1 /* SPDX-License-Identifier: GPL-2.0 OR MIT */ 2 /************************************************************************** 3 * 4 * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA 5 * All Rights Reserved. 6 * 7 * Permission is hereby granted, free of charge, to any person obtaining a 8 * copy of this software and associated documentation files (the 9 * "Software"), to deal in the Software without restriction, including 10 * without limitation the rights to use, copy, modify, merge, publish, 11 * distribute, sub license, and/or sell copies of the Software, and to 12 * permit persons to whom the Software is furnished to do so, subject to 13 * the following conditions: 14 * 15 * The above copyright notice and this permission notice (including the 16 * next paragraph) shall be included in all copies or substantial portions 17 * of the Software. 18 * 19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 21 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 22 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 23 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 24 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 25 * USE OR OTHER DEALINGS IN THE SOFTWARE. 26 * 27 **************************************************************************/ 28 /* 29 * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com> 30 */ 31 32 #define pr_fmt(fmt) "[TTM] " fmt 33 34 #include <drm/ttm/ttm_bo_driver.h> 35 #include <drm/ttm/ttm_placement.h> 36 #include <linux/jiffies.h> 37 #include <linux/slab.h> 38 #include <linux/sched.h> 39 #include <linux/mm.h> 40 #include <linux/file.h> 41 #include <linux/module.h> 42 #include <linux/atomic.h> 43 #include <linux/dma-resv.h> 44 45 #include "ttm_module.h" 46 47 /* default destructor */ 48 static void ttm_bo_default_destroy(struct ttm_buffer_object *bo) 49 { 50 kfree(bo); 51 } 52 53 static void ttm_bo_mem_space_debug(struct ttm_buffer_object *bo, 54 struct ttm_placement *placement) 55 { 56 struct drm_printer p = drm_debug_printer(TTM_PFX); 57 struct ttm_resource_manager *man; 58 int i, mem_type; 59 60 drm_printf(&p, "No space for %p (%lu pages, %zuK, %zuM)\n", 61 bo, bo->mem.num_pages, bo->base.size >> 10, 62 bo->base.size >> 20); 63 for (i = 0; i < placement->num_placement; i++) { 64 mem_type = placement->placement[i].mem_type; 65 drm_printf(&p, " placement[%d]=0x%08X (%d)\n", 66 i, placement->placement[i].flags, mem_type); 67 man = ttm_manager_type(bo->bdev, mem_type); 68 ttm_resource_manager_debug(man, &p); 69 } 70 } 71 72 static void ttm_bo_del_from_lru(struct ttm_buffer_object *bo) 73 { 74 struct ttm_device *bdev = bo->bdev; 75 76 list_del_init(&bo->lru); 77 78 if (bdev->funcs->del_from_lru_notify) 79 bdev->funcs->del_from_lru_notify(bo); 80 } 81 82 static void ttm_bo_bulk_move_set_pos(struct ttm_lru_bulk_move_pos *pos, 83 struct ttm_buffer_object *bo) 84 { 85 if (!pos->first) 86 pos->first = bo; 87 pos->last = bo; 88 } 89 90 void ttm_bo_move_to_lru_tail(struct ttm_buffer_object *bo, 91 struct ttm_resource *mem, 92 struct ttm_lru_bulk_move *bulk) 93 { 94 struct ttm_device *bdev = bo->bdev; 95 struct ttm_resource_manager *man; 96 97 if (!bo->deleted) 98 dma_resv_assert_held(bo->base.resv); 99 100 if (bo->pin_count) { 101 ttm_bo_del_from_lru(bo); 102 return; 103 } 104 105 man = ttm_manager_type(bdev, mem->mem_type); 106 list_move_tail(&bo->lru, &man->lru[bo->priority]); 107 108 if (bdev->funcs->del_from_lru_notify) 109 bdev->funcs->del_from_lru_notify(bo); 110 111 if (bulk && !bo->pin_count) { 112 switch (bo->mem.mem_type) { 113 case TTM_PL_TT: 114 ttm_bo_bulk_move_set_pos(&bulk->tt[bo->priority], bo); 115 break; 116 117 case TTM_PL_VRAM: 118 ttm_bo_bulk_move_set_pos(&bulk->vram[bo->priority], bo); 119 break; 120 } 121 } 122 } 123 EXPORT_SYMBOL(ttm_bo_move_to_lru_tail); 124 125 void ttm_bo_bulk_move_lru_tail(struct ttm_lru_bulk_move *bulk) 126 { 127 unsigned i; 128 129 for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) { 130 struct ttm_lru_bulk_move_pos *pos = &bulk->tt[i]; 131 struct ttm_resource_manager *man; 132 133 if (!pos->first) 134 continue; 135 136 dma_resv_assert_held(pos->first->base.resv); 137 dma_resv_assert_held(pos->last->base.resv); 