1 /* SPDX-License-Identifier: GPL-2.0 OR MIT */ 2 /************************************************************************** 3 * 4 * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA 5 * All Rights Reserved. 6 * 7 * Permission is hereby granted, free of charge, to any person obtaining a 8 * copy of this software and associated documentation files (the 9 * "Software"), to deal in the Software without restriction, including 10 * without limitation the rights to use, copy, modify, merge, publish, 11 * distribute, sub license, and/or sell copies of the Software, and to 12 * permit persons to whom the Software is furnished to do so, subject to 13 * the following conditions: 14 * 15 * The above copyright notice and this permission notice (including the 16 * next paragraph) shall be included in all copies or substantial portions 17 * of the Software. 18 * 19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 21 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 22 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 23 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 24 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 25 * USE OR OTHER DEALINGS IN THE SOFTWARE. 26 * 27 **************************************************************************/ 28 /* 29 * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com> 30 */ 31 32 #define pr_fmt(fmt) "[TTM] " fmt 33 34 #include <drm/ttm/ttm_module.h> 35 #include <drm/ttm/ttm_bo_driver.h> 36 #include <drm/ttm/ttm_placement.h> 37 #include <linux/jiffies.h> 38 #include <linux/slab.h> 39 #include <linux/sched.h> 40 #include <linux/mm.h> 41 #include <linux/file.h> 42 #include <linux/module.h> 43 #include <linux/atomic.h> 44 #include <linux/reservation.h> 45 46 static void ttm_bo_global_kobj_release(struct kobject *kobj); 47 48 /** 49 * ttm_global_mutex - protecting the global BO state 50 */ 51 DEFINE_MUTEX(ttm_global_mutex); 52 unsigned ttm_bo_glob_use_count; 53 struct ttm_bo_global ttm_bo_glob; 54 55 static struct attribute ttm_bo_count = { 56 .name = "bo_count", 57 .mode = S_IRUGO 58 }; 59 60 /* default destructor */ 61 static void ttm_bo_default_destroy(struct ttm_buffer_object *bo) 62 { 63 kfree(bo); 64 } 65 66 static inline int ttm_mem_type_from_place(const struct ttm_place *place, 67 uint32_t *mem_type) 68 { 69 int pos; 70 71 pos = ffs(place->flags & TTM_PL_MASK_MEM); 72 if (unlikely(!pos)) 73 return -EINVAL; 74 75 *mem_type = pos - 1; 76 return 0; 77 } 78 79 static void ttm_mem_type_debug(struct ttm_bo_device *bdev, struct drm_printer *p, 80 int mem_type) 81 { 82 struct ttm_mem_type_manager *man = &bdev->man[mem_type]; 83 84 drm_printf(p, " has_type: %d\n", man->has_type); 85 drm_printf(p, " use_type: %d\n", man->use_type); 86 drm_printf(p, " flags: 0x%08X\n", man->flags); 87 drm_printf(p, " gpu_offset: 0x%08llX\n", man->gpu_offset); 88 drm_printf(p, " size: %llu\n", man->size); 89 drm_printf(p, " available_caching: 0x%08X\n", man->available_caching); 90 drm_printf(p, " default_caching: 0x%08X\n", man->default_caching); 91 if (mem_type != TTM_PL_SYSTEM) 92 (*man->func->debug)(man, p); 93 } 94 95 static void ttm_bo_mem_space_debug(struct ttm_buffer_object *bo, 96 struct ttm_placement *placement) 97 { 98 struct drm_printer p = drm_debug_printer(TTM_PFX); 99 int i, ret, mem_type; 100 101 drm_printf(&p, "No space for %p (%lu pages, %luK, %luM)\n", 102 bo, bo->mem.num_pages, bo->mem.size >> 10, 103 bo->mem.size >> 20); 104 for (i = 0; i < placement->num_placement; i++) { 105 ret = ttm_mem_type_from_place(&placement->placement[i], 106 &mem_type); 107 if (ret) 108 return; 109 drm_printf(&p, " placement[%d]=0x%08X (%d)\n", 110 i, placement->placement[i].flags, mem_type); 111 ttm_mem_type_debug(bo->bdev, &p, mem_type); 112 } 113 } 114 115 static ssize_t ttm_bo_global_show(struct kobject *kobj, 116 struct attribute *attr, 117 char *buffer) 118 { 119 struct ttm_bo_global *glob = 120 container_of(kobj, struct ttm_bo_global, kobj); 121 122 return snprintf(buffer, PAGE_SIZE, "%d\n", 123 atomic_read(&glob->bo_count)); 124 } 125 126 static struct attribute *ttm_bo_global_attrs[] = { 127 &ttm_bo_count, 128 NULL 129 }; 130 131 static const struct sysfs_ops ttm_bo_global_ops = { 132 .show = &ttm_bo_global_show 133 }; 134 135 static struct kobj_type ttm_bo_glob_kobj_type = { 136 .release = &ttm_bo_global_kobj_release, 137 .sysfs_ops = &ttm_bo_global_ops, 138 .default_attrs = ttm_bo_global_attrs 139 }; 140 141 142 static inline uint32_t ttm_bo_type_flags(unsigned type) 143 { 144 return 1 << (type); 145 } 146 147 static void ttm_bo_release_list(struct kref *list_kref) 148 { 149 struct ttm_buffer_object *bo = 150 container_of(list_kref, struct ttm_buffer_object, list_kref); 151 struct ttm_bo_device *bdev = bo->bdev; 152 size_t acc_size = bo->acc_size; 153 154 BUG_ON(kref_read(&bo->list_kref)); 155 BUG_ON(kref_read(&bo->kref)); 156 BUG_ON(atomic_read(&bo->cpu_writers)); 157 BUG_ON(bo->mem.mm_node != NULL); 158 BUG_ON(!list_empty(&bo->lru)); 159 BUG_ON(!list_empty(&bo->ddestroy)); 160 ttm_tt_destroy(bo->ttm); 161 atomic_dec(&bo->bdev->glob->bo_count); 162 dma_fence_put(bo->moving); 163 reservation_object_fini(&bo->ttm_resv); 164 mutex_destroy(&bo->wu_mutex); 165 bo->destroy(bo); 166 ttm_mem_global_free(bdev->glob->mem_glob, acc_size); 167 } 168 169 void ttm_bo_add_to_lru(struct ttm_buffer_object *bo) 170 { 171 struct ttm_bo_device *bdev = bo->bdev; 172 struct ttm_mem_type_manager *man; 173 174 reservation_object_assert_held(bo->resv); 175 176 if (!(bo->mem.placement & TTM_PL_FLAG_NO_EVICT)) { 177 BUG_ON(!list_empty(&bo->lru)); 178 179 man = &bdev->man[bo->mem.mem_type]; 180 list_add_tail(&bo->lru, &man->lru[bo->priority]); 181 kref_get(&bo->list_kref); 182 183 if (bo->ttm && !(bo->ttm->page_flags & 184 (TTM_PAGE_FLAG_SG | TTM_PAGE_FLAG_SWAPPED))) { 185 list_add_tail(&bo->swap, 186 &bdev->glob->swap_lru[bo->priority]); 187 kref_get(&bo->list_kref); 188 } 189 } 190 } 191 EXPORT_SYMBOL(ttm_bo_add_to_lru); 192 193 static void ttm_bo_ref_bug(struct kref *list_kref) 194 { 195 BUG(); 196 } 197 198 void ttm_bo_del_from_lru(struct ttm_buffer_object *bo) 199 { 200 struct ttm_bo_device *bdev = bo->bdev; 201 bool notify = false; 202 203 if (!list_empty(&bo->swap)) { 204 list_del_init(&bo->swap); 205 kref_put(&bo->list_kref, ttm_bo_ref_bug); 206 notify = true; 207 } 208 if (!list_empty(&bo->lru)) { 209 list_del_init(&bo->lru); 210 kref_put(&bo->list_kref, ttm_bo_ref_bug); 211 notify = true; 212 } 213 214 if (notify && bdev->driver->del_from_lru_notify) 215 bdev->driver->del_from_lru_notify(bo); 216 } 217 218 void ttm_bo_del_sub_from_lru(struct ttm_buffer_object *bo) 219 { 220 struct ttm_bo_global *glob = bo->bdev->glob; 221 222 spin_lock(&glob->lru_lock); 223 ttm_bo_del_from_lru(bo); 224 spin_unlock(&glob->lru_lock); 225 } 226 EXPORT_SYMBOL(ttm_bo_del_sub_from_lru); 227 228 static void ttm_bo_bulk_move_set_pos(struct ttm_lru_bulk_move_pos *pos, 229 struct ttm_buffer_object *bo) 230 { 231 if (!pos->first) 232 pos->first = bo; 233 pos->last = bo; 234 } 235 236 void ttm_bo_move_to_lru_tail(struct ttm_buffer_object *bo, 237 struct ttm_lru_bulk_move *bulk) 238 { 239 reservation_object_assert_held(bo->resv); 240 241 ttm_bo_del_from_lru(bo); 242 ttm_bo_add_to_lru(bo); 243 244 if (bulk && !