1 /* SPDX-License-Identifier: GPL-2.0 OR MIT */ 2 /************************************************************************** 3 * 4 * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA 5 * All Rights Reserved. 6 * 7 * Permission is hereby granted, free of charge, to any person obtaining a 8 * copy of this software and associated documentation files (the 9 * "Software"), to deal in the Software without restriction, including 10 * without limitation the rights to use, copy, modify, merge, publish, 11 * distribute, sub license, and/or sell copies of the Software, and to 12 * permit persons to whom the Software is furnished to do so, subject to 13 * the following conditions: 14 * 15 * The above copyright notice and this permission notice (including the 16 * next paragraph) shall be included in all copies or substantial portions 17 * of the Software. 18 * 19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 21 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 22 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 23 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 24 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 25 * USE OR OTHER DEALINGS IN THE SOFTWARE. 26 * 27 **************************************************************************/ 28 /* 29 * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com> 30 */ 31 32 #define pr_fmt(fmt) "[TTM] " fmt 33 34 #include <drm/ttm/ttm_bo_driver.h> 35 #include <drm/ttm/ttm_placement.h> 36 #include <linux/jiffies.h> 37 #include <linux/slab.h> 38 #include <linux/sched.h> 39 #include <linux/mm.h> 40 #include <linux/file.h> 41 #include <linux/module.h> 42 #include <linux/atomic.h> 43 #include <linux/dma-resv.h> 44 45 #include "ttm_module.h" 46 47 /* default destructor */ 48 static void ttm_bo_default_destroy(struct ttm_buffer_object *bo) 49 { 50 kfree(bo); 51 } 52 53 static void ttm_bo_mem_space_debug(struct ttm_buffer_object *bo, 54 struct ttm_placement *placement) 55 { 56 struct drm_printer p = drm_debug_printer(TTM_PFX); 57 struct ttm_resource_manager *man; 58 int i, mem_type; 59 60 drm_printf(&p, "No space for %p (%lu pages, %zuK, %zuM)\n", 61 bo, bo->mem.num_pages, bo->base.size >> 10, 62 bo->base.size >> 20); 63 for (i = 0; i < placement->num_placement; i++) { 64 mem_type = placement->placement[i].mem_type; 65 drm_printf(&p, " placement[%d]=0x%08X (%d)\n", 66 i, placement->placement[i].flags, mem_type); 67 man = ttm_manager_type(bo->bdev, mem_type); 68 ttm_resource_manager_debug(man, &p); 69 } 70 } 71 72 static void ttm_bo_del_from_lru(struct ttm_buffer_object *bo) 73 { 74 struct ttm_device *bdev = bo->bdev; 75 76 list_del_init(&bo->swap); 77 list_del_init(&bo->lru); 78 79 if (bdev->funcs->del_from_lru_notify) 80 bdev->funcs->del_from_lru_notify(bo); 81 } 82 83 static void ttm_bo_bulk_move_set_pos(struct ttm_lru_bulk_move_pos *pos, 84 struct ttm_buffer_object *bo) 85 { 86 if (!pos->first) 87 pos->first = bo; 88 pos->last = bo; 89 } 90 91 void ttm_bo_move_to_lru_tail(struct ttm_buffer_object *bo, 92 struct ttm_resource *mem, 93 struct ttm_lru_bulk_move *bulk) 94 { 95 struct ttm_device *bdev = bo->bdev; 96 struct ttm_resource_manager *man; 97 98 if (!bo->deleted) 99 dma_resv_assert_held(bo->base.resv); 100 101 if (bo->pin_count) { 102 ttm_bo_del_from_lru(bo); 103 return; 104 } 105 106 man = ttm_manager_type(bdev, mem->mem_type); 107 list_move_tail(&bo->lru, &man->lru[bo->priority]); 108 if (man->use_tt && bo->ttm && 109 !(bo->ttm->page_flags & (TTM_PAGE_FLAG_SG | 110 TTM_PAGE_FLAG_SWAPPED))) { 111 struct list_head *swap; 112 113 swap = &ttm_glob.swap_lru[bo->priority]; 114 list_move_tail(&bo->swap, swap); 115 } else { 116 list_del_init(&bo->swap); 117 } 118 119 if (bdev->funcs->del_from_lru_notify) 120 bdev->funcs->del_from_lru_notify(bo); 121 122 if (bulk && !bo->pin_count) { 123 switch (bo->mem.mem_type) { 124 case TTM_PL_TT: 125 ttm_bo_bulk_move_set_pos(&bulk->tt[bo->priority], bo); 126 break; 127 128 case TTM_PL_VRAM: 129 ttm_bo_bulk_move_set_pos(&bulk->vram[bo->priority], bo); 130 break; 131 } 132 if (bo->ttm && !