xref: /openbmc/linux/drivers/gpu/drm/ttm/ttm_bo.c (revision 2634682f)
1 /* SPDX-License-Identifier: GPL-2.0 OR MIT */
2 /**************************************************************************
3  *
4  * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
22  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
23  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
24  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
25  * USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  **************************************************************************/
28 /*
29  * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
30  */
31 
32 #define pr_fmt(fmt) "[TTM] " fmt
33 
34 #include <drm/ttm/ttm_module.h>
35 #include <drm/ttm/ttm_bo_driver.h>
36 #include <drm/ttm/ttm_placement.h>
37 #include <linux/jiffies.h>
38 #include <linux/slab.h>
39 #include <linux/sched.h>
40 #include <linux/mm.h>
41 #include <linux/file.h>
42 #include <linux/module.h>
43 #include <linux/atomic.h>
44 #include <linux/dma-resv.h>
45 
46 static void ttm_bo_global_kobj_release(struct kobject *kobj);
47 
48 /**
49  * ttm_global_mutex - protecting the global BO state
50  */
51 DEFINE_MUTEX(ttm_global_mutex);
52 unsigned ttm_bo_glob_use_count;
53 struct ttm_bo_global ttm_bo_glob;
54 EXPORT_SYMBOL(ttm_bo_glob);
55 
56 static struct attribute ttm_bo_count = {
57 	.name = "bo_count",
58 	.mode = S_IRUGO
59 };
60 
61 /* default destructor */
62 static void ttm_bo_default_destroy(struct ttm_buffer_object *bo)
63 {
64 	kfree(bo);
65 }
66 
67 static inline int ttm_mem_type_from_place(const struct ttm_place *place,
68 					  uint32_t *mem_type)
69 {
70 	int pos;
71 
72 	pos = ffs(place->flags & TTM_PL_MASK_MEM);
73 	if (unlikely(!pos))
74 		return -EINVAL;
75 
76 	*mem_type = pos - 1;
77 	return 0;
78 }
79 
80 static void ttm_bo_mem_space_debug(struct ttm_buffer_object *bo,
81 					struct ttm_placement *placement)
82 {
83 	struct drm_printer p = drm_debug_printer(TTM_PFX);
84 	int i, ret, mem_type;
85 	struct ttm_resource_manager *man;
86 
87 	drm_printf(&p, "No space for %p (%lu pages, %luK, %luM)\n",
88 		   bo, bo->mem.num_pages, bo->mem.size >> 10,
89 		   bo->mem.size >> 20);
90 	for (i = 0; i < placement->num_placement; i++) {
91 		ret = ttm_mem_type_from_place(&placement->placement[i],
92 						&mem_type);
93 		if (ret)
94 			return;
95 		drm_printf(&p, "  placement[%d]=0x%08X (%d)\n",
96 			   i, placement->placement[i].flags, mem_type);
97 		man = ttm_manager_type(bo->bdev, mem_type);
98 		ttm_resource_manager_debug(man, &p);
99 	}
100 }
101 
102 static ssize_t ttm_bo_global_show(struct kobject *kobj,
103 				  struct attribute *attr,
104 				  char *buffer)
105 {
106 	struct ttm_bo_global *glob =
107 		container_of(kobj, struct ttm_bo_global, kobj);
108 
109 	return snprintf(buffer, PAGE_SIZE, "%d\n",
110 				atomic_read(&glob->bo_count));
111 }
112 
113 static struct attribute *ttm_bo_global_attrs[] = {
114 	&ttm_bo_count,
115 	NULL
116 };
117 
118 static const struct sysfs_ops ttm_bo_global_ops = {
119 	.show = &ttm_bo_global_show
120 };
121 
122 static struct kobj_type ttm_bo_glob_kobj_type  = {
123 	.release = &ttm_bo_global_kobj_release,
124 	.sysfs_ops = &ttm_bo_global_ops,
125 	.default_attrs = ttm_bo_global_attrs
126 };
127 
128 
129 static inline uint32_t ttm_bo_type_flags(unsigned type)
130 {
131 	return 1 << (type);
132 }
133 
134 static void ttm_bo_add_mem_to_lru(struct ttm_buffer_object *bo,
135 				  struct ttm_resource *mem)
136 {
137 	struct ttm_bo_device *bdev = bo->bdev;
138 	struct ttm_resource_manager *man;
139 
140 	if (!list_empty(&bo->lru))
141 		return;
142 
143 	if (mem->placement & TTM_PL_FLAG_NO_EVICT)
144 		return;
145 
146 	man = ttm_manager_type(bdev, mem->mem_type);
147 	list_add_tail(&bo->lru, &man->lru[bo->priority]);
148 
149 	if (man->use_tt && bo->ttm &&
150 	    !(bo->ttm->page_flags & (TTM_PAGE_FLAG_SG |
151 				     TTM_PAGE_FLAG_SWAPPED))) {
152 		list_add_tail(&bo->swap, &ttm_bo_glob.swap_lru[bo->priority]);
153 	}
154 }
155 
156 static void ttm_bo_del_from_lru(struct ttm_buffer_object *bo)
157 {
158 	struct ttm_bo_device *bdev = bo->bdev;
159 	bool notify = false;
160 
161 	if (!list_empty(&bo->swap)) {
162 		list_del_init(&bo->swap);
163 		notify = true;
164 	}
165 	if (!list_empty(&bo->lru)) {
166 		list_del_init(&bo->lru);
167 		notify = true;
168 	}
169 
170 	if (notify && bdev->driver->del_from_lru_notify)
171 		bdev->driver->del_from_lru_notify(bo);
172 }
173 
174 static void ttm_bo_bulk_move_set_pos(struct ttm_lru_bulk_move_pos *pos,
175 				     struct ttm_buffer_object *bo)
176 {
177 	if (!pos->first)
178 		pos->first = bo;
179 	pos->last = bo;
180 }
181 
182 void ttm_bo_move_to_lru_tail(struct ttm_buffer_object *bo,
183 			     struct ttm_lru_bulk_move *bulk)
184 {
185 	dma_resv_assert_held(bo->base.resv);
186 
187 	ttm_bo_del_from_lru(bo);
188 	ttm_bo_add_mem_to_lru(bo, &bo->mem);
189 
190 	if (bulk && !(bo->mem.placement & TTM_PL_FLAG_NO_EVICT)) {
191 		switch (bo->mem.mem_type) {
192 		case TTM_PL_TT:
193 			ttm_bo_bulk_move_set_pos(&bulk->tt[bo->priority], bo);
194 			break;
195 
196 		case TTM_PL_VRAM:
197 			ttm_bo_bulk_move_set_pos(&bulk->vram[bo->priority], bo);
198 			break;
199 		}
200 		if (bo->ttm && !(bo->ttm->page_flags &
201 				 (TTM_PAGE_FLAG_SG | TTM_PAGE_FLAG_SWAPPED)))
202 			ttm_bo_bulk_move_set_pos(&bulk->swap[bo->priority], bo);
203 	}
204 }
205 EXPORT_SYMBOL(ttm_bo_move_to_lru_tail);
206 
207 void ttm_bo_bulk_move_lru_tail(struct ttm_lru_bulk_move *bulk)
208 {
209 	unsigned i;
210 
211 	for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) {
212 		struct ttm_lru_bulk_move_pos *pos = &bulk->tt[i];
213 		struct ttm_resource_manager *man;
214 
215 		if (!pos->first)
216 			continue;
217 
218 		dma_resv_assert_held(pos->first->base.resv);
219 		dma_resv_assert_held(pos->last->base.resv);
220 
221 		man = ttm_manager_type(pos->first->bdev, TTM_PL_TT);
222 		list_bulk_move_tail(&man->lru[i], &pos->first->lru,
223 				    &pos->last->lru);
224 	}
225 
226 	for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) {
227 		struct ttm_lru_bulk_move_pos *pos = &bulk->vram[i];
228 		struct ttm_resource_manager *man;
229 
230 		if (!pos->first)
231 			continue;
232 
233 		dma_resv_assert_held(pos->first->base.resv);
234 		dma_resv_assert_held(pos->last->base.resv);
235 
236 		man = ttm_manager_type(pos->first->bdev, TTM_PL_VRAM);
237 		list_bulk_move_tail(&man->lru[i], &pos->first->lru,
238 				    &pos->last->lru);
239 	}
240 
241 	for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) {
242 		struct ttm_lru_bulk_move_pos *pos = &bulk->swap[i];
243 		struct list_head *lru;
244 
245 		if (!pos->first)
246 			continue;
247 
248 		dma_resv_assert_held(pos->first->base.resv);
249 		dma_resv_assert_held(pos->last->base.resv);
250 
251 		lru = &ttm_bo_glob.swap_lru[i];
252 		list_bulk_move_tail(lru, &pos->first->swap, &pos->last->swap);
253 	}
254 }
255 EXPORT_SYMBOL(ttm_bo_bulk_move_lru_tail);
256 
257 static int ttm_bo_handle_move_mem(struct ttm_buffer_object *bo,
258 				  struct ttm_resource *mem, bool evict,
259 				  struct ttm_operation_ctx *ctx)
260 {
261 	struct ttm_bo_device *bdev = bo->bdev;
262 	struct ttm_resource_manager *old_man = ttm_manager_type(bdev, bo->mem.mem_type);
263 	struct ttm_resource_manager *new_man = ttm_manager_type(bdev, mem->mem_type);
264 	int ret;
265 
266 	ret = ttm_mem_io_lock(old_man, true);
267 	if (unlikely(ret != 0))
268 		goto out_err;
269 	ttm_bo_unmap_virtual_locked(bo);
270 	ttm_mem_io_unlock(old_man);
271 
272 	/*
273 	 * Create and bind a ttm if required.
