1 /************************************************************************** 2 * 3 * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA 4 * All Rights Reserved. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the 8 * "Software"), to deal in the Software without restriction, including 9 * without limitation the rights to use, copy, modify, merge, publish, 10 * distribute, sub license, and/or sell copies of the Software, and to 11 * permit persons to whom the Software is furnished to do so, subject to 12 * the following conditions: 13 * 14 * The above copyright notice and this permission notice (including the 15 * next paragraph) shall be included in all copies or substantial portions 16 * of the Software. 17 * 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 20 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 21 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 22 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 23 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 24 * USE OR OTHER DEALINGS IN THE SOFTWARE. 25 * 26 **************************************************************************/ 27 /* 28 * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com> 29 */ 30 31 #define pr_fmt(fmt) "[TTM] " fmt 32 33 #include <drm/ttm/ttm_module.h> 34 #include <drm/ttm/ttm_bo_driver.h> 35 #include <drm/ttm/ttm_placement.h> 36 #include <linux/jiffies.h> 37 #include <linux/slab.h> 38 #include <linux/sched.h> 39 #include <linux/mm.h> 40 #include <linux/file.h> 41 #include <linux/module.h> 42 #include <linux/atomic.h> 43 #include <linux/reservation.h> 44 45 #define TTM_ASSERT_LOCKED(param) 46 #define TTM_DEBUG(fmt, arg...) 47 #define TTM_BO_HASH_ORDER 13 48 49 static int ttm_bo_swapout(struct ttm_mem_shrink *shrink); 50 static void ttm_bo_global_kobj_release(struct kobject *kobj); 51 52 static struct attribute ttm_bo_count = { 53 .name = "bo_count", 54 .mode = S_IRUGO 55 }; 56 57 static inline int ttm_mem_type_from_place(const struct ttm_place *place, 58 uint32_t *mem_type) 59 { 60 int i; 61 62 for (i = 0; i <= TTM_PL_PRIV5; i++) 63 if (place->flags & (1 << i)) { 64 *mem_type = i; 65 return 0; 66 } 67 return -EINVAL; 68 } 69 70 static void ttm_mem_type_debug(struct ttm_bo_device *bdev, int mem_type) 71 { 72 struct ttm_mem_type_manager *man = &bdev->man[mem_type]; 73 74 pr_err(" has_type: %d\n", man->has_type); 75 pr_err(" use_type: %d\n", man->use_type); 76 pr_err(" flags: 0x%08X\n", man->flags); 77 pr_err(" gpu_offset: 0x%08lX\n", man->gpu_offset); 78 pr_err(" size: %llu\n", man->size); 79 pr_err(" available_caching: 0x%08X\n", man->available_caching); 80 pr_err(" default_caching: 0x%08X\n", man->default_caching); 81 if (mem_type != TTM_PL_SYSTEM) 82 (*man->func->debug)(man, TTM_PFX); 83 } 84 85 static void ttm_bo_mem_space_debug(struct ttm_buffer_object *bo, 86 struct ttm_placement *placement) 87 { 88 int i, ret, mem_type; 89 90 pr_err("No space for %p (%lu pages, %luK, %luM)\n", 91 bo, bo->mem.num_pages, bo->mem.size >> 10, 92 bo->mem.size >> 20); 93 for (i = 0; i < placement->num_placement; i++) { 94 ret = ttm_mem_type_from_place(&placement->placement[i], 95 &mem_type); 96 if (ret) 97 return; 98 pr_err(" placement[%d]=0x%08X (%d)\n", 99 i, placement->placement[i].flags, mem_type); 100 ttm_mem_type_debug(bo->bdev, mem_type); 101 } 102 } 103 104 static ssize_t ttm_bo_global_show(struct kobject *kobj, 105 struct attribute *attr, 106 char *buffer) 107 { 108 struct ttm_bo_global *glob = 109 container_of(kobj, struct ttm_bo_global, kobj); 110 111 return snprintf(buffer, PAGE_SIZE, "%lu\n", 112 (unsigned long) atomic_read(&glob->bo_count)); 113 } 114 115 static struct attribute *ttm_bo_global_attrs[] = { 116 &ttm_bo_count, 117 NULL 118 }; 119 120 static const struct sysfs_ops ttm_bo_global_ops = { 121 .show = &ttm_bo_global_show 122 }; 123 124 static struct kobj_type ttm_bo_glob_kobj_type = { 125 .release = &ttm_bo_global_kobj_release, 126 .sysfs_ops = &ttm_bo_global_ops, 127 .default_attrs = ttm_bo_global_attrs 128 }; 129 130 131 static inline uint32_t ttm_bo_type_flags(unsigned type) 132 { 133 return 1 << (type); 134 } 135 136 static void ttm_bo_release_list(struct kref *list_kref) 137 { 138 struct ttm_buffer_object *bo = 139 container_of(list_kref, struct ttm_buffer_object, list_kref); 140 struct ttm_bo_device *bdev = bo->bdev; 141 size_t acc_size = bo->acc_size; 142 143 BUG_ON(atomic_read(&bo->list_kref.refcount)); 144 BUG_ON(atomic_read(&bo->kref.refcount)); 145 BUG_ON(atomic_read(&bo->cpu_writers)); 146 BUG_ON(bo->mem.mm_node != NULL); 147 BUG_ON(!list_empty(&bo->lru)); 148 BUG_ON(!list_empty(&bo->ddestroy)); 149 150 if (bo->ttm) 151 ttm_tt_destroy(bo->ttm); 152 atomic_dec(&bo->glob->bo_count); 153 if (bo->resv == &bo->ttm_resv) 154 reservation_object_fini(&bo->ttm_resv); 155 mutex_destroy(&bo->wu_mutex); 156 if (bo->destroy) 157 bo->destroy(bo); 158 else { 159 kfree(bo); 160 } 161 ttm_mem_global_free(bdev->glob->mem_glob, acc_size); 162 } 163 164 void ttm_bo_add_to_lru(struct ttm_buffer_object *bo) 165 { 166 struct ttm_bo_device *bdev = bo->bdev; 167 struct ttm_mem_type_manager *man; 168 169 lockdep_assert_held(&bo->resv->lock.base); 170 171 if (!