xref: /openbmc/linux/drivers/gpu/drm/ttm/ttm_bo.c (revision 8795a739)
1 /* SPDX-License-Identifier: GPL-2.0 OR MIT */
2 /**************************************************************************
3  *
4  * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
22  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
23  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
24  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
25  * USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  **************************************************************************/
28 /*
29  * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
30  */
31 
32 #define pr_fmt(fmt) "[TTM] " fmt
33 
34 #include <drm/ttm/ttm_module.h>
35 #include <drm/ttm/ttm_bo_driver.h>
36 #include <drm/ttm/ttm_placement.h>
37 #include <linux/jiffies.h>
38 #include <linux/slab.h>
39 #include <linux/sched.h>
40 #include <linux/mm.h>
41 #include <linux/file.h>
42 #include <linux/module.h>
43 #include <linux/atomic.h>
44 #include <linux/dma-resv.h>
45 
46 static void ttm_bo_global_kobj_release(struct kobject *kobj);
47 
48 /**
49  * ttm_global_mutex - protecting the global BO state
50  */
51 DEFINE_MUTEX(ttm_global_mutex);
52 unsigned ttm_bo_glob_use_count;
53 struct ttm_bo_global ttm_bo_glob;
54 
55 static struct attribute ttm_bo_count = {
56 	.name = "bo_count",
57 	.mode = S_IRUGO
58 };
59 
60 /* default destructor */
61 static void ttm_bo_default_destroy(struct ttm_buffer_object *bo)
62 {
63 	kfree(bo);
64 }
65 
66 static inline int ttm_mem_type_from_place(const struct ttm_place *place,
67 					  uint32_t *mem_type)
68 {
69 	int pos;
70 
71 	pos = ffs(place->flags & TTM_PL_MASK_MEM);
72 	if (unlikely(!pos))
73 		return -EINVAL;
74 
75 	*mem_type = pos - 1;
76 	return 0;
77 }
78 
79 static void ttm_mem_type_debug(struct ttm_bo_device *bdev, struct drm_printer *p,
80 			       int mem_type)
81 {
82 	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
83 
84 	drm_printf(p, "    has_type: %d\n", man->has_type);
85 	drm_printf(p, "    use_type: %d\n", man->use_type);
86 	drm_printf(p, "    flags: 0x%08X\n", man->flags);
87 	drm_printf(p, "    gpu_offset: 0x%08llX\n", man->gpu_offset);
88 	drm_printf(p, "    size: %llu\n", man->size);
89 	drm_printf(p, "    available_caching: 0x%08X\n", man->available_caching);
90 	drm_printf(p, "    default_caching: 0x%08X\n", man->default_caching);
91 	if (mem_type != TTM_PL_SYSTEM)
92 		(*man->func->debug)(man, p);
93 }
94 
95 static void ttm_bo_mem_space_debug(struct ttm_buffer_object *bo,
96 					struct ttm_placement *placement)
97 {
98 	struct drm_printer p = drm_debug_printer(TTM_PFX);
99 	int i, ret, mem_type;
100 
101 	drm_printf(&p, "No space for %p (%lu pages, %luK, %luM)\n",
102 		   bo, bo->mem.num_pages, bo->mem.size >> 10,
103 		   bo->mem.size >> 20);
104 	for (i = 0; i < placement->num_placement; i++) {
105 		ret = ttm_mem_type_from_place(&placement->placement[i],
106 						&mem_type);
107 		if (ret)
108 			return;
109 		drm_printf(&p, "  placement[%d]=0x%08X (%d)\n",
110 			   i, placement->placement[i].flags, mem_type);
111 		ttm_mem_type_debug(bo->bdev, &p, mem_type);
112 	}
113 }
114 
115 static ssize_t ttm_bo_global_show(struct kobject *kobj,
116 				  struct attribute *attr,
117 				  char *buffer)
118 {
119 	struct ttm_bo_global *glob =
120 		container_of(kobj, struct ttm_bo_global, kobj);
121 
122 	return snprintf(buffer, PAGE_SIZE, "%d\n",
123 				atomic_read(&glob->bo_count));
124 }
125 
126 static struct attribute *ttm_bo_global_attrs[] = {
127 	&ttm_bo_count,
128 	NULL
129 };
130 
131 static const struct sysfs_ops ttm_bo_global_ops = {
132 	.show = &ttm_bo_global_show
133 };
134 
135 static struct kobj_type ttm_bo_glob_kobj_type  = {
136 	.release = &ttm_bo_global_kobj_release,
137 	.sysfs_ops = &ttm_bo_global_ops,
138 	.default_attrs = ttm_bo_global_attrs
139 };
140 
141 
142 static inline uint32_t ttm_bo_type_flags(unsigned type)
143 {
144 	return 1 << (type);
145 }
146 
147 static void ttm_bo_release_list(struct kref *list_kref)
148 {
149 	struct ttm_buffer_object *bo =
150 	    container_of(list_kref, struct ttm_buffer_object, list_kref);
151 	struct ttm_bo_device *bdev = bo->bdev;
152 	size_t acc_size = bo->acc_size;
153 
154 	BUG_ON(kref_read(&bo->list_kref));
155 	BUG_ON(kref_read(&bo->kref));
156 	BUG_ON(atomic_read(&bo->cpu_writers));
157 	BUG_ON(bo->mem.mm_node != NULL);
158 	BUG_ON(!list_empty(&bo->lru));
159 	BUG_ON(!list_empty(&bo->ddestroy));
160 	ttm_tt_destroy(bo->ttm);
161 	atomic_dec(&bo->bdev->glob->bo_count);
162 	dma_fence_put(bo->moving);
163 	if (!ttm_bo_uses_embedded_gem_object(bo))
164 		dma_resv_fini(&bo->base._resv);
165 	mutex_destroy(&bo->wu_mutex);
166 	bo->destroy(bo);
167 	ttm_mem_global_free(bdev->glob->mem_glob, acc_size);
168 }
169 
170 static void ttm_bo_add_mem_to_lru(struct ttm_buffer_object *bo,
171 				  struct ttm_mem_reg *mem)
172 {
173 	struct ttm_bo_device *bdev = bo->bdev;
174 	struct ttm_mem_type_manager *man;
175 
176 	dma_resv_assert_held(bo->base.resv);
177 
178 	if (!list_empty(&bo->lru))
179 		return;
180 
181 	if (mem->placement & TTM_PL_FLAG_NO_EVICT)
182 		return;
183 
184 	man = &bdev->man[mem->mem_type];
185 	list_add_tail(&bo->lru, &man->lru[bo->priority]);
186 	kref_get(&bo->list_kref);
187 
188 	if (bo->ttm && !(bo->ttm->page_flags &
189 			 (TTM_PAGE_FLAG_SG | TTM_PAGE_FLAG_SWAPPED))) {
190 		list_add_tail(&bo->swap, &bdev->glob->swap_lru[bo->priority]);
191 		kref_get(&bo->list_kref);
192 	}
193 }
194 
195 void ttm_bo_add_to_lru(struct ttm_buffer_object *bo)
196 {
197 	ttm_bo_add_mem_to_lru(bo, &bo->mem);
198 }
199 EXPORT_SYMBOL(ttm_bo_add_to_lru);
200 
201 static void ttm_bo_ref_bug(struct kref *list_kref)
202 {
203 	BUG();
204 }
205 
206 void ttm_bo_del_from_lru(struct ttm_buffer_object *bo)
207 {
208 	struct ttm_bo_device *bdev = bo->bdev;
209 	bool notify = false;
210 
211 	if (!list_empty(&bo->swap)) {
212 		list_del_init(&bo->swap);
213 		kref_put(&bo->list_kref, ttm_bo_ref_bug);
214 		notify = true;
215 	}
216 	if (!list_empty(&bo->lru)) {
217 		list_del_init(&bo->lru);
218 		kref_put(&bo->list_kref, ttm_bo_ref_bug);
219 		notify = true;
220 	}
221 
222 	if (notify && bdev->driver->del_from_lru_notify)
223 		bdev->driver->del_from_lru_notify(bo);
224 }
225 
226 void ttm_bo_del_sub_from_lru(struct ttm_buffer_object *bo)
227 {
228 	struct ttm_bo_global *glob = bo->bdev->glob;
229 
230 	spin_lock(&glob->lru_lock);
231 	ttm_bo_del_from_lru(bo);
232 	spin_unlock(&glob->lru_lock);
233 }
234 EXPORT_SYMBOL(ttm_bo_del_sub_from_lru);
235 
236 static void ttm_bo_bulk_move_set_pos(struct ttm_lru_bulk_move_pos *pos,
237 				     struct ttm_buffer_object *bo)
238 {
239 	if (!pos->first)
240 		pos->first = bo;
241 	pos->last = bo;
242 }
243 
244 void ttm_bo_move_to_lru_tail(struct ttm_buffer_object *bo,
245 			     struct ttm_lru_bulk_move *bulk)
246 {
247 	dma_resv_assert_held(bo->base.resv);
248 
249 	ttm_bo_del_from_lru(bo);
250 	ttm_bo_add_to_lru(bo);
251 
252 	if (bulk && !(bo->mem.placement & TTM_PL_FLAG_NO_EVICT)) {
253 		switch (bo->mem.mem_type) {
254 		case TTM_PL_TT:
255 			ttm_bo_bulk_move_set_pos(&bulk->tt[bo->priority], bo);
256 			break;
257 
258 		case TTM_PL_VRAM:
259 			ttm_bo_bulk_move_set_pos(&bulk->vram[bo->priority], bo);