138 139 man = ttm_manager_type(pos->first->bdev, TTM_PL_TT); 140 list_bulk_move_tail(&man->lru[i], &pos->first->lru, 141 &pos->last->lru); 142 } 143 144 for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) { 145 struct ttm_lru_bulk_move_pos *pos = &bulk->vram[i]; 146 struct ttm_resource_manager *man; 147 148 if (!pos->first) 149 continue; 150 151 dma_resv_assert_held(pos->first->base.resv); 152 dma_resv_assert_held(pos->last->base.resv); 153 154 man = ttm_manager_type(pos->first->bdev, TTM_PL_VRAM); 155 list_bulk_move_tail(&man->lru[i], &pos->first->lru, 156 &pos->last->lru); 157 } 158 } 159 EXPORT_SYMBOL(ttm_bo_bulk_move_lru_tail); 160 161 static int ttm_bo_handle_move_mem(struct ttm_buffer_object *bo, 162 struct ttm_resource *mem, bool evict, 163 struct ttm_operation_ctx *ctx, 164 struct ttm_place *hop) 165 { 166 struct ttm_device *bdev = bo->bdev; 167 struct ttm_resource_manager *old_man = ttm_manager_type(bdev, bo->mem.mem_type); 168 struct ttm_resource_manager *new_man = ttm_manager_type(bdev, mem->mem_type); 169 int ret; 170 171 ttm_bo_unmap_virtual(bo); 172 173 /* 174 * Create and bind a ttm if required. 175 */ 176 177 if (new_man->use_tt) { 178 /* Zero init the new TTM structure if the old location should 179 * have used one as well. 180 */ 181 ret = ttm_tt_create(bo, old_man->use_tt); 182 if (ret) 183 goto out_err; 184 185 if (mem->mem_type != TTM_PL_SYSTEM) { 186 ret = ttm_tt_populate(bo->bdev, bo->ttm, ctx); 187 if (ret) 188 goto out_err; 189 } 190 } 191 192 ret = bdev->funcs->move(bo, evict, ctx, mem, hop); 193 if (ret) { 194 if (ret == -EMULTIHOP) 195 return ret; 196 goto out_err; 197 } 198 199 ctx->bytes_moved += bo->base.size; 200 return 0; 201 202 out_err: 203 new_man = ttm_manager_type(bdev, bo->mem.mem_type); 204 if (!new_man->use_tt) 205 ttm_bo_tt_destroy(bo); 206 207 return ret; 208 } 209 210 /* 211 * Call bo::reserved. 212 * Will release GPU memory type usage on destruction. 213 * This is the place to put in driver specific hooks to release 214 * driver private resources. 215 * Will release the bo::reserved lock. 216 */ 217 218 static void ttm_bo_cleanup_memtype_use(struct ttm_buffer_object *bo) 219 { 220 if (bo->bdev->funcs->delete_mem_notify) 221 bo->bdev->funcs->delete_mem_notify(bo); 222 223 ttm_bo_tt_destroy(bo); 224 ttm_resource_free(bo, &bo->mem); 225 } 226 227 static int ttm_bo_individualize_resv(struct ttm_buffer_object *bo) 228 { 229 int r; 230 231 if (bo->base.resv == &bo->base._resv) 232 return 0; 233 234 BUG_ON(!dma_resv_trylock(&bo->base._resv)); 235 236 r = dma_resv_copy_fences(&bo->base._resv, bo->base.resv); 237 dma_resv_unlock(&bo->base._resv); 238 if (r) 239 return r; 240 241 if (bo->type != ttm_bo_type_sg) { 242 /* This works because the BO is about to be destroyed and nobody 243 * reference it any more. The only tricky case is the trylock on 244 * the resv object while holding the lru_lock. 245 */ 246 spin_lock(&bo->bdev->lru_lock); 247 bo->base.resv = &bo->base._resv; 248 spin_unlock(&bo->bdev->lru_lock); 249 } 250 251 return r; 252 } 253 254 static void ttm_bo_flush_all_fences(struct ttm_buffer_object *bo) 255 { 256 struct dma_resv *resv = &bo->base._resv; 257 struct dma_resv_list *fobj; 258 struct dma_fence *fence; 259 int i; 260 261 rcu_read_lock(); 262 fobj = rcu_dereference(resv->fence); 263 fence = rcu_dereference(resv->fence_excl); 264 if (fence && !fence->ops->signaled) 265 dma_fence_enable_sw_signaling(fence); 266 267 for (i = 0; fobj && i < fobj->shared_count; ++i) { 268 fence = rcu_dereference(fobj->shared[i]); 269 270 if (!fence->ops->signaled) 271 dma_fence_enable_sw_signaling(fence); 272 } 273 rcu_read_unlock(); 274 } 275 276 /** 277 * function ttm_bo_cleanup_refs 278 * If bo idle, remove from lru lists, and unref. 279 * If not idle, block if possible. 280 * 281 * Must be called with lru_lock and reservation held, this function 282 * will drop the lru lock and optionally the reservation lock before returning. 283 * 284 * @bo: The buffer object to clean-up 285 * @interruptible: Any sleeps should occur interruptibly. 286 * @no_wait_gpu: Never wait for gpu. Return -EBUSY instead. 