(bo->mem.placement & TTM_PL_FLAG_NO_EVICT)) { 172 173 BUG_ON(!list_empty(&bo->lru)); 174 175 man = &bdev->man[bo->mem.mem_type]; 176 list_add_tail(&bo->lru, &man->lru); 177 kref_get(&bo->list_kref); 178 179 if (bo->ttm != NULL) { 180 list_add_tail(&bo->swap, &bo->glob->swap_lru); 181 kref_get(&bo->list_kref); 182 } 183 } 184 } 185 EXPORT_SYMBOL(ttm_bo_add_to_lru); 186 187 int ttm_bo_del_from_lru(struct ttm_buffer_object *bo) 188 { 189 int put_count = 0; 190 191 if (!list_empty(&bo->swap)) { 192 list_del_init(&bo->swap); 193 ++put_count; 194 } 195 if (!list_empty(&bo->lru)) { 196 list_del_init(&bo->lru); 197 ++put_count; 198 } 199 200 /* 201 * TODO: Add a driver hook to delete from 202 * driver-specific LRU's here. 203 */ 204 205 return put_count; 206 } 207 208 static void ttm_bo_ref_bug(struct kref *list_kref) 209 { 210 BUG(); 211 } 212 213 void ttm_bo_list_ref_sub(struct ttm_buffer_object *bo, int count, 214 bool never_free) 215 { 216 kref_sub(&bo->list_kref, count, 217 (never_free) ? ttm_bo_ref_bug : ttm_bo_release_list); 218 } 219 220 void ttm_bo_del_sub_from_lru(struct ttm_buffer_object *bo) 221 { 222 int put_count; 223 224 spin_lock(&bo->glob->lru_lock); 225 put_count = ttm_bo_del_from_lru(bo); 226 spin_unlock(&bo->glob->lru_lock); 227 ttm_bo_list_ref_sub(bo, put_count, true); 228 } 229 EXPORT_SYMBOL(ttm_bo_del_sub_from_lru); 230 231 /* 232 * Call bo->mutex locked. 233 */ 234 static int ttm_bo_add_ttm(struct ttm_buffer_object *bo, bool zero_alloc) 235 { 236 struct ttm_bo_device *bdev = bo->bdev; 237 struct ttm_bo_global *glob = bo->glob; 238 int ret = 0; 239 uint32_t page_flags = 0; 240 241 TTM_ASSERT_LOCKED(&bo->mutex); 242 bo->ttm = NULL; 243 244 if (bdev->need_dma32) 245 page_flags |= TTM_PAGE_FLAG_DMA32; 246 247 switch (bo->type) { 248 case ttm_bo_type_device: 249 if (zero_alloc) 250 page_flags |= TTM_PAGE_FLAG_ZERO_ALLOC; 251 case ttm_bo_type_kernel: 252 bo->ttm = bdev->driver->ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT, 253 page_flags, glob->dummy_read_page); 254 if (unlikely(bo->ttm == NULL)) 255 ret = -ENOMEM; 256 break; 257 case ttm_bo_type_sg: 258 bo->ttm = bdev->driver->ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT, 259 page_flags | TTM_PAGE_FLAG_SG, 260 glob->dummy_read_page); 261 if (unlikely(bo->ttm == NULL)) { 262 ret = -ENOMEM; 263 break; 264 } 265 bo->ttm->sg = bo->sg; 266 break; 267 default: 268 pr_err("Illegal buffer object type\n"); 269 ret = -EINVAL; 270 break; 271 } 272 273 return ret; 274 } 275 276 static int ttm_bo_handle_move_mem(struct ttm_buffer_object *bo, 277 struct ttm_mem_reg *mem, 278 bool evict, bool interruptible, 279 bool no_wait_gpu) 280 { 281 struct ttm_bo_device *bdev = bo->bdev; 282 bool old_is_pci = ttm_mem_reg_is_pci(bdev, &bo->mem); 283 bool new_is_pci = ttm_mem_reg_is_pci(bdev, mem); 284 struct ttm_mem_type_manager *old_man = &bdev->man[bo->mem.mem_type]; 285 struct ttm_mem_type_manager *new_man = &bdev->man[mem->mem_type]; 286 int ret = 0; 287 288 if (old_is_pci || new_is_pci || 289 ((mem->placement & bo->mem.placement & TTM_PL_MASK_CACHING) == 0)) { 290 ret = ttm_mem_io_lock(old_man, true); 291 if (unlikely(ret != 0)) 292 goto out_err; 293 ttm_bo_unmap_virtual_locked(bo); 294 ttm_mem_io_unlock(old_man); 295 } 296 297 /* 298 * Create and bind a ttm if required. 299 */ 300 301 if (!(new_man->flags & TTM_MEMTYPE_FLAG_FIXED)) { 302 if (bo->ttm == NULL) { 303 bool zero = !(old_man->flags & TTM_MEMTYPE_FLAG_FIXED); 304 ret = ttm_bo_add_ttm(bo, zero); 305 if (ret) 306 goto out_err; 307 } 308 309 ret = ttm_tt_set_placement_caching(bo->ttm, mem->placement); 310 if (ret) 311 goto out_err; 312 313 if (mem->mem_type != TTM_PL_SYSTEM) { 314 ret = ttm_tt_bind(bo->ttm, mem); 315 if (ret) 316 goto out_err; 317 } 318 319 if (bo->mem.mem_type == TTM_PL_SYSTEM) { 320 if (bdev->driver->move_notify) 321 bdev->driver->move_notify(bo, mem); 322 bo->mem = *mem; 323 mem->mm_node = NULL; 324 goto moved; 325 } 326 } 327 328 if (bdev->driver->move_notify) 329 bdev->driver->move_notify(bo, mem); 330 331 if (!(old_man->flags & TTM_MEMTYPE_FLAG_FIXED) && 332 !(new_man->flags & TTM_MEMTYPE_FLAG_FIXED)) 333 ret = ttm_bo_move_ttm(bo, evict, no_wait_gpu, mem); 334 else if (bdev->driver->move) 335 ret = bdev->driver->move(bo, evict, interruptible, 336 no_wait_gpu, mem); 337 else 338 ret = ttm_bo_move_memcpy(bo, evict, no_wait_gpu, mem); 339 340 if (ret) { 341 if (bdev->driver->move_notify) { 342 struct ttm_mem_reg tmp_mem = *mem; 343 *mem = bo->mem; 344 bo->mem = tmp_mem; 345 bdev->driver->move_notify(bo, mem); 346 bo->mem = *mem; 347 *mem = tmp_mem; 348 } 349 350 goto out_err; 351 } 352 353 moved: 354 if (bo->evicted) { 355 if (bdev->driver->invalidate_caches) { 356 ret = bdev->driver->invalidate_caches(bdev, bo->mem.placement); 357 if (ret) 358 pr_err("Can not flush read caches\n"); 359 } 360 bo->evicted = false; 361 } 362 363 if (bo->mem.mm_node) { 364 bo->offset = (bo->mem.start << PAGE_SHIFT) + 365 bdev->man[bo->mem.mem_type].gpu_offset; 366 bo->cur_placement = bo->mem.placement; 367 } else 368 bo->offset = 0; 369 370 return 0; 371 372 out_err: 373 new_man = &bdev->man[bo->mem.mem_type]; 374 if ((new_man->flags & TTM_MEMTYPE_FLAG_FIXED) && bo->ttm) { 375 ttm_tt_unbind(bo->ttm); 376 ttm_tt_destroy(bo->ttm); 377 bo->ttm = NULL; 378 } 379 380 return ret; 381 } 382 383 /** 384 * Call bo::reserved. 385 * Will release GPU memory type usage on destruction. 386 * This is the place to put in driver specific hooks to release 387 * driver private resources. 388 * Will release the bo::reserved lock. 389 */ 390 391 static void ttm_bo_cleanup_memtype_use(struct ttm_buffer_object *bo) 392 { 393 if (bo->bdev->driver->move_notify) 394 bo->bdev->driver->move_notify(bo, NULL); 395 396 if (bo->ttm) { 397 ttm_tt_unbind(bo->ttm); 398 ttm_tt_destroy(bo->ttm); 399 bo->ttm = NULL; 400 } 401 ttm_bo_mem_put(bo, &bo->mem); 402 403 ww_mutex_unlock (&bo->resv->lock); 404 } 405 406 static void ttm_bo_flush_all_fences(struct ttm_buffer_object *bo) 407 { 408 struct reservation_object_list *fobj; 409 struct fence *fence; 410 int i; 411 412 fobj = reservation_object_get_list(bo->resv); 413 fence = reservation_object_get_excl(bo->resv); 414 if (fence && !fence->ops->signaled) 415 fence_enable_sw_signaling(fence); 416 417 for (i = 0; fobj && i < fobj->shared_count; ++i) { 418 fence = rcu_dereference_protected(fobj->shared[i], 419 reservation_object_held(bo->resv)); 420 421 if (!fence->ops->signaled) 422 fence_enable_sw_signaling(fence); 423 } 424 } 425 426 static void ttm_bo_cleanup_refs_or_queue(struct ttm_buffer_object *bo) 427 { 428 struct ttm_bo_device *bdev = bo->bdev; 429 struct ttm_bo_global *glob = bo->glob; 430 int put_count; 431 int ret; 432 433 spin_lock(&glob->lru_lock); 434 ret = __ttm_bo_reserve(bo, false, true, false, NULL); 435 436 if (!ret) { 437 if (!ttm_bo_wait(bo, false, false, true)) { 438 put_count = ttm_bo_del_from_lru(bo); 439 440 spin_unlock(&glob->lru_lock); 441 ttm_bo_cleanup_memtype_use(bo); 442 443 ttm_bo_list_ref_sub(bo, put_count, true); 444 445 return; 446 } else 447 ttm_bo_flush_all_fences(bo); 448 449 /* 450 * Make NO_EVICT bos immediately available to 451 * shrinkers, now that they are queued for 452 * destruction. 