1 /* SPDX-License-Identifier: GPL-2.0 OR MIT */ 2 /************************************************************************** 3 * 4 * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA 5 * All Rights Reserved. 6 * 7 * Permission is hereby granted, free of charge, to any person obtaining a 8 * copy of this software and associated documentation files (the 9 * "Software"), to deal in the Software without restriction, including 10 * without limitation the rights to use, copy, modify, merge, publish, 11 * distribute, sub license, and/or sell copies of the Software, and to 12 * permit persons to whom the Software is furnished to do so, subject to 13 * the following conditions: 14 * 15 * The above copyright notice and this permission notice (including the 16 * next paragraph) shall be included in all copies or substantial portions 17 * of the Software. 18 * 19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 21 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 22 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 23 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 24 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 25 * USE OR OTHER DEALINGS IN THE SOFTWARE. 26 * 27 **************************************************************************/ 28 /* 29 * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com> 30 */ 31 32 #define pr_fmt(fmt) "[TTM] " fmt 33 34 #include <drm/ttm/ttm_module.h> 35 #include <drm/ttm/ttm_bo_driver.h> 36 #include <drm/ttm/ttm_placement.h> 37 #include <linux/jiffies.h> 38 #include <linux/slab.h> 39 #include <linux/sched.h> 40 #include <linux/mm.h> 41 #include <linux/file.h> 42 #include <linux/module.h> 43 #include <linux/atomic.h> 44 #include <linux/dma-resv.h> 45 46 static void ttm_bo_global_kobj_release(struct kobject *kobj); 47 48 /** 49 * ttm_global_mutex - protecting the global BO state 50 */ 51 DEFINE_MUTEX(ttm_global_mutex); 52 unsigned ttm_bo_glob_use_count; 53 struct ttm_bo_global ttm_bo_glob; 54 EXPORT_SYMBOL(ttm_bo_glob); 55 56 static struct attribute ttm_bo_count = { 57 .name = "bo_count", 58 .mode = S_IRUGO 59 }; 60 61 /* default destructor */ 62 static void ttm_bo_default_destroy(struct ttm_buffer_object *bo) 63 { 64 kfree(bo); 65 } 66 67 static inline int ttm_mem_type_from_place(const struct ttm_place *place, 68 uint32_t *mem_type) 69 { 70 int pos; 71 72 pos = ffs(place->flags & TTM_PL_MASK_MEM); 73 if (unlikely(!pos)) 74 return -EINVAL; 75 76 *mem_type = pos - 1; 77 return 0; 78 } 79 80 static void ttm_bo_mem_space_debug(struct ttm_buffer_object *bo, 81 struct ttm_placement *placement) 82 { 83 struct drm_printer p = drm_debug_printer(TTM_PFX); 84 int i, ret, mem_type; 85 struct ttm_resource_manager *man; 86 87 drm_printf(&p, "No space for %p (%lu pages, %luK, %luM)\n", 88 bo, bo->mem.num_pages, bo->mem.size >> 10, 89 bo->mem.size >> 20); 90 for (i = 0; i < placement->num_placement; i++) { 91 ret = ttm_mem_type_from_place(&placement->placement[i], 92 &mem_type); 93 if (ret) 94 return; 95 drm_printf(&p, " placement[%d]=0x%08X (%d)\n", 96 i, placement->placement[i].flags, mem_type); 97 man = ttm_manager_type(bo->bdev, mem_type); 98 ttm_resource_manager_debug(man, &p); 99 } 100 } 101 102 static ssize_t ttm_bo_global_show(struct kobject *kobj, 103 struct attribute *attr, 104 char *buffer) 105 { 106 struct ttm_bo_global *glob = 107 container_of(kobj, struct ttm_bo_global, kobj); 108 109 return snprintf(buffer, PAGE_SIZE, "%d\n", 110 atomic_read(&glob->bo_count)); 111 } 112 113 static struct attribute *ttm_bo_global_attrs[] = { 114 &ttm_bo_count, 115 NULL 116 }; 117 118 static const struct sysfs_ops ttm_bo_global_ops = { 119 .show = &ttm_bo_global_show 120 }; 121 122 static struct kobj_type ttm_bo_glob_kobj_type = { 123 .release = &ttm_bo_global_kobj_release, 124 .sysfs_ops = &ttm_bo_global_ops, 125 .default_attrs = ttm_bo_global_attrs 126 }; 127 128 129 static inline uint32_t ttm_bo_type_flags(unsigned type) 130 { 131 return 1 << (type); 132 } 133 134 static void ttm_bo_add_mem_to_lru(struct ttm_buffer_object *bo, 135 struct ttm_resource *mem) 136 { 137 struct ttm_bo_device *bdev = bo->bdev; 138 struct ttm_resource_manager *man; 139 140 if (!list_empty(&bo->lru)) 141 return; 142 143 if (mem->placement & TTM_PL_FLAG_NO_EVICT) 144 return; 145 146 man = ttm_manager_type(bdev, mem->mem_type); 147 list_add_tail(&bo->lru, &man->lru[bo->priority]); 148 149 if (man->use_tt && bo->ttm && 150 !(bo->ttm->page_flags & (TTM_PAGE_FLAG_SG | 151 TTM_PAGE_FLAG_SWAPPED))) { 152 list_add_tail(&bo->swap, &ttm_bo_glob.swap_lru[bo->priority]); 153 } 154 } 155 156 static void ttm_bo_del_from_lru(struct ttm_buffer_object *bo) 157 { 158 struct ttm_bo_device *bdev = bo->bdev; 159 bool notify = false; 160 161 if (!list_empty(&bo->swap)) { 162 list_del_init(&bo->swap); 163 notify = true; 164 } 165 if (!list_empty(&bo->lru)) { 166 list_del_init(&bo->lru); 167 notify = true; 168 } 169 170 if (notify && bdev->driver->del_from_lru_notify) 171 bdev->driver->del_from_lru_notify(bo); 172 } 173 174 static void ttm_bo_bulk_move_set_pos(struct ttm_lru_bulk_move_pos *pos, 175 struct ttm_buffer_object *bo) 176 { 177 if (!pos->first) 178 pos->first = bo; 179 pos->last = bo; 180 } 181 182 void ttm_bo_move_to_lru_tail(struct ttm_buffer_object *bo, 183 struct ttm_lru_bulk_move *bulk) 184 { 185 dma_resv_assert_held(bo->base.resv); 186 187 ttm_bo_del_from_lru(bo); 188 ttm_bo_add_mem_to_lru(bo, &bo->mem); 189 190 if (bulk && !