xref: /openbmc/linux/drivers/gpu/drm/ttm/ttm_bo.c (revision 39b6f3aa)
1 /**************************************************************************
2  *
3  * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
4  * All Rights Reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24  * USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  **************************************************************************/
27 /*
28  * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
29  */
30 
31 #define pr_fmt(fmt) "[TTM] " fmt
32 
33 #include <drm/ttm/ttm_module.h>
34 #include <drm/ttm/ttm_bo_driver.h>
35 #include <drm/ttm/ttm_placement.h>
36 #include <linux/jiffies.h>
37 #include <linux/slab.h>
38 #include <linux/sched.h>
39 #include <linux/mm.h>
40 #include <linux/file.h>
41 #include <linux/module.h>
42 #include <linux/atomic.h>
43 
44 #define TTM_ASSERT_LOCKED(param)
45 #define TTM_DEBUG(fmt, arg...)
46 #define TTM_BO_HASH_ORDER 13
47 
48 static int ttm_bo_setup_vm(struct ttm_buffer_object *bo);
49 static int ttm_bo_swapout(struct ttm_mem_shrink *shrink);
50 static void ttm_bo_global_kobj_release(struct kobject *kobj);
51 
52 static struct attribute ttm_bo_count = {
53 	.name = "bo_count",
54 	.mode = S_IRUGO
55 };
56 
57 static inline int ttm_mem_type_from_flags(uint32_t flags, uint32_t *mem_type)
58 {
59 	int i;
60 
61 	for (i = 0; i <= TTM_PL_PRIV5; i++)
62 		if (flags & (1 << i)) {
63 			*mem_type = i;
64 			return 0;
65 		}
66 	return -EINVAL;
67 }
68 
69 static void ttm_mem_type_debug(struct ttm_bo_device *bdev, int mem_type)
70 {
71 	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
72 
73 	pr_err("    has_type: %d\n", man->has_type);
74 	pr_err("    use_type: %d\n", man->use_type);
75 	pr_err("    flags: 0x%08X\n", man->flags);
76 	pr_err("    gpu_offset: 0x%08lX\n", man->gpu_offset);
77 	pr_err("    size: %llu\n", man->size);
78 	pr_err("    available_caching: 0x%08X\n", man->available_caching);
79 	pr_err("    default_caching: 0x%08X\n", man->default_caching);
80 	if (mem_type != TTM_PL_SYSTEM)
81 		(*man->func->debug)(man, TTM_PFX);
82 }
83 
84 static void ttm_bo_mem_space_debug(struct ttm_buffer_object *bo,
85 					struct ttm_placement *placement)
86 {
87 	int i, ret, mem_type;
88 
89 	pr_err("No space for %p (%lu pages, %luK, %luM)\n",
90 	       bo, bo->mem.num_pages, bo->mem.size >> 10,
91 	       bo->mem.size >> 20);
92 	for (i = 0; i < placement->num_placement; i++) {
93 		ret = ttm_mem_type_from_flags(placement->placement[i],
94 						&mem_type);
95 		if (ret)
96 			return;
97 		pr_err("  placement[%d]=0x%08X (%d)\n",
98 		       i, placement->placement[i], mem_type);
99 		ttm_mem_type_debug(bo->bdev, mem_type);
100 	}
101 }
102 
103 static ssize_t ttm_bo_global_show(struct kobject *kobj,
104 				  struct attribute *attr,
105 				  char *buffer)
106 {
107 	struct ttm_bo_global *glob =
108 		container_of(kobj, struct ttm_bo_global, kobj);
109 
110 	return snprintf(buffer, PAGE_SIZE, "%lu\n",
111 			(unsigned long) atomic_read(&glob->bo_count));
112 }
113 
114 static struct attribute *ttm_bo_global_attrs[] = {
115 	&ttm_bo_count,
116 	NULL
117 };
118 
119 static const struct sysfs_ops ttm_bo_global_ops = {
120 	.show = &ttm_bo_global_show
121 };
122 
123 static struct kobj_type ttm_bo_glob_kobj_type  = {
124 	.release = &ttm_bo_global_kobj_release,
125 	.sysfs_ops = &ttm_bo_global_ops,
126 	.default_attrs = ttm_bo_global_attrs
127 };
128 
129 
130 static inline uint32_t ttm_bo_type_flags(unsigned type)
131 {
132 	return 1 << (type);
133 }
134 
135 static void ttm_bo_release_list(struct kref *list_kref)
136 {
137 	struct ttm_buffer_object *bo =
138 	    container_of(list_kref, struct ttm_buffer_object, list_kref);
139 	struct ttm_bo_device *bdev = bo->bdev;
140 	size_t acc_size = bo->acc_size;
141 
142 	BUG_ON(atomic_read(&bo->list_kref.refcount));
143 	BUG_ON(atomic_read(&bo->kref.refcount));
144 	BUG_ON(atomic_read(&bo->cpu_writers));
145 	BUG_ON(bo->sync_obj != NULL);
146 	BUG_ON(bo->mem.mm_node != NULL);
147 	BUG_ON(!list_empty(&bo->lru));
148 	BUG_ON(!list_empty(&bo->ddestroy));
149 
150 	if (bo->ttm)
151 		ttm_tt_destroy(bo->ttm);
152 	atomic_dec(&bo->glob->bo_count);
153 	if (bo->destroy)
154 		bo->destroy(bo);
155 	else {
156 		kfree(bo);
157 	}
158 	ttm_mem_global_free(bdev->glob->mem_glob, acc_size);
159 }
160 
161 static int ttm_bo_wait_unreserved(struct ttm_buffer_object *bo,
162 				  bool interruptible)
163 {
164 	if (interruptible) {
165 		return wait_event_interruptible(bo->event_queue,
166 					       !ttm_bo_is_reserved(bo));
167 	} else {
168 		wait_event(bo->event_queue, !ttm_bo_is_reserved(bo));
169 		return 0;
170 	}
171 }
172 
173 void ttm_bo_add_to_lru(struct ttm_buffer_object *bo)
174 {
175 	struct ttm_bo_device *bdev = bo->bdev;
176 	struct ttm_mem_type_manager *man;
177 
178 	BUG_ON(!ttm_bo_is_reserved(bo));
179 
180 	if (!(bo->mem.placement & TTM_PL_FLAG_NO_EVICT)) {
181 
182 		BUG_ON(!list_empty(&bo->lru));
183 
184 		man = &bdev->man[bo->mem.mem_type];
185 		list_add_tail(&bo->lru, &man->lru);
186 		kref_get(&bo->list_kref);
187 
188 		if (bo->ttm != NULL) {
189 			list_add_tail(&bo->swap, &bo->glob->swap_lru);
190 			kref_get(&bo->list_kref);
191 		}
192 	}
193 }
194 
195 int ttm_bo_del_from_lru(struct ttm_buffer_object *bo)
196 {
197 	int put_count = 0;
198 
199 	if (!list_empty(&bo->swap)) {
200 		list_del_init(&bo->swap);
201 		++put_count;
202 	}
203 	if (!list_empty(&bo->lru)) {
204 		list_del_init(&bo->lru);
205 		++put_count;
206 	}
207 
208 	/*
209 	 * TODO: Add a driver hook to delete from
210 	 * driver-specific LRU's here.
211 	 */
212 
213 	return put_count;
214 }
215 
216 int ttm_bo_reserve_nolru(struct ttm_buffer_object *bo,
217 			  bool interruptible,
218 			  bool no_wait, bool use_sequence, uint32_t sequence)
219 {
220 	int ret;
221 
222 	while (unlikely(atomic_xchg(&bo->reserved, 1) != 0)) {
223 		/**
224 		 * Deadlock avoidance for multi-bo reserving.
225 		 */
226 		if (use_sequence && bo->seq_valid) {
227 			/**
228 			 * We've already reserved this one.
229 			 */
230 			if (unlikely(sequence == bo->val_seq))
231 				return -EDEADLK;
232 			/**
233 			 * Already reserved by a thread that will not back
234 			 * off for us. We need to back off.
235 			 */
236 			if (unlikely(sequence - bo->val_seq < (1 << 31)))
237 				return -EAGAIN;
238 		}
239 
240 		if (no_wait)
241 			return -EBUSY;
242 
243 		ret = ttm_bo_wait_unreserved(bo, interruptible);
244 
245 		if (unlikely(ret))
246 			return ret;
247 	}
248 
249 	if (use_sequence) {
250 		bool wake_up = false;
251 		/**
252 		 * Wake up waiters that may need to recheck for deadlock,
253 		 * if we decreased the sequence number.