453 */ 454 if (bo->mem.placement & TTM_PL_FLAG_NO_EVICT) { 455 bo->mem.placement &= ~TTM_PL_FLAG_NO_EVICT; 456 ttm_bo_add_to_lru(bo); 457 } 458 459 __ttm_bo_unreserve(bo); 460 } 461 462 kref_get(&bo->list_kref); 463 list_add_tail(&bo->ddestroy, &bdev->ddestroy); 464 spin_unlock(&glob->lru_lock); 465 466 schedule_delayed_work(&bdev->wq, 467 ((HZ / 100) < 1) ? 1 : HZ / 100); 468 } 469 470 /** 471 * function ttm_bo_cleanup_refs_and_unlock 472 * If bo idle, remove from delayed- and lru lists, and unref. 473 * If not idle, do nothing. 474 * 475 * Must be called with lru_lock and reservation held, this function 476 * will drop both before returning. 477 * 478 * @interruptible Any sleeps should occur interruptibly. 479 * @no_wait_gpu Never wait for gpu. Return -EBUSY instead. 480 */ 481 482 static int ttm_bo_cleanup_refs_and_unlock(struct ttm_buffer_object *bo, 483 bool interruptible, 484 bool no_wait_gpu) 485 { 486 struct ttm_bo_global *glob = bo->glob; 487 int put_count; 488 int ret; 489 490 ret = ttm_bo_wait(bo, false, false, true); 491 492 if (ret && !no_wait_gpu) { 493 long lret; 494 ww_mutex_unlock(&bo->resv->lock); 495 spin_unlock(&glob->lru_lock); 496 497 lret = reservation_object_wait_timeout_rcu(bo->resv, 498 true, 499 interruptible, 500 30 * HZ); 501 502 if (lret < 0) 503 return lret; 504 else if (lret == 0) 505 return -EBUSY; 506 507 spin_lock(&glob->lru_lock); 508 ret = __ttm_bo_reserve(bo, false, true, false, NULL); 509 510 /* 511 * We raced, and lost, someone else holds the reservation now, 512 * and is probably busy in ttm_bo_cleanup_memtype_use. 513 * 514 * Even if it's not the case, because we finished waiting any 515 * delayed destruction would succeed, so just return success 516 * here. 517 */ 518 if (ret) { 519 spin_unlock(&glob->lru_lock); 520 return 0; 521 } 522 523 /* 524 * remove sync_obj with ttm_bo_wait, the wait should be 525 * finished, and no new wait object should have been added. 526 */ 527 ret = ttm_bo_wait(bo, false, false, true); 528 WARN_ON(ret); 529 } 530 531 if (ret || unlikely(list_empty(&bo->ddestroy))) { 532 __ttm_bo_unreserve(bo); 533 spin_unlock(&glob->lru_lock); 534 return ret; 535 } 536 537 put_count = ttm_bo_del_from_lru(bo); 538 list_del_init(&bo->ddestroy); 539 ++put_count; 540 541 spin_unlock(&glob->lru_lock); 542 ttm_bo_cleanup_memtype_use(bo); 543 544 ttm_bo_list_ref_sub(bo, put_count, true); 545 546 return 0; 547 } 548 549 /** 550 * Traverse the delayed list, and call ttm_bo_cleanup_refs on all 551 * encountered buffers. 552 */ 553 554 static int ttm_bo_delayed_delete(struct ttm_bo_device *bdev, bool remove_all) 555 { 556 struct ttm_bo_global *glob = bdev->glob; 557 struct ttm_buffer_object *entry = NULL; 558 int ret = 0; 559 560 spin_lock(&glob->lru_lock); 561 if (list_empty(&bdev->ddestroy)) 562 goto out_unlock; 563 564 entry = list_first_entry(&bdev->ddestroy, 565 struct ttm_buffer_object, ddestroy); 566 kref_get(&entry->list_kref); 567 568 for (;;) { 569 struct ttm_buffer_object *nentry = NULL; 570 571 if (entry->ddestroy.next != &bdev->ddestroy) { 572 nentry = list_first_entry(&entry->ddestroy, 573 struct ttm_buffer_object, ddestroy); 574 kref_get(&nentry->list_kref); 575 } 576 577 ret = __ttm_bo_reserve(entry, false, true, false, NULL); 578 if (remove_all && ret) { 579 spin_unlock(&glob->lru_lock); 580 ret = __ttm_bo_reserve(entry, false, false, 581 false, NULL); 582 spin_lock(&glob->lru_lock); 583 } 584 585 if (!ret) 586 ret = ttm_bo_cleanup_refs_and_unlock(entry, false, 587 !remove_all); 588 else 589 spin_unlock(&glob->lru_lock); 590 591 kref_put(&entry->list_kref, ttm_bo_release_list); 592 entry = nentry; 593 594 if (ret || !entry) 595 goto out; 596 597 spin_lock(&glob->lru_lock); 598 if (list_empty(&entry->ddestroy)) 599 break; 600 } 601 602 out_unlock: 603 spin_unlock(&glob->lru_lock); 604 out: 605 if (entry) 606 kref_put(&entry->list_kref, ttm_bo_release_list); 607 return ret; 608 } 609 610 static void ttm_bo_delayed_workqueue(struct work_struct *work) 611 { 612 struct ttm_bo_device *bdev = 613 container_of(work, struct ttm_bo_device, wq.work); 614 615 if (ttm_bo_delayed_delete(bdev, false)) { 616 schedule_delayed_work(&bdev->wq, 617 ((HZ / 100) < 1) ? 1 : HZ / 100); 618 } 619 } 620 621 static void ttm_bo_release(struct kref *kref) 622 { 623 struct ttm_buffer_object *bo = 624 container_of(kref, struct ttm_buffer_object, kref); 625 struct ttm_bo_device *bdev = bo->bdev; 626 struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type]; 627 628 drm_vma_offset_remove(&bdev->vma_manager, &bo->vma_node); 629 ttm_mem_io_lock(man, false); 630 ttm_mem_io_free_vm(bo); 631 ttm_mem_io_unlock(man); 632 ttm_bo_cleanup_refs_or_queue(bo); 633 kref_put(&bo->list_kref, ttm_bo_release_list); 634 } 635 636 void ttm_bo_unref(struct ttm_buffer_object **p_bo) 637 { 638 struct ttm_buffer_object *bo = *p_bo; 639 640 *p_bo = NULL; 641 kref_put(&bo->kref, ttm_bo_release); 642 } 643 EXPORT_SYMBOL(ttm_bo_unref); 644 645 int ttm_bo_lock_delayed_workqueue(struct ttm_bo_device *bdev) 646 { 647 return cancel_delayed_work_sync(&bdev->wq); 648 } 649 EXPORT_SYMBOL(ttm_bo_lock_delayed_workqueue); 650 651 void ttm_bo_unlock_delayed_workqueue(struct ttm_bo_device *bdev, int resched) 652 { 653 if (resched) 654 schedule_delayed_work(&bdev->wq, 655 ((HZ / 100) < 1) ? 