(bo->mem.placement & TTM_PL_FLAG_NO_EVICT)) { 191 switch (bo->mem.mem_type) { 192 case TTM_PL_TT: 193 ttm_bo_bulk_move_set_pos(&bulk->tt[bo->priority], bo); 194 break; 195 196 case TTM_PL_VRAM: 197 ttm_bo_bulk_move_set_pos(&bulk->vram[bo->priority], bo); 198 break; 199 } 200 if (bo->ttm && !(bo->ttm->page_flags & 201 (TTM_PAGE_FLAG_SG | TTM_PAGE_FLAG_SWAPPED))) 202 ttm_bo_bulk_move_set_pos(&bulk->swap[bo->priority], bo); 203 } 204 } 205 EXPORT_SYMBOL(ttm_bo_move_to_lru_tail); 206 207 void ttm_bo_bulk_move_lru_tail(struct ttm_lru_bulk_move *bulk) 208 { 209 unsigned i; 210 211 for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) { 212 struct ttm_lru_bulk_move_pos *pos = &bulk->tt[i]; 213 struct ttm_resource_manager *man; 214 215 if (!pos->first) 216 continue; 217 218 dma_resv_assert_held(pos->first->base.resv); 219 dma_resv_assert_held(pos->last->base.resv); 220 221 man = ttm_manager_type(pos->first->bdev, TTM_PL_TT); 222 list_bulk_move_tail(&man->lru[i], &pos->first->lru, 223 &pos->last->lru); 224 } 225 226 for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) { 227 struct ttm_lru_bulk_move_pos *pos = &bulk->vram[i]; 228 struct ttm_resource_manager *man; 229 230 if (!pos->first) 231 continue; 232 233 dma_resv_assert_held(pos->first->base.resv); 234 dma_resv_assert_held(pos->last->base.resv); 235 236 man = ttm_manager_type(pos->first->bdev, TTM_PL_VRAM); 237 list_bulk_move_tail(&man->lru[i], &pos->first->lru, 238 &pos->last->lru); 239 } 240 241 for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) { 242 struct ttm_lru_bulk_move_pos *pos = &bulk->swap[i]; 243 struct list_head *lru; 244 245 if (!pos->first) 246 continue; 247 248 dma_resv_assert_held(pos->first->base.resv); 249 dma_resv_assert_held(pos->last->base.resv); 250 251 lru = &ttm_bo_glob.swap_lru[i]; 252 list_bulk_move_tail(lru, &pos->first->swap, &pos->last->swap); 253 } 254 } 255 EXPORT_SYMBOL(ttm_bo_bulk_move_lru_tail); 256 257 static int ttm_bo_handle_move_mem(struct ttm_buffer_object *bo, 258 struct ttm_resource *mem, bool evict, 259 struct ttm_operation_ctx *ctx) 260 { 261 struct ttm_bo_device *bdev = bo->bdev; 262 struct ttm_resource_manager *old_man = ttm_manager_type(bdev, bo->mem.mem_type); 263 struct ttm_resource_manager *new_man = ttm_manager_type(bdev, mem->mem_type); 264 int ret; 265 266 ret = ttm_mem_io_lock(old_man, true); 267 if (unlikely(ret != 0)) 268 goto out_err; 269 ttm_bo_unmap_virtual_locked(bo); 270 ttm_mem_io_unlock(old_man); 271 272 /* 273 * Create and bind a ttm if required. 274 */ 275 276 if (new_man->use_tt) { 277 /* Zero init the new TTM structure if the old location should 278 * have used one as well. 279 */ 280 ret = ttm_tt_create(bo, old_man->use_tt); 281 if (ret) 282 goto out_err; 283 284 ret = ttm_tt_set_placement_caching(bo->ttm, mem->placement); 285 if (ret) 286 goto out_err; 287 288 if (mem->mem_type != TTM_PL_SYSTEM) { 289 ret = ttm_tt_bind(bo->ttm, mem, ctx); 290 if (ret) 291 goto out_err; 292 } 293 294 if (bo->mem.mem_type == TTM_PL_SYSTEM) { 295 if (bdev->driver->move_notify) 296 bdev->driver->move_notify(bo, evict, mem); 297 bo->mem = *mem; 298 goto moved; 299 } 300 } 301 302 if (bdev->driver->move_notify) 303 bdev->driver->move_notify(bo, evict, mem); 304 305 if (old_man->use_tt && new_man->use_tt) 306 ret = ttm_bo_move_ttm(bo, ctx, mem); 307 else if (bdev->driver->move) 308 ret = bdev->driver->move(bo, evict, ctx, mem); 309 else 310 ret = ttm_bo_move_memcpy(bo, ctx, mem); 311 312 if (ret) { 313 if (bdev->driver->move_notify) { 314 swap(*mem, bo->mem); 315 bdev->driver->move_notify(bo, false, mem); 316 swap(*mem, bo->mem); 317 } 318 319 goto out_err; 320 } 321 322 moved: 323 bo->evicted = false; 324 325 ctx->bytes_moved += bo->num_pages << PAGE_SHIFT; 326 return 0; 327 328 out_err: 329 new_man = ttm_manager_type(bdev, bo->mem.mem_type); 330 if (!new_man->use_tt) { 331 ttm_tt_destroy(bo->ttm); 332 bo->ttm = NULL; 333 } 334 335 return ret; 336 } 337 338 /** 339 * Call bo::reserved. 340 * Will release GPU memory type usage on destruction. 341 * This is the place to put in driver specific hooks to release 342 * driver private resources. 343 * Will release the bo::reserved lock. 344 */ 345 346 static void ttm_bo_cleanup_memtype_use(struct ttm_buffer_object *bo) 347 { 348 if (bo->bdev->driver->move_notify) 349 bo->bdev->driver->move_notify(bo, false, NULL); 350 351 ttm_tt_destroy(bo->ttm); 352 bo->ttm = NULL; 353 ttm_resource_free(bo, &bo->mem); 354 } 355 356 static int ttm_bo_individualize_resv(struct ttm_buffer_object *bo) 357 { 358 int r; 359 360 if (bo->base.resv == &bo->base._resv) 361 return 0; 362 363 BUG_ON(!dma_resv_trylock(&bo->base._resv)); 364 365 r = dma_resv_copy_fences(&bo->base._resv, bo->base.resv); 366 dma_resv_unlock(&bo->base._resv); 367 if (r) 368 return r; 369 370 if (bo->type != ttm_bo_type_sg) { 371 /* This works because the BO is about to be destroyed and nobody 372 * reference it any more. The only tricky case is the trylock on 373 * the resv object while holding the lru_lock. 374 */ 375 spin_lock(&ttm_bo_glob.lru_lock); 376 bo->base.resv = &bo->base._resv; 377 spin_unlock(&ttm_bo_glob.lru_lock); 378 } 379 380 return r; 381 } 382 383 static void ttm_bo_flush_all_fences(struct ttm_buffer_object *bo) 384 { 385 struct dma_resv *resv = &bo->base._resv; 386 struct dma_resv_list *fobj; 387 struct dma_fence *fence; 388 int i; 389 390 rcu_read_lock(); 391 fobj = rcu_dereference(resv->fence); 392 fence = rcu_dereference(resv->fence_excl); 393 if (fence && !fence->ops->signaled) 394 dma_fence_enable_sw_signaling(fence); 395 396 for (i = 0; fobj && i < fobj->shared_count; ++i) { 397 fence = rcu_dereference(fobj->shared[i]); 398 399 if (!fence->ops->signaled) 400 dma_fence_enable_sw_signaling(fence); 401 } 402 rcu_read_unlock(); 403 } 404 405 /** 406 * function ttm_bo_cleanup_refs 407 * If bo idle, remove from lru lists, and unref. 