(bo->mem.placement & TTM_PL_FLAG_NO_EVICT)) { 245 switch (bo->mem.mem_type) { 246 case TTM_PL_TT: 247 ttm_bo_bulk_move_set_pos(&bulk->tt[bo->priority], bo); 248 break; 249 250 case TTM_PL_VRAM: 251 ttm_bo_bulk_move_set_pos(&bulk->vram[bo->priority], bo); 252 break; 253 } 254 if (bo->ttm && !(bo->ttm->page_flags & 255 (TTM_PAGE_FLAG_SG | TTM_PAGE_FLAG_SWAPPED))) 256 ttm_bo_bulk_move_set_pos(&bulk->swap[bo->priority], bo); 257 } 258 } 259 EXPORT_SYMBOL(ttm_bo_move_to_lru_tail); 260 261 void ttm_bo_bulk_move_lru_tail(struct ttm_lru_bulk_move *bulk) 262 { 263 unsigned i; 264 265 for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) { 266 struct ttm_lru_bulk_move_pos *pos = &bulk->tt[i]; 267 struct ttm_mem_type_manager *man; 268 269 if (!pos->first) 270 continue; 271 272 reservation_object_assert_held(pos->first->resv); 273 reservation_object_assert_held(pos->last->resv); 274 275 man = &pos->first->bdev->man[TTM_PL_TT]; 276 list_bulk_move_tail(&man->lru[i], &pos->first->lru, 277 &pos->last->lru); 278 } 279 280 for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) { 281 struct ttm_lru_bulk_move_pos *pos = &bulk->vram[i]; 282 struct ttm_mem_type_manager *man; 283 284 if (!pos->first) 285 continue; 286 287 reservation_object_assert_held(pos->first->resv); 288 reservation_object_assert_held(pos->last->resv); 289 290 man = &pos->first->bdev->man[TTM_PL_VRAM]; 291 list_bulk_move_tail(&man->lru[i], &pos->first->lru, 292 &pos->last->lru); 293 } 294 295 for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) { 296 struct ttm_lru_bulk_move_pos *pos = &bulk->swap[i]; 297 struct list_head *lru; 298 299 if (!pos->first) 300 continue; 301 302 reservation_object_assert_held(pos->first->resv); 303 reservation_object_assert_held(pos->last->resv); 304 305 lru = &pos->first->bdev->glob->swap_lru[i]; 306 list_bulk_move_tail(lru, &pos->first->swap, &pos->last->swap); 307 } 308 } 309 EXPORT_SYMBOL(ttm_bo_bulk_move_lru_tail); 310 311 static int ttm_bo_handle_move_mem(struct ttm_buffer_object *bo, 312 struct ttm_mem_reg *mem, bool evict, 313 struct ttm_operation_ctx *ctx) 314 { 315 struct ttm_bo_device *bdev = bo->bdev; 316 bool old_is_pci = ttm_mem_reg_is_pci(bdev, &bo->mem); 317 bool new_is_pci = ttm_mem_reg_is_pci(bdev, mem); 318 struct ttm_mem_type_manager *old_man = &bdev->man[bo->mem.mem_type]; 319 struct ttm_mem_type_manager *new_man = &bdev->man[mem->mem_type]; 320 int ret = 0; 321 322 if (old_is_pci || new_is_pci || 323 ((mem->placement & bo->mem.placement & TTM_PL_MASK_CACHING) == 0)) { 324 ret = ttm_mem_io_lock(old_man, true); 325 if (unlikely(ret != 0)) 326 goto out_err; 327 ttm_bo_unmap_virtual_locked(bo); 328 ttm_mem_io_unlock(old_man); 329 } 330 331 /* 332 * Create and bind a ttm if required. 333 */ 334 335 if (!(new_man->flags & TTM_MEMTYPE_FLAG_FIXED)) { 336 if (bo->ttm == NULL) { 337 bool zero = !(old_man->flags & TTM_MEMTYPE_FLAG_FIXED); 338 ret = ttm_tt_create(bo, zero); 339 if (ret) 340 goto out_err; 341 } 342 343 ret = ttm_tt_set_placement_caching(bo->ttm, mem->placement); 344 if (ret) 345 goto out_err; 346 347 if (mem->mem_type != TTM_PL_SYSTEM) { 348 ret = ttm_tt_bind(bo->ttm, mem, ctx); 349 if (ret) 350 goto out_err; 351 } 352 353 if (bo->mem.mem_type == TTM_PL_SYSTEM) { 354 if (bdev->driver->move_notify) 355 bdev->driver->move_notify(bo, evict, mem); 356 bo->mem = *mem; 357 mem->mm_node = NULL; 358 goto moved; 359 } 360 } 361 362 if (bdev->driver->move_notify) 363 bdev->driver->move_notify(bo, evict, mem); 364 365 if (!(old_man->flags & TTM_MEMTYPE_FLAG_FIXED) && 366 !(new_man->flags & TTM_MEMTYPE_FLAG_FIXED)) 367 ret = ttm_bo_move_ttm(bo, ctx, mem); 368 else if (bdev->driver->move) 369 ret = bdev->driver->move(bo, evict, ctx, mem); 370 else 371 ret = ttm_bo_move_memcpy(bo, ctx, mem); 372 373 if (ret) { 374 if (bdev->driver->move_notify) { 375 swap(*mem, bo->mem); 376 bdev->driver->move_notify(bo, false, mem); 377 swap(*mem, bo->mem); 378 } 379 380 goto out_err; 381 } 382 383 moved: 384 if (bo->evicted) { 385 if (bdev->driver->invalidate_caches) { 386 ret = bdev->driver->invalidate_caches(bdev, bo->mem.placement); 387 if (ret) 388 pr_err("Can not flush read caches\n"); 389 } 390 bo->evicted = false; 391 } 392 393 if (bo->mem.mm_node) 394 bo->offset = (bo->mem.start << PAGE_SHIFT) + 395 bdev->man[bo->mem.mem_type].gpu_offset; 396 else 397 bo->offset = 0; 398 399 ctx->bytes_moved += bo->num_pages << PAGE_SHIFT; 400 return 0; 401 402 out_err: 403 new_man = &bdev->man[bo->mem.mem_type]; 404 if (new_man->flags & TTM_MEMTYPE_FLAG_FIXED) { 405 ttm_tt_destroy(bo->ttm); 406 bo->ttm = NULL; 407 } 408 409 return ret; 410 } 411 412 /** 413 * Call bo::reserved. 414 * Will release GPU memory type usage on destruction. 415 * This is the place to put in driver specific hooks to release 416 * driver private resources. 417 * Will release the bo::reserved lock. 418 */ 419 420 static void ttm_bo_cleanup_memtype_use(struct ttm_buffer_object *bo) 421 { 422 if (bo->bdev->driver->move_notify) 423 bo->bdev->driver->move_notify(bo, false, NULL); 424 425 ttm_tt_destroy(bo->ttm); 426 bo->ttm = NULL; 427 ttm_bo_mem_put(bo, &bo->mem); 428 } 429 430 static int ttm_bo_individualize_resv(struct ttm_buffer_object *bo) 431 { 432 int r; 433 434 if (bo->resv == &bo->ttm_resv) 435 return 0; 436 437 BUG_ON(!reservation_object_trylock(&bo->ttm_resv)); 438 439 r = reservation_object_copy_fences(&bo->ttm_resv, bo->resv); 440 if (r) 441 reservation_object_unlock(&bo->ttm_resv); 442 443 return r; 444 } 445 446 static void ttm_bo_flush_all_fences(struct ttm_buffer_object *bo) 447 { 448 struct reservation_object_list *fobj; 449 struct dma_fence *fence; 450 int i; 451 452 fobj = reservation_object_get_list(&bo->ttm_resv); 453 fence = reservation_object_get_excl(&bo->ttm_resv); 454 if (fence && !fence->ops->signaled) 455 dma_fence_enable_sw_signaling(fence); 456 457 for (i = 0; fobj && i < fobj->shared_count; ++i) { 458 fence = rcu_dereference_protected(fobj->shared[i], 459 reservation_object_held(bo->resv)); 460 461 if (!fence->ops->signaled) 462 dma_fence_enable_sw_signaling(fence); 463 } 464 } 465 466 static void ttm_bo_cleanup_refs_or_queue(struct ttm_buffer_object *bo) 467 { 468 struct ttm_bo_device *bdev = bo->bdev; 469 struct ttm_bo_global *glob = bdev->glob; 470 int ret; 471 472 ret = ttm_bo_individualize_resv(bo); 473 if (ret) { 474 /* Last resort, if we fail to allocate memory for the 475 * fences block for the BO to become idle 476 */ 477 reservation_object_wait_timeout_rcu(bo->resv, true, false, 478 30 * HZ); 479 spin_lock(&glob->lru_lock); 480 goto error; 481 } 482 483 spin_lock(&glob->lru_lock); 484 ret = reservation_object_trylock(bo->resv) ? 