260 			break;
261 		}
262 		if (bo->ttm && !(bo->ttm->page_flags &
263 				 (TTM_PAGE_FLAG_SG | TTM_PAGE_FLAG_SWAPPED)))
264 			ttm_bo_bulk_move_set_pos(&bulk->swap[bo->priority], bo);
265 	}
266 }
267 EXPORT_SYMBOL(ttm_bo_move_to_lru_tail);
268 
269 void ttm_bo_bulk_move_lru_tail(struct ttm_lru_bulk_move *bulk)
270 {
271 	unsigned i;
272 
273 	for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) {
274 		struct ttm_lru_bulk_move_pos *pos = &bulk->tt[i];
275 		struct ttm_mem_type_manager *man;
276 
277 		if (!pos->first)
278 			continue;
279 
280 		dma_resv_assert_held(pos->first->base.resv);
281 		dma_resv_assert_held(pos->last->base.resv);
282 
283 		man = &pos->first->bdev->man[TTM_PL_TT];
284 		list_bulk_move_tail(&man->lru[i], &pos->first->lru,
285 				    &pos->last->lru);
286 	}
287 
288 	for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) {
289 		struct ttm_lru_bulk_move_pos *pos = &bulk->vram[i];
290 		struct ttm_mem_type_manager *man;
291 
292 		if (!pos->first)
293 			continue;
294 
295 		dma_resv_assert_held(pos->first->base.resv);
296 		dma_resv_assert_held(pos->last->base.resv);
297 
298 		man = &pos->first->bdev->man[TTM_PL_VRAM];
299 		list_bulk_move_tail(&man->lru[i], &pos->first->lru,
300 				    &pos->last->lru);
301 	}
302 
303 	for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) {
304 		struct ttm_lru_bulk_move_pos *pos = &bulk->swap[i];
305 		struct list_head *lru;
306 
307 		if (!pos->first)
308 			continue;
309 
310 		dma_resv_assert_held(pos->first->base.resv);
311 		dma_resv_assert_held(pos->last->base.resv);
312 
313 		lru = &pos->first->bdev->glob->swap_lru[i];
314 		list_bulk_move_tail(lru, &pos->first->swap, &pos->last->swap);
315 	}
316 }
317 EXPORT_SYMBOL(ttm_bo_bulk_move_lru_tail);
318 
319 static int ttm_bo_handle_move_mem(struct ttm_buffer_object *bo,
320 				  struct ttm_mem_reg *mem, bool evict,
321 				  struct ttm_operation_ctx *ctx)
322 {
323 	struct ttm_bo_device *bdev = bo->bdev;
324 	bool old_is_pci = ttm_mem_reg_is_pci(bdev, &bo->mem);
325 	bool new_is_pci = ttm_mem_reg_is_pci(bdev, mem);
326 	struct ttm_mem_type_manager *old_man = &bdev->man[bo->mem.mem_type];
327 	struct ttm_mem_type_manager *new_man = &bdev->man[mem->mem_type];
328 	int ret = 0;
329 
330 	if (old_is_pci || new_is_pci ||
331 	    ((mem->placement & bo->mem.placement & TTM_PL_MASK_CACHING) == 0)) {
332 		ret = ttm_mem_io_lock(old_man, true);
333 		if (unlikely(ret != 0))
334 			goto out_err;
335 		ttm_bo_unmap_virtual_locked(bo);
336 		ttm_mem_io_unlock(old_man);
337 	}
338 
339 	/*
340 	 * Create and bind a ttm if required.
341 	 */
342 
343 	if (!(new_man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
344 		if (bo->ttm == NULL) {
345 			bool zero = !(old_man->flags & TTM_MEMTYPE_FLAG_FIXED);
346 			ret = ttm_tt_create(bo, zero);
347 			if (ret)
348 				goto out_err;
349 		}
350 
351 		ret = ttm_tt_set_placement_caching(bo->ttm, mem->placement);
352 		if (ret)
353 			goto out_err;
354 
355 		if (mem->mem_type != TTM_PL_SYSTEM) {
356 			ret = ttm_tt_bind(bo->ttm, mem, ctx);
357 			if (ret)
358 				goto out_err;
359 		}
360 
361 		if (bo->mem.mem_type == TTM_PL_SYSTEM) {
362 			if (bdev->driver->move_notify)
363 				bdev->driver->move_notify(bo, evict, mem);
364 			bo->mem = *mem;
365 			mem->mm_node = NULL;
366 			goto moved;
367 		}
368 	}
369 
370 	if (bdev->driver->move_notify)
371 		bdev->driver->move_notify(bo, evict, mem);
372 
373 	if (!(old_man->flags & TTM_MEMTYPE_FLAG_FIXED) &&
374 	    !(new_man->flags & TTM_MEMTYPE_FLAG_FIXED))
375 		ret = ttm_bo_move_ttm(bo, ctx, mem);
376 	else if (bdev->driver->move)
377 		ret = bdev->driver->move(bo, evict, ctx, mem);
378 	else
379 		ret = ttm_bo_move_memcpy(bo, ctx, mem);
380 
381 	if (ret) {
382 		if (bdev->driver->move_notify) {
383 			swap(*mem, bo->mem);
384 			bdev->driver->move_notify(bo, false, mem);
385 			swap(*mem, bo->mem);
386 		}
387 
388 		goto out_err;
389 	}
390 
391 moved:
392 	if (bo->evicted) {
393 		if (bdev->driver->invalidate_caches) {
394 			ret = bdev->driver->invalidate_caches(bdev, bo->mem.placement);
395 			if (ret)
396 				pr_err("Can not flush read caches\n");
397 		}
398 		bo->evicted = false;
399 	}
400 
401 	if (bo->mem.mm_node)
402 		bo->offset = (bo->mem.start << PAGE_SHIFT) +
403 		    bdev->man[bo->mem.mem_type].gpu_offset;
404 	else
405 		bo->offset = 0;
406 
407 	ctx->bytes_moved += bo->num_pages << PAGE_SHIFT;
408 	return 0;
409 
410 out_err:
411 	new_man = &bdev->man[bo->mem.mem_type];
412 	if (new_man->flags & TTM_MEMTYPE_FLAG_FIXED) {
413 		ttm_tt_destroy(bo->ttm);
414 		bo->ttm = NULL;
415 	}
416 
417 	return ret;
418 }
419 
420 /**
421  * Call bo::reserved.
422  * Will release GPU memory type usage on destruction.
423  * This is the place to put in driver specific hooks to release
424  * driver private resources.
425  * Will release the bo::reserved lock.
426  */
427 
428 static void ttm_bo_cleanup_memtype_use(struct ttm_buffer_object *bo)
429 {
430 	if (bo->bdev->driver->move_notify)
431 		bo->bdev->driver->move_notify(bo, false, NULL);
432 
433 	ttm_tt_destroy(bo->ttm);
434 	bo->ttm = NULL;
435 	ttm_bo_mem_put(bo, &bo->mem);
436 }
437 
438 static int ttm_bo_individualize_resv(struct ttm_buffer_object *bo)
439 {
440 	int r;
441 
442 	if (bo->base.resv == &bo->base._resv)
443 		return 0;
444 
445 	BUG_ON(!dma_resv_trylock(&bo->base._resv));
446 
447 	r = dma_resv_copy_fences(&bo->base._resv, bo->base.resv);
448 	if (r)
449 		dma_resv_unlock(&bo->base._resv);
450 
451 	return r;
452 }
453 
454 static void ttm_bo_flush_all_fences(struct ttm_buffer_object *bo)
455 {
456 	struct dma_resv_list *fobj;
457 	struct dma_fence *fence;
458 	int i;
459 
460 	fobj = dma_resv_get_list(&bo->base._resv);
461 	fence = dma_resv_get_excl(&bo->base._resv);
462 	if (fence && !fence->ops->signaled)
463 		dma_fence_enable_sw_signaling(fence);
464 
465 	for (i = 0; fobj && i < fobj->shared_count; ++i) {
466 		fence = rcu_dereference_protected(fobj->shared[i],
467 					dma_resv_held(bo->base.resv));
468 
469 		if (!fence->ops->signaled)
470 			dma_fence_enable_sw_signaling(fence);
471 	}
472 }
473 
474 static void ttm_bo_cleanup_refs_or_queue(struct ttm_buffer_object *bo)
475 {
476 	struct ttm_bo_device *bdev = bo->bdev;
477 	struct ttm_bo_global *glob = bdev->glob;
478 	int ret;
479 
480 	ret = ttm_bo_individualize_resv(bo);
481 	if (ret) {
482 		/* Last resort, if we fail to allocate memory for the
483 		 * fences block for the BO to become idle
484 		 */
485 		dma_resv_wait_timeout_rcu(bo->base.resv, true, false,
486 						    30 * HZ);
487 		spin_lock(&glob->lru_lock);
488 		goto error;
489 	}
490 
491 	spin_lock(&glob->lru_lock);
492 	ret = dma_resv_trylock(bo->base.resv) ? 0 : -EBUSY;
493 	if (!ret) {
494 		if (dma_resv_test_signaled_rcu(&bo->base._resv, true)) {
495 			ttm_bo_del_from_lru(bo);
496 			spin_unlock(&glob->lru_lock);
497 			if (bo->base.resv != &bo->base._resv)
498 				dma_resv_unlock(&bo->base._resv);
499 
500 			ttm_bo_cleanup_memtype_use(bo);
501 			dma_resv_unlock(bo->base.resv);
502 			return;
503 		}
504 
505 		ttm_bo_flush_all_fences(bo);
506 
507 		/*
508 		 * Make NO_EVICT bos immediately available to
509 		 * shrinkers, now that they are queued for
510 		 * destruction.