274 	 */
275 
276 	if (new_man->use_tt) {
277 		/* Zero init the new TTM structure if the old location should
278 		 * have used one as well.
279 		 */
280 		ret = ttm_tt_create(bo, old_man->use_tt);
281 		if (ret)
282 			goto out_err;
283 
284 		ret = ttm_tt_set_placement_caching(bo->ttm, mem->placement);
285 		if (ret)
286 			goto out_err;
287 
288 		if (mem->mem_type != TTM_PL_SYSTEM) {
289 			ret = ttm_tt_bind(bo->ttm, mem, ctx);
290 			if (ret)
291 				goto out_err;
292 		}
293 
294 		if (bo->mem.mem_type == TTM_PL_SYSTEM) {
295 			if (bdev->driver->move_notify)
296 				bdev->driver->move_notify(bo, evict, mem);
297 			bo->mem = *mem;
298 			goto moved;
299 		}
300 	}
301 
302 	if (bdev->driver->move_notify)
303 		bdev->driver->move_notify(bo, evict, mem);
304 
305 	if (old_man->use_tt && new_man->use_tt)
306 		ret = ttm_bo_move_ttm(bo, ctx, mem);
307 	else if (bdev->driver->move)
308 		ret = bdev->driver->move(bo, evict, ctx, mem);
309 	else
310 		ret = ttm_bo_move_memcpy(bo, ctx, mem);
311 
312 	if (ret) {
313 		if (bdev->driver->move_notify) {
314 			swap(*mem, bo->mem);
315 			bdev->driver->move_notify(bo, false, mem);
316 			swap(*mem, bo->mem);
317 		}
318 
319 		goto out_err;
320 	}
321 
322 moved:
323 	bo->evicted = false;
324 
325 	ctx->bytes_moved += bo->num_pages << PAGE_SHIFT;
326 	return 0;
327 
328 out_err:
329 	new_man = ttm_manager_type(bdev, bo->mem.mem_type);
330 	if (!new_man->use_tt) {
331 		ttm_tt_destroy(bo->ttm);
332 		bo->ttm = NULL;
333 	}
334 
335 	return ret;
336 }
337 
338 /**
339  * Call bo::reserved.
340  * Will release GPU memory type usage on destruction.
341  * This is the place to put in driver specific hooks to release
342  * driver private resources.
343  * Will release the bo::reserved lock.
344  */
345 
346 static void ttm_bo_cleanup_memtype_use(struct ttm_buffer_object *bo)
347 {
348 	if (bo->bdev->driver->move_notify)
349 		bo->bdev->driver->move_notify(bo, false, NULL);
350 
351 	ttm_tt_destroy(bo->ttm);
352 	bo->ttm = NULL;
353 	ttm_resource_free(bo, &bo->mem);
354 }
355 
356 static int ttm_bo_individualize_resv(struct ttm_buffer_object *bo)
357 {
358 	int r;
359 
360 	if (bo->base.resv == &bo->base._resv)
361 		return 0;
362 
363 	BUG_ON(!dma_resv_trylock(&bo->base._resv));
364 
365 	r = dma_resv_copy_fences(&bo->base._resv, bo->base.resv);
366 	dma_resv_unlock(&bo->base._resv);
367 	if (r)
368 		return r;
369 
370 	if (bo->type != ttm_bo_type_sg) {
371 		/* This works because the BO is about to be destroyed and nobody
372 		 * reference it any more. The only tricky case is the trylock on
373 		 * the resv object while holding the lru_lock.
374 		 */
375 		spin_lock(&ttm_bo_glob.lru_lock);
376 		bo->base.resv = &bo->base._resv;
377 		spin_unlock(&ttm_bo_glob.lru_lock);
378 	}
379 
380 	return r;
381 }
382 
383 static void ttm_bo_flush_all_fences(struct ttm_buffer_object *bo)
384 {
385 	struct dma_resv *resv = &bo->base._resv;
386 	struct dma_resv_list *fobj;
387 	struct dma_fence *fence;
388 	int i;
389 
390 	rcu_read_lock();
391 	fobj = rcu_dereference(resv->fence);
392 	fence = rcu_dereference(resv->fence_excl);
393 	if (fence && !fence->ops->signaled)
394 		dma_fence_enable_sw_signaling(fence);
395 
396 	for (i = 0; fobj && i < fobj->shared_count; ++i) {
397 		fence = rcu_dereference(fobj->shared[i]);
398 
399 		if (!fence->ops->signaled)
400 			dma_fence_enable_sw_signaling(fence);
401 	}
402 	rcu_read_unlock();
403 }
404 
405 /**
406  * function ttm_bo_cleanup_refs
407  * If bo idle, remove from lru lists, and unref.
408  * If not idle, block if possible.
409  *
410  * Must be called with lru_lock and reservation held, this function
411  * will drop the lru lock and optionally the reservation lock before returning.
412  *
413  * @interruptible         Any sleeps should occur interruptibly.
414  * @no_wait_gpu           Never wait for gpu. Return -EBUSY instead.
415  * @unlock_resv           Unlock the reservation lock as well.
416  */
417 
418 static int ttm_bo_cleanup_refs(struct ttm_buffer_object *bo,
419 			       bool interruptible, bool no_wait_gpu,
420 			       bool unlock_resv)
421 {
422 	struct dma_resv *resv = &bo->base._resv;
423 	int ret;
424 
425 	if (dma_resv_test_signaled_rcu(resv, true))
426 		ret = 0;
427 	else
428 		ret = -EBUSY;
429 
430 	if (ret && !no_wait_gpu) {
431 		long lret;
432 
433 		if (unlock_resv)
434 			dma_resv_unlock(bo->base.resv);
435 		spin_unlock(&ttm_bo_glob.lru_lock);
436 
437 		lret = dma_resv_wait_timeout_rcu(resv, true, interruptible,
438 						 30 * HZ);
439 
440 		if (lret < 0)
441 			return lret;
442 		else if (lret == 0)
443 			return -EBUSY;
444 
445 		spin_lock(&ttm_bo_glob.lru_lock);
446 		if (unlock_resv && !dma_resv_trylock(bo->base.resv)) {
447 			/*
448 			 * We raced, and lost, someone else holds the reservation now,
449 			 * and is probably busy in ttm_bo_cleanup_memtype_use.