0 : -EBUSY; 485 if (!ret) { 486 if (reservation_object_test_signaled_rcu(&bo->ttm_resv, true)) { 487 ttm_bo_del_from_lru(bo); 488 spin_unlock(&glob->lru_lock); 489 if (bo->resv != &bo->ttm_resv) 490 reservation_object_unlock(&bo->ttm_resv); 491 492 ttm_bo_cleanup_memtype_use(bo); 493 reservation_object_unlock(bo->resv); 494 return; 495 } 496 497 ttm_bo_flush_all_fences(bo); 498 499 /* 500 * Make NO_EVICT bos immediately available to 501 * shrinkers, now that they are queued for 502 * destruction. 503 */ 504 if (bo->mem.placement & TTM_PL_FLAG_NO_EVICT) { 505 bo->mem.placement &= ~TTM_PL_FLAG_NO_EVICT; 506 ttm_bo_add_to_lru(bo); 507 } 508 509 reservation_object_unlock(bo->resv); 510 } 511 if (bo->resv != &bo->ttm_resv) 512 reservation_object_unlock(&bo->ttm_resv); 513 514 error: 515 kref_get(&bo->list_kref); 516 list_add_tail(&bo->ddestroy, &bdev->ddestroy); 517 spin_unlock(&glob->lru_lock); 518 519 schedule_delayed_work(&bdev->wq, 520 ((HZ / 100) < 1) ? 1 : HZ / 100); 521 } 522 523 /** 524 * function ttm_bo_cleanup_refs 525 * If bo idle, remove from delayed- and lru lists, and unref. 526 * If not idle, do nothing. 527 * 528 * Must be called with lru_lock and reservation held, this function 529 * will drop the lru lock and optionally the reservation lock before returning. 530 * 531 * @interruptible Any sleeps should occur interruptibly. 532 * @no_wait_gpu Never wait for gpu. Return -EBUSY instead. 533 * @unlock_resv Unlock the reservation lock as well. 534 */ 535 536 static int ttm_bo_cleanup_refs(struct ttm_buffer_object *bo, 537 bool interruptible, bool no_wait_gpu, 538 bool unlock_resv) 539 { 540 struct ttm_bo_global *glob = bo->bdev->glob; 541 struct reservation_object *resv; 542 int ret; 543 544 if (unlikely(list_empty(&bo->ddestroy))) 545 resv = bo->resv; 546 else 547 resv = &bo->ttm_resv; 548 549 if (reservation_object_test_signaled_rcu(resv, true)) 550 ret = 0; 551 else 552 ret = -EBUSY; 553 554 if (ret && !no_wait_gpu) { 555 long lret; 556 557 if (unlock_resv) 558 reservation_object_unlock(bo->resv); 559 spin_unlock(&glob->lru_lock); 560 561 lret = reservation_object_wait_timeout_rcu(resv, true, 562 interruptible, 563 30 * HZ); 564 565 if (lret < 0) 566 return lret; 567 else if (lret == 0) 568 return -EBUSY; 569 570 spin_lock(&glob->lru_lock); 571 if (unlock_resv && !reservation_object_trylock(bo->resv)) { 572 /* 573 * We raced, and lost, someone else holds the reservation now, 574 * and is probably busy in ttm_bo_cleanup_memtype_use. 575 * 576 * Even if it's not the case, because we finished waiting any 577 * delayed destruction would succeed, so just return success 578 * here. 579 */ 580 spin_unlock(&glob->lru_lock); 581 return 0; 582 } 583 ret = 0; 584 } 585 586 if (ret || unlikely(list_empty(&bo->ddestroy))) { 587 if (unlock_resv) 588 reservation_object_unlock(bo->resv); 589 spin_unlock(&glob->lru_lock); 590 return ret; 591 } 592 593 ttm_bo_del_from_lru(bo); 594 list_del_init(&bo->ddestroy); 595 kref_put(&bo->list_kref, ttm_bo_ref_bug); 596 597 spin_unlock(&glob->lru_lock); 598 ttm_bo_cleanup_memtype_use(bo); 599 600 if (unlock_resv) 601 reservation_object_unlock(bo->resv); 602 603 return 0; 604 } 605 606 /** 607 * Traverse the delayed list, and call ttm_bo_cleanup_refs on all 608 * encountered buffers. 609 */ 610 static bool ttm_bo_delayed_delete(struct ttm_bo_device *bdev, bool remove_all) 611 { 612 struct ttm_bo_global *glob = bdev->glob; 613 struct list_head removed; 614 bool empty; 615 616 INIT_LIST_HEAD(&removed); 617 618 spin_lock(&glob->lru_lock); 619 while (!list_empty(&bdev->ddestroy)) { 620 struct ttm_buffer_object *bo; 621 622 bo = list_first_entry(&bdev->ddestroy, struct ttm_buffer_object, 623 ddestroy); 624 kref_get(&bo->list_kref); 625 list_move_tail(&bo->ddestroy, &removed); 626 627 if (remove_all || bo->resv != &bo->ttm_resv) { 628 spin_unlock(&glob->lru_lock); 629 reservation_object_lock(bo->resv, NULL); 630 631 spin_lock(&glob->lru_lock); 632 ttm_bo_cleanup_refs(bo, false, !remove_all, true); 633 634 } else if (reservation_object_trylock(bo->resv)) { 635 ttm_bo_cleanup_refs(bo, false, !remove_all, true); 636 } else { 637 spin_unlock(&glob->lru_lock); 638 } 639 640 kref_put(&bo->list_kref, ttm_bo_release_list); 641 spin_lock(&glob->lru_lock); 642 } 643 list_splice_tail(&removed, &bdev->ddestroy); 644 empty = list_empty(&bdev->ddestroy); 645 spin_unlock(&glob->lru_lock); 646 647 return empty; 648 } 649 650 static void ttm_bo_delayed_workqueue(struct work_struct *work) 651 { 652 struct ttm_bo_device *bdev = 653 container_of(work, struct ttm_bo_device, wq.work); 654 655 if (!ttm_bo_delayed_delete(bdev, false)) 656 schedule_delayed_work(&bdev->wq, 657 ((HZ / 100) < 1) ? 1 : HZ / 100); 658 } 659 660 static void ttm_bo_release(struct kref *kref) 661 { 662 struct ttm_buffer_object *bo = 663 container_of(kref, struct ttm_buffer_object, kref); 664 struct ttm_bo_device *bdev = bo->bdev; 665 struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type]; 666 667 drm_vma_offset_remove(&bdev->vma_manager, &bo->vma_node); 668 ttm_mem_io_lock(man, false); 669 ttm_mem_io_free_vm(bo); 670 ttm_mem_io_unlock(man); 671 ttm_bo_cleanup_refs_or_queue(bo); 672 kref_put(&bo->list_kref, ttm_bo_release_list); 673 } 674 675 void ttm_bo_put(struct ttm_buffer_object *bo) 676 { 677 kref_put(&bo->kref, ttm_bo_release); 678 } 679 EXPORT_SYMBOL(ttm_bo_put); 680 681 int ttm_bo_lock_delayed_workqueue(struct ttm_bo_device *bdev) 682 { 683 return cancel_delayed_work_sync(&bdev->wq); 684 } 685 EXPORT_SYMBOL(ttm_bo_lock_delayed_workqueue); 686 687 void ttm_bo_unlock_delayed_workqueue(struct ttm_bo_device *bdev, int resched) 688 { 689 if (resched) 690 schedule_delayed_work(&bdev->wq, 691 ((HZ / 100) < 1) ? 