1 : HZ / 100); 656 } 657 EXPORT_SYMBOL(ttm_bo_unlock_delayed_workqueue); 658 659 static int ttm_bo_evict(struct ttm_buffer_object *bo, bool interruptible, 660 bool no_wait_gpu) 661 { 662 struct ttm_bo_device *bdev = bo->bdev; 663 struct ttm_mem_reg evict_mem; 664 struct ttm_placement placement; 665 int ret = 0; 666 667 ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu); 668 669 if (unlikely(ret != 0)) { 670 if (ret != -ERESTARTSYS) { 671 pr_err("Failed to expire sync object before buffer eviction\n"); 672 } 673 goto out; 674 } 675 676 lockdep_assert_held(&bo->resv->lock.base); 677 678 evict_mem = bo->mem; 679 evict_mem.mm_node = NULL; 680 evict_mem.bus.io_reserved_vm = false; 681 evict_mem.bus.io_reserved_count = 0; 682 683 placement.num_placement = 0; 684 placement.num_busy_placement = 0; 685 bdev->driver->evict_flags(bo, &placement); 686 ret = ttm_bo_mem_space(bo, &placement, &evict_mem, interruptible, 687 no_wait_gpu); 688 if (ret) { 689 if (ret != -ERESTARTSYS) { 690 pr_err("Failed to find memory space for buffer 0x%p eviction\n", 691 bo); 692 ttm_bo_mem_space_debug(bo, &placement); 693 } 694 goto out; 695 } 696 697 ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, interruptible, 698 no_wait_gpu); 699 if (ret) { 700 if (ret != -ERESTARTSYS) 701 pr_err("Buffer eviction failed\n"); 702 ttm_bo_mem_put(bo, &evict_mem); 703 goto out; 704 } 705 bo->evicted = true; 706 out: 707 return ret; 708 } 709 710 static int ttm_mem_evict_first(struct ttm_bo_device *bdev, 711 uint32_t mem_type, 712 bool interruptible, 713 bool no_wait_gpu) 714 { 715 struct ttm_bo_global *glob = bdev->glob; 716 struct ttm_mem_type_manager *man = &bdev->man[mem_type]; 717 struct ttm_buffer_object *bo; 718 int ret = -EBUSY, put_count; 719 720 spin_lock(&glob->lru_lock); 721 list_for_each_entry(bo, &man->lru, lru) { 722 ret = __ttm_bo_reserve(bo, false, true, false, NULL); 723 if (!ret) 724 break; 725 } 726 727 if (ret) { 728 spin_unlock(&glob->lru_lock); 729 return ret; 730 } 731 732 kref_get(&bo->list_kref); 733 734 if (!list_empty(&bo->ddestroy)) { 735 ret = ttm_bo_cleanup_refs_and_unlock(bo, interruptible, 736 no_wait_gpu); 737 kref_put(&bo->list_kref, ttm_bo_release_list); 738 return ret; 739 } 740 741 put_count = ttm_bo_del_from_lru(bo); 742 spin_unlock(&glob->lru_lock); 743 744 BUG_ON(ret != 0); 745 746 ttm_bo_list_ref_sub(bo, put_count, true); 747 748 ret = ttm_bo_evict(bo, interruptible, no_wait_gpu); 749 ttm_bo_unreserve(bo); 750 751 kref_put(&bo->list_kref, ttm_bo_release_list); 752 return ret; 753 } 754 755 void ttm_bo_mem_put(struct ttm_buffer_object *bo, struct ttm_mem_reg *mem) 756 { 757 struct ttm_mem_type_manager *man = &bo->bdev->man[mem->mem_type]; 758 759 if (mem->mm_node) 760 (*man->func->put_node)(man, mem); 761 } 762 EXPORT_SYMBOL(ttm_bo_mem_put); 763 764 /** 765 * Repeatedly evict memory from the LRU for @mem_type until we create enough 766 * space, or we've evicted everything and there isn't enough space. 767 */ 768 static int ttm_bo_mem_force_space(struct ttm_buffer_object *bo, 769 uint32_t mem_type, 770 const struct ttm_place *place, 771 struct ttm_mem_reg *mem, 772 bool interruptible, 773 bool no_wait_gpu) 774 { 775 struct ttm_bo_device *bdev = bo->bdev; 776 struct ttm_mem_type_manager *man = &bdev->man[mem_type]; 777 int ret; 778 779 do { 780 ret = (*man->func->get_node)(man, bo, place, mem); 781 if (unlikely(ret != 0)) 782 return ret; 783 if (mem->mm_node) 784 break; 785 ret = ttm_mem_evict_first(bdev, mem_type, 786 interruptible, no_wait_gpu); 787 if (unlikely(ret != 0)) 788 return ret; 789 } while (1); 790 if (mem->mm_node == NULL) 791 return -ENOMEM; 792 mem->mem_type = mem_type; 793 return 0; 794 } 795 796 static uint32_t ttm_bo_select_caching(struct ttm_mem_type_manager *man, 797 uint32_t cur_placement, 798 uint32_t proposed_placement) 799 { 800 uint32_t caching = proposed_placement & TTM_PL_MASK_CACHING; 801 uint32_t result = proposed_placement & ~TTM_PL_MASK_CACHING; 802 803 /** 804 * Keep current caching if possible. 805 */ 806 807 if ((cur_placement & caching) != 0) 808 result |= (cur_placement & caching); 809 else if ((man->default_caching & caching) != 0) 810 result |= man->default_caching; 811 else if ((TTM_PL_FLAG_CACHED & caching) != 0) 812 result |= TTM_PL_FLAG_CACHED; 813 else if ((TTM_PL_FLAG_WC & caching) != 0) 814 result |= TTM_PL_FLAG_WC; 815 else if ((TTM_PL_FLAG_UNCACHED & caching) != 0) 816 result |= TTM_PL_FLAG_UNCACHED; 817 818 return result; 819 } 820 821 static bool ttm_bo_mt_compatible(struct ttm_mem_type_manager *man, 822 uint32_t mem_type, 823 const struct ttm_place *place, 824 uint32_t *masked_placement) 825 { 826 uint32_t cur_flags = ttm_bo_type_flags(mem_type); 827 828 if ((cur_flags & place->flags & TTM_PL_MASK_MEM) == 0) 829 return false; 830 831 if ((place->flags & man->available_caching) == 0) 832 return false; 833 834 cur_flags |= (place->flags & man->available_caching); 835 836 *masked_placement = cur_flags; 837 return true; 838 } 839 840 /** 841 * Creates space for memory region @mem according to its type. 842 * 843 * This function first searches for free space in compatible memory types in 844 * the priority order defined by the driver. If free space isn't found, then 845 * ttm_bo_mem_force_space is attempted in priority order to evict and find 846 * space. 