511 		 */
512 		if (bo->mem.placement & TTM_PL_FLAG_NO_EVICT) {
513 			bo->mem.placement &= ~TTM_PL_FLAG_NO_EVICT;
514 			ttm_bo_add_to_lru(bo);
515 		}
516 
517 		dma_resv_unlock(bo->base.resv);
518 	}
519 	if (bo->base.resv != &bo->base._resv)
520 		dma_resv_unlock(&bo->base._resv);
521 
522 error:
523 	kref_get(&bo->list_kref);
524 	list_add_tail(&bo->ddestroy, &bdev->ddestroy);
525 	spin_unlock(&glob->lru_lock);
526 
527 	schedule_delayed_work(&bdev->wq,
528 			      ((HZ / 100) < 1) ? 1 : HZ / 100);
529 }
530 
531 /**
532  * function ttm_bo_cleanup_refs
533  * If bo idle, remove from delayed- and lru lists, and unref.
534  * If not idle, do nothing.
535  *
536  * Must be called with lru_lock and reservation held, this function
537  * will drop the lru lock and optionally the reservation lock before returning.
538  *
539  * @interruptible         Any sleeps should occur interruptibly.
540  * @no_wait_gpu           Never wait for gpu. Return -EBUSY instead.
541  * @unlock_resv           Unlock the reservation lock as well.
542  */
543 
544 static int ttm_bo_cleanup_refs(struct ttm_buffer_object *bo,
545 			       bool interruptible, bool no_wait_gpu,
546 			       bool unlock_resv)
547 {
548 	struct ttm_bo_global *glob = bo->bdev->glob;
549 	struct dma_resv *resv;
550 	int ret;
551 
552 	if (unlikely(list_empty(&bo->ddestroy)))
553 		resv = bo->base.resv;
554 	else
555 		resv = &bo->base._resv;
556 
557 	if (dma_resv_test_signaled_rcu(resv, true))
558 		ret = 0;
559 	else
560 		ret = -EBUSY;
561 
562 	if (ret && !no_wait_gpu) {
563 		long lret;
564 
565 		if (unlock_resv)
566 			dma_resv_unlock(bo->base.resv);
567 		spin_unlock(&glob->lru_lock);
568 
569 		lret = dma_resv_wait_timeout_rcu(resv, true,
570 							   interruptible,
571 							   30 * HZ);
572 
573 		if (lret < 0)
574 			return lret;
575 		else if (lret == 0)
576 			return -EBUSY;
577 
578 		spin_lock(&glob->lru_lock);
579 		if (unlock_resv && !dma_resv_trylock(bo->base.resv)) {
580 			/*
581 			 * We raced, and lost, someone else holds the reservation now,
582 			 * and is probably busy in ttm_bo_cleanup_memtype_use.
583 			 *
584 			 * Even if it's not the case, because we finished waiting any
585 			 * delayed destruction would succeed, so just return success
586 			 * here.
587 			 */
588 			spin_unlock(&glob->lru_lock);
589 			return 0;
590 		}
591 		ret = 0;
592 	}
593 
594 	if (ret || unlikely(list_empty(&bo->ddestroy))) {
595 		if (unlock_resv)
596 			dma_resv_unlock(bo->base.resv);
597 		spin_unlock(&glob->lru_lock);
598 		return ret;
599 	}
600 
601 	ttm_bo_del_from_lru(bo);
602 	list_del_init(&bo->ddestroy);
603 	kref_put(&bo->list_kref, ttm_bo_ref_bug);
604 
605 	spin_unlock(&glob->lru_lock);
606 	ttm_bo_cleanup_memtype_use(bo);
607 
608 	if (unlock_resv)
609 		dma_resv_unlock(bo->base.resv);
610 
611 	return 0;
612 }
613 
614 /**
615  * Traverse the delayed list, and call ttm_bo_cleanup_refs on all
616  * encountered buffers.
617  */
618 static bool ttm_bo_delayed_delete(struct ttm_bo_device *bdev, bool remove_all)
619 {
620 	struct ttm_bo_global *glob = bdev->glob;
621 	struct list_head removed;
622 	bool empty;
623 
624 	INIT_LIST_HEAD(&removed);
625 
626 	spin_lock(&glob->lru_lock);
627 	while (!list_empty(&bdev->ddestroy)) {
628 		struct ttm_buffer_object *bo;
629 
630 		bo = list_first_entry(&bdev->ddestroy, struct ttm_buffer_object,
631 				      ddestroy);
632 		kref_get(&bo->list_kref);
633 		list_move_tail(&bo->ddestroy, &removed);
634 
635 		if (remove_all || bo->base.resv != &bo->base._resv) {
636 			spin_unlock(&glob->lru_lock);
637 			dma_resv_lock(bo->base.resv, NULL);
638 
639 			spin_lock(&glob->lru_lock);
640 			ttm_bo_cleanup_refs(bo, false, !remove_all, true);
641 
642 		} else if (dma_resv_trylock(bo->base.resv)) {
643 			ttm_bo_cleanup_refs(bo, false, !remove_all, true);
644 		} else {
645 			spin_unlock(&glob->lru_lock);
646 		}
647 
648 		kref_put(&bo->list_kref, ttm_bo_release_list);
649 		spin_lock(&glob->lru_lock);
650 	}
651 	list_splice_tail(&removed, &bdev->ddestroy);
652 	empty = list_empty(&bdev->ddestroy);
653 	spin_unlock(&glob->lru_lock);
654 
655 	return empty;
656 }
657 
658 static void ttm_bo_delayed_workqueue(struct work_struct *work)
659 {
660 	struct ttm_bo_device *bdev =
661 	    container_of(work, struct ttm_bo_device, wq.work);
662 
663 	if (!ttm_bo_delayed_delete(bdev, false))
664 		schedule_delayed_work(&bdev->wq,
665 				      ((HZ / 100) < 1) ? 1 : HZ / 100);
666 }
667 
668 static void ttm_bo_release(struct kref *kref)
669 {
670 	struct ttm_buffer_object *bo =
671 	    container_of(kref, struct ttm_buffer_object, kref);
672 	struct ttm_bo_device *bdev = bo->bdev;
673 	struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
674 
675 	if (bo->bdev->driver->release_notify)
676 		bo->bdev->driver->release_notify(bo);
677 
678 	drm_vma_offset_remove(&bdev->vma_manager, &bo->base.vma_node);
679 	ttm_mem_io_lock(man, false);
680 	ttm_mem_io_free_vm(bo);
681 	ttm_mem_io_unlock(man);
682 	ttm_bo_cleanup_refs_or_queue(bo);
683 	kref_put(&bo->list_kref, ttm_bo_release_list);
684 }
685 
686 void ttm_bo_put(struct ttm_buffer_object *bo)
687 {
688 	kref_put(&bo->kref, ttm_bo_release);
689 }
690 EXPORT_SYMBOL(ttm_bo_put);
691 
692 int ttm_bo_lock_delayed_workqueue(struct ttm_bo_device *bdev)
693 {
694 	return cancel_delayed_work_sync(&bdev->wq);
695 }
696 EXPORT_SYMBOL(ttm_bo_lock_delayed_workqueue);
697 
698 void ttm_bo_unlock_delayed_workqueue(struct ttm_bo_device *bdev, int resched)
699 {
700 	if (resched)
701 		schedule_delayed_work(&bdev->wq,
702 				      ((HZ / 100) < 1) ? 1 : HZ / 100);
703 }
704 EXPORT_SYMBOL(ttm_bo_unlock_delayed_workqueue);
705 
706 static int ttm_bo_evict(struct ttm_buffer_object *bo,
707 			struct ttm_operation_ctx *ctx)
708 {
709 	struct ttm_bo_device *bdev = bo->bdev;
710 	struct ttm_mem_reg evict_mem;
711 	struct ttm_placement placement;
712 	int ret = 0;
713 
714 	dma_resv_assert_held(bo->base.resv);
715 
716 	placement.num_placement = 0;
717 	placement.num_busy_placement = 0;
718 	bdev->driver->evict_flags(bo, &placement);
719 
720 	if (!placement.num_placement && !placement.num_busy_placement) {
721 		ret = ttm_bo_pipeline_gutting(bo);
722 		if (ret)
723 			return ret;
724 
725 		return ttm_tt_create(bo, false);
726 	}
727 
728 	evict_mem = bo->mem;
729 	evict_mem.mm_node = NULL;
730 	evict_mem.bus.io_reserved_vm = false;
731 	evict_mem.bus.io_reserved_count = 0;
732 
733 	ret = ttm_bo_mem_space(bo, &placement, &evict_mem, ctx);
734 	if (ret) {
735 		if (ret != -ERESTARTSYS) {
736 			pr_err("Failed to find memory space for buffer 0x%p eviction\n",
737 			       bo);
738 			ttm_bo_mem_space_debug(bo, &placement);
739 		}
740 		goto out;
741 	}
742 
743 	ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, ctx);
744 	if (unlikely(ret)) {
745 		if (ret != -ERESTARTSYS)
746 			pr_err("Buffer eviction failed\n");
747 		ttm_bo_mem_put(bo, &evict_mem);
748 		goto out;
749 	}
750 	bo->evicted = true;
751 out:
752 	return ret;
753 }
754 
755 bool ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
756 			      const struct ttm_place *place)
757 {
758 	/* Don't evict this BO if it's outside of the
759 	 * requested placement range
760 	 */
761 	if (place->fpfn >= (bo->mem.start + bo->mem.size) ||
762 	    (place->lpfn && place->lpfn <= bo->mem.start))
763 		return false;
764 
765 	return true;
766 }
767 EXPORT_SYMBOL(ttm_bo_eviction_valuable);
768 
769 /**
770  * Check the target bo is allowable to be evicted or swapout, including cases:
771  *
772  * a. if share same reservation object with ctx->resv, have assumption
773  * reservation objects should already be locked, so not lock again and
774  * return true directly when either the opreation allow_reserved_eviction
775  * or the target bo already is in delayed free list;
776  *
777  * b. Otherwise, trylock it.
