n", man->use_type);
75 	pr_err("    flags: 0x%08X\n", man->flags);
76 	pr_err("    gpu_offset: 0x%08lX\n", man->gpu_offset);
77 	pr_err("    size: %llu\n", man->size);
78 	pr_err("    available_caching: 0x%08X\n", man->available_caching);
79 	pr_err("    default_caching: 0x%08X\n", man->default_caching);
80 	if (mem_type != TTM_PL_SYSTEM)
81 		(*man->func->debug)(man, TTM_PFX);
82 }
83 
84 static void ttm_bo_mem_space_debug(struct ttm_buffer_object *bo,
85 					struct ttm_placement *placement)
86 {
87 	int i, ret, mem_type;
88 
89 	pr_err("No space for %p (%lu pages, %luK, %luM)\n",
90 	       bo, bo->mem.num_pages, bo->mem.size >> 10,
91 	       bo->mem.size >> 20);
92 	for (i = 0; i < placement->num_placement; i++) {
93 		ret = ttm_mem_type_from_flags(placement->placement[i],
94 						&mem_type);
95 		if (ret)
96 			return;
97 		pr_err("  placement[%d]=0x%08X (%d)\n",
98 		       i, placement->placement[i], mem_type);
99 		ttm_mem_type_debug(bo->bdev, mem_type);
100 	}
101 }
102 
103 static ssize_t ttm_bo_global_show(struct kobject *kobj,
104 				  struct attribute *attr,
105 				  char *buffer)
106 {
107 	struct ttm_bo_global *glob =
108 		container_of(kobj, struct ttm_bo_global, kobj);
109 
110 	return snprintf(buffer, PAGE_SIZE, "%lu\n",
111 			(unsigned long) atomic_read(&glob->bo_count));
112 }
113 
114 static struct attribute *ttm_bo_global_attrs[] = {
115 	&ttm_bo_count,
116 	NULL
117 };
118 
119 static const struct sysfs_ops ttm_bo_global_ops = {
120 	.show = &ttm_bo_global_show
121 };
122 
123 static struct kobj_type ttm_bo_glob_kobj_type  = {
124 	.release = &ttm_bo_global_kobj_release,
125 	.sysfs_ops = &ttm_bo_global_ops,
126 	.default_attrs = ttm_bo_global_attrs
127 };
128 
129 
130 static inline uint32_t ttm_bo_type_flags(unsigned type)
131 {
132 	return 1 << (type);
133 }
134 
135 static void ttm_bo_release_list(struct kref *list_kref)
136 {
137 	struct ttm_buffer_object *bo =
138 	    container_of(list_kref, struct ttm_buffer_object, list_kref);
139 	struct ttm_bo_device *bdev = bo->bdev;
140 	size_t acc_size = bo->acc_size;
141 
142 	BUG_ON(atomic_read(&bo->list_kref.refcount));
143 	BUG_ON(atomic_read(&bo->kref.refcount));
144 	BUG_ON(atomic_read(&bo->cpu_writers));
145 	BUG_ON(bo->sync_obj != NULL);
146 	BUG_ON(bo->mem.mm_node != NULL);
147 	BUG_ON(!list_empty(&bo->lru));
148 	BUG_ON(!list_empty(&bo->ddestroy));
149 
150 	if (bo->ttm)
151 		ttm_tt_destroy(bo->ttm);
152 	atomic_dec(&bo->glob->bo_count);
153 	if (bo->destroy)
154 		bo->destroy(bo);
155 	else {
156 		kfree(bo);
157 	}
158 	ttm_mem_global_free(bdev->glob->mem_glob, acc_size);
159 }
160 
161 int ttm_bo_wait_unreserved(struct ttm_buffer_object *bo, bool interruptible)
162 {
163 	if (interruptible) {
164 		return wait_event_interruptible(bo->event_queue,
165 					       !ttm_bo_is_reserved(bo));
166 	} else {
167 		wait_event(bo->event_queue, !ttm_bo_is_reserved(bo));
168 		return 0;
169 	}
170 }
171 EXPORT_SYMBOL(ttm_bo_wait_unreserved);
172 
173 void ttm_bo_add_to_lru(struct ttm_buffer_object *bo)
174 {
175 	struct ttm_bo_device *bdev = bo->bdev;
176 	struct ttm_mem_type_manager *man;
177 
178 	BUG_ON(!ttm_bo_is_reserved(bo));
179 
180 	if (!(bo->mem.placement & TTM_PL_FLAG_NO_EVICT)) {
181 
182 		BUG_ON(!list_empty(&bo->lru));
183 
184 		man = &bdev->man[bo->mem.mem_type];
185 		list_add_tail(&bo->lru, &man->lru);
186 		kref_get(&bo->list_kref);
187 
188 		if (bo->ttm != NULL) {
189 			list_add_tail(&bo->swap, &bo->glob->swap_lru);
190 			kref_get(&bo->list_kref);
191 		}
192 	}
193 }
194 
195 int ttm_bo_del_from_lru(struct ttm_buffer_object *bo)
196 {
197 	int put_count = 0;
198 
199 	if (!list_empty(&bo->swap)) {
200 		list_del_init(&bo->swap);
201 		++put_count;
202 	}
203 	if (!list_empty(&bo->lru)) {
204 		list_del_init(&bo->lru);
205 		++put_count;
206 	}
207 
208 	/*
209 	 * TODO: Add a driver hook to delete from
210 	 * driver-specific LRU's here.
211 	 */
212 
213 	return put_count;
214 }
215 
216 int ttm_bo_reserve_locked(struct ttm_buffer_object *bo,
217 			  bool interruptible,
218 			  bool no_wait, bool use_sequence, uint32_t sequence)
219 {
220 	struct ttm_bo_global *glob = bo->glob;
221 	int ret;
222 
223 	while (unlikely(atomic_read(&bo->reserved) != 0)) {
224 		/**
225 		 * Deadlock avoidance for multi-bo reserving.
226 		 */
227 		if (use_sequence && bo->seq_valid) {
228 			/**
229 			 * We've already reserved this one.
230 			 */
231 			if (unlikely(sequence == bo->val_seq))
232 				return -EDEADLK;
233 			/**
234 			 * Already reserved by a thread that will not back
235 			 * off for us. We need to back off.
236 			 */
237 			if (unlikely(sequence - bo->val_seq < (1 << 31)))
238 				return -EAGAIN;
239 		}
240 
241 		if (no_wait)
242 			return -EBUSY;
243 
244 		spin_unlock(&glob->lru_lock);
245 		ret = ttm_bo_wait_unreserved(bo, interruptible);
246 		spin_lock(&glob->lru_lock);
247 
248 		if (unlikely(ret))
249 			return ret;
250 	}
251 
252 	atomic_set(&bo->reserved, 1);
253 	if (use_sequence) {
254 		/**
255 		 * Wake up waiters that may need to recheck for deadlock,
256 		 * if we decreased the sequence number.
257 		 */
258 		if (unlikely((bo->val_seq - sequence < (1 << 31))
259 			     || !bo->seq_valid))
260 			wake_up_all(&bo->event_queue);
261 
262 		bo->val_seq = sequence;
263 		bo->seq_valid = true;
264 	} else {
265 		bo->seq_valid = false;
266 	}
267 
268 	return 0;
269 }
270 EXPORT_SYMBOL(ttm_bo_reserve);
271 
272 static void ttm_bo_ref_bug(struct kref *list_kref)
273 {
274 	BUG();
275 }
276 
277 void ttm_bo_list_ref_sub(struct ttm_buffer_object *bo, int count,
278 			 bool never_free)
279 {
280 	kref_sub(&bo->list_kref, count,
281 		 (never_free) ? ttm_bo_ref_bug : ttm_bo_release_list);
282 }
283 
284 int ttm_bo_reserve(struct ttm_buffer_object *bo,
285 		   bool interruptible,
286 		   bool no_wait, bool use_sequence, uint32_t sequence)
287 {
288 	struct ttm_bo_global *glob = bo->glob;
289 	int put_count = 0;
290 	int ret;
291 
292 	spin_lock(&glob->lru_lock);
293 	ret = ttm_bo_reserve_locked(bo, interruptible, no_wait, use_sequence,
294 				    sequence);
295 	if (likely(ret == 0))
296 		put_count = ttm_bo_del_from_lru(bo);
297 	spin_unlock(&glob->lru_lock);
298 
299 	ttm_bo_list_ref_sub(bo, put_count, true);
300 
301 	return ret;
302 }
303 
304 void ttm_bo_unreserve_locked(struct ttm_buffer_object *bo)
305 {
306 	ttm_bo_add_to_lru(bo);
307 	atomic_set(&bo->reserved, 0);
308 	wake_up_all(&bo->event_queue);
309 }
310 
311 void ttm_bo_unreserve(struct ttm_buffer_object *bo)
312 {
313 	struct ttm_bo_global *glob = bo->glob;
314 
315 	spin_lock(&glob->lru_lock);
316 	ttm_bo_unreserve_locked(bo);
317 	spin_unlock(&glob->lru_lock);
318 }
319 EXPORT_SYMBOL(ttm_bo_unreserve);
320 
321 /*
322  * Call bo->mutex locked.