847 */ 848 int ttm_bo_mem_space(struct ttm_buffer_object *bo, 849 struct ttm_placement *placement, 850 struct ttm_mem_reg *mem, 851 bool interruptible, 852 bool no_wait_gpu) 853 { 854 struct ttm_bo_device *bdev = bo->bdev; 855 struct ttm_mem_type_manager *man; 856 uint32_t mem_type = TTM_PL_SYSTEM; 857 uint32_t cur_flags = 0; 858 bool type_found = false; 859 bool type_ok = false; 860 bool has_erestartsys = false; 861 int i, ret; 862 863 mem->mm_node = NULL; 864 for (i = 0; i < placement->num_placement; ++i) { 865 const struct ttm_place *place = &placement->placement[i]; 866 867 ret = ttm_mem_type_from_place(place, &mem_type); 868 if (ret) 869 return ret; 870 man = &bdev->man[mem_type]; 871 872 type_ok = ttm_bo_mt_compatible(man, mem_type, place, 873 &cur_flags); 874 875 if (!type_ok) 876 continue; 877 878 cur_flags = ttm_bo_select_caching(man, bo->mem.placement, 879 cur_flags); 880 /* 881 * Use the access and other non-mapping-related flag bits from 882 * the memory placement flags to the current flags 883 */ 884 ttm_flag_masked(&cur_flags, place->flags, 885 ~TTM_PL_MASK_MEMTYPE); 886 887 if (mem_type == TTM_PL_SYSTEM) 888 break; 889 890 if (man->has_type && man->use_type) { 891 type_found = true; 892 ret = (*man->func->get_node)(man, bo, place, mem); 893 if (unlikely(ret)) 894 return ret; 895 } 896 if (mem->mm_node) 897 break; 898 } 899 900 if ((type_ok && (mem_type == TTM_PL_SYSTEM)) || mem->mm_node) { 901 mem->mem_type = mem_type; 902 mem->placement = cur_flags; 903 return 0; 904 } 905 906 if (!type_found) 907 return -EINVAL; 908 909 for (i = 0; i < placement->num_busy_placement; ++i) { 910 const struct ttm_place *place = &placement->busy_placement[i]; 911 912 ret = ttm_mem_type_from_place(place, &mem_type); 913 if (ret) 914 return ret; 915 man = &bdev->man[mem_type]; 916 if (!man->has_type) 917 continue; 918 if (!ttm_bo_mt_compatible(man, mem_type, place, &cur_flags)) 919 continue; 920 921 cur_flags = ttm_bo_select_caching(man, bo->mem.placement, 922 cur_flags); 923 /* 924 * Use the access and other non-mapping-related flag bits from 925 * the memory placement flags to the current flags 926 */ 927 ttm_flag_masked(&cur_flags, place->flags, 928 ~TTM_PL_MASK_MEMTYPE); 929 930 if (mem_type == TTM_PL_SYSTEM) { 931 mem->mem_type = mem_type; 932 mem->placement = cur_flags; 933 mem->mm_node = NULL; 934 return 0; 935 } 936 937 ret = ttm_bo_mem_force_space(bo, mem_type, place, mem, 938 interruptible, no_wait_gpu); 939 if (ret == 0 && mem->mm_node) { 940 mem->placement = cur_flags; 941 return 0; 942 } 943 if (ret == -ERESTARTSYS) 944 has_erestartsys = true; 945 } 946 ret = (has_erestartsys) ? -ERESTARTSYS : -ENOMEM; 947 return ret; 948 } 949 EXPORT_SYMBOL(ttm_bo_mem_space); 950 951 static int ttm_bo_move_buffer(struct ttm_buffer_object *bo, 952 struct ttm_placement *placement, 953 bool interruptible, 954 bool no_wait_gpu) 955 { 956 int ret = 0; 957 struct ttm_mem_reg mem; 958 959 lockdep_assert_held(&bo->resv->lock.base); 960 961 /* 962 * FIXME: It's possible to pipeline buffer moves. 963 * Have the driver move function wait for idle when necessary, 964 * instead of doing it here. 965 */ 966 ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu); 967 if (ret) 968 return ret; 969 mem.num_pages = bo->num_pages; 970 mem.size = mem.num_pages << PAGE_SHIFT; 971 mem.page_alignment = bo->mem.page_alignment; 972 mem.bus.io_reserved_vm = false; 973 mem.bus.io_reserved_count = 0; 974 /* 975 * Determine where to move the buffer. 976 */ 977 ret = ttm_bo_mem_space(bo, placement, &mem, 978 interruptible, no_wait_gpu); 979 if (ret) 980 goto out_unlock; 981 ret = ttm_bo_handle_move_mem(bo, &mem, false, 982 interruptible, no_wait_gpu); 983 out_unlock: 984 if (ret && mem.mm_node) 985 ttm_bo_mem_put(bo, &mem); 986 return ret; 987 } 988 989 static bool ttm_bo_mem_compat(struct ttm_placement *placement, 990 struct ttm_mem_reg *mem, 991 uint32_t *new_flags) 992 { 993 int i; 994 995 for (i = 0; i < placement->num_placement; i++) { 996 const struct ttm_place *heap = &placement->placement[i]; 997 if (mem->mm_node && heap->lpfn != 0 && 998 (mem->start < heap->fpfn || 999 mem->start + mem->num_pages > heap->lpfn)) 1000 continue; 1001 1002 *new_flags = heap->flags; 1003 if ((*new_flags & mem->placement & TTM_PL_MASK_CACHING) && 1004 (*new_flags & mem->placement & TTM_PL_MASK_MEM)) 1005 return true; 1006 } 1007 1008 for (i = 0; i < placement->num_busy_placement; i++) { 1009 const struct ttm_place *heap = &placement->busy_placement[i]; 1010 if (mem->mm_node && heap->lpfn != 0 && 1011 (mem->start < heap->fpfn || 1012 mem->start + mem->num_pages > heap->lpfn)) 1013 continue; 1014 1015 *new_flags = heap->flags; 1016 if ((*new_flags & mem->placement & TTM_PL_MASK_CACHING) && 1017 (*new_flags & mem->placement & TTM_PL_MASK_MEM)) 1018 return true; 1019 } 1020 1021 return false; 1022 } 1023 1024 int ttm_bo_validate(struct ttm_buffer_object *bo, 1025 struct ttm_placement *placement, 1026 bool interruptible, 1027 bool no_wait_gpu) 1028 { 1029 int ret; 1030 uint32_t new_flags; 1031 1032 lockdep_assert_held(&bo->resv->lock.base); 1033 /* 1034 * Check whether we need to move buffer. 1035 */ 1036 if (!ttm_bo_mem_compat(placement, &bo->mem, &new_flags)) { 1037 ret = ttm_bo_move_buffer(bo, placement, interruptible, 1038 no_wait_gpu); 1039 if (ret) 1040 return ret; 1041 } else { 1042 /* 1043 * Use the access and other non-mapping-related flag bits from 1044 * the compatible memory placement flags to the active flags 1045 */ 1046 ttm_flag_masked(&bo->mem.placement, new_flags, 1047 ~TTM_PL_MASK_MEMTYPE); 1048 } 1049 /* 1050 * We might need to add a TTM. 1051 */ 1052 if (bo->mem.mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) { 1053 ret = ttm_bo_add_ttm(bo, true); 1054 if (ret) 1055 return ret; 1056 } 1057 return 0; 1058 } 1059 EXPORT_SYMBOL(ttm_bo_validate); 1060 1061 int ttm_bo_init(struct ttm_bo_device *bdev, 1062 struct ttm_buffer_object *bo, 1063 unsigned long size, 1064 enum ttm_bo_type type, 1065 struct ttm_placement *placement, 1066 uint32_t page_alignment, 1067 bool interruptible, 1068 struct file *persistent_swap_storage, 1069 size_t acc_size, 1070 struct sg_table *sg, 1071 struct reservation_object *resv, 1072 void (*destroy) (struct