1 /************************************************************************** 2 * 3 * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA 4 * All Rights Reserved. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the 8 * "Software"), to deal in the Software without restriction, including 9 * without limitation the rights to use, copy, modify, merge, publish, 10 * distribute, sub license, and/or sell copies of the Software, and to 11 * permit persons to whom the Software is furnished to do so, subject to 12 * the following conditions: 13 * 14 * The above copyright notice and this permission notice (including the 15 * next paragraph) shall be included in all copies or substantial portions 16 * of the Software. 17 * 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 20 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 21 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 22 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 23 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 24 * USE OR OTHER DEALINGS IN THE SOFTWARE. 25 * 26 **************************************************************************/ 27 /* 28 * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com> 29 */ 30 31 #define pr_fmt(fmt) "[TTM] " fmt 32 33 #include <drm/ttm/ttm_module.h> 34 #include <drm/ttm/ttm_bo_driver.h> 35 #include <drm/ttm/ttm_placement.h> 36 #include <linux/jiffies.h> 37 #include <linux/slab.h> 38 #include <linux/sched.h> 39 #include <linux/mm.h> 40 #include <linux/file.h> 41 #include <linux/module.h> 42 #include <linux/atomic.h> 43 44 #define TTM_ASSERT_LOCKED(param) 45 #define TTM_DEBUG(fmt, arg...) 46 #define TTM_BO_HASH_ORDER 13 47 48 static int ttm_bo_setup_vm(struct ttm_buffer_object *bo); 49 static int ttm_bo_swapout(struct ttm_mem_shrink *shrink); 50 static void ttm_bo_global_kobj_release(struct kobject *kobj); 51 52 static struct attribute ttm_bo_count = { 53 .name = "bo_count", 54 .mode = S_IRUGO 55 }; 56 57 static inline int ttm_mem_type_from_flags(uint32_t flags, uint32_t *mem_type) 58 { 59 int i; 60 61 for (i = 0; i <= TTM_PL_PRIV5; i++) 62 if (flags & (1 << i)) { 63 *mem_type = i; 64 return 0; 65 } 66 return -EINVAL; 67 } 68 69 static void ttm_mem_type_debug(struct ttm_bo_device *bdev, int mem_type) 70 { 71 struct ttm_mem_type_manager *man = &bdev->man[mem_type]; 72 73 pr_err(" has_type: %d\n", man->has_type); 74 pr_err(" use_type: %d\n", man->use_type); 75 pr_err(" flags: 0x%08X\n", man->flags); 76 pr_err(" gpu_offset: 0x%08lX\n", man->gpu_offset); 77 pr_err(" size: %llu\n", man->size); 78 pr_err(" available_caching: 0x%08X\n", man->available_caching); 79 pr_err(" default_caching: 0x%08X\n", man->default_caching); 80 if (mem_type != TTM_PL_SYSTEM) 81 (*man->func->debug)(man, TTM_PFX); 82 } 83 84 static void ttm_bo_mem_space_debug(struct ttm_buffer_object *bo, 85 struct ttm_placement *placement) 86 { 87 int i, ret, mem_type; 88 89 pr_err("No space for %p (%lu pages, %luK, %luM)\n", 90 bo, bo->mem.num_pages, bo->mem.size >> 10, 91 bo->mem.size >> 20); 92 for (i = 0; i < placement->num_placement; i++) { 93 ret = ttm_mem_type_from_flags(placement->placement[i], 94 &mem_type); 95 if (ret) 96 return; 97 pr_err(" placement[%d]=0x%08X (%d)\n", 98 i, placement->placement[i], mem_type); 99 ttm_mem_type_debug(bo->bdev, mem_type); 100 } 101 } 102 103 static ssize_t ttm_bo_global_show(struct kobject *kobj, 104 struct attribute *attr, 105 char *buffer) 106 { 107 struct ttm_bo_global *glob = 108 container_of(kobj, struct ttm_bo_global, kobj); 109 110 return snprintf(buffer, PAGE_SIZE, "%lu\n", 111 (unsigned long) atomic_read(&glob->bo_count)); 112 } 113 114 static struct attribute *ttm_bo_global_attrs[] = { 115 &ttm_bo_count, 116 NULL 117 }; 118 119 static const struct sysfs_ops ttm_bo_global_ops = { 120 .show = &ttm_bo_global_show 121 }; 122 123 static struct kobj_type ttm_bo_glob_kobj_type = { 124 .release = &ttm_bo_global_kobj_release, 125 .sysfs_ops = &ttm_bo_global_ops, 126 .default_attrs = ttm_bo_global_attrs 127 }; 128 129 130 static inline uint32_t ttm_bo_type_flags(unsigned type) 131 { 132 return 1 << (type); 133 } 134 135 static void ttm_bo_release_list(struct kref *list_kref) 136 { 137 struct ttm_buffer_object *bo = 138 container_of(list_kref, struct ttm_buffer_object, list_kref); 139 struct ttm_bo_device *bdev = bo->bdev; 140 size_t acc_size = bo->acc_size; 141 142 BUG_ON(atomic_read(&bo->list_kref.refcount)); 143 BUG_ON(atomic_read(&bo->kref.refcount)); 144 BUG_ON(atomic_read(&bo->cpu_writers)); 145 BUG_ON(bo->sync_obj != NULL); 146 BUG_ON(bo->mem.mm_node != NULL); 147 BUG_ON(!list_empty(&bo->lru)); 148 BUG_ON(!list_empty(&bo->ddestroy)); 149 150 if (bo->ttm) 151 ttm_tt_destroy(bo->ttm); 152 atomic_dec(&bo->glob->bo_count); 153 if (bo->destroy) 154 bo->destroy(bo); 155 else { 156 kfree(bo); 157 } 158 ttm_mem_global_free(bdev->glob->mem_glob, acc_size); 159 } 160 161 static int ttm_bo_wait_unreserved(struct ttm_buffer_object *bo, 162 bool interruptible) 163 { 164 if (interruptible) { 165 return wait_event_interruptible(bo->event_queue, 166 !ttm_bo_is_reserved(bo)); 167 } else { 168 wait_event(bo->event_queue, !ttm_bo_is_reserved(bo)); 169 return 0; 170 } 171 } 172 173 void ttm_bo_add_to_lru(struct ttm_buffer_object *bo) 174 { 175 struct ttm_bo_device *bdev = bo->bdev; 176 struct ttm_mem_type_manager *man; 177 178 BUG_ON(!ttm_bo_is_reserved(bo)); 179 180 if (!(bo->mem.placement & TTM_PL_FLAG_NO_EVICT)) { 181 182 BUG_ON(!list_empty(&bo->lru)); 183 184 man = &bdev->man[bo->mem.mem_type]; 185 list_add_tail(&bo->lru, &man->lru); 186 kref_get(&bo->list_kref); 187 188 if (bo->ttm != NULL) { 189 list_add_tail(&bo->swap, &bo->glob->swap_lru); 190 kref_get(&bo->list_kref); 191 } 192 } 193 } 194 195 int ttm_bo_del_from_lru(struct ttm_buffer_object *bo) 196 { 197 int put_count = 0; 198 199 if (!list_empty(&bo->swap)) { 200 list_del_init(&bo->swap); 201 ++put_count; 202 } 203 if (!list_empty(&bo->lru)) { 204 list_del_init(&bo->lru); 205 ++put_count; 206 } 207 208 /* 209 * TODO: Add a driver hook to delete from 210 * driver-specific LRU's here. 211 */ 212 213 return put_count; 214 } 215 216 int ttm_bo_reserve_nolru(struct ttm_buffer_object *bo, 217 bool interruptible, 218 bool no_wait, bool use_sequence, uint32_t sequence) 219 { 220 int ret; 221 222 while (unlikely(atomic_xchg(&bo->reserved, 1) != 0)) { 223 /** 224 * Deadlock avoidance for multi-bo reserving. 