1 /* SPDX-License-Identifier: GPL-2.0 OR MIT */ 2 /************************************************************************** 3 * 4 * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA 5 * All Rights Reserved. 6 * 7 * Permission is hereby granted, free of charge, to any person obtaining a 8 * copy of this software and associated documentation files (the 9 * "Software"), to deal in the Software without restriction, including 10 * without limitation the rights to use, copy, modify, merge, publish, 11 * distribute, sub license, and/or sell copies of the Software, and to 12 * permit persons to whom the Software is furnished to do so, subject to 13 * the following conditions: 14 * 15 * The above copyright notice and this permission notice (including the 16 * next paragraph) shall be included in all copies or substantial portions 17 * of the Software. 18 * 19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 21 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 22 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 23 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 24 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 25 * USE OR OTHER DEALINGS IN THE SOFTWARE. 26 * 27 **************************************************************************/ 28 /* 29 * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com> 30 */ 31 32 #define pr_fmt(fmt) "[TTM] " fmt 33 34 #include <drm/ttm/ttm_module.h> 35 #include <drm/ttm/ttm_bo_driver.h> 36 #include <drm/ttm/ttm_placement.h> 37 #include <linux/jiffies.h> 38 #include <linux/slab.h> 39 #include <linux/sched.h> 40 #include <linux/mm.h> 41 #include <linux/file.h> 42 #include <linux/module.h> 43 #include <linux/atomic.h> 44 #include <linux/dma-resv.h> 45 46 static void ttm_bo_global_kobj_release(struct kobject *kobj); 47 48 /** 49 * ttm_global_mutex - protecting the global BO state 50 */ 51 DEFINE_MUTEX(ttm_global_mutex); 52 unsigned ttm_bo_glob_use_count; 53 struct ttm_bo_global ttm_bo_glob; 54 EXPORT_SYMBOL(ttm_bo_glob); 55 56 static struct attribute ttm_bo_count = { 57 .name = "bo_count", 58 .mode = S_IRUGO 59 }; 60 61 /* default destructor */ 62 static void ttm_bo_default_destroy(struct ttm_buffer_object *bo) 63 { 64 kfree(bo); 65 } 66 67 static inline int ttm_mem_type_from_place(const struct ttm_place *place, 68 uint32_t *mem_type) 69 { 70 int pos; 71 72 pos = ffs(place->flags & TTM_PL_MASK_MEM); 73 if (unlikely(!pos)) 74 return -EINVAL; 75 76 *mem_type = pos - 1; 77 return 0; 78 } 79 80 static void ttm_mem_type_debug(struct ttm_bo_device *bdev, struct drm_printer *p, 81 int mem_type) 82 { 83 struct ttm_mem_type_manager *man = &bdev->man[mem_type]; 84 85 drm_printf(p, " has_type: %d\n", man->has_type); 86 drm_printf(p, " use_type: %d\n", man->use_type); 87 drm_printf(p, " flags: 0x%08X\n", man->flags); 88 drm_printf(p, " size: %llu\n", man->size); 89 drm_printf(p, " available_caching: 0x%08X\n", man->available_caching); 90 drm_printf(p, " default_caching: 0x%08X\n", man->default_caching); 91 if (mem_type != TTM_PL_SYSTEM) 92 (*man->func->debug)(man, p); 93 } 94 95 static void ttm_bo_mem_space_debug(struct ttm_buffer_object *bo, 96 struct ttm_placement *placement) 97 { 98 struct drm_printer p = drm_debug_printer(TTM_PFX); 99 int i, ret, mem_type; 100 101 drm_printf(&p, "No space for %p (%lu pages, %luK, %luM)\n", 102 bo, bo->mem.num_pages, bo->mem.size >> 10, 103 bo->mem.size >> 20); 104 for (i = 0; i < placement->num_placement; i++) { 105 ret = ttm_mem_type_from_place(&placement->placement[i], 106 &mem_type); 107 if (ret) 108 return; 109 drm_printf(&p, " placement[%d]=0x%08X (%d)\n", 110 i, placement->placement[i].flags, mem_type); 111 ttm_mem_type_debug(bo->bdev, &p, mem_type); 112 } 113 } 114 115 static ssize_t ttm_bo_global_show(struct kobject *kobj, 116 struct attribute *attr, 117 char *buffer) 118 { 119 struct ttm_bo_global *glob = 120 container_of(kobj, struct ttm_bo_global, kobj); 121 122 return snprintf(buffer, PAGE_SIZE, "%d\n", 123 atomic_read(&glob->bo_count)); 124 } 125 126 static struct attribute *ttm_bo_global_attrs[] = { 127 &ttm_bo_count, 128 NULL 129 }; 130 131 static const struct sysfs_ops ttm_bo_global_ops = { 132 .show = &ttm_bo_global_show 133 }; 134 135 static struct kobj_type ttm_bo_glob_kobj_type = { 136 .release = &ttm_bo_global_kobj_release, 137 .sysfs_ops = &ttm_bo_global_ops, 138 .default_attrs = ttm_bo_global_attrs 139 }; 140 141 142 static inline uint32_t ttm_bo_type_flags(unsigned type) 143 { 144 return 1 << (type); 145 } 146 147 static void ttm_bo_add_mem_to_lru(struct ttm_buffer_object *bo, 148 struct ttm_mem_reg *mem) 149 { 150 struct ttm_bo_device *bdev = bo->bdev; 151 struct ttm_mem_type_manager *man; 152 153 if (!list_empty(&bo->lru)) 154 return; 155 156 if (mem->placement & TTM_PL_FLAG_NO_EVICT) 157 return; 158 159 man = &bdev->man[mem->mem_type]; 160 list_add_tail(&bo->lru, &man->lru[bo->priority]); 161 162 if (!(man->flags & TTM_MEMTYPE_FLAG_FIXED) && bo->ttm && 163 !(bo->ttm->page_flags & (TTM_PAGE_FLAG_SG | 164 TTM_PAGE_FLAG_SWAPPED))) { 165 list_add_tail(&bo->swap, &ttm_bo_glob.swap_lru[bo->priority]); 166 } 167 } 168 169 static void ttm_bo_del_from_lru(struct ttm_buffer_object *bo) 170 { 171 struct ttm_bo_device *bdev = bo->bdev; 172 bool notify = false; 173 174 if (!list_empty(&bo->swap)) { 175 list_del_init(&bo->swap); 176 notify = true; 177 } 178 if (!list_empty(&bo->lru)) { 179 list_del_init(&bo->lru); 180 notify = true; 181 } 182 183 if (notify && bdev->driver->del_from_lru_notify) 184 bdev->driver->del_from_lru_notify(bo); 185 } 186 187 static void ttm_bo_bulk_move_set_pos(struct ttm_lru_bulk_move_pos *pos, 188 struct ttm_buffer_object *bo) 189 { 190 if (!pos->first) 191 pos->first = bo; 192 pos->last = bo; 193 } 194 195 void ttm_bo_move_to_lru_tail(struct ttm_buffer_object *bo, 196 struct ttm_lru_bulk_move *bulk) 197 { 198 dma_resv_assert_held(bo->base.resv); 199 200 ttm_bo_del_from_lru(bo); 201 ttm_bo_add_mem_to_lru(bo, &bo->mem); 202 203 if (bulk && !(bo->mem.placement & TTM_PL_FLAG_NO_EVICT)) { 204 switch (bo->mem.mem_type) { 205 case TTM_PL_TT: 206 ttm_bo_bulk_move_set_pos(&bulk->tt[bo->priority], bo); 207 break; 208 209 case TTM_PL_VRAM: 210 ttm_bo_bulk_move_set_pos(&bulk->vram[bo->priority], bo); 211 break; 212 } 213 if (bo->ttm && !