254 		 */
255 		if (unlikely((bo->val_seq - sequence < (1 << 31))
256 			     || !bo->seq_valid))
257 			wake_up = true;
258 
259 		/*
260 		 * In the worst case with memory ordering these values can be
261 		 * seen in the wrong order. However since we call wake_up_all
262 		 * in that case, this will hopefully not pose a problem,
263 		 * and the worst case would only cause someone to accidentally
264 		 * hit -EAGAIN in ttm_bo_reserve when they see old value of
265 		 * val_seq. However this would only happen if seq_valid was
266 		 * written before val_seq was, and just means some slightly
267 		 * increased cpu usage
268 		 */
269 		bo->val_seq = sequence;
270 		bo->seq_valid = true;
271 		if (wake_up)
272 			wake_up_all(&bo->event_queue);
273 	} else {
274 		bo->seq_valid = false;
275 	}
276 
277 	return 0;
278 }
279 EXPORT_SYMBOL(ttm_bo_reserve);
280 
281 static void ttm_bo_ref_bug(struct kref *list_kref)
282 {
283 	BUG();
284 }
285 
286 void ttm_bo_list_ref_sub(struct ttm_buffer_object *bo, int count,
287 			 bool never_free)
288 {
289 	kref_sub(&bo->list_kref, count,
290 		 (never_free) ? ttm_bo_ref_bug : ttm_bo_release_list);
291 }
292 
293 int ttm_bo_reserve(struct ttm_buffer_object *bo,
294 		   bool interruptible,
295 		   bool no_wait, bool use_sequence, uint32_t sequence)
296 {
297 	struct ttm_bo_global *glob = bo->glob;
298 	int put_count = 0;
299 	int ret;
300 
301 	ret = ttm_bo_reserve_nolru(bo, interruptible, no_wait, use_sequence,
302 				   sequence);
303 	if (likely(ret == 0)) {
304 		spin_lock(&glob->lru_lock);
305 		put_count = ttm_bo_del_from_lru(bo);
306 		spin_unlock(&glob->lru_lock);
307 		ttm_bo_list_ref_sub(bo, put_count, true);
308 	}
309 
310 	return ret;
311 }
312 
313 int ttm_bo_reserve_slowpath_nolru(struct ttm_buffer_object *bo,
314 				  bool interruptible, uint32_t sequence)
315 {
316 	bool wake_up = false;
317 	int ret;
318 
319 	while (unlikely(atomic_xchg(&bo->reserved, 1) != 0)) {
320 		WARN_ON(bo->seq_valid && sequence == bo->val_seq);
321 
322 		ret = ttm_bo_wait_unreserved(bo, interruptible);
323 
324 		if (unlikely(ret))
325 			return ret;
326 	}
327 
328 	if ((bo->val_seq - sequence < (1 << 31)) || !bo->seq_valid)
329 		wake_up = true;
330 
331 	/**
332 	 * Wake up waiters that may need to recheck for deadlock,
333 	 * if we decreased the sequence number.
334 	 */
335 	bo->val_seq = sequence;
336 	bo->seq_valid = true;
337 	if (wake_up)
338 		wake_up_all(&bo->event_queue);
339 
340 	return 0;
341 }
342 
343 int ttm_bo_reserve_slowpath(struct ttm_buffer_object *bo,
344 			    bool interruptible, uint32_t sequence)
345 {
346 	struct ttm_bo_global *glob = bo->glob;
347 	int put_count, ret;
348 
349 	ret = ttm_bo_reserve_slowpath_nolru(bo, interruptible, sequence);
350 	if (likely(!ret)) {
351 		spin_lock(&glob->lru_lock);
352 		put_count = ttm_bo_del_from_lru(bo);
353 		spin_unlock(&glob->lru_lock);
354 		ttm_bo_list_ref_sub(bo, put_count, true);
355 	}
356 	return ret;
357 }
358 EXPORT_SYMBOL(ttm_bo_reserve_slowpath);
359 
360 void ttm_bo_unreserve_locked(struct ttm_buffer_object *bo)
361 {
362 	ttm_bo_add_to_lru(bo);
363 	atomic_set(&bo->reserved, 0);
364 	wake_up_all(&bo->event_queue);
365 }
366 
367 void ttm_bo_unreserve(struct ttm_buffer_object *bo)
368 {
369 	struct ttm_bo_global *glob = bo->glob;
370 
371 	spin_lock(&glob->lru_lock);
372 	ttm_bo_unreserve_locked(bo);
373 	spin_unlock(&glob->lru_lock);
374 }
375 EXPORT_SYMBOL(ttm_bo_unreserve);
376 
377 /*
378  * Call bo->mutex locked.
379  */
380 static int ttm_bo_add_ttm(struct ttm_buffer_object *bo, bool zero_alloc)
381 {
382 	struct ttm_bo_device *bdev = bo->bdev;
383 	struct ttm_bo_global *glob = bo->glob;
384 	int ret = 0;
385 	uint32_t page_flags = 0;
386 
387 	TTM_ASSERT_LOCKED(&bo->mutex);
388 	bo->ttm = NULL;
389 
390 	if (bdev->need_dma32)
391 		page_flags |= TTM_PAGE_FLAG_DMA32;
392 
393 	switch (bo->type) {
394 	case ttm_bo_type_device:
395 		if (zero_alloc)
396 			page_flags |= TTM_PAGE_FLAG_ZERO_ALLOC;
397 	case ttm_bo_type_kernel:
398 		bo->ttm = bdev->driver->ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT,
399 						      page_flags, glob->dummy_read_page);
400 		if (unlikely(bo->ttm == NULL))
401 			ret = -ENOMEM;
402 		break;
403 	case ttm_bo_type_sg:
404 		bo->ttm = bdev->driver->ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT,
405 						      page_flags | TTM_PAGE_FLAG_SG,
406 						      glob->dummy_read_page);
407 		if (unlikely(bo->ttm == NULL)) {
408 			ret = -ENOMEM;
409 			break;
410 		}
411 		bo->ttm->sg = bo->sg;
412 		break;
413 	default:
414 		pr_err("Illegal buffer object type\n");
415 		ret = -EINVAL;
416 		break;
417 	}
418 
419 	return ret;
420 }
421 
422 static int ttm_bo_handle_move_mem(struct ttm_buffer_object *bo,
423 				  struct ttm_mem_reg *mem,
424 				  bool evict, bool interruptible,
425 				  bool no_wait_gpu)
426 {
427 	struct ttm_bo_device *bdev = bo->bdev;
428 	bool old_is_pci = ttm_mem_reg_is_pci(bdev, &bo->mem);
429 	bool new_is_pci = ttm_mem_reg_is_pci(bdev, mem);
430 	struct ttm_mem_type_manager *old_man = &bdev->man[bo->mem.mem_type];
431 	struct ttm_mem_type_manager *new_man = &bdev->man[mem->mem_type];
432 	int ret = 0;
433 
434 	if (old_is_pci || new_is_pci ||
435 	    ((mem->placement & bo->mem.placement & TTM_PL_MASK_CACHING) == 0)) {
436 		ret = ttm_mem_io_lock(old_man, true);
437 		if (unlikely(ret != 0))
438 			goto out_err;
439 		ttm_bo_unmap_virtual_locked(bo);
440 		ttm_mem_io_unlock(old_man);
441 	}
442 
443 	/*
444 	 * Create and bind a ttm if required.
445 	 */
446 
447 	if (!(new_man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
448 		if (bo->ttm == NULL) {
449 			bool zero = !(old_man->flags & TTM_MEMTYPE_FLAG_FIXED);
450 			ret = ttm_bo_add_ttm(bo, zero);
451 			if (ret)
452 				goto out_err;
453 		}
454 
455 		ret = ttm_tt_set_placement_caching(bo->ttm, mem->placement);
456 		if (ret)
457 			goto out_err;
458 
459 		if (mem->mem_type != TTM_PL_SYSTEM) {
460 			ret = ttm_tt_bind(bo->ttm, mem);
461 			if (ret)
462 				goto out_err;
463 		}
464 
465 		if (bo->mem.mem_type == TTM_PL_SYSTEM) {
466 			if (bdev->driver->move_notify)
467 				bdev->driver->move_notify(bo, mem);
468 			bo->mem = *mem;
469 			mem->mm_node = NULL;
470 			goto moved;
471 		}
472 	}
473 
474 	if (bdev->driver->move_notify)
475 		bdev->driver->move_notify(bo, mem);
476 
477 	if (!(old_man->flags & TTM_MEMTYPE_FLAG_FIXED) &&
478 	    !(new_man->flags & TTM_MEMTYPE_FLAG_FIXED))
479 		ret = ttm_bo_move_ttm(bo, evict, no_wait_gpu, mem);
480 	else if (bdev->driver->move)
481 		ret = bdev->driver->move(bo, evict, interruptible,
482 					 no_wait_gpu, mem);
483 	else
484 		ret = ttm_bo_move_memcpy(bo, evict, no_wait_gpu, mem);
485 
486 	if (ret) {
487 		if (bdev->driver->move_notify) {
488 			struct ttm_mem_reg tmp_mem = *mem;
489 			*mem = bo->mem;
490 			bo->mem = tmp_mem;
491 			bdev->driver->move_notify(bo, mem);
492 			bo->mem = *mem;
493 			*mem = tmp_mem;
494 		}
495 
496 		goto out_err;
497 	}
498 
499 moved:
500 	if (bo->evicted) {
501 		ret = bdev->driver->invalidate_caches(bdev, bo->mem.placement);
502 		if (ret)
503 			pr_err("Can not flush read caches\n");
504 		bo->evicted = false;
505 	}
506 
507 	if (bo->mem.mm_node) {
508 		bo->offset = (bo->mem.start << PAGE_SHIFT) +
509 		    bdev->man[bo->mem.mem_type].gpu_offset;
510 		bo->cur_placement = bo->mem.placement;
511 	} else
512 		bo->offset = 0;
513 
514 	return 0;
515 
516 out_err:
517 	new_man = &bdev->man[bo->mem.mem_type];
518 	if ((new_man->flags & TTM_MEMTYPE_FLAG_FIXED) && bo->ttm) {
519 		ttm_tt_unbind(bo->ttm);
520 		ttm_tt_destroy(bo->ttm);
521 		bo->ttm = NULL;
522 	}
523 
524 	return ret;
525 }
526 
527 /**
528  * Call bo::reserved.