323  */
324 static int ttm_bo_add_ttm(struct ttm_buffer_object *bo, bool zero_alloc)
325 {
326 	struct ttm_bo_device *bdev = bo->bdev;
327 	struct ttm_bo_global *glob = bo->glob;
328 	int ret = 0;
329 	uint32_t page_flags = 0;
330 
331 	TTM_ASSERT_LOCKED(&bo->mutex);
332 	bo->ttm = NULL;
333 
334 	if (bdev->need_dma32)
335 		page_flags |= TTM_PAGE_FLAG_DMA32;
336 
337 	switch (bo->type) {
338 	case ttm_bo_type_device:
339 		if (zero_alloc)
340 			page_flags |= TTM_PAGE_FLAG_ZERO_ALLOC;
341 	case ttm_bo_type_kernel:
342 		bo->ttm = bdev->driver->ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT,
343 						      page_flags, glob->dummy_read_page);
344 		if (unlikely(bo->ttm == NULL))
345 			ret = -ENOMEM;
346 		break;
347 	case ttm_bo_type_sg:
348 		bo->ttm = bdev->driver->ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT,
349 						      page_flags | TTM_PAGE_FLAG_SG,
350 						      glob->dummy_read_page);
351 		if (unlikely(bo->ttm == NULL)) {
352 			ret = -ENOMEM;
353 			break;
354 		}
355 		bo->ttm->sg = bo->sg;
356 		break;
357 	default:
358 		pr_err("Illegal buffer object type\n");
359 		ret = -EINVAL;
360 		break;
361 	}
362 
363 	return ret;
364 }
365 
366 static int ttm_bo_handle_move_mem(struct ttm_buffer_object *bo,
367 				  struct ttm_mem_reg *mem,
368 				  bool evict, bool interruptible,
369 				  bool no_wait_gpu)
370 {
371 	struct ttm_bo_device *bdev = bo->bdev;
372 	bool old_is_pci = ttm_mem_reg_is_pci(bdev, &bo->mem);
373 	bool new_is_pci = ttm_mem_reg_is_pci(bdev, mem);
374 	struct ttm_mem_type_manager *old_man = &bdev->man[bo->mem.mem_type];
375 	struct ttm_mem_type_manager *new_man = &bdev->man[mem->mem_type];
376 	int ret = 0;
377 
378 	if (old_is_pci || new_is_pci ||
379 	    ((mem->placement & bo->mem.placement & TTM_PL_MASK_CACHING) == 0)) {
380 		ret = ttm_mem_io_lock(old_man, true);
381 		if (unlikely(ret != 0))
382 			goto out_err;
383 		ttm_bo_unmap_virtual_locked(bo);
384 		ttm_mem_io_unlock(old_man);
385 	}
386 
387 	/*
388 	 * Create and bind a ttm if required.
389 	 */
390 
391 	if (!(new_man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
392 		if (bo->ttm == NULL) {
393 			bool zero = !(old_man->flags & TTM_MEMTYPE_FLAG_FIXED);
394 			ret = ttm_bo_add_ttm(bo, zero);
395 			if (ret)
396 				goto out_err;
397 		}
398 
399 		ret = ttm_tt_set_placement_caching(bo->ttm, mem->placement);
400 		if (ret)
401 			goto out_err;
402 
403 		if (mem->mem_type != TTM_PL_SYSTEM) {
404 			ret = ttm_tt_bind(bo->ttm, mem);
405 			if (ret)
406 				goto out_err;
407 		}
408 
409 		if (bo->mem.mem_type == TTM_PL_SYSTEM) {
410 			if (bdev->driver->move_notify)
411 				bdev->driver->move_notify(bo, mem);
412 			bo->mem = *mem;
413 			mem->mm_node = NULL;
414 			goto moved;
415 		}
416 	}
417 
418 	if (bdev->driver->move_notify)
419 		bdev->driver->move_notify(bo, mem);
420 
421 	if (!(old_man->flags & TTM_MEMTYPE_FLAG_FIXED) &&
422 	    !(new_man->flags & TTM_MEMTYPE_FLAG_FIXED))
423 		ret = ttm_bo_move_ttm(bo, evict, no_wait_gpu, mem);
424 	else if (bdev->driver->move)
425 		ret = bdev->driver->move(bo, evict, interruptible,
426 					 no_wait_gpu, mem);
427 	else
428 		ret = ttm_bo_move_memcpy(bo, evict, no_wait_gpu, mem);
429 
430 	if (ret) {
431 		if (bdev->driver->move_notify) {
432 			struct ttm_mem_reg tmp_mem = *mem;
433 			*mem = bo->mem;
434 			bo->mem = tmp_mem;
435 			bdev->driver->move_notify(bo, mem);
436 			bo->mem = *mem;
437 			*mem = tmp_mem;
438 		}
439 
440 		goto out_err;
441 	}
442 
443 moved:
444 	if (bo->evicted) {
445 		ret = bdev->driver->invalidate_caches(bdev, bo->mem.placement);
446 		if (ret)
447 			pr_err("Can not flush read caches\n");
448 		bo->evicted = false;
449 	}
450 
451 	if (bo->mem.mm_node) {
452 		bo->offset = (bo->mem.start << PAGE_SHIFT) +
453 		    bdev->man[bo->mem.mem_type].gpu_offset;
454 		bo->cur_placement = bo->mem.placement;
455 	} else
456 		bo->offset = 0;
457 
458 	return 0;
459 
460 out_err:
461 	new_man = &bdev->man[bo->mem.mem_type];
462 	if ((new_man->flags & TTM_MEMTYPE_FLAG_FIXED) && bo->ttm) {
463 		ttm_tt_unbind(bo->ttm);
464 		ttm_tt_destroy(bo->ttm);
465 		bo->ttm = NULL;
466 	}
467 
468 	return ret;
469 }
470 
471 /**
472  * Call bo::reserved.
473  * Will release GPU memory type usage on destruction.
474  * This is the place to put in driver specific hooks to release
475  * driver private resources.
476  * Will release the bo::reserved lock.
477  */
478 
479 static void ttm_bo_cleanup_memtype_use(struct ttm_buffer_object *bo)
480 {
481 	if (bo->bdev->driver->move_notify)
482 		bo->bdev->driver->move_notify(bo, NULL);
483 
484 	if (bo->ttm) {
485 		ttm_tt_unbind(bo->ttm);
486 		ttm_tt_destroy(bo->ttm);
487 		bo->ttm = NULL;
488 	}
489 	ttm_bo_mem_put(bo, &bo->mem);
490 
491 	atomic_set(&bo->reserved, 0);
492 	wake_up_all(&bo->event_queue);
493 
494 	/*
495 	 * Since the final reference to this bo may not be dropped by
496 	 * the current task we have to put a memory barrier here to make
497 	 * sure the changes done in this function are always visible.
498 	 *
499 	 * This function only needs protection against the final kref_put.
500 	 */
501 	smp_mb__before_atomic_dec();
502 }
503 
504 static void ttm_bo_cleanup_refs_or_queue(struct ttm_buffer_object *bo)
505 {
506 	struct ttm_bo_device *bdev = bo->bdev;
507 	struct ttm_bo_global *glob = bo->glob;
508 	struct ttm_bo_driver *driver = bdev->driver;
509 	void *sync_obj = NULL;
510 	int put_count;
511 	int ret;
512 
513 	spin_lock(&glob->lru_lock);
514 	ret = ttm_bo_reserve_locked(bo, false, true, false, 0);
515 
516 	spin_lock(&bdev->fence_lock);
517 	(void) ttm_bo_wait(bo, false, false, true);
518 	if (!ret && !bo->sync_obj) {
519 		spin_unlock(&bdev->fence_lock);
520 		put_count = ttm_bo_del_from_lru(bo);
521 
522 		spin_unlock(&glob->lru_lock);
523 		ttm_bo_cleanup_memtype_use(bo);
524 
525 		ttm_bo_list_ref_sub(bo, put_count, true);
526 
527 		return;
528 	}
529 	if (bo->sync_obj)
530 		sync_obj = driver->sync_obj_ref(bo->sync_obj);
531 	spin_unlock(&bdev->fence_lock);
532 
533 	if (!ret) {
534 		atomic_set(&bo->reserved, 0);
535 		wake_up_all(&bo->event_queue);
536 	}
537 
538 	kref_get(&bo->list_kref);
539 	list_add_tail(&bo->ddestroy, &bdev->ddestroy);
540 	spin_unlock(&glob->lru_lock);
541 
542 	if (sync_obj) {
543 		driver->sync_obj_flush(sync_obj);
544 		driver->sync_obj_unref(&sync_obj);
545 	}
546 	schedule_delayed_work(&bdev->wq,
547 			      ((HZ / 100) < 1) ? 1 : HZ / 100);
548 }
549 
550 /**
551  * function ttm_bo_cleanup_refs_and_unlock
552  * If bo idle, remove from delayed- and lru lists, and unref.