(bo->ttm->page_flags & 214 (TTM_PAGE_FLAG_SG | TTM_PAGE_FLAG_SWAPPED))) 215 ttm_bo_bulk_move_set_pos(&bulk->swap[bo->priority], bo); 216 } 217 } 218 EXPORT_SYMBOL(ttm_bo_move_to_lru_tail); 219 220 void ttm_bo_bulk_move_lru_tail(struct ttm_lru_bulk_move *bulk) 221 { 222 unsigned i; 223 224 for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) { 225 struct ttm_lru_bulk_move_pos *pos = &bulk->tt[i]; 226 struct ttm_mem_type_manager *man; 227 228 if (!pos->first) 229 continue; 230 231 dma_resv_assert_held(pos->first->base.resv); 232 dma_resv_assert_held(pos->last->base.resv); 233 234 man = &pos->first->bdev->man[TTM_PL_TT]; 235 list_bulk_move_tail(&man->lru[i], &pos->first->lru, 236 &pos->last->lru); 237 } 238 239 for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) { 240 struct ttm_lru_bulk_move_pos *pos = &bulk->vram[i]; 241 struct ttm_mem_type_manager *man; 242 243 if (!pos->first) 244 continue; 245 246 dma_resv_assert_held(pos->first->base.resv); 247 dma_resv_assert_held(pos->last->base.resv); 248 249 man = &pos->first->bdev->man[TTM_PL_VRAM]; 250 list_bulk_move_tail(&man->lru[i], &pos->first->lru, 251 &pos->last->lru); 252 } 253 254 for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) { 255 struct ttm_lru_bulk_move_pos *pos = &bulk->swap[i]; 256 struct list_head *lru; 257 258 if (!pos->first) 259 continue; 260 261 dma_resv_assert_held(pos->first->base.resv); 262 dma_resv_assert_held(pos->last->base.resv); 263 264 lru = &ttm_bo_glob.swap_lru[i]; 265 list_bulk_move_tail(lru, &pos->first->swap, &pos->last->swap); 266 } 267 } 268 EXPORT_SYMBOL(ttm_bo_bulk_move_lru_tail); 269 270 static int ttm_bo_handle_move_mem(struct ttm_buffer_object *bo, 271 struct ttm_mem_reg *mem, bool evict, 272 struct ttm_operation_ctx *ctx) 273 { 274 struct ttm_bo_device *bdev = bo->bdev; 275 struct ttm_mem_type_manager *old_man = &bdev->man[bo->mem.mem_type]; 276 struct ttm_mem_type_manager *new_man = &bdev->man[mem->mem_type]; 277 int ret; 278 279 ret = ttm_mem_io_lock(old_man, true); 280 if (unlikely(ret != 0)) 281 goto out_err; 282 ttm_bo_unmap_virtual_locked(bo); 283 ttm_mem_io_unlock(old_man); 284 285 /* 286 * Create and bind a ttm if required. 287 */ 288 289 if (!(new_man->flags & TTM_MEMTYPE_FLAG_FIXED)) { 290 bool zero = !(old_man->flags & TTM_MEMTYPE_FLAG_FIXED); 291 292 ret = ttm_tt_create(bo, zero); 293 if (ret) 294 goto out_err; 295 296 ret = ttm_tt_set_placement_caching(bo->ttm, mem->placement); 297 if (ret) 298 goto out_err; 299 300 if (mem->mem_type != TTM_PL_SYSTEM) { 301 ret = ttm_tt_bind(bo->ttm, mem, ctx); 302 if (ret) 303 goto out_err; 304 } 305 306 if (bo->mem.mem_type == TTM_PL_SYSTEM) { 307 if (bdev->driver->move_notify) 308 bdev->driver->move_notify(bo, evict, mem); 309 bo->mem = *mem; 310 goto moved; 311 } 312 } 313 314 if (bdev->driver->move_notify) 315 bdev->driver->move_notify(bo, evict, mem); 316 317 if (!(old_man->flags & TTM_MEMTYPE_FLAG_FIXED) && 318 !(new_man->flags & TTM_MEMTYPE_FLAG_FIXED)) 319 ret = ttm_bo_move_ttm(bo, ctx, mem); 320 else if (bdev->driver->move) 321 ret = bdev->driver->move(bo, evict, ctx, mem); 322 else 323 ret = ttm_bo_move_memcpy(bo, ctx, mem); 324 325 if (ret) { 326 if (bdev->driver->move_notify) { 327 swap(*mem, bo->mem); 328 bdev->driver->move_notify(bo, false, mem); 329 swap(*mem, bo->mem); 330 } 331 332 goto out_err; 333 } 334 335 moved: 336 bo->evicted = false; 337 338 ctx->bytes_moved += bo->num_pages << PAGE_SHIFT; 339 return 0; 340 341 out_err: 342 new_man = &bdev->man[bo->mem.mem_type]; 343 if (new_man->flags & TTM_MEMTYPE_FLAG_FIXED) { 344 ttm_tt_destroy(bo->ttm); 345 bo->ttm = NULL; 346 } 347 348 return ret; 349 } 350 351 /** 352 * Call bo::reserved. 353 * Will release GPU memory type usage on destruction. 354 * This is the place to put in driver specific hooks to release 355 * driver private resources. 356 * Will release the bo::reserved lock. 357 */ 358 359 static void ttm_bo_cleanup_memtype_use(struct ttm_buffer_object *bo) 360 { 361 if (bo->bdev->driver->move_notify) 362 bo->bdev->driver->move_notify(bo, false, NULL); 363 364 ttm_tt_destroy(bo->ttm); 365 bo->ttm = NULL; 366 ttm_bo_mem_put(bo, &bo->mem); 367 } 368 369 static int ttm_bo_individualize_resv(struct ttm_buffer_object *bo) 370 { 371 int r; 372 373 if (bo->base.resv == &bo->base._resv) 374 return 0; 375 376 BUG_ON(!dma_resv_trylock(&bo->base._resv)); 377 378 r = dma_resv_copy_fences(&bo->base._resv, bo->base.resv); 379 dma_resv_unlock(&bo->base._resv); 380 if (r) 381 return r; 382 383 if (bo->type != ttm_bo_type_sg) { 384 /* This works because the BO is about to be destroyed and nobody 385 * reference it any more. The only tricky case is the trylock on 386 * the resv object while holding the lru_lock. 387 */ 388 spin_lock(&ttm_bo_glob.lru_lock); 389 bo->base.resv = &bo->base._resv; 390 spin_unlock(&ttm_bo_glob.lru_lock); 391 } 392 393 return r; 394 } 395 396 static void ttm_bo_flush_all_fences(struct ttm_buffer_object *bo) 397 { 398 struct dma_resv *resv = &bo->base._resv; 399 struct dma_resv_list *fobj; 400 struct dma_fence *fence; 401 int i; 402 403 rcu_read_lock(); 404 fobj = rcu_dereference(resv->fence); 405 fence = rcu_dereference(resv->fence_excl); 406 if (fence && !fence->ops->signaled) 407 dma_fence_enable_sw_signaling(fence); 408 409 for (i = 0; fobj && i < fobj->shared_count; ++i) { 410 fence = rcu_dereference(fobj->shared[i]); 411 412 if (!fence->ops->signaled) 413 dma_fence_enable_sw_signaling(fence); 414 } 415 rcu_read_unlock(); 416 } 417 418 /** 419 * function ttm_bo_cleanup_refs 420 * If bo idle, remove from lru lists, and unref. 421 * If not idle, block if possible. 422 * 423 * Must be called with lru_lock and reservation held, this function 424 * will drop the lru lock and optionally the reservation lock before returning. 425 * 426 * @interruptible Any sleeps should occur interruptibly. 427 * @no_wait_gpu Never wait for gpu. Return -EBUSY instead. 