529  * Will release GPU memory type usage on destruction.
530  * This is the place to put in driver specific hooks to release
531  * driver private resources.
532  * Will release the bo::reserved lock.
533  */
534 
535 static void ttm_bo_cleanup_memtype_use(struct ttm_buffer_object *bo)
536 {
537 	if (bo->bdev->driver->move_notify)
538 		bo->bdev->driver->move_notify(bo, NULL);
539 
540 	if (bo->ttm) {
541 		ttm_tt_unbind(bo->ttm);
542 		ttm_tt_destroy(bo->ttm);
543 		bo->ttm = NULL;
544 	}
545 	ttm_bo_mem_put(bo, &bo->mem);
546 
547 	atomic_set(&bo->reserved, 0);
548 	wake_up_all(&bo->event_queue);
549 
550 	/*
551 	 * Since the final reference to this bo may not be dropped by
552 	 * the current task we have to put a memory barrier here to make
553 	 * sure the changes done in this function are always visible.
554 	 *
555 	 * This function only needs protection against the final kref_put.
556 	 */
557 	smp_mb__before_atomic_dec();
558 }
559 
560 static void ttm_bo_cleanup_refs_or_queue(struct ttm_buffer_object *bo)
561 {
562 	struct ttm_bo_device *bdev = bo->bdev;
563 	struct ttm_bo_global *glob = bo->glob;
564 	struct ttm_bo_driver *driver = bdev->driver;
565 	void *sync_obj = NULL;
566 	int put_count;
567 	int ret;
568 
569 	spin_lock(&glob->lru_lock);
570 	ret = ttm_bo_reserve_nolru(bo, false, true, false, 0);
571 
572 	spin_lock(&bdev->fence_lock);
573 	(void) ttm_bo_wait(bo, false, false, true);
574 	if (!ret && !bo->sync_obj) {
575 		spin_unlock(&bdev->fence_lock);
576 		put_count = ttm_bo_del_from_lru(bo);
577 
578 		spin_unlock(&glob->lru_lock);
579 		ttm_bo_cleanup_memtype_use(bo);
580 
581 		ttm_bo_list_ref_sub(bo, put_count, true);
582 
583 		return;
584 	}
585 	if (bo->sync_obj)
586 		sync_obj = driver->sync_obj_ref(bo->sync_obj);
587 	spin_unlock(&bdev->fence_lock);
588 
589 	if (!ret) {
590 		atomic_set(&bo->reserved, 0);
591 		wake_up_all(&bo->event_queue);
592 	}
593 
594 	kref_get(&bo->list_kref);
595 	list_add_tail(&bo->ddestroy, &bdev->ddestroy);
596 	spin_unlock(&glob->lru_lock);
597 
598 	if (sync_obj) {
599 		driver->sync_obj_flush(sync_obj);
600 		driver->sync_obj_unref(&sync_obj);
601 	}
602 	schedule_delayed_work(&bdev->wq,
603 			      ((HZ / 100) < 1) ? 1 : HZ / 100);
604 }
605 
606 /**
607  * function ttm_bo_cleanup_refs_and_unlock
608  * If bo idle, remove from delayed- and lru lists, and unref.
609  * If not idle, do nothing.
610  *
611  * Must be called with lru_lock and reservation held, this function
612  * will drop both before returning.
613  *
614  * @interruptible         Any sleeps should occur interruptibly.
615  * @no_wait_gpu           Never wait for gpu. Return -EBUSY instead.
616  */
617 
618 static int ttm_bo_cleanup_refs_and_unlock(struct ttm_buffer_object *bo,
619 					  bool interruptible,
620 					  bool no_wait_gpu)
621 {
622 	struct ttm_bo_device *bdev = bo->bdev;
623 	struct ttm_bo_driver *driver = bdev->driver;
624 	struct ttm_bo_global *glob = bo->glob;
625 	int put_count;
626 	int ret;
627 
628 	spin_lock(&bdev->fence_lock);
629 	ret = ttm_bo_wait(bo, false, false, true);
630 
631 	if (ret && !no_wait_gpu) {
632 		void *sync_obj;
633 
634 		/*
635 		 * Take a reference to the fence and unreserve,
636 		 * at this point the buffer should be dead, so
637 		 * no new sync objects can be attached.
638 		 */
639 		sync_obj = driver->sync_obj_ref(bo->sync_obj);
640 		spin_unlock(&bdev->fence_lock);
641 
642 		atomic_set(&bo->reserved, 0);
643 		wake_up_all(&bo->event_queue);
644 		spin_unlock(&glob->lru_lock);
645 
646 		ret = driver->sync_obj_wait(sync_obj, false, interruptible);
647 		driver->sync_obj_unref(&sync_obj);
648 		if (ret)
649 			return ret;
650 
651 		/*
652 		 * remove sync_obj with ttm_bo_wait, the wait should be
653 		 * finished, and no new wait object should have been added.
654 		 */
655 		spin_lock(&bdev->fence_lock);
656 		ret = ttm_bo_wait(bo, false, false, true);
657 		WARN_ON(ret);
658 		spin_unlock(&bdev->fence_lock);
659 		if (ret)
660 			return ret;
661 
662 		spin_lock(&glob->lru_lock);
663 		ret = ttm_bo_reserve_nolru(bo, false, true, false, 0);
664 
665 		/*
666 		 * We raced, and lost, someone else holds the reservation now,
667 		 * and is probably busy in ttm_bo_cleanup_memtype_use.
668 		 *
669 		 * Even if it's not the case, because we finished waiting any
670 		 * delayed destruction would succeed, so just return success
671 		 * here.
672 		 */
673 		if (ret) {
674 			spin_unlock(&glob->lru_lock);
675 			return 0;
676 		}
677 	} else
678 		spin_unlock(&bdev->fence_lock);
679 
680 	if (ret || unlikely(list_empty(&bo->ddestroy))) {
681 		atomic_set(&bo->reserved, 0);
682 		wake_up_all(&bo->event_queue);
683 		spin_unlock(&glob->lru_lock);
684 		return ret;
685 	}
686 
687 	put_count = ttm_bo_del_from_lru(bo);
688 	list_del_init(&bo->ddestroy);
689 	++put_count;
690 
691 	spin_unlock(&glob->lru_lock);
692 	ttm_bo_cleanup_memtype_use(bo);
693 
694 	ttm_bo_list_ref_sub(bo, put_count, true);
695 
696 	return 0;
697 }
698 
699 /**
700  * Traverse the delayed list, and call ttm_bo_cleanup_refs on all
701  * encountered buffers.