408 * If not idle, block if possible. 409 * 410 * Must be called with lru_lock and reservation held, this function 411 * will drop the lru lock and optionally the reservation lock before returning. 412 * 413 * @interruptible Any sleeps should occur interruptibly. 414 * @no_wait_gpu Never wait for gpu. Return -EBUSY instead. 415 * @unlock_resv Unlock the reservation lock as well. 416 */ 417 418 static int ttm_bo_cleanup_refs(struct ttm_buffer_object *bo, 419 bool interruptible, bool no_wait_gpu, 420 bool unlock_resv) 421 { 422 struct dma_resv *resv = &bo->base._resv; 423 int ret; 424 425 if (dma_resv_test_signaled_rcu(resv, true)) 426 ret = 0; 427 else 428 ret = -EBUSY; 429 430 if (ret && !no_wait_gpu) { 431 long lret; 432 433 if (unlock_resv) 434 dma_resv_unlock(bo->base.resv); 435 spin_unlock(&ttm_bo_glob.lru_lock); 436 437 lret = dma_resv_wait_timeout_rcu(resv, true, interruptible, 438 30 * HZ); 439 440 if (lret < 0) 441 return lret; 442 else if (lret == 0) 443 return -EBUSY; 444 445 spin_lock(&ttm_bo_glob.lru_lock); 446 if (unlock_resv && !dma_resv_trylock(bo->base.resv)) { 447 /* 448 * We raced, and lost, someone else holds the reservation now, 449 * and is probably busy in ttm_bo_cleanup_memtype_use. 450 * 451 * Even if it's not the case, because we finished waiting any 452 * delayed destruction would succeed, so just return success 453 * here. 454 */ 455 spin_unlock(&ttm_bo_glob.lru_lock); 456 return 0; 457 } 458 ret = 0; 459 } 460 461 if (ret || unlikely(list_empty(&bo->ddestroy))) { 462 if (unlock_resv) 463 dma_resv_unlock(bo->base.resv); 464 spin_unlock(&ttm_bo_glob.lru_lock); 465 return ret; 466 } 467 468 ttm_bo_del_from_lru(bo); 469 list_del_init(&bo->ddestroy); 470 spin_unlock(&ttm_bo_glob.lru_lock); 471 ttm_bo_cleanup_memtype_use(bo); 472 473 if (unlock_resv) 474 dma_resv_unlock(bo->base.resv); 475 476 ttm_bo_put(bo); 477 478 return 0; 479 } 480 481 /** 482 * Traverse the delayed list, and call ttm_bo_cleanup_refs on all 483 * encountered buffers. 484 */ 485 static bool ttm_bo_delayed_delete(struct ttm_bo_device *bdev, bool remove_all) 486 { 487 struct ttm_bo_global *glob = &ttm_bo_glob; 488 struct list_head removed; 489 bool empty; 490 491 INIT_LIST_HEAD(&removed); 492 493 spin_lock(&glob->lru_lock); 494 while (!list_empty(&bdev->ddestroy)) { 495 struct ttm_buffer_object *bo; 496 497 bo = list_first_entry(&bdev->ddestroy, struct ttm_buffer_object, 498 ddestroy); 499 list_move_tail(&bo->ddestroy, &removed); 500 if (!ttm_bo_get_unless_zero(bo)) 501 continue; 502 503 if (remove_all || bo->base.resv != &bo->base._resv) { 504 spin_unlock(&glob->lru_lock); 505 dma_resv_lock(bo->base.resv, NULL); 506 507 spin_lock(&glob->lru_lock); 508 ttm_bo_cleanup_refs(bo, false, !remove_all, true); 509 510 } else if (dma_resv_trylock(bo->base.resv)) { 511 ttm_bo_cleanup_refs(bo, false, !remove_all, true); 512 } else { 513 spin_unlock(&glob->lru_lock); 514 } 515 516 ttm_bo_put(bo); 517 spin_lock(&glob->lru_lock); 518 } 519 list_splice_tail(&removed, &bdev->ddestroy); 520 empty = list_empty(&bdev->ddestroy); 521 spin_unlock(&glob->lru_lock); 522 523 return empty; 524 } 525 526 static void ttm_bo_delayed_workqueue(struct work_struct *work) 527 { 528 struct ttm_bo_device *bdev = 529 container_of(work, struct ttm_bo_device, wq.work); 530 531 if (!ttm_bo_delayed_delete(bdev, false)) 532 schedule_delayed_work(&bdev->wq, 533 ((HZ / 100) < 1) ? 1 : HZ / 100); 534 } 535 536 static void ttm_bo_release(struct kref *kref) 537 { 538 struct ttm_buffer_object *bo = 539 container_of(kref, struct ttm_buffer_object, kref); 540 struct ttm_bo_device *bdev = bo->bdev; 541 struct ttm_resource_manager *man = ttm_manager_type(bdev, bo->mem.mem_type); 542 size_t acc_size = bo->acc_size; 543 int ret; 544 545 if (!bo->deleted) { 546 ret = ttm_bo_individualize_resv(bo); 547 if (ret) { 548 /* Last resort, if we fail to allocate memory for the 549 * fences block for the BO to become idle 550 */ 551 dma_resv_wait_timeout_rcu(bo->base.resv, true, false, 552 30 * HZ); 553 } 554 555 if (bo->bdev->driver->release_notify) 556 bo->bdev->driver->release_notify(bo); 557 558 drm_vma_offset_remove(bdev->vma_manager, &bo->base.vma_node); 559 ttm_mem_io_lock(man, false); 560 ttm_mem_io_free_vm(bo); 561 ttm_mem_io_unlock(man); 562 } 563 564 if (!dma_resv_test_signaled_rcu(bo->base.resv, true) || 565 !dma_resv_trylock(bo->base.resv)) { 566 /* The BO is not idle, resurrect it for delayed destroy */ 567 ttm_bo_flush_all_fences(bo); 568 bo->deleted = true; 569 570 spin_lock(&ttm_bo_glob.lru_lock); 571 572 /* 573 * Make NO_EVICT bos immediately available to 574 * shrinkers, now that they are queued for 575 * destruction. 576 */ 577 if (bo->mem.placement & TTM_PL_FLAG_NO_EVICT) { 578 bo->mem.placement &= ~TTM_PL_FLAG_NO_EVICT; 579 ttm_bo_del_from_lru(bo); 580 ttm_bo_add_mem_to_lru(bo, &bo->mem); 581 } 582 583 kref_init(&bo->kref); 584 list_add_tail(&bo->ddestroy, &bdev->ddestroy); 585 spin_unlock(&ttm_bo_glob.lru_lock); 586 587 schedule_delayed_work(&bdev->wq, 588 ((HZ / 100) < 1) ? 