(bo->ttm->page_flags & 133 (TTM_PAGE_FLAG_SG | TTM_PAGE_FLAG_SWAPPED))) 134 ttm_bo_bulk_move_set_pos(&bulk->swap[bo->priority], bo); 135 } 136 } 137 EXPORT_SYMBOL(ttm_bo_move_to_lru_tail); 138 139 void ttm_bo_bulk_move_lru_tail(struct ttm_lru_bulk_move *bulk) 140 { 141 unsigned i; 142 143 for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) { 144 struct ttm_lru_bulk_move_pos *pos = &bulk->tt[i]; 145 struct ttm_resource_manager *man; 146 147 if (!pos->first) 148 continue; 149 150 dma_resv_assert_held(pos->first->base.resv); 151 dma_resv_assert_held(pos->last->base.resv); 152 153 man = ttm_manager_type(pos->first->bdev, TTM_PL_TT); 154 list_bulk_move_tail(&man->lru[i], &pos->first->lru, 155 &pos->last->lru); 156 } 157 158 for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) { 159 struct ttm_lru_bulk_move_pos *pos = &bulk->vram[i]; 160 struct ttm_resource_manager *man; 161 162 if (!pos->first) 163 continue; 164 165 dma_resv_assert_held(pos->first->base.resv); 166 dma_resv_assert_held(pos->last->base.resv); 167 168 man = ttm_manager_type(pos->first->bdev, TTM_PL_VRAM); 169 list_bulk_move_tail(&man->lru[i], &pos->first->lru, 170 &pos->last->lru); 171 } 172 173 for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) { 174 struct ttm_lru_bulk_move_pos *pos = &bulk->swap[i]; 175 struct list_head *lru; 176 177 if (!pos->first) 178 continue; 179 180 dma_resv_assert_held(pos->first->base.resv); 181 dma_resv_assert_held(pos->last->base.resv); 182 183 lru = &ttm_glob.swap_lru[i]; 184 list_bulk_move_tail(lru, &pos->first->swap, &pos->last->swap); 185 } 186 } 187 EXPORT_SYMBOL(ttm_bo_bulk_move_lru_tail); 188 189 static int ttm_bo_handle_move_mem(struct ttm_buffer_object *bo, 190 struct ttm_resource *mem, bool evict, 191 struct ttm_operation_ctx *ctx, 192 struct ttm_place *hop) 193 { 194 struct ttm_device *bdev = bo->bdev; 195 struct ttm_resource_manager *old_man = ttm_manager_type(bdev, bo->mem.mem_type); 196 struct ttm_resource_manager *new_man = ttm_manager_type(bdev, mem->mem_type); 197 int ret; 198 199 ttm_bo_unmap_virtual(bo); 200 201 /* 202 * Create and bind a ttm if required. 203 */ 204 205 if (new_man->use_tt) { 206 /* Zero init the new TTM structure if the old location should 207 * have used one as well. 208 */ 209 ret = ttm_tt_create(bo, old_man->use_tt); 210 if (ret) 211 goto out_err; 212 213 if (mem->mem_type != TTM_PL_SYSTEM) { 214 ret = ttm_tt_populate(bo->bdev, bo->ttm, ctx); 215 if (ret) 216 goto out_err; 217 } 218 } 219 220 ret = bdev->funcs->move(bo, evict, ctx, mem, hop); 221 if (ret) { 222 if (ret == -EMULTIHOP) 223 return ret; 224 goto out_err; 225 } 226 227 ctx->bytes_moved += bo->base.size; 228 return 0; 229 230 out_err: 231 new_man = ttm_manager_type(bdev, bo->mem.mem_type); 232 if (!new_man->use_tt) 233 ttm_bo_tt_destroy(bo); 234 235 return ret; 236 } 237 238 /* 239 * Call bo::reserved. 240 * Will release GPU memory type usage on destruction. 241 * This is the place to put in driver specific hooks to release 242 * driver private resources. 243 * Will release the bo::reserved lock. 244 */ 245 246 static void ttm_bo_cleanup_memtype_use(struct ttm_buffer_object *bo) 247 { 248 if (bo->bdev->funcs->delete_mem_notify) 249 bo->bdev->funcs->delete_mem_notify(bo); 250 251 ttm_bo_tt_destroy(bo); 252 ttm_resource_free(bo, &bo->mem); 253 } 254 255 static int ttm_bo_individualize_resv(struct ttm_buffer_object *bo) 256 { 257 int r; 258 259 if (bo->base.resv == &bo->base._resv) 260 return 0; 261 262 BUG_ON(!dma_resv_trylock(&bo->base._resv)); 263 264 r = dma_resv_copy_fences(&bo->base._resv, bo->base.resv); 265 dma_resv_unlock(&bo->base._resv); 266 if (r) 267 return r; 268 269 if (bo->type != ttm_bo_type_sg) { 270 /* This works because the BO is about to be destroyed and nobody 271 * reference it any more. The only tricky case is the trylock on 272 * the resv object while holding the lru_lock. 273 */ 274 spin_lock(&ttm_glob.lru_lock); 275 bo->base.resv = &bo->base._resv; 276 spin_unlock(&ttm_glob.lru_lock); 277 } 278 279 return r; 280 } 281 282 static void ttm_bo_flush_all_fences(struct ttm_buffer_object *bo) 283 { 284 struct dma_resv *resv = &bo->base._resv; 285 struct dma_resv_list *fobj; 286 struct dma_fence *fence; 287 int i; 288 289 rcu_read_lock(); 290 fobj = rcu_dereference(resv->fence); 291 fence = rcu_dereference(resv->fence_excl); 292 if (fence && !fence->ops->signaled) 293 dma_fence_enable_sw_signaling(fence); 294 295 for (i = 0; fobj && i < fobj->shared_count; ++i) { 296 fence = rcu_dereference(fobj->shared[i]); 297 298 if (!fence->ops->signaled) 299 dma_fence_enable_sw_signaling(fence); 300 } 301 rcu_read_unlock(); 302 } 303 304 /** 305 * function ttm_bo_cleanup_refs 306 * If bo idle, remove from lru lists, and unref. 