1 : HZ / 100); 692 } 693 EXPORT_SYMBOL(ttm_bo_unlock_delayed_workqueue); 694 695 static int ttm_bo_evict(struct ttm_buffer_object *bo, 696 struct ttm_operation_ctx *ctx) 697 { 698 struct ttm_bo_device *bdev = bo->bdev; 699 struct ttm_mem_reg evict_mem; 700 struct ttm_placement placement; 701 int ret = 0; 702 703 reservation_object_assert_held(bo->resv); 704 705 placement.num_placement = 0; 706 placement.num_busy_placement = 0; 707 bdev->driver->evict_flags(bo, &placement); 708 709 if (!placement.num_placement && !placement.num_busy_placement) { 710 ret = ttm_bo_pipeline_gutting(bo); 711 if (ret) 712 return ret; 713 714 return ttm_tt_create(bo, false); 715 } 716 717 evict_mem = bo->mem; 718 evict_mem.mm_node = NULL; 719 evict_mem.bus.io_reserved_vm = false; 720 evict_mem.bus.io_reserved_count = 0; 721 722 ret = ttm_bo_mem_space(bo, &placement, &evict_mem, ctx); 723 if (ret) { 724 if (ret != -ERESTARTSYS) { 725 pr_err("Failed to find memory space for buffer 0x%p eviction\n", 726 bo); 727 ttm_bo_mem_space_debug(bo, &placement); 728 } 729 goto out; 730 } 731 732 ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, ctx); 733 if (unlikely(ret)) { 734 if (ret != -ERESTARTSYS) 735 pr_err("Buffer eviction failed\n"); 736 ttm_bo_mem_put(bo, &evict_mem); 737 goto out; 738 } 739 bo->evicted = true; 740 out: 741 return ret; 742 } 743 744 bool ttm_bo_eviction_valuable(struct ttm_buffer_object *bo, 745 const struct ttm_place *place) 746 { 747 /* Don't evict this BO if it's outside of the 748 * requested placement range 749 */ 750 if (place->fpfn >= (bo->mem.start + bo->mem.size) || 751 (place->lpfn && place->lpfn <= bo->mem.start)) 752 return false; 753 754 return true; 755 } 756 EXPORT_SYMBOL(ttm_bo_eviction_valuable); 757 758 /** 759 * Check the target bo is allowable to be evicted or swapout, including cases: 760 * 761 * a. if share same reservation object with ctx->resv, have assumption 762 * reservation objects should already be locked, so not lock again and 763 * return true directly when either the opreation allow_reserved_eviction 764 * or the target bo already is in delayed free list; 765 * 766 * b. Otherwise, trylock it. 767 */ 768 static bool ttm_bo_evict_swapout_allowable(struct ttm_buffer_object *bo, 769 struct ttm_operation_ctx *ctx, bool *locked) 770 { 771 bool ret = false; 772 773 *locked = false; 774 if (bo->resv == ctx->resv) { 775 reservation_object_assert_held(bo->resv); 776 if (ctx->flags & TTM_OPT_FLAG_ALLOW_RES_EVICT 777 || !list_empty(&bo->ddestroy)) 778 ret = true; 779 } else { 780 *locked = reservation_object_trylock(bo->resv); 781 ret = *locked; 782 } 783 784 return ret; 785 } 786 787 static int ttm_mem_evict_first(struct ttm_bo_device *bdev, 788 uint32_t mem_type, 789 const struct ttm_place *place, 790 struct ttm_operation_ctx *ctx) 791 { 792 struct ttm_bo_global *glob = bdev->glob; 793 struct ttm_mem_type_manager *man = &bdev->man[mem_type]; 794 struct ttm_buffer_object *bo = NULL; 795 bool locked = false; 796 unsigned i; 797 int ret; 798 799 spin_lock(&glob->lru_lock); 800 for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) { 801 list_for_each_entry(bo, &man->lru[i], lru) { 802 if (!ttm_bo_evict_swapout_allowable(bo, ctx, &locked)) 803 continue; 804 805 if (place && !bdev->driver->eviction_valuable(bo, 806 place)) { 807 if (locked) 808 reservation_object_unlock(bo->resv); 809 continue; 810 } 811 break; 812 } 813 814 /* If the inner loop terminated early, we have our candidate */ 815 if (&bo->lru != &man->lru[i]) 816 break; 817 818 bo = NULL; 819 } 820 821 if (!bo) { 822 spin_unlock(&glob->lru_lock); 823 return -EBUSY; 824 } 825 826 kref_get(&bo->list_kref); 827 828 if (!list_empty(&bo->ddestroy)) { 829 ret = ttm_bo_cleanup_refs(bo, ctx->interruptible, 830 ctx->no_wait_gpu, locked); 831 kref_put(&bo->list_kref, ttm_bo_release_list); 832 return ret; 833 } 834 835 ttm_bo_del_from_lru(bo); 836 spin_unlock(&glob->lru_lock); 837 838 ret = ttm_bo_evict(bo, ctx); 839 if (locked) { 840 ttm_bo_unreserve(bo); 841 } else { 842 spin_lock(&glob->lru_lock); 843 ttm_bo_add_to_lru(bo); 844 spin_unlock(&glob->lru_lock); 845 } 846 847 kref_put(&bo->list_kref, ttm_bo_release_list); 848 return ret; 849 } 850 851 void ttm_bo_mem_put(struct ttm_buffer_object *bo, struct ttm_mem_reg *mem) 852 { 853 struct ttm_mem_type_manager *man = &bo->bdev->man[mem->mem_type]; 854 855 if (mem->mm_node) 856 (*man->func->put_node)(man, mem); 857 } 858 EXPORT_SYMBOL(ttm_bo_mem_put); 859 860 /** 861 * Add the last move fence to the BO and reserve a new shared slot. 862 */ 863 static int ttm_bo_add_move_fence(struct ttm_buffer_object *bo, 864 struct ttm_mem_type_manager *man, 865 struct ttm_mem_reg *mem) 866 { 867 struct dma_fence *fence; 868 int ret; 869 870 spin_lock(&man->move_lock); 871 fence = dma_fence_get(man->move); 872 spin_unlock(&man->move_lock); 873 874 if (fence) { 875 reservation_object_add_shared_fence(bo->resv, fence); 876 877 ret = reservation_object_reserve_shared(bo->resv, 1); 878 if (unlikely(ret)) { 879 dma_fence_put(fence); 880 return ret; 881 } 882 883 dma_fence_put(bo->moving); 884 bo->moving = fence; 885 } 886 887 return 0; 888 } 889 890 /** 891 * Repeatedly evict memory from the LRU for @mem_type until we create enough 892 * space, or we've evicted everything and there isn't enough space. 893 */ 894 static int ttm_bo_mem_force_space(struct ttm_buffer_object *bo, 895 uint32_t mem_type, 896 const struct ttm_place *place, 897 struct ttm_mem_reg *mem, 898 struct ttm_operation_ctx *ctx) 899 { 900 struct ttm_bo_device *bdev = bo->bdev; 901 struct ttm_mem_type_manager *man = &bdev->man[mem_type]; 902 int ret; 903 904 do { 905 ret = (*man->func->get_node)(man, bo, place, mem); 906 if (unlikely(ret != 0)) 907 return ret; 908 if (mem->mm_node) 909 break; 910 ret = ttm_mem_evict_first(bdev, mem_type, place, ctx); 911 if (unlikely(ret != 0)) 912 return ret; 913 } while (1); 914 mem->mem_type = mem_type; 915 return ttm_bo_add_move_fence(bo, man, mem); 916 } 917 918 static uint32_t ttm_bo_select_caching(struct ttm_mem_type_manager *man, 919 uint32_t cur_placement, 920 uint32_t proposed_placement) 921 { 922 uint32_t caching = proposed_placement & TTM_PL_MASK_CACHING; 923 uint32_t result = proposed_placement & ~TTM_PL_MASK_CACHING; 924 925 /** 926 * Keep current caching if possible. 