778  */
779 static bool ttm_bo_evict_swapout_allowable(struct ttm_buffer_object *bo,
780 			struct ttm_operation_ctx *ctx, bool *locked, bool *busy)
781 {
782 	bool ret = false;
783 
784 	if (bo->base.resv == ctx->resv) {
785 		dma_resv_assert_held(bo->base.resv);
786 		if (ctx->flags & TTM_OPT_FLAG_ALLOW_RES_EVICT
787 		    || !list_empty(&bo->ddestroy))
788 			ret = true;
789 		*locked = false;
790 		if (busy)
791 			*busy = false;
792 	} else {
793 		ret = dma_resv_trylock(bo->base.resv);
794 		*locked = ret;
795 		if (busy)
796 			*busy = !ret;
797 	}
798 
799 	return ret;
800 }
801 
802 /**
803  * ttm_mem_evict_wait_busy - wait for a busy BO to become available
804  *
805  * @busy_bo: BO which couldn't be locked with trylock
806  * @ctx: operation context
807  * @ticket: acquire ticket
808  *
809  * Try to lock a busy buffer object to avoid failing eviction.
810  */
811 static int ttm_mem_evict_wait_busy(struct ttm_buffer_object *busy_bo,
812 				   struct ttm_operation_ctx *ctx,
813 				   struct ww_acquire_ctx *ticket)
814 {
815 	int r;
816 
817 	if (!busy_bo || !ticket)
818 		return -EBUSY;
819 
820 	if (ctx->interruptible)
821 		r = dma_resv_lock_interruptible(busy_bo->base.resv,
822 							  ticket);
823 	else
824 		r = dma_resv_lock(busy_bo->base.resv, ticket);
825 
826 	/*
827 	 * TODO: It would be better to keep the BO locked until allocation is at
828 	 * least tried one more time, but that would mean a much larger rework
829 	 * of TTM.
830 	 */
831 	if (!r)
832 		dma_resv_unlock(busy_bo->base.resv);
833 
834 	return r == -EDEADLK ? -EBUSY : r;
835 }
836 
837 static int ttm_mem_evict_first(struct ttm_bo_device *bdev,
838 			       uint32_t mem_type,
839 			       const struct ttm_place *place,
840 			       struct ttm_operation_ctx *ctx,
841 			       struct ww_acquire_ctx *ticket)
842 {
843 	struct ttm_buffer_object *bo = NULL, *busy_bo = NULL;
844 	struct ttm_bo_global *glob = bdev->glob;
845 	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
846 	bool locked = false;
847 	unsigned i;
848 	int ret;
849 
850 	spin_lock(&glob->lru_lock);
851 	for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) {
852 		list_for_each_entry(bo, &man->lru[i], lru) {
853 			bool busy;
854 
855 			if (!ttm_bo_evict_swapout_allowable(bo, ctx, &locked,
856 							    &busy)) {
857 				if (busy && !busy_bo && ticket !=
858 				    dma_resv_locking_ctx(bo->base.resv))
859 					busy_bo = bo;
860 				continue;
861 			}
862 
863 			if (place && !bdev->driver->eviction_valuable(bo,
864 								      place)) {
865 				if (locked)
866 					dma_resv_unlock(bo->base.resv);
867 				continue;
868 			}
869 			break;
870 		}
871 
872 		/* If the inner loop terminated early, we have our candidate */
873 		if (&bo->lru != &man->lru[i])
874 			break;
875 
876 		bo = NULL;
877 	}
878 
879 	if (!bo) {
880 		if (busy_bo)
881 			ttm_bo_get(busy_bo);
882 		spin_unlock(&glob->lru_lock);
883 		ret = ttm_mem_evict_wait_busy(busy_bo, ctx, ticket);
884 		if (busy_bo)
885 			ttm_bo_put(busy_bo);
886 		return ret;
887 	}
888 
889 	kref_get(&bo->list_kref);
890 
891 	if (!list_empty(&bo->ddestroy)) {
892 		ret = ttm_bo_cleanup_refs(bo, ctx->interruptible,
893 					  ctx->no_wait_gpu, locked);
894 		kref_put(&bo->list_kref, ttm_bo_release_list);
895 		return ret;
896 	}
897 
898 	ttm_bo_del_from_lru(bo);
899 	spin_unlock(&glob->lru_lock);
900 
901 	ret = ttm_bo_evict(bo, ctx);
902 	if (locked) {
903 		ttm_bo_unreserve(bo);
904 	} else {
905 		spin_lock(&glob->lru_lock);
906 		ttm_bo_add_to_lru(bo);
907 		spin_unlock(&glob->lru_lock);
908 	}
909 
910 	kref_put(&bo->list_kref, ttm_bo_release_list);
911 	return ret;
912 }
913 
914 void ttm_bo_mem_put(struct ttm_buffer_object *bo, struct ttm_mem_reg *mem)
915 {
916 	struct ttm_mem_type_manager *man = &bo->bdev->man[mem->mem_type];
917 
918 	if (mem->mm_node)
919 		(*man->func->put_node)(man, mem);
920 }
921 EXPORT_SYMBOL(ttm_bo_mem_put);
922 
923 /**
924  * Add the last move fence to the BO and reserve a new shared slot.
925  */
926 static int ttm_bo_add_move_fence(struct ttm_buffer_object *bo,
927 				 struct ttm_mem_type_manager *man,
928 				 struct ttm_mem_reg *mem)
929 {
930 	struct dma_fence *fence;
931 	int ret;
932 
933 	spin_lock(&man->move_lock);
934 	fence = dma_fence_get(man->move);
935 	spin_unlock(&man->move_lock);
936 
937 	if (fence) {
938 		dma_resv_add_shared_fence(bo->base.resv, fence);
939 
940 		ret = dma_resv_reserve_shared(bo->base.resv, 1);
941 		if (unlikely(ret)) {
942 			dma_fence_put(fence);
943 			return ret;
944 		}
945 
946 		dma_fence_put(bo->moving);
947 		bo->moving = fence;
948 	}
949 
950 	return 0;
951 }
952 
953 /**
954  * Repeatedly evict memory from the LRU for @mem_type until we create enough
955  * space, or we've evicted everything and there isn't enough space.
956  */
957 static int ttm_bo_mem_force_space(struct ttm_buffer_object *bo,
958 				  const struct ttm_place *place,
959 				  struct ttm_mem_reg *mem,
960 				  struct ttm_operation_ctx *ctx)
961 {
962 	struct ttm_bo_device *bdev = bo->bdev;
963 	struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
964 	struct ww_acquire_ctx *ticket;
965 	int ret;
966 
967 	ticket = dma_resv_locking_ctx(bo->base.resv);
968 	do {
969 		ret = (*man->func->get_node)(man, bo, place, mem);
970 		if (unlikely(ret != 0))
971 			return ret;
972 		if (mem->mm_node)
973 			break;
974 		ret = ttm_mem_evict_first(bdev, mem->mem_type, place, ctx,
975 					  ticket);
976 		if (unlikely(ret != 0))
977 			return ret;
978 	} while (1);
979 
980 	return ttm_bo_add_move_fence(bo, man, mem);
981 }
982 
983 static uint32_t ttm_bo_select_caching(struct ttm_mem_type_manager *man,
984 				      uint32_t cur_placement,
985 				      uint32_t proposed_placement)
986 {
987 	uint32_t caching = proposed_placement & TTM_PL_MASK_CACHING;
988 	uint32_t result = proposed_placement & ~TTM_PL_MASK_CACHING;
989 
990 	/**
991 	 * Keep current caching if possible.