287 * @unlock_resv: Unlock the reservation lock as well. 288 */ 289 290 static int ttm_bo_cleanup_refs(struct ttm_buffer_object *bo, 291 bool interruptible, bool no_wait_gpu, 292 bool unlock_resv) 293 { 294 struct dma_resv *resv = &bo->base._resv; 295 int ret; 296 297 if (dma_resv_test_signaled_rcu(resv, true)) 298 ret = 0; 299 else 300 ret = -EBUSY; 301 302 if (ret && !no_wait_gpu) { 303 long lret; 304 305 if (unlock_resv) 306 dma_resv_unlock(bo->base.resv); 307 spin_unlock(&bo->bdev->lru_lock); 308 309 lret = dma_resv_wait_timeout_rcu(resv, true, interruptible, 310 30 * HZ); 311 312 if (lret < 0) 313 return lret; 314 else if (lret == 0) 315 return -EBUSY; 316 317 spin_lock(&bo->bdev->lru_lock); 318 if (unlock_resv && !dma_resv_trylock(bo->base.resv)) { 319 /* 320 * We raced, and lost, someone else holds the reservation now, 321 * and is probably busy in ttm_bo_cleanup_memtype_use. 322 * 323 * Even if it's not the case, because we finished waiting any 324 * delayed destruction would succeed, so just return success 325 * here. 326 */ 327 spin_unlock(&bo->bdev->lru_lock); 328 return 0; 329 } 330 ret = 0; 331 } 332 333 if (ret || unlikely(list_empty(&bo->ddestroy))) { 334 if (unlock_resv) 335 dma_resv_unlock(bo->base.resv); 336 spin_unlock(&bo->bdev->lru_lock); 337 return ret; 338 } 339 340 ttm_bo_del_from_lru(bo); 341 list_del_init(&bo->ddestroy); 342 spin_unlock(&bo->bdev->lru_lock); 343 ttm_bo_cleanup_memtype_use(bo); 344 345 if (unlock_resv) 346 dma_resv_unlock(bo->base.resv); 347 348 ttm_bo_put(bo); 349 350 return 0; 351 } 352 353 /* 354 * Traverse the delayed list, and call ttm_bo_cleanup_refs on all 355 * encountered buffers. 356 */ 357 bool ttm_bo_delayed_delete(struct ttm_device *bdev, bool remove_all) 358 { 359 struct list_head removed; 360 bool empty; 361 362 INIT_LIST_HEAD(&removed); 363 364 spin_lock(&bdev->lru_lock); 365 while (!list_empty(&bdev->ddestroy)) { 366 struct ttm_buffer_object *bo; 367 368 bo = list_first_entry(&bdev->ddestroy, struct ttm_buffer_object, 369 ddestroy); 370 list_move_tail(&bo->ddestroy, &removed); 371 if (!ttm_bo_get_unless_zero(bo)) 372 continue; 373 374 if (remove_all || bo->base.resv != &bo->base._resv) { 375 spin_unlock(&bdev->lru_lock); 376 dma_resv_lock(bo->base.resv, NULL); 377 378 spin_lock(&bdev->lru_lock); 379 ttm_bo_cleanup_refs(bo, false, !remove_all, true); 380 381 } else if (dma_resv_trylock(bo->base.resv)) { 382 ttm_bo_cleanup_refs(bo, false, !remove_all, true); 383 } else { 384 spin_unlock(&bdev->lru_lock); 385 } 386 387 ttm_bo_put(bo); 388 spin_lock(&bdev->lru_lock); 389 } 390 list_splice_tail(&removed, &bdev->ddestroy); 391 empty = list_empty(&bdev->ddestroy); 392 spin_unlock(&bdev->lru_lock); 393 394 return empty; 395 } 396 397 static void ttm_bo_release(struct kref *kref) 398 { 399 struct ttm_buffer_object *bo = 400 container_of(kref, struct ttm_buffer_object, kref); 401 struct ttm_device *bdev = bo->bdev; 402 int ret; 403 404 if (!bo->deleted) { 405 ret = ttm_bo_individualize_resv(bo); 406 if (ret) { 407 /* Last resort, if we fail to allocate memory for the 408 * fences block for the BO to become idle 409 */ 410 dma_resv_wait_timeout_rcu(bo->base.resv, true, false, 411 30 * HZ); 412 } 413 414 if (bo->bdev->funcs->release_notify) 415 bo->bdev->funcs->release_notify(bo); 416 417 drm_vma_offset_remove(bdev->vma_manager, &bo->base.vma_node); 418 ttm_mem_io_free(bdev, &bo->mem); 419 } 420 421 if (!dma_resv_test_signaled_rcu(bo->base.resv, true) || 422 !dma_resv_trylock(bo->base.resv)) { 423 /* The BO is not idle, resurrect it for delayed destroy */ 424 ttm_bo_flush_all_fences(bo); 425 bo->deleted = true; 426 427 spin_lock(&bo->bdev->lru_lock); 428 429 /* 430 * Make pinned bos immediately available to 431 * shrinkers, now that they are queued for 432 * destruction. 433 * 434 * FIXME: QXL is triggering this. Can be removed when the 435 * driver is fixed. 436 */ 437 if (WARN_ON_ONCE(bo->pin_count)) { 438 bo->pin_count = 0; 439 ttm_bo_move_to_lru_tail(bo, &bo->mem, NULL); 440 } 441 442 kref_init(&bo->kref); 443 list_add_tail(&bo->ddestroy, &bdev->ddestroy); 444 spin_unlock(&bo->bdev->lru_lock); 445 446 schedule_delayed_work(&bdev->wq, 447 ((HZ / 100) < 1) ? 