1 /* SPDX-License-Identifier: GPL-2.0 OR MIT */ 2 /************************************************************************** 3 * 4 * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA 5 * All Rights Reserved. 6 * 7 * Permission is hereby granted, free of charge, to any person obtaining a 8 * copy of this software and associated documentation files (the 9 * "Software"), to deal in the Software without restriction, including 10 * without limitation the rights to use, copy, modify, merge, publish, 11 * distribute, sub license, and/or sell copies of the Software, and to 12 * permit persons to whom the Software is furnished to do so, subject to 13 * the following conditions: 14 * 15 * The above copyright notice and this permission notice (including the 16 * next paragraph) shall be included in all copies or substantial portions 17 * of the Software. 18 * 19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 21 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 22 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 23 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 24 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 25 * USE OR OTHER DEALINGS IN THE SOFTWARE. 26 * 27 **************************************************************************/ 28 /* 29 * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com> 30 */ 31 32 #define pr_fmt(fmt) "[TTM] " fmt 33 34 #include <drm/ttm/ttm_module.h> 35 #include <drm/ttm/ttm_bo_driver.h> 36 #include <drm/ttm/ttm_placement.h> 37 #include <linux/jiffies.h> 38 #include <linux/slab.h> 39 #include <linux/sched.h> 40 #include <linux/mm.h> 41 #include <linux/file.h> 42 #include <linux/module.h> 43 #include <linux/atomic.h> 44 #include <linux/dma-resv.h> 45 46 static void ttm_bo_global_kobj_release(struct kobject *kobj); 47 48 /** 49 * ttm_global_mutex - protecting the global BO state 50 */ 51 DEFINE_MUTEX(ttm_global_mutex); 52 unsigned ttm_bo_glob_use_count; 53 struct ttm_bo_global ttm_bo_glob; 54 EXPORT_SYMBOL(ttm_bo_glob); 55 56 static struct attribute ttm_bo_count = { 57 .name = "bo_count", 58 .mode = S_IRUGO 59 }; 60 61 /* default destructor */ 62 static void ttm_bo_default_destroy(struct ttm_buffer_object *bo) 63 { 64 kfree(bo); 65 } 66 67 static inline int ttm_mem_type_from_place(const struct ttm_place *place, 68 uint32_t *mem_type) 69 { 70 int pos; 71 72 pos = ffs(place->flags & TTM_PL_MASK_MEM); 73 if (unlikely(!pos)) 74 return -EINVAL; 75 76 *mem_type = pos - 1; 77 return 0; 78 } 79 80 void ttm_resource_manager_debug(struct ttm_resource_manager *man, 81 struct drm_printer *p) 82 { 83 drm_printf(p, " use_type: %d\n", man->use_type); 84 drm_printf(p, " use_tt: %d\n", man->use_tt); 85 drm_printf(p, " size: %llu\n", man->size); 86 drm_printf(p, " available_caching: 0x%08X\n", man->available_caching); 87 drm_printf(p, " default_caching: 0x%08X\n", man->default_caching); 88 if (man->func && man->func->debug) 89 (*man->func->debug)(man, p); 90 } 91 EXPORT_SYMBOL(ttm_resource_manager_debug); 92 93 static void ttm_bo_mem_space_debug(struct ttm_buffer_object *bo, 94 struct ttm_placement *placement) 95 { 96 struct drm_printer p = drm_debug_printer(TTM_PFX); 97 int i, ret, mem_type; 98 struct ttm_resource_manager *man; 99 100 drm_printf(&p, "No space for %p (%lu pages, %luK, %luM)\n", 101 bo, bo->mem.num_pages, bo->mem.size >> 10, 102 bo->mem.size >> 20); 103 for (i = 0; i < placement->num_placement; i++) { 104 ret = ttm_mem_type_from_place(&placement->placement[i], 105 &mem_type); 106 if (ret) 107 return; 108 drm_printf(&p, " placement[%d]=0x%08X (%d)\n", 109 i, placement->placement[i].flags, mem_type); 110 man = ttm_manager_type(bo->bdev, mem_type); 111 ttm_resource_manager_debug(man, &p); 112 } 113 } 114 115 static ssize_t ttm_bo_global_show(struct kobject *kobj, 116 struct attribute *attr, 117 char *buffer) 118 { 119 struct ttm_bo_global *glob = 120 container_of(kobj, struct ttm_bo_global, kobj); 121 122 return snprintf(buffer, PAGE_SIZE, "%d\n", 123 atomic_read(&glob->bo_count)); 124 } 125 126 static struct attribute *ttm_bo_global_attrs[] = { 127 &ttm_bo_count, 128 NULL 129 }; 130 131 static const struct sysfs_ops ttm_bo_global_ops = { 132 .show = &ttm_bo_global_show 133 }; 134 135 static struct kobj_type ttm_bo_glob_kobj_type = { 136 .release = &ttm_bo_global_kobj_release, 137 .sysfs_ops = &ttm_bo_global_ops, 138 .default_attrs = ttm_bo_global_attrs 139 }; 140 141 142 static inline uint32_t ttm_bo_type_flags(unsigned type) 143 { 144 return 1 << (type); 145 } 146 147 static void ttm_bo_add_mem_to_lru(struct ttm_buffer_object *bo, 148 struct ttm_resource *mem) 149 { 150 struct ttm_bo_device *bdev = bo->bdev; 151 struct ttm_resource_manager *man; 152 153 if (!list_empty(&bo->lru)) 154 return; 155 156 if (mem->placement & TTM_PL_FLAG_NO_EVICT) 157 return; 158 159 man = ttm_manager_type(bdev, mem->mem_type); 160 list_add_tail(&bo->lru, &man->lru[bo->priority]); 161 162 if (man->use_tt && bo->ttm && 163 !(bo->ttm->page_flags & (TTM_PAGE_FLAG_SG | 164 TTM_PAGE_FLAG_SWAPPED))) { 165 list_add_tail(&bo->swap, &ttm_bo_glob.swap_lru[bo->priority]); 166 } 167 } 168 169 static void ttm_bo_del_from_lru(struct ttm_buffer_object *bo) 170 { 171 struct ttm_bo_device *bdev = bo->bdev; 172 bool notify = false; 173 174 if (!list_empty(&bo->swap)) { 175 list_del_init(&bo->swap); 176 notify = true; 177 } 178 if (!list_empty(&bo->lru)) { 179 list_del_init(&bo->lru); 180 notify = true; 181 } 182 183 if (notify && bdev->driver->del_from_lru_notify) 184 bdev->driver->del_from_lru_notify(bo); 185 } 186 187 static void ttm_bo_bulk_move_set_pos(struct ttm_lru_bulk_move_pos *pos, 188 struct ttm_buffer_object *bo) 189 { 190 if (!pos->first) 191 pos->first = bo; 192 pos->last = bo; 193 } 194 195 void ttm_bo_move_to_lru_tail(struct ttm_buffer_object *bo, 196 struct ttm_lru_bulk_move *bulk) 197 { 198 dma_resv_assert_held(bo->base.resv); 199 200 ttm_bo_del_from_lru(bo); 201 ttm_bo_add_mem_to_lru(bo, &bo->mem); 202 203 if (bulk && !