927 */ 928 929 if ((cur_placement & caching) != 0) 930 result |= (cur_placement & caching); 931 else if ((man->default_caching & caching) != 0) 932 result |= man->default_caching; 933 else if ((TTM_PL_FLAG_CACHED & caching) != 0) 934 result |= TTM_PL_FLAG_CACHED; 935 else if ((TTM_PL_FLAG_WC & caching) != 0) 936 result |= TTM_PL_FLAG_WC; 937 else if ((TTM_PL_FLAG_UNCACHED & caching) != 0) 938 result |= TTM_PL_FLAG_UNCACHED; 939 940 return result; 941 } 942 943 static bool ttm_bo_mt_compatible(struct ttm_mem_type_manager *man, 944 uint32_t mem_type, 945 const struct ttm_place *place, 946 uint32_t *masked_placement) 947 { 948 uint32_t cur_flags = ttm_bo_type_flags(mem_type); 949 950 if ((cur_flags & place->flags & TTM_PL_MASK_MEM) == 0) 951 return false; 952 953 if ((place->flags & man->available_caching) == 0) 954 return false; 955 956 cur_flags |= (place->flags & man->available_caching); 957 958 *masked_placement = cur_flags; 959 return true; 960 } 961 962 /** 963 * Creates space for memory region @mem according to its type. 964 * 965 * This function first searches for free space in compatible memory types in 966 * the priority order defined by the driver. If free space isn't found, then 967 * ttm_bo_mem_force_space is attempted in priority order to evict and find 968 * space. 969 */ 970 int ttm_bo_mem_space(struct ttm_buffer_object *bo, 971 struct ttm_placement *placement, 972 struct ttm_mem_reg *mem, 973 struct ttm_operation_ctx *ctx) 974 { 975 struct ttm_bo_device *bdev = bo->bdev; 976 struct ttm_mem_type_manager *man; 977 uint32_t mem_type = TTM_PL_SYSTEM; 978 uint32_t cur_flags = 0; 979 bool type_found = false; 980 bool type_ok = false; 981 bool has_erestartsys = false; 982 int i, ret; 983 984 ret = reservation_object_reserve_shared(bo->resv, 1); 985 if (unlikely(ret)) 986 return ret; 987 988 mem->mm_node = NULL; 989 for (i = 0; i < placement->num_placement; ++i) { 990 const struct ttm_place *place = &placement->placement[i]; 991 992 ret = ttm_mem_type_from_place(place, &mem_type); 993 if (ret) 994 return ret; 995 man = &bdev->man[mem_type]; 996 if (!man->has_type || !man->use_type) 997 continue; 998 999 type_ok = ttm_bo_mt_compatible(man, mem_type, place, 1000 &cur_flags); 1001 1002 if (!type_ok) 1003 continue; 1004 1005 type_found = true; 1006 cur_flags = ttm_bo_select_caching(man, bo->mem.placement, 1007 cur_flags); 1008 /* 1009 * Use the access and other non-mapping-related flag bits from 1010 * the memory placement flags to the current flags 1011 */ 1012 ttm_flag_masked(&cur_flags, place->flags, 1013 ~TTM_PL_MASK_MEMTYPE); 1014 1015 if (mem_type == TTM_PL_SYSTEM) 1016 break; 1017 1018 ret = (*man->func->get_node)(man, bo, place, mem); 1019 if (unlikely(ret)) 1020 return ret; 1021 1022 if (mem->mm_node) { 1023 ret = ttm_bo_add_move_fence(bo, man, mem); 1024 if (unlikely(ret)) { 1025 (*man->func->put_node)(man, mem); 1026 return ret; 1027 } 1028 break; 1029 } 1030 } 1031 1032 if ((type_ok && (mem_type == TTM_PL_SYSTEM)) || mem->mm_node) { 1033 mem->mem_type = mem_type; 1034 mem->placement = cur_flags; 1035 return 0; 1036 } 1037 1038 for (i = 0; i < placement->num_busy_placement; ++i) { 1039 const struct ttm_place *place = &placement->busy_placement[i]; 1040 1041 ret = ttm_mem_type_from_place(place, &mem_type); 1042 if (ret) 1043 return ret; 1044 man = &bdev->man[mem_type]; 1045 if (!man->has_type || !man->use_type) 1046 continue; 1047 if (!ttm_bo_mt_compatible(man, mem_type, place, &cur_flags)) 1048 continue; 1049 1050 type_found = true; 1051 cur_flags = ttm_bo_select_caching(man, bo->mem.placement, 1052 cur_flags); 1053 /* 1054 * Use the access and other non-mapping-related flag bits from 1055 * the memory placement flags to the current flags 1056 */ 1057 ttm_flag_masked(&cur_flags, place->flags, 1058 ~TTM_PL_MASK_MEMTYPE); 1059 1060 if (mem_type == TTM_PL_SYSTEM) { 1061 mem->mem_type = mem_type; 1062 mem->placement = cur_flags; 1063 mem->mm_node = NULL; 1064 return 0; 1065 } 1066 1067 ret = ttm_bo_mem_force_space(bo, mem_type, place, mem, ctx); 1068 if (ret == 0 && mem->mm_node) { 1069 mem->placement = cur_flags; 1070 return 0; 1071 } 1072 if (ret == -ERESTARTSYS) 1073 has_erestartsys = true; 1074 } 1075 1076 if (!type_found) { 1077 pr_err(TTM_PFX "No compatible memory type found\n"); 1078 return -EINVAL; 1079 } 1080 1081 return (has_erestartsys) ? -ERESTARTSYS : -ENOMEM; 1082 } 1083 EXPORT_SYMBOL(ttm_bo_mem_space); 1084 1085 static int ttm_bo_move_buffer(struct ttm_buffer_object *bo, 1086 struct ttm_placement *placement, 1087 struct ttm_operation_ctx *ctx) 1088 { 1089 int ret = 0; 1090 struct ttm_mem_reg mem; 1091 1092 reservation_object_assert_held(bo->resv); 1093 1094 mem.num_pages = bo->num_pages; 1095 mem.size = mem.num_pages << PAGE_SHIFT; 1096 mem.page_alignment = bo->mem.page_alignment; 1097 mem.bus.io_reserved_vm = false; 1098 mem.bus.io_reserved_count = 0; 1099 /* 1100 * Determine where to move the buffer. 1101 */ 1102 ret = ttm_bo_mem_space(bo, placement, &mem, ctx); 1103 if (ret) 1104 goto out_unlock; 1105 ret = ttm_bo_handle_move_mem(bo, &mem, false, ctx); 1106 out_unlock: 1107 if (ret && mem.mm_node) 1108 ttm_bo_mem_put(bo, &mem); 1109 return ret; 1110 } 1111 1112 static bool ttm_bo_places_compat(const struct ttm_place *places, 1113 unsigned num_placement, 1114 struct ttm_mem_reg *mem, 1115 uint32_t *new_flags) 1116 { 1117 unsigned i; 1118 1119 for (i = 0; i < num_placement; i++) { 1120 const struct ttm_place *heap = &places[i]; 1121 1122 if (mem->mm_node && (mem->start < heap->fpfn || 1123 (heap->lpfn != 0 && (mem->start + mem->num_pages) > heap->lpfn))) 1124 continue; 1125 1126 *new_flags = heap->flags; 1127 if ((*new_flags & mem->placement & TTM_PL_MASK_CACHING) && 1128 (*new_flags & mem->placement & TTM_PL_MASK_MEM) && 1129 (!(*new_flags & TTM_PL_FLAG_CONTIGUOUS) || 1130 (mem->placement & TTM_PL_FLAG_CONTIGUOUS))) 1131 return true; 1132 } 1133 return false; 1134 } 1135 1136 bool ttm_bo_mem_compat(struct ttm_placement *placement, 1137 struct ttm_mem_reg *mem, 1138 uint32_t *new_flags) 1139 { 1140 if (ttm_bo_places_compat(placement->placement, placement->num_placement, 1141 mem, new_flags)) 1142 return true; 1143 1144 if ((placement->busy_placement != placement->placement || 1145 placement->num_busy_placement > placement->num_placement) && 1146 ttm_bo_places_compat(placement->busy_placement, 1147 placement->num_busy_placement, 1148 mem, new_flags)) 1149 return true; 1150 1151 return false; 1152 } 1153 EXPORT_SYMBOL(ttm_bo_mem_compat); 1154 1155 int ttm_bo_validate(struct ttm_buffer_object *bo, 1156 struct ttm_placement *placement, 1157 struct ttm_operation_ctx *ctx) 1158 { 1159 int ret; 1160 uint32_t new_flags; 1161 1162 reservation_object_assert_held(bo->resv); 1163 /* 1164 * Check whether we need to move buffer. 