992 	 */
993 
994 	if ((cur_placement & caching) != 0)
995 		result |= (cur_placement & caching);
996 	else if ((man->default_caching & caching) != 0)
997 		result |= man->default_caching;
998 	else if ((TTM_PL_FLAG_CACHED & caching) != 0)
999 		result |= TTM_PL_FLAG_CACHED;
1000 	else if ((TTM_PL_FLAG_WC & caching) != 0)
1001 		result |= TTM_PL_FLAG_WC;
1002 	else if ((TTM_PL_FLAG_UNCACHED & caching) != 0)
1003 		result |= TTM_PL_FLAG_UNCACHED;
1004 
1005 	return result;
1006 }
1007 
1008 static bool ttm_bo_mt_compatible(struct ttm_mem_type_manager *man,
1009 				 uint32_t mem_type,
1010 				 const struct ttm_place *place,
1011 				 uint32_t *masked_placement)
1012 {
1013 	uint32_t cur_flags = ttm_bo_type_flags(mem_type);
1014 
1015 	if ((cur_flags & place->flags & TTM_PL_MASK_MEM) == 0)
1016 		return false;
1017 
1018 	if ((place->flags & man->available_caching) == 0)
1019 		return false;
1020 
1021 	cur_flags |= (place->flags & man->available_caching);
1022 
1023 	*masked_placement = cur_flags;
1024 	return true;
1025 }
1026 
1027 /**
1028  * ttm_bo_mem_placement - check if placement is compatible
1029  * @bo: BO to find memory for
1030  * @place: where to search
1031  * @mem: the memory object to fill in
1032  * @ctx: operation context
1033  *
1034  * Check if placement is compatible and fill in mem structure.
1035  * Returns -EBUSY if placement won't work or negative error code.
1036  * 0 when placement can be used.
1037  */
1038 static int ttm_bo_mem_placement(struct ttm_buffer_object *bo,
1039 				const struct ttm_place *place,
1040 				struct ttm_mem_reg *mem,
1041 				struct ttm_operation_ctx *ctx)
1042 {
1043 	struct ttm_bo_device *bdev = bo->bdev;
1044 	uint32_t mem_type = TTM_PL_SYSTEM;
1045 	struct ttm_mem_type_manager *man;
1046 	uint32_t cur_flags = 0;
1047 	int ret;
1048 
1049 	ret = ttm_mem_type_from_place(place, &mem_type);
1050 	if (ret)
1051 		return ret;
1052 
1053 	man = &bdev->man[mem_type];
1054 	if (!man->has_type || !man->use_type)
1055 		return -EBUSY;
1056 
1057 	if (!ttm_bo_mt_compatible(man, mem_type, place, &cur_flags))
1058 		return -EBUSY;
1059 
1060 	cur_flags = ttm_bo_select_caching(man, bo->mem.placement, cur_flags);
1061 	/*
1062 	 * Use the access and other non-mapping-related flag bits from
1063 	 * the memory placement flags to the current flags
1064 	 */
1065 	ttm_flag_masked(&cur_flags, place->flags, ~TTM_PL_MASK_MEMTYPE);
1066 
1067 	mem->mem_type = mem_type;
1068 	mem->placement = cur_flags;
1069 
1070 	if (bo->mem.mem_type < mem_type && !list_empty(&bo->lru)) {
1071 		spin_lock(&bo->bdev->glob->lru_lock);
1072 		ttm_bo_del_from_lru(bo);
1073 		ttm_bo_add_mem_to_lru(bo, mem);
1074 		spin_unlock(&bo->bdev->glob->lru_lock);
1075 	}
1076 
1077 	return 0;
1078 }
1079 
1080 /**
1081  * Creates space for memory region @mem according to its type.
1082  *
1083  * This function first searches for free space in compatible memory types in
1084  * the priority order defined by the driver.  If free space isn't found, then
1085  * ttm_bo_mem_force_space is attempted in priority order to evict and find
1086  * space.
1087  */
1088 int ttm_bo_mem_space(struct ttm_buffer_object *bo,
1089 			struct ttm_placement *placement,
1090 			struct ttm_mem_reg *mem,
1091 			struct ttm_operation_ctx *ctx)
1092 {
1093 	struct ttm_bo_device *bdev = bo->bdev;
1094 	bool type_found = false;
1095 	int i, ret;
1096 
1097 	ret = dma_resv_reserve_shared(bo->base.resv, 1);
1098 	if (unlikely(ret))
1099 		return ret;
1100 
1101 	mem->mm_node = NULL;
1102 	for (i = 0; i < placement->num_placement; ++i) {
1103 		const struct ttm_place *place = &placement->placement[i];
1104 		struct ttm_mem_type_manager *man;
1105 
1106 		ret = ttm_bo_mem_placement(bo, place, mem, ctx);
1107 		if (ret == -EBUSY)
1108 			continue;
1109 		if (ret)
1110 			goto error;
1111 
1112 		type_found = true;
1113 		mem->mm_node = NULL;
1114 		if (mem->mem_type == TTM_PL_SYSTEM)
1115 			return 0;
1116 
1117 		man = &bdev->man[mem->mem_type];
1118 		ret = (*man->func->get_node)(man, bo, place, mem);
1119 		if (unlikely(ret))
1120 			goto error;
1121 
1122 		if (mem->mm_node) {
1123 			ret = ttm_bo_add_move_fence(bo, man, mem);
1124 			if (unlikely(ret)) {
1125 				(*man->func->put_node)(man, mem);
1126 				goto error;
1127 			}
1128 			return 0;
1129 		}
1130 	}
1131 
1132 	for (i = 0; i < placement->num_busy_placement; ++i) {
1133 		const struct ttm_place *place = &placement->busy_placement[i];
1134 
1135 		ret = ttm_bo_mem_placement(bo, place, mem, ctx);
1136 		if (ret == -EBUSY)
1137 			continue;
1138 		if (ret)
1139 			goto error;
1140 
1141 		type_found = true;
1142 		mem->mm_node = NULL;
1143 		if (mem->mem_type == TTM_PL_SYSTEM)
1144 			return 0;
1145 
1146 		ret = ttm_bo_mem_force_space(bo, place, mem, ctx);
1147 		if (ret == 0 && mem->mm_node)
1148 			return 0;
1149 
1150 		if (ret && ret != -EBUSY)
1151 			goto error;
1152 	}
1153 
1154 	ret = -ENOMEM;
1155 	if (!type_found) {
1156 		pr_err(TTM_PFX "No compatible memory type found\n");
1157 		ret = -EINVAL;
1158 	}
1159 
1160 error:
1161 	if (bo->mem.mem_type == TTM_PL_SYSTEM && !list_empty(&bo->lru)) {
1162 		spin_lock(&bo->bdev->glob->lru_lock);
1163 		ttm_bo_move_to_lru_tail(bo, NULL);
1164 		spin_unlock(&bo->bdev->glob->lru_lock);
1165 	}
1166 
1167 	return ret;
1168 }
1169 EXPORT_SYMBOL(ttm_bo_mem_space);
1170 
1171 static int ttm_bo_move_buffer(struct ttm_buffer_object *bo,
1172 			      struct ttm_placement *placement,
1173 			      struct ttm_operation_ctx *ctx)
1174 {
1175 	int ret = 0;
1176 	struct ttm_mem_reg mem;
1177 
1178 	dma_resv_assert_held(bo->base.resv);
1179 
1180 	mem.num_pages = bo->num_pages;
1181 	mem.size = mem.num_pages << PAGE_SHIFT;
1182 	mem.page_alignment = bo->mem.page_alignment;
1183 	mem.bus.io_reserved_vm = false;
1184 	mem.bus.io_reserved_count = 0;
1185 	/*
1186 	 * Determine where to move the buffer.
1187 	 */
1188 	ret = ttm_bo_mem_space(bo, placement, &mem, ctx);
1189 	if (ret)
1190 		goto out_unlock;
1191 	ret = ttm_bo_handle_move_mem(bo, &mem, false, ctx);
1192 out_unlock:
1193 	if (ret && mem.mm_node)
1194 		ttm_bo_mem_put(bo, &mem);
1195 	return ret;
1196 }
1197 
1198 static bool ttm_bo_places_compat(const struct ttm_place *places,
1199 				 unsigned num_placement,
1200 				 struct ttm_mem_reg *mem,
1201 				 uint32_t *new_flags)
1202 {
1203 	unsigned i;
1204 
1205 	for (i = 0; i < num_placement; i++) {
1206 		const struct ttm_place *heap = &places[i];
1207 
1208 		if (mem->mm_node && (mem->start < heap->fpfn ||
1209 		     (heap->lpfn != 0 && (mem->start + mem->num_pages) > heap->lpfn)))
1210 			continue;
1211 
1212 		*new_flags = heap->flags;
1213 		if ((*new_flags & mem->placement & TTM_PL_MASK_CACHING) &&
1214 		    (*new_flags & mem->placement & TTM_PL_MASK_MEM) &&
1215 		    (!(*new_flags & TTM_PL_FLAG_CONTIGUOUS) ||
1216 		     (mem->placement & TTM_PL_FLAG_CONTIGUOUS)))
1217 			return true;
1218 	}
1219 	return false;
1220 }
1221 
1222 bool ttm_bo_mem_compat(struct ttm_placement *placement,
1223 		       struct ttm_mem_reg *mem,
1224 		       uint32_t *new_flags)
1225 {
1226 	if (ttm_bo_places_compat(placement->placement, placement->num_placement,
1227 				 mem, new_flags))
1228 		return true;
1229 
1230 	if ((placement->busy_placement != placement->placement ||
1231 	     placement->num_busy_placement > placement->num_placement) &&
1232 	    ttm_bo_places_compat(placement->busy_placement,
1233 				 placement->num_busy_placement,
1234 				 mem, new_flags))
1235 		return true;
1236 
1237 	return false;
1238 }
1239 EXPORT_SYMBOL(ttm_bo_mem_compat);
1240 
1241 int ttm_bo_validate(struct ttm_buffer_object *bo,
1242 		    struct ttm_placement *placement,
1243 		    struct ttm_operation_ctx *ctx)
1244 {
1245 	int ret;
1246 	uint32_t new_flags;
1247 
1248 	dma_resv_assert_held(bo->base.resv);
1249 	/*
1250 	 * Check whether we need to move buffer.