702  */
703 
704 static int ttm_bo_delayed_delete(struct ttm_bo_device *bdev, bool remove_all)
705 {
706 	struct ttm_bo_global *glob = bdev->glob;
707 	struct ttm_buffer_object *entry = NULL;
708 	int ret = 0;
709 
710 	spin_lock(&glob->lru_lock);
711 	if (list_empty(&bdev->ddestroy))
712 		goto out_unlock;
713 
714 	entry = list_first_entry(&bdev->ddestroy,
715 		struct ttm_buffer_object, ddestroy);
716 	kref_get(&entry->list_kref);
717 
718 	for (;;) {
719 		struct ttm_buffer_object *nentry = NULL;
720 
721 		if (entry->ddestroy.next != &bdev->ddestroy) {
722 			nentry = list_first_entry(&entry->ddestroy,
723 				struct ttm_buffer_object, ddestroy);
724 			kref_get(&nentry->list_kref);
725 		}
726 
727 		ret = ttm_bo_reserve_nolru(entry, false, true, false, 0);
728 		if (remove_all && ret) {
729 			spin_unlock(&glob->lru_lock);
730 			ret = ttm_bo_reserve_nolru(entry, false, false,
731 						   false, 0);
732 			spin_lock(&glob->lru_lock);
733 		}
734 
735 		if (!ret)
736 			ret = ttm_bo_cleanup_refs_and_unlock(entry, false,
737 							     !remove_all);
738 		else
739 			spin_unlock(&glob->lru_lock);
740 
741 		kref_put(&entry->list_kref, ttm_bo_release_list);
742 		entry = nentry;
743 
744 		if (ret || !entry)
745 			goto out;
746 
747 		spin_lock(&glob->lru_lock);
748 		if (list_empty(&entry->ddestroy))
749 			break;
750 	}
751 
752 out_unlock:
753 	spin_unlock(&glob->lru_lock);
754 out:
755 	if (entry)
756 		kref_put(&entry->list_kref, ttm_bo_release_list);
757 	return ret;
758 }
759 
760 static void ttm_bo_delayed_workqueue(struct work_struct *work)
761 {
762 	struct ttm_bo_device *bdev =
763 	    container_of(work, struct ttm_bo_device, wq.work);
764 
765 	if (ttm_bo_delayed_delete(bdev, false)) {
766 		schedule_delayed_work(&bdev->wq,
767 				      ((HZ / 100) < 1) ? 1 : HZ / 100);
768 	}
769 }
770 
771 static void ttm_bo_release(struct kref *kref)
772 {
773 	struct ttm_buffer_object *bo =
774 	    container_of(kref, struct ttm_buffer_object, kref);
775 	struct ttm_bo_device *bdev = bo->bdev;
776 	struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
777 
778 	write_lock(&bdev->vm_lock);
779 	if (likely(bo->vm_node != NULL)) {
780 		rb_erase(&bo->vm_rb, &bdev->addr_space_rb);
781 		drm_mm_put_block(bo->vm_node);
782 		bo->vm_node = NULL;
783 	}
784 	write_unlock(&bdev->vm_lock);
785 	ttm_mem_io_lock(man, false);
786 	ttm_mem_io_free_vm(bo);
787 	ttm_mem_io_unlock(man);
788 	ttm_bo_cleanup_refs_or_queue(bo);
789 	kref_put(&bo->list_kref, ttm_bo_release_list);
790 }
791 
792 void ttm_bo_unref(struct ttm_buffer_object **p_bo)
793 {
794 	struct ttm_buffer_object *bo = *p_bo;
795 
796 	*p_bo = NULL;
797 	kref_put(&bo->kref, ttm_bo_release);
798 }
799 EXPORT_SYMBOL(ttm_bo_unref);
800 
801 int ttm_bo_lock_delayed_workqueue(struct ttm_bo_device *bdev)
802 {
803 	return cancel_delayed_work_sync(&bdev->wq);
804 }
805 EXPORT_SYMBOL(ttm_bo_lock_delayed_workqueue);
806 
807 void ttm_bo_unlock_delayed_workqueue(struct ttm_bo_device *bdev, int resched)
808 {
809 	if (resched)
810 		schedule_delayed_work(&bdev->wq,
811 				      ((HZ / 100) < 1) ? 1 : HZ / 100);
812 }
813 EXPORT_SYMBOL(ttm_bo_unlock_delayed_workqueue);
814 
815 static int ttm_bo_evict(struct ttm_buffer_object *bo, bool interruptible,
816 			bool no_wait_gpu)
817 {
818 	struct ttm_bo_device *bdev = bo->bdev;
819 	struct ttm_mem_reg evict_mem;
820 	struct ttm_placement placement;
821 	int ret = 0;
822 
823 	spin_lock(&bdev->fence_lock);
824 	ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu);
825 	spin_unlock(&bdev->fence_lock);
826 
827 	if (unlikely(ret != 0)) {
828 		if (ret != -ERESTARTSYS) {
829 			pr_err("Failed to expire sync object before buffer eviction\n");
830 		}
831 		goto out;
832 	}
833 
834 	BUG_ON(!ttm_bo_is_reserved(bo));
835 
836 	evict_mem = bo->mem;
837 	evict_mem.mm_node = NULL;
838 	evict_mem.bus.io_reserved_vm = false;
839 	evict_mem.bus.io_reserved_count = 0;
840 
841 	placement.fpfn = 0;
842 	placement.lpfn = 0;
843 	placement.num_placement = 0;
844 	placement.num_busy_placement = 0;
845 	bdev->driver->evict_flags(bo, &placement);
846 	ret = ttm_bo_mem_space(bo, &placement, &evict_mem, interruptible,
847 				no_wait_gpu);
848 	if (ret) {
849 		if (ret != -ERESTARTSYS) {
850 			pr_err("Failed to find memory space for buffer 0x%p eviction\n",
851 			       bo);
852 			ttm_bo_mem_space_debug(bo, &placement);
853 		}
854 		goto out;
855 	}
856 
857 	ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, interruptible,
858 				     no_wait_gpu);
859 	if (ret) {
860 		if (ret != -ERESTARTSYS)
861 			pr_err("Buffer eviction failed\n");
862 		ttm_bo_mem_put(bo, &evict_mem);
863 		goto out;
864 	}
865 	bo->evicted = true;
866 out:
867 	return ret;
868 }
869 
870 static int ttm_mem_evict_first(struct ttm_bo_device *bdev,
871 				uint32_t mem_type,
872 				bool interruptible,
873 				bool no_wait_gpu)
874 {
875 	struct ttm_bo_global *glob = bdev->glob;
876 	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
877 	struct ttm_buffer_object *bo;
878 	int ret = -EBUSY, put_count;
879 
880 	spin_lock(&glob->lru_lock);
881 	list_for_each_entry(bo, &man->lru, lru) {
882 		ret = ttm_bo_reserve_nolru(bo, false, true, false, 0);
883 		if (!ret)
884 			break;
885 	}
886 
887 	if (ret) {
888 		spin_unlock(&glob->lru_lock);
889 		return ret;
890 	}
891 
892 	kref_get(&bo->list_kref);
893 
894 	if (!list_empty(&bo->ddestroy)) {
895 		ret = ttm_bo_cleanup_refs_and_unlock(bo, interruptible,
896 						     no_wait_gpu);
897 		kref_put(&bo->list_kref, ttm_bo_release_list);
898 		return ret;
899 	}
900 
901 	put_count = ttm_bo_del_from_lru(bo);
902 	spin_unlock(&glob->lru_lock);
903 
904 	BUG_ON(ret != 0);
905 
906 	ttm_bo_list_ref_sub(bo, put_count, true);
907 
908 	ret = ttm_bo_evict(bo, interruptible, no_wait_gpu);
909 	ttm_bo_unreserve(bo);
910 
911 	kref_put(&bo->list_kref, ttm_bo_release_list);
912 	return ret;
913 }
914 
915 void ttm_bo_mem_put(struct ttm_buffer_object *bo, struct ttm_mem_reg *mem)
916 {
917 	struct ttm_mem_type_manager *man = &bo->bdev->man[mem->mem_type];
918 
919 	if (mem->mm_node)
920 		(*man->func->put_node)(man, mem);
921 }
922 EXPORT_SYMBOL(ttm_bo_mem_put);
923 
924 /**
925  * Repeatedly evict memory from the LRU for @mem_type until we create enough
926  * space, or we've evicted everything and there isn't enough space.
927  */
928 static int ttm_bo_mem_force_space(struct ttm_buffer_object *bo,
929 					uint32_t mem_type,
930 					struct ttm_placement *placement,
931 					struct ttm_mem_reg *mem,
932 					bool interruptible,
933 					bool no_wait_gpu)
934 {
935 	struct ttm_bo_device *bdev = bo->bdev;
936 	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
937 	int ret;
938 
939 	do {
940 		ret = (*man->func->get_node)(man, bo, placement, mem);
941 		if (unlikely(ret != 0))
942 			return ret;
943 		if (mem->mm_node)
944 			break;
945 		ret = ttm_mem_evict_first(bdev, mem_type,
946 					  interruptible, no_wait_gpu);
947 		if (unlikely(ret != 0))
948 			return ret;
949 	} while (1);
950 	if (mem->mm_node == NULL)
951 		return -ENOMEM;
952 	mem->mem_type = mem_type;
953 	return 0;
954 }
955 
956 static uint32_t ttm_bo_select_caching(struct ttm_mem_type_manager *man,
957 				      uint32_t cur_placement,
958 				      uint32_t proposed_placement)
959 {
960 	uint32_t caching = proposed_placement & TTM_PL_MASK_CACHING;
961 	uint32_t result = proposed_placement & ~TTM_PL_MASK_CACHING;
962 
963 	/**
964 	 * Keep current caching if possible.
965 	 */
966 
967 	if ((cur_placement & caching) != 0)
968 		result |= (cur_placement & caching);
969 	else if ((man->default_caching & caching) != 0)
970 		result |= man->default_caching;
971 	else if ((TTM_PL_FLAG_CACHED & caching) != 0)
972 		result |= TTM_PL_FLAG_CACHED;
973 	else if ((TTM_PL_FLAG_WC & caching) != 0)
974 		result |= TTM_PL_FLAG_WC;
975 	else if ((TTM_PL_FLAG_UNCACHED & caching) != 0)
976 		result |= TTM_PL_FLAG_UNCACHED;
977 
978 	return result;
979 }
980 
981 static bool ttm_bo_mt_compatible(struct ttm_mem_type_manager *man,
982 				 uint32_t mem_type,
983 				 uint32_t proposed_placement,
984 				 uint32_t *masked_placement)
985 {
986 	uint32_t cur_flags = ttm_bo_type_flags(mem_type);
987 
988 	if ((cur_flags & proposed_placement & TTM_PL_MASK_MEM) == 0)
989 		return false;
990 
991 	if ((proposed_placement & man->available_caching) == 0)
992 		return false;
993 
994 	cur_flags |= (proposed_placement & man->available_caching);
995 
996 	*masked_placement = cur_flags;
997 	return true;
998 }
999 
1000 /**
1001  * Creates space for memory region @mem according to its type.
1002  *
1003  * This function first searches for free space in compatible memory types in
1004  * the priority order defined by the driver.  If free space isn't found, then
1005  * ttm_bo_mem_force_space is attempted in priority order to evict and find
1006  * space.