(bo->mem.placement & TTM_PL_FLAG_NO_EVICT)) { 204 switch (bo->mem.mem_type) { 205 case TTM_PL_TT: 206 ttm_bo_bulk_move_set_pos(&bulk->tt[bo->priority], bo); 207 break; 208 209 case TTM_PL_VRAM: 210 ttm_bo_bulk_move_set_pos(&bulk->vram[bo->priority], bo); 211 break; 212 } 213 if (bo->ttm && !(bo->ttm->page_flags & 214 (TTM_PAGE_FLAG_SG | TTM_PAGE_FLAG_SWAPPED))) 215 ttm_bo_bulk_move_set_pos(&bulk->swap[bo->priority], bo); 216 } 217 } 218 EXPORT_SYMBOL(ttm_bo_move_to_lru_tail); 219 220 void ttm_bo_bulk_move_lru_tail(struct ttm_lru_bulk_move *bulk) 221 { 222 unsigned i; 223 224 for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) { 225 struct ttm_lru_bulk_move_pos *pos = &bulk->tt[i]; 226 struct ttm_resource_manager *man; 227 228 if (!pos->first) 229 continue; 230 231 dma_resv_assert_held(pos->first->base.resv); 232 dma_resv_assert_held(pos->last->base.resv); 233 234 man = ttm_manager_type(pos->first->bdev, TTM_PL_TT); 235 list_bulk_move_tail(&man->lru[i], &pos->first->lru, 236 &pos->last->lru); 237 } 238 239 for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) { 240 struct ttm_lru_bulk_move_pos *pos = &bulk->vram[i]; 241 struct ttm_resource_manager *man; 242 243 if (!pos->first) 244 continue; 245 246 dma_resv_assert_held(pos->first->base.resv); 247 dma_resv_assert_held(pos->last->base.resv); 248 249 man = ttm_manager_type(pos->first->bdev, TTM_PL_VRAM); 250 list_bulk_move_tail(&man->lru[i], &pos->first->lru, 251 &pos->last->lru); 252 } 253 254 for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) { 255 struct ttm_lru_bulk_move_pos *pos = &bulk->swap[i]; 256 struct list_head *lru; 257 258 if (!pos->first) 259 continue; 260 261 dma_resv_assert_held(pos->first->base.resv); 262 dma_resv_assert_held(pos->last->base.resv); 263 264 lru = &ttm_bo_glob.swap_lru[i]; 265 list_bulk_move_tail(lru, &pos->first->swap, &pos->last->swap); 266 } 267 } 268 EXPORT_SYMBOL(ttm_bo_bulk_move_lru_tail); 269 270 static int ttm_bo_handle_move_mem(struct ttm_buffer_object *bo, 271 struct ttm_resource *mem, bool evict, 272 struct ttm_operation_ctx *ctx) 273 { 274 struct ttm_bo_device *bdev = bo->bdev; 275 struct ttm_resource_manager *old_man = ttm_manager_type(bdev, bo->mem.mem_type); 276 struct ttm_resource_manager *new_man = ttm_manager_type(bdev, mem->mem_type); 277 int ret; 278 279 ret = ttm_mem_io_lock(old_man, true); 280 if (unlikely(ret != 0)) 281 goto out_err; 282 ttm_bo_unmap_virtual_locked(bo); 283 ttm_mem_io_unlock(old_man); 284 285 /* 286 * Create and bind a ttm if required. 287 */ 288 289 if (new_man->use_tt) { 290 /* Zero init the new TTM structure if the old location should 291 * have used one as well. 292 */ 293 ret = ttm_tt_create(bo, old_man->use_tt); 294 if (ret) 295 goto out_err; 296 297 ret = ttm_tt_set_placement_caching(bo->ttm, mem->placement); 298 if (ret) 299 goto out_err; 300 301 if (mem->mem_type != TTM_PL_SYSTEM) { 302 ret = ttm_tt_bind(bo->ttm, mem, ctx); 303 if (ret) 304 goto out_err; 305 } 306 307 if (bo->mem.mem_type == TTM_PL_SYSTEM) { 308 if (bdev->driver->move_notify) 309 bdev->driver->move_notify(bo, evict, mem); 310 bo->mem = *mem; 311 goto moved; 312 } 313 } 314 315 if (bdev->driver->move_notify) 316 bdev->driver->move_notify(bo, evict, mem); 317 318 if (old_man->use_tt && new_man->use_tt) 319 ret = ttm_bo_move_ttm(bo, ctx, mem); 320 else if (bdev->driver->move) 321 ret = bdev->driver->move(bo, evict, ctx, mem); 322 else 323 ret = ttm_bo_move_memcpy(bo, ctx, mem); 324 325 if (ret) { 326 if (bdev->driver->move_notify) { 327 swap(*mem, bo->mem); 328 bdev->driver->move_notify(bo, false, mem); 329 swap(*mem, bo->mem); 330 } 331 332 goto out_err; 333 } 334 335 moved: 336 bo->evicted = false; 337 338 ctx->bytes_moved += bo->num_pages << PAGE_SHIFT; 339 return 0; 340 341 out_err: 342 new_man = ttm_manager_type(bdev, bo->mem.mem_type); 343 if (!new_man->use_tt) { 344 ttm_tt_destroy(bo->ttm); 345 bo->ttm = NULL; 346 } 347 348 return ret; 349 } 350 351 /** 352 * Call bo::reserved. 353 * Will release GPU memory type usage on destruction. 354 * This is the place to put in driver specific hooks to release 355 * driver private resources. 356 * Will release the bo::reserved lock. 357 */ 358 359 static void ttm_bo_cleanup_memtype_use(struct ttm_buffer_object *bo) 360 { 361 if (bo->bdev->driver->move_notify) 362 bo->bdev->driver->move_notify(bo, false, NULL); 363 364 ttm_tt_destroy(bo->ttm); 365 bo->ttm = NULL; 366 ttm_bo_mem_put(bo, &bo->mem); 367 } 368 369 static int ttm_bo_individualize_resv(struct ttm_buffer_object *bo) 370 { 371 int r; 372 373 if (bo->base.resv == &bo->base._resv) 374 return 0; 375 376 BUG_ON(!dma_resv_trylock(&bo->base._resv)); 377 378 r = dma_resv_copy_fences(&bo->base._resv, bo->base.resv); 379 dma_resv_unlock(&bo->base._resv); 380 if (r) 381 return r; 382 383 if (bo->type != ttm_bo_type_sg) { 384 /* This works because the BO is about to be destroyed and nobody 385 * reference it any more. The only tricky case is the trylock on 386 * the resv object while holding the lru_lock. 387 */ 388 spin_lock(&ttm_bo_glob.lru_lock); 389 bo->base.resv = &bo->base._resv; 390 spin_unlock(&ttm_bo_glob.lru_lock); 391 } 392 393 return r; 394 } 395 396 static void ttm_bo_flush_all_fences(struct ttm_buffer_object *bo) 397 { 398 struct dma_resv *resv = &bo->base._resv; 399 struct dma_resv_list *fobj; 400 struct dma_fence *fence; 401 int i; 402 403 rcu_read_lock(); 404 fobj = rcu_dereference(resv->fence); 405 fence = rcu_dereference(resv->fence_excl); 406 if (fence && !fence->ops->signaled) 407 dma_fence_enable_sw_signaling(fence); 408 409 for (i = 0; fobj && i < fobj->shared_count; ++i) { 410 fence = rcu_dereference(fobj->shared[i]); 411 412 if (!fence->ops->signaled) 413 dma_fence_enable_sw_signaling(fence); 414 } 415 rcu_read_unlock(); 416 } 417 418 /** 419 * function ttm_bo_cleanup_refs 420 * If bo idle, remove from lru lists, and unref. 421 * If not idle, block if possible. 422 * 423 * Must be called with lru_lock and reservation held, this function 424 * will drop the lru lock and optionally the reservation lock before returning. 425 * 426 * @interruptible Any sleeps should occur interruptibly. 427 * @no_wait_gpu Never wait for gpu. Return -EBUSY instead. 