225 */ 226 if (use_sequence && bo->seq_valid) { 227 /** 228 * We've already reserved this one. 229 */ 230 if (unlikely(sequence == bo->val_seq)) 231 return -EDEADLK; 232 /** 233 * Already reserved by a thread that will not back 234 * off for us. We need to back off. 235 */ 236 if (unlikely(sequence - bo->val_seq < (1 << 31))) 237 return -EAGAIN; 238 } 239 240 if (no_wait) 241 return -EBUSY; 242 243 ret = ttm_bo_wait_unreserved(bo, interruptible); 244 245 if (unlikely(ret)) 246 return ret; 247 } 248 249 if (use_sequence) { 250 bool wake_up = false; 251 /** 252 * Wake up waiters that may need to recheck for deadlock, 253 * if we decreased the sequence number. 254 */ 255 if (unlikely((bo->val_seq - sequence < (1 << 31)) 256 || !bo->seq_valid)) 257 wake_up = true; 258 259 /* 260 * In the worst case with memory ordering these values can be 261 * seen in the wrong order. However since we call wake_up_all 262 * in that case, this will hopefully not pose a problem, 263 * and the worst case would only cause someone to accidentally 264 * hit -EAGAIN in ttm_bo_reserve when they see old value of 265 * val_seq. However this would only happen if seq_valid was 266 * written before val_seq was, and just means some slightly 267 * increased cpu usage 268 */ 269 bo->val_seq = sequence; 270 bo->seq_valid = true; 271 if (wake_up) 272 wake_up_all(&bo->event_queue); 273 } else { 274 bo->seq_valid = false; 275 } 276 277 return 0; 278 } 279 EXPORT_SYMBOL(ttm_bo_reserve); 280 281 static void ttm_bo_ref_bug(struct kref *list_kref) 282 { 283 BUG(); 284 } 285 286 void ttm_bo_list_ref_sub(struct ttm_buffer_object *bo, int count, 287 bool never_free) 288 { 289 kref_sub(&bo->list_kref, count, 290 (never_free) ? ttm_bo_ref_bug : ttm_bo_release_list); 291 } 292 293 int ttm_bo_reserve(struct ttm_buffer_object *bo, 294 bool interruptible, 295 bool no_wait, bool use_sequence, uint32_t sequence) 296 { 297 struct ttm_bo_global *glob = bo->glob; 298 int put_count = 0; 299 int ret; 300 301 ret = ttm_bo_reserve_nolru(bo, interruptible, no_wait, use_sequence, 302 sequence); 303 if (likely(ret == 0)) { 304 spin_lock(&glob->lru_lock); 305 put_count = ttm_bo_del_from_lru(bo); 306 spin_unlock(&glob->lru_lock); 307 ttm_bo_list_ref_sub(bo, put_count, true); 308 } 309 310 return ret; 311 } 312 313 int ttm_bo_reserve_slowpath_nolru(struct ttm_buffer_object *bo, 314 bool interruptible, uint32_t sequence) 315 { 316 bool wake_up = false; 317 int ret; 318 319 while (unlikely(atomic_xchg(&bo->reserved, 1) != 0)) { 320 WARN_ON(bo->seq_valid && sequence == bo->val_seq); 321 322 ret = ttm_bo_wait_unreserved(bo, interruptible); 323 324 if (unlikely(ret)) 325 return ret; 326 } 327 328 if ((bo->val_seq - sequence < (1 << 31)) || !bo->seq_valid) 329 wake_up = true; 330 331 /** 332 * Wake up waiters that may need to recheck for deadlock, 333 * if we decreased the sequence number. 334 */ 335 bo->val_seq = sequence; 336 bo->seq_valid = true; 337 if (wake_up) 338 wake_up_all(&bo->event_queue); 339 340 return 0; 341 } 342 343 int ttm_bo_reserve_slowpath(struct ttm_buffer_object *bo, 344 bool interruptible, uint32_t sequence) 345 { 346 struct ttm_bo_global *glob = bo->glob; 347 int put_count, ret; 348 349 ret = ttm_bo_reserve_slowpath_nolru(bo, interruptible, sequence); 350 if (likely(!ret)) { 351 spin_lock(&glob->lru_lock); 352 put_count = ttm_bo_del_from_lru(bo); 353 spin_unlock(&glob->lru_lock); 354 ttm_bo_list_ref_sub(bo, put_count, true); 355 } 356 return ret; 357 } 358 EXPORT_SYMBOL(ttm_bo_reserve_slowpath); 359 360 void ttm_bo_unreserve_locked(struct ttm_buffer_object *bo) 361 { 362 ttm_bo_add_to_lru(bo); 363 atomic_set(&bo->reserved, 0); 364 wake_up_all(&bo->event_queue); 365 } 366 367 void ttm_bo_unreserve(struct ttm_buffer_object *bo) 368 { 369 struct ttm_bo_global *glob = bo->glob; 370 371 spin_lock(&glob->lru_lock); 372 ttm_bo_unreserve_locked(bo); 373 spin_unlock(&glob->lru_lock); 374 } 375 EXPORT_SYMBOL(ttm_bo_unreserve); 376 377 /* 378 * Call bo->mutex locked. 379 */ 380 static int ttm_bo_add_ttm(struct ttm_buffer_object *bo, bool zero_alloc) 381 { 382 struct ttm_bo_device *bdev = bo->bdev; 383 struct ttm_bo_global *glob = bo->glob; 384 int ret = 0; 385 uint32_t page_flags = 0; 386 387 TTM_ASSERT_LOCKED(&bo->mutex); 388 bo->ttm = NULL; 389 390 if (bdev->need_dma32) 391 page_flags |= TTM_PAGE_FLAG_DMA32; 392 393 switch (bo->type) { 394 case ttm_bo_type_device: 395 if (zero_alloc) 396 page_flags |= TTM_PAGE_FLAG_ZERO_ALLOC; 397 case ttm_bo_type_kernel: 398 bo->ttm = bdev->driver->ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT, 399 page_flags, glob->dummy_read_page); 400 if (unlikely(bo->ttm == NULL)) 401 ret = -ENOMEM; 402 break; 403 case ttm_bo_type_sg: 404 bo->ttm = bdev->driver->ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT, 405 page_flags | TTM_PAGE_FLAG_SG, 406 glob->dummy_read_page); 407 if (unlikely(bo->ttm == NULL)) { 408 ret = -ENOMEM; 409 break; 410 } 411 bo->ttm->sg = bo->sg; 412 break; 413 default: 414 pr_err("Illegal buffer object type\n"); 415 ret = -EINVAL; 416 break; 417 } 418 419 return ret; 420 } 421 422 static int ttm_bo_handle_move_mem(struct ttm_buffer_object *bo, 423 struct ttm_mem_reg *mem, 424 bool evict, bool interruptible, 425 bool no_wait_gpu) 426 { 427 struct ttm_bo_device *bdev = bo->bdev; 428 bool old_is_pci = ttm_mem_reg_is_pci(bdev, &bo->mem); 429 bool new_is_pci = ttm_mem_reg_is_pci(bdev, mem); 430 struct ttm_mem_type_manager *old_man = &bdev->man[bo->mem.mem_type]; 431 struct ttm_mem_type_manager *new_man = &bdev->man[mem->mem_type]; 432 int ret = 0; 433 434 if (old_is_pci || new_is_pci || 435 ((mem->placement & bo->mem.placement & TTM_PL_MASK_CACHING) == 0)) { 436 ret = ttm_mem_io_lock(old_man, true); 437 if (unlikely(ret != 0)) 438 goto out_err; 439 ttm_bo_unmap_virtual_locked(bo); 440 ttm_mem_io_unlock(old_man); 441 } 442 443 /* 444 * Create and bind a ttm if required. 445 */ 446 447 if (!(new_man->flags & TTM_MEMTYPE_FLAG_FIXED)) { 448 if (bo->ttm == NULL) { 449 bool zero = !(old_man->flags & TTM_MEMTYPE_FLAG_FIXED); 450 ret = ttm_bo_add_ttm(bo, zero); 451 if (ret) 452 goto out_err; 453 } 454 455 ret = ttm_tt_set_placement_caching(bo->ttm, mem->placement); 456 if (ret) 457 goto out_err; 458 459 if (mem->mem_type != TTM_PL_SYSTEM) { 460 ret = ttm_tt_bind(bo->ttm, mem); 461 if (ret) 462 goto out_err; 463 } 464 465 if (bo->mem.mem_type == TTM_PL_SYSTEM) { 466 if (bdev->driver->move_notify) 467 bdev->driver->move_notify(bo, mem); 468 bo->mem = *mem; 469 mem->mm_node = NULL; 470 goto moved; 471 } 472 } 473 474 if (bdev->driver->move_notify) 475 bdev->driver->move_notify(bo, mem); 476 477 if (!(old_man->flags & TTM_MEMTYPE_FLAG_FIXED) && 478 !