428 * @unlock_resv Unlock the reservation lock as well. 429 */ 430 431 static int ttm_bo_cleanup_refs(struct ttm_buffer_object *bo, 432 bool interruptible, bool no_wait_gpu, 433 bool unlock_resv) 434 { 435 struct dma_resv *resv = &bo->base._resv; 436 int ret; 437 438 if (dma_resv_test_signaled_rcu(resv, true)) 439 ret = 0; 440 else 441 ret = -EBUSY; 442 443 if (ret && !no_wait_gpu) { 444 long lret; 445 446 if (unlock_resv) 447 dma_resv_unlock(bo->base.resv); 448 spin_unlock(&ttm_bo_glob.lru_lock); 449 450 lret = dma_resv_wait_timeout_rcu(resv, true, interruptible, 451 30 * HZ); 452 453 if (lret < 0) 454 return lret; 455 else if (lret == 0) 456 return -EBUSY; 457 458 spin_lock(&ttm_bo_glob.lru_lock); 459 if (unlock_resv && !dma_resv_trylock(bo->base.resv)) { 460 /* 461 * We raced, and lost, someone else holds the reservation now, 462 * and is probably busy in ttm_bo_cleanup_memtype_use. 463 * 464 * Even if it's not the case, because we finished waiting any 465 * delayed destruction would succeed, so just return success 466 * here. 467 */ 468 spin_unlock(&ttm_bo_glob.lru_lock); 469 return 0; 470 } 471 ret = 0; 472 } 473 474 if (ret || unlikely(list_empty(&bo->ddestroy))) { 475 if (unlock_resv) 476 dma_resv_unlock(bo->base.resv); 477 spin_unlock(&ttm_bo_glob.lru_lock); 478 return ret; 479 } 480 481 ttm_bo_del_from_lru(bo); 482 list_del_init(&bo->ddestroy); 483 spin_unlock(&ttm_bo_glob.lru_lock); 484 ttm_bo_cleanup_memtype_use(bo); 485 486 if (unlock_resv) 487 dma_resv_unlock(bo->base.resv); 488 489 ttm_bo_put(bo); 490 491 return 0; 492 } 493 494 /** 495 * Traverse the delayed list, and call ttm_bo_cleanup_refs on all 496 * encountered buffers. 497 */ 498 static bool ttm_bo_delayed_delete(struct ttm_bo_device *bdev, bool remove_all) 499 { 500 struct ttm_bo_global *glob = &ttm_bo_glob; 501 struct list_head removed; 502 bool empty; 503 504 INIT_LIST_HEAD(&removed); 505 506 spin_lock(&glob->lru_lock); 507 while (!list_empty(&bdev->ddestroy)) { 508 struct ttm_buffer_object *bo; 509 510 bo = list_first_entry(&bdev->ddestroy, struct ttm_buffer_object, 511 ddestroy); 512 list_move_tail(&bo->ddestroy, &removed); 513 if (!ttm_bo_get_unless_zero(bo)) 514 continue; 515 516 if (remove_all || bo->base.resv != &bo->base._resv) { 517 spin_unlock(&glob->lru_lock); 518 dma_resv_lock(bo->base.resv, NULL); 519 520 spin_lock(&glob->lru_lock); 521 ttm_bo_cleanup_refs(bo, false, !remove_all, true); 522 523 } else if (dma_resv_trylock(bo->base.resv)) { 524 ttm_bo_cleanup_refs(bo, false, !remove_all, true); 525 } else { 526 spin_unlock(&glob->lru_lock); 527 } 528 529 ttm_bo_put(bo); 530 spin_lock(&glob->lru_lock); 531 } 532 list_splice_tail(&removed, &bdev->ddestroy); 533 empty = list_empty(&bdev->ddestroy); 534 spin_unlock(&glob->lru_lock); 535 536 return empty; 537 } 538 539 static void ttm_bo_delayed_workqueue(struct work_struct *work) 540 { 541 struct ttm_bo_device *bdev = 542 container_of(work, struct ttm_bo_device, wq.work); 543 544 if (!ttm_bo_delayed_delete(bdev, false)) 545 schedule_delayed_work(&bdev->wq, 546 ((HZ / 100) < 1) ? 1 : HZ / 100); 547 } 548 549 static void ttm_bo_release(struct kref *kref) 550 { 551 struct ttm_buffer_object *bo = 552 container_of(kref, struct ttm_buffer_object, kref); 553 struct ttm_bo_device *bdev = bo->bdev; 554 struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type]; 555 size_t acc_size = bo->acc_size; 556 int ret; 557 558 if (!bo->deleted) { 559 ret = ttm_bo_individualize_resv(bo); 560 if (ret) { 561 /* Last resort, if we fail to allocate memory for the 562 * fences block for the BO to become idle 563 */ 564 dma_resv_wait_timeout_rcu(bo->base.resv, true, false, 565 30 * HZ); 566 } 567 568 if (bo->bdev->driver->release_notify) 569 bo->bdev->driver->release_notify(bo); 570 571 drm_vma_offset_remove(bdev->vma_manager, &bo->base.vma_node); 572 ttm_mem_io_lock(man, false); 573 ttm_mem_io_free_vm(bo); 574 ttm_mem_io_unlock(man); 575 } 576 577 if (!dma_resv_test_signaled_rcu(bo->base.resv, true) || 578 !dma_resv_trylock(bo->base.resv)) { 579 /* The BO is not idle, resurrect it for delayed destroy */ 580 ttm_bo_flush_all_fences(bo); 581 bo->deleted = true; 582 583 spin_lock(&ttm_bo_glob.lru_lock); 584 585 /* 586 * Make NO_EVICT bos immediately available to 587 * shrinkers, now that they are queued for 588 * destruction. 589 */ 590 if (bo->mem.placement & TTM_PL_FLAG_NO_EVICT) { 591 bo->mem.placement &= ~TTM_PL_FLAG_NO_EVICT; 592 ttm_bo_del_from_lru(bo); 593 ttm_bo_add_mem_to_lru(bo, &bo->mem); 594 } 595 596 kref_init(&bo->kref); 597 list_add_tail(&bo->ddestroy, &bdev->ddestroy); 598 spin_unlock(&ttm_bo_glob.lru_lock); 599 600 schedule_delayed_work(&bdev->wq, 601 ((HZ / 100) < 1) ? 1 : HZ / 100); 602 return; 603 } 604 605 spin_lock(&ttm_bo_glob.lru_lock); 606 ttm_bo_del_from_lru(bo); 607 list_del(&bo->ddestroy); 608 spin_unlock(&ttm_bo_glob.lru_lock); 609 610 ttm_bo_cleanup_memtype_use(bo); 611 dma_resv_unlock(bo->base.resv); 612 613 atomic_dec(&ttm_bo_glob.bo_count); 614 dma_fence_put(bo->moving); 615 if (!ttm_bo_uses_embedded_gem_object(bo)) 616 dma_resv_fini(&bo->base._resv); 617 bo->destroy(bo); 618 ttm_mem_global_free(&ttm_mem_glob, acc_size); 619 } 620 621 void ttm_bo_put(struct ttm_buffer_object *bo) 622 { 623 kref_put(&bo->kref, ttm_bo_release); 624 } 625 EXPORT_SYMBOL(ttm_bo_put); 626 627 int ttm_bo_lock_delayed_workqueue(struct ttm_bo_device *bdev) 628 { 629 return cancel_delayed_work_sync(&bdev->wq); 630 } 631 EXPORT_SYMBOL(ttm_bo_lock_delayed_workqueue); 632 633 void ttm_bo_unlock_delayed_workqueue(struct ttm_bo_device *bdev, int resched) 634 { 635 if (resched) 636 schedule_delayed_work(&bdev->wq, 637 ((HZ / 100) < 1) ? 1 : HZ / 100); 638 } 639 EXPORT_SYMBOL(ttm_bo_unlock_delayed_workqueue); 640 641 static int ttm_bo_evict(struct ttm_buffer_object *bo, 642 struct ttm_operation_ctx *ctx) 643 { 644 struct ttm_bo_device *bdev = bo->bdev; 645 struct ttm_mem_reg evict_mem; 646 struct ttm_placement placement; 647 int ret = 0; 648 649 dma_resv_assert_held(bo->base.resv); 650 651 placement.num_placement = 0; 652 placement.num_busy_placement = 0; 653 bdev->driver->evict_flags(bo, &placement); 654 655 if (!placement.num_placement && !placement.num_busy_placement) 656 return ttm_bo_pipeline_gutting(bo); 657 658 evict_mem = bo->mem; 659 evict_mem.mm_node = NULL; 660 evict_mem.bus.io_reserved_vm = false; 661 evict_mem.bus.io_reserved_count = 0; 662 663 ret = ttm_bo_mem_space(bo, &placement, &evict_mem, ctx); 664 if (ret) { 665 if (ret != -ERESTARTSYS) { 666 pr_err("Failed to find memory space for buffer 0x%p eviction\n", 667 bo); 668 ttm_bo_mem_space_debug(bo, &placement); 669 } 670 goto out; 671 } 