428 * @unlock_resv Unlock the reservation lock as well. 429 */ 430 431 static int ttm_bo_cleanup_refs(struct ttm_buffer_object *bo, 432 bool interruptible, bool no_wait_gpu, 433 bool unlock_resv) 434 { 435 struct dma_resv *resv = &bo->base._resv; 436 int ret; 437 438 if (dma_resv_test_signaled_rcu(resv, true)) 439 ret = 0; 440 else 441 ret = -EBUSY; 442 443 if (ret && !no_wait_gpu) { 444 long lret; 445 446 if (unlock_resv) 447 dma_resv_unlock(bo->base.resv); 448 spin_unlock(&ttm_bo_glob.lru_lock); 449 450 lret = dma_resv_wait_timeout_rcu(resv, true, interruptible, 451 30 * HZ); 452 453 if (lret < 0) 454 return lret; 455 else if (lret == 0) 456 return -EBUSY; 457 458 spin_lock(&ttm_bo_glob.lru_lock); 459 if (unlock_resv && !dma_resv_trylock(bo->base.resv)) { 460 /* 461 * We raced, and lost, someone else holds the reservation now, 462 * and is probably busy in ttm_bo_cleanup_memtype_use. 463 * 464 * Even if it's not the case, because we finished waiting any 465 * delayed destruction would succeed, so just return success 466 * here. 467 */ 468 spin_unlock(&ttm_bo_glob.lru_lock); 469 return 0; 470 } 471 ret = 0; 472 } 473 474 if (ret || unlikely(list_empty(&bo->ddestroy))) { 475 if (unlock_resv) 476 dma_resv_unlock(bo->base.resv); 477 spin_unlock(&ttm_bo_glob.lru_lock); 478 return ret; 479 } 480 481 ttm_bo_del_from_lru(bo); 482 list_del_init(&bo->ddestroy); 483 spin_unlock(&ttm_bo_glob.lru_lock); 484 ttm_bo_cleanup_memtype_use(bo); 485 486 if (unlock_resv) 487 dma_resv_unlock(bo->base.resv); 488 489 ttm_bo_put(bo); 490 491 return 0; 492 } 493 494 /** 495 * Traverse the delayed list, and call ttm_bo_cleanup_refs on all 496 * encountered buffers. 497 */ 498 static bool ttm_bo_delayed_delete(struct ttm_bo_device *bdev, bool remove_all) 499 { 500 struct ttm_bo_global *glob = &ttm_bo_glob; 501 struct list_head removed; 502 bool empty; 503 504 INIT_LIST_HEAD(&removed); 505 506 spin_lock(&glob->lru_lock); 507 while (!list_empty(&bdev->ddestroy)) { 508 struct ttm_buffer_object *bo; 509 510 bo = list_first_entry(&bdev->ddestroy, struct ttm_buffer_object, 511 ddestroy); 512 list_move_tail(&bo->ddestroy, &removed); 513 if (!ttm_bo_get_unless_zero(bo)) 514 continue; 515 516 if (remove_all || bo->base.resv != &bo->base._resv) { 517 spin_unlock(&glob->lru_lock); 518 dma_resv_lock(bo->base.resv, NULL); 519 520 spin_lock(&glob->lru_lock); 521 ttm_bo_cleanup_refs(bo, false, !remove_all, true); 522 523 } else if (dma_resv_trylock(bo->base.resv)) { 524 ttm_bo_cleanup_refs(bo, false, !remove_all, true); 525 } else { 526 spin_unlock(&glob->lru_lock); 527 } 528 529 ttm_bo_put(bo); 530 spin_lock(&glob->lru_lock); 531 } 532 list_splice_tail(&removed, &bdev->ddestroy); 533 empty = list_empty(&bdev->ddestroy); 534 spin_unlock(&glob->lru_lock); 535 536 return empty; 537 } 538 539 static void ttm_bo_delayed_workqueue(struct work_struct *work) 540 { 541 struct ttm_bo_device *bdev = 542 container_of(work, struct ttm_bo_device, wq.work); 543 544 if (!ttm_bo_delayed_delete(bdev, false)) 545 schedule_delayed_work(&bdev->wq, 546 ((HZ / 100) < 1) ? 1 : HZ / 100); 547 } 548 549 static void ttm_bo_release(struct kref *kref) 550 { 551 struct ttm_buffer_object *bo = 552 container_of(kref, struct ttm_buffer_object, kref); 553 struct ttm_bo_device *bdev = bo->bdev; 554 struct ttm_resource_manager *man = ttm_manager_type(bdev, bo->mem.mem_type); 555 size_t acc_size = bo->acc_size; 556 int ret; 557 558 if (!bo->deleted) { 559 ret = ttm_bo_individualize_resv(bo); 560 if (ret) { 561 /* Last resort, if we fail to allocate memory for the 562 * fences block for the BO to become idle 563 */ 564 dma_resv_wait_timeout_rcu(bo->base.resv, true, false, 565 30 * HZ); 566 } 567 568 if (bo->bdev->driver->release_notify) 569 bo->bdev->driver->release_notify(bo); 570 571 drm_vma_offset_remove(bdev->vma_manager, &bo->base.vma_node); 572 ttm_mem_io_lock(man, false); 573 ttm_mem_io_free_vm(bo); 574 ttm_mem_io_unlock(man); 575 } 576 577 if (!dma_resv_test_signaled_rcu(bo->base.resv, true) || 578 !dma_resv_trylock(bo->base.resv)) { 579 /* The BO is not idle, resurrect it for delayed destroy */ 580 ttm_bo_flush_all_fences(bo); 581 bo->deleted = true; 582 583 spin_lock(&ttm_bo_glob.lru_lock); 584 585 /* 586 * Make NO_EVICT bos immediately available to 587 * shrinkers, now that they are queued for 588 * destruction. 589 */ 590 if (bo->mem.placement & TTM_PL_FLAG_NO_EVICT) { 591 bo->mem.placement &= ~TTM_PL_FLAG_NO_EVICT; 592 ttm_bo_del_from_lru(bo); 593 ttm_bo_add_mem_to_lru(bo, &bo->mem); 594 } 595 596 kref_init(&bo->kref); 597 list_add_tail(&bo->ddestroy, &bdev->ddestroy); 598 spin_unlock(&ttm_bo_glob.lru_lock); 599 600 schedule_delayed_work(&bdev->wq, 601 ((HZ / 100) < 1) ? 1 : HZ / 100); 602 return; 603 } 604 605 spin_lock(&ttm_bo_glob.lru_lock); 606 ttm_bo_del_from_lru(bo); 607 list_del(&bo->ddestroy); 608 spin_unlock(&ttm_bo_glob.lru_lock); 609 610 ttm_bo_cleanup_memtype_use(bo); 611 dma_resv_unlock(bo->base.resv); 612 613 atomic_dec(&ttm_bo_glob.bo_count); 614 dma_fence_put(bo->moving); 615 if (!ttm_bo_uses_embedded_gem_object(bo)) 616 dma_resv_fini(&bo->base._resv); 617 bo->destroy(bo); 618 ttm_mem_global_free(&ttm_mem_glob, acc_size); 619 } 620 621 void ttm_bo_put(struct ttm_buffer_object *bo) 622 { 623 kref_put(&bo->kref, ttm_bo_release); 624 } 625 EXPORT_SYMBOL(ttm_bo_put); 626 627 int ttm_bo_lock_delayed_workqueue(struct ttm_bo_device *bdev) 628 { 629 return cancel_delayed_work_sync(&bdev->wq); 630 } 631 EXPORT_SYMBOL(ttm_bo_lock_delayed_workqueue); 632 633 void ttm_bo_unlock_delayed_workqueue(struct ttm_bo_device *bdev, int resched) 634 { 635 if (resched) 636 schedule_delayed_work(&bdev->wq, 637 ((HZ / 100) < 1) ? 