(new_man->flags & TTM_MEMTYPE_FLAG_FIXED)) 479 ret = ttm_bo_move_ttm(bo, evict, no_wait_gpu, mem); 480 else if (bdev->driver->move) 481 ret = bdev->driver->move(bo, evict, interruptible, 482 no_wait_gpu, mem); 483 else 484 ret = ttm_bo_move_memcpy(bo, evict, no_wait_gpu, mem); 485 486 if (ret) { 487 if (bdev->driver->move_notify) { 488 struct ttm_mem_reg tmp_mem = *mem; 489 *mem = bo->mem; 490 bo->mem = tmp_mem; 491 bdev->driver->move_notify(bo, mem); 492 bo->mem = *mem; 493 *mem = tmp_mem; 494 } 495 496 goto out_err; 497 } 498 499 moved: 500 if (bo->evicted) { 501 ret = bdev->driver->invalidate_caches(bdev, bo->mem.placement); 502 if (ret) 503 pr_err("Can not flush read caches\n"); 504 bo->evicted = false; 505 } 506 507 if (bo->mem.mm_node) { 508 bo->offset = (bo->mem.start << PAGE_SHIFT) + 509 bdev->man[bo->mem.mem_type].gpu_offset; 510 bo->cur_placement = bo->mem.placement; 511 } else 512 bo->offset = 0; 513 514 return 0; 515 516 out_err: 517 new_man = &bdev->man[bo->mem.mem_type]; 518 if ((new_man->flags & TTM_MEMTYPE_FLAG_FIXED) && bo->ttm) { 519 ttm_tt_unbind(bo->ttm); 520 ttm_tt_destroy(bo->ttm); 521 bo->ttm = NULL; 522 } 523 524 return ret; 525 } 526 527 /** 528 * Call bo::reserved. 529 * Will release GPU memory type usage on destruction. 530 * This is the place to put in driver specific hooks to release 531 * driver private resources. 532 * Will release the bo::reserved lock. 533 */ 534 535 static void ttm_bo_cleanup_memtype_use(struct ttm_buffer_object *bo) 536 { 537 if (bo->bdev->driver->move_notify) 538 bo->bdev->driver->move_notify(bo, NULL); 539 540 if (bo->ttm) { 541 ttm_tt_unbind(bo->ttm); 542 ttm_tt_destroy(bo->ttm); 543 bo->ttm = NULL; 544 } 545 ttm_bo_mem_put(bo, &bo->mem); 546 547 atomic_set(&bo->reserved, 0); 548 wake_up_all(&bo->event_queue); 549 550 /* 551 * Since the final reference to this bo may not be dropped by 552 * the current task we have to put a memory barrier here to make 553 * sure the changes done in this function are always visible. 554 * 555 * This function only needs protection against the final kref_put. 556 */ 557 smp_mb__before_atomic_dec(); 558 } 559 560 static void ttm_bo_cleanup_refs_or_queue(struct ttm_buffer_object *bo) 561 { 562 struct ttm_bo_device *bdev = bo->bdev; 563 struct ttm_bo_global *glob = bo->glob; 564 struct ttm_bo_driver *driver = bdev->driver; 565 void *sync_obj = NULL; 566 int put_count; 567 int ret; 568 569 spin_lock(&glob->lru_lock); 570 ret = ttm_bo_reserve_nolru(bo, false, true, false, 0); 571 572 spin_lock(&bdev->fence_lock); 573 (void) ttm_bo_wait(bo, false, false, true); 574 if (!ret && !bo->sync_obj) { 575 spin_unlock(&bdev->fence_lock); 576 put_count = ttm_bo_del_from_lru(bo); 577 578 spin_unlock(&glob->lru_lock); 579 ttm_bo_cleanup_memtype_use(bo); 580 581 ttm_bo_list_ref_sub(bo, put_count, true); 582 583 return; 584 } 585 if (bo->sync_obj) 586 sync_obj = driver->sync_obj_ref(bo->sync_obj); 587 spin_unlock(&bdev->fence_lock); 588 589 if (!ret) { 590 atomic_set(&bo->reserved, 0); 591 wake_up_all(&bo->event_queue); 592 } 593 594 kref_get(&bo->list_kref); 595 list_add_tail(&bo->ddestroy, &bdev->ddestroy); 596 spin_unlock(&glob->lru_lock); 597 598 if (sync_obj) { 599 driver->sync_obj_flush(sync_obj); 600 driver->sync_obj_unref(&sync_obj); 601 } 602 schedule_delayed_work(&bdev->wq, 603 ((HZ / 100) < 1) ? 1 : HZ / 100); 604 } 605 606 /** 607 * function ttm_bo_cleanup_refs_and_unlock 608 * If bo idle, remove from delayed- and lru lists, and unref. 609 * If not idle, do nothing. 610 * 611 * Must be called with lru_lock and reservation held, this function 612 * will drop both before returning. 613 * 614 * @interruptible Any sleeps should occur interruptibly. 615 * @no_wait_gpu Never wait for gpu. Return -EBUSY instead. 616 */ 617 618 static int ttm_bo_cleanup_refs_and_unlock(struct ttm_buffer_object *bo, 619 bool interruptible, 620 bool no_wait_gpu) 621 { 622 struct ttm_bo_device *bdev = bo->bdev; 623 struct ttm_bo_driver *driver = bdev->driver; 624 struct ttm_bo_global *glob = bo->glob; 625 int put_count; 626 int ret; 627 628 spin_lock(&bdev->fence_lock); 629 ret = ttm_bo_wait(bo, false, false, true); 630 631 if (ret && !no_wait_gpu) { 632 void *sync_obj; 633 634 /* 635 * Take a reference to the fence and unreserve, 636 * at this point the buffer should be dead, so 637 * no new sync objects can be attached. 638 */ 639 sync_obj = driver->sync_obj_ref(bo->sync_obj); 640 spin_unlock(&bdev->fence_lock); 641 642 atomic_set(&bo->reserved, 0); 643 wake_up_all(&bo->event_queue); 644 spin_unlock(&glob->lru_lock); 645 646 ret = driver->sync_obj_wait(sync_obj, false, interruptible); 647 driver->sync_obj_unref(&sync_obj); 648 if (ret) 649 return ret; 650 651 /* 652 * remove sync_obj with ttm_bo_wait, the wait should be 653 * finished, and no new wait object should have been added. 654 */ 655 spin_lock(&bdev->fence_lock); 656 ret = ttm_bo_wait(bo, false, false, true); 657 WARN_ON(ret); 658 spin_unlock(&bdev->fence_lock); 659 if (ret) 660 return ret; 661 662 spin_lock(&glob->lru_lock); 663 ret = ttm_bo_reserve_nolru(bo, false, true, false, 0); 664 665 /* 666 * We raced, and lost, someone else holds the reservation now, 667 * and is probably busy in ttm_bo_cleanup_memtype_use. 668 * 669 * Even if it's not the case, because we finished waiting any 670 * delayed destruction would succeed, so just return success 671 * here. 672 */ 673 if (ret) { 674 spin_unlock(&glob->lru_lock); 675 return 0; 676 } 677 } else 678 spin_unlock(&bdev->fence_lock); 679 680 if (ret || unlikely(list_empty(&bo->ddestroy))) { 681 atomic_set(&bo->reserved, 0); 682 wake_up_all(&bo->event_queue); 683 spin_unlock(&glob->lru_lock); 684 return ret; 685 } 686 687 put_count = ttm_bo_del_from_lru(bo); 688 list_del_init(&bo->ddestroy); 689 ++put_count; 690 691 spin_unlock(&glob->lru_lock); 692 ttm_bo_cleanup_memtype_use(bo); 693 694 ttm_bo_list_ref_sub(bo, put_count, true); 695 696 return 0; 697 } 698 699 /** 700 * Traverse the delayed list, and call ttm_bo_cleanup_refs on all 701 * encountered buffers. 702 */ 703 704 static int ttm_bo_delayed_delete(struct ttm_bo_device *bdev, bool remove_all) 705 { 706 struct ttm_bo_global *glob = bdev->glob; 707 struct ttm_buffer_object *entry = NULL; 708 int ret = 0; 709 710 spin_lock(&glob->lru_lock); 711 if (list_empty(&bdev->ddestroy)) 712 goto out_unlock; 713 714 entry = list_first_entry(&bdev->ddestroy, 715 struct ttm_buffer_object, ddestroy); 716 kref_get(&entry->list_kref); 717 718 for (;;) { 719 struct ttm_buffer_object *nentry = NULL; 720 721 if (entry->ddestroy.next != &bdev->ddestroy) { 722 nentry = list_first_entry(&entry->ddestroy, 723 struct ttm_buffer_object, ddestroy); 724 kref_get(&nentry->list_kref); 725 } 726 727 ret = ttm_bo_reserve_nolru(entry, false, true, false, 0); 728 if (remove_all && ret) { 729 spin_unlock(&glob->lru_lock); 730 ret = ttm_bo_reserve_nolru(entry, false, false, 731 false, 0); 732 spin_lock(&glob->lru_lock); 733 } 734 735 if (!ret) 736 ret = ttm_bo_cleanup_refs_and_unlock(entry, false, 737 !remove_all); 738 else 739 spin_unlock(&glob->lru_lock); 740 741 kref_put(&entry->list_kref, ttm_bo_release_list); 742 entry = nentry; 743 744 if (ret || !entry) 745 goto out; 746 747 spin_lock(&glob->lru_lock); 748 if (list_empty(&entry->ddestroy)) 749 break; 750 } 751 752 out_unlock: 753 spin_unlock(&glob->lru_lock); 754 out: 755 if (entry) 756 kref_put(&entry->list_kref, ttm_bo_release_list); 757 return ret; 758 } 759 760 static void ttm_bo_delayed_workqueue(struct work_struct *work) 761 { 762 struct ttm_bo_device *bdev = 763 container_of(work, struct ttm_bo_device, wq.work); 764 765 if (ttm_bo_delayed_delete(bdev, false)) { 766 schedule_delayed_work(&bdev->wq, 767 ((HZ / 100) < 1) ? 