450 			 *
451 			 * Even if it's not the case, because we finished waiting any
452 			 * delayed destruction would succeed, so just return success
453 			 * here.
454 			 */
455 			spin_unlock(&ttm_bo_glob.lru_lock);
456 			return 0;
457 		}
458 		ret = 0;
459 	}
460 
461 	if (ret || unlikely(list_empty(&bo->ddestroy))) {
462 		if (unlock_resv)
463 			dma_resv_unlock(bo->base.resv);
464 		spin_unlock(&ttm_bo_glob.lru_lock);
465 		return ret;
466 	}
467 
468 	ttm_bo_del_from_lru(bo);
469 	list_del_init(&bo->ddestroy);
470 	spin_unlock(&ttm_bo_glob.lru_lock);
471 	ttm_bo_cleanup_memtype_use(bo);
472 
473 	if (unlock_resv)
474 		dma_resv_unlock(bo->base.resv);
475 
476 	ttm_bo_put(bo);
477 
478 	return 0;
479 }
480 
481 /**
482  * Traverse the delayed list, and call ttm_bo_cleanup_refs on all
483  * encountered buffers.
484  */
485 static bool ttm_bo_delayed_delete(struct ttm_bo_device *bdev, bool remove_all)
486 {
487 	struct ttm_bo_global *glob = &ttm_bo_glob;
488 	struct list_head removed;
489 	bool empty;
490 
491 	INIT_LIST_HEAD(&removed);
492 
493 	spin_lock(&glob->lru_lock);
494 	while (!list_empty(&bdev->ddestroy)) {
495 		struct ttm_buffer_object *bo;
496 
497 		bo = list_first_entry(&bdev->ddestroy, struct ttm_buffer_object,
498 				      ddestroy);
499 		list_move_tail(&bo->ddestroy, &removed);
500 		if (!ttm_bo_get_unless_zero(bo))
501 			continue;
502 
503 		if (remove_all || bo->base.resv != &bo->base._resv) {
504 			spin_unlock(&glob->lru_lock);
505 			dma_resv_lock(bo->base.resv, NULL);
506 
507 			spin_lock(&glob->lru_lock);
508 			ttm_bo_cleanup_refs(bo, false, !remove_all, true);
509 
510 		} else if (dma_resv_trylock(bo->base.resv)) {
511 			ttm_bo_cleanup_refs(bo, false, !remove_all, true);
512 		} else {
513 			spin_unlock(&glob->lru_lock);
514 		}
515 
516 		ttm_bo_put(bo);
517 		spin_lock(&glob->lru_lock);
518 	}
519 	list_splice_tail(&removed, &bdev->ddestroy);
520 	empty = list_empty(&bdev->ddestroy);
521 	spin_unlock(&glob->lru_lock);
522 
523 	return empty;
524 }
525 
526 static void ttm_bo_delayed_workqueue(struct work_struct *work)
527 {
528 	struct ttm_bo_device *bdev =
529 	    container_of(work, struct ttm_bo_device, wq.work);
530 
531 	if (!ttm_bo_delayed_delete(bdev, false))
532 		schedule_delayed_work(&bdev->wq,
533 				      ((HZ / 100) < 1) ? 1 : HZ / 100);
534 }
535 
536 static void ttm_bo_release(struct kref *kref)
537 {
538 	struct ttm_buffer_object *bo =
539 	    container_of(kref, struct ttm_buffer_object, kref);
540 	struct ttm_bo_device *bdev = bo->bdev;
541 	struct ttm_resource_manager *man = ttm_manager_type(bdev, bo->mem.mem_type);
542 	size_t acc_size = bo->acc_size;
543 	int ret;
544 
545 	if (!bo->deleted) {
546 		ret = ttm_bo_individualize_resv(bo);
547 		if (ret) {
548 			/* Last resort, if we fail to allocate memory for the
549 			 * fences block for the BO to become idle
550 			 */
551 			dma_resv_wait_timeout_rcu(bo->base.resv, true, false,
552 						  30 * HZ);
553 		}
554 
555 		if (bo->bdev->driver->release_notify)
556 			bo->bdev->driver->release_notify(bo);
557 
558 		drm_vma_offset_remove(bdev->vma_manager, &bo->base.vma_node);
559 		ttm_mem_io_lock(man, false);
560 		ttm_mem_io_free_vm(bo);
561 		ttm_mem_io_unlock(man);
562 	}
563 
564 	if (!dma_resv_test_signaled_rcu(bo->base.resv, true) ||
565 	    !dma_resv_trylock(bo->base.resv)) {
566 		/* The BO is not idle, resurrect it for delayed destroy */
567 		ttm_bo_flush_all_fences(bo);
568 		bo->deleted = true;
569 
570 		spin_lock(&ttm_bo_glob.lru_lock);
571 
572 		/*
573 		 * Make NO_EVICT bos immediately available to
574 		 * shrinkers, now that they are queued for
575 		 * destruction.
576 		 */
577 		if (bo->mem.placement & TTM_PL_FLAG_NO_EVICT) {
578 			bo->mem.placement &= ~TTM_PL_FLAG_NO_EVICT;
579 			ttm_bo_del_from_lru(bo);
580 			ttm_bo_add_mem_to_lru(bo, &bo->mem);
581 		}
582 
583 		kref_init(&bo->kref);
584 		list_add_tail(&bo->ddestroy, &bdev->ddestroy);
585 		spin_unlock(&ttm_bo_glob.lru_lock);
586 
587 		schedule_delayed_work(&bdev->wq,
588 				      ((HZ / 100) < 1) ? 1 : HZ / 100);
589 		return;
590 	}
591 
592 	spin_lock(&ttm_bo_glob.lru_lock);
593 	ttm_bo_del_from_lru(bo);
594 	list_del(&bo->ddestroy);
595 	spin_unlock(&ttm_bo_glob.lru_lock);
596 
597 	ttm_bo_cleanup_memtype_use(bo);
598 	dma_resv_unlock(bo->base.resv);
599 
600 	atomic_dec(&ttm_bo_glob.bo_count);
601 	dma_fence_put(bo->moving);
602 	if (!ttm_bo_uses_embedded_gem_object(bo))
603 		dma_resv_fini(&bo->base._resv);
604 	bo->destroy(bo);
605 	ttm_mem_global_free(&ttm_mem_glob, acc_size);
606 }
607 
608 void ttm_bo_put(struct ttm_buffer_object *bo)
609 {
610 	kref_put(&bo->kref, ttm_bo_release);
611 }
612 EXPORT_SYMBOL(ttm_bo_put);
613 
614 int ttm_bo_lock_delayed_workqueue(struct ttm_bo_device *bdev)
615 {
616 	return cancel_delayed_work_sync(&bdev->wq);
617 }
618 EXPORT_SYMBOL(ttm_bo_lock_delayed_workqueue);
619 
620 void ttm_bo_unlock_delayed_workqueue(struct ttm_bo_device *bdev, int resched)
621 {
622 	if (resched)
623 		schedule_delayed_work(&bdev->wq,
624 				      ((HZ / 100) < 1) ? 1 : HZ / 100);
625 }
626 EXPORT_SYMBOL(ttm_bo_unlock_delayed_workqueue);
627 
628 static int ttm_bo_evict(struct ttm_buffer_object *bo,
629 			struct ttm_operation_ctx *ctx)
630 {
631 	struct ttm_bo_device *bdev = bo->bdev;
632 	struct ttm_resource evict_mem;
633 	struct ttm_placement placement;
634 	int ret = 0;
635 
636 	dma_resv_assert_held(bo->base.resv);
637 
638 	placement.num_placement = 0;
639 	placement.num_busy_placement = 0;
640 	bdev->driver->evict_flags(bo, &placement);
641 
642 	if (!placement.num_placement && !placement.num_busy_placement) {
643 		ttm_bo_wait(bo, false, false);
644 
645 		ttm_bo_cleanup_memtype_use(bo);
646 		return ttm_tt_create(bo, false);
647 	}
648 
649 	evict_mem = bo->mem;
650 	evict_mem.mm_node = NULL;
651 	evict_mem.bus.io_reserved_vm = false;
652 	evict_mem.bus.io_reserved_count = 0;
653 
654 	ret = ttm_bo_mem_space(bo, &placement, &evict_mem, ctx);
655 	if (ret) {
656 		if (ret != -ERESTARTSYS) {
657 			pr_err("Failed to find memory space for buffer 0x%p eviction\n",
658 			       bo);
659 			ttm_bo_mem_space_debug(bo, &placement);
660 		}
661 		goto out;
662 	}
663 
664 	ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, ctx);
665 	if (unlikely(ret)) {
666 		if (ret != -ERESTARTSYS)
667 			pr_err("Buffer eviction failed\n");
668 		ttm_resource_free(bo, &evict_mem);
669 		goto out;
670 	}
671 	bo->evicted = true;
672 out:
673 	return ret;
674 }
675 
676 bool ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
677 			      const struct ttm_place *place)
678 {
679 	/* Don't evict this BO if it's outside of the
680 	 * requested placement range
681 	 */
682 	if (place->fpfn >= (bo->mem.start + bo->mem.size) ||
683 	    (place->lpfn && place->lpfn <= bo->mem.start))
684 		return false;
685 
686 	return true;
687 }
688 EXPORT_SYMBOL(ttm_bo_eviction_valuable);
689 
690 /**
691  * Check the target bo is allowable to be evicted or swapout, including cases:
692  *
693  * a. if share same reservation object with ctx->resv, have assumption
694  * reservation objects should already be locked, so not lock again and
695  * return true directly when either the opreation allow_reserved_eviction
696  * or the target bo already is in delayed free list;
697  *
698  * b. Otherwise, trylock it.