1251 	 */
1252 	if (!ttm_bo_mem_compat(placement, &bo->mem, &new_flags)) {
1253 		ret = ttm_bo_move_buffer(bo, placement, ctx);
1254 		if (ret)
1255 			return ret;
1256 	} else {
1257 		/*
1258 		 * Use the access and other non-mapping-related flag bits from
1259 		 * the compatible memory placement flags to the active flags
1260 		 */
1261 		ttm_flag_masked(&bo->mem.placement, new_flags,
1262 				~TTM_PL_MASK_MEMTYPE);
1263 	}
1264 	/*
1265 	 * We might need to add a TTM.
1266 	 */
1267 	if (bo->mem.mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
1268 		ret = ttm_tt_create(bo, true);
1269 		if (ret)
1270 			return ret;
1271 	}
1272 	return 0;
1273 }
1274 EXPORT_SYMBOL(ttm_bo_validate);
1275 
1276 int ttm_bo_init_reserved(struct ttm_bo_device *bdev,
1277 			 struct ttm_buffer_object *bo,
1278 			 unsigned long size,
1279 			 enum ttm_bo_type type,
1280 			 struct ttm_placement *placement,
1281 			 uint32_t page_alignment,
1282 			 struct ttm_operation_ctx *ctx,
1283 			 size_t acc_size,
1284 			 struct sg_table *sg,
1285 			 struct dma_resv *resv,
1286 			 void (*destroy) (struct ttm_buffer_object *))
1287 {
1288 	int ret = 0;
1289 	unsigned long num_pages;
1290 	struct ttm_mem_global *mem_glob = bdev->glob->mem_glob;
1291 	bool locked;
1292 
1293 	ret = ttm_mem_global_alloc(mem_glob, acc_size, ctx);
1294 	if (ret) {
1295 		pr_err("Out of kernel memory\n");
1296 		if (destroy)
1297 			(*destroy)(bo);
1298 		else
1299 			kfree(bo);
1300 		return -ENOMEM;
1301 	}
1302 
1303 	num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1304 	if (num_pages == 0) {
1305 		pr_err("Illegal buffer object size\n");
1306 		if (destroy)
1307 			(*destroy)(bo);
1308 		else
1309 			kfree(bo);
1310 		ttm_mem_global_free(mem_glob, acc_size);
1311 		return -EINVAL;
1312 	}
1313 	bo->destroy = destroy ? destroy : ttm_bo_default_destroy;
1314 
1315 	kref_init(&bo->kref);
1316 	kref_init(&bo->list_kref);
1317 	atomic_set(&bo->cpu_writers, 0);
1318 	INIT_LIST_HEAD(&bo->lru);
1319 	INIT_LIST_HEAD(&bo->ddestroy);
1320 	INIT_LIST_HEAD(&bo->swap);
1321 	INIT_LIST_HEAD(&bo->io_reserve_lru);
1322 	mutex_init(&bo->wu_mutex);
1323 	bo->bdev = bdev;
1324 	bo->type = type;
1325 	bo->num_pages = num_pages;
1326 	bo->mem.size = num_pages << PAGE_SHIFT;
1327 	bo->mem.mem_type = TTM_PL_SYSTEM;
1328 	bo->mem.num_pages = bo->num_pages;
1329 	bo->mem.mm_node = NULL;
1330 	bo->mem.page_alignment = page_alignment;
1331 	bo->mem.bus.io_reserved_vm = false;
1332 	bo->mem.bus.io_reserved_count = 0;
1333 	bo->moving = NULL;
1334 	bo->mem.placement = (TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED);
1335 	bo->acc_size = acc_size;
1336 	bo->sg = sg;
1337 	if (resv) {
1338 		bo->base.resv = resv;
1339 		dma_resv_assert_held(bo->base.resv);
1340 	} else {
1341 		bo->base.resv = &bo->base._resv;
1342 	}
1343 	if (!ttm_bo_uses_embedded_gem_object(bo)) {
1344 		/*
1345 		 * bo.gem is not initialized, so we have to setup the
1346 		 * struct elements we want use regardless.
1347 		 */
1348 		dma_resv_init(&bo->base._resv);
1349 		drm_vma_node_reset(&bo->base.vma_node);
1350 	}
1351 	atomic_inc(&bo->bdev->glob->bo_count);
1352 
1353 	/*
1354 	 * For ttm_bo_type_device buffers, allocate
1355 	 * address space from the device.
1356 	 */
1357 	if (bo->type == ttm_bo_type_device ||
1358 	    bo->type == ttm_bo_type_sg)
1359 		ret = drm_vma_offset_add(&bdev->vma_manager, &bo->base.vma_node,
1360 					 bo->mem.num_pages);
1361 
1362 	/* passed reservation objects should already be locked,
1363 	 * since otherwise lockdep will be angered in radeon.
1364 	 */
1365 	if (!resv) {
1366 		locked = dma_resv_trylock(bo->base.resv);
1367 		WARN_ON(!locked);
1368 	}
1369 
1370 	if (likely(!ret))
1371 		ret = ttm_bo_validate(bo, placement, ctx);
1372 
1373 	if (unlikely(ret)) {
1374 		if (!resv)
1375 			ttm_bo_unreserve(bo);
1376 
1377 		ttm_bo_put(bo);
1378 		return ret;
1379 	}
1380 
1381 	if (resv && !(bo->mem.placement & TTM_PL_FLAG_NO_EVICT)) {
1382 		spin_lock(&bdev->glob->lru_lock);
1383 		ttm_bo_add_to_lru(bo);
1384 		spin_unlock(&bdev->glob->lru_lock);
1385 	}
1386 
1387 	return ret;
1388 }
1389 EXPORT_SYMBOL(ttm_bo_init_reserved);
1390 
1391 int ttm_bo_init(struct ttm_bo_device *bdev,
1392 		struct ttm_buffer_object *bo,
1393 		unsigned long size,
1394 		enum ttm_bo_type type,
1395 		struct ttm_placement *placement,
1396 		uint32_t page_alignment,
1397 		bool interruptible,
1398 		size_t acc_size,
1399 		struct sg_table *sg,
1400 		struct dma_resv *resv,
1401 		void (*destroy) (struct ttm_buffer_object *))
1402 {
1403 	struct ttm_operation_ctx ctx = { interruptible, false };
1404 	int ret;
1405 
1406 	ret = ttm_bo_init_reserved(bdev, bo, size, type, placement,
1407 				   page_alignment, &ctx, acc_size,
1408 				   sg, resv, destroy);
1409 	if (ret)
1410 		return ret;
1411 
1412 	if (!resv)
1413 		ttm_bo_unreserve(bo);
1414 
1415 	return 0;
1416 }
1417 EXPORT_SYMBOL(ttm_bo_init);
1418 
1419 size_t ttm_bo_acc_size(struct ttm_bo_device *bdev,
1420 		       unsigned long bo_size,
1421 		       unsigned struct_size)
1422 {
1423 	unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT;
1424 	size_t size = 0;
1425 
1426 	size += ttm_round_pot(struct_size);
1427 	size += ttm_round_pot(npages * sizeof(void *));
1428 	size += ttm_round_pot(sizeof(struct ttm_tt));
1429 	return size;
1430 }
1431 EXPORT_SYMBOL(ttm_bo_acc_size);
1432 
1433 size_t ttm_bo_dma_acc_size(struct ttm_bo_device *bdev,
1434 			   unsigned long bo_size,
1435 			   unsigned struct_size)
1436 {
1437 	unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT;
1438 	size_t size = 0;
1439 
1440 	size += ttm_round_pot(struct_size);
1441 	size += ttm_round_pot(npages * (2*sizeof(void *) + sizeof(dma_addr_t)));
1442 	size += ttm_round_pot(sizeof(struct ttm_dma_tt));
1443 	return size;
1444 }
1445 EXPORT_SYMBOL(ttm_bo_dma_acc_size);
1446 
1447 int ttm_bo_create(struct ttm_bo_device *bdev,
1448 			unsigned long size,
1449 			enum ttm_bo_type type,
1450 			struct ttm_placement *placement,
1451 			uint32_t page_alignment,
1452 			bool interruptible,
1453 			struct ttm_buffer_object **p_bo)
1454 {
1455 	struct ttm_buffer_object *bo;
1456 	size_t acc_size;
1457 	int ret;
1458 
1459 	bo = kzalloc(sizeof(*bo), GFP_KERNEL);
1460 	if (unlikely(bo == NULL))
1461 		return -ENOMEM;
1462 
1463 	acc_size = ttm_bo_acc_size(bdev, size, sizeof(struct ttm_buffer_object));
1464 	ret = ttm_bo_init(bdev, bo, size, type, placement, page_alignment,
1465 			  interruptible, acc_size,
1466 			  NULL, NULL, NULL);
1467 	if (likely(ret == 0))
1468 		*p_bo = bo;
1469 
1470 	return ret;
1471 }
1472 EXPORT_SYMBOL(ttm_bo_create);
1473 
1474 static int ttm_bo_force_list_clean(struct ttm_bo_device *bdev,
1475 				   unsigned mem_type)
1476 {
1477 	struct ttm_operation_ctx ctx = {
1478 		.interruptible = false,
1479 		.no_wait_gpu = false,
1480 		.flags = TTM_OPT_FLAG_FORCE_ALLOC
1481 	};
1482 	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1483 	struct ttm_bo_global *glob = bdev->glob;
1484 	struct dma_fence *fence;
1485 	int ret;
1486 	unsigned i;
1487 
1488 	/*
1489 	 * Can't use standard list traversal since we're unlocking.