1 : HZ / 100); 448 return; 449 } 450 451 spin_lock(&bo->bdev->lru_lock); 452 ttm_bo_del_from_lru(bo); 453 list_del(&bo->ddestroy); 454 spin_unlock(&bo->bdev->lru_lock); 455 456 ttm_bo_cleanup_memtype_use(bo); 457 dma_resv_unlock(bo->base.resv); 458 459 atomic_dec(&ttm_glob.bo_count); 460 dma_fence_put(bo->moving); 461 if (!ttm_bo_uses_embedded_gem_object(bo)) 462 dma_resv_fini(&bo->base._resv); 463 bo->destroy(bo); 464 } 465 466 void ttm_bo_put(struct ttm_buffer_object *bo) 467 { 468 kref_put(&bo->kref, ttm_bo_release); 469 } 470 EXPORT_SYMBOL(ttm_bo_put); 471 472 int ttm_bo_lock_delayed_workqueue(struct ttm_device *bdev) 473 { 474 return cancel_delayed_work_sync(&bdev->wq); 475 } 476 EXPORT_SYMBOL(ttm_bo_lock_delayed_workqueue); 477 478 void ttm_bo_unlock_delayed_workqueue(struct ttm_device *bdev, int resched) 479 { 480 if (resched) 481 schedule_delayed_work(&bdev->wq, 482 ((HZ / 100) < 1) ? 1 : HZ / 100); 483 } 484 EXPORT_SYMBOL(ttm_bo_unlock_delayed_workqueue); 485 486 static int ttm_bo_evict(struct ttm_buffer_object *bo, 487 struct ttm_operation_ctx *ctx) 488 { 489 struct ttm_device *bdev = bo->bdev; 490 struct ttm_resource evict_mem; 491 struct ttm_placement placement; 492 struct ttm_place hop; 493 int ret = 0; 494 495 memset(&hop, 0, sizeof(hop)); 496 497 dma_resv_assert_held(bo->base.resv); 498 499 placement.num_placement = 0; 500 placement.num_busy_placement = 0; 501 bdev->funcs->evict_flags(bo, &placement); 502 503 if (!placement.num_placement && !placement.num_busy_placement) { 504 ttm_bo_wait(bo, false, false); 505 506 ttm_bo_cleanup_memtype_use(bo); 507 return ttm_tt_create(bo, false); 508 } 509 510 evict_mem = bo->mem; 511 evict_mem.mm_node = NULL; 512 evict_mem.bus.offset = 0; 513 evict_mem.bus.addr = NULL; 514 515 ret = ttm_bo_mem_space(bo, &placement, &evict_mem, ctx); 516 if (ret) { 517 if (ret != -ERESTARTSYS) { 518 pr_err("Failed to find memory space for buffer 0x%p eviction\n", 519 bo); 520 ttm_bo_mem_space_debug(bo, &placement); 521 } 522 goto out; 523 } 524 525 ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, ctx, &hop); 526 if (unlikely(ret)) { 527 WARN(ret == -EMULTIHOP, "Unexpected multihop in eviction - likely driver bug\n"); 528 if (ret != -ERESTARTSYS) 529 pr_err("Buffer eviction failed\n"); 530 ttm_resource_free(bo, &evict_mem); 531 } 532 out: 533 return ret; 534 } 535 536 bool ttm_bo_eviction_valuable(struct ttm_buffer_object *bo, 537 const struct ttm_place *place) 538 { 539 /* Don't evict this BO if it's outside of the 540 * requested placement range 541 */ 542 if (place->fpfn >= (bo->mem.start + bo->mem.num_pages) || 543 (place->lpfn && place->lpfn <= bo->mem.start)) 544 return false; 545 546 return true; 547 } 548 EXPORT_SYMBOL(ttm_bo_eviction_valuable); 549 550 /* 551 * Check the target bo is allowable to be evicted or swapout, including cases: 552 * 553 * a. if share same reservation object with ctx->resv, have assumption 554 * reservation objects should already be locked, so not lock again and 555 * return true directly when either the opreation allow_reserved_eviction 556 * or the target bo already is in delayed free list; 557 * 558 * b. Otherwise, trylock it. 559 */ 560 static bool ttm_bo_evict_swapout_allowable(struct ttm_buffer_object *bo, 561 struct ttm_operation_ctx *ctx, bool *locked, bool *busy) 562 { 563 bool ret = false; 564 565 if (bo->base.resv == ctx->resv) { 566 dma_resv_assert_held(bo->base.resv); 567 if (ctx->allow_res_evict) 568 ret = true; 569 *locked = false; 570 if (busy) 571 *busy = false; 572 } else { 573 ret = dma_resv_trylock(bo->base.resv); 574 *locked = ret; 575 if (busy) 576 *busy = !ret; 577 } 578 579 return ret; 580 } 581 582 /** 583 * ttm_mem_evict_wait_busy - wait for a busy BO to become available 584 * 585 * @busy_bo: BO which couldn't be locked with trylock 586 * @ctx: operation context 587 * @ticket: acquire ticket 588 * 589 * Try to lock a busy buffer object to avoid failing eviction. 