672 673 ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, ctx); 674 if (unlikely(ret)) { 675 if (ret != -ERESTARTSYS) 676 pr_err("Buffer eviction failed\n"); 677 ttm_bo_mem_put(bo, &evict_mem); 678 goto out; 679 } 680 bo->evicted = true; 681 out: 682 return ret; 683 } 684 685 bool ttm_bo_eviction_valuable(struct ttm_buffer_object *bo, 686 const struct ttm_place *place) 687 { 688 /* Don't evict this BO if it's outside of the 689 * requested placement range 690 */ 691 if (place->fpfn >= (bo->mem.start + bo->mem.size) || 692 (place->lpfn && place->lpfn <= bo->mem.start)) 693 return false; 694 695 return true; 696 } 697 EXPORT_SYMBOL(ttm_bo_eviction_valuable); 698 699 /** 700 * Check the target bo is allowable to be evicted or swapout, including cases: 701 * 702 * a. if share same reservation object with ctx->resv, have assumption 703 * reservation objects should already be locked, so not lock again and 704 * return true directly when either the opreation allow_reserved_eviction 705 * or the target bo already is in delayed free list; 706 * 707 * b. Otherwise, trylock it. 708 */ 709 static bool ttm_bo_evict_swapout_allowable(struct ttm_buffer_object *bo, 710 struct ttm_operation_ctx *ctx, bool *locked, bool *busy) 711 { 712 bool ret = false; 713 714 if (bo->base.resv == ctx->resv) { 715 dma_resv_assert_held(bo->base.resv); 716 if (ctx->flags & TTM_OPT_FLAG_ALLOW_RES_EVICT) 717 ret = true; 718 *locked = false; 719 if (busy) 720 *busy = false; 721 } else { 722 ret = dma_resv_trylock(bo->base.resv); 723 *locked = ret; 724 if (busy) 725 *busy = !ret; 726 } 727 728 return ret; 729 } 730 731 /** 732 * ttm_mem_evict_wait_busy - wait for a busy BO to become available 733 * 734 * @busy_bo: BO which couldn't be locked with trylock 735 * @ctx: operation context 736 * @ticket: acquire ticket 737 * 738 * Try to lock a busy buffer object to avoid failing eviction. 739 */ 740 static int ttm_mem_evict_wait_busy(struct ttm_buffer_object *busy_bo, 741 struct ttm_operation_ctx *ctx, 742 struct ww_acquire_ctx *ticket) 743 { 744 int r; 745 746 if (!busy_bo || !ticket) 747 return -EBUSY; 748 749 if (ctx->interruptible) 750 r = dma_resv_lock_interruptible(busy_bo->base.resv, 751 ticket); 752 else 753 r = dma_resv_lock(busy_bo->base.resv, ticket); 754 755 /* 756 * TODO: It would be better to keep the BO locked until allocation is at 757 * least tried one more time, but that would mean a much larger rework 758 * of TTM. 759 */ 760 if (!r) 761 dma_resv_unlock(busy_bo->base.resv); 762 763 return r == -EDEADLK ? -EBUSY : r; 764 } 765 766 static int ttm_mem_evict_first(struct ttm_bo_device *bdev, 767 uint32_t mem_type, 768 const struct ttm_place *place, 769 struct ttm_operation_ctx *ctx, 770 struct ww_acquire_ctx *ticket) 771 { 772 struct ttm_buffer_object *bo = NULL, *busy_bo = NULL; 773 struct ttm_mem_type_manager *man = &bdev->man[mem_type]; 774 bool locked = false; 775 unsigned i; 776 int ret; 777 778 spin_lock(&ttm_bo_glob.lru_lock); 779 for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) { 780 list_for_each_entry(bo, &man->lru[i], lru) { 781 bool busy; 782 783 if (!ttm_bo_evict_swapout_allowable(bo, ctx, &locked, 784 &busy)) { 785 if (busy && !busy_bo && ticket != 786 dma_resv_locking_ctx(bo->base.resv)) 787 busy_bo = bo; 788 continue; 789 } 790 791 if (place && !bdev->driver->eviction_valuable(bo, 792 place)) { 793 if (locked) 794 dma_resv_unlock(bo->base.resv); 795 continue; 796 } 797 if (!ttm_bo_get_unless_zero(bo)) { 798 if (locked) 799 dma_resv_unlock(bo->base.resv); 800 continue; 801 } 802 break; 803 } 804 805 /* If the inner loop terminated early, we have our candidate */ 806 if (&bo->lru != &man->lru[i]) 807 break; 808 809 bo = NULL; 810 } 811 812 if (!bo) { 813 if (busy_bo && !ttm_bo_get_unless_zero(busy_bo)) 814 busy_bo = NULL; 815 spin_unlock(&ttm_bo_glob.lru_lock); 816 ret = ttm_mem_evict_wait_busy(busy_bo, ctx, ticket); 817 if (busy_bo) 818 ttm_bo_put(busy_bo); 819 return ret; 820 } 821 822 if (bo->deleted) { 823 ret = ttm_bo_cleanup_refs(bo, ctx->interruptible, 824 ctx->no_wait_gpu, locked); 825 ttm_bo_put(bo); 826 return ret; 827 } 828 829 spin_unlock(&ttm_bo_glob.lru_lock); 830 831 ret = ttm_bo_evict(bo, ctx); 832 if (locked) 833 ttm_bo_unreserve(bo); 834 835 ttm_bo_put(bo); 836 return ret; 837 } 838 839 static int ttm_bo_mem_get(struct ttm_buffer_object *bo, 840 const struct ttm_place *place, 841 struct ttm_mem_reg *mem) 842 { 843 struct ttm_mem_type_manager *man = &bo->bdev->man[mem->mem_type]; 844 845 mem->mm_node = NULL; 846 if (!man->func || !man->func->get_node) 847 return 0; 848 849 return man->func->get_node(man, bo, place, mem); 850 } 851 852 void ttm_bo_mem_put(struct ttm_buffer_object *bo, struct ttm_mem_reg *mem) 853 { 854 struct ttm_mem_type_manager *man = &bo->bdev->man[mem->mem_type]; 855 856 if (!man->func || !man->func->put_node) 857 return; 858 859 man->func->put_node(man, mem); 860 mem->mm_node = NULL; 861 mem->mem_type = TTM_PL_SYSTEM; 862 } 863 EXPORT_SYMBOL(ttm_bo_mem_put); 864 865 /** 866 * Add the last move fence to the BO and reserve a new shared slot. 867 */ 868 static int ttm_bo_add_move_fence(struct ttm_buffer_object *bo, 869 struct ttm_mem_type_manager *man, 870 struct ttm_mem_reg *mem, 871 bool no_wait_gpu) 872 { 873 struct dma_fence *fence; 874 int ret; 875 876 spin_lock(&man->move_lock); 877 fence = dma_fence_get(man->move); 878 spin_unlock(&man->move_lock); 879 880 if (!fence) 881 return 0; 882 883 if (no_wait_gpu) 884 return -EBUSY; 885 886 dma_resv_add_shared_fence(bo->base.resv, fence); 887 888 ret = dma_resv_reserve_shared(bo->base.resv, 1); 889 if (unlikely(ret)) { 890 dma_fence_put(fence); 891 return ret; 892 } 893 894 dma_fence_put(bo->moving); 895 bo->moving = fence; 896 return 0; 897 } 898 899 /** 900 * Repeatedly evict memory from the LRU for @mem_type until we create enough 901 * space, or we've evicted everything and there isn't enough space. 