1 : HZ / 100); 589 return; 590 } 591 592 spin_lock(&ttm_bo_glob.lru_lock); 593 ttm_bo_del_from_lru(bo); 594 list_del(&bo->ddestroy); 595 spin_unlock(&ttm_bo_glob.lru_lock); 596 597 ttm_bo_cleanup_memtype_use(bo); 598 dma_resv_unlock(bo->base.resv); 599 600 atomic_dec(&ttm_bo_glob.bo_count); 601 dma_fence_put(bo->moving); 602 if (!ttm_bo_uses_embedded_gem_object(bo)) 603 dma_resv_fini(&bo->base._resv); 604 bo->destroy(bo); 605 ttm_mem_global_free(&ttm_mem_glob, acc_size); 606 } 607 608 void ttm_bo_put(struct ttm_buffer_object *bo) 609 { 610 kref_put(&bo->kref, ttm_bo_release); 611 } 612 EXPORT_SYMBOL(ttm_bo_put); 613 614 int ttm_bo_lock_delayed_workqueue(struct ttm_bo_device *bdev) 615 { 616 return cancel_delayed_work_sync(&bdev->wq); 617 } 618 EXPORT_SYMBOL(ttm_bo_lock_delayed_workqueue); 619 620 void ttm_bo_unlock_delayed_workqueue(struct ttm_bo_device *bdev, int resched) 621 { 622 if (resched) 623 schedule_delayed_work(&bdev->wq, 624 ((HZ / 100) < 1) ? 1 : HZ / 100); 625 } 626 EXPORT_SYMBOL(ttm_bo_unlock_delayed_workqueue); 627 628 static int ttm_bo_evict(struct ttm_buffer_object *bo, 629 struct ttm_operation_ctx *ctx) 630 { 631 struct ttm_bo_device *bdev = bo->bdev; 632 struct ttm_resource evict_mem; 633 struct ttm_placement placement; 634 int ret = 0; 635 636 dma_resv_assert_held(bo->base.resv); 637 638 placement.num_placement = 0; 639 placement.num_busy_placement = 0; 640 bdev->driver->evict_flags(bo, &placement); 641 642 if (!placement.num_placement && !placement.num_busy_placement) { 643 ttm_bo_wait(bo, false, false); 644 645 ttm_bo_cleanup_memtype_use(bo); 646 return ttm_tt_create(bo, false); 647 } 648 649 evict_mem = bo->mem; 650 evict_mem.mm_node = NULL; 651 evict_mem.bus.io_reserved_vm = false; 652 evict_mem.bus.io_reserved_count = 0; 653 654 ret = ttm_bo_mem_space(bo, &placement, &evict_mem, ctx); 655 if (ret) { 656 if (ret != -ERESTARTSYS) { 657 pr_err("Failed to find memory space for buffer 0x%p eviction\n", 658 bo); 659 ttm_bo_mem_space_debug(bo, &placement); 660 } 661 goto out; 662 } 663 664 ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, ctx); 665 if (unlikely(ret)) { 666 if (ret != -ERESTARTSYS) 667 pr_err("Buffer eviction failed\n"); 668 ttm_resource_free(bo, &evict_mem); 669 goto out; 670 } 671 bo->evicted = true; 672 out: 673 return ret; 674 } 675 676 bool ttm_bo_eviction_valuable(struct ttm_buffer_object *bo, 677 const struct ttm_place *place) 678 { 679 /* Don't evict this BO if it's outside of the 680 * requested placement range 681 */ 682 if (place->fpfn >= (bo->mem.start + bo->mem.size) || 683 (place->lpfn && place->lpfn <= bo->mem.start)) 684 return false; 685 686 return true; 687 } 688 EXPORT_SYMBOL(ttm_bo_eviction_valuable); 689 690 /** 691 * Check the target bo is allowable to be evicted or swapout, including cases: 692 * 693 * a. if share same reservation object with ctx->resv, have assumption 694 * reservation objects should already be locked, so not lock again and 695 * return true directly when either the opreation allow_reserved_eviction 696 * or the target bo already is in delayed free list; 697 * 698 * b. Otherwise, trylock it. 699 */ 700 static bool ttm_bo_evict_swapout_allowable(struct ttm_buffer_object *bo, 701 struct ttm_operation_ctx *ctx, bool *locked, bool *busy) 702 { 703 bool ret = false; 704 705 if (bo->base.resv == ctx->resv) { 706 dma_resv_assert_held(bo->base.resv); 707 if (ctx->flags & TTM_OPT_FLAG_ALLOW_RES_EVICT) 708 ret = true; 709 *locked = false; 710 if (busy) 711 *busy = false; 712 } else { 713 ret = dma_resv_trylock(bo->base.resv); 714 *locked = ret; 715 if (busy) 716 *busy = !ret; 717 } 718 719 return ret; 720 } 721 722 /** 723 * ttm_mem_evict_wait_busy - wait for a busy BO to become available 724 * 725 * @busy_bo: BO which couldn't be locked with trylock 726 * @ctx: operation context 727 * @ticket: acquire ticket 728 * 729 * Try to lock a busy buffer object to avoid failing eviction. 730 */ 731 static int ttm_mem_evict_wait_busy(struct ttm_buffer_object *busy_bo, 732 struct ttm_operation_ctx *ctx, 733 struct ww_acquire_ctx *ticket) 734 { 735 int r; 736 737 if (!busy_bo || !ticket) 738 return -EBUSY; 739 740 if (ctx->interruptible) 741 r = dma_resv_lock_interruptible(busy_bo->base.resv, 742 ticket); 743 else 744 r = dma_resv_lock(busy_bo->base.resv, ticket); 745 746 /* 747 * TODO: It would be better to keep the BO locked until allocation is at 748 * least tried one more time, but that would mean a much larger rework 749 * of TTM. 750 */ 751 if (!r) 752 dma_resv_unlock(busy_bo->base.resv); 753 754 return r == -EDEADLK ? -EBUSY : r; 755 } 756 757 int ttm_mem_evict_first(struct ttm_bo_device *bdev, 758 struct ttm_resource_manager *man, 759 const struct ttm_place *place, 760 struct ttm_operation_ctx *ctx, 761 struct ww_acquire_ctx *ticket) 762 { 763 struct ttm_buffer_object *bo = NULL, *busy_bo = NULL; 764 bool locked = false; 765 unsigned i; 766 int ret; 767 768 spin_lock(&ttm_bo_glob.lru_lock); 769 for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) { 770 list_for_each_entry(bo, &man->lru[i], lru) { 771 bool busy; 772 773 if (!ttm_bo_evict_swapout_allowable(bo, ctx, &locked, 774 &busy)) { 775 if (busy && !busy_bo && ticket != 776 dma_resv_locking_ctx(bo->base.resv)) 