553  * If not idle, do nothing.
554  *
555  * Must be called with lru_lock and reservation held, this function
556  * will drop both before returning.
557  *
558  * @interruptible         Any sleeps should occur interruptibly.
559  * @no_wait_gpu           Never wait for gpu. Return -EBUSY instead.
560  */
561 
562 static int ttm_bo_cleanup_refs_and_unlock(struct ttm_buffer_object *bo,
563 					  bool interruptible,
564 					  bool no_wait_gpu)
565 {
566 	struct ttm_bo_device *bdev = bo->bdev;
567 	struct ttm_bo_driver *driver = bdev->driver;
568 	struct ttm_bo_global *glob = bo->glob;
569 	int put_count;
570 	int ret;
571 
572 	spin_lock(&bdev->fence_lock);
573 	ret = ttm_bo_wait(bo, false, false, true);
574 
575 	if (ret && !no_wait_gpu) {
576 		void *sync_obj;
577 
578 		/*
579 		 * Take a reference to the fence and unreserve,
580 		 * at this point the buffer should be dead, so
581 		 * no new sync objects can be attached.
582 		 */
583 		sync_obj = driver->sync_obj_ref(bo->sync_obj);
584 		spin_unlock(&bdev->fence_lock);
585 
586 		atomic_set(&bo->reserved, 0);
587 		wake_up_all(&bo->event_queue);
588 		spin_unlock(&glob->lru_lock);
589 
590 		ret = driver->sync_obj_wait(sync_obj, false, interruptible);
591 		driver->sync_obj_unref(&sync_obj);
592 		if (ret)
593 			return ret;
594 
595 		/*
596 		 * remove sync_obj with ttm_bo_wait, the wait should be
597 		 * finished, and no new wait object should have been added.
598 		 */
599 		spin_lock(&bdev->fence_lock);
600 		ret = ttm_bo_wait(bo, false, false, true);
601 		WARN_ON(ret);
602 		spin_unlock(&bdev->fence_lock);
603 		if (ret)
604 			return ret;
605 
606 		spin_lock(&glob->lru_lock);
607 		ret = ttm_bo_reserve_locked(bo, false, true, false, 0);
608 
609 		/*
610 		 * We raced, and lost, someone else holds the reservation now,
611 		 * and is probably busy in ttm_bo_cleanup_memtype_use.
612 		 *
613 		 * Even if it's not the case, because we finished waiting any
614 		 * delayed destruction would succeed, so just return success
615 		 * here.
616 		 */
617 		if (ret) {
618 			spin_unlock(&glob->lru_lock);
619 			return 0;
620 		}
621 	} else
622 		spin_unlock(&bdev->fence_lock);
623 
624 	if (ret || unlikely(list_empty(&bo->ddestroy))) {
625 		atomic_set(&bo->reserved, 0);
626 		wake_up_all(&bo->event_queue);
627 		spin_unlock(&glob->lru_lock);
628 		return ret;
629 	}
630 
631 	put_count = ttm_bo_del_from_lru(bo);
632 	list_del_init(&bo->ddestroy);
633 	++put_count;
634 
635 	spin_unlock(&glob->lru_lock);
636 	ttm_bo_cleanup_memtype_use(bo);
637 
638 	ttm_bo_list_ref_sub(bo, put_count, true);
639 
640 	return 0;
641 }
642 
643 /**
644  * Traverse the delayed list, and call ttm_bo_cleanup_refs on all
645  * encountered buffers.
646  */
647 
648 static int ttm_bo_delayed_delete(struct ttm_bo_device *bdev, bool remove_all)
649 {
650 	struct ttm_bo_global *glob = bdev->glob;
651 	struct ttm_buffer_object *entry = NULL;
652 	int ret = 0;
653 
654 	spin_lock(&glob->lru_lock);
655 	if (list_empty(&bdev->ddestroy))
656 		goto out_unlock;
657 
658 	entry = list_first_entry(&bdev->ddestroy,
659 		struct ttm_buffer_object, ddestroy);
660 	kref_get(&entry->list_kref);
661 
662 	for (;;) {
663 		struct ttm_buffer_object *nentry = NULL;
664 
665 		if (entry->ddestroy.next != &bdev->ddestroy) {
666 			nentry = list_first_entry(&entry->ddestroy,
667 				struct ttm_buffer_object, ddestroy);
668 			kref_get(&nentry->list_kref);
669 		}
670 
671 		ret = ttm_bo_reserve_locked(entry, false, !remove_all, false, 0);
672 		if (!ret)
673 			ret = ttm_bo_cleanup_refs_and_unlock(entry, false,
674 							     !remove_all);
675 		else
676 			spin_unlock(&glob->lru_lock);
677 
678 		kref_put(&entry->list_kref, ttm_bo_release_list);
679 		entry = nentry;
680 
681 		if (ret || !entry)
682 			goto out;
683 
684 		spin_lock(&glob->lru_lock);
685 		if (list_empty(&entry->ddestroy))
686 			break;
687 	}
688 
689 out_unlock:
690 	spin_unlock(&glob->lru_lock);
691 out:
692 	if (entry)
693 		kref_put(&entry->list_kref, ttm_bo_release_list);
694 	return ret;
695 }
696 
697 static void ttm_bo_delayed_workqueue(struct work_struct *work)
698 {
699 	struct ttm_bo_device *bdev =
700 	    container_of(work, struct ttm_bo_device, wq.work);
701 
702 	if (ttm_bo_delayed_delete(bdev, false)) {
703 		schedule_delayed_work(&bdev->wq,
704 				      ((HZ / 100) < 1) ? 1 : HZ / 100);
705 	}
706 }
707 
708 static void ttm_bo_release(struct kref *kref)
709 {
710 	struct ttm_buffer_object *bo =
711 	    container_of(kref, struct ttm_buffer_object, kref);
712 	struct ttm_bo_device *bdev = bo->bdev;
713 	struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
714 
715 	write_lock(&bdev->vm_lock);
716 	if (likely(bo->vm_node != NULL)) {
717 		rb_erase(&bo->vm_rb, &bdev->addr_space_rb);
718 		drm_mm_put_block(bo->vm_node);
719 		bo->vm_node = NULL;
720 	}
721 	write_unlock(&bdev->vm_lock);
722 	ttm_mem_io_lock(man, false);
723 	ttm_mem_io_free_vm(bo);
724 	ttm_mem_io_unlock(man);
725 	ttm_bo_cleanup_refs_or_queue(bo);
726 	kref_put(&bo->list_kref, ttm_bo_release_list);
727 }
728 
729 void ttm_bo_unref(struct ttm_buffer_object **p_bo)
730 {
731 	struct ttm_buffer_object *bo = *p_bo;
732 
733 	*p_bo = NULL;
734 	kref_put(&bo->kref, ttm_bo_release);
735 }
736 EXPORT_SYMBOL(ttm_bo_unref);
737 
738 int ttm_bo_lock_delayed_workqueue(struct ttm_bo_device *bdev)
739 {
740 	return cancel_delayed_work_sync(&bdev->wq);
741 }
742 EXPORT_SYMBOL(ttm_bo_lock_delayed_workqueue);
743 
744 void ttm_bo_unlock_delayed_workqueue(struct ttm_bo_device *bdev, int resched)
745 {
746 	if (resched)
747 		schedule_delayed_work(&bdev->wq,
748 				      ((HZ / 100) < 1) ? 1 : HZ / 100);
749 }
750 EXPORT_SYMBOL(ttm_bo_unlock_delayed_workqueue);