590 */ 591 static int ttm_mem_evict_wait_busy(struct ttm_buffer_object *busy_bo, 592 struct ttm_operation_ctx *ctx, 593 struct ww_acquire_ctx *ticket) 594 { 595 int r; 596 597 if (!busy_bo || !ticket) 598 return -EBUSY; 599 600 if (ctx->interruptible) 601 r = dma_resv_lock_interruptible(busy_bo->base.resv, 602 ticket); 603 else 604 r = dma_resv_lock(busy_bo->base.resv, ticket); 605 606 /* 607 * TODO: It would be better to keep the BO locked until allocation is at 608 * least tried one more time, but that would mean a much larger rework 609 * of TTM. 610 */ 611 if (!r) 612 dma_resv_unlock(busy_bo->base.resv); 613 614 return r == -EDEADLK ? -EBUSY : r; 615 } 616 617 int ttm_mem_evict_first(struct ttm_device *bdev, 618 struct ttm_resource_manager *man, 619 const struct ttm_place *place, 620 struct ttm_operation_ctx *ctx, 621 struct ww_acquire_ctx *ticket) 622 { 623 struct ttm_buffer_object *bo = NULL, *busy_bo = NULL; 624 bool locked = false; 625 unsigned i; 626 int ret; 627 628 spin_lock(&bdev->lru_lock); 629 for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) { 630 list_for_each_entry(bo, &man->lru[i], lru) { 631 bool busy; 632 633 if (!ttm_bo_evict_swapout_allowable(bo, ctx, &locked, 634 &busy)) { 635 if (busy && !busy_bo && ticket != 636 dma_resv_locking_ctx(bo->base.resv)) 637 busy_bo = bo; 638 continue; 639 } 640 641 if (place && !bdev->funcs->eviction_valuable(bo, 642 place)) { 643 if (locked) 644 dma_resv_unlock(bo->base.resv); 645 continue; 646 } 647 if (!ttm_bo_get_unless_zero(bo)) { 648 if (locked) 649 dma_resv_unlock(bo->base.resv); 650 continue; 651 } 652 break; 653 } 654 655 /* If the inner loop terminated early, we have our candidate */ 656 if (&bo->lru != &man->lru[i]) 657 break; 658 659 bo = NULL; 660 } 661 662 if (!bo) { 663 if (busy_bo && !ttm_bo_get_unless_zero(busy_bo)) 664 busy_bo = NULL; 665 spin_unlock(&bdev->lru_lock); 666 ret = ttm_mem_evict_wait_busy(busy_bo, ctx, ticket); 667 if (busy_bo) 668 ttm_bo_put(busy_bo); 669 return ret; 670 } 671 672 if (bo->deleted) { 673 ret = ttm_bo_cleanup_refs(bo, ctx->interruptible, 674 ctx->no_wait_gpu, locked); 675 ttm_bo_put(bo); 676 return ret; 677 } 678 679 spin_unlock(&bdev->lru_lock); 680 681 ret = ttm_bo_evict(bo, ctx); 682 if (locked) 683 ttm_bo_unreserve(bo); 684 685 ttm_bo_put(bo); 686 return ret; 687 } 688 689 /* 690 * Add the last move fence to the BO and reserve a new shared slot. 691 */ 692 static int ttm_bo_add_move_fence(struct ttm_buffer_object *bo, 693 struct ttm_resource_manager *man, 694 struct ttm_resource *mem, 695 bool no_wait_gpu) 696 { 697 struct dma_fence *fence; 698 int ret; 699 700 spin_lock(&man->move_lock); 701 fence = dma_fence_get(man->move); 702 spin_unlock(&man->move_lock); 703 704 if (!fence) 705 return 0; 706 707 if (no_wait_gpu) { 708 ret = dma_fence_is_signaled(fence) ? 0 : -EBUSY; 709 dma_fence_put(fence); 710 return ret; 711 } 712 713 dma_resv_add_shared_fence(bo->base.resv, fence); 714 715 ret = dma_resv_reserve_shared(bo->base.resv, 1); 716 if (unlikely(ret)) { 717 dma_fence_put(fence); 718 return ret; 719 } 720 721 dma_fence_put(bo->moving); 722 bo->moving = fence; 723 return 0; 724 } 725 726 /* 727 * Repeatedly evict memory from the LRU for @mem_type until we create enough 728 * space, or we've evicted everything and there isn't enough space. 729 */ 730 static int ttm_bo_mem_force_space(struct ttm_buffer_object *bo, 731 const struct ttm_place *place, 732 struct ttm_resource *mem, 733 struct ttm_operation_ctx *ctx) 734 { 735 struct ttm_device *bdev = bo->bdev; 736 struct ttm_resource_manager *man = ttm_manager_type(bdev, mem->mem_type); 737 struct ww_acquire_ctx *ticket; 738 int ret; 739 740 ticket = dma_resv_locking_ctx(bo->base.resv); 741 do { 742 ret = ttm_resource_alloc(bo, place, mem); 743 if (likely(!ret)) 744 break; 745 if (unlikely(ret != -ENOSPC)) 746 return ret; 747 ret = ttm_mem_evict_first(bdev, man, place, ctx, 748 ticket); 749 if (unlikely(ret != 0)) 750 return ret; 751 } while (1); 752 753 return ttm_bo_add_move_fence(bo, man, mem, ctx->no_wait_gpu); 754 } 755 756 /** 757 * ttm_bo_mem_placement - check if placement is compatible 758 * @bo: BO to find memory for 759 * @place: where to search 760 * @mem: the memory object to fill in 761 * 762 * Check if placement is compatible and fill in mem structure. 