1 : HZ / 100); 638 } 639 EXPORT_SYMBOL(ttm_bo_unlock_delayed_workqueue); 640 641 static int ttm_bo_evict(struct ttm_buffer_object *bo, 642 struct ttm_operation_ctx *ctx) 643 { 644 struct ttm_bo_device *bdev = bo->bdev; 645 struct ttm_resource evict_mem; 646 struct ttm_placement placement; 647 int ret = 0; 648 649 dma_resv_assert_held(bo->base.resv); 650 651 placement.num_placement = 0; 652 placement.num_busy_placement = 0; 653 bdev->driver->evict_flags(bo, &placement); 654 655 if (!placement.num_placement && !placement.num_busy_placement) { 656 ttm_bo_wait(bo, false, false); 657 658 ttm_bo_cleanup_memtype_use(bo); 659 return 0; 660 } 661 662 evict_mem = bo->mem; 663 evict_mem.mm_node = NULL; 664 evict_mem.bus.io_reserved_vm = false; 665 evict_mem.bus.io_reserved_count = 0; 666 667 ret = ttm_bo_mem_space(bo, &placement, &evict_mem, ctx); 668 if (ret) { 669 if (ret != -ERESTARTSYS) { 670 pr_err("Failed to find memory space for buffer 0x%p eviction\n", 671 bo); 672 ttm_bo_mem_space_debug(bo, &placement); 673 } 674 goto out; 675 } 676 677 ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, ctx); 678 if (unlikely(ret)) { 679 if (ret != -ERESTARTSYS) 680 pr_err("Buffer eviction failed\n"); 681 ttm_bo_mem_put(bo, &evict_mem); 682 goto out; 683 } 684 bo->evicted = true; 685 out: 686 return ret; 687 } 688 689 bool ttm_bo_eviction_valuable(struct ttm_buffer_object *bo, 690 const struct ttm_place *place) 691 { 692 /* Don't evict this BO if it's outside of the 693 * requested placement range 694 */ 695 if (place->fpfn >= (bo->mem.start + bo->mem.size) || 696 (place->lpfn && place->lpfn <= bo->mem.start)) 697 return false; 698 699 return true; 700 } 701 EXPORT_SYMBOL(ttm_bo_eviction_valuable); 702 703 /** 704 * Check the target bo is allowable to be evicted or swapout, including cases: 705 * 706 * a. if share same reservation object with ctx->resv, have assumption 707 * reservation objects should already be locked, so not lock again and 708 * return true directly when either the opreation allow_reserved_eviction 709 * or the target bo already is in delayed free list; 710 * 711 * b. Otherwise, trylock it. 712 */ 713 static bool ttm_bo_evict_swapout_allowable(struct ttm_buffer_object *bo, 714 struct ttm_operation_ctx *ctx, bool *locked, bool *busy) 715 { 716 bool ret = false; 717 718 if (bo->base.resv == ctx->resv) { 719 dma_resv_assert_held(bo->base.resv); 720 if (ctx->flags & TTM_OPT_FLAG_ALLOW_RES_EVICT) 721 ret = true; 722 *locked = false; 723 if (busy) 724 *busy = false; 725 } else { 726 ret = dma_resv_trylock(bo->base.resv); 727 *locked = ret; 728 if (busy) 729 *busy = !ret; 730 } 731 732 return ret; 733 } 734 735 /** 736 * ttm_mem_evict_wait_busy - wait for a busy BO to become available 737 * 738 * @busy_bo: BO which couldn't be locked with trylock 739 * @ctx: operation context 740 * @ticket: acquire ticket 741 * 742 * Try to lock a busy buffer object to avoid failing eviction. 743 */ 744 static int ttm_mem_evict_wait_busy(struct ttm_buffer_object *busy_bo, 745 struct ttm_operation_ctx *ctx, 746 struct ww_acquire_ctx *ticket) 747 { 748 int r; 749 750 if (!busy_bo || !ticket) 751 return -EBUSY; 752 753 if (ctx->interruptible) 754 r = dma_resv_lock_interruptible(busy_bo->base.resv, 755 ticket); 756 else 757 r = dma_resv_lock(busy_bo->base.resv, ticket); 758 759 /* 760 * TODO: It would be better to keep the BO locked until allocation is at 761 * least tried one more time, but that would mean a much larger rework 762 * of TTM. 763 */ 764 if (!r) 765 dma_resv_unlock(busy_bo->base.resv); 766 767 return r == -EDEADLK ? -EBUSY : r; 768 } 769 770 static int ttm_mem_evict_first(struct ttm_bo_device *bdev, 771 struct ttm_resource_manager *man, 772 const struct ttm_place *place, 773 struct ttm_operation_ctx *ctx, 774 struct ww_acquire_ctx *ticket) 775 { 776 struct ttm_buffer_object *bo = NULL, *busy_bo = NULL; 777 bool locked = false; 778 unsigned i; 779 int ret; 780 781 spin_lock(&ttm_bo_glob.lru_lock); 782 for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) { 783 list_for_each_entry(bo, &man->lru[i], lru) { 784 bool busy; 785 786 if (!ttm_bo_evict_swapout_allowable(bo, ctx, &locked, 787 &busy)) { 788 if (busy && !busy_bo && ticket != 789 dma_resv_locking_ctx(bo->base.resv)) 790 busy_bo = bo; 791 continue; 792 } 793 794 if (place && !bdev->driver->eviction_valuable(bo, 795 place)) { 796 if (locked) 797 dma_resv_unlock(bo->base.resv); 798 continue; 799 } 800 if (!ttm_bo_get_unless_zero(bo)) { 801 if (locked) 802 dma_resv_unlock(bo->base.resv); 803 continue; 804 } 805 break; 806 } 807 808 /* If the inner loop terminated early, we have our candidate */ 809 if (&bo->lru != &man->lru[i]) 810 break; 811 812 bo = NULL; 813 } 814 815 if (!bo) { 816 if (busy_bo && !ttm_bo_get_unless_zero(busy_bo)) 817 busy_bo = NULL; 818 spin_unlock(&ttm_bo_glob.lru_lock); 819 ret = ttm_mem_evict_wait_busy(busy_bo, ctx, ticket); 820 if (busy_bo) 821 ttm_bo_put(busy_bo); 822 return ret; 823 } 824 825 if (bo->deleted) { 826 ret = ttm_bo_cleanup_refs(bo, ctx->interruptible, 827 ctx->no_wait_gpu, locked); 828 ttm_bo_put(bo); 829 return ret; 830 } 831 832 spin_unlock(&ttm_bo_glob.lru_lock); 833 834 ret = ttm_bo_evict(bo, ctx); 835 if (locked) 836 ttm_bo_unreserve(bo); 837 838 ttm_bo_put(bo); 839 return ret; 840 } 841 842 static int ttm_bo_mem_get(struct ttm_buffer_object *bo, 843 const struct ttm_place *place, 844 struct ttm_resource *mem) 845 { 846 struct ttm_resource_manager *man = ttm_manager_type(bo->bdev, mem->mem_type); 847 848 mem->mm_node = NULL; 849 if (!man->func || !man->func->get_node) 850 return 0; 851 852 return man->func->get_node(man, bo, place, mem); 853 } 854 855 void ttm_bo_mem_put(struct ttm_buffer_object *bo, struct ttm_resource *mem) 856 { 857 struct ttm_resource_manager *man = ttm_manager_type(bo->bdev, mem->mem_type); 858 859 if (!man->func || !man->func->put_node) 860 return; 861 862 man->func->put_node(man, mem); 863 mem->mm_node = NULL; 864 mem->mem_type = TTM_PL_SYSTEM; 865 } 866 EXPORT_SYMBOL(ttm_bo_mem_put); 867 868 /** 869 * Add the last move fence to the BO and reserve a new shared slot. 870 */ 871 static int ttm_bo_add_move_fence(struct ttm_buffer_object *bo, 872 struct ttm_resource_manager *man, 873 struct ttm_resource *mem, 874 bool no_wait_gpu) 875 { 876 struct dma_fence *fence; 877 int ret; 878 879 spin_lock(&man->move_lock); 880 fence = dma_fence_get(man->move); 881 spin_unlock(&man->move_lock); 882 883 if (!fence) 884 return 0; 885 886 if (no_wait_gpu) 887 return -EBUSY; 888 889 dma_resv_add_shared_fence(bo->base.resv, fence); 890 891 ret = dma_resv_reserve_shared(bo->base.resv, 1); 892 if (unlikely(ret)) { 893 dma_fence_put(fence); 894 return ret; 895 } 896 897 dma_fence_put(bo->moving); 898 bo->moving = fence; 899 return 0; 900 } 901 902 /** 903 * Repeatedly evict memory from the LRU for @mem_type until we create enough 904 * space, or we've evicted everything and there isn't enough space. 