ttm_buffer_object *)) 1073 { 1074 int ret = 0; 1075 unsigned long num_pages; 1076 struct ttm_mem_global *mem_glob = bdev->glob->mem_glob; 1077 bool locked; 1078 1079 ret = ttm_mem_global_alloc(mem_glob, acc_size, false, false); 1080 if (ret) { 1081 pr_err("Out of kernel memory\n"); 1082 if (destroy) 1083 (*destroy)(bo); 1084 else 1085 kfree(bo); 1086 return -ENOMEM; 1087 } 1088 1089 num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 1090 if (num_pages == 0) { 1091 pr_err("Illegal buffer object size\n"); 1092 if (destroy) 1093 (*destroy)(bo); 1094 else 1095 kfree(bo); 1096 ttm_mem_global_free(mem_glob, acc_size); 1097 return -EINVAL; 1098 } 1099 bo->destroy = destroy; 1100 1101 kref_init(&bo->kref); 1102 kref_init(&bo->list_kref); 1103 atomic_set(&bo->cpu_writers, 0); 1104 INIT_LIST_HEAD(&bo->lru); 1105 INIT_LIST_HEAD(&bo->ddestroy); 1106 INIT_LIST_HEAD(&bo->swap); 1107 INIT_LIST_HEAD(&bo->io_reserve_lru); 1108 mutex_init(&bo->wu_mutex); 1109 bo->bdev = bdev; 1110 bo->glob = bdev->glob; 1111 bo->type = type; 1112 bo->num_pages = num_pages; 1113 bo->mem.size = num_pages << PAGE_SHIFT; 1114 bo->mem.mem_type = TTM_PL_SYSTEM; 1115 bo->mem.num_pages = bo->num_pages; 1116 bo->mem.mm_node = NULL; 1117 bo->mem.page_alignment = page_alignment; 1118 bo->mem.bus.io_reserved_vm = false; 1119 bo->mem.bus.io_reserved_count = 0; 1120 bo->priv_flags = 0; 1121 bo->mem.placement = (TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED); 1122 bo->persistent_swap_storage = persistent_swap_storage; 1123 bo->acc_size = acc_size; 1124 bo->sg = sg; 1125 if (resv) { 1126 bo->resv = resv; 1127 lockdep_assert_held(&bo->resv->lock.base); 1128 } else { 1129 bo->resv = &bo->ttm_resv; 1130 reservation_object_init(&bo->ttm_resv); 1131 } 1132 atomic_inc(&bo->glob->bo_count); 1133 drm_vma_node_reset(&bo->vma_node); 1134 1135 /* 1136 * For ttm_bo_type_device buffers, allocate 1137 * address space from the device. 1138 */ 1139 if (bo->type == ttm_bo_type_device || 1140 bo->type == ttm_bo_type_sg) 1141 ret = drm_vma_offset_add(&bdev->vma_manager, &bo->vma_node, 1142 bo->mem.num_pages); 1143 1144 /* passed reservation objects should already be locked, 1145 * since otherwise lockdep will be angered in radeon. 1146 */ 1147 if (!resv) { 1148 locked = ww_mutex_trylock(&bo->resv->lock); 1149 WARN_ON(!locked); 1150 } 1151 1152 if (likely(!ret)) 1153 ret = ttm_bo_validate(bo, placement, interruptible, false); 1154 1155 if (!resv) 1156 ttm_bo_unreserve(bo); 1157 1158 if (unlikely(ret)) 1159 ttm_bo_unref(&bo); 1160 1161 return ret; 1162 } 1163 EXPORT_SYMBOL(ttm_bo_init); 1164 1165 size_t ttm_bo_acc_size(struct ttm_bo_device *bdev, 1166 unsigned long bo_size, 1167 unsigned struct_size) 1168 { 1169 unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT; 1170 size_t size = 0; 1171 1172 size += ttm_round_pot(struct_size); 1173 size += PAGE_ALIGN(npages * sizeof(void *)); 1174 size += ttm_round_pot(sizeof(struct ttm_tt)); 1175 return size; 1176 } 1177 EXPORT_SYMBOL(ttm_bo_acc_size); 1178 1179 size_t ttm_bo_dma_acc_size(struct ttm_bo_device *bdev, 1180 unsigned long bo_size, 1181 unsigned struct_size) 1182 { 1183 unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT; 1184 size_t size = 0; 1185 1186 size += ttm_round_pot(struct_size); 1187 size += PAGE_ALIGN(npages * sizeof(void *)); 1188 size += PAGE_ALIGN(npages * sizeof(dma_addr_t)); 1189 size += ttm_round_pot(sizeof(struct ttm_dma_tt)); 1190 return size; 1191 } 1192 EXPORT_SYMBOL(ttm_bo_dma_acc_size); 1193 1194 int ttm_bo_create(struct ttm_bo_device *bdev, 1195 unsigned long size, 1196 enum ttm_bo_type type, 1197 struct ttm_placement *placement, 1198 uint32_t page_alignment, 1199 bool interruptible, 1200 struct file *persistent_swap_storage, 1201 struct ttm_buffer_object **p_bo) 1202 { 1203 struct ttm_buffer_object *bo; 1204 size_t acc_size; 1205 int ret; 1206 1207 bo = kzalloc(sizeof(*bo), GFP_KERNEL); 1208 if (unlikely(bo == NULL)) 1209 return -ENOMEM; 1210 1211 acc_size = ttm_bo_acc_size(bdev, size, sizeof(struct ttm_buffer_object)); 1212 ret = ttm_bo_init(bdev, bo, size, type, placement, page_alignment, 1213 interruptible, persistent_swap_storage, acc_size, 1214 NULL, NULL, NULL); 1215 if (likely(ret == 0)) 1216 *p_bo = bo; 1217 1218 return ret; 1219 } 1220 EXPORT_SYMBOL(ttm_bo_create); 1221 1222 static int ttm_bo_force_list_clean(struct ttm_bo_device *bdev, 1223 unsigned mem_type, bool allow_errors) 1224 { 1225 struct ttm_mem_type_manager *man = &bdev->man[mem_type]; 1226 struct ttm_bo_global *glob = bdev->glob; 1227 int ret; 1228 1229 /* 1230 * Can't use standard list traversal since we're unlocking. 1231 */ 1232 1233 spin_lock(&glob->lru_lock); 1234 while (!list_empty(&man->lru)) { 1235 spin_unlock(&glob->lru_lock); 1236 ret = ttm_mem_evict_first(bdev, mem_type, false, false); 1237 if (ret) { 1238 if (allow_errors) { 1239 return ret; 1240 } else { 1241 pr_err("Cleanup eviction failed\n"); 1242 } 1243 } 1244 spin_lock(&glob->lru_lock); 1245 } 1246 spin_unlock(&glob->lru_lock); 1247 return 0; 1248 } 1249 1250 int ttm_bo_clean_mm(struct ttm_bo_device *bdev, unsigned mem_type) 1251 { 1252 struct ttm_mem_type_manager *man; 1253 int ret = -EINVAL; 1254 1255 if (mem_type >= TTM_NUM_MEM_TYPES) { 1256 pr_err("Illegal memory type %d\n", mem_type); 1257 return ret; 1258 } 1259 man = &bdev->man[mem_type]; 1260 1261 if (!man->has_type) { 1262 pr_err("Trying to take down uninitialized memory manager type %u\n", 1263 mem_type); 1264 return ret; 1265 } 1266 1267 man->use_type = false; 1268 man->has_type = false; 1269 1270 ret = 0; 1271 if (mem_type > 0) { 1272 ttm_bo_force_list_clean(bdev, mem_type, false); 1273 1274 ret = (*man->func->takedown)(man); 1275 } 1276 1277 return ret; 1278 } 1279 EXPORT_SYMBOL(ttm_bo_clean_mm); 1280 1281 int ttm_bo_evict_mm(struct ttm_bo_device *bdev, unsigned mem_type) 1282 { 1283 struct