1007  */
1008 int ttm_bo_mem_space(struct ttm_buffer_object *bo,
1009 			struct ttm_placement *placement,
1010 			struct ttm_mem_reg *mem,
1011 			bool interruptible,
1012 			bool no_wait_gpu)
1013 {
1014 	struct ttm_bo_device *bdev = bo->bdev;
1015 	struct ttm_mem_type_manager *man;
1016 	uint32_t mem_type = TTM_PL_SYSTEM;
1017 	uint32_t cur_flags = 0;
1018 	bool type_found = false;
1019 	bool type_ok = false;
1020 	bool has_erestartsys = false;
1021 	int i, ret;
1022 
1023 	mem->mm_node = NULL;
1024 	for (i = 0; i < placement->num_placement; ++i) {
1025 		ret = ttm_mem_type_from_flags(placement->placement[i],
1026 						&mem_type);
1027 		if (ret)
1028 			return ret;
1029 		man = &bdev->man[mem_type];
1030 
1031 		type_ok = ttm_bo_mt_compatible(man,
1032 						mem_type,
1033 						placement->placement[i],
1034 						&cur_flags);
1035 
1036 		if (!type_ok)
1037 			continue;
1038 
1039 		cur_flags = ttm_bo_select_caching(man, bo->mem.placement,
1040 						  cur_flags);
1041 		/*
1042 		 * Use the access and other non-mapping-related flag bits from
1043 		 * the memory placement flags to the current flags
1044 		 */
1045 		ttm_flag_masked(&cur_flags, placement->placement[i],
1046 				~TTM_PL_MASK_MEMTYPE);
1047 
1048 		if (mem_type == TTM_PL_SYSTEM)
1049 			break;
1050 
1051 		if (man->has_type && man->use_type) {
1052 			type_found = true;
1053 			ret = (*man->func->get_node)(man, bo, placement, mem);
1054 			if (unlikely(ret))
1055 				return ret;
1056 		}
1057 		if (mem->mm_node)
1058 			break;
1059 	}
1060 
1061 	if ((type_ok && (mem_type == TTM_PL_SYSTEM)) || mem->mm_node) {
1062 		mem->mem_type = mem_type;
1063 		mem->placement = cur_flags;
1064 		return 0;
1065 	}
1066 
1067 	if (!type_found)
1068 		return -EINVAL;
1069 
1070 	for (i = 0; i < placement->num_busy_placement; ++i) {
1071 		ret = ttm_mem_type_from_flags(placement->busy_placement[i],
1072 						&mem_type);
1073 		if (ret)
1074 			return ret;
1075 		man = &bdev->man[mem_type];
1076 		if (!man->has_type)
1077 			continue;
1078 		if (!ttm_bo_mt_compatible(man,
1079 						mem_type,
1080 						placement->busy_placement[i],
1081 						&cur_flags))
1082 			continue;
1083 
1084 		cur_flags = ttm_bo_select_caching(man, bo->mem.placement,
1085 						  cur_flags);
1086 		/*
1087 		 * Use the access and other non-mapping-related flag bits from
1088 		 * the memory placement flags to the current flags
1089 		 */
1090 		ttm_flag_masked(&cur_flags, placement->busy_placement[i],
1091 				~TTM_PL_MASK_MEMTYPE);
1092 
1093 
1094 		if (mem_type == TTM_PL_SYSTEM) {
1095 			mem->mem_type = mem_type;
1096 			mem->placement = cur_flags;
1097 			mem->mm_node = NULL;
1098 			return 0;
1099 		}
1100 
1101 		ret = ttm_bo_mem_force_space(bo, mem_type, placement, mem,
1102 						interruptible, no_wait_gpu);
1103 		if (ret == 0 && mem->mm_node) {
1104 			mem->placement = cur_flags;
1105 			return 0;
1106 		}
1107 		if (ret == -ERESTARTSYS)
1108 			has_erestartsys = true;
1109 	}
1110 	ret = (has_erestartsys) ? -ERESTARTSYS : -ENOMEM;
1111 	return ret;
1112 }
1113 EXPORT_SYMBOL(ttm_bo_mem_space);
1114 
1115 int ttm_bo_move_buffer(struct ttm_buffer_object *bo,
1116 			struct ttm_placement *placement,
1117 			bool interruptible,
1118 			bool no_wait_gpu)
1119 {
1120 	int ret = 0;
1121 	struct ttm_mem_reg mem;
1122 	struct ttm_bo_device *bdev = bo->bdev;
1123 
1124 	BUG_ON(!ttm_bo_is_reserved(bo));
1125 
1126 	/*
1127 	 * FIXME: It's possible to pipeline buffer moves.
1128 	 * Have the driver move function wait for idle when necessary,
1129 	 * instead of doing it here.
1130 	 */
1131 	spin_lock(&bdev->fence_lock);
1132 	ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu);
1133 	spin_unlock(&bdev->fence_lock);
1134 	if (ret)
1135 		return ret;
1136 	mem.num_pages = bo->num_pages;
1137 	mem.size = mem.num_pages << PAGE_SHIFT;
1138 	mem.page_alignment = bo->mem.page_alignment;
1139 	mem.bus.io_reserved_vm = false;
1140 	mem.bus.io_reserved_count = 0;
1141 	/*
1142 	 * Determine where to move the buffer.
1143 	 */
1144 	ret = ttm_bo_mem_space(bo, placement, &mem,
1145 			       interruptible, no_wait_gpu);
1146 	if (ret)
1147 		goto out_unlock;
1148 	ret = ttm_bo_handle_move_mem(bo, &mem, false,
1149 				     interruptible, no_wait_gpu);
1150 out_unlock:
1151 	if (ret && mem.mm_node)
1152 		ttm_bo_mem_put(bo, &mem);
1153 	return ret;
1154 }
1155 
1156 static int ttm_bo_mem_compat(struct ttm_placement *placement,
1157 			     struct ttm_mem_reg *mem)
1158 {
1159 	int i;
1160 
1161 	if (mem->mm_node && placement->lpfn != 0 &&
1162 	    (mem->start < placement->fpfn ||
1163 	     mem->start + mem->num_pages > placement->lpfn))
1164 		return -1;
1165 
1166 	for (i = 0; i < placement->num_placement; i++) {
1167 		if ((placement->placement[i] & mem->placement &
1168 			TTM_PL_MASK_CACHING) &&
1169 			(placement->placement[i] & mem->placement &
1170 			TTM_PL_MASK_MEM))
1171 			return i;
1172 	}
1173 	return -1;
1174 }
1175 
1176 int ttm_bo_validate(struct ttm_buffer_object *bo,
1177 			struct ttm_placement *placement,
1178 			bool interruptible,
1179 			bool no_wait_gpu)
1180 {
1181 	int ret;
1182 
1183 	BUG_ON(!ttm_bo_is_reserved(bo));
1184 	/* Check that range is valid */
1185 	if (placement->lpfn || placement->fpfn)
1186 		if (placement->fpfn > placement->lpfn ||
1187 			(placement->lpfn - placement->fpfn) < bo->num_pages)
1188 			return -EINVAL;
1189 	/*
1190 	 * Check whether we need to move buffer.
1191 	 */
1192 	ret = ttm_bo_mem_compat(placement, &bo->mem);
1193 	if (ret < 0) {
1194 		ret = ttm_bo_move_buffer(bo, placement, interruptible,
1195 					 no_wait_gpu);
1196 		if (ret)
1197 			return ret;
1198 	} else {
1199 		/*
1200 		 * Use the access and other non-mapping-related flag bits from
1201 		 * the compatible memory placement flags to the active flags
1202 		 */
1203 		ttm_flag_masked(&bo->mem.placement, placement->placement[ret],
1204 				~TTM_PL_MASK_MEMTYPE);
1205 	}
1206 	/*
1207 	 * We might need to add a TTM.