307 * If not idle, block if possible. 308 * 309 * Must be called with lru_lock and reservation held, this function 310 * will drop the lru lock and optionally the reservation lock before returning. 311 * 312 * @bo: The buffer object to clean-up 313 * @interruptible: Any sleeps should occur interruptibly. 314 * @no_wait_gpu: Never wait for gpu. Return -EBUSY instead. 315 * @unlock_resv: Unlock the reservation lock as well. 316 */ 317 318 static int ttm_bo_cleanup_refs(struct ttm_buffer_object *bo, 319 bool interruptible, bool no_wait_gpu, 320 bool unlock_resv) 321 { 322 struct dma_resv *resv = &bo->base._resv; 323 int ret; 324 325 if (dma_resv_test_signaled_rcu(resv, true)) 326 ret = 0; 327 else 328 ret = -EBUSY; 329 330 if (ret && !no_wait_gpu) { 331 long lret; 332 333 if (unlock_resv) 334 dma_resv_unlock(bo->base.resv); 335 spin_unlock(&ttm_glob.lru_lock); 336 337 lret = dma_resv_wait_timeout_rcu(resv, true, interruptible, 338 30 * HZ); 339 340 if (lret < 0) 341 return lret; 342 else if (lret == 0) 343 return -EBUSY; 344 345 spin_lock(&ttm_glob.lru_lock); 346 if (unlock_resv && !dma_resv_trylock(bo->base.resv)) { 347 /* 348 * We raced, and lost, someone else holds the reservation now, 349 * and is probably busy in ttm_bo_cleanup_memtype_use. 350 * 351 * Even if it's not the case, because we finished waiting any 352 * delayed destruction would succeed, so just return success 353 * here. 354 */ 355 spin_unlock(&ttm_glob.lru_lock); 356 return 0; 357 } 358 ret = 0; 359 } 360 361 if (ret || unlikely(list_empty(&bo->ddestroy))) { 362 if (unlock_resv) 363 dma_resv_unlock(bo->base.resv); 364 spin_unlock(&ttm_glob.lru_lock); 365 return ret; 366 } 367 368 ttm_bo_del_from_lru(bo); 369 list_del_init(&bo->ddestroy); 370 spin_unlock(&ttm_glob.lru_lock); 371 ttm_bo_cleanup_memtype_use(bo); 372 373 if (unlock_resv) 374 dma_resv_unlock(bo->base.resv); 375 376 ttm_bo_put(bo); 377 378 return 0; 379 } 380 381 /* 382 * Traverse the delayed list, and call ttm_bo_cleanup_refs on all 383 * encountered buffers. 384 */ 385 bool ttm_bo_delayed_delete(struct ttm_device *bdev, bool remove_all) 386 { 387 struct ttm_global *glob = &ttm_glob; 388 struct list_head removed; 389 bool empty; 390 391 INIT_LIST_HEAD(&removed); 392 393 spin_lock(&glob->lru_lock); 394 while (!list_empty(&bdev->ddestroy)) { 395 struct ttm_buffer_object *bo; 396 397 bo = list_first_entry(&bdev->ddestroy, struct ttm_buffer_object, 398 ddestroy); 399 list_move_tail(&bo->ddestroy, &removed); 400 if (!ttm_bo_get_unless_zero(bo)) 401 continue; 402 403 if (remove_all || bo->base.resv != &bo->base._resv) { 404 spin_unlock(&glob->lru_lock); 405 dma_resv_lock(bo->base.resv, NULL); 406 407 spin_lock(&glob->lru_lock); 408 ttm_bo_cleanup_refs(bo, false, !remove_all, true); 409 410 } else if (dma_resv_trylock(bo->base.resv)) { 411 ttm_bo_cleanup_refs(bo, false, !remove_all, true); 412 } else { 413 spin_unlock(&glob->lru_lock); 414 } 415 416 ttm_bo_put(bo); 417 spin_lock(&glob->lru_lock); 418 } 419 list_splice_tail(&removed, &bdev->ddestroy); 420 empty = list_empty(&bdev->ddestroy); 421 spin_unlock(&glob->lru_lock); 422 423 return empty; 424 } 425 426 static void ttm_bo_release(struct kref *kref) 427 { 428 struct ttm_buffer_object *bo = 429 container_of(kref, struct ttm_buffer_object, kref); 430 struct ttm_device *bdev = bo->bdev; 431 int ret; 432 433 if (!bo->deleted) { 434 ret = ttm_bo_individualize_resv(bo); 435 if (ret) { 436 /* Last resort, if we fail to allocate memory for the 437 * fences block for the BO to become idle 438 */ 439 dma_resv_wait_timeout_rcu(bo->base.resv, true, false, 440 30 * HZ); 441 } 442 443 if (bo->bdev->funcs->release_notify) 444 bo->bdev->funcs->release_notify(bo); 445 446 drm_vma_offset_remove(bdev->vma_manager, &bo->base.vma_node); 447 ttm_mem_io_free(bdev, &bo->mem); 448 } 449 450 if (!dma_resv_test_signaled_rcu(bo->base.resv, true) || 451 !dma_resv_trylock(bo->base.resv)) { 452 /* The BO is not idle, resurrect it for delayed destroy */ 453 ttm_bo_flush_all_fences(bo); 454 bo->deleted = true; 455 456 spin_lock(&ttm_glob.lru_lock); 457 458 /* 459 * Make pinned bos immediately available to 460 * shrinkers, now that they are queued for 461 * destruction. 462 * 463 * FIXME: QXL is triggering this. Can be removed when the 464 * driver is fixed. 