902 */ 903 static int ttm_bo_mem_force_space(struct ttm_buffer_object *bo, 904 const struct ttm_place *place, 905 struct ttm_mem_reg *mem, 906 struct ttm_operation_ctx *ctx) 907 { 908 struct ttm_bo_device *bdev = bo->bdev; 909 struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type]; 910 struct ww_acquire_ctx *ticket; 911 int ret; 912 913 ticket = dma_resv_locking_ctx(bo->base.resv); 914 do { 915 ret = ttm_bo_mem_get(bo, place, mem); 916 if (likely(!ret)) 917 break; 918 if (unlikely(ret != -ENOSPC)) 919 return ret; 920 ret = ttm_mem_evict_first(bdev, mem->mem_type, place, ctx, 921 ticket); 922 if (unlikely(ret != 0)) 923 return ret; 924 } while (1); 925 926 return ttm_bo_add_move_fence(bo, man, mem, ctx->no_wait_gpu); 927 } 928 929 static uint32_t ttm_bo_select_caching(struct ttm_mem_type_manager *man, 930 uint32_t cur_placement, 931 uint32_t proposed_placement) 932 { 933 uint32_t caching = proposed_placement & TTM_PL_MASK_CACHING; 934 uint32_t result = proposed_placement & ~TTM_PL_MASK_CACHING; 935 936 /** 937 * Keep current caching if possible. 938 */ 939 940 if ((cur_placement & caching) != 0) 941 result |= (cur_placement & caching); 942 else if ((man->default_caching & caching) != 0) 943 result |= man->default_caching; 944 else if ((TTM_PL_FLAG_CACHED & caching) != 0) 945 result |= TTM_PL_FLAG_CACHED; 946 else if ((TTM_PL_FLAG_WC & caching) != 0) 947 result |= TTM_PL_FLAG_WC; 948 else if ((TTM_PL_FLAG_UNCACHED & caching) != 0) 949 result |= TTM_PL_FLAG_UNCACHED; 950 951 return result; 952 } 953 954 static bool ttm_bo_mt_compatible(struct ttm_mem_type_manager *man, 955 uint32_t mem_type, 956 const struct ttm_place *place, 957 uint32_t *masked_placement) 958 { 959 uint32_t cur_flags = ttm_bo_type_flags(mem_type); 960 961 if ((cur_flags & place->flags & TTM_PL_MASK_MEM) == 0) 962 return false; 963 964 if ((place->flags & man->available_caching) == 0) 965 return false; 966 967 cur_flags |= (place->flags & man->available_caching); 968 969 *masked_placement = cur_flags; 970 return true; 971 } 972 973 /** 974 * ttm_bo_mem_placement - check if placement is compatible 975 * @bo: BO to find memory for 976 * @place: where to search 977 * @mem: the memory object to fill in 978 * @ctx: operation context 979 * 980 * Check if placement is compatible and fill in mem structure. 981 * Returns -EBUSY if placement won't work or negative error code. 982 * 0 when placement can be used. 983 */ 984 static int ttm_bo_mem_placement(struct ttm_buffer_object *bo, 985 const struct ttm_place *place, 986 struct ttm_mem_reg *mem, 987 struct ttm_operation_ctx *ctx) 988 { 989 struct ttm_bo_device *bdev = bo->bdev; 990 uint32_t mem_type = TTM_PL_SYSTEM; 991 struct ttm_mem_type_manager *man; 992 uint32_t cur_flags = 0; 993 int ret; 994 995 ret = ttm_mem_type_from_place(place, &mem_type); 996 if (ret) 997 return ret; 998 999 man = &bdev->man[mem_type]; 1000 if (!man->has_type || !man->use_type) 1001 return -EBUSY; 1002 1003 if (!ttm_bo_mt_compatible(man, mem_type, place, &cur_flags)) 1004 return -EBUSY; 1005 1006 cur_flags = ttm_bo_select_caching(man, bo->mem.placement, cur_flags); 1007 /* 1008 * Use the access and other non-mapping-related flag bits from 1009 * the memory placement flags to the current flags 1010 */ 1011 ttm_flag_masked(&cur_flags, place->flags, ~TTM_PL_MASK_MEMTYPE); 1012 1013 mem->mem_type = mem_type; 1014 mem->placement = cur_flags; 1015 1016 spin_lock(&ttm_bo_glob.lru_lock); 1017 ttm_bo_del_from_lru(bo); 1018 ttm_bo_add_mem_to_lru(bo, mem); 1019 spin_unlock(&ttm_bo_glob.lru_lock); 1020 1021 return 0; 1022 } 1023 1024 /** 1025 * Creates space for memory region @mem according to its type. 1026 * 1027 * This function first searches for free space in compatible memory types in 1028 * the priority order defined by the driver. If free space isn't found, then 1029 * ttm_bo_mem_force_space is attempted in priority order to evict and find 1030 * space. 1031 */ 1032 int ttm_bo_mem_space(struct ttm_buffer_object *bo, 1033 struct ttm_placement *placement, 1034 struct ttm_mem_reg *mem, 1035 struct ttm_operation_ctx *ctx) 1036 { 1037 struct ttm_bo_device *bdev = bo->bdev; 1038 bool type_found = false; 1039 int i, ret; 1040 1041 ret = dma_resv_reserve_shared(bo->base.resv, 1); 1042 if (unlikely(ret)) 1043 return ret; 1044 1045 for (i = 0; i < placement->num_placement; ++i) { 1046 const struct ttm_place *place = &placement->placement[i]; 1047 struct ttm_mem_type_manager *man; 1048 1049 ret = ttm_bo_mem_placement(bo, place, mem, ctx); 1050 if (ret == -EBUSY) 1051 continue; 1052 if (ret) 1053 goto error; 1054 1055 type_found = true; 1056 ret = ttm_bo_mem_get(bo, place, mem); 1057 if (ret == -ENOSPC) 1058 continue; 1059 if (unlikely(ret)) 1060 goto error; 1061 1062 man = &bdev->man[mem->mem_type]; 1063 ret = ttm_bo_add_move_fence(bo, man, mem, ctx->no_wait_gpu); 1064 if (unlikely(ret)) { 1065 ttm_bo_mem_put(bo, mem); 1066 if (ret == -EBUSY) 1067 continue; 1068 1069 goto error; 1070 } 1071 return 0; 1072 } 1073 1074 for (i = 0; i < placement->num_busy_placement; ++i) { 1075 const struct ttm_place *place = &placement->busy_placement[i]; 1076 1077 ret = ttm_bo_mem_placement(bo, place, mem, ctx); 1078 if (ret == -EBUSY) 1079 continue; 1080 if (ret) 1081 goto error; 1082 1083 type_found = true; 1084 ret = ttm_bo_mem_force_space(bo, place, mem, ctx); 1085 if (likely(!ret)) 1086 return 0; 1087 1088 if (ret && ret != -EBUSY) 1089 goto error; 1090 } 1091 1092 ret = -ENOMEM; 1093 if (!type_found) { 1094 pr_err(TTM_PFX "No compatible memory type found\n"); 1095 ret = -EINVAL; 1096 } 1097 1098 error: 1099 if (bo->mem.mem_type == TTM_PL_SYSTEM && !list_empty(&bo->lru)) { 1100 spin_lock(&ttm_bo_glob.lru_lock); 1101 ttm_bo_move_to_lru_tail(bo, NULL); 1102 spin_unlock(&ttm_bo_glob.lru_lock); 1103 } 1104 1105 return ret; 1106 } 1107 EXPORT_SYMBOL(ttm_bo_mem_space); 1108 1109 static int ttm_bo_move_buffer(struct ttm_buffer_object *bo, 1110 struct ttm_placement *placement, 1111 struct ttm_operation_ctx *ctx) 1112 { 1113 int ret = 0; 1114 struct ttm_mem_reg mem; 1115 1116 dma_resv_assert_held(bo->base.resv); 1117 1118 mem.num_pages = bo->num_pages; 1119 mem.size = mem.num_pages << PAGE_SHIFT; 1120 mem.page_alignment = bo->mem.page_alignment; 1121 mem.bus.io_reserved_vm = false; 1122 mem.bus.io_reserved_count = 0; 1123 mem.mm_node = NULL; 1124 1125 /* 1126 * Determine where to move the buffer. 