699  */
700 static bool ttm_bo_evict_swapout_allowable(struct ttm_buffer_object *bo,
701 			struct ttm_operation_ctx *ctx, bool *locked, bool *busy)
702 {
703 	bool ret = false;
704 
705 	if (bo->base.resv == ctx->resv) {
706 		dma_resv_assert_held(bo->base.resv);
707 		if (ctx->flags & TTM_OPT_FLAG_ALLOW_RES_EVICT)
708 			ret = true;
709 		*locked = false;
710 		if (busy)
711 			*busy = false;
712 	} else {
713 		ret = dma_resv_trylock(bo->base.resv);
714 		*locked = ret;
715 		if (busy)
716 			*busy = !ret;
717 	}
718 
719 	return ret;
720 }
721 
722 /**
723  * ttm_mem_evict_wait_busy - wait for a busy BO to become available
724  *
725  * @busy_bo: BO which couldn't be locked with trylock
726  * @ctx: operation context
727  * @ticket: acquire ticket
728  *
729  * Try to lock a busy buffer object to avoid failing eviction.
730  */
731 static int ttm_mem_evict_wait_busy(struct ttm_buffer_object *busy_bo,
732 				   struct ttm_operation_ctx *ctx,
733 				   struct ww_acquire_ctx *ticket)
734 {
735 	int r;
736 
737 	if (!busy_bo || !ticket)
738 		return -EBUSY;
739 
740 	if (ctx->interruptible)
741 		r = dma_resv_lock_interruptible(busy_bo->base.resv,
742 							  ticket);
743 	else
744 		r = dma_resv_lock(busy_bo->base.resv, ticket);
745 
746 	/*
747 	 * TODO: It would be better to keep the BO locked until allocation is at
748 	 * least tried one more time, but that would mean a much larger rework
749 	 * of TTM.
750 	 */
751 	if (!r)
752 		dma_resv_unlock(busy_bo->base.resv);
753 
754 	return r == -EDEADLK ? -EBUSY : r;
755 }
756 
757 int ttm_mem_evict_first(struct ttm_bo_device *bdev,
758 			struct ttm_resource_manager *man,
759 			const struct ttm_place *place,
760 			struct ttm_operation_ctx *ctx,
761 			struct ww_acquire_ctx *ticket)
762 {
763 	struct ttm_buffer_object *bo = NULL, *busy_bo = NULL;
764 	bool locked = false;
765 	unsigned i;
766 	int ret;
767 
768 	spin_lock(&ttm_bo_glob.lru_lock);
769 	for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) {
770 		list_for_each_entry(bo, &man->lru[i], lru) {
771 			bool busy;
772 
773 			if (!ttm_bo_evict_swapout_allowable(bo, ctx, &locked,
774 							    &busy)) {
775 				if (busy && !busy_bo && ticket !=
776 				    dma_resv_locking_ctx(bo->base.resv))
777 					busy_bo = bo;
778 				continue;
779 			}
780 
781 			if (place && !bdev->driver->eviction_valuable(bo,
782 								      place)) {
783 				if (locked)
784 					dma_resv_unlock(bo->base.resv);
785 				continue;
786 			}
787 			if (!ttm_bo_get_unless_zero(bo)) {
788 				if (locked)
789 					dma_resv_unlock(bo->base.resv);
790 				continue;
791 			}
792 			break;
793 		}
794 
795 		/* If the inner loop terminated early, we have our candidate */
796 		if (&bo->lru != &man->lru[i])
797 			break;
798 
799 		bo = NULL;
800 	}
801 
802 	if (!bo) {
803 		if (busy_bo && !ttm_bo_get_unless_zero(busy_bo))
804 			busy_bo = NULL;
805 		spin_unlock(&ttm_bo_glob.lru_lock);
806 		ret = ttm_mem_evict_wait_busy(busy_bo, ctx, ticket);
807 		if (busy_bo)
808 			ttm_bo_put(busy_bo);
809 		return ret;
810 	}
811 
812 	if (bo->deleted) {
813 		ret = ttm_bo_cleanup_refs(bo, ctx->interruptible,
814 					  ctx->no_wait_gpu, locked);
815 		ttm_bo_put(bo);
816 		return ret;
817 	}
818 
819 	spin_unlock(&ttm_bo_glob.lru_lock);
820 
821 	ret = ttm_bo_evict(bo, ctx);
822 	if (locked)
823 		ttm_bo_unreserve(bo);
824 
825 	ttm_bo_put(bo);
826 	return ret;
827 }
828 
829 /**
830  * Add the last move fence to the BO and reserve a new shared slot.
831  */
832 static int ttm_bo_add_move_fence(struct ttm_buffer_object *bo,
833 				 struct ttm_resource_manager *man,
834 				 struct ttm_resource *mem,
835 				 bool no_wait_gpu)
836 {
837 	struct dma_fence *fence;
838 	int ret;
839 
840 	spin_lock(&man->move_lock);
841 	fence = dma_fence_get(man->move);
842 	spin_unlock(&man->move_lock);
843 
844 	if (!fence)
845 		return 0;
846 
847 	if (no_wait_gpu) {
848 		dma_fence_put(fence);
849 		return -EBUSY;
850 	}
851 
852 	dma_resv_add_shared_fence(bo->base.resv, fence);
853 
854 	ret = dma_resv_reserve_shared(bo->base.resv, 1);
855 	if (unlikely(ret)) {
856 		dma_fence_put(fence);
857 		return ret;
858 	}
859 
860 	dma_fence_put(bo->moving);
861 	bo->moving = fence;
862 	return 0;
863 }
864 
865 /**
866  * Repeatedly evict memory from the LRU for @mem_type until we create enough
867  * space, or we've evicted everything and there isn't enough space.