465 */ 466 if (WARN_ON_ONCE(bo->pin_count)) { 467 bo->pin_count = 0; 468 ttm_bo_move_to_lru_tail(bo, &bo->mem, NULL); 469 } 470 471 kref_init(&bo->kref); 472 list_add_tail(&bo->ddestroy, &bdev->ddestroy); 473 spin_unlock(&ttm_glob.lru_lock); 474 475 schedule_delayed_work(&bdev->wq, 476 ((HZ / 100) < 1) ? 1 : HZ / 100); 477 return; 478 } 479 480 spin_lock(&ttm_glob.lru_lock); 481 ttm_bo_del_from_lru(bo); 482 list_del(&bo->ddestroy); 483 spin_unlock(&ttm_glob.lru_lock); 484 485 ttm_bo_cleanup_memtype_use(bo); 486 dma_resv_unlock(bo->base.resv); 487 488 atomic_dec(&ttm_glob.bo_count); 489 dma_fence_put(bo->moving); 490 if (!ttm_bo_uses_embedded_gem_object(bo)) 491 dma_resv_fini(&bo->base._resv); 492 bo->destroy(bo); 493 } 494 495 void ttm_bo_put(struct ttm_buffer_object *bo) 496 { 497 kref_put(&bo->kref, ttm_bo_release); 498 } 499 EXPORT_SYMBOL(ttm_bo_put); 500 501 int ttm_bo_lock_delayed_workqueue(struct ttm_device *bdev) 502 { 503 return cancel_delayed_work_sync(&bdev->wq); 504 } 505 EXPORT_SYMBOL(ttm_bo_lock_delayed_workqueue); 506 507 void ttm_bo_unlock_delayed_workqueue(struct ttm_device *bdev, int resched) 508 { 509 if (resched) 510 schedule_delayed_work(&bdev->wq, 511 ((HZ / 100) < 1) ? 1 : HZ / 100); 512 } 513 EXPORT_SYMBOL(ttm_bo_unlock_delayed_workqueue); 514 515 static int ttm_bo_evict(struct ttm_buffer_object *bo, 516 struct ttm_operation_ctx *ctx) 517 { 518 struct ttm_device *bdev = bo->bdev; 519 struct ttm_resource evict_mem; 520 struct ttm_placement placement; 521 struct ttm_place hop; 522 int ret = 0; 523 524 memset(&hop, 0, sizeof(hop)); 525 526 dma_resv_assert_held(bo->base.resv); 527 528 placement.num_placement = 0; 529 placement.num_busy_placement = 0; 530 bdev->funcs->evict_flags(bo, &placement); 531 532 if (!placement.num_placement && !placement.num_busy_placement) { 533 ttm_bo_wait(bo, false, false); 534 535 ttm_bo_cleanup_memtype_use(bo); 536 return ttm_tt_create(bo, false); 537 } 538 539 evict_mem = bo->mem; 540 evict_mem.mm_node = NULL; 541 evict_mem.bus.offset = 0; 542 evict_mem.bus.addr = NULL; 543 544 ret = ttm_bo_mem_space(bo, &placement, &evict_mem, ctx); 545 if (ret) { 546 if (ret != -ERESTARTSYS) { 547 pr_err("Failed to find memory space for buffer 0x%p eviction\n", 548 bo); 549 ttm_bo_mem_space_debug(bo, &placement); 550 } 551 goto out; 552 } 553 554 ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, ctx, &hop); 555 if (unlikely(ret)) { 556 WARN(ret == -EMULTIHOP, "Unexpected multihop in eviction - likely driver bug\n"); 557 if (ret != -ERESTARTSYS) 558 pr_err("Buffer eviction failed\n"); 559 ttm_resource_free(bo, &evict_mem); 560 } 561 out: 562 return ret; 563 } 564 565 bool ttm_bo_eviction_valuable(struct ttm_buffer_object *bo, 566 const struct ttm_place *place) 567 { 568 /* Don't evict this BO if it's outside of the 569 * requested placement range 570 */ 571 if (place->fpfn >= (bo->mem.start + bo->mem.num_pages) || 572 (place->lpfn && place->lpfn <= bo->mem.start)) 573 return false; 574 575 return true; 576 } 577 EXPORT_SYMBOL(ttm_bo_eviction_valuable); 578 579 /* 580 * Check the target bo is allowable to be evicted or swapout, including cases: 581 * 582 * a. if share same reservation object with ctx->resv, have assumption 583 * reservation objects should already be locked, so not lock again and 584 * return true directly when either the opreation allow_reserved_eviction 585 * or the target bo already is in delayed free list; 586 * 587 * b. Otherwise, trylock it. 588 */ 589 static bool ttm_bo_evict_swapout_allowable(struct ttm_buffer_object *bo, 590 struct ttm_operation_ctx *ctx, bool *locked, bool *busy) 591 { 592 bool ret = false; 593 594 if (bo->base.resv == ctx->resv) { 595 dma_resv_assert_held(bo->base.resv); 596 if (ctx->allow_res_evict) 597 ret = true; 598 *locked = false; 599 if (busy) 600 *busy = false; 601 } else { 602 ret = dma_resv_trylock(bo->base.resv); 603 *locked = ret; 604 if (busy) 605 *busy = !ret; 606 } 607 608 return ret; 609 } 610 611 /** 612 * ttm_mem_evict_wait_busy - wait for a busy BO to become available 613 * 614 * @busy_bo: BO which couldn't be locked with trylock 615 * @ctx: operation context 616 * @ticket: acquire ticket 617 * 618 * Try to lock a busy buffer object to avoid failing eviction. 