1 : HZ / 100); 768 } 769 } 770 771 static void ttm_bo_release(struct kref *kref) 772 { 773 struct ttm_buffer_object *bo = 774 container_of(kref, struct ttm_buffer_object, kref); 775 struct ttm_bo_device *bdev = bo->bdev; 776 struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type]; 777 778 write_lock(&bdev->vm_lock); 779 if (likely(bo->vm_node != NULL)) { 780 rb_erase(&bo->vm_rb, &bdev->addr_space_rb); 781 drm_mm_put_block(bo->vm_node); 782 bo->vm_node = NULL; 783 } 784 write_unlock(&bdev->vm_lock); 785 ttm_mem_io_lock(man, false); 786 ttm_mem_io_free_vm(bo); 787 ttm_mem_io_unlock(man); 788 ttm_bo_cleanup_refs_or_queue(bo); 789 kref_put(&bo->list_kref, ttm_bo_release_list); 790 } 791 792 void ttm_bo_unref(struct ttm_buffer_object **p_bo) 793 { 794 struct ttm_buffer_object *bo = *p_bo; 795 796 *p_bo = NULL; 797 kref_put(&bo->kref, ttm_bo_release); 798 } 799 EXPORT_SYMBOL(ttm_bo_unref); 800 801 int ttm_bo_lock_delayed_workqueue(struct ttm_bo_device *bdev) 802 { 803 return cancel_delayed_work_sync(&bdev->wq); 804 } 805 EXPORT_SYMBOL(ttm_bo_lock_delayed_workqueue); 806 807 void ttm_bo_unlock_delayed_workqueue(struct ttm_bo_device *bdev, int resched) 808 { 809 if (resched) 810 schedule_delayed_work(&bdev->wq, 811 ((HZ / 100) < 1) ? 1 : HZ / 100); 812 } 813 EXPORT_SYMBOL(ttm_bo_unlock_delayed_workqueue); 814 815 static int ttm_bo_evict(struct ttm_buffer_object *bo, bool interruptible, 816 bool no_wait_gpu) 817 { 818 struct ttm_bo_device *bdev = bo->bdev; 819 struct ttm_mem_reg evict_mem; 820 struct ttm_placement placement; 821 int ret = 0; 822 823 spin_lock(&bdev->fence_lock); 824 ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu); 825 spin_unlock(&bdev->fence_lock); 826 827 if (unlikely(ret != 0)) { 828 if (ret != -ERESTARTSYS) { 829 pr_err("Failed to expire sync object before buffer eviction\n"); 830 } 831 goto out; 832 } 833 834 BUG_ON(!ttm_bo_is_reserved(bo)); 835 836 evict_mem = bo->mem; 837 evict_mem.mm_node = NULL; 838 evict_mem.bus.io_reserved_vm = false; 839 evict_mem.bus.io_reserved_count = 0; 840 841 placement.fpfn = 0; 842 placement.lpfn = 0; 843 placement.num_placement = 0; 844 placement.num_busy_placement = 0; 845 bdev->driver->evict_flags(bo, &placement); 846 ret = ttm_bo_mem_space(bo, &placement, &evict_mem, interruptible, 847 no_wait_gpu); 848 if (ret) { 849 if (ret != -ERESTARTSYS) { 850 pr_err("Failed to find memory space for buffer 0x%p eviction\n", 851 bo); 852 ttm_bo_mem_space_debug(bo, &placement); 853 } 854 goto out; 855 } 856 857 ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, interruptible, 858 no_wait_gpu); 859 if (ret) { 860 if (ret != -ERESTARTSYS) 861 pr_err("Buffer eviction failed\n"); 862 ttm_bo_mem_put(bo, &evict_mem); 863 goto out; 864 } 865 bo->evicted = true; 866 out: 867 return ret; 868 } 869 870 static int ttm_mem_evict_first(struct ttm_bo_device *bdev, 871 uint32_t mem_type, 872 bool interruptible, 873 bool no_wait_gpu) 874 { 875 struct ttm_bo_global *glob = bdev->glob; 876 struct ttm_mem_type_manager *man = &bdev->man[mem_type]; 877 struct ttm_buffer_object *bo; 878 int ret = -EBUSY, put_count; 879 880 spin_lock(&glob->lru_lock); 881 list_for_each_entry(bo, &man->lru, lru) { 882 ret = ttm_bo_reserve_nolru(bo, false, true, false, 0); 883 if (!ret) 884 break; 885 } 886 887 if (ret) { 888 spin_unlock(&glob->lru_lock); 889 return ret; 890 } 891 892 kref_get(&bo->list_kref); 893 894 if (!list_empty(&bo->ddestroy)) { 895 ret = ttm_bo_cleanup_refs_and_unlock(bo, interruptible, 896 no_wait_gpu); 897 kref_put(&bo->list_kref, ttm_bo_release_list); 898 return ret; 899 } 900 901 put_count = ttm_bo_del_from_lru(bo); 902 spin_unlock(&glob->lru_lock); 903 904 BUG_ON(ret != 0); 905 906 ttm_bo_list_ref_sub(bo, put_count, true); 907 908 ret = ttm_bo_evict(bo, interruptible, no_wait_gpu); 909 ttm_bo_unreserve(bo); 910 911 kref_put(&bo->list_kref, ttm_bo_release_list); 912 return ret; 913 } 914 915 void ttm_bo_mem_put(struct ttm_buffer_object *bo, struct ttm_mem_reg *mem) 916 { 917 struct ttm_mem_type_manager *man = &bo->bdev->man[mem->mem_type]; 918 919 if (mem->mm_node) 920 (*man->func->put_node)(man, mem); 921 } 922 EXPORT_SYMBOL(ttm_bo_mem_put); 923 924 /** 925 * Repeatedly evict memory from the LRU for @mem_type until we create enough 926 * space, or we've evicted everything and there isn't enough space. 927 */ 928 static int ttm_bo_mem_force_space(struct ttm_buffer_object *bo, 929 uint32_t mem_type, 930 struct ttm_placement *placement, 931 struct ttm_mem_reg *mem, 932 bool interruptible, 933 bool no_wait_gpu) 934 { 935 struct ttm_bo_device *bdev = bo->bdev; 936 struct ttm_mem_type_manager *man = &bdev->man[mem_type]; 937 int ret; 938 939 do { 940 ret = (*man->func->get_node)(man, bo, placement, mem); 941 if (unlikely(ret != 0)) 942 return ret; 943 if (mem->mm_node) 944 break; 945 ret = ttm_mem_evict_first(bdev, mem_type, 946 interruptible, no_wait_gpu); 947 if (unlikely(ret != 0)) 948 return ret; 949 } while (1); 950 if (mem->mm_node == NULL) 951 return -ENOMEM; 952 mem->mem_type = mem_type; 953 return 0; 954 } 955 956 static uint32_t ttm_bo_select_caching(struct ttm_mem_type_manager *man, 957 uint32_t cur_placement, 958 uint32_t proposed_placement) 959 { 960 uint32_t caching = proposed_placement & TTM_PL_MASK_CACHING; 961 uint32_t result = proposed_placement & ~TTM_PL_MASK_CACHING; 962 963 /** 964 * Keep current caching if possible. 