1490 	 */
1491 
1492 	spin_lock(&glob->lru_lock);
1493 	for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) {
1494 		while (!list_empty(&man->lru[i])) {
1495 			spin_unlock(&glob->lru_lock);
1496 			ret = ttm_mem_evict_first(bdev, mem_type, NULL, &ctx,
1497 						  NULL);
1498 			if (ret)
1499 				return ret;
1500 			spin_lock(&glob->lru_lock);
1501 		}
1502 	}
1503 	spin_unlock(&glob->lru_lock);
1504 
1505 	spin_lock(&man->move_lock);
1506 	fence = dma_fence_get(man->move);
1507 	spin_unlock(&man->move_lock);
1508 
1509 	if (fence) {
1510 		ret = dma_fence_wait(fence, false);
1511 		dma_fence_put(fence);
1512 		if (ret)
1513 			return ret;
1514 	}
1515 
1516 	return 0;
1517 }
1518 
1519 int ttm_bo_clean_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1520 {
1521 	struct ttm_mem_type_manager *man;
1522 	int ret = -EINVAL;
1523 
1524 	if (mem_type >= TTM_NUM_MEM_TYPES) {
1525 		pr_err("Illegal memory type %d\n", mem_type);
1526 		return ret;
1527 	}
1528 	man = &bdev->man[mem_type];
1529 
1530 	if (!man->has_type) {
1531 		pr_err("Trying to take down uninitialized memory manager type %u\n",
1532 		       mem_type);
1533 		return ret;
1534 	}
1535 
1536 	man->use_type = false;
1537 	man->has_type = false;
1538 
1539 	ret = 0;
1540 	if (mem_type > 0) {
1541 		ret = ttm_bo_force_list_clean(bdev, mem_type);
1542 		if (ret) {
1543 			pr_err("Cleanup eviction failed\n");
1544 			return ret;
1545 		}
1546 
1547 		ret = (*man->func->takedown)(man);
1548 	}
1549 
1550 	dma_fence_put(man->move);
1551 	man->move = NULL;
1552 
1553 	return ret;
1554 }
1555 EXPORT_SYMBOL(ttm_bo_clean_mm);
1556 
1557 int ttm_bo_evict_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1558 {
1559 	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1560 
1561 	if (mem_type == 0 || mem_type >= TTM_NUM_MEM_TYPES) {
1562 		pr_err("Illegal memory manager memory type %u\n", mem_type);
1563 		return -EINVAL;
1564 	}
1565 
1566 	if (!man->has_type) {
1567 		pr_err("Memory type %u has not been initialized\n", mem_type);
1568 		return 0;
1569 	}
1570 
1571 	return ttm_bo_force_list_clean(bdev, mem_type);
1572 }
1573 EXPORT_SYMBOL(ttm_bo_evict_mm);
1574 
1575 int ttm_bo_init_mm(struct ttm_bo_device *bdev, unsigned type,
1576 			unsigned long p_size)
1577 {
1578 	int ret;
1579 	struct ttm_mem_type_manager *man;
1580 	unsigned i;
1581 
1582 	BUG_ON(type >= TTM_NUM_MEM_TYPES);
1583 	man = &bdev->man[type];
1584 	BUG_ON(man->has_type);
1585 	man->io_reserve_fastpath = true;
1586 	man->use_io_reserve_lru = false;
1587 	mutex_init(&man->io_reserve_mutex);
1588 	spin_lock_init(&man->move_lock);
1589 	INIT_LIST_HEAD(&man->io_reserve_lru);
1590 
1591 	ret = bdev->driver->init_mem_type(bdev, type, man);
1592 	if (ret)
1593 		return ret;
1594 	man->bdev = bdev;
1595 
1596 	if (type != TTM_PL_SYSTEM) {
1597 		ret = (*man->func->init)(man, p_size);
1598 		if (ret)
1599 			return ret;
1600 	}
1601 	man->has_type = true;
1602 	man->use_type = true;
1603 	man->size = p_size;
1604 
1605 	for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i)
1606 		INIT_LIST_HEAD(&man->lru[i]);
1607 	man->move = NULL;
1608 
1609 	return 0;
1610 }
1611 EXPORT_SYMBOL(ttm_bo_init_mm);
1612 
1613 static void ttm_bo_global_kobj_release(struct kobject *kobj)
1614 {
1615 	struct ttm_bo_global *glob =
1616 		container_of(kobj, struct ttm_bo_global, kobj);
1617 
1618 	__free_page(glob->dummy_read_page);
1619 }
1620 
1621 static void ttm_bo_global_release(void)
1622 {
1623 	struct ttm_bo_global *glob = &ttm_bo_glob;
1624 
1625 	mutex_lock(&ttm_global_mutex);
1626 	if (--ttm_bo_glob_use_count > 0)
1627 		goto out;
1628 
1629 	kobject_del(&glob->kobj);
1630 	kobject_put(&glob->kobj);
1631 	ttm_mem_global_release(&ttm_mem_glob);
1632 	memset(glob, 0, sizeof(*glob));
1633 out:
1634 	mutex_unlock(&ttm_global_mutex);
1635 }
1636 
1637 static int ttm_bo_global_init(void)
1638 {
1639 	struct ttm_bo_global *glob = &ttm_bo_glob;
1640 	int ret = 0;
1641 	unsigned i;
1642 
1643 	mutex_lock(&ttm_global_mutex);
1644 	if (++ttm_bo_glob_use_count > 1)
1645 		goto out;
1646 
1647 	ret = ttm_mem_global_init(&ttm_mem_glob);
1648 	if (ret)
1649 		goto out;
1650 
1651 	spin_lock_init(&glob->lru_lock);
1652 	glob->mem_glob = &ttm_mem_glob;
1653 	glob->mem_glob->bo_glob = glob;
1654 	glob->dummy_read_page = alloc_page(__GFP_ZERO | GFP_DMA32);
1655 
1656 	if (unlikely(glob->dummy_read_page == NULL)) {
1657 		ret = -ENOMEM;
1658 		goto out;
1659 	}
1660 
1661 	for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i)
1662 		INIT_LIST_HEAD(&glob->swap_lru[i]);
1663 	INIT_LIST_HEAD(&glob->device_list);
1664 	atomic_set(&glob->bo_count, 0);
1665 
1666 	ret = kobject_init_and_add(
1667 		&glob->kobj, &ttm_bo_glob_kobj_type, ttm_get_kobj(), "buffer_objects");
1668 	if (unlikely(ret != 0))
1669 		kobject_put(&glob->kobj);
1670 out:
1671 	mutex_unlock(&ttm_global_mutex);
1672 	return ret;
1673 }
1674 
1675 int ttm_bo_device_release(struct ttm_bo_device *bdev)
1676 {
1677 	int ret = 0;
1678 	unsigned i = TTM_NUM_MEM_TYPES;
1679 	struct ttm_mem_type_manager *man;
1680 	struct ttm_bo_global *glob = bdev->glob;
1681 
1682 	while (i--) {
1683 		man = &bdev->man[i];
1684 		if (man->has_type) {
1685 			man->use_type = false;
1686 			if ((i != TTM_PL_SYSTEM) && ttm_bo_clean_mm(bdev, i)) {
1687 				ret = -EBUSY;
1688 				pr_err("DRM memory manager type %d is not clean\n",
1689 				       i);
1690 			}
1691 			man->has_type = false;
1692 		}
1693 	}
1694 
1695 	mutex_lock(&ttm_global_mutex);
1696 	list_del(&bdev->device_list);
1697 	mutex_unlock(&ttm_global_mutex);
1698 
1699 	cancel_delayed_work_sync(&bdev->wq);
1700 
1701 	if (ttm_bo_delayed_delete(bdev, true))
1702 		pr_debug("Delayed destroy list was clean\n");
1703 
1704 	spin_lock(&glob->lru_lock);
1705 	for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i)
1706 		if (list_empty(&bdev->man[0].lru[0]))
1707 			pr_debug("Swap list %d was clean\n", i);
1708 	spin_unlock(&glob->lru_lock);
1709 
1710 	drm_vma_offset_manager_destroy(&bdev->vma_manager);
1711 
1712 	if (!ret)
1713 		ttm_bo_global_release();
1714 
1715 	return ret;
1716 }
1717 EXPORT_SYMBOL(ttm_bo_device_release);
1718 
1719 int ttm_bo_device_init(struct ttm_bo_device *bdev,
1720 		       struct ttm_bo_driver *driver,
1721 		       struct address_space *mapping,
1722 		       bool need_dma32)
1723 {
1724 	struct ttm_bo_global *glob = &ttm_bo_glob;
1725 	int ret;
1726 
1727 	ret = ttm_bo_global_init();
1728 	if (ret)
1729 		return ret;
1730 
1731 	bdev->driver = driver;
1732 
1733 	memset(bdev->man, 0, sizeof(bdev->man));
1734 
1735 	/*
1736 	 * Initialize the system memory buffer type.
1737 	 * Other types need to be driver / IOCTL initialized.