777 busy_bo = bo; 778 continue; 779 } 780 781 if (place && !bdev->driver->eviction_valuable(bo, 782 place)) { 783 if (locked) 784 dma_resv_unlock(bo->base.resv); 785 continue; 786 } 787 if (!ttm_bo_get_unless_zero(bo)) { 788 if (locked) 789 dma_resv_unlock(bo->base.resv); 790 continue; 791 } 792 break; 793 } 794 795 /* If the inner loop terminated early, we have our candidate */ 796 if (&bo->lru != &man->lru[i]) 797 break; 798 799 bo = NULL; 800 } 801 802 if (!bo) { 803 if (busy_bo && !ttm_bo_get_unless_zero(busy_bo)) 804 busy_bo = NULL; 805 spin_unlock(&ttm_bo_glob.lru_lock); 806 ret = ttm_mem_evict_wait_busy(busy_bo, ctx, ticket); 807 if (busy_bo) 808 ttm_bo_put(busy_bo); 809 return ret; 810 } 811 812 if (bo->deleted) { 813 ret = ttm_bo_cleanup_refs(bo, ctx->interruptible, 814 ctx->no_wait_gpu, locked); 815 ttm_bo_put(bo); 816 return ret; 817 } 818 819 spin_unlock(&ttm_bo_glob.lru_lock); 820 821 ret = ttm_bo_evict(bo, ctx); 822 if (locked) 823 ttm_bo_unreserve(bo); 824 825 ttm_bo_put(bo); 826 return ret; 827 } 828 829 /** 830 * Add the last move fence to the BO and reserve a new shared slot. 831 */ 832 static int ttm_bo_add_move_fence(struct ttm_buffer_object *bo, 833 struct ttm_resource_manager *man, 834 struct ttm_resource *mem, 835 bool no_wait_gpu) 836 { 837 struct dma_fence *fence; 838 int ret; 839 840 spin_lock(&man->move_lock); 841 fence = dma_fence_get(man->move); 842 spin_unlock(&man->move_lock); 843 844 if (!fence) 845 return 0; 846 847 if (no_wait_gpu) { 848 dma_fence_put(fence); 849 return -EBUSY; 850 } 851 852 dma_resv_add_shared_fence(bo->base.resv, fence); 853 854 ret = dma_resv_reserve_shared(bo->base.resv, 1); 855 if (unlikely(ret)) { 856 dma_fence_put(fence); 857 return ret; 858 } 859 860 dma_fence_put(bo->moving); 861 bo->moving = fence; 862 return 0; 863 } 864 865 /** 866 * Repeatedly evict memory from the LRU for @mem_type until we create enough 867 * space, or we've evicted everything and there isn't enough space. 868 */ 869 static int ttm_bo_mem_force_space(struct ttm_buffer_object *bo, 870 const struct ttm_place *place, 871 struct ttm_resource *mem, 872 struct ttm_operation_ctx *ctx) 873 { 874 struct ttm_bo_device *bdev = bo->bdev; 875 struct ttm_resource_manager *man = ttm_manager_type(bdev, mem->mem_type); 876 struct ww_acquire_ctx *ticket; 877 int ret; 878 879 ticket = dma_resv_locking_ctx(bo->base.resv); 880 do { 881 ret = ttm_resource_alloc(bo, place, mem); 882 if (likely(!ret)) 883 break; 884 if (unlikely(ret != -ENOSPC)) 885 return ret; 886 ret = ttm_mem_evict_first(bdev, man, place, ctx, 887 ticket); 888 if (unlikely(ret != 0)) 889 return ret; 890 } while (1); 891 892 return ttm_bo_add_move_fence(bo, man, mem, ctx->no_wait_gpu); 893 } 894 895 static uint32_t ttm_bo_select_caching(struct ttm_resource_manager *man, 896 uint32_t cur_placement, 897 uint32_t proposed_placement) 898 { 899 uint32_t caching = proposed_placement & TTM_PL_MASK_CACHING; 900 uint32_t result = proposed_placement & ~TTM_PL_MASK_CACHING; 901 902 /** 903 * Keep current caching if possible. 904 */ 905 906 if ((cur_placement & caching) != 0) 907 result |= (cur_placement & caching); 908 else if ((man->default_caching & caching) != 0) 909 result |= man->default_caching; 910 else if ((TTM_PL_FLAG_CACHED & caching) != 0) 911 result |= TTM_PL_FLAG_CACHED; 912 else if ((TTM_PL_FLAG_WC & caching) != 0) 913 result |= TTM_PL_FLAG_WC; 914 else if ((TTM_PL_FLAG_UNCACHED & caching) != 0) 915 result |= TTM_PL_FLAG_UNCACHED; 916 917 return result; 918 } 919 920 static bool ttm_bo_mt_compatible(struct ttm_resource_manager *man, 921 uint32_t mem_type, 922 const struct ttm_place *place, 923 uint32_t *masked_placement) 924 { 925 uint32_t cur_flags = ttm_bo_type_flags(mem_type); 926 927 if ((cur_flags & place->flags & TTM_PL_MASK_MEM) == 0) 928 return false; 929 930 if ((place->flags & man->available_caching) == 0) 931 return false; 932 933 cur_flags |= (place->flags & man->available_caching); 934 935 *masked_placement = cur_flags; 936 return true; 937 } 938 939 /** 940 * ttm_bo_mem_placement - check if placement is compatible 941 * @bo: BO to find memory for 942 * @place: where to search 943 * @mem: the memory object to fill in 944 * @ctx: operation context 945 * 946 * Check if placement is compatible and fill in mem structure. 947 * Returns -EBUSY if placement won't work or negative error code. 948 * 0 when placement can be used. 949 */ 950 static int ttm_bo_mem_placement(struct ttm_buffer_object *bo, 951 const struct ttm_place *place, 952 struct ttm_resource *mem, 953 struct ttm_operation_ctx *ctx) 954 { 955 struct ttm_bo_device *bdev = bo->bdev; 956 uint32_t mem_type = TTM_PL_SYSTEM; 957 struct ttm_resource_manager *man; 958 uint32_t cur_flags = 0; 959 int ret; 960 961 ret = ttm_mem_type_from_place(place, &mem_type); 962 if (ret) 963 return ret; 964 965 man = ttm_manager_type(bdev, mem_type); 966 if (!man || !ttm_resource_manager_used(man)) 967 return -EBUSY; 968 969 if (!ttm_bo_mt_compatible(man, mem_type, place, &cur_flags)) 970 return -EBUSY; 971 972 cur_flags = ttm_bo_select_caching(man, bo->mem.placement, cur_flags); 973 /* 974 * Use the access and other non-mapping-related flag bits from 975 * the memory placement flags to the current flags 976 */ 977 ttm_flag_masked(&cur_flags, place->flags, ~TTM_PL_MASK_MEMTYPE); 978 979 mem->mem_type = mem_type; 980 mem->placement = cur_flags; 981 982 spin_lock(&ttm_bo_glob.lru_lock); 983 ttm_bo_del_from_lru(bo); 984 ttm_bo_add_mem_to_lru(bo, mem); 985 spin_unlock(&ttm_bo_glob.lru_lock); 986 987 return 0; 988 } 989 990 /** 991 * Creates space for memory region @mem according to its type. 992 * 993 * This function first searches for free space in compatible memory types in 994 * the priority order defined by the driver. If free space isn't found, then 995 * ttm_bo_mem_force_space is attempted in priority order to evict and find 996 * space. 