868  */
869 static int ttm_bo_mem_force_space(struct ttm_buffer_object *bo,
870 				  const struct ttm_place *place,
871 				  struct ttm_resource *mem,
872 				  struct ttm_operation_ctx *ctx)
873 {
874 	struct ttm_bo_device *bdev = bo->bdev;
875 	struct ttm_resource_manager *man = ttm_manager_type(bdev, mem->mem_type);
876 	struct ww_acquire_ctx *ticket;
877 	int ret;
878 
879 	ticket = dma_resv_locking_ctx(bo->base.resv);
880 	do {
881 		ret = ttm_resource_alloc(bo, place, mem);
882 		if (likely(!ret))
883 			break;
884 		if (unlikely(ret != -ENOSPC))
885 			return ret;
886 		ret = ttm_mem_evict_first(bdev, man, place, ctx,
887 					  ticket);
888 		if (unlikely(ret != 0))
889 			return ret;
890 	} while (1);
891 
892 	return ttm_bo_add_move_fence(bo, man, mem, ctx->no_wait_gpu);
893 }
894 
895 static uint32_t ttm_bo_select_caching(struct ttm_resource_manager *man,
896 				      uint32_t cur_placement,
897 				      uint32_t proposed_placement)
898 {
899 	uint32_t caching = proposed_placement & TTM_PL_MASK_CACHING;
900 	uint32_t result = proposed_placement & ~TTM_PL_MASK_CACHING;
901 
902 	/**
903 	 * Keep current caching if possible.
904 	 */
905 
906 	if ((cur_placement & caching) != 0)
907 		result |= (cur_placement & caching);
908 	else if ((man->default_caching & caching) != 0)
909 		result |= man->default_caching;
910 	else if ((TTM_PL_FLAG_CACHED & caching) != 0)
911 		result |= TTM_PL_FLAG_CACHED;
912 	else if ((TTM_PL_FLAG_WC & caching) != 0)
913 		result |= TTM_PL_FLAG_WC;
914 	else if ((TTM_PL_FLAG_UNCACHED & caching) != 0)
915 		result |= TTM_PL_FLAG_UNCACHED;
916 
917 	return result;
918 }
919 
920 static bool ttm_bo_mt_compatible(struct ttm_resource_manager *man,
921 				 uint32_t mem_type,
922 				 const struct ttm_place *place,
923 				 uint32_t *masked_placement)
924 {
925 	uint32_t cur_flags = ttm_bo_type_flags(mem_type);
926 
927 	if ((cur_flags & place->flags & TTM_PL_MASK_MEM) == 0)
928 		return false;
929 
930 	if ((place->flags & man->available_caching) == 0)
931 		return false;
932 
933 	cur_flags |= (place->flags & man->available_caching);
934 
935 	*masked_placement = cur_flags;
936 	return true;
937 }
938 
939 /**
940  * ttm_bo_mem_placement - check if placement is compatible
941  * @bo: BO to find memory for
942  * @place: where to search
943  * @mem: the memory object to fill in
944  * @ctx: operation context
945  *
946  * Check if placement is compatible and fill in mem structure.
947  * Returns -EBUSY if placement won't work or negative error code.
948  * 0 when placement can be used.
949  */
950 static int ttm_bo_mem_placement(struct ttm_buffer_object *bo,
951 				const struct ttm_place *place,
952 				struct ttm_resource *mem,
953 				struct ttm_operation_ctx *ctx)
954 {
955 	struct ttm_bo_device *bdev = bo->bdev;
956 	uint32_t mem_type = TTM_PL_SYSTEM;
957 	struct ttm_resource_manager *man;
958 	uint32_t cur_flags = 0;
959 	int ret;
960 
961 	ret = ttm_mem_type_from_place(place, &mem_type);
962 	if (ret)
963 		return ret;
964 
965 	man = ttm_manager_type(bdev, mem_type);
966 	if (!man || !ttm_resource_manager_used(man))
967 		return -EBUSY;
968 
969 	if (!ttm_bo_mt_compatible(man, mem_type, place, &cur_flags))
970 		return -EBUSY;
971 
972 	cur_flags = ttm_bo_select_caching(man, bo->mem.placement, cur_flags);
973 	/*
974 	 * Use the access and other non-mapping-related flag bits from
975 	 * the memory placement flags to the current flags
976 	 */
977 	ttm_flag_masked(&cur_flags, place->flags, ~TTM_PL_MASK_MEMTYPE);
978 
979 	mem->mem_type = mem_type;
980 	mem->placement = cur_flags;
981 
982 	spin_lock(&ttm_bo_glob.lru_lock);
983 	ttm_bo_del_from_lru(bo);
984 	ttm_bo_add_mem_to_lru(bo, mem);
985 	spin_unlock(&ttm_bo_glob.lru_lock);
986 
987 	return 0;
988 }
989 
990 /**
991  * Creates space for memory region @mem according to its type.
992  *
993  * This function first searches for free space in compatible memory types in
994  * the priority order defined by the driver.  If free space isn't found, then
995  * ttm_bo_mem_force_space is attempted in priority order to evict and find
996  * space.
997  */
998 int ttm_bo_mem_space(struct ttm_buffer_object *bo,
999 			struct ttm_placement *placement,
1000 			struct ttm_resource *mem,
1001 			struct ttm_operation_ctx *ctx)
1002 {
1003 	struct ttm_bo_device *bdev = bo->bdev;
1004 	bool type_found = false;
1005 	int i, ret;
1006 
1007 	ret = dma_resv_reserve_shared(bo->base.resv, 1);
1008 	if (unlikely(ret))
1009 		return ret;
1010 
1011 	for (i = 0; i < placement->num_placement; ++i) {
1012 		const struct ttm_place *place = &placement->placement[i];
1013 		struct ttm_resource_manager *man;
1014 
1015 		ret = ttm_bo_mem_placement(bo, place, mem, ctx);
1016 		if (ret == -EBUSY)
1017 			continue;
1018 		if (ret)
1019 			goto error;
1020 
1021 		type_found = true;
1022 		ret = ttm_resource_alloc(bo, place, mem);
1023 		if (ret == -ENOSPC)
1024 			continue;
1025 		if (unlikely(ret))
1026 			goto error;
1027 
1028 		man = ttm_manager_type(bdev, mem->mem_type);
1029 		ret = ttm_bo_add_move_fence(bo, man, mem, ctx->no_wait_gpu);
1030 		if (unlikely(ret)) {
1031 			ttm_resource_free(bo, mem);
1032 			if (ret == -EBUSY)
1033 				continue;
1034 
1035 			goto error;
1036 		}
1037 		return 0;
1038 	}
1039 
1040 	for (i = 0; i < placement->num_busy_placement; ++i) {
1041 		const struct ttm_place *place = &placement->busy_placement[i];
1042 
1043 		ret = ttm_bo_mem_placement(bo, place, mem, ctx);
1044 		if (ret == -EBUSY)
1045 			continue;
1046 		if (ret)
1047 			goto error;
1048 
1049 		type_found = true;
1050 		ret = ttm_bo_mem_force_space(bo, place, mem, ctx);
1051 		if (likely(!ret))
1052 			return 0;
1053 
1054 		if (ret && ret != -EBUSY)
1055 			goto error;
1056 	}
1057 
1058 	ret = -ENOMEM;
1059 	if (!type_found) {
1060 		pr_err(TTM_PFX "No compatible memory type found\n");
1061 		ret = -EINVAL;
1062 	}
1063 
1064 error:
1065 	if (bo->mem.mem_type == TTM_PL_SYSTEM && !list_empty(&bo->lru)) {
1066 		ttm_bo_move_to_lru_tail_unlocked(bo);
1067 	}
1068 
1069 	return ret;
1070 }
1071 EXPORT_SYMBOL(ttm_bo_mem_space);
1072 
1073 static int ttm_bo_move_buffer(struct ttm_buffer_object *bo,
1074 			      struct ttm_placement *placement,
1075 			      struct ttm_operation_ctx *ctx)
1076 {
1077 	int ret = 0;
1078 	struct ttm_resource mem;
1079 
1080 	dma_resv_assert_held(bo->base.resv);
1081 
1082 	mem.num_pages = bo->num_pages;
1083 	mem.size = mem.num_pages << PAGE_SHIFT;
1084 	mem.page_alignment = bo->mem.page_alignment;
1085 	mem.bus.io_reserved_vm = false;
1086 	mem.bus.io_reserved_count = 0;
1087 	mem.mm_node = NULL;
1088 
1089 	/*
1090 	 * Determine where to move the buffer.