965 */ 966 967 if ((cur_placement & caching) != 0) 968 result |= (cur_placement & caching); 969 else if ((man->default_caching & caching) != 0) 970 result |= man->default_caching; 971 else if ((TTM_PL_FLAG_CACHED & caching) != 0) 972 result |= TTM_PL_FLAG_CACHED; 973 else if ((TTM_PL_FLAG_WC & caching) != 0) 974 result |= TTM_PL_FLAG_WC; 975 else if ((TTM_PL_FLAG_UNCACHED & caching) != 0) 976 result |= TTM_PL_FLAG_UNCACHED; 977 978 return result; 979 } 980 981 static bool ttm_bo_mt_compatible(struct ttm_mem_type_manager *man, 982 uint32_t mem_type, 983 uint32_t proposed_placement, 984 uint32_t *masked_placement) 985 { 986 uint32_t cur_flags = ttm_bo_type_flags(mem_type); 987 988 if ((cur_flags & proposed_placement & TTM_PL_MASK_MEM) == 0) 989 return false; 990 991 if ((proposed_placement & man->available_caching) == 0) 992 return false; 993 994 cur_flags |= (proposed_placement & man->available_caching); 995 996 *masked_placement = cur_flags; 997 return true; 998 } 999 1000 /** 1001 * Creates space for memory region @mem according to its type. 1002 * 1003 * This function first searches for free space in compatible memory types in 1004 * the priority order defined by the driver. If free space isn't found, then 1005 * ttm_bo_mem_force_space is attempted in priority order to evict and find 1006 * space. 1007 */ 1008 int ttm_bo_mem_space(struct ttm_buffer_object *bo, 1009 struct ttm_placement *placement, 1010 struct ttm_mem_reg *mem, 1011 bool interruptible, 1012 bool no_wait_gpu) 1013 { 1014 struct ttm_bo_device *bdev = bo->bdev; 1015 struct ttm_mem_type_manager *man; 1016 uint32_t mem_type = TTM_PL_SYSTEM; 1017 uint32_t cur_flags = 0; 1018 bool type_found = false; 1019 bool type_ok = false; 1020 bool has_erestartsys = false; 1021 int i, ret; 1022 1023 mem->mm_node = NULL; 1024 for (i = 0; i < placement->num_placement; ++i) { 1025 ret = ttm_mem_type_from_flags(placement->placement[i], 1026 &mem_type); 1027 if (ret) 1028 return ret; 1029 man = &bdev->man[mem_type]; 1030 1031 type_ok = ttm_bo_mt_compatible(man, 1032 mem_type, 1033 placement->placement[i], 1034 &cur_flags); 1035 1036 if (!type_ok) 1037 continue; 1038 1039 cur_flags = ttm_bo_select_caching(man, bo->mem.placement, 1040 cur_flags); 1041 /* 1042 * Use the access and other non-mapping-related flag bits from 1043 * the memory placement flags to the current flags 1044 */ 1045 ttm_flag_masked(&cur_flags, placement->placement[i], 1046 ~TTM_PL_MASK_MEMTYPE); 1047 1048 if (mem_type == TTM_PL_SYSTEM) 1049 break; 1050 1051 if (man->has_type && man->use_type) { 1052 type_found = true; 1053 ret = (*man->func->get_node)(man, bo, placement, mem); 1054 if (unlikely(ret)) 1055 return ret; 1056 } 1057 if (mem->mm_node) 1058 break; 1059 } 1060 1061 if ((type_ok && (mem_type == TTM_PL_SYSTEM)) || mem->mm_node) { 1062 mem->mem_type = mem_type; 1063 mem->placement = cur_flags; 1064 return 0; 1065 } 1066 1067 if (!type_found) 1068 return -EINVAL; 1069 1070 for (i = 0; i < placement->num_busy_placement; ++i) { 1071 ret = ttm_mem_type_from_flags(placement->busy_placement[i], 1072 &mem_type); 1073 if (ret) 1074 return ret; 1075 man = &bdev->man[mem_type]; 1076 if (!man->has_type) 1077 continue; 1078 if (!ttm_bo_mt_compatible(man, 1079 mem_type, 1080 placement->busy_placement[i], 1081 &cur_flags)) 1082 continue; 1083 1084 cur_flags = ttm_bo_select_caching(man, bo->mem.placement, 1085 cur_flags); 1086 /* 1087 * Use the access and other non-mapping-related flag bits from 1088 * the memory placement flags to the current flags 1089 */ 1090 ttm_flag_masked(&cur_flags, placement->busy_placement[i], 1091 ~TTM_PL_MASK_MEMTYPE); 1092 1093 1094 if (mem_type == TTM_PL_SYSTEM) { 1095 mem->mem_type = mem_type; 1096 mem->placement = cur_flags; 1097 mem->mm_node = NULL; 1098 return 0; 1099 } 1100 1101 ret = ttm_bo_mem_force_space(bo, mem_type, placement, mem, 1102 interruptible, no_wait_gpu); 1103 if (ret == 0 && mem->mm_node) { 1104 mem->placement = cur_flags; 1105 return 0; 1106 } 1107 if (ret == -ERESTARTSYS) 1108 has_erestartsys = true; 1109 } 1110 ret = (has_erestartsys) ? -ERESTARTSYS : -ENOMEM; 1111 return ret; 1112 } 1113 EXPORT_SYMBOL(ttm_bo_mem_space); 1114 1115 int ttm_bo_move_buffer(struct ttm_buffer_object *bo, 1116 struct ttm_placement *placement, 1117 bool interruptible, 1118 bool no_wait_gpu) 1119 { 1120 int ret = 0; 1121 struct ttm_mem_reg mem; 1122 struct ttm_bo_device *bdev = bo->bdev; 1123 1124 BUG_ON(!ttm_bo_is_reserved(bo)); 1125 1126 /* 1127 * FIXME: It's possible to pipeline buffer moves. 1128 * Have the driver move function wait for idle when necessary, 1129 * instead of doing it here. 1130 */ 1131 spin_lock(&bdev->fence_lock); 1132 ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu); 1133 spin_unlock(&bdev->fence_lock); 1134 if (ret) 1135 return ret; 1136 mem.num_pages = bo->num_pages; 1137 mem.size = mem.num_pages << PAGE_SHIFT; 1138 mem.page_alignment = bo->mem.page_alignment; 1139 mem.bus.io_reserved_vm = false; 1140 mem.bus.io_reserved_count = 0; 1141 /* 1142 * Determine where to move the buffer. 1143 */ 1144 ret = ttm_bo_mem_space(bo, placement, &mem, 1145 interruptible, no_wait_gpu); 1146 if (ret) 1147 goto out_unlock; 1148 ret = ttm_bo_handle_move_mem(bo, &mem, false, 1149 interruptible, no_wait_gpu); 1150 out_unlock: 1151 if (ret && mem.mm_node) 1152 ttm_bo_mem_put(bo, &mem); 1153 return ret; 1154 } 1155 1156 static int ttm_bo_mem_compat(struct ttm_placement *placement, 1157 struct ttm_mem_reg *mem) 1158 { 1159 int i; 1160 1161 if (mem->mm_node && placement->lpfn != 0 && 1162 (mem->start < placement->fpfn || 1163 mem->start + mem->num_pages > placement->lpfn)) 1164 return -1; 1165 1166 for (i = 0; i < placement->num_placement; i++) { 1167 if ((placement->placement[i] & mem->placement & 1168 TTM_PL_MASK_CACHING) && 1169 (placement->placement[i] & mem->placement & 1170 TTM_PL_MASK_MEM)) 1171 return i; 1172 } 1173 return -1; 1174 } 1175 1176 int ttm_bo_validate(struct ttm_buffer_object *bo, 1177 struct ttm_placement *placement, 1178 bool interruptible, 1179 bool no_wait_gpu) 1180 { 1181 int ret; 1182 1183 BUG_ON(!ttm_bo_is_reserved(bo)); 1184 /* Check that range is valid */ 1185 if (placement->lpfn || placement->fpfn) 1186 if (placement->fpfn > placement->lpfn || 1187 (placement->lpfn - placement->fpfn) < bo->num_pages) 1188 return -EINVAL; 1189 /* 1190 * Check whether we need to move buffer. 