ttm_mem_type_manager *man = &bdev->man[mem_type]; 1284 1285 if (mem_type == 0 || mem_type >= TTM_NUM_MEM_TYPES) { 1286 pr_err("Illegal memory manager memory type %u\n", mem_type); 1287 return -EINVAL; 1288 } 1289 1290 if (!man->has_type) { 1291 pr_err("Memory type %u has not been initialized\n", mem_type); 1292 return 0; 1293 } 1294 1295 return ttm_bo_force_list_clean(bdev, mem_type, true); 1296 } 1297 EXPORT_SYMBOL(ttm_bo_evict_mm); 1298 1299 int ttm_bo_init_mm(struct ttm_bo_device *bdev, unsigned type, 1300 unsigned long p_size) 1301 { 1302 int ret = -EINVAL; 1303 struct ttm_mem_type_manager *man; 1304 1305 BUG_ON(type >= TTM_NUM_MEM_TYPES); 1306 man = &bdev->man[type]; 1307 BUG_ON(man->has_type); 1308 man->io_reserve_fastpath = true; 1309 man->use_io_reserve_lru = false; 1310 mutex_init(&man->io_reserve_mutex); 1311 INIT_LIST_HEAD(&man->io_reserve_lru); 1312 1313 ret = bdev->driver->init_mem_type(bdev, type, man); 1314 if (ret) 1315 return ret; 1316 man->bdev = bdev; 1317 1318 ret = 0; 1319 if (type != TTM_PL_SYSTEM) { 1320 ret = (*man->func->init)(man, p_size); 1321 if (ret) 1322 return ret; 1323 } 1324 man->has_type = true; 1325 man->use_type = true; 1326 man->size = p_size; 1327 1328 INIT_LIST_HEAD(&man->lru); 1329 1330 return 0; 1331 } 1332 EXPORT_SYMBOL(ttm_bo_init_mm); 1333 1334 static void ttm_bo_global_kobj_release(struct kobject *kobj) 1335 { 1336 struct ttm_bo_global *glob = 1337 container_of(kobj, struct ttm_bo_global, kobj); 1338 1339 ttm_mem_unregister_shrink(glob->mem_glob, &glob->shrink); 1340 __free_page(glob->dummy_read_page); 1341 kfree(glob); 1342 } 1343 1344 void ttm_bo_global_release(struct drm_global_reference *ref) 1345 { 1346 struct ttm_bo_global *glob = ref->object; 1347 1348 kobject_del(&glob->kobj); 1349 kobject_put(&glob->kobj); 1350 } 1351 EXPORT_SYMBOL(ttm_bo_global_release); 1352 1353 int ttm_bo_global_init(struct drm_global_reference *ref) 1354 { 1355 struct ttm_bo_global_ref *bo_ref = 1356 container_of(ref, struct ttm_bo_global_ref, ref); 1357 struct ttm_bo_global *glob = ref->object; 1358 int ret; 1359 1360 mutex_init(&glob->device_list_mutex); 1361 spin_lock_init(&glob->lru_lock); 1362 glob->mem_glob = bo_ref->mem_glob; 1363 glob->dummy_read_page = alloc_page(__GFP_ZERO | GFP_DMA32); 1364 1365 if (unlikely(glob->dummy_read_page == NULL)) { 1366 ret = -ENOMEM; 1367 goto out_no_drp; 1368 } 1369 1370 INIT_LIST_HEAD(&glob->swap_lru); 1371 INIT_LIST_HEAD(&glob->device_list); 1372 1373 ttm_mem_init_shrink(&glob->shrink, ttm_bo_swapout); 1374 ret = ttm_mem_register_shrink(glob->mem_glob, &glob->shrink); 1375 if (unlikely(ret != 0)) { 1376 pr_err("Could not register buffer object swapout\n"); 1377 goto out_no_shrink; 1378 } 1379 1380 atomic_set(&glob->bo_count, 0); 1381 1382 ret = kobject_init_and_add( 1383 &glob->kobj, &ttm_bo_glob_kobj_type, ttm_get_kobj(), "buffer_objects"); 1384 if (unlikely(ret != 0)) 1385 kobject_put(&glob->kobj); 1386 return ret; 1387 out_no_shrink: 1388 __free_page(glob->dummy_read_page); 1389 out_no_drp: 1390 kfree(glob); 1391 return ret; 1392 } 1393 EXPORT_SYMBOL(ttm_bo_global_init); 1394 1395 1396 int ttm_bo_device_release(struct ttm_bo_device *bdev) 1397 { 1398 int ret = 0; 1399 unsigned i = TTM_NUM_MEM_TYPES; 1400 struct ttm_mem_type_manager *man; 1401 struct ttm_bo_global *glob = bdev->glob; 1402 1403 while (i--) { 1404 man = &bdev->man[i]; 1405 if (man->has_type) { 1406 man->use_type = false; 1407 if ((i != TTM_PL_SYSTEM) && ttm_bo_clean_mm(bdev, i)) { 1408 ret = -EBUSY; 1409 pr_err("DRM memory manager type %d is not clean\n", 1410 i); 1411 } 1412 man->has_type = false; 1413 } 1414 } 1415 1416 mutex_lock(&glob->device_list_mutex); 1417 list_del(&bdev->device_list); 1418 mutex_unlock(&glob->device_list_mutex); 1419 1420 cancel_delayed_work_sync(&bdev->wq); 1421 1422 while (ttm_bo_delayed_delete(bdev, true)) 1423 ; 1424 1425 spin_lock(&glob->lru_lock); 1426 if (list_empty(&bdev->ddestroy)) 1427 TTM_DEBUG("Delayed destroy list was clean\n"); 1428 1429 if (list_empty(&bdev->man[0].lru)) 1430 TTM_DEBUG("Swap list was clean\n"); 1431 spin_unlock(&glob->lru_lock); 1432 1433 drm_vma_offset_manager_destroy(&bdev->vma_manager); 1434 1435 return ret; 1436 } 1437 EXPORT_SYMBOL(ttm_bo_device_release); 1438 1439 int ttm_bo_device_init(struct ttm_bo_device *bdev, 1440 struct ttm_bo_global *glob, 1441 struct ttm_bo_driver *driver, 1442 struct address_space *mapping, 1443 uint64_t file_page_offset, 1444 bool need_dma32) 1445 { 1446 int ret = -EINVAL; 1447 1448 bdev->driver = driver; 1449 1450 memset(bdev->man, 0, sizeof(bdev->man)); 1451 1452 /* 1453 * Initialize the system memory buffer type. 1454 * Other types need to be driver / IOCTL initialized. 1455 */ 1456 ret = ttm_bo_init_mm(bdev, TTM_PL_SYSTEM, 0); 1457 if (unlikely(ret != 0)) 1458 goto out_no_sys; 1459 1460 drm_vma_offset_manager_init(&bdev->vma_manager, file_page_offset, 1461 0x10000000); 1462 INIT_DELAYED_WORK(&bdev->wq, ttm_bo_delayed_workqueue); 1463 INIT_LIST_HEAD(&bdev->ddestroy); 1464 bdev->dev_mapping = mapping; 1465 bdev->glob = glob; 1466 bdev->need_dma32 = need_dma32; 1467 bdev->val_seq = 0; 1468 mutex_lock(&glob->device_list_mutex); 1469 list_add_tail(&bdev->device_list, &glob->device_list); 1470 mutex_unlock(&glob->device_list_mutex); 1471 1472 return 0; 1473 out_no_sys: 1474 return ret; 1475 } 1476 EXPORT_SYMBOL(ttm_bo_device_init); 1477 1478 /* 1479 * buffer object vm functions. 1480 */ 1481 1482 bool ttm_mem_reg_is_pci(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem) 1483 { 1484 struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type]; 1485 1486 if (!