1091 	 */
1092 	ret = ttm_bo_mem_space(bo, placement, &mem, ctx);
1093 	if (ret)
1094 		goto out_unlock;
1095 	ret = ttm_bo_handle_move_mem(bo, &mem, false, ctx);
1096 out_unlock:
1097 	if (ret)
1098 		ttm_resource_free(bo, &mem);
1099 	return ret;
1100 }
1101 
1102 static bool ttm_bo_places_compat(const struct ttm_place *places,
1103 				 unsigned num_placement,
1104 				 struct ttm_resource *mem,
1105 				 uint32_t *new_flags)
1106 {
1107 	unsigned i;
1108 
1109 	for (i = 0; i < num_placement; i++) {
1110 		const struct ttm_place *heap = &places[i];
1111 
1112 		if ((mem->start < heap->fpfn ||
1113 		     (heap->lpfn != 0 && (mem->start + mem->num_pages) > heap->lpfn)))
1114 			continue;
1115 
1116 		*new_flags = heap->flags;
1117 		if ((*new_flags & mem->placement & TTM_PL_MASK_CACHING) &&
1118 		    (*new_flags & mem->placement & TTM_PL_MASK_MEM) &&
1119 		    (!(*new_flags & TTM_PL_FLAG_CONTIGUOUS) ||
1120 		     (mem->placement & TTM_PL_FLAG_CONTIGUOUS)))
1121 			return true;
1122 	}
1123 	return false;
1124 }
1125 
1126 bool ttm_bo_mem_compat(struct ttm_placement *placement,
1127 		       struct ttm_resource *mem,
1128 		       uint32_t *new_flags)
1129 {
1130 	if (ttm_bo_places_compat(placement->placement, placement->num_placement,
1131 				 mem, new_flags))
1132 		return true;
1133 
1134 	if ((placement->busy_placement != placement->placement ||
1135 	     placement->num_busy_placement > placement->num_placement) &&
1136 	    ttm_bo_places_compat(placement->busy_placement,
1137 				 placement->num_busy_placement,
1138 				 mem, new_flags))
1139 		return true;
1140 
1141 	return false;
1142 }
1143 EXPORT_SYMBOL(ttm_bo_mem_compat);
1144 
1145 int ttm_bo_validate(struct ttm_buffer_object *bo,
1146 		    struct ttm_placement *placement,
1147 		    struct ttm_operation_ctx *ctx)
1148 {
1149 	int ret;
1150 	uint32_t new_flags;
1151 
1152 	dma_resv_assert_held(bo->base.resv);
1153 
1154 	/*
1155 	 * Remove the backing store if no placement is given.
1156 	 */
1157 	if (!placement->num_placement && !placement->num_busy_placement) {
1158 		ret = ttm_bo_pipeline_gutting(bo);
1159 		if (ret)
1160 			return ret;
1161 
1162 		return ttm_tt_create(bo, false);
1163 	}
1164 
1165 	/*
1166 	 * Check whether we need to move buffer.
1167 	 */
1168 	if (!ttm_bo_mem_compat(placement, &bo->mem, &new_flags)) {
1169 		ret = ttm_bo_move_buffer(bo, placement, ctx);
1170 		if (ret)
1171 			return ret;
1172 	} else {
1173 		/*
1174 		 * Use the access and other non-mapping-related flag bits from
1175 		 * the compatible memory placement flags to the active flags
1176 		 */
1177 		ttm_flag_masked(&bo->mem.placement, new_flags,
1178 				~TTM_PL_MASK_MEMTYPE);
1179 	}
1180 	/*
1181 	 * We might need to add a TTM.
1182 	 */
1183 	if (bo->mem.mem_type == TTM_PL_SYSTEM) {
1184 		ret = ttm_tt_create(bo, true);
1185 		if (ret)
1186 			return ret;
1187 	}
1188 	return 0;
1189 }
1190 EXPORT_SYMBOL(ttm_bo_validate);
1191 
1192 int ttm_bo_init_reserved(struct ttm_bo_device *bdev,
1193 			 struct ttm_buffer_object *bo,
1194 			 unsigned long size,
1195 			 enum ttm_bo_type type,
1196 			 struct ttm_placement *placement,
1197 			 uint32_t page_alignment,
1198 			 struct ttm_operation_ctx *ctx,
1199 			 size_t acc_size,
1200 			 struct sg_table *sg,
1201 			 struct dma_resv *resv,
1202 			 void (*destroy) (struct ttm_buffer_object *))
1203 {
1204 	struct ttm_mem_global *mem_glob = &ttm_mem_glob;
1205 	int ret = 0;
1206 	unsigned long num_pages;
1207 	bool locked;
1208 
1209 	ret = ttm_mem_global_alloc(mem_glob, acc_size, ctx);
1210 	if (ret) {
1211 		pr_err("Out of kernel memory\n");
1212 		if (destroy)
1213 			(*destroy)(bo);
1214 		else
1215 			kfree(bo);
1216 		return -ENOMEM;
1217 	}
1218 
1219 	num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1220 	if (num_pages == 0) {
1221 		pr_err("Illegal buffer object size\n");
1222 		if (destroy)
1223 			(*destroy)(bo);
1224 		else
1225 			kfree(bo);
1226 		ttm_mem_global_free(mem_glob, acc_size);
1227 		return -EINVAL;
1228 	}
1229 	bo->destroy = destroy ? destroy : ttm_bo_default_destroy;
1230 
1231 	kref_init(&bo->kref);
1232 	INIT_LIST_HEAD(&bo->lru);
1233 	INIT_LIST_HEAD(&bo->ddestroy);
1234 	INIT_LIST_HEAD(&bo->swap);
1235 	INIT_LIST_HEAD(&bo->io_reserve_lru);
1236 	bo->bdev = bdev;
1237 	bo->type = type;
1238 	bo->num_pages = num_pages;
1239 	bo->mem.size = num_pages << PAGE_SHIFT;
1240 	bo->mem.mem_type = TTM_PL_SYSTEM;
1241 	bo->mem.num_pages = bo->num_pages;
1242 	bo->mem.mm_node = NULL;
1243 	bo->mem.page_alignment = page_alignment;
1244 	bo->mem.bus.io_reserved_vm = false;
1245 	bo->mem.bus.io_reserved_count = 0;
1246 	bo->moving = NULL;
1247 	bo->mem.placement = (TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED);
1248 	bo->acc_size = acc_size;
1249 	bo->sg = sg;
1250 	if (resv) {
1251 		bo->base.resv = resv;
1252 		dma_resv_assert_held(bo->base.resv);
1253 	} else {
1254 		bo->base.resv = &bo->base._resv;
1255 	}
1256 	if (!ttm_bo_uses_embedded_gem_object(bo)) {
1257 		/*
1258 		 * bo.gem is not initialized, so we have to setup the
1259 		 * struct elements we want use regardless.
1260 		 */
1261 		dma_resv_init(&bo->base._resv);
1262 		drm_vma_node_reset(&bo->base.vma_node);
1263 	}
1264 	atomic_inc(&ttm_bo_glob.bo_count);
1265 
1266 	/*
1267 	 * For ttm_bo_type_device buffers, allocate
1268 	 * address space from the device.
1269 	 */
1270 	if (bo->type == ttm_bo_type_device ||
1271 	    bo->type == ttm_bo_type_sg)
1272 		ret = drm_vma_offset_add(bdev->vma_manager, &bo->base.vma_node,
1273 					 bo->mem.num_pages);
1274 
1275 	/* passed reservation objects should already be locked,
1276 	 * since otherwise lockdep will be angered in radeon.