1738 	 */
1739 	ret = ttm_bo_init_mm(bdev, TTM_PL_SYSTEM, 0);
1740 	if (unlikely(ret != 0))
1741 		goto out_no_sys;
1742 
1743 	drm_vma_offset_manager_init(&bdev->vma_manager,
1744 				    DRM_FILE_PAGE_OFFSET_START,
1745 				    DRM_FILE_PAGE_OFFSET_SIZE);
1746 	INIT_DELAYED_WORK(&bdev->wq, ttm_bo_delayed_workqueue);
1747 	INIT_LIST_HEAD(&bdev->ddestroy);
1748 	bdev->dev_mapping = mapping;
1749 	bdev->glob = glob;
1750 	bdev->need_dma32 = need_dma32;
1751 	mutex_lock(&ttm_global_mutex);
1752 	list_add_tail(&bdev->device_list, &glob->device_list);
1753 	mutex_unlock(&ttm_global_mutex);
1754 
1755 	return 0;
1756 out_no_sys:
1757 	ttm_bo_global_release();
1758 	return ret;
1759 }
1760 EXPORT_SYMBOL(ttm_bo_device_init);
1761 
1762 /*
1763  * buffer object vm functions.
1764  */
1765 
1766 bool ttm_mem_reg_is_pci(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
1767 {
1768 	struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
1769 
1770 	if (!(man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
1771 		if (mem->mem_type == TTM_PL_SYSTEM)
1772 			return false;
1773 
1774 		if (man->flags & TTM_MEMTYPE_FLAG_CMA)
1775 			return false;
1776 
1777 		if (mem->placement & TTM_PL_FLAG_CACHED)
1778 			return false;
1779 	}
1780 	return true;
1781 }
1782 
1783 void ttm_bo_unmap_virtual_locked(struct ttm_buffer_object *bo)
1784 {
1785 	struct ttm_bo_device *bdev = bo->bdev;
1786 
1787 	drm_vma_node_unmap(&bo->base.vma_node, bdev->dev_mapping);
1788 	ttm_mem_io_free_vm(bo);
1789 }
1790 
1791 void ttm_bo_unmap_virtual(struct ttm_buffer_object *bo)
1792 {
1793 	struct ttm_bo_device *bdev = bo->bdev;
1794 	struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
1795 
1796 	ttm_mem_io_lock(man, false);
1797 	ttm_bo_unmap_virtual_locked(bo);
1798 	ttm_mem_io_unlock(man);
1799 }
1800 
1801 
1802 EXPORT_SYMBOL(ttm_bo_unmap_virtual);
1803 
1804 int ttm_bo_wait(struct ttm_buffer_object *bo,
1805 		bool interruptible, bool no_wait)
1806 {
1807 	long timeout = 15 * HZ;
1808 
1809 	if (no_wait) {
1810 		if (dma_resv_test_signaled_rcu(bo->base.resv, true))
1811 			return 0;
1812 		else
1813 			return -EBUSY;
1814 	}
1815 
1816 	timeout = dma_resv_wait_timeout_rcu(bo->base.resv, true,
1817 						      interruptible, timeout);
1818 	if (timeout < 0)
1819 		return timeout;
1820 
1821 	if (timeout == 0)
1822 		return -EBUSY;
1823 
1824 	dma_resv_add_excl_fence(bo->base.resv, NULL);
1825 	return 0;
1826 }
1827 EXPORT_SYMBOL(ttm_bo_wait);
1828 
1829 int ttm_bo_synccpu_write_grab(struct ttm_buffer_object *bo, bool no_wait)
1830 {
1831 	int ret = 0;
1832 
1833 	/*
1834 	 * Using ttm_bo_reserve makes sure the lru lists are updated.
1835 	 */
1836 
1837 	ret = ttm_bo_reserve(bo, true, no_wait, NULL);
1838 	if (unlikely(ret != 0))
1839 		return ret;
1840 	ret = ttm_bo_wait(bo, true, no_wait);
1841 	if (likely(ret == 0))
1842 		atomic_inc(&bo->cpu_writers);
1843 	ttm_bo_unreserve(bo);
1844 	return ret;
1845 }
1846 EXPORT_SYMBOL(ttm_bo_synccpu_write_grab);
1847 
1848 void ttm_bo_synccpu_write_release(struct ttm_buffer_object *bo)
1849 {
1850 	atomic_dec(&bo->cpu_writers);
1851 }
1852 EXPORT_SYMBOL(ttm_bo_synccpu_write_release);
1853 
1854 /**
1855  * A buffer object shrink method that tries to swap out the first
1856  * buffer object on the bo_global::swap_lru list.
1857  */
1858 int ttm_bo_swapout(struct ttm_bo_global *glob, struct ttm_operation_ctx *ctx)
1859 {
1860 	struct ttm_buffer_object *bo;
1861 	int ret = -EBUSY;
1862 	bool locked;
1863 	unsigned i;
1864 
1865 	spin_lock(&glob->lru_lock);
1866 	for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) {
1867 		list_for_each_entry(bo, &glob->swap_lru[i], swap) {
1868 			if (ttm_bo_evict_swapout_allowable(bo, ctx, &locked,
1869 							   NULL)) {
1870 				ret = 0;
1871 				break;
1872 			}
1873 		}
1874 		if (!ret)
1875 			break;
1876 	}
1877 
1878 	if (ret) {
1879 		spin_unlock(&glob->lru_lock);
1880 		return ret;
1881 	}
1882 
1883 	kref_get(&bo->list_kref);
1884 
1885 	if (!list_empty(&bo->ddestroy)) {
1886 		ret = ttm_bo_cleanup_refs(bo, false, false, locked);
1887 		kref_put(&bo->list_kref, ttm_bo_release_list);
1888 		return ret;
1889 	}
1890 
1891 	ttm_bo_del_from_lru(bo);
1892 	spin_unlock(&glob->lru_lock);
1893 
1894 	/**
1895 	 * Move to system cached
1896 	 */
1897 
1898 	if (bo->mem.mem_type != TTM_PL_SYSTEM ||
1899 	    bo->ttm->caching_state != tt_cached) {
1900 		struct ttm_operation_ctx ctx = { false, false };
1901 		struct ttm_mem_reg evict_mem;
1902 
1903 		evict_mem = bo->mem;
1904 		evict_mem.mm_node = NULL;
1905 		evict_mem.placement = TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED;
1906 		evict_mem.mem_type = TTM_PL_SYSTEM;
1907 
1908 		ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, &ctx);
1909 		if (unlikely(ret != 0))
1910 			goto out;
1911 	}
1912 
1913 	/**
1914 	 * Make sure BO is idle.
1915 	 */
1916 
1917 	ret = ttm_bo_wait(bo, false, false);
1918 	if (unlikely(ret != 0))
1919 		goto out;
1920 
1921 	ttm_bo_unmap_virtual(bo);
1922 
1923 	/**
1924 	 * Swap out. Buffer will be swapped in again as soon as
1925 	 * anyone tries to access a ttm page.
1926 	 */
1927 
1928 	if (bo->bdev->driver->swap_notify)
1929 		bo->bdev->driver->swap_notify(bo);
1930 
1931 	ret = ttm_tt_swapout(bo->ttm, bo->persistent_swap_storage);
1932 out:
1933 
1934 	/**
1935 	 *
1936 	 * Unreserve without putting on LRU to avoid swapping out an
1937 	 * already swapped buffer.
1938 	 */
1939 	if (locked)
1940 		dma_resv_unlock(bo->base.resv);
1941 	kref_put(&bo->list_kref, ttm_bo_release_list);
1942 	return ret;
1943 }
1944 EXPORT_SYMBOL(ttm_bo_swapout);
1945 
1946 void ttm_bo_swapout_all(struct ttm_bo_device *bdev)
1947 {
1948 	struct ttm_operation_ctx ctx = {
1949 		.interruptible = false,
1950 		.no_wait_gpu = false
1951 	};
1952 
1953 	while (ttm_bo_swapout(bdev->glob, &ctx) == 0)
1954 		;
1955 }
1956 EXPORT_SYMBOL(ttm_bo_swapout_all);
1957 
1958 /**
1959  * ttm_bo_wait_unreserved - interruptible wait for a buffer object to become
1960  * unreserved
1961  *
1962  * @bo: Pointer to buffer
1963  */
1964 int ttm_bo_wait_unreserved(struct ttm_buffer_object *bo)
1965 {
1966 	int ret;
1967 
1968 	/*
1969 	 * In the absense of a wait_unlocked API,
1970 	 * Use the bo::wu_mutex to avoid triggering livelocks due to
1971 	 * concurrent use of this function. Note that this use of
1972 	 * bo::wu_mutex can go away if we change locking order to
1973 	 * mmap_sem -> bo::reserve.
1974 	 */
1975 	ret = mutex_lock_interruptible(&bo->wu_mutex);
1976 	if (unlikely(ret != 0))
1977 		return -ERESTARTSYS;
1978 	if (!dma_resv_is_locked(bo->base.resv))
1979 		goto out_unlock;
1980 	ret = dma_resv_lock_interruptible(bo->base.resv, NULL);
1981 	if (ret == -EINTR)
1982 		ret = -ERESTARTSYS;
1983 	if (unlikely(ret != 0))
1984 		goto out_unlock;
1985 	dma_resv_unlock(bo->base.resv);
1986 
1987 out_unlock:
1988 	mutex_unlock(&bo->wu_mutex);
1989 	return ret;
1990 }
1991