1208 	 */
1209 	if (bo->mem.mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
1210 		ret = ttm_bo_add_ttm(bo, true);
1211 		if (ret)
1212 			return ret;
1213 	}
1214 	return 0;
1215 }
1216 EXPORT_SYMBOL(ttm_bo_validate);
1217 
1218 int ttm_bo_check_placement(struct ttm_buffer_object *bo,
1219 				struct ttm_placement *placement)
1220 {
1221 	BUG_ON((placement->fpfn || placement->lpfn) &&
1222 	       (bo->mem.num_pages > (placement->lpfn - placement->fpfn)));
1223 
1224 	return 0;
1225 }
1226 
1227 int ttm_bo_init(struct ttm_bo_device *bdev,
1228 		struct ttm_buffer_object *bo,
1229 		unsigned long size,
1230 		enum ttm_bo_type type,
1231 		struct ttm_placement *placement,
1232 		uint32_t page_alignment,
1233 		bool interruptible,
1234 		struct file *persistent_swap_storage,
1235 		size_t acc_size,
1236 		struct sg_table *sg,
1237 		void (*destroy) (struct ttm_buffer_object *))
1238 {
1239 	int ret = 0;
1240 	unsigned long num_pages;
1241 	struct ttm_mem_global *mem_glob = bdev->glob->mem_glob;
1242 
1243 	ret = ttm_mem_global_alloc(mem_glob, acc_size, false, false);
1244 	if (ret) {
1245 		pr_err("Out of kernel memory\n");
1246 		if (destroy)
1247 			(*destroy)(bo);
1248 		else
1249 			kfree(bo);
1250 		return -ENOMEM;
1251 	}
1252 
1253 	num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1254 	if (num_pages == 0) {
1255 		pr_err("Illegal buffer object size\n");
1256 		if (destroy)
1257 			(*destroy)(bo);
1258 		else
1259 			kfree(bo);
1260 		ttm_mem_global_free(mem_glob, acc_size);
1261 		return -EINVAL;
1262 	}
1263 	bo->destroy = destroy;
1264 
1265 	kref_init(&bo->kref);
1266 	kref_init(&bo->list_kref);
1267 	atomic_set(&bo->cpu_writers, 0);
1268 	atomic_set(&bo->reserved, 1);
1269 	init_waitqueue_head(&bo->event_queue);
1270 	INIT_LIST_HEAD(&bo->lru);
1271 	INIT_LIST_HEAD(&bo->ddestroy);
1272 	INIT_LIST_HEAD(&bo->swap);
1273 	INIT_LIST_HEAD(&bo->io_reserve_lru);
1274 	bo->bdev = bdev;
1275 	bo->glob = bdev->glob;
1276 	bo->type = type;
1277 	bo->num_pages = num_pages;
1278 	bo->mem.size = num_pages << PAGE_SHIFT;
1279 	bo->mem.mem_type = TTM_PL_SYSTEM;
1280 	bo->mem.num_pages = bo->num_pages;
1281 	bo->mem.mm_node = NULL;
1282 	bo->mem.page_alignment = page_alignment;
1283 	bo->mem.bus.io_reserved_vm = false;
1284 	bo->mem.bus.io_reserved_count = 0;
1285 	bo->priv_flags = 0;
1286 	bo->mem.placement = (TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED);
1287 	bo->seq_valid = false;
1288 	bo->persistent_swap_storage = persistent_swap_storage;
1289 	bo->acc_size = acc_size;
1290 	bo->sg = sg;
1291 	atomic_inc(&bo->glob->bo_count);
1292 
1293 	ret = ttm_bo_check_placement(bo, placement);
1294 	if (unlikely(ret != 0))
1295 		goto out_err;
1296 
1297 	/*
1298 	 * For ttm_bo_type_device buffers, allocate
1299 	 * address space from the device.
1300 	 */
1301 	if (bo->type == ttm_bo_type_device ||
1302 	    bo->type == ttm_bo_type_sg) {
1303 		ret = ttm_bo_setup_vm(bo);
1304 		if (ret)
1305 			goto out_err;
1306 	}
1307 
1308 	ret = ttm_bo_validate(bo, placement, interruptible, false);
1309 	if (ret)
1310 		goto out_err;
1311 
1312 	ttm_bo_unreserve(bo);
1313 	return 0;
1314 
1315 out_err:
1316 	ttm_bo_unreserve(bo);
1317 	ttm_bo_unref(&bo);
1318 
1319 	return ret;
1320 }
1321 EXPORT_SYMBOL(ttm_bo_init);
1322 
1323 size_t ttm_bo_acc_size(struct ttm_bo_device *bdev,
1324 		       unsigned long bo_size,
1325 		       unsigned struct_size)
1326 {
1327 	unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT;
1328 	size_t size = 0;
1329 
1330 	size += ttm_round_pot(struct_size);
1331 	size += PAGE_ALIGN(npages * sizeof(void *));
1332 	size += ttm_round_pot(sizeof(struct ttm_tt));
1333 	return size;
1334 }
1335 EXPORT_SYMBOL(ttm_bo_acc_size);
1336 
1337 size_t ttm_bo_dma_acc_size(struct ttm_bo_device *bdev,
1338 			   unsigned long bo_size,
1339 			   unsigned struct_size)
1340 {
1341 	unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT;
1342 	size_t size = 0;
1343 
1344 	size += ttm_round_pot(struct_size);
1345 	size += PAGE_ALIGN(npages * sizeof(void *));
1346 	size += PAGE_ALIGN(npages * sizeof(dma_addr_t));
1347 	size += ttm_round_pot(sizeof(struct ttm_dma_tt));
1348 	return size;
1349 }
1350 EXPORT_SYMBOL(ttm_bo_dma_acc_size);
1351 
1352 int ttm_bo_create(struct ttm_bo_device *bdev,
1353 			unsigned long size,
1354 			enum ttm_bo_type type,
1355 			struct ttm_placement *placement,
1356 			uint32_t page_alignment,
1357 			bool interruptible,
1358 			struct file *persistent_swap_storage,
1359 			struct ttm_buffer_object **p_bo)
1360 {
1361 	struct ttm_buffer_object *bo;
1362 	size_t acc_size;
1363 	int ret;
1364 
1365 	bo = kzalloc(sizeof(*bo), GFP_KERNEL);
1366 	if (unlikely(bo == NULL))
1367 		return -ENOMEM;
1368 
1369 	acc_size = ttm_bo_acc_size(bdev, size, sizeof(struct ttm_buffer_object));
1370 	ret = ttm_bo_init(bdev, bo, size, type, placement, page_alignment,
1371 			  interruptible, persistent_swap_storage, acc_size,
1372 			  NULL, NULL);
1373 	if (likely(ret == 0))
1374 		*p_bo = bo;
1375 
1376 	return ret;
1377 }
1378 EXPORT_SYMBOL(ttm_bo_create);
1379 
1380 static int ttm_bo_force_list_clean(struct ttm_bo_device *bdev,
1381 					unsigned mem_type, bool allow_errors)
1382 {
1383 	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1384 	struct ttm_bo_global *glob = bdev->glob;
1385 	int ret;
1386 
1387 	/*
1388 	 * Can't use standard list traversal since we're unlocking.
1389 	 */
1390 
1391 	spin_lock(&glob->lru_lock);
1392 	while (!list_empty(&man->lru)) {
1393 		spin_unlock(&glob->lru_lock);
1394 		ret = ttm_mem_evict_first(bdev, mem_type, false, false);
1395 		if (ret) {
1396 			if (allow_errors) {
1397 				return ret;
1398 			} else {
1399 				pr_err("Cleanup eviction failed\n");
1400 			}
1401 		}
1402 		spin_lock(&glob->lru_lock);
1403 	}
1404 	spin_unlock(&glob->lru_lock);
1405 	return 0;
1406 }
1407 
1408 int ttm_bo_clean_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1409 {
1410 	struct ttm_mem_type_manager *man;
1411 	int ret = -EINVAL;
1412 
1413 	if (mem_type >= TTM_NUM_MEM_TYPES) {
1414 		pr_err("Illegal memory type %d\n", mem_type);
1415 		return ret;
1416 	}
1417 	man = &bdev->man[mem_type];
1418 
1419 	if (!man->has_type) {
1420 		pr_err("Trying to take down uninitialized memory manager type %u\n",
1421 		       mem_type);
1422 		return ret;
1423 	}
1424 
1425 	man->use_type = false;
1426 	man->has_type = false;
1427 
1428 	ret = 0;
1429 	if (mem_type > 0) {
1430 		ttm_bo_force_list_clean(bdev, mem_type, false);
1431 
1432 		ret = (*man->func->takedown)(man);
1433 	}
1434 
1435 	return ret;
1436 }
1437 EXPORT_SYMBOL(ttm_bo_clean_mm);
1438 
1439 int ttm_bo_evict_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1440 {
1441 	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1442 
1443 	if (mem_type == 0 || mem_type >= TTM_NUM_MEM_TYPES) {
1444 		pr_err("Illegal memory manager memory type %u\n", mem_type);
1445 		return -EINVAL;
1446 	}
1447 
1448 	if (!man->has_type) {
1449 		pr_err("Memory type %u has not been initialized\n", mem_type);
1450 		return 0;
1451 	}
1452 
1453 	return ttm_bo_force_list_clean(bdev, mem_type, true);
1454 }
1455 EXPORT_SYMBOL(ttm_bo_evict_mm);
1456 
1457 int ttm_bo_init_mm(struct ttm_bo_device *bdev, unsigned type,
1458 			unsigned long p_size)
1459 {
1460 	int ret = -EINVAL;
1461 	struct ttm_mem_type_manager *man;
1462 
1463 	BUG_ON(type >= TTM_NUM_MEM_TYPES);
1464 	man = &bdev->man[type];
1465 	BUG_ON(man->has_type);
1466 	man->io_reserve_fastpath = true;
1467 	man->use_io_reserve_lru = false;