619 */ 620 static int ttm_mem_evict_wait_busy(struct ttm_buffer_object *busy_bo, 621 struct ttm_operation_ctx *ctx, 622 struct ww_acquire_ctx *ticket) 623 { 624 int r; 625 626 if (!busy_bo || !ticket) 627 return -EBUSY; 628 629 if (ctx->interruptible) 630 r = dma_resv_lock_interruptible(busy_bo->base.resv, 631 ticket); 632 else 633 r = dma_resv_lock(busy_bo->base.resv, ticket); 634 635 /* 636 * TODO: It would be better to keep the BO locked until allocation is at 637 * least tried one more time, but that would mean a much larger rework 638 * of TTM. 639 */ 640 if (!r) 641 dma_resv_unlock(busy_bo->base.resv); 642 643 return r == -EDEADLK ? -EBUSY : r; 644 } 645 646 int ttm_mem_evict_first(struct ttm_device *bdev, 647 struct ttm_resource_manager *man, 648 const struct ttm_place *place, 649 struct ttm_operation_ctx *ctx, 650 struct ww_acquire_ctx *ticket) 651 { 652 struct ttm_buffer_object *bo = NULL, *busy_bo = NULL; 653 bool locked = false; 654 unsigned i; 655 int ret; 656 657 spin_lock(&ttm_glob.lru_lock); 658 for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) { 659 list_for_each_entry(bo, &man->lru[i], lru) { 660 bool busy; 661 662 if (!ttm_bo_evict_swapout_allowable(bo, ctx, &locked, 663 &busy)) { 664 if (busy && !busy_bo && ticket != 665 dma_resv_locking_ctx(bo->base.resv)) 666 busy_bo = bo; 667 continue; 668 } 669 670 if (place && !bdev->funcs->eviction_valuable(bo, 671 place)) { 672 if (locked) 673 dma_resv_unlock(bo->base.resv); 674 continue; 675 } 676 if (!ttm_bo_get_unless_zero(bo)) { 677 if (locked) 678 dma_resv_unlock(bo->base.resv); 679 continue; 680 } 681 break; 682 } 683 684 /* If the inner loop terminated early, we have our candidate */ 685 if (&bo->lru != &man->lru[i]) 686 break; 687 688 bo = NULL; 689 } 690 691 if (!bo) { 692 if (busy_bo && !ttm_bo_get_unless_zero(busy_bo)) 693 busy_bo = NULL; 694 spin_unlock(&ttm_glob.lru_lock); 695 ret = ttm_mem_evict_wait_busy(busy_bo, ctx, ticket); 696 if (busy_bo) 697 ttm_bo_put(busy_bo); 698 return ret; 699 } 700 701 if (bo->deleted) { 702 ret = ttm_bo_cleanup_refs(bo, ctx->interruptible, 703 ctx->no_wait_gpu, locked); 704 ttm_bo_put(bo); 705 return ret; 706 } 707 708 spin_unlock(&ttm_glob.lru_lock); 709 710 ret = ttm_bo_evict(bo, ctx); 711 if (locked) 712 ttm_bo_unreserve(bo); 713 714 ttm_bo_put(bo); 715 return ret; 716 } 717 718 /* 719 * Add the last move fence to the BO and reserve a new shared slot. 720 */ 721 static int ttm_bo_add_move_fence(struct ttm_buffer_object *bo, 722 struct ttm_resource_manager *man, 723 struct ttm_resource *mem, 724 bool no_wait_gpu) 725 { 726 struct dma_fence *fence; 727 int ret; 728 729 spin_lock(&man->move_lock); 730 fence = dma_fence_get(man->move); 731 spin_unlock(&man->move_lock); 732 733 if (!fence) 734 return 0; 735 736 if (no_wait_gpu) { 737 dma_fence_put(fence); 738 return -EBUSY; 739 } 740 741 dma_resv_add_shared_fence(bo->base.resv, fence); 742 743 ret = dma_resv_reserve_shared(bo->base.resv, 1); 744 if (unlikely(ret)) { 745 dma_fence_put(fence); 746 return ret; 747 } 748 749 dma_fence_put(bo->moving); 750 bo->moving = fence; 751 return 0; 752 } 753 754 /* 755 * Repeatedly evict memory from the LRU for @mem_type until we create enough 756 * space, or we've evicted everything and there isn't enough space. 757 */ 758 static int ttm_bo_mem_force_space(struct ttm_buffer_object *bo, 759 const struct ttm_place *place, 760 struct ttm_resource *mem, 761 struct ttm_operation_ctx *ctx) 762 { 763 struct ttm_device *bdev = bo->bdev; 764 struct ttm_resource_manager *man = ttm_manager_type(bdev, mem->mem_type); 765 struct ww_acquire_ctx *ticket; 766 int ret; 767 768 ticket = dma_resv_locking_ctx(bo->base.resv); 769 do { 770 ret = ttm_resource_alloc(bo, place, mem); 771 if (likely(!ret)) 772 break; 773 if (unlikely(ret != -ENOSPC)) 774 return ret; 775 ret = ttm_mem_evict_first(bdev, man, place, ctx, 776 ticket); 777 if (unlikely(ret != 0)) 778 return ret; 779 } while (1); 780 781 return ttm_bo_add_move_fence(bo, man, mem, ctx->no_wait_gpu); 782 } 783 784 /** 785 * ttm_bo_mem_placement - check if placement is compatible 786 * @bo: BO to find memory for 787 * @place: where to search 788 * @mem: the memory object to fill in 789 * 790 * Check if placement is compatible and fill in mem structure. 