1165 */ 1166 if (!ttm_bo_mem_compat(placement, &bo->mem, &new_flags)) { 1167 ret = ttm_bo_move_buffer(bo, placement, ctx); 1168 if (ret) 1169 return ret; 1170 } else { 1171 /* 1172 * Use the access and other non-mapping-related flag bits from 1173 * the compatible memory placement flags to the active flags 1174 */ 1175 ttm_flag_masked(&bo->mem.placement, new_flags, 1176 ~TTM_PL_MASK_MEMTYPE); 1177 } 1178 /* 1179 * We might need to add a TTM. 1180 */ 1181 if (bo->mem.mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) { 1182 ret = ttm_tt_create(bo, true); 1183 if (ret) 1184 return ret; 1185 } 1186 return 0; 1187 } 1188 EXPORT_SYMBOL(ttm_bo_validate); 1189 1190 int ttm_bo_init_reserved(struct ttm_bo_device *bdev, 1191 struct ttm_buffer_object *bo, 1192 unsigned long size, 1193 enum ttm_bo_type type, 1194 struct ttm_placement *placement, 1195 uint32_t page_alignment, 1196 struct ttm_operation_ctx *ctx, 1197 size_t acc_size, 1198 struct sg_table *sg, 1199 struct reservation_object *resv, 1200 void (*destroy) (struct ttm_buffer_object *)) 1201 { 1202 int ret = 0; 1203 unsigned long num_pages; 1204 struct ttm_mem_global *mem_glob = bdev->glob->mem_glob; 1205 bool locked; 1206 1207 ret = ttm_mem_global_alloc(mem_glob, acc_size, ctx); 1208 if (ret) { 1209 pr_err("Out of kernel memory\n"); 1210 if (destroy) 1211 (*destroy)(bo); 1212 else 1213 kfree(bo); 1214 return -ENOMEM; 1215 } 1216 1217 num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 1218 if (num_pages == 0) { 1219 pr_err("Illegal buffer object size\n"); 1220 if (destroy) 1221 (*destroy)(bo); 1222 else 1223 kfree(bo); 1224 ttm_mem_global_free(mem_glob, acc_size); 1225 return -EINVAL; 1226 } 1227 bo->destroy = destroy ? destroy : ttm_bo_default_destroy; 1228 1229 kref_init(&bo->kref); 1230 kref_init(&bo->list_kref); 1231 atomic_set(&bo->cpu_writers, 0); 1232 INIT_LIST_HEAD(&bo->lru); 1233 INIT_LIST_HEAD(&bo->ddestroy); 1234 INIT_LIST_HEAD(&bo->swap); 1235 INIT_LIST_HEAD(&bo->io_reserve_lru); 1236 mutex_init(&bo->wu_mutex); 1237 bo->bdev = bdev; 1238 bo->type = type; 1239 bo->num_pages = num_pages; 1240 bo->mem.size = num_pages << PAGE_SHIFT; 1241 bo->mem.mem_type = TTM_PL_SYSTEM; 1242 bo->mem.num_pages = bo->num_pages; 1243 bo->mem.mm_node = NULL; 1244 bo->mem.page_alignment = page_alignment; 1245 bo->mem.bus.io_reserved_vm = false; 1246 bo->mem.bus.io_reserved_count = 0; 1247 bo->moving = NULL; 1248 bo->mem.placement = (TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED); 1249 bo->acc_size = acc_size; 1250 bo->sg = sg; 1251 if (resv) { 1252 bo->resv = resv; 1253 reservation_object_assert_held(bo->resv); 1254 } else { 1255 bo->resv = &bo->ttm_resv; 1256 } 1257 reservation_object_init(&bo->ttm_resv); 1258 atomic_inc(&bo->bdev->glob->bo_count); 1259 drm_vma_node_reset(&bo->vma_node); 1260 1261 /* 1262 * For ttm_bo_type_device buffers, allocate 1263 * address space from the device. 1264 */ 1265 if (bo->type == ttm_bo_type_device || 1266 bo->type == ttm_bo_type_sg) 1267 ret = drm_vma_offset_add(&bdev->vma_manager, &bo->vma_node, 1268 bo->mem.num_pages); 1269 1270 /* passed reservation objects should already be locked, 1271 * since otherwise lockdep will be angered in radeon. 1272 */ 1273 if (!resv) { 1274 locked = reservation_object_trylock(bo->resv); 1275 WARN_ON(!locked); 1276 } 1277 1278 if (likely(!ret)) 1279 ret = ttm_bo_validate(bo, placement, ctx); 1280 1281 if (unlikely(ret)) { 1282 if (!resv) 1283 ttm_bo_unreserve(bo); 1284 1285 ttm_bo_put(bo); 1286 return ret; 1287 } 1288 1289 if (resv && !(bo->mem.placement & TTM_PL_FLAG_NO_EVICT)) { 1290 spin_lock(&bdev->glob->lru_lock); 1291 ttm_bo_add_to_lru(bo); 1292 spin_unlock(&bdev->glob->lru_lock); 1293 } 1294 1295 return ret; 1296 } 1297 EXPORT_SYMBOL(ttm_bo_init_reserved); 1298 1299 int ttm_bo_init(struct ttm_bo_device *bdev, 1300 struct ttm_buffer_object *bo, 1301 unsigned long size, 1302 enum ttm_bo_type type, 1303 struct ttm_placement *placement, 1304 uint32_t page_alignment, 1305 bool interruptible, 1306 size_t acc_size, 1307 struct sg_table *sg, 1308 struct reservation_object *resv, 1309 void (*destroy) (struct ttm_buffer_object *)) 1310 { 1311 struct ttm_operation_ctx ctx = { interruptible, false }; 1312 int ret; 1313 1314 ret = ttm_bo_init_reserved(bdev, bo, size, type, placement, 1315 page_alignment, &ctx, acc_size, 1316 sg, resv, destroy); 1317 if (ret) 1318 return ret; 1319 1320 if (!resv) 1321 ttm_bo_unreserve(bo); 1322 1323 return 0; 1324 } 1325 EXPORT_SYMBOL(ttm_bo_init); 1326 1327 size_t ttm_bo_acc_size(struct ttm_bo_device *bdev, 1328 unsigned long bo_size, 1329 unsigned struct_size) 1330 { 1331 unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT; 1332 size_t size = 0; 1333 1334 size += ttm_round_pot(struct_size); 1335 size += ttm_round_pot(npages * sizeof(void *)); 1336 size += ttm_round_pot(sizeof(struct ttm_tt)); 1337 return size; 1338 } 1339 EXPORT_SYMBOL(ttm_bo_acc_size); 1340 1341 size_t ttm_bo_dma_acc_size(struct ttm_bo_device *bdev, 1342 unsigned long bo_size, 1343 unsigned struct_size) 1344 { 1345 unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT; 1346 size_t size = 0; 1347 1348 size += ttm_round_pot(struct_size); 1349 size += ttm_round_pot(npages * (2*sizeof(void *) + sizeof(dma_addr_t))); 1350 size += ttm_round_pot(sizeof(struct ttm_dma_tt)); 1351 return size; 1352 } 1353 EXPORT_SYMBOL(ttm_bo_dma_acc_size); 1354 1355 int ttm_bo_create(struct ttm_bo_device *bdev, 1356 unsigned long size, 1357 enum ttm_bo_type type, 1358 struct ttm_placement *placement, 1359 uint32_t page_alignment, 1360 bool interruptible, 1361 struct ttm_buffer_object **p_bo) 1362 { 1363 struct ttm_buffer_object *bo; 1364 size_t acc_size; 1365 int ret; 1366 1367 bo = kzalloc(sizeof(*bo), GFP_KERNEL); 1368 if (unlikely(bo == NULL)) 1369 return -ENOMEM; 1370 1371 acc_size = ttm_bo_acc_size(bdev, size, sizeof(struct ttm_buffer_object)); 1372 ret = ttm_bo_init(bdev, bo, size, type, placement, page_alignment, 1373 interruptible, acc_size, 1374 NULL, NULL, NULL); 1375 if (likely(ret == 0)) 1376 *p_bo = bo; 1377 1378 return ret; 1379 } 1380 EXPORT_SYMBOL(ttm_bo_create); 1381 1382 static int ttm_bo_force_list_clean(struct ttm_bo_device *bdev, 1383 unsigned mem_type) 1384 { 1385 struct ttm_operation_ctx ctx = { 1386 .interruptible = false, 1387 .no_wait_gpu = false, 1388 .flags = TTM_OPT_FLAG_FORCE_ALLOC 1389 }; 1390 struct ttm_mem_type_manager *man = &bdev->man[mem_type]; 1391 struct ttm_bo_global *glob = bdev->glob; 1392 struct dma_fence *fence; 1393 int ret; 1394 unsigned i; 1395 1396 /* 1397 * Can't use standard list traversal since we're unlocking. 