751 
752 static int ttm_bo_evict(struct ttm_buffer_object *bo, bool interruptible,
753 			bool no_wait_gpu)
754 {
755 	struct ttm_bo_device *bdev = bo->bdev;
756 	struct ttm_mem_reg evict_mem;
757 	struct ttm_placement placement;
758 	int ret = 0;
759 
760 	spin_lock(&bdev->fence_lock);
761 	ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu);
762 	spin_unlock(&bdev->fence_lock);
763 
764 	if (unlikely(ret != 0)) {
765 		if (ret != -ERESTARTSYS) {
766 			pr_err("Failed to expire sync object before buffer eviction\n");
767 		}
768 		goto out;
769 	}
770 
771 	BUG_ON(!ttm_bo_is_reserved(bo));
772 
773 	evict_mem = bo->mem;
774 	evict_mem.mm_node = NULL;
775 	evict_mem.bus.io_reserved_vm = false;
776 	evict_mem.bus.io_reserved_count = 0;
777 
778 	placement.fpfn = 0;
779 	placement.lpfn = 0;
780 	placement.num_placement = 0;
781 	placement.num_busy_placement = 0;
782 	bdev->driver->evict_flags(bo, &placement);
783 	ret = ttm_bo_mem_space(bo, &placement, &evict_mem, interruptible,
784 				no_wait_gpu);
785 	if (ret) {
786 		if (ret != -ERESTARTSYS) {
787 			pr_err("Failed to find memory space for buffer 0x%p eviction\n",
788 			       bo);
789 			ttm_bo_mem_space_debug(bo, &placement);
790 		}
791 		goto out;
792 	}
793 
794 	ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, interruptible,
795 				     no_wait_gpu);
796 	if (ret) {
797 		if (ret != -ERESTARTSYS)
798 			pr_err("Buffer eviction failed\n");
799 		ttm_bo_mem_put(bo, &evict_mem);
800 		goto out;
801 	}
802 	bo->evicted = true;
803 out:
804 	return ret;
805 }
806 
807 static int ttm_mem_evict_first(struct ttm_bo_device *bdev,
808 				uint32_t mem_type,
809 				bool interruptible,
810 				bool no_wait_gpu)
811 {
812 	struct ttm_bo_global *glob = bdev->glob;
813 	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
814 	struct ttm_buffer_object *bo;
815 	int ret = -EBUSY, put_count;
816 
817 	spin_lock(&glob->lru_lock);
818 	list_for_each_entry(bo, &man->lru, lru) {
819 		ret = ttm_bo_reserve_locked(bo, false, true, false, 0);
820 		if (!ret)
821 			break;
822 	}
823 
824 	if (ret) {
825 		spin_unlock(&glob->lru_lock);
826 		return ret;
827 	}
828 
829 	kref_get(&bo->list_kref);
830 
831 	if (!list_empty(&bo->ddestroy)) {
832 		ret = ttm_bo_cleanup_refs_and_unlock(bo, interruptible,
833 						     no_wait_gpu);
834 		kref_put(&bo->list_kref, ttm_bo_release_list);
835 		return ret;
836 	}
837 
838 	put_count = ttm_bo_del_from_lru(bo);
839 	spin_unlock(&glob->lru_lock);
840 
841 	BUG_ON(ret != 0);
842 
843 	ttm_bo_list_ref_sub(bo, put_count, true);
844 
845 	ret = ttm_bo_evict(bo, interruptible, no_wait_gpu);
846 	ttm_bo_unreserve(bo);
847 
848 	kref_put(&bo->list_kref, ttm_bo_release_list);
849 	return ret;
850 }
851 
852 void ttm_bo_mem_put(struct ttm_buffer_object *bo, struct ttm_mem_reg *mem)
853 {
854 	struct ttm_mem_type_manager *man = &bo->bdev->man[mem->mem_type];
855 
856 	if (mem->mm_node)
857 		(*man->func->put_node)(man, mem);
858 }
859 EXPORT_SYMBOL(ttm_bo_mem_put);
860 
861 /**
862  * Repeatedly evict memory from the LRU for @mem_type until we create enough
863  * space, or we've evicted everything and there isn't enough space.
864  */
865 static int ttm_bo_mem_force_space(struct ttm_buffer_object *bo,
866 					uint32_t mem_type,
867 					struct ttm_placement *placement,
868 					struct ttm_mem_reg *mem,
869 					bool interruptible,
870 					bool no_wait_gpu)
871 {
872 	struct ttm_bo_device *bdev = bo->bdev;
873 	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
874 	int ret;
875 
876 	do {
877 		ret = (*man->func->get_node)(man, bo, placement, mem);
878 		if (unlikely(ret != 0))
879 			return ret;
880 		if (mem->mm_node)
881 			break;
882 		ret = ttm_mem_evict_first(bdev, mem_type,
883 					  interruptible, no_wait_gpu);
884 		if (unlikely(ret != 0))
885 			return ret;
886 	} while (1);
887 	if (mem->mm_node == NULL)
888 		return -ENOMEM;
889 	mem->mem_type = mem_type;
890 	return 0;
891 }
892 
893 static uint32_t ttm_bo_select_caching(struct ttm_mem_type_manager *man,
894 				      uint32_t cur_placement,
895 				      uint32_t proposed_placement)
896 {
897 	uint32_t caching = proposed_placement & TTM_PL_MASK_CACHING;
898 	uint32_t result = proposed_placement & ~TTM_PL_MASK_CACHING;
899 
900 	/**
901 	 * Keep current caching if possible.
902 	 */
903 
904 	if ((cur_placement & caching) != 0)
905 		result |= (cur_placement & caching);
906 	else if ((man->default_caching & caching) != 0)
907 		result |= man->default_caching;
908 	else if ((TTM_PL_FLAG_CACHED & caching) != 0)
909 		result |= TTM_PL_FLAG_CACHED;
910 	else if ((TTM_PL_FLAG_WC & caching) != 0)
911 		result |= TTM_PL_FLAG_WC;
912 	else if ((TTM_PL_FLAG_UNCACHED & caching) != 0)
913 		result |= TTM_PL_FLAG_UNCACHED;
914 
915 	return result;
916 }
917 
918 static bool ttm_bo_mt_compatible(struct ttm_mem_type_manager *man,
919 				 uint32_t mem_type,
920 				 uint32_t proposed_placement,
921 				 uint32_t *masked_placement)
922 {
923 	uint32_t cur_flags = ttm_bo_type_flags(mem_type);
924 
925 	if ((cur_flags & proposed_placement & TTM_PL_MASK_MEM) == 0)
926 		return false;
927 
928 	if ((proposed_placement & man->available_caching) == 0)
929 		return false;
930 
931 	cur_flags |= (proposed_placement & man->available_caching);
932 
933 	*masked_placement = cur_flags;
934 	return true;
935 }
936 
937 /**
938  * Creates space for memory region @mem according to its type.
939  *
940  * This function first searches for free space in compatible memory types in
941  * the priority order defined by the driver.  If free space isn't found, then
942  * ttm_bo_mem_force_space is attempted in priority order to evict and find
943  * space.