791 * Returns -EBUSY if placement won't work or negative error code. 792 * 0 when placement can be used. 793 */ 794 static int ttm_bo_mem_placement(struct ttm_buffer_object *bo, 795 const struct ttm_place *place, 796 struct ttm_resource *mem) 797 { 798 struct ttm_device *bdev = bo->bdev; 799 struct ttm_resource_manager *man; 800 801 man = ttm_manager_type(bdev, place->mem_type); 802 if (!man || !ttm_resource_manager_used(man)) 803 return -EBUSY; 804 805 mem->mem_type = place->mem_type; 806 mem->placement = place->flags; 807 808 spin_lock(&ttm_glob.lru_lock); 809 ttm_bo_move_to_lru_tail(bo, mem, NULL); 810 spin_unlock(&ttm_glob.lru_lock); 811 812 return 0; 813 } 814 815 /* 816 * Creates space for memory region @mem according to its type. 817 * 818 * This function first searches for free space in compatible memory types in 819 * the priority order defined by the driver. If free space isn't found, then 820 * ttm_bo_mem_force_space is attempted in priority order to evict and find 821 * space. 822 */ 823 int ttm_bo_mem_space(struct ttm_buffer_object *bo, 824 struct ttm_placement *placement, 825 struct ttm_resource *mem, 826 struct ttm_operation_ctx *ctx) 827 { 828 struct ttm_device *bdev = bo->bdev; 829 bool type_found = false; 830 int i, ret; 831 832 ret = dma_resv_reserve_shared(bo->base.resv, 1); 833 if (unlikely(ret)) 834 return ret; 835 836 for (i = 0; i < placement->num_placement; ++i) { 837 const struct ttm_place *place = &placement->placement[i]; 838 struct ttm_resource_manager *man; 839 840 ret = ttm_bo_mem_placement(bo, place, mem); 841 if (ret) 842 continue; 843 844 type_found = true; 845 ret = ttm_resource_alloc(bo, place, mem); 846 if (ret == -ENOSPC) 847 continue; 848 if (unlikely(ret)) 849 goto error; 850 851 man = ttm_manager_type(bdev, mem->mem_type); 852 ret = ttm_bo_add_move_fence(bo, man, mem, ctx->no_wait_gpu); 853 if (unlikely(ret)) { 854 ttm_resource_free(bo, mem); 855 if (ret == -EBUSY) 856 continue; 857 858 goto error; 859 } 860 return 0; 861 } 862 863 for (i = 0; i < placement->num_busy_placement; ++i) { 864 const struct ttm_place *place = &placement->busy_placement[i]; 865 866 ret = ttm_bo_mem_placement(bo, place, mem); 867 if (ret) 868 continue; 869 870 type_found = true; 871 ret = ttm_bo_mem_force_space(bo, place, mem, ctx); 872 if (likely(!ret)) 873 return 0; 874 875 if (ret && ret != -EBUSY) 876 goto error; 877 } 878 879 ret = -ENOMEM; 880 if (!type_found) { 881 pr_err(TTM_PFX "No compatible memory type found\n"); 882 ret = -EINVAL; 883 } 884 885 error: 886 if (bo->mem.mem_type == TTM_PL_SYSTEM && !bo->pin_count) 887 ttm_bo_move_to_lru_tail_unlocked(bo); 888 889 return ret; 890 } 891 EXPORT_SYMBOL(ttm_bo_mem_space); 892 893 static int ttm_bo_bounce_temp_buffer(struct ttm_buffer_object *bo, 894 struct ttm_resource *mem, 895 struct ttm_operation_ctx *ctx, 896 struct ttm_place *hop) 897 { 898 struct ttm_placement hop_placement; 899 int ret; 900 struct ttm_resource hop_mem = *mem; 901 902 hop_mem.mm_node = NULL; 903 hop_mem.mem_type = TTM_PL_SYSTEM; 904 hop_mem.placement = 0; 905 906 hop_placement.num_placement = hop_placement.num_busy_placement = 1; 907 hop_placement.placement = hop_placement.busy_placement = hop; 908 909 /* find space in the bounce domain */ 910 ret = ttm_bo_mem_space(bo, &hop_placement, &hop_mem, ctx); 911 if (ret) 912 return ret; 913 /* move to the bounce domain */ 914 ret = ttm_bo_handle_move_mem(bo, &hop_mem, false, ctx, NULL); 915 if (ret) { 916 ttm_resource_free(bo, &hop_mem); 917 return ret; 918 } 919 return 0; 920 } 921 922 static int ttm_bo_move_buffer(struct ttm_buffer_object *bo, 923 struct ttm_placement *placement, 924 struct ttm_operation_ctx *ctx) 925 { 926 int ret = 0; 927 struct ttm_place hop; 928 struct ttm_resource mem; 929 930 dma_resv_assert_held(bo->base.resv); 931 932 memset(&hop, 0, sizeof(hop)); 933 934 mem.num_pages = PAGE_ALIGN(bo->base.size) >> PAGE_SHIFT; 935 mem.page_alignment = bo->mem.page_alignment; 936 mem.bus.offset = 0; 937 mem.bus.addr = NULL; 938 mem.mm_node = NULL; 939 940 /* 941 * Determine where to move the buffer. 