(man->flags & TTM_MEMTYPE_FLAG_FIXED)) { 1487 if (mem->mem_type == TTM_PL_SYSTEM) 1488 return false; 1489 1490 if (man->flags & TTM_MEMTYPE_FLAG_CMA) 1491 return false; 1492 1493 if (mem->placement & TTM_PL_FLAG_CACHED) 1494 return false; 1495 } 1496 return true; 1497 } 1498 1499 void ttm_bo_unmap_virtual_locked(struct ttm_buffer_object *bo) 1500 { 1501 struct ttm_bo_device *bdev = bo->bdev; 1502 1503 drm_vma_node_unmap(&bo->vma_node, bdev->dev_mapping); 1504 ttm_mem_io_free_vm(bo); 1505 } 1506 1507 void ttm_bo_unmap_virtual(struct ttm_buffer_object *bo) 1508 { 1509 struct ttm_bo_device *bdev = bo->bdev; 1510 struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type]; 1511 1512 ttm_mem_io_lock(man, false); 1513 ttm_bo_unmap_virtual_locked(bo); 1514 ttm_mem_io_unlock(man); 1515 } 1516 1517 1518 EXPORT_SYMBOL(ttm_bo_unmap_virtual); 1519 1520 int ttm_bo_wait(struct ttm_buffer_object *bo, 1521 bool lazy, bool interruptible, bool no_wait) 1522 { 1523 struct reservation_object_list *fobj; 1524 struct reservation_object *resv; 1525 struct fence *excl; 1526 long timeout = 15 * HZ; 1527 int i; 1528 1529 resv = bo->resv; 1530 fobj = reservation_object_get_list(resv); 1531 excl = reservation_object_get_excl(resv); 1532 if (excl) { 1533 if (!fence_is_signaled(excl)) { 1534 if (no_wait) 1535 return -EBUSY; 1536 1537 timeout = fence_wait_timeout(excl, 1538 interruptible, timeout); 1539 } 1540 } 1541 1542 for (i = 0; fobj && timeout > 0 && i < fobj->shared_count; ++i) { 1543 struct fence *fence; 1544 fence = rcu_dereference_protected(fobj->shared[i], 1545 reservation_object_held(resv)); 1546 1547 if (!fence_is_signaled(fence)) { 1548 if (no_wait) 1549 return -EBUSY; 1550 1551 timeout = fence_wait_timeout(fence, 1552 interruptible, timeout); 1553 } 1554 } 1555 1556 if (timeout < 0) 1557 return timeout; 1558 1559 if (timeout == 0) 1560 return -EBUSY; 1561 1562 reservation_object_add_excl_fence(resv, NULL); 1563 clear_bit(TTM_BO_PRIV_FLAG_MOVING, &bo->priv_flags); 1564 return 0; 1565 } 1566 EXPORT_SYMBOL(ttm_bo_wait); 1567 1568 int ttm_bo_synccpu_write_grab(struct ttm_buffer_object *bo, bool no_wait) 1569 { 1570 int ret = 0; 1571 1572 /* 1573 * Using ttm_bo_reserve makes sure the lru lists are updated. 1574 */ 1575 1576 ret = ttm_bo_reserve(bo, true, no_wait, false, NULL); 1577 if (unlikely(ret != 0)) 1578 return ret; 1579 ret = ttm_bo_wait(bo, false, true, no_wait); 1580 if (likely(ret == 0)) 1581 atomic_inc(&bo->cpu_writers); 1582 ttm_bo_unreserve(bo); 1583 return ret; 1584 } 1585 EXPORT_SYMBOL(ttm_bo_synccpu_write_grab); 1586 1587 void ttm_bo_synccpu_write_release(struct ttm_buffer_object *bo) 1588 { 1589 atomic_dec(&bo->cpu_writers); 1590 } 1591 EXPORT_SYMBOL(ttm_bo_synccpu_write_release); 1592 1593 /** 1594 * A buffer object shrink method that tries to swap out the first 1595 * buffer object on the bo_global::swap_lru list. 1596 */ 1597 1598 static int ttm_bo_swapout(struct ttm_mem_shrink *shrink) 1599 { 1600 struct ttm_bo_global *glob = 1601 container_of(shrink, struct ttm_bo_global, shrink); 1602 struct ttm_buffer_object *bo; 1603 int ret = -EBUSY; 1604 int put_count; 1605 uint32_t swap_placement = (TTM_PL_FLAG_CACHED | TTM_PL_FLAG_SYSTEM); 1606 1607 spin_lock(&glob->lru_lock); 1608 list_for_each_entry(bo, &glob->swap_lru, swap) { 1609 ret = __ttm_bo_reserve(bo, false, true, false, NULL); 1610 if (!ret) 1611 break; 1612 } 1613 1614 if (ret) { 1615 spin_unlock(&glob->lru_lock); 1616 return ret; 1617 } 1618 1619 kref_get(&bo->list_kref); 1620 1621 if (!list_empty(&bo->ddestroy)) { 1622 ret = ttm_bo_cleanup_refs_and_unlock(bo, false, false); 1623 kref_put(&bo->list_kref, ttm_bo_release_list); 1624 return ret; 1625 } 1626 1627 put_count = ttm_bo_del_from_lru(bo); 1628 spin_unlock(&glob->lru_lock); 1629 1630 ttm_bo_list_ref_sub(bo, put_count, true); 1631 1632 /** 1633 * Wait for GPU, then move to system cached. 1634 */ 1635 1636 ret = ttm_bo_wait(bo, false, false, false); 1637 1638 if (unlikely(ret != 0)) 1639 goto out; 1640 1641 if ((bo->mem.placement & swap_placement) != swap_placement) { 1642 struct ttm_mem_reg evict_mem; 1643 1644 evict_mem = bo->mem; 1645 evict_mem.mm_node = NULL; 1646 evict_mem.placement = TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED; 1647 evict_mem.mem_type = TTM_PL_SYSTEM; 1648 1649 ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, 1650 false, false); 1651 if (unlikely(ret != 0)) 1652 goto out; 1653 } 1654 1655 ttm_bo_unmap_virtual(bo); 1656 1657 /** 1658 * Swap out. Buffer will be swapped in again as soon as 1659 * anyone tries to access a ttm page. 1660 */ 1661 1662 if (bo->bdev->driver->swap_notify) 1663 bo->bdev->driver->swap_notify(bo); 1664 1665 ret = ttm_tt_swapout(bo->ttm, bo->persistent_swap_storage); 1666 out: 1667 1668 /** 1669 * 1670 * Unreserve without putting on LRU to avoid swapping out an 1671 * already swapped buffer. 1672 */ 1673 1674 __ttm_bo_unreserve(bo); 1675 kref_put(&bo->list_kref, ttm_bo_release_list); 1676 return ret; 1677 } 1678 1679 void ttm_bo_swapout_all(struct ttm_bo_device *bdev) 1680 { 1681 while (ttm_bo_swapout(&bdev->glob->shrink) == 0) 1682 ; 1683 } 1684 EXPORT_SYMBOL(ttm_bo_swapout_all); 1685 1686 /** 1687 * ttm_bo_wait_unreserved - interruptible wait for a buffer object to become 1688 * unreserved 1689 * 1690 * @bo: Pointer to buffer 1691 */ 1692 int ttm_bo_wait_unreserved(struct ttm_buffer_object *bo) 1693 { 1694 int ret; 1695 1696 /* 1697 * In the absense of a wait_unlocked API, 1698 * Use the bo::wu_mutex to avoid triggering livelocks due to 1699 * concurrent use of this function. Note that this use of 1700 * bo::wu_mutex can go away if we change locking order to 1701 * mmap_sem -> bo::reserve. 1702 */ 1703 ret = mutex_lock_interruptible(&bo->wu_mutex); 1704 if (unlikely(ret != 0)) 1705 return -ERESTARTSYS; 1706 if (!ww_mutex_is_locked(&bo->resv->lock)) 1707 goto out_unlock; 1708 ret = __ttm_bo_reserve(bo, true, false, false, NULL); 1709 if (unlikely(ret != 0)) 1710 goto out_unlock; 1711 __ttm_bo_unreserve(bo); 1712 1713 out_unlock: 1714 mutex_unlock(&bo->wu_mutex); 1715 return ret; 1716 } 1717