997 */ 998 int ttm_bo_mem_space(struct ttm_buffer_object *bo, 999 struct ttm_placement *placement, 1000 struct ttm_resource *mem, 1001 struct ttm_operation_ctx *ctx) 1002 { 1003 struct ttm_bo_device *bdev = bo->bdev; 1004 bool type_found = false; 1005 int i, ret; 1006 1007 ret = dma_resv_reserve_shared(bo->base.resv, 1); 1008 if (unlikely(ret)) 1009 return ret; 1010 1011 for (i = 0; i < placement->num_placement; ++i) { 1012 const struct ttm_place *place = &placement->placement[i]; 1013 struct ttm_resource_manager *man; 1014 1015 ret = ttm_bo_mem_placement(bo, place, mem, ctx); 1016 if (ret == -EBUSY) 1017 continue; 1018 if (ret) 1019 goto error; 1020 1021 type_found = true; 1022 ret = ttm_resource_alloc(bo, place, mem); 1023 if (ret == -ENOSPC) 1024 continue; 1025 if (unlikely(ret)) 1026 goto error; 1027 1028 man = ttm_manager_type(bdev, mem->mem_type); 1029 ret = ttm_bo_add_move_fence(bo, man, mem, ctx->no_wait_gpu); 1030 if (unlikely(ret)) { 1031 ttm_resource_free(bo, mem); 1032 if (ret == -EBUSY) 1033 continue; 1034 1035 goto error; 1036 } 1037 return 0; 1038 } 1039 1040 for (i = 0; i < placement->num_busy_placement; ++i) { 1041 const struct ttm_place *place = &placement->busy_placement[i]; 1042 1043 ret = ttm_bo_mem_placement(bo, place, mem, ctx); 1044 if (ret == -EBUSY) 1045 continue; 1046 if (ret) 1047 goto error; 1048 1049 type_found = true; 1050 ret = ttm_bo_mem_force_space(bo, place, mem, ctx); 1051 if (likely(!ret)) 1052 return 0; 1053 1054 if (ret && ret != -EBUSY) 1055 goto error; 1056 } 1057 1058 ret = -ENOMEM; 1059 if (!type_found) { 1060 pr_err(TTM_PFX "No compatible memory type found\n"); 1061 ret = -EINVAL; 1062 } 1063 1064 error: 1065 if (bo->mem.mem_type == TTM_PL_SYSTEM && !list_empty(&bo->lru)) { 1066 ttm_bo_move_to_lru_tail_unlocked(bo); 1067 } 1068 1069 return ret; 1070 } 1071 EXPORT_SYMBOL(ttm_bo_mem_space); 1072 1073 static int ttm_bo_move_buffer(struct ttm_buffer_object *bo, 1074 struct ttm_placement *placement, 1075 struct ttm_operation_ctx *ctx) 1076 { 1077 int ret = 0; 1078 struct ttm_resource mem; 1079 1080 dma_resv_assert_held(bo->base.resv); 1081 1082 mem.num_pages = bo->num_pages; 1083 mem.size = mem.num_pages << PAGE_SHIFT; 1084 mem.page_alignment = bo->mem.page_alignment; 1085 mem.bus.io_reserved_vm = false; 1086 mem.bus.io_reserved_count = 0; 1087 mem.mm_node = NULL; 1088 1089 /* 1090 * Determine where to move the buffer. 1091 */ 1092 ret = ttm_bo_mem_space(bo, placement, &mem, ctx); 1093 if (ret) 1094 goto out_unlock; 1095 ret = ttm_bo_handle_move_mem(bo, &mem, false, ctx); 1096 out_unlock: 1097 if (ret) 1098 ttm_resource_free(bo, &mem); 1099 return ret; 1100 } 1101 1102 static bool ttm_bo_places_compat(const struct ttm_place *places, 1103 unsigned num_placement, 1104 struct ttm_resource *mem, 1105 uint32_t *new_flags) 1106 { 1107 unsigned i; 1108 1109 for (i = 0; i < num_placement; i++) { 1110 const struct ttm_place *heap = &places[i]; 1111 1112 if ((mem->start < heap->fpfn || 1113 (heap->lpfn != 0 && (mem->start + mem->num_pages) > heap->lpfn))) 1114 continue; 1115 1116 *new_flags = heap->flags; 1117 if ((*new_flags & mem->placement & TTM_PL_MASK_CACHING) && 1118 (*new_flags & mem->placement & TTM_PL_MASK_MEM) && 1119 (!(*new_flags & TTM_PL_FLAG_CONTIGUOUS) || 1120 (mem->placement & TTM_PL_FLAG_CONTIGUOUS))) 1121 return true; 1122 } 1123 return false; 1124 } 1125 1126 bool ttm_bo_mem_compat(struct ttm_placement *placement, 1127 struct ttm_resource *mem, 1128 uint32_t *new_flags) 1129 { 1130 if (ttm_bo_places_compat(placement->placement, placement->num_placement, 1131 mem, new_flags)) 1132 return true; 1133 1134 if ((placement->busy_placement != placement->placement || 1135 placement->num_busy_placement > placement->num_placement) && 1136 ttm_bo_places_compat(placement->busy_placement, 1137 placement->num_busy_placement, 1138 mem, new_flags)) 1139 return true; 1140 1141 return false; 1142 } 1143 EXPORT_SYMBOL(ttm_bo_mem_compat); 1144 1145 int ttm_bo_validate(struct ttm_buffer_object *bo, 1146 struct ttm_placement *placement, 1147 struct ttm_operation_ctx *ctx) 1148 { 1149 int ret; 1150 uint32_t new_flags; 1151 1152 dma_resv_assert_held(bo->base.resv); 1153 1154 /* 1155 * Remove the backing store if no placement is given. 1156 */ 1157 if (!placement->num_placement && !placement->num_busy_placement) { 1158 ret = ttm_bo_pipeline_gutting(bo); 1159 if (ret) 1160 return ret; 1161 1162 return ttm_tt_create(bo, false); 1163 } 1164 1165 /* 1166 * Check whether we need to move buffer. 