1127 */ 1128 ret = ttm_bo_mem_space(bo, placement, &mem, ctx); 1129 if (ret) 1130 goto out_unlock; 1131 ret = ttm_bo_handle_move_mem(bo, &mem, false, ctx); 1132 out_unlock: 1133 if (ret) 1134 ttm_bo_mem_put(bo, &mem); 1135 return ret; 1136 } 1137 1138 static bool ttm_bo_places_compat(const struct ttm_place *places, 1139 unsigned num_placement, 1140 struct ttm_mem_reg *mem, 1141 uint32_t *new_flags) 1142 { 1143 unsigned i; 1144 1145 for (i = 0; i < num_placement; i++) { 1146 const struct ttm_place *heap = &places[i]; 1147 1148 if ((mem->start < heap->fpfn || 1149 (heap->lpfn != 0 && (mem->start + mem->num_pages) > heap->lpfn))) 1150 continue; 1151 1152 *new_flags = heap->flags; 1153 if ((*new_flags & mem->placement & TTM_PL_MASK_CACHING) && 1154 (*new_flags & mem->placement & TTM_PL_MASK_MEM) && 1155 (!(*new_flags & TTM_PL_FLAG_CONTIGUOUS) || 1156 (mem->placement & TTM_PL_FLAG_CONTIGUOUS))) 1157 return true; 1158 } 1159 return false; 1160 } 1161 1162 bool ttm_bo_mem_compat(struct ttm_placement *placement, 1163 struct ttm_mem_reg *mem, 1164 uint32_t *new_flags) 1165 { 1166 if (ttm_bo_places_compat(placement->placement, placement->num_placement, 1167 mem, new_flags)) 1168 return true; 1169 1170 if ((placement->busy_placement != placement->placement || 1171 placement->num_busy_placement > placement->num_placement) && 1172 ttm_bo_places_compat(placement->busy_placement, 1173 placement->num_busy_placement, 1174 mem, new_flags)) 1175 return true; 1176 1177 return false; 1178 } 1179 EXPORT_SYMBOL(ttm_bo_mem_compat); 1180 1181 int ttm_bo_validate(struct ttm_buffer_object *bo, 1182 struct ttm_placement *placement, 1183 struct ttm_operation_ctx *ctx) 1184 { 1185 int ret; 1186 uint32_t new_flags; 1187 1188 dma_resv_assert_held(bo->base.resv); 1189 1190 /* 1191 * Remove the backing store if no placement is given. 1192 */ 1193 if (!placement->num_placement && !placement->num_busy_placement) 1194 return ttm_bo_pipeline_gutting(bo); 1195 1196 /* 1197 * Check whether we need to move buffer. 1198 */ 1199 if (!ttm_bo_mem_compat(placement, &bo->mem, &new_flags)) { 1200 ret = ttm_bo_move_buffer(bo, placement, ctx); 1201 if (ret) 1202 return ret; 1203 } else { 1204 /* 1205 * Use the access and other non-mapping-related flag bits from 1206 * the compatible memory placement flags to the active flags 1207 */ 1208 ttm_flag_masked(&bo->mem.placement, new_flags, 1209 ~TTM_PL_MASK_MEMTYPE); 1210 } 1211 return 0; 1212 } 1213 EXPORT_SYMBOL(ttm_bo_validate); 1214 1215 int ttm_bo_init_reserved(struct ttm_bo_device *bdev, 1216 struct ttm_buffer_object *bo, 1217 unsigned long size, 1218 enum ttm_bo_type type, 1219 struct ttm_placement *placement, 1220 uint32_t page_alignment, 1221 struct ttm_operation_ctx *ctx, 1222 size_t acc_size, 1223 struct sg_table *sg, 1224 struct dma_resv *resv, 1225 void (*destroy) (struct ttm_buffer_object *)) 1226 { 1227 struct ttm_mem_global *mem_glob = &ttm_mem_glob; 1228 int ret = 0; 1229 unsigned long num_pages; 1230 bool locked; 1231 1232 ret = ttm_mem_global_alloc(mem_glob, acc_size, ctx); 1233 if (ret) { 1234 pr_err("Out of kernel memory\n"); 1235 if (destroy) 1236 (*destroy)(bo); 1237 else 1238 kfree(bo); 1239 return -ENOMEM; 1240 } 1241 1242 num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 1243 if (num_pages == 0) { 1244 pr_err("Illegal buffer object size\n"); 1245 if (destroy) 1246 (*destroy)(bo); 1247 else 1248 kfree(bo); 1249 ttm_mem_global_free(mem_glob, acc_size); 1250 return -EINVAL; 1251 } 1252 bo->destroy = destroy ? destroy : ttm_bo_default_destroy; 1253 1254 kref_init(&bo->kref); 1255 INIT_LIST_HEAD(&bo->lru); 1256 INIT_LIST_HEAD(&bo->ddestroy); 1257 INIT_LIST_HEAD(&bo->swap); 1258 INIT_LIST_HEAD(&bo->io_reserve_lru); 1259 bo->bdev = bdev; 1260 bo->type = type; 1261 bo->num_pages = num_pages; 1262 bo->mem.size = num_pages << PAGE_SHIFT; 1263 bo->mem.mem_type = TTM_PL_SYSTEM; 1264 bo->mem.num_pages = bo->num_pages; 1265 bo->mem.mm_node = NULL; 1266 bo->mem.page_alignment = page_alignment; 1267 bo->mem.bus.io_reserved_vm = false; 1268 bo->mem.bus.io_reserved_count = 0; 1269 bo->moving = NULL; 1270 bo->mem.placement = (TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED); 1271 bo->acc_size = acc_size; 1272 bo->sg = sg; 1273 if (resv) { 1274 bo->base.resv = resv; 1275 dma_resv_assert_held(bo->base.resv); 1276 } else { 1277 bo->base.resv = &bo->base._resv; 1278 } 1279 if (!ttm_bo_uses_embedded_gem_object(bo)) { 1280 /* 1281 * bo.gem is not initialized, so we have to setup the 1282 * struct elements we want use regardless. 1283 */ 1284 dma_resv_init(&bo->base._resv); 1285 drm_vma_node_reset(&bo->base.vma_node); 1286 } 1287 atomic_inc(&ttm_bo_glob.bo_count); 1288 1289 /* 1290 * For ttm_bo_type_device buffers, allocate 1291 * address space from the device. 1292 */ 1293 if (bo->type == ttm_bo_type_device || 1294 bo->type == ttm_bo_type_sg) 1295 ret = drm_vma_offset_add(bdev->vma_manager, &bo->base.vma_node, 1296 bo->mem.num_pages); 1297 1298 /* passed reservation objects should already be locked, 1299 * since otherwise lockdep will be angered in radeon. 1300 */ 1301 if (!resv) { 1302 locked = dma_resv_trylock(bo->base.resv); 1303 WARN_ON(!locked); 1304 } 1305 1306 if (likely(!ret)) 1307 ret = ttm_bo_validate(bo, placement, ctx); 1308 1309 if (unlikely(ret)) { 1310 if (!resv) 1311 ttm_bo_unreserve(bo); 1312 1313 ttm_bo_put(bo); 1314 return ret; 1315 } 1316 1317 spin_lock(&ttm_bo_glob.lru_lock); 1318 ttm_bo_move_to_lru_tail(bo, NULL); 1319 spin_unlock(&ttm_bo_glob.lru_lock); 1320 1321 return ret; 1322 } 1323 EXPORT_SYMBOL(ttm_bo_init_reserved); 1324 1325 int ttm_bo_init(struct ttm_bo_device *bdev, 1326 struct ttm_buffer_object *bo, 1327 unsigned long size, 1328 enum ttm_bo_type type, 1329 struct ttm_placement *placement, 1330 uint32_t page_alignment, 1331 bool interruptible, 1332 size_t acc_size, 1333 struct sg_table *sg, 1334 struct dma_resv *resv, 1335 void (*destroy) (struct ttm_buffer_object *)) 1336 { 1337 struct ttm_operation_ctx ctx = { interruptible, false }; 1338 int ret; 1339 1340 ret = ttm_bo_init_reserved(bdev, bo, size, type, placement, 1341 page_alignment, &ctx, acc_size, 1342 sg, resv, destroy); 1343 if (ret) 1344 return ret; 1345 1346 if (!resv) 1347 ttm_bo_unreserve(bo); 1348 1349 return 0; 1350 } 1351 EXPORT_SYMBOL(ttm_bo_init); 1352 1353 size_t ttm_bo_acc_size(struct ttm_bo_device *bdev, 1354 unsigned long bo_size, 1355 unsigned struct_size) 1356 { 1357 unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT; 1358 size_t size = 0; 1359 1360 size += ttm_round_pot(struct_size); 