905 */ 906 static int ttm_bo_mem_force_space(struct ttm_buffer_object *bo, 907 const struct ttm_place *place, 908 struct ttm_resource *mem, 909 struct ttm_operation_ctx *ctx) 910 { 911 struct ttm_bo_device *bdev = bo->bdev; 912 struct ttm_resource_manager *man = ttm_manager_type(bdev, mem->mem_type); 913 struct ww_acquire_ctx *ticket; 914 int ret; 915 916 ticket = dma_resv_locking_ctx(bo->base.resv); 917 do { 918 ret = ttm_bo_mem_get(bo, place, mem); 919 if (likely(!ret)) 920 break; 921 if (unlikely(ret != -ENOSPC)) 922 return ret; 923 ret = ttm_mem_evict_first(bdev, man, place, ctx, 924 ticket); 925 if (unlikely(ret != 0)) 926 return ret; 927 } while (1); 928 929 return ttm_bo_add_move_fence(bo, man, mem, ctx->no_wait_gpu); 930 } 931 932 static uint32_t ttm_bo_select_caching(struct ttm_resource_manager *man, 933 uint32_t cur_placement, 934 uint32_t proposed_placement) 935 { 936 uint32_t caching = proposed_placement & TTM_PL_MASK_CACHING; 937 uint32_t result = proposed_placement & ~TTM_PL_MASK_CACHING; 938 939 /** 940 * Keep current caching if possible. 941 */ 942 943 if ((cur_placement & caching) != 0) 944 result |= (cur_placement & caching); 945 else if ((man->default_caching & caching) != 0) 946 result |= man->default_caching; 947 else if ((TTM_PL_FLAG_CACHED & caching) != 0) 948 result |= TTM_PL_FLAG_CACHED; 949 else if ((TTM_PL_FLAG_WC & caching) != 0) 950 result |= TTM_PL_FLAG_WC; 951 else if ((TTM_PL_FLAG_UNCACHED & caching) != 0) 952 result |= TTM_PL_FLAG_UNCACHED; 953 954 return result; 955 } 956 957 static bool ttm_bo_mt_compatible(struct ttm_resource_manager *man, 958 uint32_t mem_type, 959 const struct ttm_place *place, 960 uint32_t *masked_placement) 961 { 962 uint32_t cur_flags = ttm_bo_type_flags(mem_type); 963 964 if ((cur_flags & place->flags & TTM_PL_MASK_MEM) == 0) 965 return false; 966 967 if ((place->flags & man->available_caching) == 0) 968 return false; 969 970 cur_flags |= (place->flags & man->available_caching); 971 972 *masked_placement = cur_flags; 973 return true; 974 } 975 976 /** 977 * ttm_bo_mem_placement - check if placement is compatible 978 * @bo: BO to find memory for 979 * @place: where to search 980 * @mem: the memory object to fill in 981 * @ctx: operation context 982 * 983 * Check if placement is compatible and fill in mem structure. 984 * Returns -EBUSY if placement won't work or negative error code. 985 * 0 when placement can be used. 986 */ 987 static int ttm_bo_mem_placement(struct ttm_buffer_object *bo, 988 const struct ttm_place *place, 989 struct ttm_resource *mem, 990 struct ttm_operation_ctx *ctx) 991 { 992 struct ttm_bo_device *bdev = bo->bdev; 993 uint32_t mem_type = TTM_PL_SYSTEM; 994 struct ttm_resource_manager *man; 995 uint32_t cur_flags = 0; 996 int ret; 997 998 ret = ttm_mem_type_from_place(place, &mem_type); 999 if (ret) 1000 return ret; 1001 1002 man = ttm_manager_type(bdev, mem_type); 1003 if (!man || !ttm_resource_manager_used(man)) 1004 return -EBUSY; 1005 1006 if (!ttm_bo_mt_compatible(man, mem_type, place, &cur_flags)) 1007 return -EBUSY; 1008 1009 cur_flags = ttm_bo_select_caching(man, bo->mem.placement, cur_flags); 1010 /* 1011 * Use the access and other non-mapping-related flag bits from 1012 * the memory placement flags to the current flags 1013 */ 1014 ttm_flag_masked(&cur_flags, place->flags, ~TTM_PL_MASK_MEMTYPE); 1015 1016 mem->mem_type = mem_type; 1017 mem->placement = cur_flags; 1018 1019 spin_lock(&ttm_bo_glob.lru_lock); 1020 ttm_bo_del_from_lru(bo); 1021 ttm_bo_add_mem_to_lru(bo, mem); 1022 spin_unlock(&ttm_bo_glob.lru_lock); 1023 1024 return 0; 1025 } 1026 1027 /** 1028 * Creates space for memory region @mem according to its type. 1029 * 1030 * This function first searches for free space in compatible memory types in 1031 * the priority order defined by the driver. If free space isn't found, then 1032 * ttm_bo_mem_force_space is attempted in priority order to evict and find 1033 * space. 1034 */ 1035 int ttm_bo_mem_space(struct ttm_buffer_object *bo, 1036 struct ttm_placement *placement, 1037 struct ttm_resource *mem, 1038 struct ttm_operation_ctx *ctx) 1039 { 1040 struct ttm_bo_device *bdev = bo->bdev; 1041 bool type_found = false; 1042 int i, ret; 1043 1044 ret = dma_resv_reserve_shared(bo->base.resv, 1); 1045 if (unlikely(ret)) 1046 return ret; 1047 1048 for (i = 0; i < placement->num_placement; ++i) { 1049 const struct ttm_place *place = &placement->placement[i]; 1050 struct ttm_resource_manager *man; 1051 1052 ret = ttm_bo_mem_placement(bo, place, mem, ctx); 1053 if (ret == -EBUSY) 1054 continue; 1055 if (ret) 1056 goto error; 1057 1058 type_found = true; 1059 ret = ttm_bo_mem_get(bo, place, mem); 1060 if (ret == -ENOSPC) 1061 continue; 1062 if (unlikely(ret)) 1063 goto error; 1064 1065 man = ttm_manager_type(bdev, mem->mem_type); 1066 ret = ttm_bo_add_move_fence(bo, man, mem, ctx->no_wait_gpu); 1067 if (unlikely(ret)) { 1068 ttm_bo_mem_put(bo, mem); 1069 if (ret == -EBUSY) 1070 continue; 1071 1072 goto error; 1073 } 1074 return 0; 1075 } 1076 1077 for (i = 0; i < placement->num_busy_placement; ++i) { 1078 const struct ttm_place *place = &placement->busy_placement[i]; 1079 1080 ret = ttm_bo_mem_placement(bo, place, mem, ctx); 1081 if (ret == -EBUSY) 1082 continue; 1083 if (ret) 1084 goto error; 1085 1086 type_found = true; 1087 ret = ttm_bo_mem_force_space(bo, place, mem, ctx); 1088 if (likely(!ret)) 1089 return 0; 1090 1091 if (ret && ret != -EBUSY) 1092 goto error; 1093 } 1094 1095 ret = -ENOMEM; 1096 if (!type_found) { 1097 pr_err(TTM_PFX "No compatible memory type found\n"); 1098 ret = -EINVAL; 1099 } 1100 1101 error: 1102 if (bo->mem.mem_type == TTM_PL_SYSTEM && !list_empty(&bo->lru)) { 1103 ttm_bo_move_to_lru_tail_unlocked(bo); 1104 } 1105 1106 return ret; 1107 } 1108 EXPORT_SYMBOL(ttm_bo_mem_space); 1109 1110 static int ttm_bo_move_buffer(struct ttm_buffer_object *bo, 1111 struct ttm_placement *placement, 1112 struct ttm_operation_ctx *ctx) 1113 { 1114 int ret = 0; 1115 struct ttm_resource mem; 1116 1117 dma_resv_assert_held(bo->base.resv); 1118 1119 mem.num_pages = bo->num_pages; 1120 mem.size = mem.num_pages << PAGE_SHIFT; 1121 mem.page_alignment = bo->mem.page_alignment; 1122 mem.bus.io_reserved_vm = false; 1123 mem.bus.io_reserved_count = 0; 1124 mem.mm_node = NULL; 1125 1126 /* 1127 * Determine where to move the buffer. 