944  */
945 int ttm_bo_mem_space(struct ttm_buffer_object *bo,
946 			struct ttm_placement *placement,
947 			struct ttm_mem_reg *mem,
948 			bool interruptible,
949 			bool no_wait_gpu)
950 {
951 	struct ttm_bo_device *bdev = bo->bdev;
952 	struct ttm_mem_type_manager *man;
953 	uint32_t mem_type = TTM_PL_SYSTEM;
954 	uint32_t cur_flags = 0;
955 	bool type_found = false;
956 	bool type_ok = false;
957 	bool has_erestartsys = false;
958 	int i, ret;
959 
960 	mem->mm_node = NULL;
961 	for (i = 0; i < placement->num_placement; ++i) {
962 		ret = ttm_mem_type_from_flags(placement->placement[i],
963 						&mem_type);
964 		if (ret)
965 			return ret;
966 		man = &bdev->man[mem_type];
967 
968 		type_ok = ttm_bo_mt_compatible(man,
969 						mem_type,
970 						placement->placement[i],
971 						&cur_flags);
972 
973 		if (!type_ok)
974 			continue;
975 
976 		cur_flags = ttm_bo_select_caching(man, bo->mem.placement,
977 						  cur_flags);
978 		/*
979 		 * Use the access and other non-mapping-related flag bits from
980 		 * the memory placement flags to the current flags
981 		 */
982 		ttm_flag_masked(&cur_flags, placement->placement[i],
983 				~TTM_PL_MASK_MEMTYPE);
984 
985 		if (mem_type == TTM_PL_SYSTEM)
986 			break;
987 
988 		if (man->has_type && man->use_type) {
989 			type_found = true;
990 			ret = (*man->func->get_node)(man, bo, placement, mem);
991 			if (unlikely(ret))
992 				return ret;
993 		}
994 		if (mem->mm_node)
995 			break;
996 	}
997 
998 	if ((type_ok && (mem_type == TTM_PL_SYSTEM)) || mem->mm_node) {
999 		mem->mem_type = mem_type;
1000 		mem->placement = cur_flags;
1001 		return 0;
1002 	}
1003 
1004 	if (!type_found)
1005 		return -EINVAL;
1006 
1007 	for (i = 0; i < placement->num_busy_placement; ++i) {
1008 		ret = ttm_mem_type_from_flags(placement->busy_placement[i],
1009 						&mem_type);
1010 		if (ret)
1011 			return ret;
1012 		man = &bdev->man[mem_type];
1013 		if (!man->has_type)
1014 			continue;
1015 		if (!ttm_bo_mt_compatible(man,
1016 						mem_type,
1017 						placement->busy_placement[i],
1018 						&cur_flags))
1019 			continue;
1020 
1021 		cur_flags = ttm_bo_select_caching(man, bo->mem.placement,
1022 						  cur_flags);
1023 		/*
1024 		 * Use the access and other non-mapping-related flag bits from
1025 		 * the memory placement flags to the current flags
1026 		 */
1027 		ttm_flag_masked(&cur_flags, placement->busy_placement[i],
1028 				~TTM_PL_MASK_MEMTYPE);
1029 
1030 
1031 		if (mem_type == TTM_PL_SYSTEM) {
1032 			mem->mem_type = mem_type;
1033 			mem->placement = cur_flags;
1034 			mem->mm_node = NULL;
1035 			return 0;
1036 		}
1037 
1038 		ret = ttm_bo_mem_force_space(bo, mem_type, placement, mem,
1039 						interruptible, no_wait_gpu);
1040 		if (ret == 0 && mem->mm_node) {
1041 			mem->placement = cur_flags;
1042 			return 0;
1043 		}
1044 		if (ret == -ERESTARTSYS)
1045 			has_erestartsys = true;
1046 	}
1047 	ret = (has_erestartsys) ? -ERESTARTSYS : -ENOMEM;
1048 	return ret;
1049 }
1050 EXPORT_SYMBOL(ttm_bo_mem_space);
1051 
1052 int ttm_bo_move_buffer(struct ttm_buffer_object *bo,
1053 			struct ttm_placement *placement,
1054 			bool interruptible,
1055 			bool no_wait_gpu)
1056 {
1057 	int ret = 0;
1058 	struct ttm_mem_reg mem;
1059 	struct ttm_bo_device *bdev = bo->bdev;
1060 
1061 	BUG_ON(!ttm_bo_is_reserved(bo));
1062 
1063 	/*
1064 	 * FIXME: It's possible to pipeline buffer moves.
1065 	 * Have the driver move function wait for idle when necessary,
1066 	 * instead of doing it here.
1067 	 */
1068 	spin_lock(&bdev->fence_lock);
1069 	ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu);
1070 	spin_unlock(&bdev->fence_lock);
1071 	if (ret)
1072 		return ret;
1073 	mem.num_pages = bo->num_pages;
1074 	mem.size = mem.num_pages << PAGE_SHIFT;
1075 	mem.page_alignment = bo->mem.page_alignment;
1076 	mem.bus.io_reserved_vm = false;
1077 	mem.bus.io_reserved_count = 0;
1078 	/*
1079 	 * Determine where to move the buffer.
1080 	 */
1081 	ret = ttm_bo_mem_space(bo, placement, &mem,
1082 			       interruptible, no_wait_gpu);
1083 	if (ret)
1084 		goto out_unlock;
1085 	ret = ttm_bo_handle_move_mem(bo, &mem, false,
1086 				     interruptible, no_wait_gpu);
1087 out_unlock:
1088 	if (ret && mem.mm_node)
1089 		ttm_bo_mem_put(bo, &mem);
1090 	return ret;
1091 }
1092 
1093 static int ttm_bo_mem_compat(struct ttm_placement *placement,
1094 			     struct ttm_mem_reg *mem)
1095 {
1096 	int i;
1097 
1098 	if (mem->mm_node && placement->lpfn != 0 &&
1099 	    (mem->start < placement->fpfn ||
1100 	     mem->start + mem->num_pages > placement->lpfn))
1101 		return -1;
1102 
1103 	for (i = 0; i < placement->num_placement; i++) {
1104 		if ((placement->placement[i] & mem->placement &
1105 			TTM_PL_MASK_CACHING) &&
1106 			(placement->placement[i] & mem->placement &
1107 			TTM_PL_MASK_MEM))
1108 			return i;
1109 	}
1110 	return -1;
1111 }
1112 
1113 int ttm_bo_validate(struct ttm_buffer_object *bo,
1114 			struct ttm_placement *placement,
1115 			bool interruptible,
1116 			bool no_wait_gpu)
1117 {
1118 	int ret;
1119 
1120 	BUG_ON(!ttm_bo_is_reserved(bo));
1121 	/* Check that range is valid */
1122 	if (placement->lpfn || placement->fpfn)
1123 		if (placement->fpfn > placement->lpfn ||
1124 			(placement->lpfn - placement->fpfn) < bo->num_pages)
1125 			return -EINVAL;
1126 	/*
1127 	 * Check whether we need to move buffer.
1128 	 */
1129 	ret = ttm_bo_mem_compat(placement, &bo->mem);
1130 	if (ret < 0) {
1131 		ret = ttm_bo_move_buffer(bo, placement, interruptible,
1132 					 no_wait_gpu);
1133 		if (ret)
1134 			return ret;
1135 	} else {
1136 		/*
1137 		 * Use the access and other non-mapping-related flag bits from
1138 		 * the compatible memory placement flags to the active flags
1139 		 */
1140 		ttm_flag_masked(&bo->mem.placement, placement->placement[ret],
1141 				~TTM_PL_MASK_MEMTYPE);
1142 	}
1143 	/*
1144 	 * We might need to add a TTM.
1145 	 */
1146 	if (bo->mem.mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
1147 		ret = ttm_bo_add_ttm(bo, true);
1148 		if (ret)
1149 			return ret;
1150 	}
1151 	return 0;
1152 }
1153 EXPORT_SYMBOL(ttm_bo_validate);
1154 
1155 int ttm_bo_check_placement(struct ttm_buffer_object *bo,
1156 				struct ttm_placement *placement)
1157 {
1158 	BUG_ON((placement->fpfn || placement->lpfn) &&
1159 	       (bo->mem.num_pages > (placement->lpfn - placement->fpfn)));
1160 
1161 	return 0;
1162 }
1163 
1164 int ttm_bo_init(struct ttm_bo_device *bdev,
1165 		struct ttm_buffer_object *bo,
1166 		unsigned long size,
1167 		enum ttm_bo_type type,
1168 		struct ttm_placement *placement,
1169 		uint32_t page_alignment,
1170 		bool interruptible,
1171 		struct file *persistent_swap_storage,
1172 		size_t acc_size,
1173 		struct sg_table *sg,
1174 		void (*destroy) (struct ttm_buffer_object *))
1175 {
1176 	int ret = 0;
1177 	unsigned long num_pages;
1178 	struct ttm_mem_global *mem_glob = bdev->glob->mem_glob;
1179 
1180 	ret = ttm_mem_global_alloc(mem_glob, acc_size, false, false);
1181 	if (ret) {
1182 		pr_err("Out of kernel memory\n");
1183 		if (destroy)
1184 			(*destroy)(bo);
1185 		else
1186 			kfree(bo);
1187 		return -ENOMEM;
1188 	}
1189 
1190 	num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1191 	if (num_pages == 0) {
1192 		pr_err("Illegal buffer object size\n");
1193 		if (destroy)
1194 			(*destroy)(bo);
1195 		else
1196 			kfree(bo);
1197 		ttm_mem_global_free(mem_glob, acc_size);
1198 		return -EINVAL;
1199 	}
1200 	bo->destroy = destroy;
1201 
1202 	kref_init(&bo->kref);
1203 	kref_init(&bo->list_kref);
1204 	atomic_set(&bo->cpu_writers, 0);
1205 	atomic_set(&bo->reserved, 1);
1206 	init_waitqueue_head(&bo->event_queue);
1207 	INIT_LIST_HEAD(&bo->lru);
1208 	INIT_LIST_HEAD(&bo->ddestroy);
1209 	INIT_LIST_HEAD(&bo->swap);
1210 	INIT_LIST_HEAD(&bo->io_reserve_lru);
1211 	bo->bdev = bdev;
1212 	bo->glob = bdev->glob;
1213 	bo->type = type;
1214 	bo->num_pages = num_pages;
1215 	bo->mem.size = num_pages << PAGE_SHIFT;
1216 	bo->mem.mem_type = TTM_PL_SYSTEM;
1217 	bo->mem.num_pages = bo->num_pages;
1218 	bo->mem.mm_node = NULL;
1219 	bo->mem.page_alignment = page_alignment;
1220 	bo->mem.bus.io_reserved_vm = false;
1221 	bo->mem.bus.io_reserved_count = 0;
1222 	bo->priv_flags = 0;
1223 	bo->mem.placement = (TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED);
1224 	bo->seq_valid = false;
1225 	bo->persistent_swap_storage = persistent_swap_storage;
1226 	bo->acc_size = acc_size;
1227 	bo->sg = sg;
1228 	atomic_inc(&bo->glob->bo_count);
1229 
1230 	ret = ttm_bo_check_placement(bo, placement);
1231 	if (unlikely(ret != 0))
1232 		goto out_err;
1233 
1234 	/*
1235 	 * For ttm_bo_type_device buffers, allocate
1236 	 * address space from the device.