763 * Returns -EBUSY if placement won't work or negative error code. 764 * 0 when placement can be used. 765 */ 766 static int ttm_bo_mem_placement(struct ttm_buffer_object *bo, 767 const struct ttm_place *place, 768 struct ttm_resource *mem) 769 { 770 struct ttm_device *bdev = bo->bdev; 771 struct ttm_resource_manager *man; 772 773 man = ttm_manager_type(bdev, place->mem_type); 774 if (!man || !ttm_resource_manager_used(man)) 775 return -EBUSY; 776 777 mem->mem_type = place->mem_type; 778 mem->placement = place->flags; 779 780 spin_lock(&bo->bdev->lru_lock); 781 ttm_bo_move_to_lru_tail(bo, mem, NULL); 782 spin_unlock(&bo->bdev->lru_lock); 783 return 0; 784 } 785 786 /* 787 * Creates space for memory region @mem according to its type. 788 * 789 * This function first searches for free space in compatible memory types in 790 * the priority order defined by the driver. If free space isn't found, then 791 * ttm_bo_mem_force_space is attempted in priority order to evict and find 792 * space. 793 */ 794 int ttm_bo_mem_space(struct ttm_buffer_object *bo, 795 struct ttm_placement *placement, 796 struct ttm_resource *mem, 797 struct ttm_operation_ctx *ctx) 798 { 799 struct ttm_device *bdev = bo->bdev; 800 bool type_found = false; 801 int i, ret; 802 803 ret = dma_resv_reserve_shared(bo->base.resv, 1); 804 if (unlikely(ret)) 805 return ret; 806 807 for (i = 0; i < placement->num_placement; ++i) { 808 const struct ttm_place *place = &placement->placement[i]; 809 struct ttm_resource_manager *man; 810 811 ret = ttm_bo_mem_placement(bo, place, mem); 812 if (ret) 813 continue; 814 815 type_found = true; 816 ret = ttm_resource_alloc(bo, place, mem); 817 if (ret == -ENOSPC) 818 continue; 819 if (unlikely(ret)) 820 goto error; 821 822 man = ttm_manager_type(bdev, mem->mem_type); 823 ret = ttm_bo_add_move_fence(bo, man, mem, ctx->no_wait_gpu); 824 if (unlikely(ret)) { 825 ttm_resource_free(bo, mem); 826 if (ret == -EBUSY) 827 continue; 828 829 goto error; 830 } 831 return 0; 832 } 833 834 for (i = 0; i < placement->num_busy_placement; ++i) { 835 const struct ttm_place *place = &placement->busy_placement[i]; 836 837 ret = ttm_bo_mem_placement(bo, place, mem); 838 if (ret) 839 continue; 840 841 type_found = true; 842 ret = ttm_bo_mem_force_space(bo, place, mem, ctx); 843 if (likely(!ret)) 844 return 0; 845 846 if (ret && ret != -EBUSY) 847 goto error; 848 } 849 850 ret = -ENOMEM; 851 if (!type_found) { 852 pr_err(TTM_PFX "No compatible memory type found\n"); 853 ret = -EINVAL; 854 } 855 856 error: 857 if (bo->mem.mem_type == TTM_PL_SYSTEM && !bo->pin_count) 858 ttm_bo_move_to_lru_tail_unlocked(bo); 859 860 return ret; 861 } 862 EXPORT_SYMBOL(ttm_bo_mem_space); 863 864 static int ttm_bo_bounce_temp_buffer(struct ttm_buffer_object *bo, 865 struct ttm_resource *mem, 866 struct ttm_operation_ctx *ctx, 867 struct ttm_place *hop) 868 { 869 struct ttm_placement hop_placement; 870 int ret; 871 struct ttm_resource hop_mem = *mem; 872 873 hop_mem.mm_node = NULL; 874 hop_mem.mem_type = TTM_PL_SYSTEM; 875 hop_mem.placement = 0; 876 877 hop_placement.num_placement = hop_placement.num_busy_placement = 1; 878 hop_placement.placement = hop_placement.busy_placement = hop; 879 880 /* find space in the bounce domain */ 881 ret = ttm_bo_mem_space(bo, &hop_placement, &hop_mem, ctx); 882 if (ret) 883 return ret; 884 /* move to the bounce domain */ 885 ret = ttm_bo_handle_move_mem(bo, &hop_mem, false, ctx, NULL); 886 if (ret) { 887 ttm_resource_free(bo, &hop_mem); 888 return ret; 889 } 890 return 0; 891 } 892 893 static int ttm_bo_move_buffer(struct ttm_buffer_object *bo, 894 struct ttm_placement *placement, 895 struct ttm_operation_ctx *ctx) 896 { 897 int ret = 0; 898 struct ttm_place hop; 899 struct ttm_resource mem; 900 901 dma_resv_assert_held(bo->base.resv); 902 903 memset(&hop, 0, sizeof(hop)); 904 905 mem.num_pages = PAGE_ALIGN(bo->base.size) >> PAGE_SHIFT; 906 mem.page_alignment = bo->mem.page_alignment; 907 mem.bus.offset = 0; 908 mem.bus.addr = NULL; 909 mem.mm_node = NULL; 910 911 /* 912 * Determine where to move the buffer. 