1191 */ 1192 ret = ttm_bo_mem_compat(placement, &bo->mem); 1193 if (ret < 0) { 1194 ret = ttm_bo_move_buffer(bo, placement, interruptible, 1195 no_wait_gpu); 1196 if (ret) 1197 return ret; 1198 } else { 1199 /* 1200 * Use the access and other non-mapping-related flag bits from 1201 * the compatible memory placement flags to the active flags 1202 */ 1203 ttm_flag_masked(&bo->mem.placement, placement->placement[ret], 1204 ~TTM_PL_MASK_MEMTYPE); 1205 } 1206 /* 1207 * We might need to add a TTM. 1208 */ 1209 if (bo->mem.mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) { 1210 ret = ttm_bo_add_ttm(bo, true); 1211 if (ret) 1212 return ret; 1213 } 1214 return 0; 1215 } 1216 EXPORT_SYMBOL(ttm_bo_validate); 1217 1218 int ttm_bo_check_placement(struct ttm_buffer_object *bo, 1219 struct ttm_placement *placement) 1220 { 1221 BUG_ON((placement->fpfn || placement->lpfn) && 1222 (bo->mem.num_pages > (placement->lpfn - placement->fpfn))); 1223 1224 return 0; 1225 } 1226 1227 int ttm_bo_init(struct ttm_bo_device *bdev, 1228 struct ttm_buffer_object *bo, 1229 unsigned long size, 1230 enum ttm_bo_type type, 1231 struct ttm_placement *placement, 1232 uint32_t page_alignment, 1233 bool interruptible, 1234 struct file *persistent_swap_storage, 1235 size_t acc_size, 1236 struct sg_table *sg, 1237 void (*destroy) (struct ttm_buffer_object *)) 1238 { 1239 int ret = 0; 1240 unsigned long num_pages; 1241 struct ttm_mem_global *mem_glob = bdev->glob->mem_glob; 1242 1243 ret = ttm_mem_global_alloc(mem_glob, acc_size, false, false); 1244 if (ret) { 1245 pr_err("Out of kernel memory\n"); 1246 if (destroy) 1247 (*destroy)(bo); 1248 else 1249 kfree(bo); 1250 return -ENOMEM; 1251 } 1252 1253 num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 1254 if (num_pages == 0) { 1255 pr_err("Illegal buffer object size\n"); 1256 if (destroy) 1257 (*destroy)(bo); 1258 else 1259 kfree(bo); 1260 ttm_mem_global_free(mem_glob, acc_size); 1261 return -EINVAL; 1262 } 1263 bo->destroy = destroy; 1264 1265 kref_init(&bo->kref); 1266 kref_init(&bo->list_kref); 1267 atomic_set(&bo->cpu_writers, 0); 1268 atomic_set(&bo->reserved, 1); 1269 init_waitqueue_head(&bo->event_queue); 1270 INIT_LIST_HEAD(&bo->lru); 1271 INIT_LIST_HEAD(&bo->ddestroy); 1272 INIT_LIST_HEAD(&bo->swap); 1273 INIT_LIST_HEAD(&bo->io_reserve_lru); 1274 bo->bdev = bdev; 1275 bo->glob = bdev->glob; 1276 bo->type = type; 1277 bo->num_pages = num_pages; 1278 bo->mem.size = num_pages << PAGE_SHIFT; 1279 bo->mem.mem_type = TTM_PL_SYSTEM; 1280 bo->mem.num_pages = bo->num_pages; 1281 bo->mem.mm_node = NULL; 1282 bo->mem.page_alignment = page_alignment; 1283 bo->mem.bus.io_reserved_vm = false; 1284 bo->mem.bus.io_reserved_count = 0; 1285 bo->priv_flags = 0; 1286 bo->mem.placement = (TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED); 1287 bo->seq_valid = false; 1288 bo->persistent_swap_storage = persistent_swap_storage; 1289 bo->acc_size = acc_size; 1290 bo->sg = sg; 1291 atomic_inc(&bo->glob->bo_count); 1292 1293 ret = ttm_bo_check_placement(bo, placement); 1294 if (unlikely(ret != 0)) 1295 goto out_err; 1296 1297 /* 1298 * For ttm_bo_type_device buffers, allocate 1299 * address space from the device. 1300 */ 1301 if (bo->type == ttm_bo_type_device || 1302 bo->type == ttm_bo_type_sg) { 1303 ret = ttm_bo_setup_vm(bo); 1304 if (ret) 1305 goto out_err; 1306 } 1307 1308 ret = ttm_bo_validate(bo, placement, interruptible, false); 1309 if (ret) 1310 goto out_err; 1311 1312 ttm_bo_unreserve(bo); 1313 return 0; 1314 1315 out_err: 1316 ttm_bo_unreserve(bo); 1317 ttm_bo_unref(&bo); 1318 1319 return ret; 1320 } 1321 EXPORT_SYMBOL(ttm_bo_init); 1322 1323 size_t ttm_bo_acc_size(struct ttm_bo_device *bdev, 1324 unsigned long bo_size, 1325 unsigned struct_size) 1326 { 1327 unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT; 1328 size_t size = 0; 1329 1330 size += ttm_round_pot(struct_size); 1331 size += PAGE_ALIGN(npages * sizeof(void *)); 1332 size += ttm_round_pot(sizeof(struct ttm_tt)); 1333 return size; 1334 } 1335 EXPORT_SYMBOL(ttm_bo_acc_size); 1336 1337 size_t ttm_bo_dma_acc_size(struct ttm_bo_device *bdev, 1338 unsigned long bo_size, 1339 unsigned struct_size) 1340 { 1341 unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT; 1342 size_t size = 0; 1343 1344 size += ttm_round_pot(struct_size); 1345 size += PAGE_ALIGN(npages * sizeof(void *)); 1346 size += PAGE_ALIGN(npages * sizeof(dma_addr_t)); 1347 size += ttm_round_pot(sizeof(struct ttm_dma_tt)); 1348 return size; 1349 } 1350 EXPORT_SYMBOL(ttm_bo_dma_acc_size); 1351 1352 int ttm_bo_create(struct ttm_bo_device *bdev, 1353 unsigned long size, 1354 enum ttm_bo_type type, 1355 struct ttm_placement *placement, 1356 uint32_t page_alignment, 1357 bool interruptible, 1358 struct file *persistent_swap_storage, 1359 struct ttm_buffer_object **p_bo) 1360 { 1361 struct ttm_buffer_object *bo; 1362 size_t acc_size; 1363 int ret; 1364 1365 bo = kzalloc(sizeof(*bo), GFP_KERNEL); 1366 if (unlikely(bo == NULL)) 1367 return -ENOMEM; 1368 1369 acc_size = ttm_bo_acc_size(bdev, size, sizeof(struct ttm_buffer_object)); 1370 ret = ttm_bo_init(bdev, bo, size, type, placement, page_alignment, 1371 interruptible, persistent_swap_storage, acc_size, 1372 NULL, NULL); 1373 if (likely(ret == 0)) 1374 *p_bo = bo; 1375 1376 return ret; 1377 } 1378 EXPORT_SYMBOL(ttm_bo_create); 1379 1380 static int ttm_bo_force_list_clean(struct ttm_bo_device *bdev, 1381 unsigned mem_type, bool allow_errors) 1382 { 1383 struct ttm_mem_type_manager *man = &bdev->man[mem_type]; 1384 struct ttm_bo_global *glob = bdev->glob; 1385 int ret; 1386 1387 /* 1388 * Can't use standard list traversal since we're unlocking. 1389 */ 1390 1391 spin_lock(&glob->lru_lock); 1392 while (!list_empty(&man->lru)) { 1393 spin_unlock(&glob->lru_lock); 1394 ret = ttm_mem_evict_first(bdev, mem_type, false, false); 1395 if (ret) { 1396 if (allow_errors) { 1397 return ret; 1398 } else { 1399 pr_err("Cleanup eviction failed\n"); 1400 } 1401 } 1402 spin_lock(&glob->lru_lock); 1403 } 1404 spin_unlock(&glob->lru_lock); 1405 return 0; 1406 } 1407 1408 int ttm_bo_clean_mm(struct ttm_bo_device *bdev, unsigned mem_type) 1409 { 1410 struct ttm_mem_type_manager *man; 1411 int ret = -EINVAL; 1412 1413 if (mem_type >= TTM_NUM_MEM_TYPES) { 1414 pr_err("Illegal memory type %d\n", mem_type); 1415 return ret; 1416 } 1417 man = &bdev->man[mem_type]; 1418 1419 if (!man->has_type) { 1420 pr_err("Trying to take down uninitialized memory manager type %u\n", 1421 mem_type); 1422 return ret; 1423 } 1424 1425 man->use_type = false; 1426 man->has_type = false; 1427 1428 ret = 0; 1429 if (mem_type > 0) { 1430 ttm_bo_force_list_clean(bdev, mem_type, false); 1431 1432 ret = (*man->func->takedown)(man); 1433 } 1434 1435 return ret; 1436 } 1437 EXPORT_SYMBOL(ttm_bo_clean_mm); 1438 1439 int ttm_bo_evict_mm(struct ttm_bo_device *bdev, unsigned mem_type) 1440 { 1441 struct ttm_mem_type_manager *man = &bdev->man[mem_type]; 1442 1443 if (mem_type == 0 || mem_type >= TTM_NUM_MEM_TYPES) { 1444 pr_err("Illegal memory manager memory type %u\n", mem_type); 1445 return -EINVAL; 1446 } 1447 1448 if (!man->has_type) { 1449 pr_err("Memory type %u has not been initialized\n", mem_type); 1450 return 0; 1451 } 1452 1453 return ttm_bo_force_list_clean(bdev, mem_type, true); 1454 } 1455 EXPORT_SYMBOL(ttm_bo_evict_mm); 1456 1457 int ttm_bo_init_mm(struct ttm_bo_device *bdev, unsigned