1237 	 */
1238 	if (bo->type == ttm_bo_type_device ||
1239 	    bo->type == ttm_bo_type_sg) {
1240 		ret = ttm_bo_setup_vm(bo);
1241 		if (ret)
1242 			goto out_err;
1243 	}
1244 
1245 	ret = ttm_bo_validate(bo, placement, interruptible, false);
1246 	if (ret)
1247 		goto out_err;
1248 
1249 	ttm_bo_unreserve(bo);
1250 	return 0;
1251 
1252 out_err:
1253 	ttm_bo_unreserve(bo);
1254 	ttm_bo_unref(&bo);
1255 
1256 	return ret;
1257 }
1258 EXPORT_SYMBOL(ttm_bo_init);
1259 
1260 size_t ttm_bo_acc_size(struct ttm_bo_device *bdev,
1261 		       unsigned long bo_size,
1262 		       unsigned struct_size)
1263 {
1264 	unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT;
1265 	size_t size = 0;
1266 
1267 	size += ttm_round_pot(struct_size);
1268 	size += PAGE_ALIGN(npages * sizeof(void *));
1269 	size += ttm_round_pot(sizeof(struct ttm_tt));
1270 	return size;
1271 }
1272 EXPORT_SYMBOL(ttm_bo_acc_size);
1273 
1274 size_t ttm_bo_dma_acc_size(struct ttm_bo_device *bdev,
1275 			   unsigned long bo_size,
1276 			   unsigned struct_size)
1277 {
1278 	unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT;
1279 	size_t size = 0;
1280 
1281 	size += ttm_round_pot(struct_size);
1282 	size += PAGE_ALIGN(npages * sizeof(void *));
1283 	size += PAGE_ALIGN(npages * sizeof(dma_addr_t));
1284 	size += ttm_round_pot(sizeof(struct ttm_dma_tt));
1285 	return size;
1286 }
1287 EXPORT_SYMBOL(ttm_bo_dma_acc_size);
1288 
1289 int ttm_bo_create(struct ttm_bo_device *bdev,
1290 			unsigned long size,
1291 			enum ttm_bo_type type,
1292 			struct ttm_placement *placement,
1293 			uint32_t page_alignment,
1294 			bool interruptible,
1295 			struct file *persistent_swap_storage,
1296 			struct ttm_buffer_object **p_bo)
1297 {
1298 	struct ttm_buffer_object *bo;
1299 	size_t acc_size;
1300 	int ret;
1301 
1302 	bo = kzalloc(sizeof(*bo), GFP_KERNEL);
1303 	if (unlikely(bo == NULL))
1304 		return -ENOMEM;
1305 
1306 	acc_size = ttm_bo_acc_size(bdev, size, sizeof(struct ttm_buffer_object));
1307 	ret = ttm_bo_init(bdev, bo, size, type, placement, page_alignment,
1308 			  interruptible, persistent_swap_storage, acc_size,
1309 			  NULL, NULL);
1310 	if (likely(ret == 0))
1311 		*p_bo = bo;
1312 
1313 	return ret;
1314 }
1315 EXPORT_SYMBOL(ttm_bo_create);
1316 
1317 static int ttm_bo_force_list_clean(struct ttm_bo_device *bdev,
1318 					unsigned mem_type, bool allow_errors)
1319 {
1320 	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1321 	struct ttm_bo_global *glob = bdev->glob;
1322 	int ret;
1323 
1324 	/*
1325 	 * Can't use standard list traversal since we're unlocking.
1326 	 */
1327 
1328 	spin_lock(&glob->lru_lock);
1329 	while (!list_empty(&man->lru)) {
1330 		spin_unlock(&glob->lru_lock);
1331 		ret = ttm_mem_evict_first(bdev, mem_type, false, false);
1332 		if (ret) {
1333 			if (allow_errors) {
1334 				return ret;
1335 			} else {
1336 				pr_err("Cleanup eviction failed\n");
1337 			}
1338 		}
1339 		spin_lock(&glob->lru_lock);
1340 	}
1341 	spin_unlock(&glob->lru_lock);
1342 	return 0;
1343 }
1344 
1345 int ttm_bo_clean_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1346 {
1347 	struct ttm_mem_type_manager *man;
1348 	int ret = -EINVAL;
1349 
1350 	if (mem_type >= TTM_NUM_MEM_TYPES) {
1351 		pr_err("Illegal memory type %d\n", mem_type);
1352 		return ret;
1353 	}
1354 	man = &bdev->man[mem_type];
1355 
1356 	if (!man->has_type) {
1357 		pr_err("Trying to take down uninitialized memory manager type %u\n",
1358 		       mem_type);
1359 		return ret;
1360 	}
1361 
1362 	man->use_type = false;
1363 	man->has_type = false;
1364 
1365 	ret = 0;
1366 	if (mem_type > 0) {
1367 		ttm_bo_force_list_clean(bdev, mem_type, false);
1368 
1369 		ret = (*man->func->takedown)(man);
1370 	}
1371 
1372 	return ret;
1373 }
1374 EXPORT_SYMBOL(ttm_bo_clean_mm);
1375 
1376 int ttm_bo_evict_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1377 {
1378 	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1379 
1380 	if (mem_type == 0 || mem_type >= TTM_NUM_MEM_TYPES) {
1381 		pr_err("Illegal memory manager memory type %u\n", mem_type);
1382 		return -EINVAL;
1383 	}
1384 
1385 	if (!man->has_type) {
1386 		pr_err("Memory type %u has not been initialized\n", mem_type);
1387 		return 0;
1388 	}
1389 
1390 	return ttm_bo_force_list_clean(bdev, mem_type, true);
1391 }
1392 EXPORT_SYMBOL(ttm_bo_evict_mm);
1393 
1394 int ttm_bo_init_mm(struct ttm_bo_device *bdev, unsigned type,
1395 			unsigned long p_size)
1396 {
1397 	int ret = -EINVAL;
1398 	struct ttm_mem_type_manager *man;
1399 
1400 	BUG_ON(type >= TTM_NUM_MEM_TYPES);
1401 	man = &bdev->man[type];
1402 	BUG_ON(man->has_type);
1403 	man->io_reserve_fastpath = true;
1404 	man->use_io_reserve_lru = false;
1405 	mutex_init(&man->io_reserve_mutex);
1406 	INIT_LIST_HEAD(&man->io_reserve_lru);
1407 
1408 	ret = bdev->driver->init_mem_type(bdev, type, man);
1409 	if (ret)
1410 		return ret;
1411 	man->bdev = bdev;
1412 
1413 	ret = 0;
1414 	if (type != TTM_PL_SYSTEM) {
1415 		ret = (*man->func->init)(man, p_size);
1416 		if (ret)
1417 			return ret;
1418 	}
1419 	man->has_type = true;
1420 	man->use_type = true;
1421 	man->size = p_size;
1422 
1423 	INIT_LIST_HEAD(&man->lru);
1424 
1425 	return 0;
1426 }
1427 EXPORT_SYMBOL(ttm_bo_init_mm);
1428 
1429 static void ttm_bo_global_kobj_release(struct kobject *kobj)
1430 {
1431 	struct ttm_bo_global *glob =
1432 		container_of(kobj, struct ttm_bo_global, kobj);
1433 
1434 	ttm_mem_unregister_shrink(glob->mem_glob, &glob->shrink);
1435 	__free_page(glob->dummy_read_page);
1436 	kfree(glob);
1437 }
1438 
1439 void ttm_bo_global_release(struct drm_global_reference *ref)
1440 {
1441 	struct ttm_bo_global *glob = ref->object;
1442 
1443 	kobject_del(&glob->kobj);
1444 	kobject_put(&glob->kobj);
1445 }
1446 EXPORT_SYMBOL(ttm_bo_global_release);
1447 
1448 int ttm_bo_global_init(struct drm_global_reference *ref)
1449 {
1450 	struct ttm_bo_global_ref *bo_ref =
1451 		container_of(ref, struct ttm_bo_global_ref, ref);
1452 	struct ttm_bo_global *glob = ref->object;
1453 	int ret;
1454 
1455 	mutex_init(&glob->device_list_mutex);