1128 */ 1129 ret = ttm_bo_mem_space(bo, placement, &mem, ctx); 1130 if (ret) 1131 goto out_unlock; 1132 ret = ttm_bo_handle_move_mem(bo, &mem, false, ctx); 1133 out_unlock: 1134 if (ret) 1135 ttm_bo_mem_put(bo, &mem); 1136 return ret; 1137 } 1138 1139 static bool ttm_bo_places_compat(const struct ttm_place *places, 1140 unsigned num_placement, 1141 struct ttm_resource *mem, 1142 uint32_t *new_flags) 1143 { 1144 unsigned i; 1145 1146 for (i = 0; i < num_placement; i++) { 1147 const struct ttm_place *heap = &places[i]; 1148 1149 if ((mem->start < heap->fpfn || 1150 (heap->lpfn != 0 && (mem->start + mem->num_pages) > heap->lpfn))) 1151 continue; 1152 1153 *new_flags = heap->flags; 1154 if ((*new_flags & mem->placement & TTM_PL_MASK_CACHING) && 1155 (*new_flags & mem->placement & TTM_PL_MASK_MEM) && 1156 (!(*new_flags & TTM_PL_FLAG_CONTIGUOUS) || 1157 (mem->placement & TTM_PL_FLAG_CONTIGUOUS))) 1158 return true; 1159 } 1160 return false; 1161 } 1162 1163 bool ttm_bo_mem_compat(struct ttm_placement *placement, 1164 struct ttm_resource *mem, 1165 uint32_t *new_flags) 1166 { 1167 if (ttm_bo_places_compat(placement->placement, placement->num_placement, 1168 mem, new_flags)) 1169 return true; 1170 1171 if ((placement->busy_placement != placement->placement || 1172 placement->num_busy_placement > placement->num_placement) && 1173 ttm_bo_places_compat(placement->busy_placement, 1174 placement->num_busy_placement, 1175 mem, new_flags)) 1176 return true; 1177 1178 return false; 1179 } 1180 EXPORT_SYMBOL(ttm_bo_mem_compat); 1181 1182 int ttm_bo_validate(struct ttm_buffer_object *bo, 1183 struct ttm_placement *placement, 1184 struct ttm_operation_ctx *ctx) 1185 { 1186 int ret; 1187 uint32_t new_flags; 1188 1189 dma_resv_assert_held(bo->base.resv); 1190 1191 /* 1192 * Remove the backing store if no placement is given. 1193 */ 1194 if (!placement->num_placement && !placement->num_busy_placement) 1195 return ttm_bo_pipeline_gutting(bo); 1196 1197 /* 1198 * Check whether we need to move buffer. 1199 */ 1200 if (!ttm_bo_mem_compat(placement, &bo->mem, &new_flags)) { 1201 ret = ttm_bo_move_buffer(bo, placement, ctx); 1202 if (ret) 1203 return ret; 1204 } else { 1205 /* 1206 * Use the access and other non-mapping-related flag bits from 1207 * the compatible memory placement flags to the active flags 1208 */ 1209 ttm_flag_masked(&bo->mem.placement, new_flags, 1210 ~TTM_PL_MASK_MEMTYPE); 1211 } 1212 return 0; 1213 } 1214 EXPORT_SYMBOL(ttm_bo_validate); 1215 1216 int ttm_bo_init_reserved(struct ttm_bo_device *bdev, 1217 struct ttm_buffer_object *bo, 1218 unsigned long size, 1219 enum ttm_bo_type type, 1220 struct ttm_placement *placement, 1221 uint32_t page_alignment, 1222 struct ttm_operation_ctx *ctx, 1223 size_t acc_size, 1224 struct sg_table *sg, 1225 struct dma_resv *resv, 1226 void (*destroy) (struct ttm_buffer_object *)) 1227 { 1228 struct ttm_mem_global *mem_glob = &ttm_mem_glob; 1229 int ret = 0; 1230 unsigned long num_pages; 1231 bool locked; 1232 1233 ret = ttm_mem_global_alloc(mem_glob, acc_size, ctx); 1234 if (ret) { 1235 pr_err("Out of kernel memory\n"); 1236 if (destroy) 1237 (*destroy)(bo); 1238 else 1239 kfree(bo); 1240 return -ENOMEM; 1241 } 1242 1243 num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 1244 if (num_pages == 0) { 1245 pr_err("Illegal buffer object size\n"); 1246 if (destroy) 1247 (*destroy)(bo); 1248 else 1249 kfree(bo); 1250 ttm_mem_global_free(mem_glob, acc_size); 1251 return -EINVAL; 1252 } 1253 bo->destroy = destroy ? destroy : ttm_bo_default_destroy; 1254 1255 kref_init(&bo->kref); 1256 INIT_LIST_HEAD(&bo->lru); 1257 INIT_LIST_HEAD(&bo->ddestroy); 1258 INIT_LIST_HEAD(&bo->swap); 1259 INIT_LIST_HEAD(&bo->io_reserve_lru); 1260 bo->bdev = bdev; 1261 bo->type = type; 1262 bo->num_pages = num_pages; 1263 bo->mem.size = num_pages << PAGE_SHIFT; 1264 bo->mem.mem_type = TTM_PL_SYSTEM; 1265 bo->mem.num_pages = bo->num_pages; 1266 bo->mem.mm_node = NULL; 1267 bo->mem.page_alignment = page_alignment; 1268 bo->mem.bus.io_reserved_vm = false; 1269 bo->mem.bus.io_reserved_count = 0; 1270 bo->moving = NULL; 1271 bo->mem.placement = (TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED); 1272 bo->acc_size = acc_size; 1273 bo->sg = sg; 1274 if (resv) { 1275 bo->base.resv = resv; 1276 dma_resv_assert_held(bo->base.resv); 1277 } else { 1278 bo->base.resv = &bo->base._resv; 1279 } 1280 if (!ttm_bo_uses_embedded_gem_object(bo)) { 1281 /* 1282 * bo.gem is not initialized, so we have to setup the 1283 * struct elements we want use regardless. 1284 */ 1285 dma_resv_init(&bo->base._resv); 1286 drm_vma_node_reset(&bo->base.vma_node); 1287 } 1288 atomic_inc(&ttm_bo_glob.bo_count); 1289 1290 /* 1291 * For ttm_bo_type_device buffers, allocate 1292 * address space from the device. 1293 */ 1294 if (bo->type == ttm_bo_type_device || 1295 bo->type == ttm_bo_type_sg) 1296 ret = drm_vma_offset_add(bdev->vma_manager, &bo->base.vma_node, 1297 bo->mem.num_pages); 1298 1299 /* passed reservation objects should already be locked, 1300 * since otherwise lockdep will be angered in radeon. 