type, 1458 unsigned long p_size) 1459 { 1460 int ret = -EINVAL; 1461 struct ttm_mem_type_manager *man; 1462 1463 BUG_ON(type >= TTM_NUM_MEM_TYPES); 1464 man = &bdev->man[type]; 1465 BUG_ON(man->has_type); 1466 man->io_reserve_fastpath = true; 1467 man->use_io_reserve_lru = false; 1468 mutex_init(&man->io_reserve_mutex); 1469 INIT_LIST_HEAD(&man->io_reserve_lru); 1470 1471 ret = bdev->driver->init_mem_type(bdev, type, man); 1472 if (ret) 1473 return ret; 1474 man->bdev = bdev; 1475 1476 ret = 0; 1477 if (type != TTM_PL_SYSTEM) { 1478 ret = (*man->func->init)(man, p_size); 1479 if (ret) 1480 return ret; 1481 } 1482 man->has_type = true; 1483 man->use_type = true; 1484 man->size = p_size; 1485 1486 INIT_LIST_HEAD(&man->lru); 1487 1488 return 0; 1489 } 1490 EXPORT_SYMBOL(ttm_bo_init_mm); 1491 1492 static void ttm_bo_global_kobj_release(struct kobject *kobj) 1493 { 1494 struct ttm_bo_global *glob = 1495 container_of(kobj, struct ttm_bo_global, kobj); 1496 1497 ttm_mem_unregister_shrink(glob->mem_glob, &glob->shrink); 1498 __free_page(glob->dummy_read_page); 1499 kfree(glob); 1500 } 1501 1502 void ttm_bo_global_release(struct drm_global_reference *ref) 1503 { 1504 struct ttm_bo_global *glob = ref->object; 1505 1506 kobject_del(&glob->kobj); 1507 kobject_put(&glob->kobj); 1508 } 1509 EXPORT_SYMBOL(ttm_bo_global_release); 1510 1511 int ttm_bo_global_init(struct drm_global_reference *ref) 1512 { 1513 struct ttm_bo_global_ref *bo_ref = 1514 container_of(ref, struct ttm_bo_global_ref, ref); 1515 struct ttm_bo_global *glob = ref->object; 1516 int ret; 1517 1518 mutex_init(&glob->device_list_mutex); 1519 spin_lock_init(&glob->lru_lock); 1520 glob->mem_glob = bo_ref->mem_glob; 1521 glob->dummy_read_page = alloc_page(__GFP_ZERO | GFP_DMA32); 1522 1523 if (unlikely(glob->dummy_read_page == NULL)) { 1524 ret = -ENOMEM; 1525 goto out_no_drp; 1526 } 1527 1528 INIT_LIST_HEAD(&glob->swap_lru); 1529 INIT_LIST_HEAD(&glob->device_list); 1530 1531 ttm_mem_init_shrink(&glob->shrink, ttm_bo_swapout); 1532 ret = ttm_mem_register_shrink(glob->mem_glob, &glob->shrink); 1533 if (unlikely(ret != 0)) { 1534 pr_err("Could not register buffer object swapout\n"); 1535 goto out_no_shrink; 1536 } 1537 1538 atomic_set(&glob->bo_count, 0); 1539 1540 ret = kobject_init_and_add( 1541 &glob->kobj, &ttm_bo_glob_kobj_type, ttm_get_kobj(), "buffer_objects"); 1542 if (unlikely(ret != 0)) 1543 kobject_put(&glob->kobj); 1544 return ret; 1545 out_no_shrink: 1546 __free_page(glob->dummy_read_page); 1547 out_no_drp: 1548 kfree(glob); 1549 return ret; 1550 } 1551 EXPORT_SYMBOL(ttm_bo_global_init); 1552 1553 1554 int ttm_bo_device_release(struct ttm_bo_device *bdev) 1555 { 1556 int ret = 0; 1557 unsigned i = TTM_NUM_MEM_TYPES; 1558 struct ttm_mem_type_manager *man; 1559 struct ttm_bo_global *glob = bdev->glob; 1560 1561 while (i--) { 1562 man = &bdev->man[i]; 1563 if (man->has_type) { 1564 man->use_type = false; 1565 if ((i != TTM_PL_SYSTEM) && ttm_bo_clean_mm(bdev, i)) { 1566 ret = -EBUSY; 1567 pr_err("DRM memory manager type %d is not clean\n", 1568 i); 1569 } 1570 man->has_type = false; 1571 } 1572 } 1573 1574 mutex_lock(&glob->device_list_mutex); 1575 list_del(&bdev->device_list); 1576 mutex_unlock(&glob->device_list_mutex); 1577 1578 cancel_delayed_work_sync(&bdev->wq); 1579 1580 while (ttm_bo_delayed_delete(bdev, true)) 1581 ; 1582 1583 spin_lock(&glob->lru_lock); 1584 if (list_empty(&bdev->ddestroy)) 1585 TTM_DEBUG("Delayed destroy list was clean\n"); 1586 1587 if (list_empty(&bdev->man[0].lru)) 1588 TTM_DEBUG("Swap list was clean\n"); 1589 spin_unlock(&glob->lru_lock); 1590 1591 BUG_ON(!drm_mm_clean(&bdev->addr_space_mm)); 1592 write_lock(&bdev->vm_lock); 1593 drm_mm_takedown(&bdev->addr_space_mm); 1594 write_unlock(&bdev->vm_lock); 1595 1596 return ret; 1597 } 1598 EXPORT_SYMBOL(ttm_bo_device_release); 1599 1600 int ttm_bo_device_init(struct ttm_bo_device *bdev, 1601 struct ttm_bo_global *glob, 1602 struct ttm_bo_driver *driver, 1603 uint64_t file_page_offset, 1604 bool need_dma32) 1605 { 1606 int ret = -EINVAL; 1607 1608 rwlock_init(&bdev->vm_lock); 1609 bdev->driver = driver; 1610 1611 memset(bdev->man, 0, sizeof(bdev->man)); 1612 1613 /* 1614 * Initialize the system memory buffer type. 1615 * Other types need to be driver / IOCTL initialized. 1616 */ 1617 ret = ttm_bo_init_mm(bdev, TTM_PL_SYSTEM, 0); 1618 if (unlikely(ret != 0)) 1619 goto out_no_sys; 1620 1621 bdev->addr_space_rb = RB_ROOT; 1622 ret = drm_mm_init(&bdev->addr_space_mm, file_page_offset, 0x10000000); 1623 if (unlikely(ret != 0)) 1624 goto out_no_addr_mm; 1625 1626 INIT_DELAYED_WORK(&bdev->wq, ttm_bo_delayed_workqueue); 1627 INIT_LIST_HEAD(&bdev->ddestroy); 1628 bdev->dev_mapping = NULL; 1629 bdev->glob = glob; 1630 bdev->need_dma32 = need_dma32; 1631 bdev->val_seq = 0; 1632 spin_lock_init(&bdev->fence_lock); 1633 mutex_lock(&glob->device_list_mutex); 1634 list_add_tail(&bdev->device_list, &glob->device_list); 1635 mutex_unlock(&glob->device_list_mutex); 1636 1637 return 0; 1638 out_no_addr_mm: 1639 ttm_bo_clean_mm(bdev, 0); 1640 out_no_sys: 1641 return ret; 1642 } 1643 EXPORT_SYMBOL(ttm_bo_device_init); 1644 1645 /* 1646 * buffer object vm functions. 1647 */ 1648 1649 bool ttm_mem_reg_is_pci(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem) 1650 { 1651 struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type]; 1652 1653 if (!(man->flags & TTM_MEMTYPE_FLAG_FIXED)) { 1654 if (mem->mem_type == TTM_PL_SYSTEM) 1655 return false; 1656 1657 if (man->flags & TTM_MEMTYPE_FLAG_CMA) 1658 return false; 1659 1660 if (mem->placement & TTM_PL_FLAG_CACHED) 1661 return false; 1662 } 1663 return true; 1664 } 1665 1666 void ttm_bo_unmap_virtual_locked(struct ttm_buffer_object *bo) 1667 { 1668 struct ttm_bo_device *bdev = bo->bdev; 1669 loff_t offset = (loff_t) bo->addr_space_offset; 1670 loff_t holelen = ((loff_t) bo->mem.num_pages) << PAGE_SHIFT; 1671 1672 if (!bdev->dev_mapping) 1673 return; 1674 unmap_mapping_range(bdev->dev_mapping, offset, holelen, 1); 1675 ttm_mem_io_free_vm(bo); 1676 } 1677 1678 void ttm_bo_unmap_virtual(struct ttm_buffer_object *bo) 1679 { 1680 struct ttm_bo_device *bdev = bo->bdev; 1681 struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type]; 1682 1683 ttm_mem_io_lock(man, false); 1684 ttm_bo_unmap_virtual_locked(bo); 1685 ttm_mem_io_unlock(man); 1686 } 1687 1688 1689 EXPORT_SYMBOL(ttm_bo_unmap_virtual); 1690 1691 static void ttm_bo_vm_insert_rb(struct ttm_buffer_object *bo) 1692 { 1693 struct ttm_bo_device *bdev = bo->bdev; 1694 struct rb_node **cur = &bdev->addr_space_rb.rb_node; 1695 struct rb_node *parent = NULL; 1696 struct ttm_buffer_object *cur_bo; 1697 unsigned long offset = bo->vm_node->start; 1698 unsigned long cur_offset; 1699 1700 while (*cur) { 1701 parent = *cur; 1702 cur_bo = rb_entry(parent, struct ttm_buffer_object, vm_rb); 1703 cur_offset = cur_bo->vm_node->start; 1704 if (offset < cur_offset) 1705 cur = &parent->rb_left; 1706 else if (offset > cur_offset) 1707 cur = &parent->rb_right; 1708 else 1709 BUG(); 1710 } 1711 1712 rb_link_node(&bo->vm_rb, parent, cur); 1713 rb_insert_color(&bo->vm_rb, &bdev->addr_space_rb); 1714 } 1715 1716 /** 1717 * ttm_bo_setup_vm: 1718 * 1719 * @bo: the buffer to allocate address space for 1720 * 1721 * Allocate address space in the drm device so that applications 1722 * can mmap the buffer and access the contents. This only 1723 * applies to ttm_bo_type_device objects as others are not 1724 * placed in the drm device address space. 