1468 	mutex_init(&man->io_reserve_mutex);
1469 	INIT_LIST_HEAD(&man->io_reserve_lru);
1470 
1471 	ret = bdev->driver->init_mem_type(bdev, type, man);
1472 	if (ret)
1473 		return ret;
1474 	man->bdev = bdev;
1475 
1476 	ret = 0;
1477 	if (type != TTM_PL_SYSTEM) {
1478 		ret = (*man->func->init)(man, p_size);
1479 		if (ret)
1480 			return ret;
1481 	}
1482 	man->has_type = true;
1483 	man->use_type = true;
1484 	man->size = p_size;
1485 
1486 	INIT_LIST_HEAD(&man->lru);
1487 
1488 	return 0;
1489 }
1490 EXPORT_SYMBOL(ttm_bo_init_mm);
1491 
1492 static void ttm_bo_global_kobj_release(struct kobject *kobj)
1493 {
1494 	struct ttm_bo_global *glob =
1495 		container_of(kobj, struct ttm_bo_global, kobj);
1496 
1497 	ttm_mem_unregister_shrink(glob->mem_glob, &glob->shrink);
1498 	__free_page(glob->dummy_read_page);
1499 	kfree(glob);
1500 }
1501 
1502 void ttm_bo_global_release(struct drm_global_reference *ref)
1503 {
1504 	struct ttm_bo_global *glob = ref->object;
1505 
1506 	kobject_del(&glob->kobj);
1507 	kobject_put(&glob->kobj);
1508 }
1509 EXPORT_SYMBOL(ttm_bo_global_release);
1510 
1511 int ttm_bo_global_init(struct drm_global_reference *ref)
1512 {
1513 	struct ttm_bo_global_ref *bo_ref =
1514 		container_of(ref, struct ttm_bo_global_ref, ref);
1515 	struct ttm_bo_global *glob = ref->object;
1516 	int ret;
1517 
1518 	mutex_init(&glob->device_list_mutex);
1519 	spin_lock_init(&glob->lru_lock);
1520 	glob->mem_glob = bo_ref->mem_glob;
1521 	glob->dummy_read_page = alloc_page(__GFP_ZERO | GFP_DMA32);
1522 
1523 	if (unlikely(glob->dummy_read_page == NULL)) {
1524 		ret = -ENOMEM;
1525 		goto out_no_drp;
1526 	}
1527 
1528 	INIT_LIST_HEAD(&glob->swap_lru);
1529 	INIT_LIST_HEAD(&glob->device_list);
1530 
1531 	ttm_mem_init_shrink(&glob->shrink, ttm_bo_swapout);
1532 	ret = ttm_mem_register_shrink(glob->mem_glob, &glob->shrink);
1533 	if (unlikely(ret != 0)) {
1534 		pr_err("Could not register buffer object swapout\n");
1535 		goto out_no_shrink;
1536 	}
1537 
1538 	atomic_set(&glob->bo_count, 0);
1539 
1540 	ret = kobject_init_and_add(
1541 		&glob->kobj, &ttm_bo_glob_kobj_type, ttm_get_kobj(), "buffer_objects");
1542 	if (unlikely(ret != 0))
1543 		kobject_put(&glob->kobj);
1544 	return ret;
1545 out_no_shrink:
1546 	__free_page(glob->dummy_read_page);
1547 out_no_drp:
1548 	kfree(glob);
1549 	return ret;
1550 }
1551 EXPORT_SYMBOL(ttm_bo_global_init);
1552 
1553 
1554 int ttm_bo_device_release(struct ttm_bo_device *bdev)
1555 {
1556 	int ret = 0;
1557 	unsigned i = TTM_NUM_MEM_TYPES;
1558 	struct ttm_mem_type_manager *man;
1559 	struct ttm_bo_global *glob = bdev->glob;
1560 
1561 	while (i--) {
1562 		man = &bdev->man[i];
1563 		if (man->has_type) {
1564 			man->use_type = false;
1565 			if ((i != TTM_PL_SYSTEM) && ttm_bo_clean_mm(bdev, i)) {
1566 				ret = -EBUSY;
1567 				pr_err("DRM memory manager type %d is not clean\n",
1568 				       i);
1569 			}
1570 			man->has_type = false;
1571 		}
1572 	}
1573 
1574 	mutex_lock(&glob->device_list_mutex);
1575 	list_del(&bdev->device_list);
1576 	mutex_unlock(&glob->device_list_mutex);
1577 
1578 	cancel_delayed_work_sync(&bdev->wq);
1579 
1580 	while (ttm_bo_delayed_delete(bdev, true))
1581 		;
1582 
1583 	spin_lock(&glob->lru_lock);
1584 	if (list_empty(&bdev->ddestroy))
1585 		TTM_DEBUG("Delayed destroy list was clean\n");
1586 
1587 	if (list_empty(&bdev->man[0].lru))
1588 		TTM_DEBUG("Swap list was clean\n");
1589 	spin_unlock(&glob->lru_lock);
1590 
1591 	BUG_ON(!drm_mm_clean(&bdev->addr_space_mm));
1592 	write_lock(&bdev->vm_lock);
1593 	drm_mm_takedown(&bdev->addr_space_mm);
1594 	write_unlock(&bdev->vm_lock);
1595 
1596 	return ret;
1597 }
1598 EXPORT_SYMBOL(ttm_bo_device_release);
1599 
1600 int ttm_bo_device_init(struct ttm_bo_device *bdev,
1601 		       struct ttm_bo_global *glob,
1602 		       struct ttm_bo_driver *driver,
1603 		       uint64_t file_page_offset,
1604 		       bool need_dma32)
1605 {
1606 	int ret = -EINVAL;
1607 
1608 	rwlock_init(&bdev->vm_lock);
1609 	bdev->driver = driver;
1610 
1611 	memset(bdev->man, 0, sizeof(bdev->man));
1612 
1613 	/*
1614 	 * Initialize the system memory buffer type.
1615 	 * Other types need to be driver / IOCTL initialized.
1616 	 */
1617 	ret = ttm_bo_init_mm(bdev, TTM_PL_SYSTEM, 0);
1618 	if (unlikely(ret != 0))
1619 		goto out_no_sys;
1620 
1621 	bdev->addr_space_rb = RB_ROOT;
1622 	ret = drm_mm_init(&bdev->addr_space_mm, file_page_offset, 0x10000000);
1623 	if (unlikely(ret != 0))
1624 		goto out_no_addr_mm;
1625 
1626 	INIT_DELAYED_WORK(&bdev->wq, ttm_bo_delayed_workqueue);
1627 	INIT_LIST_HEAD(&bdev->ddestroy);
1628 	bdev->dev_mapping = NULL;
1629 	bdev->glob = glob;
1630 	bdev->need_dma32 = need_dma32;
1631 	bdev->val_seq = 0;
1632 	spin_lock_init(&bdev->fence_lock);
1633 	mutex_lock(&glob->device_list_mutex);
1634 	list_add_tail(&bdev->device_list, &glob->device_list);
1635 	mutex_unlock(&glob->device_list_mutex);
1636 
1637 	return 0;
1638 out_no_addr_mm:
1639 	ttm_bo_clean_mm(bdev, 0);
1640 out_no_sys:
1641 	return ret;
1642 }
1643 EXPORT_SYMBOL(ttm_bo_device_init);
1644 
1645 /*
1646  * buffer object vm functions.
1647  */
1648 
1649 bool ttm_mem_reg_is_pci(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
1650 {
1651 	struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
1652 
1653 	if (!(man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
1654 		if (mem->mem_type == TTM_PL_SYSTEM)
1655 			return false;
1656 
1657 		if (man->flags & TTM_MEMTYPE_FLAG_CMA)
1658 			return false;
1659 
1660 		if (mem->placement & TTM_PL_FLAG_CACHED)
1661 			return false;
1662 	}
1663 	return true;
1664 }
1665 
1666 void ttm_bo_unmap_virtual_locked(struct ttm_buffer_object *bo)
1667 {
1668 	struct ttm_bo_device *bdev = bo->bdev;
1669 	loff_t offset = (loff_t) bo->addr_space_offset;
1670 	loff_t holelen = ((loff_t) bo->mem.num_pages) << PAGE_SHIFT;
1671 
1672 	if (!bdev->dev_mapping)
1673 		return;
1674 	unmap_mapping_range(bdev->dev_mapping, offset, holelen, 1);
1675 	ttm_mem_io_free_vm(bo);
1676 }
1677 
1678 void ttm_bo_unmap_virtual(struct ttm_buffer_object *bo)
1679 {
1680 	struct ttm_bo_device *bdev = bo->bdev;
1681 	struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
1682 
1683 	ttm_mem_io_lock(man, false);
1684 	ttm_bo_unmap_virtual_locked(bo);
1685 	ttm_mem_io_unlock(man);
1686 }
1687 
1688 
1689 EXPORT_SYMBOL(ttm_bo_unmap_virtual);
1690 
1691 static void ttm_bo_vm_insert_rb(struct ttm_buffer_object *bo)
1692 {
1693 	struct ttm_bo_device *bdev = bo->bdev;
1694 	struct rb_node **cur = &bdev->addr_space_rb.rb_node;
1695 	struct rb_node *parent = NULL;
1696 	struct ttm_buffer_object *cur_bo;
1697 	unsigned long offset = bo->vm_node->start;
1698 	unsigned long cur_offset;
1699 
1700 	while (*cur) {
1701 		parent = *cur;
1702 		cur_bo = rb_entry(parent, struct ttm_buffer_object, vm_rb);
1703 		cur_offset = cur_bo->vm_node->start;
1704 		if (offset < cur_offset)
1705 			cur = &parent->rb_left;
1706 		else if (offset > cur_offset)
1707 			cur = &parent->rb_right;
1708 		else
1709 			BUG();
1710 	}
1711 
1712 	rb_link_node(&bo->vm_rb, parent, cur);
1713 	rb_insert_color(&bo->vm_rb, &bdev->addr_space_rb);
1714 }
1715 
1716 /**
1717  * ttm_bo_setup_vm:
1718  *
1719  * @bo: the buffer to allocate address space for
1720  *
1721  * Allocate address space in the drm device so that applications
1722  * can mmap the buffer and access the contents. This only
1723  * applies to ttm_bo_type_device objects as others are not
1724  * placed in the drm device address space.