942 * 943 * If driver determines move is going to need 944 * an extra step then it will return -EMULTIHOP 945 * and the buffer will be moved to the temporary 946 * stop and the driver will be called to make 947 * the second hop. 948 */ 949 ret = ttm_bo_mem_space(bo, placement, &mem, ctx); 950 if (ret) 951 return ret; 952 bounce: 953 ret = ttm_bo_handle_move_mem(bo, &mem, false, ctx, &hop); 954 if (ret == -EMULTIHOP) { 955 ret = ttm_bo_bounce_temp_buffer(bo, &mem, ctx, &hop); 956 if (ret) 957 goto out; 958 /* try and move to final place now. */ 959 goto bounce; 960 } 961 out: 962 if (ret) 963 ttm_resource_free(bo, &mem); 964 return ret; 965 } 966 967 static bool ttm_bo_places_compat(const struct ttm_place *places, 968 unsigned num_placement, 969 struct ttm_resource *mem, 970 uint32_t *new_flags) 971 { 972 unsigned i; 973 974 for (i = 0; i < num_placement; i++) { 975 const struct ttm_place *heap = &places[i]; 976 977 if ((mem->start < heap->fpfn || 978 (heap->lpfn != 0 && (mem->start + mem->num_pages) > heap->lpfn))) 979 continue; 980 981 *new_flags = heap->flags; 982 if ((mem->mem_type == heap->mem_type) && 983 (!(*new_flags & TTM_PL_FLAG_CONTIGUOUS) || 984 (mem->placement & TTM_PL_FLAG_CONTIGUOUS))) 985 return true; 986 } 987 return false; 988 } 989 990 bool ttm_bo_mem_compat(struct ttm_placement *placement, 991 struct ttm_resource *mem, 992 uint32_t *new_flags) 993 { 994 if (ttm_bo_places_compat(placement->placement, placement->num_placement, 995 mem, new_flags)) 996 return true; 997 998 if ((placement->busy_placement != placement->placement || 999 placement->num_busy_placement > placement->num_placement) && 1000 ttm_bo_places_compat(placement->busy_placement, 1001 placement->num_busy_placement, 1002 mem, new_flags)) 1003 return true; 1004 1005 return false; 1006 } 1007 EXPORT_SYMBOL(ttm_bo_mem_compat); 1008 1009 int ttm_bo_validate(struct ttm_buffer_object *bo, 1010 struct ttm_placement *placement, 1011 struct ttm_operation_ctx *ctx) 1012 { 1013 int ret; 1014 uint32_t new_flags; 1015 1016 dma_resv_assert_held(bo->base.resv); 1017 1018 /* 1019 * Remove the backing store if no placement is given. 1020 */ 1021 if (!placement->num_placement && !placement->num_busy_placement) { 1022 ret = ttm_bo_pipeline_gutting(bo); 1023 if (ret) 1024 return ret; 1025 1026 return ttm_tt_create(bo, false); 1027 } 1028 1029 /* 1030 * Check whether we need to move buffer. 1031 */ 1032 if (!ttm_bo_mem_compat(placement, &bo->mem, &new_flags)) { 1033 ret = ttm_bo_move_buffer(bo, placement, ctx); 1034 if (ret) 1035 return ret; 1036 } 1037 /* 1038 * We might need to add a TTM. 1039 */ 1040 if (bo->mem.mem_type == TTM_PL_SYSTEM) { 1041 ret = ttm_tt_create(bo, true); 1042 if (ret) 1043 return ret; 1044 } 1045 return 0; 1046 } 1047 EXPORT_SYMBOL(ttm_bo_validate); 1048 1049 int ttm_bo_init_reserved(struct ttm_device *bdev, 1050 struct ttm_buffer_object *bo, 1051 size_t size, 1052 enum ttm_bo_type type, 1053 struct ttm_placement *placement, 1054 uint32_t page_alignment, 1055 struct ttm_operation_ctx *ctx, 1056 struct sg_table *sg, 1057 struct dma_resv *resv, 1058 void (*destroy) (struct ttm_buffer_object *)) 1059 { 1060 bool locked; 1061 int ret = 0; 1062 1063 bo->destroy = destroy ? destroy : ttm_bo_default_destroy; 1064 1065 kref_init(&bo->kref); 1066 INIT_LIST_HEAD(&bo->lru); 1067 INIT_LIST_HEAD(&bo->ddestroy); 1068 INIT_LIST_HEAD(&bo->swap); 1069 bo->bdev = bdev; 1070 bo->type = type; 1071 bo->mem.mem_type = TTM_PL_SYSTEM; 1072 bo->mem.num_pages = PAGE_ALIGN(size) >> PAGE_SHIFT; 1073 bo->mem.mm_node = NULL; 1074 bo->mem.page_alignment = page_alignment; 1075 bo->mem.bus.offset = 0; 1076 bo->mem.bus.addr = NULL; 1077 bo->moving = NULL; 1078 bo->mem.placement = 0; 1079 bo->pin_count = 0; 1080 bo->sg = sg; 1081 if (resv) { 1082 bo->base.resv = resv; 1083 dma_resv_assert_held(bo->base.resv); 1084 } else { 1085 bo->base.resv = &bo->base._resv; 1086 } 1087 if (!ttm_bo_uses_embedded_gem_object(bo)) { 1088 /* 1089 * bo.base is not initialized, so we have to setup the 1090 * struct elements we want use regardless. 1091 */ 1092 bo->base.size = size; 1093 dma_resv_init(&bo->base._resv); 1094 drm_vma_node_reset(&bo->base.vma_node); 1095 } 1096 atomic_inc(&ttm_glob.bo_count); 1097 1098 /* 1099 * For ttm_bo_type_device buffers, allocate 1100 * address space from the device. 1101 */ 1102 if (bo->type == ttm_bo_type_device || 1103 bo->type == ttm_bo_type_sg) 1104 ret = drm_vma_offset_add(bdev->vma_manager, &bo->base.vma_node, 1105 bo->mem.num_pages); 1106 1107 /* passed reservation objects should already be locked, 1108 * since otherwise lockdep will be angered in radeon. 