913 * 914 * If driver determines move is going to need 915 * an extra step then it will return -EMULTIHOP 916 * and the buffer will be moved to the temporary 917 * stop and the driver will be called to make 918 * the second hop. 919 */ 920 ret = ttm_bo_mem_space(bo, placement, &mem, ctx); 921 if (ret) 922 return ret; 923 bounce: 924 ret = ttm_bo_handle_move_mem(bo, &mem, false, ctx, &hop); 925 if (ret == -EMULTIHOP) { 926 ret = ttm_bo_bounce_temp_buffer(bo, &mem, ctx, &hop); 927 if (ret) 928 goto out; 929 /* try and move to final place now. */ 930 goto bounce; 931 } 932 out: 933 if (ret) 934 ttm_resource_free(bo, &mem); 935 return ret; 936 } 937 938 static bool ttm_bo_places_compat(const struct ttm_place *places, 939 unsigned num_placement, 940 struct ttm_resource *mem, 941 uint32_t *new_flags) 942 { 943 unsigned i; 944 945 for (i = 0; i < num_placement; i++) { 946 const struct ttm_place *heap = &places[i]; 947 948 if ((mem->start < heap->fpfn || 949 (heap->lpfn != 0 && (mem->start + mem->num_pages) > heap->lpfn))) 950 continue; 951 952 *new_flags = heap->flags; 953 if ((mem->mem_type == heap->mem_type) && 954 (!(*new_flags & TTM_PL_FLAG_CONTIGUOUS) || 955 (mem->placement & TTM_PL_FLAG_CONTIGUOUS))) 956 return true; 957 } 958 return false; 959 } 960 961 bool ttm_bo_mem_compat(struct ttm_placement *placement, 962 struct ttm_resource *mem, 963 uint32_t *new_flags) 964 { 965 if (ttm_bo_places_compat(placement->placement, placement->num_placement, 966 mem, new_flags)) 967 return true; 968 969 if ((placement->busy_placement != placement->placement || 970 placement->num_busy_placement > placement->num_placement) && 971 ttm_bo_places_compat(placement->busy_placement, 972 placement->num_busy_placement, 973 mem, new_flags)) 974 return true; 975 976 return false; 977 } 978 EXPORT_SYMBOL(ttm_bo_mem_compat); 979 980 int ttm_bo_validate(struct ttm_buffer_object *bo, 981 struct ttm_placement *placement, 982 struct ttm_operation_ctx *ctx) 983 { 984 int ret; 985 uint32_t new_flags; 986 987 dma_resv_assert_held(bo->base.resv); 988 989 /* 990 * Remove the backing store if no placement is given. 991 */ 992 if (!placement->num_placement && !placement->num_busy_placement) { 993 ret = ttm_bo_pipeline_gutting(bo); 994 if (ret) 995 return ret; 996 997 return ttm_tt_create(bo, false); 998 } 999 1000 /* 1001 * Check whether we need to move buffer. 1002 */ 1003 if (!ttm_bo_mem_compat(placement, &bo->mem, &new_flags)) { 1004 ret = ttm_bo_move_buffer(bo, placement, ctx); 1005 if (ret) 1006 return ret; 1007 } 1008 /* 1009 * We might need to add a TTM. 1010 */ 1011 if (bo->mem.mem_type == TTM_PL_SYSTEM) { 1012 ret = ttm_tt_create(bo, true); 1013 if (ret) 1014 return ret; 1015 } 1016 return 0; 1017 } 1018 EXPORT_SYMBOL(ttm_bo_validate); 1019 1020 int ttm_bo_init_reserved(struct ttm_device *bdev, 1021 struct ttm_buffer_object *bo, 1022 size_t size, 1023 enum ttm_bo_type type, 1024 struct ttm_placement *placement, 1025 uint32_t page_alignment, 1026 struct ttm_operation_ctx *ctx, 1027 struct sg_table *sg, 1028 struct dma_resv *resv, 1029 void (*destroy) (struct ttm_buffer_object *)) 1030 { 1031 bool locked; 1032 int ret = 0; 1033 1034 bo->destroy = destroy ? destroy : ttm_bo_default_destroy; 1035 1036 kref_init(&bo->kref); 1037 INIT_LIST_HEAD(&bo->lru); 1038 INIT_LIST_HEAD(&bo->ddestroy); 1039 bo->bdev = bdev; 1040 bo->type = type; 1041 bo->mem.mem_type = TTM_PL_SYSTEM; 1042 bo->mem.num_pages = PAGE_ALIGN(size) >> PAGE_SHIFT; 1043 bo->mem.mm_node = NULL; 1044 bo->mem.page_alignment = page_alignment; 1045 bo->mem.bus.offset = 0; 1046 bo->mem.bus.addr = NULL; 1047 bo->moving = NULL; 1048 bo->mem.placement = 0; 1049 bo->pin_count = 0; 1050 bo->sg = sg; 1051 if (resv) { 1052 bo->base.resv = resv; 1053 dma_resv_assert_held(bo->base.resv); 1054 } else { 1055 bo->base.resv = &bo->base._resv; 1056 } 1057 if (!ttm_bo_uses_embedded_gem_object(bo)) { 1058 /* 1059 * bo.base is not initialized, so we have to setup the 1060 * struct elements we want use regardless. 1061 */ 1062 bo->base.size = size; 1063 dma_resv_init(&bo->base._resv); 1064 drm_vma_node_reset(&bo->base.vma_node); 1065 } 1066 atomic_inc(&ttm_glob.bo_count); 1067 1068 /* 1069 * For ttm_bo_type_device buffers, allocate 1070 * address space from the device. 1071 */ 1072 if (bo->type == ttm_bo_type_device || 1073 bo->type == ttm_bo_type_sg) 1074 ret = drm_vma_offset_add(bdev->vma_manager, &bo->base.vma_node, 1075 bo->mem.num_pages); 1076 1077 /* passed reservation objects should already be locked, 1078 * since otherwise lockdep will be angered in radeon. 