1456 	spin_lock_init(&glob->lru_lock);
1457 	glob->mem_glob = bo_ref->mem_glob;
1458 	glob->dummy_read_page = alloc_page(__GFP_ZERO | GFP_DMA32);
1459 
1460 	if (unlikely(glob->dummy_read_page == NULL)) {
1461 		ret = -ENOMEM;
1462 		goto out_no_drp;
1463 	}
1464 
1465 	INIT_LIST_HEAD(&glob->swap_lru);
1466 	INIT_LIST_HEAD(&glob->device_list);
1467 
1468 	ttm_mem_init_shrink(&glob->shrink, ttm_bo_swapout);
1469 	ret = ttm_mem_register_shrink(glob->mem_glob, &glob->shrink);
1470 	if (unlikely(ret != 0)) {
1471 		pr_err("Could not register buffer object swapout\n");
1472 		goto out_no_shrink;
1473 	}
1474 
1475 	atomic_set(&glob->bo_count, 0);
1476 
1477 	ret = kobject_init_and_add(
1478 		&glob->kobj, &ttm_bo_glob_kobj_type, ttm_get_kobj(), "buffer_objects");
1479 	if (unlikely(ret != 0))
1480 		kobject_put(&glob->kobj);
1481 	return ret;
1482 out_no_shrink:
1483 	__free_page(glob->dummy_read_page);
1484 out_no_drp:
1485 	kfree(glob);
1486 	return ret;
1487 }
1488 EXPORT_SYMBOL(ttm_bo_global_init);
1489 
1490 
1491 int ttm_bo_device_release(struct ttm_bo_device *bdev)
1492 {
1493 	int ret = 0;
1494 	unsigned i = TTM_NUM_MEM_TYPES;
1495 	struct ttm_mem_type_manager *man;
1496 	struct ttm_bo_global *glob = bdev->glob;
1497 
1498 	while (i--) {
1499 		man = &bdev->man[i];
1500 		if (man->has_type) {
1501 			man->use_type = false;
1502 			if ((i != TTM_PL_SYSTEM) && ttm_bo_clean_mm(bdev, i)) {
1503 				ret = -EBUSY;
1504 				pr_err("DRM memory manager type %d is not clean\n",
1505 				       i);
1506 			}
1507 			man->has_type = false;
1508 		}
1509 	}
1510 
1511 	mutex_lock(&glob->device_list_mutex);
1512 	list_del(&bdev->device_list);
1513 	mutex_unlock(&glob->device_list_mutex);
1514 
1515 	cancel_delayed_work_sync(&bdev->wq);
1516 
1517 	while (ttm_bo_delayed_delete(bdev, true))
1518 		;
1519 
1520 	spin_lock(&glob->lru_lock);
1521 	if (list_empty(&bdev->ddestroy))
1522 		TTM_DEBUG("Delayed destroy list was clean\n");
1523 
1524 	if (list_empty(&bdev->man[0].lru))
1525 		TTM_DEBUG("Swap list was clean\n");
1526 	spin_unlock(&glob->lru_lock);
1527 
1528 	BUG_ON(!drm_mm_clean(&bdev->addr_space_mm));
1529 	write_lock(&bdev->vm_lock);
1530 	drm_mm_takedown(&bdev->addr_space_mm);
1531 	write_unlock(&bdev->vm_lock);
1532 
1533 	return ret;
1534 }
1535 EXPORT_SYMBOL(ttm_bo_device_release);
1536 
1537 int ttm_bo_device_init(struct ttm_bo_device *bdev,
1538 		       struct ttm_bo_global *glob,
1539 		       struct ttm_bo_driver *driver,
1540 		       uint64_t file_page_offset,
1541 		       bool need_dma32)
1542 {
1543 	int ret = -EINVAL;
1544 
1545 	rwlock_init(&bdev->vm_lock);
1546 	bdev->driver = driver;
1547 
1548 	memset(bdev->man, 0, sizeof(bdev->man));
1549 
1550 	/*
1551 	 * Initialize the system memory buffer type.
1552 	 * Other types need to be driver / IOCTL initialized.
1553 	 */
1554 	ret = ttm_bo_init_mm(bdev, TTM_PL_SYSTEM, 0);
1555 	if (unlikely(ret != 0))
1556 		goto out_no_sys;
1557 
1558 	bdev->addr_space_rb = RB_ROOT;
1559 	ret = drm_mm_init(&bdev->addr_space_mm, file_page_offset, 0x10000000);
1560 	if (unlikely(ret != 0))
1561 		goto out_no_addr_mm;
1562 
1563 	INIT_DELAYED_WORK(&bdev->wq, ttm_bo_delayed_workqueue);
1564 	INIT_LIST_HEAD(&bdev->ddestroy);
1565 	bdev->dev_mapping = NULL;
1566 	bdev->glob = glob;
1567 	bdev->need_dma32 = need_dma32;
1568 	bdev->val_seq = 0;
1569 	spin_lock_init(&bdev->fence_lock);
1570 	mutex_lock(&glob->device_list_mutex);
1571 	list_add_tail(&bdev->device_list, &glob->device_list);
1572 	mutex_unlock(&glob->device_list_mutex);
1573 
1574 	return 0;
1575 out_no_addr_mm:
1576 	ttm_bo_clean_mm(bdev, 0);
1577 out_no_sys:
1578 	return ret;
1579 }
1580 EXPORT_SYMBOL(ttm_bo_device_init);
1581 
1582 /*
1583  * buffer object vm functions.
1584  */
1585 
1586 bool ttm_mem_reg_is_pci(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
1587 {
1588 	struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
1589 
1590 	if (!(man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
1591 		if (mem->mem_type == TTM_PL_SYSTEM)
1592 			return false;
1593 
1594 		if (man->flags & TTM_MEMTYPE_FLAG_CMA)
1595 			return false;
1596 
1597 		if (mem->placement & TTM_PL_FLAG_CACHED)
1598 			return false;
1599 	}
1600 	return true;
1601 }
1602 
1603 void ttm_bo_unmap_virtual_locked(struct ttm_buffer_object *bo)
1604 {
1605 	struct ttm_bo_device *bdev = bo->bdev;
1606 	loff_t offset = (loff_t) bo->addr_space_offset;
1607 	loff_t holelen = ((loff_t) bo->mem.num_pages) << PAGE_SHIFT;
1608 
1609 	if (!bdev->dev_mapping)
1610 		return;
1611 	unmap_mapping_range(bdev->dev_mapping, offset, holelen, 1);
1612 	ttm_mem_io_free_vm(bo);
1613 }
1614 
1615 void ttm_bo_unmap_virtual(struct ttm_buffer_object *bo)
1616 {
1617 	struct ttm_bo_device *bdev = bo->bdev;
1618 	struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
1619 
1620 	ttm_mem_io_lock(man, false);
1621 	ttm_bo_unmap_virtual_locked(bo);
1622 	ttm_mem_io_unlock(man);
1623 }
1624 
1625 
1626 EXPORT_SYMBOL(ttm_bo_unmap_virtual);
1627 
1628 static void ttm_bo_vm_insert_rb(struct ttm_buffer_object *bo)
1629 {
1630 	struct ttm_bo_device *bdev = bo->bdev;
1631 	struct rb_node **cur = &bdev->addr_space_rb.rb_node;
1632 	struct rb_node *parent = NULL;
1633 	struct ttm_buffer_object *cur_bo;
1634 	unsigned long offset = bo->vm_node->start;
1635 	unsigned long cur_offset;
1636 
1637 	while (*cur) {
1638 		parent = *cur;
1639 		cur_bo = rb_entry(parent, struct ttm_buffer_object, vm_rb);
1640 		cur_offset = cur_bo->vm_node->start;
1641 		if (offset < cur_offset)
1642 			cur = &parent->rb_left;
1643 		else if (offset > cur_offset)
1644 			cur = &parent->rb_right;
1645 		else
1646 			BUG();
1647 	}
1648 
1649 	rb_link_node(&bo->vm_rb, parent, cur);
1650 	rb_insert_color(&bo->vm_rb, &bdev->addr_space_rb);
1651 }
1652 
1653 /**
1654  * ttm_bo_setup_vm:
1655  *
1656  * @bo: the buffer to allocate address space for
1657  *
1658  * Allocate address space in the drm device so that applications
1659  * can mmap the buffer and access the contents. This only
1660  * applies to ttm_bo_type_device objects as others are not
1661  * placed in the drm device address space.