1725  */
1726 
1727 static int ttm_bo_setup_vm(struct ttm_buffer_object *bo)
1728 {
1729 	struct ttm_bo_device *bdev = bo->bdev;
1730 	int ret;
1731 
1732 retry_pre_get:
1733 	ret = drm_mm_pre_get(&bdev->addr_space_mm);
1734 	if (unlikely(ret != 0))
1735 		return ret;
1736 
1737 	write_lock(&bdev->vm_lock);
1738 	bo->vm_node = drm_mm_search_free(&bdev->addr_space_mm,
1739 					 bo->mem.num_pages, 0, 0);
1740 
1741 	if (unlikely(bo->vm_node == NULL)) {
1742 		ret = -ENOMEM;
1743 		goto out_unlock;
1744 	}
1745 
1746 	bo->vm_node = drm_mm_get_block_atomic(bo->vm_node,
1747 					      bo->mem.num_pages, 0);
1748 
1749 	if (unlikely(bo->vm_node == NULL)) {
1750 		write_unlock(&bdev->vm_lock);
1751 		goto retry_pre_get;
1752 	}
1753 
1754 	ttm_bo_vm_insert_rb(bo);
1755 	write_unlock(&bdev->vm_lock);
1756 	bo->addr_space_offset = ((uint64_t) bo->vm_node->start) << PAGE_SHIFT;
1757 
1758 	return 0;
1759 out_unlock:
1760 	write_unlock(&bdev->vm_lock);
1761 	return ret;
1762 }
1763 
1764 int ttm_bo_wait(struct ttm_buffer_object *bo,
1765 		bool lazy, bool interruptible, bool no_wait)
1766 {
1767 	struct ttm_bo_driver *driver = bo->bdev->driver;
1768 	struct ttm_bo_device *bdev = bo->bdev;
1769 	void *sync_obj;
1770 	int ret = 0;
1771 
1772 	if (likely(bo->sync_obj == NULL))
1773 		return 0;
1774 
1775 	while (bo->sync_obj) {
1776 
1777 		if (driver->sync_obj_signaled(bo->sync_obj)) {
1778 			void *tmp_obj = bo->sync_obj;
1779 			bo->sync_obj = NULL;
1780 			clear_bit(TTM_BO_PRIV_FLAG_MOVING, &bo->priv_flags);
1781 			spin_unlock(&bdev->fence_lock);
1782 			driver->sync_obj_unref(&tmp_obj);
1783 			spin_lock(&bdev->fence_lock);
1784 			continue;
1785 		}
1786 
1787 		if (no_wait)
1788 			return -EBUSY;
1789 
1790 		sync_obj = driver->sync_obj_ref(bo->sync_obj);
1791 		spin_unlock(&bdev->fence_lock);
1792 		ret = driver->sync_obj_wait(sync_obj,
1793 					    lazy, interruptible);
1794 		if (unlikely(ret != 0)) {
1795 			driver->sync_obj_unref(&sync_obj);
1796 			spin_lock(&bdev->fence_lock);
1797 			return ret;
1798 		}
1799 		spin_lock(&bdev->fence_lock);
1800 		if (likely(bo->sync_obj == sync_obj)) {
1801 			void *tmp_obj = bo->sync_obj;
1802 			bo->sync_obj = NULL;
1803 			clear_bit(TTM_BO_PRIV_FLAG_MOVING,
1804 				  &bo->priv_flags);
1805 			spin_unlock(&bdev->fence_lock);
1806 			driver->sync_obj_unref(&sync_obj);
1807 			driver->sync_obj_unref(&tmp_obj);
1808 			spin_lock(&bdev->fence_lock);
1809 		} else {
1810 			spin_unlock(&bdev->fence_lock);
1811 			driver->sync_obj_unref(&sync_obj);
1812 			spin_lock(&bdev->fence_lock);
1813 		}
1814 	}
1815 	return 0;
1816 }
1817 EXPORT_SYMBOL(ttm_bo_wait);
1818 
1819 int ttm_bo_synccpu_write_grab(struct ttm_buffer_object *bo, bool no_wait)
1820 {
1821 	struct ttm_bo_device *bdev = bo->bdev;
1822 	int ret = 0;
1823 
1824 	/*
1825 	 * Using ttm_bo_reserve makes sure the lru lists are updated.
1826 	 */
1827 
1828 	ret = ttm_bo_reserve(bo, true, no_wait, false, 0);
1829 	if (unlikely(ret != 0))
1830 		return ret;
1831 	spin_lock(&bdev->fence_lock);
1832 	ret = ttm_bo_wait(bo, false, true, no_wait);
1833 	spin_unlock(&bdev->fence_lock);
1834 	if (likely(ret == 0))
1835 		atomic_inc(&bo->cpu_writers);
1836 	ttm_bo_unreserve(bo);
1837 	return ret;
1838 }
1839 EXPORT_SYMBOL(ttm_bo_synccpu_write_grab);
1840 
1841 void ttm_bo_synccpu_write_release(struct ttm_buffer_object *bo)
1842 {
1843 	atomic_dec(&bo->cpu_writers);
1844 }
1845 EXPORT_SYMBOL(ttm_bo_synccpu_write_release);
1846 
1847 /**
1848  * A buffer object shrink method that tries to swap out the first
1849  * buffer object on the bo_global::swap_lru list.
1850  */
1851 
1852 static int ttm_bo_swapout(struct ttm_mem_shrink *shrink)
1853 {
1854 	struct ttm_bo_global *glob =
1855 	    container_of(shrink, struct ttm_bo_global, shrink);
1856 	struct ttm_buffer_object *bo;
1857 	int ret = -EBUSY;
1858 	int put_count;
1859 	uint32_t swap_placement = (TTM_PL_FLAG_CACHED | TTM_PL_FLAG_SYSTEM);
1860 
1861 	spin_lock(&glob->lru_lock);
1862 	list_for_each_entry(bo, &glob->swap_lru, swap) {
1863 		ret = ttm_bo_reserve_nolru(bo, false, true, false, 0);
1864 		if (!ret)
1865 			break;
1866 	}
1867 
1868 	if (ret) {
1869 		spin_unlock(&glob->lru_lock);
1870 		return ret;
1871 	}
1872 
1873 	kref_get(&bo->list_kref);
1874 
1875 	if (!list_empty(&bo->ddestroy)) {
1876 		ret = ttm_bo_cleanup_refs_and_unlock(bo, false, false);
1877 		kref_put(&bo->list_kref, ttm_bo_release_list);
1878 		return ret;
1879 	}
1880 
1881 	put_count = ttm_bo_del_from_lru(bo);
1882 	spin_unlock(&glob->lru_lock);
1883 
1884 	ttm_bo_list_ref_sub(bo, put_count, true);
1885 
1886 	/**
1887 	 * Wait for GPU, then move to system cached.
1888 	 */
1889 
1890 	spin_lock(&bo->bdev->fence_lock);
1891 	ret = ttm_bo_wait(bo, false, false, false);
1892 	spin_unlock(&bo->bdev->fence_lock);
1893 
1894 	if (unlikely(ret != 0))
1895 		goto out;
1896 
1897 	if ((bo->mem.placement & swap_placement) != swap_placement) {
1898 		struct ttm_mem_reg evict_mem;
1899 
1900 		evict_mem = bo->mem;
1901 		evict_mem.mm_node = NULL;
1902 		evict_mem.placement = TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED;
1903 		evict_mem.mem_type = TTM_PL_SYSTEM;
1904 
1905 		ret = ttm_bo_handle_move_mem(bo, &evict_mem, true,
1906 					     false, false);
1907 		if (unlikely(ret != 0))
1908 			goto out;
1909 	}
1910 
1911 	ttm_bo_unmap_virtual(bo);
1912 
1913 	/**
1914 	 * Swap out. Buffer will be swapped in again as soon as
1915 	 * anyone tries to access a ttm page.
1916 	 */
1917 
1918 	if (bo->bdev->driver->swap_notify)
1919 		bo->bdev->driver->swap_notify(bo);
1920 
1921 	ret = ttm_tt_swapout(bo->ttm, bo->persistent_swap_storage);
1922 out:
1923 
1924 	/**
1925 	 *
1926 	 * Unreserve without putting on LRU to avoid swapping out an
1927 	 * already swapped buffer.
1928 	 */
1929 
1930 	atomic_set(&bo->reserved, 0);
1931 	wake_up_all(&bo->event_queue);
1932 	kref_put(&bo->list_kref, ttm_bo_release_list);
1933 	return ret;
1934 }
1935 
1936 void ttm_bo_swapout_all(struct ttm_bo_device *bdev)
1937 {
1938 	while (ttm_bo_swapout(&bdev->glob->shrink) == 0)
1939 		;
1940 }
1941 EXPORT_SYMBOL(ttm_bo_swapout_all);
1942