1277 	 */
1278 	if (!resv) {
1279 		locked = dma_resv_trylock(bo->base.resv);
1280 		WARN_ON(!locked);
1281 	}
1282 
1283 	if (likely(!ret))
1284 		ret = ttm_bo_validate(bo, placement, ctx);
1285 
1286 	if (unlikely(ret)) {
1287 		if (!resv)
1288 			ttm_bo_unreserve(bo);
1289 
1290 		ttm_bo_put(bo);
1291 		return ret;
1292 	}
1293 
1294 	ttm_bo_move_to_lru_tail_unlocked(bo);
1295 
1296 	return ret;
1297 }
1298 EXPORT_SYMBOL(ttm_bo_init_reserved);
1299 
1300 int ttm_bo_init(struct ttm_bo_device *bdev,
1301 		struct ttm_buffer_object *bo,
1302 		unsigned long size,
1303 		enum ttm_bo_type type,
1304 		struct ttm_placement *placement,
1305 		uint32_t page_alignment,
1306 		bool interruptible,
1307 		size_t acc_size,
1308 		struct sg_table *sg,
1309 		struct dma_resv *resv,
1310 		void (*destroy) (struct ttm_buffer_object *))
1311 {
1312 	struct ttm_operation_ctx ctx = { interruptible, false };
1313 	int ret;
1314 
1315 	ret = ttm_bo_init_reserved(bdev, bo, size, type, placement,
1316 				   page_alignment, &ctx, acc_size,
1317 				   sg, resv, destroy);
1318 	if (ret)
1319 		return ret;
1320 
1321 	if (!resv)
1322 		ttm_bo_unreserve(bo);
1323 
1324 	return 0;
1325 }
1326 EXPORT_SYMBOL(ttm_bo_init);
1327 
1328 size_t ttm_bo_acc_size(struct ttm_bo_device *bdev,
1329 		       unsigned long bo_size,
1330 		       unsigned struct_size)
1331 {
1332 	unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT;
1333 	size_t size = 0;
1334 
1335 	size += ttm_round_pot(struct_size);
1336 	size += ttm_round_pot(npages * sizeof(void *));
1337 	size += ttm_round_pot(sizeof(struct ttm_tt));
1338 	return size;
1339 }
1340 EXPORT_SYMBOL(ttm_bo_acc_size);
1341 
1342 size_t ttm_bo_dma_acc_size(struct ttm_bo_device *bdev,
1343 			   unsigned long bo_size,
1344 			   unsigned struct_size)
1345 {
1346 	unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT;
1347 	size_t size = 0;
1348 
1349 	size += ttm_round_pot(struct_size);
1350 	size += ttm_round_pot(npages * (2*sizeof(void *) + sizeof(dma_addr_t)));
1351 	size += ttm_round_pot(sizeof(struct ttm_dma_tt));
1352 	return size;
1353 }
1354 EXPORT_SYMBOL(ttm_bo_dma_acc_size);
1355 
1356 int ttm_bo_create(struct ttm_bo_device *bdev,
1357 			unsigned long size,
1358 			enum ttm_bo_type type,
1359 			struct ttm_placement *placement,
1360 			uint32_t page_alignment,
1361 			bool interruptible,
1362 			struct ttm_buffer_object **p_bo)
1363 {
1364 	struct ttm_buffer_object *bo;
1365 	size_t acc_size;
1366 	int ret;
1367 
1368 	bo = kzalloc(sizeof(*bo), GFP_KERNEL);
1369 	if (unlikely(bo == NULL))
1370 		return -ENOMEM;
1371 
1372 	acc_size = ttm_bo_acc_size(bdev, size, sizeof(struct ttm_buffer_object));
1373 	ret = ttm_bo_init(bdev, bo, size, type, placement, page_alignment,
1374 			  interruptible, acc_size,
1375 			  NULL, NULL, NULL);
1376 	if (likely(ret == 0))
1377 		*p_bo = bo;
1378 
1379 	return ret;
1380 }
1381 EXPORT_SYMBOL(ttm_bo_create);
1382 
1383 int ttm_bo_evict_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1384 {
1385 	struct ttm_resource_manager *man = ttm_manager_type(bdev, mem_type);
1386 
1387 	if (mem_type == 0 || mem_type >= TTM_NUM_MEM_TYPES) {
1388 		pr_err("Illegal memory manager memory type %u\n", mem_type);
1389 		return -EINVAL;
1390 	}
1391 
1392 	if (!man) {
1393 		pr_err("Memory type %u has not been initialized\n", mem_type);
1394 		return 0;
1395 	}
1396 
1397 	return ttm_resource_manager_force_list_clean(bdev, man);
1398 }
1399 EXPORT_SYMBOL(ttm_bo_evict_mm);
1400 
1401 static void ttm_bo_global_kobj_release(struct kobject *kobj)
1402 {
1403 	struct ttm_bo_global *glob =
1404 		container_of(kobj, struct ttm_bo_global, kobj);
1405 
1406 	__free_page(glob->dummy_read_page);
1407 }
1408 
1409 static void ttm_bo_global_release(void)
1410 {
1411 	struct ttm_bo_global *glob = &ttm_bo_glob;
1412 
1413 	mutex_lock(&ttm_global_mutex);
1414 	if (--ttm_bo_glob_use_count > 0)
1415 		goto out;
1416 
1417 	kobject_del(&glob->kobj);
1418 	kobject_put(&glob->kobj);
1419 	ttm_mem_global_release(&ttm_mem_glob);
1420 	memset(glob, 0, sizeof(*glob));
1421 out:
1422 	mutex_unlock(&ttm_global_mutex);
1423 }
1424 
1425 static int ttm_bo_global_init(void)
1426 {
1427 	struct ttm_bo_global *glob = &ttm_bo_glob;
1428 	int ret = 0;
1429 	unsigned i;
1430 
1431 	mutex_lock(&ttm_global_mutex);
1432 	if (++ttm_bo_glob_use_count > 1)
1433 		goto out;
1434 
1435 	ret = ttm_mem_global_init(&ttm_mem_glob);
1436 	if (ret)
1437 		goto out;
1438 
1439 	spin_lock_init(&glob->lru_lock);
1440 	glob->dummy_read_page = alloc_page(__GFP_ZERO | GFP_DMA32);
1441 
1442 	if (unlikely(glob->dummy_read_page == NULL)) {
1443 		ret = -ENOMEM;
1444 		goto out;
1445 	}
1446 
1447 	for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i)
1448 		INIT_LIST_HEAD(&glob->swap_lru[i]);
1449 	INIT_LIST_HEAD(&glob->device_list);
1450 	atomic_set(&glob->bo_count, 0);
1451 
1452 	ret = kobject_init_and_add(
1453 		&glob->kobj, &ttm_bo_glob_kobj_type, ttm_get_kobj(), "buffer_objects");
1454 	if (unlikely(ret != 0))
1455 		kobject_put(&glob->kobj);
1456 out:
1457 	mutex_unlock(&ttm_global_mutex);
1458 	return ret;
1459 }
1460 
1461 int ttm_bo_device_release(struct ttm_bo_device *bdev)
1462 {
1463 	struct ttm_bo_global *glob = &ttm_bo_glob;
1464 	int ret = 0;
1465 	unsigned i;
1466 	struct ttm_resource_manager *man;
1467 
1468 	man = ttm_manager_type(bdev, TTM_PL_SYSTEM);
1469 	ttm_resource_manager_set_used(man, false);
1470 	ttm_set_driver_manager(bdev, TTM_PL_SYSTEM, NULL);
1471 
1472 	mutex_lock(&ttm_global_mutex);
1473 	list_del(&bdev->device_list);
1474 	mutex_unlock(&ttm_global_mutex);
1475 
1476 	cancel_delayed_work_sync(&bdev->wq);
1477 
1478 	if (ttm_bo_delayed_delete(bdev, true))
1479 		pr_debug("Delayed destroy list was clean\n");
1480 
1481 	spin_lock(&glob->lru_lock);
1482 	for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i)
1483 		if (list_empty(&man->lru[0]))
1484 			pr_debug("Swap list %d was clean\n", i);
1485 	spin_unlock(&glob->lru_lock);
1486 
1487 	if (!ret)
1488 		ttm_bo_global_release();
1489 
1490 	return ret;
1491 }
1492 EXPORT_SYMBOL(ttm_bo_device_release);
1493 
1494 static void ttm_bo_init_sysman(struct ttm_bo_device *bdev)
1495 {
1496 	struct ttm_resource_manager *man = &bdev->sysman;
1497 
1498 	/*
1499 	 * Initialize the system memory buffer type.