1662  */
1663 
1664 static int ttm_bo_setup_vm(struct ttm_buffer_object *bo)
1665 {
1666 	struct ttm_bo_device *bdev = bo->bdev;
1667 	int ret;
1668 
1669 retry_pre_get:
1670 	ret = drm_mm_pre_get(&bdev->addr_space_mm);
1671 	if (unlikely(ret != 0))
1672 		return ret;
1673 
1674 	write_lock(&bdev->vm_lock);
1675 	bo->vm_node = drm_mm_search_free(&bdev->addr_space_mm,
1676 					 bo->mem.num_pages, 0, 0);
1677 
1678 	if (unlikely(bo->vm_node == NULL)) {
1679 		ret = -ENOMEM;
1680 		goto out_unlock;
1681 	}
1682 
1683 	bo->vm_node = drm_mm_get_block_atomic(bo->vm_node,
1684 					      bo->mem.num_pages, 0);
1685 
1686 	if (unlikely(bo->vm_node == NULL)) {
1687 		write_unlock(&bdev->vm_lock);
1688 		goto retry_pre_get;
1689 	}
1690 
1691 	ttm_bo_vm_insert_rb(bo);
1692 	write_unlock(&bdev->vm_lock);
1693 	bo->addr_space_offset = ((uint64_t) bo->vm_node->start) << PAGE_SHIFT;
1694 
1695 	return 0;
1696 out_unlock:
1697 	write_unlock(&bdev->vm_lock);
1698 	return ret;
1699 }
1700 
1701 int ttm_bo_wait(struct ttm_buffer_object *bo,
1702 		bool lazy, bool interruptible, bool no_wait)
1703 {
1704 	struct ttm_bo_driver *driver = bo->bdev->driver;
1705 	struct ttm_bo_device *bdev = bo->bdev;
1706 	void *sync_obj;
1707 	int ret = 0;
1708 
1709 	if (likely(bo->sync_obj == NULL))
1710 		return 0;
1711 
1712 	while (bo->sync_obj) {
1713 
1714 		if (driver->sync_obj_signaled(bo->sync_obj)) {
1715 			void *tmp_obj = bo->sync_obj;
1716 			bo->sync_obj = NULL;
1717 			clear_bit(TTM_BO_PRIV_FLAG_MOVING, &bo->priv_flags);
1718 			spin_unlock(&bdev->fence_lock);
1719 			driver->sync_obj_unref(&tmp_obj);
1720 			spin_lock(&bdev->fence_lock);
1721 			continue;
1722 		}
1723 
1724 		if (no_wait)
1725 			return -EBUSY;
1726 
1727 		sync_obj = driver->sync_obj_ref(bo->sync_obj);
1728 		spin_unlock(&bdev->fence_lock);
1729 		ret = driver->sync_obj_wait(sync_obj,
1730 					    lazy, interruptible);
1731 		if (unlikely(ret != 0)) {
1732 			driver->sync_obj_unref(&sync_obj);
1733 			spin_lock(&bdev->fence_lock);
1734 			return ret;
1735 		}
1736 		spin_lock(&bdev->fence_lock);
1737 		if (likely(bo->sync_obj == sync_obj)) {
1738 			void *tmp_obj = bo->sync_obj;
1739 			bo->sync_obj = NULL;
1740 			clear_bit(TTM_BO_PRIV_FLAG_MOVING,
1741 				  &bo->priv_flags);
1742 			spin_unlock(&bdev->fence_lock);
1743 			driver->sync_obj_unref(&sync_obj);
1744 			driver->sync_obj_unref(&tmp_obj);
1745 			spin_lock(&bdev->fence_lock);
1746 		} else {
1747 			spin_unlock(&bdev->fence_lock);
1748 			driver->sync_obj_unref(&sync_obj);
1749 			spin_lock(&bdev->fence_lock);
1750 		}
1751 	}
1752 	return 0;
1753 }
1754 EXPORT_SYMBOL(ttm_bo_wait);
1755 
1756 int ttm_bo_synccpu_write_grab(struct ttm_buffer_object *bo, bool no_wait)
1757 {
1758 	struct ttm_bo_device *bdev = bo->bdev;
1759 	int ret = 0;
1760 
1761 	/*
1762 	 * Using ttm_bo_reserve makes sure the lru lists are updated.
1763 	 */
1764 
1765 	ret = ttm_bo_reserve(bo, true, no_wait, false, 0);
1766 	if (unlikely(ret != 0))
1767 		return ret;
1768 	spin_lock(&bdev->fence_lock);
1769 	ret = ttm_bo_wait(bo, false, true, no_wait);
1770 	spin_unlock(&bdev->fence_lock);
1771 	if (likely(ret == 0))
1772 		atomic_inc(&bo->cpu_writers);
1773 	ttm_bo_unreserve(bo);
1774 	return ret;
1775 }
1776 EXPORT_SYMBOL(ttm_bo_synccpu_write_grab);
1777 
1778 void ttm_bo_synccpu_write_release(struct ttm_buffer_object *bo)
1779 {
1780 	atomic_dec(&bo->cpu_writers);
1781 }
1782 EXPORT_SYMBOL(ttm_bo_synccpu_write_release);
1783 
1784 /**
1785  * A buffer object shrink method that tries to swap out the first
1786  * buffer object on the bo_global::swap_lru list.
1787  */
1788 
1789 static int ttm_bo_swapout(struct ttm_mem_shrink *shrink)
1790 {
1791 	struct ttm_bo_global *glob =
1792 	    container_of(shrink, struct ttm_bo_global, shrink);
1793 	struct ttm_buffer_object *bo;
1794 	int ret = -EBUSY;
1795 	int put_count;
1796 	uint32_t swap_placement = (TTM_PL_FLAG_CACHED | TTM_PL_FLAG_SYSTEM);
1797 
1798 	spin_lock(&glob->lru_lock);
1799 	list_for_each_entry(bo, &glob->swap_lru, swap) {
1800 		ret = ttm_bo_reserve_locked(bo, false, true, false, 0);
1801 		if (!ret)
1802 			break;
1803 	}
1804 
1805 	if (ret) {
1806 		spin_unlock(&glob->lru_lock);
1807 		return ret;
1808 	}
1809 
1810 	kref_get(&bo->list_kref);
1811 
1812 	if (!list_empty(&bo->ddestroy)) {
1813 		ret = ttm_bo_cleanup_refs_and_unlock(bo, false, false);
1814 		kref_put(&bo->list_kref, ttm_bo_release_list);
1815 		return ret;
1816 	}
1817 
1818 	put_count = ttm_bo_del_from_lru(bo);
1819 	spin_unlock(&glob->lru_lock);
1820 
1821 	ttm_bo_list_ref_sub(bo, put_count, true);
1822 
1823 	/**
1824 	 * Wait for GPU, then move to system cached.
1825 	 */
1826 
1827 	spin_lock(&bo->bdev->fence_lock);
1828 	ret = ttm_bo_wait(bo, false, false, false);
1829 	spin_unlock(&bo->bdev->fence_lock);
1830 
1831 	if (unlikely(ret != 0))
1832 		goto out;
1833 
1834 	if ((bo->mem.placement & swap_placement) != swap_placement) {
1835 		struct ttm_mem_reg evict_mem;
1836 
1837 		evict_mem = bo->mem;
1838 		evict_mem.mm_node = NULL;
1839 		evict_mem.placement = TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED;
1840 		evict_mem.mem_type = TTM_PL_SYSTEM;
1841 
1842 		ret = ttm_bo_handle_move_mem(bo, &evict_mem, true,
1843 					     false, false);
1844 		if (unlikely(ret != 0))
1845 			goto out;
1846 	}
1847 
1848 	ttm_bo_unmap_virtual(bo);
1849 
1850 	/**
1851 	 * Swap out. Buffer will be swapped in again as soon as
1852 	 * anyone tries to access a ttm page.
1853 	 */
1854 
1855 	if (bo->bdev->driver->swap_notify)
1856 		bo->bdev->driver->swap_notify(bo);
1857 
1858 	ret = ttm_tt_swapout(bo->ttm, bo->persistent_swap_storage);
1859 out:
1860 
1861 	/**
1862 	 *
1863 	 * Unreserve without putting on LRU to avoid swapping out an
1864 	 * already swapped buffer.
1865 	 */
1866 
1867 	atomic_set(&bo->reserved, 0);
1868 	wake_up_all(&bo->event_queue);
1869 	kref_put(&bo->list_kref, ttm_bo_release_list);
1870 	return ret;
1871 }
1872 
1873 void ttm_bo_swapout_all(struct ttm_bo_device *bdev)
1874 {
1875 	while (ttm_bo_swapout(&bdev->glob->shrink) == 0)
1876 		;
1877 }
1878 EXPORT_SYMBOL(ttm_bo_swapout_all);
1879