1109 */ 1110 if (!resv) { 1111 locked = dma_resv_trylock(bo->base.resv); 1112 WARN_ON(!locked); 1113 } 1114 1115 if (likely(!ret)) 1116 ret = ttm_bo_validate(bo, placement, ctx); 1117 1118 if (unlikely(ret)) { 1119 if (!resv) 1120 ttm_bo_unreserve(bo); 1121 1122 ttm_bo_put(bo); 1123 return ret; 1124 } 1125 1126 ttm_bo_move_to_lru_tail_unlocked(bo); 1127 1128 return ret; 1129 } 1130 EXPORT_SYMBOL(ttm_bo_init_reserved); 1131 1132 int ttm_bo_init(struct ttm_device *bdev, 1133 struct ttm_buffer_object *bo, 1134 size_t size, 1135 enum ttm_bo_type type, 1136 struct ttm_placement *placement, 1137 uint32_t page_alignment, 1138 bool interruptible, 1139 struct sg_table *sg, 1140 struct dma_resv *resv, 1141 void (*destroy) (struct ttm_buffer_object *)) 1142 { 1143 struct ttm_operation_ctx ctx = { interruptible, false }; 1144 int ret; 1145 1146 ret = ttm_bo_init_reserved(bdev, bo, size, type, placement, 1147 page_alignment, &ctx, sg, resv, destroy); 1148 if (ret) 1149 return ret; 1150 1151 if (!resv) 1152 ttm_bo_unreserve(bo); 1153 1154 return 0; 1155 } 1156 EXPORT_SYMBOL(ttm_bo_init); 1157 1158 /* 1159 * buffer object vm functions. 1160 */ 1161 1162 void ttm_bo_unmap_virtual(struct ttm_buffer_object *bo) 1163 { 1164 struct ttm_device *bdev = bo->bdev; 1165 1166 drm_vma_node_unmap(&bo->base.vma_node, bdev->dev_mapping); 1167 ttm_mem_io_free(bdev, &bo->mem); 1168 } 1169 EXPORT_SYMBOL(ttm_bo_unmap_virtual); 1170 1171 int ttm_bo_wait(struct ttm_buffer_object *bo, 1172 bool interruptible, bool no_wait) 1173 { 1174 long timeout = 15 * HZ; 1175 1176 if (no_wait) { 1177 if (dma_resv_test_signaled_rcu(bo->base.resv, true)) 1178 return 0; 1179 else 1180 return -EBUSY; 1181 } 1182 1183 timeout = dma_resv_wait_timeout_rcu(bo->base.resv, true, 1184 interruptible, timeout); 1185 if (timeout < 0) 1186 return timeout; 1187 1188 if (timeout == 0) 1189 return -EBUSY; 1190 1191 dma_resv_add_excl_fence(bo->base.resv, NULL); 1192 return 0; 1193 } 1194 EXPORT_SYMBOL(ttm_bo_wait); 1195 1196 /* 1197 * A buffer object shrink method that tries to swap out the first 1198 * buffer object on the bo_global::swap_lru list. 1199 */ 1200 int ttm_bo_swapout(struct ttm_operation_ctx *ctx, gfp_t gfp_flags) 1201 { 1202 struct ttm_global *glob = &ttm_glob; 1203 struct ttm_buffer_object *bo; 1204 int ret = -EBUSY; 1205 bool locked; 1206 unsigned i; 1207 1208 spin_lock(&glob->lru_lock); 1209 for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) { 1210 list_for_each_entry(bo, &glob->swap_lru[i], swap) { 1211 if (!ttm_bo_evict_swapout_allowable(bo, ctx, &locked, 1212 NULL)) 1213 continue; 1214 1215 if (!ttm_bo_get_unless_zero(bo)) { 1216 if (locked) 1217 dma_resv_unlock(bo->base.resv); 1218 continue; 1219 } 1220 1221 ret = 0; 1222 break; 1223 } 1224 if (!ret) 1225 break; 1226 } 1227 1228 if (ret) { 1229 spin_unlock(&glob->lru_lock); 1230 return ret; 1231 } 1232 1233 if (bo->deleted) { 1234 ret = ttm_bo_cleanup_refs(bo, false, false, locked); 1235 ttm_bo_put(bo); 1236 return ret; 1237 } 1238 1239 ttm_bo_del_from_lru(bo); 1240 spin_unlock(&glob->lru_lock); 1241 1242 /** 1243 * Move to system cached 1244 */ 1245 1246 if (bo->mem.mem_type != TTM_PL_SYSTEM) { 1247 struct ttm_operation_ctx ctx = { false, false }; 1248 struct ttm_resource evict_mem; 1249 struct ttm_place hop; 1250 1251 memset(&hop, 0, sizeof(hop)); 1252 1253 evict_mem = bo->mem; 1254 evict_mem.mm_node = NULL; 1255 evict_mem.placement = 0; 1256 evict_mem.mem_type = TTM_PL_SYSTEM; 1257 1258 ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, &ctx, &hop); 1259 if (unlikely(ret != 0)) { 1260 WARN(ret == -EMULTIHOP, "Unexpected multihop in swaput - likely driver bug.\n"); 1261 goto out; 1262 } 1263 } 1264 1265 /** 1266 * Make sure BO is idle. 1267 */ 1268 1269 ret = ttm_bo_wait(bo, false, false); 1270 if (unlikely(ret != 0)) 1271 goto out; 1272 1273 ttm_bo_unmap_virtual(bo); 1274 1275 /** 1276 * Swap out. Buffer will be swapped in again as soon as 1277 * anyone tries to access a ttm page. 1278 */ 1279 1280 if (bo->bdev->funcs->swap_notify) 1281 bo->bdev->funcs->swap_notify(bo); 1282 1283 ret = ttm_tt_swapout(bo->bdev, bo->ttm, gfp_flags); 1284 out: 1285 1286 /** 1287 * 1288 * Unreserve without putting on LRU to avoid swapping out an 1289 * already swapped buffer. 1290 */ 1291 if (locked) 1292 dma_resv_unlock(bo->base.resv); 1293 ttm_bo_put(bo); 1294 return ret; 1295 } 1296 EXPORT_SYMBOL(ttm_bo_swapout); 1297 1298 void ttm_bo_tt_destroy(struct ttm_buffer_object *bo) 1299 { 1300 if (bo->ttm == NULL) 1301 return; 1302 1303 ttm_tt_destroy(bo->bdev, bo->ttm); 1304 bo->ttm = NULL; 1305 } 1306