1361 size += ttm_round_pot(npages * sizeof(void *)); 1362 size += ttm_round_pot(sizeof(struct ttm_tt)); 1363 return size; 1364 } 1365 EXPORT_SYMBOL(ttm_bo_acc_size); 1366 1367 size_t ttm_bo_dma_acc_size(struct ttm_bo_device *bdev, 1368 unsigned long bo_size, 1369 unsigned struct_size) 1370 { 1371 unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT; 1372 size_t size = 0; 1373 1374 size += ttm_round_pot(struct_size); 1375 size += ttm_round_pot(npages * (2*sizeof(void *) + sizeof(dma_addr_t))); 1376 size += ttm_round_pot(sizeof(struct ttm_dma_tt)); 1377 return size; 1378 } 1379 EXPORT_SYMBOL(ttm_bo_dma_acc_size); 1380 1381 int ttm_bo_create(struct ttm_bo_device *bdev, 1382 unsigned long size, 1383 enum ttm_bo_type type, 1384 struct ttm_placement *placement, 1385 uint32_t page_alignment, 1386 bool interruptible, 1387 struct ttm_buffer_object **p_bo) 1388 { 1389 struct ttm_buffer_object *bo; 1390 size_t acc_size; 1391 int ret; 1392 1393 bo = kzalloc(sizeof(*bo), GFP_KERNEL); 1394 if (unlikely(bo == NULL)) 1395 return -ENOMEM; 1396 1397 acc_size = ttm_bo_acc_size(bdev, size, sizeof(struct ttm_buffer_object)); 1398 ret = ttm_bo_init(bdev, bo, size, type, placement, page_alignment, 1399 interruptible, acc_size, 1400 NULL, NULL, NULL); 1401 if (likely(ret == 0)) 1402 *p_bo = bo; 1403 1404 return ret; 1405 } 1406 EXPORT_SYMBOL(ttm_bo_create); 1407 1408 static int ttm_bo_force_list_clean(struct ttm_bo_device *bdev, 1409 unsigned mem_type) 1410 { 1411 struct ttm_operation_ctx ctx = { 1412 .interruptible = false, 1413 .no_wait_gpu = false, 1414 .flags = TTM_OPT_FLAG_FORCE_ALLOC 1415 }; 1416 struct ttm_mem_type_manager *man = &bdev->man[mem_type]; 1417 struct ttm_bo_global *glob = &ttm_bo_glob; 1418 struct dma_fence *fence; 1419 int ret; 1420 unsigned i; 1421 1422 /* 1423 * Can't use standard list traversal since we're unlocking. 1424 */ 1425 1426 spin_lock(&glob->lru_lock); 1427 for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) { 1428 while (!list_empty(&man->lru[i])) { 1429 spin_unlock(&glob->lru_lock); 1430 ret = ttm_mem_evict_first(bdev, mem_type, NULL, &ctx, 1431 NULL); 1432 if (ret) 1433 return ret; 1434 spin_lock(&glob->lru_lock); 1435 } 1436 } 1437 spin_unlock(&glob->lru_lock); 1438 1439 spin_lock(&man->move_lock); 1440 fence = dma_fence_get(man->move); 1441 spin_unlock(&man->move_lock); 1442 1443 if (fence) { 1444 ret = dma_fence_wait(fence, false); 1445 dma_fence_put(fence); 1446 if (ret) 1447 return ret; 1448 } 1449 1450 return 0; 1451 } 1452 1453 int ttm_bo_clean_mm(struct ttm_bo_device *bdev, unsigned mem_type) 1454 { 1455 struct ttm_mem_type_manager *man; 1456 int ret = -EINVAL; 1457 1458 if (mem_type >= TTM_NUM_MEM_TYPES) { 1459 pr_err("Illegal memory type %d\n", mem_type); 1460 return ret; 1461 } 1462 man = &bdev->man[mem_type]; 1463 1464 if (!man->has_type) { 1465 pr_err("Trying to take down uninitialized memory manager type %u\n", 1466 mem_type); 1467 return ret; 1468 } 1469 1470 man->use_type = false; 1471 man->has_type = false; 1472 1473 ret = 0; 1474 if (mem_type > 0) { 1475 ret = ttm_bo_force_list_clean(bdev, mem_type); 1476 if (ret) { 1477 pr_err("Cleanup eviction failed\n"); 1478 return ret; 1479 } 1480 1481 ret = (*man->func->takedown)(man); 1482 } 1483 1484 dma_fence_put(man->move); 1485 man->move = NULL; 1486 1487 return ret; 1488 } 1489 EXPORT_SYMBOL(ttm_bo_clean_mm); 1490 1491 int ttm_bo_evict_mm(struct ttm_bo_device *bdev, unsigned mem_type) 1492 { 1493 struct ttm_mem_type_manager *man = &bdev->man[mem_type]; 1494 1495 if (mem_type == 0 || mem_type >= TTM_NUM_MEM_TYPES) { 1496 pr_err("Illegal memory manager memory type %u\n", mem_type); 1497 return -EINVAL; 1498 } 1499 1500 if (!man->has_type) { 1501 pr_err("Memory type %u has not been initialized\n", mem_type); 1502 return 0; 1503 } 1504 1505 return ttm_bo_force_list_clean(bdev, mem_type); 1506 } 1507 EXPORT_SYMBOL(ttm_bo_evict_mm); 1508 1509 int ttm_bo_init_mm(struct ttm_bo_device *bdev, unsigned type, 1510 unsigned long p_size) 1511 { 1512 int ret; 1513 struct ttm_mem_type_manager *man; 1514 unsigned i; 1515 1516 BUG_ON(type >= TTM_NUM_MEM_TYPES); 1517 man = &bdev->man[type]; 1518 BUG_ON(man->has_type); 1519 man->use_io_reserve_lru = false; 1520 mutex_init(&man->io_reserve_mutex); 1521 spin_lock_init(&man->move_lock); 1522 INIT_LIST_HEAD(&man->io_reserve_lru); 1523 1524 ret = bdev->driver->init_mem_type(bdev, type, man); 1525 if (ret) 1526 return ret; 1527 man->bdev = bdev; 1528 1529 if (type != TTM_PL_SYSTEM) { 1530 ret = (*man->func->init)(man, p_size); 1531 if (ret) 1532 return ret; 1533 } 1534 man->has_type = true; 1535 man->use_type = true; 1536 man->size = p_size; 1537 1538 for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) 1539 INIT_LIST_HEAD(&man->lru[i]); 1540 man->move = NULL; 1541 1542 return 0; 1543 } 1544 EXPORT_SYMBOL(ttm_bo_init_mm); 1545 1546 static void ttm_bo_global_kobj_release(struct kobject *kobj) 1547 { 1548 struct ttm_bo_global *glob = 1549 container_of(kobj, struct ttm_bo_global, kobj); 1550 1551 __free_page(glob->dummy_read_page); 1552 } 1553 1554 static void ttm_bo_global_release(void) 1555 { 1556 struct ttm_bo_global *glob = &ttm_bo_glob; 1557 1558 mutex_lock(&ttm_global_mutex); 1559 if (--ttm_bo_glob_use_count > 0) 1560 goto out; 1561 1562 kobject_del(&glob->kobj); 1563 kobject_put(&glob->kobj); 1564 ttm_mem_global_release(&ttm_mem_glob); 1565 memset(glob, 0, sizeof(*glob)); 1566 out: 1567 mutex_unlock(&ttm_global_mutex); 1568 } 1569 1570 static int ttm_bo_global_init(void) 1571 { 1572 struct ttm_bo_global *glob = &ttm_bo_glob; 1573 int ret = 0; 1574 unsigned i; 1575 1576 mutex_lock(&ttm_global_mutex); 1577 if (++ttm_bo_glob_use_count > 1) 1578 goto out; 1579 1580 ret = ttm_mem_global_init(&ttm_mem_glob); 1581 if (ret) 1582 goto out; 1583 1584 spin_lock_init(&glob->lru_lock); 1585 glob->dummy_read_page = alloc_page(__GFP_ZERO | GFP_DMA32); 1586 1587 if (unlikely(glob->dummy_read_page == NULL)) { 1588 ret = -ENOMEM; 1589 goto out; 1590 } 1591 1592 for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) 1593 INIT_LIST_HEAD(&glob->swap_lru[i]); 1594 INIT_LIST_HEAD(&glob->device_list); 1595 atomic_set(&glob->bo_count, 0); 1596 1597 ret = kobject_init_and_add( 1598 &glob->kobj, &ttm_bo_glob_kobj_type, ttm_get_kobj(), "buffer_objects"); 