1398 */ 1399 1400 spin_lock(&glob->lru_lock); 1401 for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) { 1402 while (!list_empty(&man->lru[i])) { 1403 spin_unlock(&glob->lru_lock); 1404 ret = ttm_mem_evict_first(bdev, mem_type, NULL, &ctx); 1405 if (ret) 1406 return ret; 1407 spin_lock(&glob->lru_lock); 1408 } 1409 } 1410 spin_unlock(&glob->lru_lock); 1411 1412 spin_lock(&man->move_lock); 1413 fence = dma_fence_get(man->move); 1414 spin_unlock(&man->move_lock); 1415 1416 if (fence) { 1417 ret = dma_fence_wait(fence, false); 1418 dma_fence_put(fence); 1419 if (ret) 1420 return ret; 1421 } 1422 1423 return 0; 1424 } 1425 1426 int ttm_bo_clean_mm(struct ttm_bo_device *bdev, unsigned mem_type) 1427 { 1428 struct ttm_mem_type_manager *man; 1429 int ret = -EINVAL; 1430 1431 if (mem_type >= TTM_NUM_MEM_TYPES) { 1432 pr_err("Illegal memory type %d\n", mem_type); 1433 return ret; 1434 } 1435 man = &bdev->man[mem_type]; 1436 1437 if (!man->has_type) { 1438 pr_err("Trying to take down uninitialized memory manager type %u\n", 1439 mem_type); 1440 return ret; 1441 } 1442 1443 man->use_type = false; 1444 man->has_type = false; 1445 1446 ret = 0; 1447 if (mem_type > 0) { 1448 ret = ttm_bo_force_list_clean(bdev, mem_type); 1449 if (ret) { 1450 pr_err("Cleanup eviction failed\n"); 1451 return ret; 1452 } 1453 1454 ret = (*man->func->takedown)(man); 1455 } 1456 1457 dma_fence_put(man->move); 1458 man->move = NULL; 1459 1460 return ret; 1461 } 1462 EXPORT_SYMBOL(ttm_bo_clean_mm); 1463 1464 int ttm_bo_evict_mm(struct ttm_bo_device *bdev, unsigned mem_type) 1465 { 1466 struct ttm_mem_type_manager *man = &bdev->man[mem_type]; 1467 1468 if (mem_type == 0 || mem_type >= TTM_NUM_MEM_TYPES) { 1469 pr_err("Illegal memory manager memory type %u\n", mem_type); 1470 return -EINVAL; 1471 } 1472 1473 if (!man->has_type) { 1474 pr_err("Memory type %u has not been initialized\n", mem_type); 1475 return 0; 1476 } 1477 1478 return ttm_bo_force_list_clean(bdev, mem_type); 1479 } 1480 EXPORT_SYMBOL(ttm_bo_evict_mm); 1481 1482 int ttm_bo_init_mm(struct ttm_bo_device *bdev, unsigned type, 1483 unsigned long p_size) 1484 { 1485 int ret; 1486 struct ttm_mem_type_manager *man; 1487 unsigned i; 1488 1489 BUG_ON(type >= TTM_NUM_MEM_TYPES); 1490 man = &bdev->man[type]; 1491 BUG_ON(man->has_type); 1492 man->io_reserve_fastpath = true; 1493 man->use_io_reserve_lru = false; 1494 mutex_init(&man->io_reserve_mutex); 1495 spin_lock_init(&man->move_lock); 1496 INIT_LIST_HEAD(&man->io_reserve_lru); 1497 1498 ret = bdev->driver->init_mem_type(bdev, type, man); 1499 if (ret) 1500 return ret; 1501 man->bdev = bdev; 1502 1503 if (type != TTM_PL_SYSTEM) { 1504 ret = (*man->func->init)(man, p_size); 1505 if (ret) 1506 return ret; 1507 } 1508 man->has_type = true; 1509 man->use_type = true; 1510 man->size = p_size; 1511 1512 for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) 1513 INIT_LIST_HEAD(&man->lru[i]); 1514 man->move = NULL; 1515 1516 return 0; 1517 } 1518 EXPORT_SYMBOL(ttm_bo_init_mm); 1519 1520 static void ttm_bo_global_kobj_release(struct kobject *kobj) 1521 { 1522 struct ttm_bo_global *glob = 1523 container_of(kobj, struct ttm_bo_global, kobj); 1524 1525 __free_page(glob->dummy_read_page); 1526 } 1527 1528 static void ttm_bo_global_release(void) 1529 { 1530 struct ttm_bo_global *glob = &ttm_bo_glob; 1531 1532 mutex_lock(&ttm_global_mutex); 1533 if (--ttm_bo_glob_use_count > 0) 1534 goto out; 1535 1536 kobject_del(&glob->kobj); 1537 kobject_put(&glob->kobj); 1538 ttm_mem_global_release(&ttm_mem_glob); 1539 memset(glob, 0, sizeof(*glob)); 1540 out: 1541 mutex_unlock(&ttm_global_mutex); 1542 } 1543 1544 static int ttm_bo_global_init(void) 1545 { 1546 struct ttm_bo_global *glob = &ttm_bo_glob; 1547 int ret = 0; 1548 unsigned i; 1549 1550 mutex_lock(&ttm_global_mutex); 1551 if (++ttm_bo_glob_use_count > 1) 1552 goto out; 1553 1554 ret = ttm_mem_global_init(&ttm_mem_glob); 1555 if (ret) 1556 goto out; 1557 1558 spin_lock_init(&glob->lru_lock); 1559 glob->mem_glob = &ttm_mem_glob; 1560 glob->mem_glob->bo_glob = glob; 1561 glob->dummy_read_page = alloc_page(__GFP_ZERO | GFP_DMA32); 1562 1563 if (unlikely(glob->dummy_read_page == NULL)) { 1564 ret = -ENOMEM; 1565 goto out; 1566 } 1567 1568 for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) 1569 INIT_LIST_HEAD(&glob->swap_lru[i]); 1570 INIT_LIST_HEAD(&glob->device_list); 1571 atomic_set(&glob->bo_count, 0); 1572 1573 ret = kobject_init_and_add( 1574 &glob->kobj, &ttm_bo_glob_kobj_type, ttm_get_kobj(), "buffer_objects"); 1575 if (unlikely(ret != 0)) 1576 kobject_put(&glob->kobj); 1577 out: 1578 mutex_unlock(&ttm_global_mutex); 1579 return ret; 1580 } 1581 1582 int ttm_bo_device_release(struct ttm_bo_device *bdev) 1583 { 1584 int ret = 0; 1585 unsigned i = TTM_NUM_MEM_TYPES; 1586 struct ttm_mem_type_manager *man; 1587 struct ttm_bo_global *glob = bdev->glob; 1588 1589 while (i--) { 1590 man = &bdev->man[i]; 1591 if (man->has_type) { 1592 man->use_type = false; 1593 if ((i != TTM_PL_SYSTEM) && ttm_bo_clean_mm(bdev, i)) { 1594 ret = -EBUSY; 1595 pr_err("DRM memory manager type %d is not clean\n", 1596 i); 1597 } 1598 man->has_type = false; 1599 } 1600 } 1601 1602 mutex_lock(&ttm_global_mutex); 1603 list_del(&bdev->device_list); 1604 mutex_unlock(&ttm_global_mutex); 1605 1606 cancel_delayed_work_sync(&bdev->wq); 1607 1608 if (ttm_bo_delayed_delete(bdev, true)) 1609 pr_debug("Delayed destroy list was clean\n"); 1610 1611 spin_lock(&glob->lru_lock); 1612 for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) 1613 if (list_empty(&bdev->man[0].lru[0])) 1614 pr_debug("Swap list %d was clean\n", i); 1615 spin_unlock(&glob->lru_lock); 1616 1617 drm_vma_offset_manager_destroy(&bdev->vma_manager); 1618 1619 if (!ret) 1620 ttm_bo_global_release(); 1621 1622 return ret; 1623 } 1624 EXPORT_SYMBOL(ttm_bo_device_release); 1625 1626 int ttm_bo_device_init(struct ttm_bo_device *bdev, 1627 struct ttm_bo_driver *driver, 1628 struct address_space *mapping, 1629 bool need_dma32) 1630 { 1631 struct ttm_bo_global *glob = &ttm_bo_glob; 1632 int ret; 1633 1634 ret = ttm_bo_global_init(); 1635 if (ret) 1636 return ret; 1637 1638 bdev->driver = driver; 1639 1640 memset(bdev->man, 0, sizeof(bdev->man)); 1641 1642 /* 1643 * Initialize the system memory buffer type. 1644 * Other types need to be driver / IOCTL initialized. 