1079 */ 1080 if (!resv) { 1081 locked = dma_resv_trylock(bo->base.resv); 1082 WARN_ON(!locked); 1083 } 1084 1085 if (likely(!ret)) 1086 ret = ttm_bo_validate(bo, placement, ctx); 1087 1088 if (unlikely(ret)) { 1089 if (!resv) 1090 ttm_bo_unreserve(bo); 1091 1092 ttm_bo_put(bo); 1093 return ret; 1094 } 1095 1096 ttm_bo_move_to_lru_tail_unlocked(bo); 1097 1098 return ret; 1099 } 1100 EXPORT_SYMBOL(ttm_bo_init_reserved); 1101 1102 int ttm_bo_init(struct ttm_device *bdev, 1103 struct ttm_buffer_object *bo, 1104 size_t size, 1105 enum ttm_bo_type type, 1106 struct ttm_placement *placement, 1107 uint32_t page_alignment, 1108 bool interruptible, 1109 struct sg_table *sg, 1110 struct dma_resv *resv, 1111 void (*destroy) (struct ttm_buffer_object *)) 1112 { 1113 struct ttm_operation_ctx ctx = { interruptible, false }; 1114 int ret; 1115 1116 ret = ttm_bo_init_reserved(bdev, bo, size, type, placement, 1117 page_alignment, &ctx, sg, resv, destroy); 1118 if (ret) 1119 return ret; 1120 1121 if (!resv) 1122 ttm_bo_unreserve(bo); 1123 1124 return 0; 1125 } 1126 EXPORT_SYMBOL(ttm_bo_init); 1127 1128 /* 1129 * buffer object vm functions. 1130 */ 1131 1132 void ttm_bo_unmap_virtual(struct ttm_buffer_object *bo) 1133 { 1134 struct ttm_device *bdev = bo->bdev; 1135 1136 drm_vma_node_unmap(&bo->base.vma_node, bdev->dev_mapping); 1137 ttm_mem_io_free(bdev, &bo->mem); 1138 } 1139 EXPORT_SYMBOL(ttm_bo_unmap_virtual); 1140 1141 int ttm_bo_wait(struct ttm_buffer_object *bo, 1142 bool interruptible, bool no_wait) 1143 { 1144 long timeout = 15 * HZ; 1145 1146 if (no_wait) { 1147 if (dma_resv_test_signaled_rcu(bo->base.resv, true)) 1148 return 0; 1149 else 1150 return -EBUSY; 1151 } 1152 1153 timeout = dma_resv_wait_timeout_rcu(bo->base.resv, true, 1154 interruptible, timeout); 1155 if (timeout < 0) 1156 return timeout; 1157 1158 if (timeout == 0) 1159 return -EBUSY; 1160 1161 dma_resv_add_excl_fence(bo->base.resv, NULL); 1162 return 0; 1163 } 1164 EXPORT_SYMBOL(ttm_bo_wait); 1165 1166 int ttm_bo_swapout(struct ttm_buffer_object *bo, struct ttm_operation_ctx *ctx, 1167 gfp_t gfp_flags) 1168 { 1169 bool locked; 1170 int ret; 1171 1172 if (!ttm_bo_evict_swapout_allowable(bo, ctx, &locked, NULL)) 1173 return -EBUSY; 1174 1175 if (!ttm_bo_get_unless_zero(bo)) { 1176 if (locked) 1177 dma_resv_unlock(bo->base.resv); 1178 return -EBUSY; 1179 } 1180 1181 if (bo->deleted) { 1182 ttm_bo_cleanup_refs(bo, false, false, locked); 1183 ttm_bo_put(bo); 1184 return 0; 1185 } 1186 1187 ttm_bo_del_from_lru(bo); 1188 /* TODO: Cleanup the locking */ 1189 spin_unlock(&bo->bdev->lru_lock); 1190 1191 /* 1192 * Move to system cached 1193 */ 1194 if (bo->mem.mem_type != TTM_PL_SYSTEM) { 1195 struct ttm_operation_ctx ctx = { false, false }; 1196 struct ttm_resource evict_mem; 1197 struct ttm_place hop; 1198 1199 memset(&hop, 0, sizeof(hop)); 1200 1201 evict_mem = bo->mem; 1202 evict_mem.mm_node = NULL; 1203 evict_mem.placement = 0; 1204 evict_mem.mem_type = TTM_PL_SYSTEM; 1205 1206 ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, &ctx, &hop); 1207 if (unlikely(ret != 0)) { 1208 WARN(ret == -EMULTIHOP, "Unexpected multihop in swaput - likely driver bug.\n"); 1209 goto out; 1210 } 1211 } 1212 1213 /* 1214 * Make sure BO is idle. 1215 */ 1216 ret = ttm_bo_wait(bo, false, false); 1217 if (unlikely(ret != 0)) 1218 goto out; 1219 1220 ttm_bo_unmap_virtual(bo); 1221 1222 /* 1223 * Swap out. Buffer will be swapped in again as soon as 1224 * anyone tries to access a ttm page. 1225 */ 1226 if (bo->bdev->funcs->swap_notify) 1227 bo->bdev->funcs->swap_notify(bo); 1228 1229 ret = ttm_tt_swapout(bo->bdev, bo->ttm, gfp_flags); 1230 out: 1231 1232 /* 1233 * Unreserve without putting on LRU to avoid swapping out an 1234 * already swapped buffer. 1235 */ 1236 if (locked) 1237 dma_resv_unlock(bo->base.resv); 1238 ttm_bo_put(bo); 1239 return ret; 1240 } 1241 1242 void ttm_bo_tt_destroy(struct ttm_buffer_object *bo) 1243 { 1244 if (bo->ttm == NULL) 1245 return; 1246 1247 ttm_tt_destroy(bo->bdev, bo->ttm); 1248 bo->ttm = NULL; 1249 } 1250