1301 */ 1302 if (!resv) { 1303 locked = dma_resv_trylock(bo->base.resv); 1304 WARN_ON(!locked); 1305 } 1306 1307 if (likely(!ret)) 1308 ret = ttm_bo_validate(bo, placement, ctx); 1309 1310 if (unlikely(ret)) { 1311 if (!resv) 1312 ttm_bo_unreserve(bo); 1313 1314 ttm_bo_put(bo); 1315 return ret; 1316 } 1317 1318 ttm_bo_move_to_lru_tail_unlocked(bo); 1319 1320 return ret; 1321 } 1322 EXPORT_SYMBOL(ttm_bo_init_reserved); 1323 1324 int ttm_bo_init(struct ttm_bo_device *bdev, 1325 struct ttm_buffer_object *bo, 1326 unsigned long size, 1327 enum ttm_bo_type type, 1328 struct ttm_placement *placement, 1329 uint32_t page_alignment, 1330 bool interruptible, 1331 size_t acc_size, 1332 struct sg_table *sg, 1333 struct dma_resv *resv, 1334 void (*destroy) (struct ttm_buffer_object *)) 1335 { 1336 struct ttm_operation_ctx ctx = { interruptible, false }; 1337 int ret; 1338 1339 ret = ttm_bo_init_reserved(bdev, bo, size, type, placement, 1340 page_alignment, &ctx, acc_size, 1341 sg, resv, destroy); 1342 if (ret) 1343 return ret; 1344 1345 if (!resv) 1346 ttm_bo_unreserve(bo); 1347 1348 return 0; 1349 } 1350 EXPORT_SYMBOL(ttm_bo_init); 1351 1352 size_t ttm_bo_acc_size(struct ttm_bo_device *bdev, 1353 unsigned long bo_size, 1354 unsigned struct_size) 1355 { 1356 unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT; 1357 size_t size = 0; 1358 1359 size += ttm_round_pot(struct_size); 1360 size += ttm_round_pot(npages * sizeof(void *)); 1361 size += ttm_round_pot(sizeof(struct ttm_tt)); 1362 return size; 1363 } 1364 EXPORT_SYMBOL(ttm_bo_acc_size); 1365 1366 size_t ttm_bo_dma_acc_size(struct ttm_bo_device *bdev, 1367 unsigned long bo_size, 1368 unsigned struct_size) 1369 { 1370 unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT; 1371 size_t size = 0; 1372 1373 size += ttm_round_pot(struct_size); 1374 size += ttm_round_pot(npages * (2*sizeof(void *) + sizeof(dma_addr_t))); 1375 size += ttm_round_pot(sizeof(struct ttm_dma_tt)); 1376 return size; 1377 } 1378 EXPORT_SYMBOL(ttm_bo_dma_acc_size); 1379 1380 int ttm_bo_create(struct ttm_bo_device *bdev, 1381 unsigned long size, 1382 enum ttm_bo_type type, 1383 struct ttm_placement *placement, 1384 uint32_t page_alignment, 1385 bool interruptible, 1386 struct ttm_buffer_object **p_bo) 1387 { 1388 struct ttm_buffer_object *bo; 1389 size_t acc_size; 1390 int ret; 1391 1392 bo = kzalloc(sizeof(*bo), GFP_KERNEL); 1393 if (unlikely(bo == NULL)) 1394 return -ENOMEM; 1395 1396 acc_size = ttm_bo_acc_size(bdev, size, sizeof(struct ttm_buffer_object)); 1397 ret = ttm_bo_init(bdev, bo, size, type, placement, page_alignment, 1398 interruptible, acc_size, 1399 NULL, NULL, NULL); 1400 if (likely(ret == 0)) 1401 *p_bo = bo; 1402 1403 return ret; 1404 } 1405 EXPORT_SYMBOL(ttm_bo_create); 1406 1407 int ttm_resource_manager_force_list_clean(struct ttm_bo_device *bdev, 1408 struct ttm_resource_manager *man) 1409 { 1410 struct ttm_operation_ctx ctx = { 1411 .interruptible = false, 1412 .no_wait_gpu = false, 1413 .flags = TTM_OPT_FLAG_FORCE_ALLOC 1414 }; 1415 struct ttm_bo_global *glob = &ttm_bo_glob; 1416 struct dma_fence *fence; 1417 int ret; 1418 unsigned i; 1419 1420 /* 1421 * Can't use standard list traversal since we're unlocking. 1422 */ 1423 1424 spin_lock(&glob->lru_lock); 1425 for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) { 1426 while (!list_empty(&man->lru[i])) { 1427 spin_unlock(&glob->lru_lock); 1428 ret = ttm_mem_evict_first(bdev, man, NULL, &ctx, 1429 NULL); 1430 if (ret) 1431 return ret; 1432 spin_lock(&glob->lru_lock); 1433 } 1434 } 1435 spin_unlock(&glob->lru_lock); 1436 1437 spin_lock(&man->move_lock); 1438 fence = dma_fence_get(man->move); 1439 spin_unlock(&man->move_lock); 1440 1441 if (fence) { 1442 ret = dma_fence_wait(fence, false); 1443 dma_fence_put(fence); 1444 if (ret) 1445 return ret; 1446 } 1447 1448 return 0; 1449 } 1450 EXPORT_SYMBOL(ttm_resource_manager_force_list_clean); 1451 1452 1453 int ttm_bo_evict_mm(struct ttm_bo_device *bdev, unsigned mem_type) 1454 { 1455 struct ttm_resource_manager *man = ttm_manager_type(bdev, mem_type); 1456 1457 if (mem_type == 0 || mem_type >= TTM_NUM_MEM_TYPES) { 1458 pr_err("Illegal memory manager memory type %u\n", mem_type); 1459 return -EINVAL; 1460 } 1461 1462 if (!man) { 1463 pr_err("Memory type %u has not been initialized\n", mem_type); 1464 return 0; 1465 } 1466 1467 return ttm_resource_manager_force_list_clean(bdev, man); 1468 } 1469 EXPORT_SYMBOL(ttm_bo_evict_mm); 1470 1471 void ttm_resource_manager_init(struct ttm_resource_manager *man, 1472 unsigned long p_size) 1473 { 1474 unsigned i; 1475 1476 man->use_io_reserve_lru = false; 1477 mutex_init(&man->io_reserve_mutex); 1478 spin_lock_init(&man->move_lock); 1479 INIT_LIST_HEAD(&man->io_reserve_lru); 1480 man->size = p_size; 1481 1482 for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) 1483 INIT_LIST_HEAD(&man->lru[i]); 1484 man->move = NULL; 1485 } 1486 EXPORT_SYMBOL(ttm_resource_manager_init); 1487 1488 static void ttm_bo_global_kobj_release(struct kobject *kobj) 1489 { 1490 struct ttm_bo_global *glob = 1491 container_of(kobj, struct ttm_bo_global, kobj); 1492 1493 __free_page(glob->dummy_read_page); 1494 } 1495 1496 static void ttm_bo_global_release(void) 1497 { 1498 struct ttm_bo_global *glob = &ttm_bo_glob; 1499 1500 mutex_lock(&ttm_global_mutex); 1501 if (--ttm_bo_glob_use_count > 0) 1502 goto out; 1503 1504 kobject_del(&glob->kobj); 1505 kobject_put(&glob->kobj); 1506 ttm_mem_global_release(&ttm_mem_glob); 1507 memset(glob, 0, sizeof(*glob)); 1508 out: 1509 mutex_unlock(&ttm_global_mutex); 1510 } 1511 1512 static int ttm_bo_global_init(void) 1513 { 1514 struct ttm_bo_global *glob = &ttm_bo_glob; 1515 int ret = 0; 1516 unsigned i; 1517 1518 mutex_lock(&ttm_global_mutex); 1519 if (++ttm_bo_glob_use_count > 1) 1520 goto out; 1521 1522 ret = ttm_mem_global_init(&ttm_mem_glob); 1523 if (ret) 1524 goto out; 1525 1526 spin_lock_init(&glob->lru_lock); 1527 glob->dummy_read_page = alloc_page(__GFP_ZERO | GFP_DMA32); 1528 1529 if (unlikely(glob->dummy_read_page == NULL)) { 1530 ret = -ENOMEM; 1531 goto out; 1532 } 1533 1534 for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) 1535 INIT_LIST_HEAD(&glob->swap_lru[i]); 1536 INIT_LIST_HEAD(&glob->device_list); 1537 atomic_set(&glob->bo_count, 0); 1538 1539 ret = kobject_init_and_add( 1540 &glob->kobj, &ttm_bo_glob_kobj_type, ttm_get_kobj(), "buffer_objects"); 1541 if (unlikely(ret != 0)) 1542 kobject_put(&glob->kobj); 1543 out: 1544 mutex_unlock(&ttm_global_mutex); 1545 return ret; 1546 } 1547 1548 int ttm_bo_device_release(struct ttm_bo_device *bdev) 1549 { 1550 struct ttm_bo_global *glob = &ttm_bo_glob; 1551 int ret = 0; 1552 unsigned i; 1553 struct ttm_resource_manager *man; 1554 1555 man = ttm_manager_type(bdev, TTM_PL_SYSTEM); 1556 ttm_resource_manager_set_used(man, false); 1557 ttm_set_driver_manager(bdev, TTM_PL_SYSTEM, NULL); 1558 1559 mutex_lock(&ttm_global_mutex); 1560 list_del(&bdev->device_list); 1561 mutex_unlock(&ttm_global_mutex); 1562 1563 cancel_delayed_work_sync(&bdev->wq); 1564 1565 if (ttm_bo_delayed_delete(bdev, true)) 1566 pr_debug("Delayed destroy list was clean\n"); 1567 1568 spin_lock(&glob->lru_lock); 1569 for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) 1570 if (list_empty(&man->lru[0])) 1571 pr_debug("Swap list %d was clean\n", i); 1572 spin_unlock(&glob->lru_lock); 1573 1574 if (!ret) 1575 ttm_bo_global_release(); 1576 1577 return ret; 1578 } 1579 EXPORT_SYMBOL(ttm_bo_device_release); 1580 1581 static void ttm_bo_init_sysman(struct ttm_bo_device *bdev) 1582 { 1583 struct ttm_resource_manager *man = &bdev->sysman; 1584 1585 /* 1586 * Initialize the system memory buffer type. 1587 * Other types need to be driver / IOCTL initialized. 1588 */ 1589 man->use_tt = true; 1590 man->available_caching = TTM_PL_MASK_CACHING; 1591 man->default_caching = TTM_PL_FLAG_CACHED; 1592 1593 ttm_resource_manager_init(man, 0); 1594 ttm_set_driver_manager(bdev, TTM_PL_SYSTEM, man); 1595 ttm_resource_manager_set_used(man, true); 1596 } 1597 1598 int ttm_bo_device_init(struct ttm_bo_device *bdev, 1599 struct ttm_bo_driver *driver, 1600 struct address_space *mapping, 1601 struct drm_vma_offset_manager *vma_manager, 1602 bool need_dma32) 1603 { 1604 struct ttm_bo_global *glob = &ttm_bo_glob; 1605 int ret; 1606 1607 if (WARN_ON(vma_manager == NULL)) 1608 return -EINVAL; 1609 1610 ret = ttm_bo_global_init(); 1611 if (ret) 1612 return ret; 1613 1614 bdev->driver = driver; 1615 1616 ttm_bo_init_sysman(bdev); 1617 1618 bdev->vma_manager = vma_manager; 1619 INIT_DELAYED_WORK(&bdev->wq, ttm_bo_delayed_workqueue); 1620 INIT_LIST_HEAD(&bdev->ddestroy); 1621 bdev->dev_mapping = mapping; 1622 bdev->need_dma32 = need_dma32; 1623 mutex_lock(&ttm_global_mutex); 1624 list_add_tail(&bdev->device_list, &glob->device_list); 1625 mutex_unlock(&ttm_global_mutex); 1626 1627 return 0; 1628 } 1629 EXPORT_SYMBOL(ttm_bo_device_init); 1630 1631 /* 1632 * buffer object vm functions. 1633 */ 1634 1635 void ttm_bo_unmap_virtual_locked(struct ttm_buffer_object *bo) 1636 { 1637 struct ttm_bo_device *bdev = bo->bdev; 1638 1639 drm_vma_node_unmap(&bo->base.vma_node, bdev->dev_mapping); 1640 ttm_mem_io_free_vm(bo); 1641 } 1642 1643 void ttm_bo_unmap_virtual(struct ttm_buffer_object *bo) 1644 { 1645 struct ttm_bo_device *bdev = bo->bdev; 1646 struct ttm_resource_manager *man = ttm_manager_type(bdev, bo->mem.mem_type); 1647 1648 ttm_mem_io_lock(man, false); 1649 ttm_bo_unmap_virtual_locked(bo); 1650 ttm_mem_io_unlock(man); 1651 } 1652 1653 1654 EXPORT_SYMBOL(ttm_bo_unmap_virtual); 1655 1656 int ttm_bo_wait(struct ttm_buffer_object *bo, 1657 bool interruptible, bool no_wait) 1658 { 1659 long timeout = 15 * HZ; 1660 1661 if (no_wait) { 1662 if (dma_resv_test_signaled_rcu(bo->base.resv, true)) 1663 return 0; 1664 else 1665 return -EBUSY; 1666 } 1667 1668 timeout = dma_resv_wait_timeout_rcu(bo->base.resv, true, 1669 interruptible, timeout); 1670 if (timeout < 0) 1671 return timeout; 1672 1673 if (timeout == 0) 1674 return -EBUSY; 1675 1676 dma_resv_add_excl_fence(bo->base.resv, NULL); 1677 return 0; 1678 } 1679 EXPORT_SYMBOL(ttm_bo_wait); 1680 1681 /** 1682 * A buffer object shrink method that tries to swap out the first 1683 * buffer object on the bo_global::swap_lru list. 1684 */ 1685 int ttm_bo_swapout(struct ttm_bo_global *glob, struct ttm_operation_ctx *ctx) 1686 { 1687 struct ttm_buffer_object *bo; 1688 int ret = -EBUSY; 1689 bool locked; 1690 unsigned i; 1691 1692 spin_lock(&glob->lru_lock); 1693 for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) { 1694 list_for_each_entry(bo, &glob->swap_lru[i], swap) { 1695 if (!ttm_bo_evict_swapout_allowable(bo, ctx, &locked, 1696 NULL)) 1697 continue; 1698 1699 if (!ttm_bo_get_unless_zero(bo)) { 1700 if (locked) 1701 dma_resv_unlock(bo->base.resv); 1702 continue; 1703 } 1704 1705 ret = 0; 1706 break; 1707 } 1708 if (!ret) 1709 break; 1710 } 1711 1712 if (ret) { 1713 spin_unlock(&glob->lru_lock); 1714 return ret; 1715 } 1716 1717 if (bo->deleted) { 1718 ret = ttm_bo_cleanup_refs(bo, false, false, locked); 1719 ttm_bo_put(bo); 1720 return ret; 1721 } 1722 1723 ttm_bo_del_from_lru(bo); 1724 spin_unlock(&glob->lru_lock); 1725 1726 /** 1727 * Move to system cached 1728 */ 1729 1730 if (bo->mem.mem_type != TTM_PL_SYSTEM || 1731 bo->ttm->caching_state != tt_cached) { 1732 struct ttm_operation_ctx ctx = { false, false }; 1733 struct ttm_resource evict_mem; 1734 1735 evict_mem = bo->mem; 1736 evict_mem.mm_node = NULL; 1737 evict_mem.placement = TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED; 1738 evict_mem.mem_type = TTM_PL_SYSTEM; 1739 1740 ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, &ctx); 1741 if (unlikely(ret != 0)) 1742 goto out; 1743 } 1744 1745 /** 1746 * Make sure BO is idle. 1747 */ 1748 1749 ret = ttm_bo_wait(bo, false, false); 1750 if (unlikely(ret != 0)) 1751 goto out; 1752 1753 ttm_bo_unmap_virtual(bo); 1754 1755 /** 1756 * Swap out. Buffer will be swapped in again as soon as 1757 * anyone tries to access a ttm page. 1758 */ 1759 1760 if (bo->bdev->driver->swap_notify) 1761 bo->bdev->driver->swap_notify(bo); 1762 1763 ret = ttm_tt_swapout(bo->ttm, bo->persistent_swap_storage); 1764 out: 1765 1766 /** 1767 * 1768 * Unreserve without putting on LRU to avoid swapping out an 1769 * already swapped buffer. 1770 */ 1771 if (locked) 1772 dma_resv_unlock(bo->base.resv); 1773 ttm_bo_put(bo); 1774 return ret; 1775 } 1776 EXPORT_SYMBOL(ttm_bo_swapout); 1777 1778 void ttm_bo_swapout_all(struct ttm_bo_device *bdev) 1779 { 1780 struct ttm_operation_ctx ctx = { 1781 .interruptible = false, 1782 .no_wait_gpu = false 1783 }; 1784 1785 while (ttm_bo_swapout(&ttm_bo_glob, &ctx) == 0); 1786 } 1787 EXPORT_SYMBOL(ttm_bo_swapout_all); 1788