1645 */ 1646 ret = ttm_bo_init_mm(bdev, TTM_PL_SYSTEM, 0); 1647 if (unlikely(ret != 0)) 1648 goto out_no_sys; 1649 1650 drm_vma_offset_manager_init(&bdev->vma_manager, 1651 DRM_FILE_PAGE_OFFSET_START, 1652 DRM_FILE_PAGE_OFFSET_SIZE); 1653 INIT_DELAYED_WORK(&bdev->wq, ttm_bo_delayed_workqueue); 1654 INIT_LIST_HEAD(&bdev->ddestroy); 1655 bdev->dev_mapping = mapping; 1656 bdev->glob = glob; 1657 bdev->need_dma32 = need_dma32; 1658 mutex_lock(&ttm_global_mutex); 1659 list_add_tail(&bdev->device_list, &glob->device_list); 1660 mutex_unlock(&ttm_global_mutex); 1661 1662 return 0; 1663 out_no_sys: 1664 ttm_bo_global_release(); 1665 return ret; 1666 } 1667 EXPORT_SYMBOL(ttm_bo_device_init); 1668 1669 /* 1670 * buffer object vm functions. 1671 */ 1672 1673 bool ttm_mem_reg_is_pci(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem) 1674 { 1675 struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type]; 1676 1677 if (!(man->flags & TTM_MEMTYPE_FLAG_FIXED)) { 1678 if (mem->mem_type == TTM_PL_SYSTEM) 1679 return false; 1680 1681 if (man->flags & TTM_MEMTYPE_FLAG_CMA) 1682 return false; 1683 1684 if (mem->placement & TTM_PL_FLAG_CACHED) 1685 return false; 1686 } 1687 return true; 1688 } 1689 1690 void ttm_bo_unmap_virtual_locked(struct ttm_buffer_object *bo) 1691 { 1692 struct ttm_bo_device *bdev = bo->bdev; 1693 1694 drm_vma_node_unmap(&bo->vma_node, bdev->dev_mapping); 1695 ttm_mem_io_free_vm(bo); 1696 } 1697 1698 void ttm_bo_unmap_virtual(struct ttm_buffer_object *bo) 1699 { 1700 struct ttm_bo_device *bdev = bo->bdev; 1701 struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type]; 1702 1703 ttm_mem_io_lock(man, false); 1704 ttm_bo_unmap_virtual_locked(bo); 1705 ttm_mem_io_unlock(man); 1706 } 1707 1708 1709 EXPORT_SYMBOL(ttm_bo_unmap_virtual); 1710 1711 int ttm_bo_wait(struct ttm_buffer_object *bo, 1712 bool interruptible, bool no_wait) 1713 { 1714 long timeout = 15 * HZ; 1715 1716 if (no_wait) { 1717 if (reservation_object_test_signaled_rcu(bo->resv, true)) 1718 return 0; 1719 else 1720 return -EBUSY; 1721 } 1722 1723 timeout = reservation_object_wait_timeout_rcu(bo->resv, true, 1724 interruptible, timeout); 1725 if (timeout < 0) 1726 return timeout; 1727 1728 if (timeout == 0) 1729 return -EBUSY; 1730 1731 reservation_object_add_excl_fence(bo->resv, NULL); 1732 return 0; 1733 } 1734 EXPORT_SYMBOL(ttm_bo_wait); 1735 1736 int ttm_bo_synccpu_write_grab(struct ttm_buffer_object *bo, bool no_wait) 1737 { 1738 int ret = 0; 1739 1740 /* 1741 * Using ttm_bo_reserve makes sure the lru lists are updated. 1742 */ 1743 1744 ret = ttm_bo_reserve(bo, true, no_wait, NULL); 1745 if (unlikely(ret != 0)) 1746 return ret; 1747 ret = ttm_bo_wait(bo, true, no_wait); 1748 if (likely(ret == 0)) 1749 atomic_inc(&bo->cpu_writers); 1750 ttm_bo_unreserve(bo); 1751 return ret; 1752 } 1753 EXPORT_SYMBOL(ttm_bo_synccpu_write_grab); 1754 1755 void ttm_bo_synccpu_write_release(struct ttm_buffer_object *bo) 1756 { 1757 atomic_dec(&bo->cpu_writers); 1758 } 1759 EXPORT_SYMBOL(ttm_bo_synccpu_write_release); 1760 1761 /** 1762 * A buffer object shrink method that tries to swap out the first 1763 * buffer object on the bo_global::swap_lru list. 1764 */ 1765 int ttm_bo_swapout(struct ttm_bo_global *glob, struct ttm_operation_ctx *ctx) 1766 { 1767 struct ttm_buffer_object *bo; 1768 int ret = -EBUSY; 1769 bool locked; 1770 unsigned i; 1771 1772 spin_lock(&glob->lru_lock); 1773 for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) { 1774 list_for_each_entry(bo, &glob->swap_lru[i], swap) { 1775 if (ttm_bo_evict_swapout_allowable(bo, ctx, &locked)) { 1776 ret = 0; 1777 break; 1778 } 1779 } 1780 if (!ret) 1781 break; 1782 } 1783 1784 if (ret) { 1785 spin_unlock(&glob->lru_lock); 1786 return ret; 1787 } 1788 1789 kref_get(&bo->list_kref); 1790 1791 if (!list_empty(&bo->ddestroy)) { 1792 ret = ttm_bo_cleanup_refs(bo, false, false, locked); 1793 kref_put(&bo->list_kref, ttm_bo_release_list); 1794 return ret; 1795 } 1796 1797 ttm_bo_del_from_lru(bo); 1798 spin_unlock(&glob->lru_lock); 1799 1800 /** 1801 * Move to system cached 1802 */ 1803 1804 if (bo->mem.mem_type != TTM_PL_SYSTEM || 1805 bo->ttm->caching_state != tt_cached) { 1806 struct ttm_operation_ctx ctx = { false, false }; 1807 struct ttm_mem_reg evict_mem; 1808 1809 evict_mem = bo->mem; 1810 evict_mem.mm_node = NULL; 1811 evict_mem.placement = TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED; 1812 evict_mem.mem_type = TTM_PL_SYSTEM; 1813 1814 ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, &ctx); 1815 if (unlikely(ret != 0)) 1816 goto out; 1817 } 1818 1819 /** 1820 * Make sure BO is idle. 1821 */ 1822 1823 ret = ttm_bo_wait(bo, false, false); 1824 if (unlikely(ret != 0)) 1825 goto out; 1826 1827 ttm_bo_unmap_virtual(bo); 1828 1829 /** 1830 * Swap out. Buffer will be swapped in again as soon as 1831 * anyone tries to access a ttm page. 1832 */ 1833 1834 if (bo->bdev->driver->swap_notify) 1835 bo->bdev->driver->swap_notify(bo); 1836 1837 ret = ttm_tt_swapout(bo->ttm, bo->persistent_swap_storage); 1838 out: 1839 1840 /** 1841 * 1842 * Unreserve without putting on LRU to avoid swapping out an 1843 * already swapped buffer. 1844 */ 1845 if (locked) 1846 reservation_object_unlock(bo->resv); 1847 kref_put(&bo->list_kref, ttm_bo_release_list); 1848 return ret; 1849 } 1850 EXPORT_SYMBOL(ttm_bo_swapout); 1851 1852 void ttm_bo_swapout_all(struct ttm_bo_device *bdev) 1853 { 1854 struct ttm_operation_ctx ctx = { 1855 .interruptible = false, 1856 .no_wait_gpu = false 1857 }; 1858 1859 while (ttm_bo_swapout(bdev->glob, &ctx) == 0) 1860 ; 1861 } 1862 EXPORT_SYMBOL(ttm_bo_swapout_all); 1863 1864 /** 1865 * ttm_bo_wait_unreserved - interruptible wait for a buffer object to become 1866 * unreserved 1867 * 1868 * @bo: Pointer to buffer 1869 */ 1870 int ttm_bo_wait_unreserved(struct ttm_buffer_object *bo) 1871 { 1872 int ret; 1873 1874 /* 1875 * In the absense of a wait_unlocked API, 1876 * Use the bo::wu_mutex to avoid triggering livelocks due to 1877 * concurrent use of this function. Note that this use of 1878 * bo::wu_mutex can go away if we change locking order to 1879 * mmap_sem -> bo::reserve. 1880 */ 1881 ret = mutex_lock_interruptible(&bo->wu_mutex); 1882 if (unlikely(ret != 0)) 1883 return -ERESTARTSYS; 1884 if (!ww_mutex_is_locked(&bo->resv->lock)) 1885 goto out_unlock; 1886 ret = reservation_object_lock_interruptible(bo->resv, NULL); 1887 if (ret == -EINTR) 1888 ret = -ERESTARTSYS; 1889 if (unlikely(ret != 0)) 1890 goto out_unlock; 1891 reservation_object_unlock(bo->resv); 1892 1893 out_unlock: 1894 mutex_unlock(&bo->wu_mutex); 1895 return ret; 1896 } 1897