1599 if (unlikely(ret != 0)) 1600 kobject_put(&glob->kobj); 1601 out: 1602 mutex_unlock(&ttm_global_mutex); 1603 return ret; 1604 } 1605 1606 int ttm_bo_device_release(struct ttm_bo_device *bdev) 1607 { 1608 struct ttm_bo_global *glob = &ttm_bo_glob; 1609 int ret = 0; 1610 unsigned i = TTM_NUM_MEM_TYPES; 1611 struct ttm_mem_type_manager *man; 1612 1613 while (i--) { 1614 man = &bdev->man[i]; 1615 if (man->has_type) { 1616 man->use_type = false; 1617 if ((i != TTM_PL_SYSTEM) && ttm_bo_clean_mm(bdev, i)) { 1618 ret = -EBUSY; 1619 pr_err("DRM memory manager type %d is not clean\n", 1620 i); 1621 } 1622 man->has_type = false; 1623 } 1624 } 1625 1626 mutex_lock(&ttm_global_mutex); 1627 list_del(&bdev->device_list); 1628 mutex_unlock(&ttm_global_mutex); 1629 1630 cancel_delayed_work_sync(&bdev->wq); 1631 1632 if (ttm_bo_delayed_delete(bdev, true)) 1633 pr_debug("Delayed destroy list was clean\n"); 1634 1635 spin_lock(&glob->lru_lock); 1636 for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) 1637 if (list_empty(&bdev->man[0].lru[0])) 1638 pr_debug("Swap list %d was clean\n", i); 1639 spin_unlock(&glob->lru_lock); 1640 1641 if (!ret) 1642 ttm_bo_global_release(); 1643 1644 return ret; 1645 } 1646 EXPORT_SYMBOL(ttm_bo_device_release); 1647 1648 int ttm_bo_device_init(struct ttm_bo_device *bdev, 1649 struct ttm_bo_driver *driver, 1650 struct address_space *mapping, 1651 struct drm_vma_offset_manager *vma_manager, 1652 bool need_dma32) 1653 { 1654 struct ttm_bo_global *glob = &ttm_bo_glob; 1655 int ret; 1656 1657 if (WARN_ON(vma_manager == NULL)) 1658 return -EINVAL; 1659 1660 ret = ttm_bo_global_init(); 1661 if (ret) 1662 return ret; 1663 1664 bdev->driver = driver; 1665 1666 memset(bdev->man, 0, sizeof(bdev->man)); 1667 1668 /* 1669 * Initialize the system memory buffer type. 1670 * Other types need to be driver / IOCTL initialized. 1671 */ 1672 ret = ttm_bo_init_mm(bdev, TTM_PL_SYSTEM, 0); 1673 if (unlikely(ret != 0)) 1674 goto out_no_sys; 1675 1676 bdev->vma_manager = vma_manager; 1677 INIT_DELAYED_WORK(&bdev->wq, ttm_bo_delayed_workqueue); 1678 INIT_LIST_HEAD(&bdev->ddestroy); 1679 bdev->dev_mapping = mapping; 1680 bdev->need_dma32 = need_dma32; 1681 mutex_lock(&ttm_global_mutex); 1682 list_add_tail(&bdev->device_list, &glob->device_list); 1683 mutex_unlock(&ttm_global_mutex); 1684 1685 return 0; 1686 out_no_sys: 1687 ttm_bo_global_release(); 1688 return ret; 1689 } 1690 EXPORT_SYMBOL(ttm_bo_device_init); 1691 1692 /* 1693 * buffer object vm functions. 1694 */ 1695 1696 void ttm_bo_unmap_virtual_locked(struct ttm_buffer_object *bo) 1697 { 1698 struct ttm_bo_device *bdev = bo->bdev; 1699 1700 drm_vma_node_unmap(&bo->base.vma_node, bdev->dev_mapping); 1701 ttm_mem_io_free_vm(bo); 1702 } 1703 1704 void ttm_bo_unmap_virtual(struct ttm_buffer_object *bo) 1705 { 1706 struct ttm_bo_device *bdev = bo->bdev; 1707 struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type]; 1708 1709 ttm_mem_io_lock(man, false); 1710 ttm_bo_unmap_virtual_locked(bo); 1711 ttm_mem_io_unlock(man); 1712 } 1713 1714 1715 EXPORT_SYMBOL(ttm_bo_unmap_virtual); 1716 1717 int ttm_bo_wait(struct ttm_buffer_object *bo, 1718 bool interruptible, bool no_wait) 1719 { 1720 long timeout = 15 * HZ; 1721 1722 if (no_wait) { 1723 if (dma_resv_test_signaled_rcu(bo->base.resv, true)) 1724 return 0; 1725 else 1726 return -EBUSY; 1727 } 1728 1729 timeout = dma_resv_wait_timeout_rcu(bo->base.resv, true, 1730 interruptible, timeout); 1731 if (timeout < 0) 1732 return timeout; 1733 1734 if (timeout == 0) 1735 return -EBUSY; 1736 1737 dma_resv_add_excl_fence(bo->base.resv, NULL); 1738 return 0; 1739 } 1740 EXPORT_SYMBOL(ttm_bo_wait); 1741 1742 /** 1743 * A buffer object shrink method that tries to swap out the first 1744 * buffer object on the bo_global::swap_lru list. 1745 */ 1746 int ttm_bo_swapout(struct ttm_bo_global *glob, struct ttm_operation_ctx *ctx) 1747 { 1748 struct ttm_buffer_object *bo; 1749 int ret = -EBUSY; 1750 bool locked; 1751 unsigned i; 1752 1753 spin_lock(&glob->lru_lock); 1754 for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) { 1755 list_for_each_entry(bo, &glob->swap_lru[i], swap) { 1756 if (!ttm_bo_evict_swapout_allowable(bo, ctx, &locked, 1757 NULL)) 1758 continue; 1759 1760 if (!ttm_bo_get_unless_zero(bo)) { 1761 if (locked) 1762 dma_resv_unlock(bo->base.resv); 1763 continue; 1764 } 1765 1766 ret = 0; 1767 break; 1768 } 1769 if (!ret) 1770 break; 1771 } 1772 1773 if (ret) { 1774 spin_unlock(&glob->lru_lock); 1775 return ret; 1776 } 1777 1778 if (bo->deleted) { 1779 ret = ttm_bo_cleanup_refs(bo, false, false, locked); 1780 ttm_bo_put(bo); 1781 return ret; 1782 } 1783 1784 ttm_bo_del_from_lru(bo); 1785 spin_unlock(&glob->lru_lock); 1786 1787 /** 1788 * Move to system cached 1789 */ 1790 1791 if (bo->mem.mem_type != TTM_PL_SYSTEM || 1792 bo->ttm->caching_state != tt_cached) { 1793 struct ttm_operation_ctx ctx = { false, false }; 1794 struct ttm_mem_reg evict_mem; 1795 1796 evict_mem = bo->mem; 1797 evict_mem.mm_node = NULL; 1798 evict_mem.placement = TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED; 1799 evict_mem.mem_type = TTM_PL_SYSTEM; 1800 1801 ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, &ctx); 1802 if (unlikely(ret != 0)) 1803 goto out; 1804 } 1805 1806 /** 1807 * Make sure BO is idle. 1808 */ 1809 1810 ret = ttm_bo_wait(bo, false, false); 1811 if (unlikely(ret != 0)) 1812 goto out; 1813 1814 ttm_bo_unmap_virtual(bo); 1815 1816 /** 1817 * Swap out. Buffer will be swapped in again as soon as 1818 * anyone tries to access a ttm page. 1819 */ 1820 1821 if (bo->bdev->driver->swap_notify) 1822 bo->bdev->driver->swap_notify(bo); 1823 1824 ret = ttm_tt_swapout(bo->ttm, bo->persistent_swap_storage); 1825 out: 1826 1827 /** 1828 * 1829 * Unreserve without putting on LRU to avoid swapping out an 1830 * already swapped buffer. 1831 */ 1832 if (locked) 1833 dma_resv_unlock(bo->base.resv); 1834 ttm_bo_put(bo); 1835 return ret; 1836 } 1837 EXPORT_SYMBOL(ttm_bo_swapout); 1838 1839 void ttm_bo_swapout_all(struct ttm_bo_device *bdev) 1840 { 1841 struct ttm_operation_ctx ctx = { 1842 .interruptible = false, 1843 .no_wait_gpu = false 1844 }; 1845 1846 while (ttm_bo_swapout(&ttm_bo_glob, &ctx) == 0); 1847 } 1848 EXPORT_SYMBOL(ttm_bo_swapout_all); 1849