1725 */ 1726 1727 static int ttm_bo_setup_vm(struct ttm_buffer_object *bo) 1728 { 1729 struct ttm_bo_device *bdev = bo->bdev; 1730 int ret; 1731 1732 retry_pre_get: 1733 ret = drm_mm_pre_get(&bdev->addr_space_mm); 1734 if (unlikely(ret != 0)) 1735 return ret; 1736 1737 write_lock(&bdev->vm_lock); 1738 bo->vm_node = drm_mm_search_free(&bdev->addr_space_mm, 1739 bo->mem.num_pages, 0, 0); 1740 1741 if (unlikely(bo->vm_node == NULL)) { 1742 ret = -ENOMEM; 1743 goto out_unlock; 1744 } 1745 1746 bo->vm_node = drm_mm_get_block_atomic(bo->vm_node, 1747 bo->mem.num_pages, 0); 1748 1749 if (unlikely(bo->vm_node == NULL)) { 1750 write_unlock(&bdev->vm_lock); 1751 goto retry_pre_get; 1752 } 1753 1754 ttm_bo_vm_insert_rb(bo); 1755 write_unlock(&bdev->vm_lock); 1756 bo->addr_space_offset = ((uint64_t) bo->vm_node->start) << PAGE_SHIFT; 1757 1758 return 0; 1759 out_unlock: 1760 write_unlock(&bdev->vm_lock); 1761 return ret; 1762 } 1763 1764 int ttm_bo_wait(struct ttm_buffer_object *bo, 1765 bool lazy, bool interruptible, bool no_wait) 1766 { 1767 struct ttm_bo_driver *driver = bo->bdev->driver; 1768 struct ttm_bo_device *bdev = bo->bdev; 1769 void *sync_obj; 1770 int ret = 0; 1771 1772 if (likely(bo->sync_obj == NULL)) 1773 return 0; 1774 1775 while (bo->sync_obj) { 1776 1777 if (driver->sync_obj_signaled(bo->sync_obj)) { 1778 void *tmp_obj = bo->sync_obj; 1779 bo->sync_obj = NULL; 1780 clear_bit(TTM_BO_PRIV_FLAG_MOVING, &bo->priv_flags); 1781 spin_unlock(&bdev->fence_lock); 1782 driver->sync_obj_unref(&tmp_obj); 1783 spin_lock(&bdev->fence_lock); 1784 continue; 1785 } 1786 1787 if (no_wait) 1788 return -EBUSY; 1789 1790 sync_obj = driver->sync_obj_ref(bo->sync_obj); 1791 spin_unlock(&bdev->fence_lock); 1792 ret = driver->sync_obj_wait(sync_obj, 1793 lazy, interruptible); 1794 if (unlikely(ret != 0)) { 1795 driver->sync_obj_unref(&sync_obj); 1796 spin_lock(&bdev->fence_lock); 1797 return ret; 1798 } 1799 spin_lock(&bdev->fence_lock); 1800 if (likely(bo->sync_obj == sync_obj)) { 1801 void *tmp_obj = bo->sync_obj; 1802 bo->sync_obj = NULL; 1803 clear_bit(TTM_BO_PRIV_FLAG_MOVING, 1804 &bo->priv_flags); 1805 spin_unlock(&bdev->fence_lock); 1806 driver->sync_obj_unref(&sync_obj); 1807 driver->sync_obj_unref(&tmp_obj); 1808 spin_lock(&bdev->fence_lock); 1809 } else { 1810 spin_unlock(&bdev->fence_lock); 1811 driver->sync_obj_unref(&sync_obj); 1812 spin_lock(&bdev->fence_lock); 1813 } 1814 } 1815 return 0; 1816 } 1817 EXPORT_SYMBOL(ttm_bo_wait); 1818 1819 int ttm_bo_synccpu_write_grab(struct ttm_buffer_object *bo, bool no_wait) 1820 { 1821 struct ttm_bo_device *bdev = bo->bdev; 1822 int ret = 0; 1823 1824 /* 1825 * Using ttm_bo_reserve makes sure the lru lists are updated. 1826 */ 1827 1828 ret = ttm_bo_reserve(bo, true, no_wait, false, 0); 1829 if (unlikely(ret != 0)) 1830 return ret; 1831 spin_lock(&bdev->fence_lock); 1832 ret = ttm_bo_wait(bo, false, true, no_wait); 1833 spin_unlock(&bdev->fence_lock); 1834 if (likely(ret == 0)) 1835 atomic_inc(&bo->cpu_writers); 1836 ttm_bo_unreserve(bo); 1837 return ret; 1838 } 1839 EXPORT_SYMBOL(ttm_bo_synccpu_write_grab); 1840 1841 void ttm_bo_synccpu_write_release(struct ttm_buffer_object *bo) 1842 { 1843 atomic_dec(&bo->cpu_writers); 1844 } 1845 EXPORT_SYMBOL(ttm_bo_synccpu_write_release); 1846 1847 /** 1848 * A buffer object shrink method that tries to swap out the first 1849 * buffer object on the bo_global::swap_lru list. 1850 */ 1851 1852 static int ttm_bo_swapout(struct ttm_mem_shrink *shrink) 1853 { 1854 struct ttm_bo_global *glob = 1855 container_of(shrink, struct ttm_bo_global, shrink); 1856 struct ttm_buffer_object *bo; 1857 int ret = -EBUSY; 1858 int put_count; 1859 uint32_t swap_placement = (TTM_PL_FLAG_CACHED | TTM_PL_FLAG_SYSTEM); 1860 1861 spin_lock(&glob->lru_lock); 1862 list_for_each_entry(bo, &glob->swap_lru, swap) { 1863 ret = ttm_bo_reserve_nolru(bo, false, true, false, 0); 1864 if (!ret) 1865 break; 1866 } 1867 1868 if (ret) { 1869 spin_unlock(&glob->lru_lock); 1870 return ret; 1871 } 1872 1873 kref_get(&bo->list_kref); 1874 1875 if (!list_empty(&bo->ddestroy)) { 1876 ret = ttm_bo_cleanup_refs_and_unlock(bo, false, false); 1877 kref_put(&bo->list_kref, ttm_bo_release_list); 1878 return ret; 1879 } 1880 1881 put_count = ttm_bo_del_from_lru(bo); 1882 spin_unlock(&glob->lru_lock); 1883 1884 ttm_bo_list_ref_sub(bo, put_count, true); 1885 1886 /** 1887 * Wait for GPU, then move to system cached. 1888 */ 1889 1890 spin_lock(&bo->bdev->fence_lock); 1891 ret = ttm_bo_wait(bo, false, false, false); 1892 spin_unlock(&bo->bdev->fence_lock); 1893 1894 if (unlikely(ret != 0)) 1895 goto out; 1896 1897 if ((bo->mem.placement & swap_placement) != swap_placement) { 1898 struct ttm_mem_reg evict_mem; 1899 1900 evict_mem = bo->mem; 1901 evict_mem.mm_node = NULL; 1902 evict_mem.placement = TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED; 1903 evict_mem.mem_type = TTM_PL_SYSTEM; 1904 1905 ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, 1906 false, false); 1907 if (unlikely(ret != 0)) 1908 goto out; 1909 } 1910 1911 ttm_bo_unmap_virtual(bo); 1912 1913 /** 1914 * Swap out. Buffer will be swapped in again as soon as 1915 * anyone tries to access a ttm page. 1916 */ 1917 1918 if (bo->bdev->driver->swap_notify) 1919 bo->bdev->driver->swap_notify(bo); 1920 1921 ret = ttm_tt_swapout(bo->ttm, bo->persistent_swap_storage); 1922 out: 1923 1924 /** 1925 * 1926 * Unreserve without putting on LRU to avoid swapping out an 1927 * already swapped buffer. 1928 */ 1929 1930 atomic_set(&bo->reserved, 0); 1931 wake_up_all(&bo->event_queue); 1932 kref_put(&bo->list_kref, ttm_bo_release_list); 1933 return ret; 1934 } 1935 1936 void ttm_bo_swapout_all(struct ttm_bo_device *bdev) 1937 { 1938 while (ttm_bo_swapout(&bdev->glob->shrink) == 0) 1939 ; 1940 } 1941 EXPORT_SYMBOL(ttm_bo_swapout_all); 1942