1500 	 * Other types need to be driver / IOCTL initialized.
1501 	 */
1502 	man->use_tt = true;
1503 	man->available_caching = TTM_PL_MASK_CACHING;
1504 	man->default_caching = TTM_PL_FLAG_CACHED;
1505 
1506 	ttm_resource_manager_init(man, 0);
1507 	ttm_set_driver_manager(bdev, TTM_PL_SYSTEM, man);
1508 	ttm_resource_manager_set_used(man, true);
1509 }
1510 
1511 int ttm_bo_device_init(struct ttm_bo_device *bdev,
1512 		       struct ttm_bo_driver *driver,
1513 		       struct address_space *mapping,
1514 		       struct drm_vma_offset_manager *vma_manager,
1515 		       bool need_dma32)
1516 {
1517 	struct ttm_bo_global *glob = &ttm_bo_glob;
1518 	int ret;
1519 
1520 	if (WARN_ON(vma_manager == NULL))
1521 		return -EINVAL;
1522 
1523 	ret = ttm_bo_global_init();
1524 	if (ret)
1525 		return ret;
1526 
1527 	bdev->driver = driver;
1528 
1529 	ttm_bo_init_sysman(bdev);
1530 
1531 	bdev->vma_manager = vma_manager;
1532 	INIT_DELAYED_WORK(&bdev->wq, ttm_bo_delayed_workqueue);
1533 	INIT_LIST_HEAD(&bdev->ddestroy);
1534 	bdev->dev_mapping = mapping;
1535 	bdev->need_dma32 = need_dma32;
1536 	mutex_lock(&ttm_global_mutex);
1537 	list_add_tail(&bdev->device_list, &glob->device_list);
1538 	mutex_unlock(&ttm_global_mutex);
1539 
1540 	return 0;
1541 }
1542 EXPORT_SYMBOL(ttm_bo_device_init);
1543 
1544 /*
1545  * buffer object vm functions.
1546  */
1547 
1548 void ttm_bo_unmap_virtual_locked(struct ttm_buffer_object *bo)
1549 {
1550 	struct ttm_bo_device *bdev = bo->bdev;
1551 
1552 	drm_vma_node_unmap(&bo->base.vma_node, bdev->dev_mapping);
1553 	ttm_mem_io_free_vm(bo);
1554 }
1555 
1556 void ttm_bo_unmap_virtual(struct ttm_buffer_object *bo)
1557 {
1558 	struct ttm_bo_device *bdev = bo->bdev;
1559 	struct ttm_resource_manager *man = ttm_manager_type(bdev, bo->mem.mem_type);
1560 
1561 	ttm_mem_io_lock(man, false);
1562 	ttm_bo_unmap_virtual_locked(bo);
1563 	ttm_mem_io_unlock(man);
1564 }
1565 
1566 
1567 EXPORT_SYMBOL(ttm_bo_unmap_virtual);
1568 
1569 int ttm_bo_wait(struct ttm_buffer_object *bo,
1570 		bool interruptible, bool no_wait)
1571 {
1572 	long timeout = 15 * HZ;
1573 
1574 	if (no_wait) {
1575 		if (dma_resv_test_signaled_rcu(bo->base.resv, true))
1576 			return 0;
1577 		else
1578 			return -EBUSY;
1579 	}
1580 
1581 	timeout = dma_resv_wait_timeout_rcu(bo->base.resv, true,
1582 						      interruptible, timeout);
1583 	if (timeout < 0)
1584 		return timeout;
1585 
1586 	if (timeout == 0)
1587 		return -EBUSY;
1588 
1589 	dma_resv_add_excl_fence(bo->base.resv, NULL);
1590 	return 0;
1591 }
1592 EXPORT_SYMBOL(ttm_bo_wait);
1593 
1594 /**
1595  * A buffer object shrink method that tries to swap out the first
1596  * buffer object on the bo_global::swap_lru list.
1597  */
1598 int ttm_bo_swapout(struct ttm_bo_global *glob, struct ttm_operation_ctx *ctx)
1599 {
1600 	struct ttm_buffer_object *bo;
1601 	int ret = -EBUSY;
1602 	bool locked;
1603 	unsigned i;
1604 
1605 	spin_lock(&glob->lru_lock);
1606 	for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) {
1607 		list_for_each_entry(bo, &glob->swap_lru[i], swap) {
1608 			if (!ttm_bo_evict_swapout_allowable(bo, ctx, &locked,
1609 							    NULL))
1610 				continue;
1611 
1612 			if (!ttm_bo_get_unless_zero(bo)) {
1613 				if (locked)
1614 					dma_resv_unlock(bo->base.resv);
1615 				continue;
1616 			}
1617 
1618 			ret = 0;
1619 			break;
1620 		}
1621 		if (!ret)
1622 			break;
1623 	}
1624 
1625 	if (ret) {
1626 		spin_unlock(&glob->lru_lock);
1627 		return ret;
1628 	}
1629 
1630 	if (bo->deleted) {
1631 		ret = ttm_bo_cleanup_refs(bo, false, false, locked);
1632 		ttm_bo_put(bo);
1633 		return ret;
1634 	}
1635 
1636 	ttm_bo_del_from_lru(bo);
1637 	spin_unlock(&glob->lru_lock);
1638 
1639 	/**
1640 	 * Move to system cached
1641 	 */
1642 
1643 	if (bo->mem.mem_type != TTM_PL_SYSTEM ||
1644 	    bo->ttm->caching_state != tt_cached) {
1645 		struct ttm_operation_ctx ctx = { false, false };
1646 		struct ttm_resource evict_mem;
1647 
1648 		evict_mem = bo->mem;
1649 		evict_mem.mm_node = NULL;
1650 		evict_mem.placement = TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED;
1651 		evict_mem.mem_type = TTM_PL_SYSTEM;
1652 
1653 		ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, &ctx);
1654 		if (unlikely(ret != 0))
1655 			goto out;
1656 	}
1657 
1658 	/**
1659 	 * Make sure BO is idle.
1660 	 */
1661 
1662 	ret = ttm_bo_wait(bo, false, false);
1663 	if (unlikely(ret != 0))
1664 		goto out;
1665 
1666 	ttm_bo_unmap_virtual(bo);
1667 
1668 	/**
1669 	 * Swap out. Buffer will be swapped in again as soon as
1670 	 * anyone tries to access a ttm page.
1671 	 */
1672 
1673 	if (bo->bdev->driver->swap_notify)
1674 		bo->bdev->driver->swap_notify(bo);
1675 
1676 	ret = ttm_tt_swapout(bo->ttm, bo->persistent_swap_storage);
1677 out:
1678 
1679 	/**
1680 	 *
1681 	 * Unreserve without putting on LRU to avoid swapping out an
1682 	 * already swapped buffer.
1683 	 */
1684 	if (locked)
1685 		dma_resv_unlock(bo->base.resv);
1686 	ttm_bo_put(bo);
1687 	return ret;
1688 }
1689 EXPORT_SYMBOL(ttm_bo_swapout);
1690 
1691 void ttm_bo_swapout_all(void)
1692 {
1693 	struct ttm_operation_ctx ctx = {
1694 		.interruptible = false,
1695 		.no_wait_gpu = false
1696 	};
1697 
1698 	while (ttm_bo_swapout(&ttm_bo_glob, &ctx) == 0);
1699 }
1700 EXPORT_SYMBOL(ttm_bo_swapout_all);
1701