1167 */ 1168 if (!ttm_bo_mem_compat(placement, &bo->mem, &new_flags)) { 1169 ret = ttm_bo_move_buffer(bo, placement, ctx); 1170 if (ret) 1171 return ret; 1172 } else { 1173 /* 1174 * Use the access and other non-mapping-related flag bits from 1175 * the compatible memory placement flags to the active flags 1176 */ 1177 ttm_flag_masked(&bo->mem.placement, new_flags, 1178 ~TTM_PL_MASK_MEMTYPE); 1179 } 1180 /* 1181 * We might need to add a TTM. 1182 */ 1183 if (bo->mem.mem_type == TTM_PL_SYSTEM) { 1184 ret = ttm_tt_create(bo, true); 1185 if (ret) 1186 return ret; 1187 } 1188 return 0; 1189 } 1190 EXPORT_SYMBOL(ttm_bo_validate); 1191 1192 int ttm_bo_init_reserved(struct ttm_bo_device *bdev, 1193 struct ttm_buffer_object *bo, 1194 unsigned long size, 1195 enum ttm_bo_type type, 1196 struct ttm_placement *placement, 1197 uint32_t page_alignment, 1198 struct ttm_operation_ctx *ctx, 1199 size_t acc_size, 1200 struct sg_table *sg, 1201 struct dma_resv *resv, 1202 void (*destroy) (struct ttm_buffer_object *)) 1203 { 1204 struct ttm_mem_global *mem_glob = &ttm_mem_glob; 1205 int ret = 0; 1206 unsigned long num_pages; 1207 bool locked; 1208 1209 ret = ttm_mem_global_alloc(mem_glob, acc_size, ctx); 1210 if (ret) { 1211 pr_err("Out of kernel memory\n"); 1212 if (destroy) 1213 (*destroy)(bo); 1214 else 1215 kfree(bo); 1216 return -ENOMEM; 1217 } 1218 1219 num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 1220 if (num_pages == 0) { 1221 pr_err("Illegal buffer object size\n"); 1222 if (destroy) 1223 (*destroy)(bo); 1224 else 1225 kfree(bo); 1226 ttm_mem_global_free(mem_glob, acc_size); 1227 return -EINVAL; 1228 } 1229 bo->destroy = destroy ? destroy : ttm_bo_default_destroy; 1230 1231 kref_init(&bo->kref); 1232 INIT_LIST_HEAD(&bo->lru); 1233 INIT_LIST_HEAD(&bo->ddestroy); 1234 INIT_LIST_HEAD(&bo->swap); 1235 INIT_LIST_HEAD(&bo->io_reserve_lru); 1236 bo->bdev = bdev; 1237 bo->type = type; 1238 bo->num_pages = num_pages; 1239 bo->mem.size = num_pages << PAGE_SHIFT; 1240 bo->mem.mem_type = TTM_PL_SYSTEM; 1241 bo->mem.num_pages = bo->num_pages; 1242 bo->mem.mm_node = NULL; 1243 bo->mem.page_alignment = page_alignment; 1244 bo->mem.bus.io_reserved_vm = false; 1245 bo->mem.bus.io_reserved_count = 0; 1246 bo->moving = NULL; 1247 bo->mem.placement = (TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED); 1248 bo->acc_size = acc_size; 1249 bo->sg = sg; 1250 if (resv) { 1251 bo->base.resv = resv; 1252 dma_resv_assert_held(bo->base.resv); 1253 } else { 1254 bo->base.resv = &bo->base._resv; 1255 } 1256 if (!ttm_bo_uses_embedded_gem_object(bo)) { 1257 /* 1258 * bo.gem is not initialized, so we have to setup the 1259 * struct elements we want use regardless. 1260 */ 1261 dma_resv_init(&bo->base._resv); 1262 drm_vma_node_reset(&bo->base.vma_node); 1263 } 1264 atomic_inc(&ttm_bo_glob.bo_count); 1265 1266 /* 1267 * For ttm_bo_type_device buffers, allocate 1268 * address space from the device. 1269 */ 1270 if (bo->type == ttm_bo_type_device || 1271 bo->type == ttm_bo_type_sg) 1272 ret = drm_vma_offset_add(bdev->vma_manager, &bo->base.vma_node, 1273 bo->mem.num_pages); 1274 1275 /* passed reservation objects should already be locked, 1276 * since otherwise lockdep will be angered in radeon. 1277 */ 1278 if (!resv) { 1279 locked = dma_resv_trylock(bo->base.resv); 1280 WARN_ON(!locked); 1281 } 1282 1283 if (likely(!ret)) 1284 ret = ttm_bo_validate(bo, placement, ctx); 1285 1286 if (unlikely(ret)) { 1287 if (!resv) 1288 ttm_bo_unreserve(bo); 1289 1290 ttm_bo_put(bo); 1291 return ret; 1292 } 1293 1294 ttm_bo_move_to_lru_tail_unlocked(bo); 1295 1296 return ret; 1297 } 1298 EXPORT_SYMBOL(ttm_bo_init_reserved); 1299 1300 int ttm_bo_init(struct ttm_bo_device *bdev, 1301 struct ttm_buffer_object *bo, 1302 unsigned long size, 1303 enum ttm_bo_type type, 1304 struct ttm_placement *placement, 1305 uint32_t page_alignment, 1306 bool interruptible, 1307 size_t acc_size, 1308 struct sg_table *sg, 1309 struct dma_resv *resv, 1310 void (*destroy) (struct ttm_buffer_object *)) 1311 { 1312 struct ttm_operation_ctx ctx = { interruptible, false }; 1313 int ret; 1314 1315 ret = ttm_bo_init_reserved(bdev, bo, size, type, placement, 1316 page_alignment, &ctx, acc_size, 1317 sg, resv, destroy); 1318 if (ret) 1319 return ret; 1320 1321 if (!resv) 1322 ttm_bo_unreserve(bo); 1323 1324 return 0; 1325 } 1326 EXPORT_SYMBOL(ttm_bo_init); 1327 1328 size_t ttm_bo_acc_size(struct ttm_bo_device *bdev, 1329 unsigned long bo_size, 1330 unsigned struct_size) 1331 { 1332 unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT; 1333 size_t size = 0; 1334 1335 size += ttm_round_pot(struct_size); 1336 size += ttm_round_pot(npages * sizeof(void *)); 1337 size += ttm_round_pot(sizeof(struct ttm_tt)); 1338 return size; 1339 } 1340 EXPORT_SYMBOL(ttm_bo_acc_size); 1341 1342 size_t ttm_bo_dma_acc_size(struct ttm_bo_device *bdev, 1343 unsigned long bo_size, 1344 unsigned struct_size) 1345 { 1346 unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT; 1347 size_t size = 0; 1348 1349 size += ttm_round_pot(struct_size); 1350 size += ttm_round_pot(npages * (2*sizeof(void *) + sizeof(dma_addr_t))); 1351 size += ttm_round_pot(sizeof(struct ttm_dma_tt)); 1352 return size; 1353 } 1354 EXPORT_SYMBOL(ttm_bo_dma_acc_size); 1355 1356 int ttm_bo_create(struct ttm_bo_device *bdev, 1357 unsigned long size, 1358 enum ttm_bo_type type, 1359 struct ttm_placement *placement, 1360 uint32_t page_alignment, 1361 bool interruptible, 1362 struct ttm_buffer_object **p_bo) 1363 { 1364 struct ttm_buffer_object *bo; 1365 size_t acc_size; 1366 int ret; 1367 1368 bo = kzalloc(sizeof(*bo), GFP_KERNEL); 1369 if (unlikely(bo == NULL)) 1370 return -ENOMEM; 1371 1372 acc_size = ttm_bo_acc_size(bdev, size, sizeof(struct ttm_buffer_object)); 1373 ret = ttm_bo_init(bdev, bo, size, type, placement, page_alignment, 1374 interruptible, acc_size, 1375 NULL, NULL, NULL); 1376 if (likely(ret == 0)) 1377 *p_bo = bo; 1378 1379 return ret; 1380 } 1381 EXPORT_SYMBOL(ttm_bo_create); 1382 1383 int ttm_bo_evict_mm(struct ttm_bo_device *bdev, unsigned mem_type) 1384 { 1385 struct ttm_resource_manager *man = ttm_manager_type(bdev, mem_type); 1386 1387 if (mem_type == 0 || mem_type >= TTM_NUM_MEM_TYPES) { 1388 pr_err("Illegal memory manager memory type %u\n", mem_type); 1389 return -EINVAL; 1390 } 1391 1392 if (!man) { 1393 pr_err("Memory type %u has not been initialized\n", mem_type); 1394 return 0; 1395 } 1396 1397 return ttm_resource_manager_force_list_clean(bdev, man); 1398 } 1399 EXPORT_SYMBOL(ttm_bo_evict_mm); 1400 1401 static void ttm_bo_global_kobj_release(struct kobject *kobj) 1402 { 1403 struct ttm_bo_global *glob = 1404 container_of(kobj, struct ttm_bo_global, kobj); 1405 1406 __free_page(glob->dummy_read_page); 1407 } 1408 1409 static void ttm_bo_global_release(void) 1410 { 1411 struct ttm_bo_global *glob = &ttm_bo_glob; 1412 1413 mutex_lock(&ttm_global_mutex); 1414 if (--ttm_bo_glob_use_count > 0) 1415 goto out; 1416 1417 kobject_del(&glob->kobj); 1418 kobject_put(&glob->kobj); 1419 ttm_mem_global_release(&ttm_mem_glob); 1420 memset(glob, 0, sizeof(*glob)); 1421 out: 1422 mutex_unlock(&ttm_global_mutex); 1423 } 1424 1425 static int ttm_bo_global_init(void) 1426 { 1427 struct ttm_bo_global *glob = &ttm_bo_glob; 1428 int ret = 0; 1429 unsigned i; 1430 1431 mutex_lock(&ttm_global_mutex); 1432 if (++ttm_bo_glob_use_count > 1) 1433 goto out; 1434 1435 ret = ttm_mem_global_init(&ttm_mem_glob); 1436 if (ret) 1437 goto out; 1438 1439 spin_lock_init(&glob->lru_lock); 1440 glob->dummy_read_page = alloc_page(__GFP_ZERO | GFP_DMA32); 1441 1442 if (unlikely(glob->dummy_read_page == NULL)) { 1443 ret = -ENOMEM; 1444 goto out; 1445 } 1446 1447 for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) 1448 INIT_LIST_HEAD(&glob->swap_lru[i]); 1449 INIT_LIST_HEAD(&glob->device_list); 1450 atomic_set(&glob->bo_count, 0); 1451 1452 ret = kobject_init_and_add( 1453 &glob->kobj, &ttm_bo_glob_kobj_type, ttm_get_kobj(), "buffer_objects"); 1454 if (unlikely(ret != 0)) 1455 kobject_put(&glob->kobj); 1456 out: 1457 mutex_unlock(&ttm_global_mutex); 1458 return ret; 1459 } 1460 1461 int ttm_bo_device_release(struct ttm_bo_device *bdev) 1462 { 1463 struct ttm_bo_global *glob = &ttm_bo_glob; 1464 int ret = 0; 1465 unsigned i; 1466 struct ttm_resource_manager *man; 1467 1468 man = ttm_manager_type(bdev, TTM_PL_SYSTEM); 1469 ttm_resource_manager_set_used(man, false); 1470 ttm_set_driver_manager(bdev, TTM_PL_SYSTEM, NULL); 1471 1472 mutex_lock(&ttm_global_mutex); 1473 list_del(&bdev->device_list); 1474 mutex_unlock(&ttm_global_mutex); 1475 1476 cancel_delayed_work_sync(&bdev->wq); 1477 1478 if (ttm_bo_delayed_delete(bdev, true)) 1479 pr_debug("Delayed destroy list was clean\n"); 1480 1481 spin_lock(&glob->lru_lock); 1482 for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) 1483 if (list_empty(&man->lru[0])) 1484 pr_debug("Swap list %d was clean\n", i); 1485 spin_unlock(&glob->lru_lock); 1486 1487 if (!ret) 1488 ttm_bo_global_release(); 1489 1490 return ret; 1491 } 1492 EXPORT_SYMBOL(ttm_bo_device_release); 1493 1494 static void ttm_bo_init_sysman(struct ttm_bo_device *bdev) 1495 { 1496 struct ttm_resource_manager *man = &bdev->sysman; 1497 1498 /* 1499 * Initialize the system memory buffer type. 1500 * Other types need to be driver / IOCTL initialized. 1501 */ 1502 man->use_tt = true; 1503 man->available_caching = TTM_PL_MASK_CACHING; 1504 man->default_caching = TTM_PL_FLAG_CACHED; 1505 1506 ttm_resource_manager_init(man, 0); 1507 ttm_set_driver_manager(bdev, TTM_PL_SYSTEM, man); 1508 ttm_resource_manager_set_used(man, true); 1509 } 1510 1511 int ttm_bo_device_init(struct ttm_bo_device *bdev, 1512 struct ttm_bo_driver *driver, 1513 struct address_space *mapping, 1514 struct drm_vma_offset_manager *vma_manager, 1515 bool need_dma32) 1516 { 1517 struct ttm_bo_global *glob = &ttm_bo_glob; 1518 int ret; 1519 1520 if (WARN_ON(vma_manager == NULL)) 1521 return -EINVAL; 1522 1523 ret = ttm_bo_global_init(); 1524 if (ret) 1525 return ret; 1526 1527 bdev->driver = driver; 1528 1529 ttm_bo_init_sysman(bdev); 1530 1531 bdev->vma_manager = vma_manager; 1532 INIT_DELAYED_WORK(&bdev->wq, ttm_bo_delayed_workqueue); 1533 INIT_LIST_HEAD(&bdev->ddestroy); 1534 bdev->dev_mapping = mapping; 1535 bdev->need_dma32 = need_dma32; 1536 mutex_lock(&ttm_global_mutex); 1537 list_add_tail(&bdev->device_list, &glob->device_list); 1538 mutex_unlock(&ttm_global_mutex); 1539 1540 return 0; 1541 } 1542 EXPORT_SYMBOL(ttm_bo_device_init); 1543 1544 /* 1545 * buffer object vm functions. 1546 */ 1547 1548 void ttm_bo_unmap_virtual_locked(struct ttm_buffer_object *bo) 1549 { 1550 struct ttm_bo_device *bdev = bo->bdev; 1551 1552 drm_vma_node_unmap(&bo->base.vma_node, bdev->dev_mapping); 1553 ttm_mem_io_free_vm(bo); 1554 } 1555 1556 void ttm_bo_unmap_virtual(struct ttm_buffer_object *bo) 1557 { 1558 struct ttm_bo_device *bdev = bo->bdev; 1559 struct ttm_resource_manager *man = ttm_manager_type(bdev, bo->mem.mem_type); 1560 1561 ttm_mem_io_lock(man, false); 1562 ttm_bo_unmap_virtual_locked(bo); 1563 ttm_mem_io_unlock(man); 1564 } 1565 1566 1567 EXPORT_SYMBOL(ttm_bo_unmap_virtual); 1568 1569 int ttm_bo_wait(struct ttm_buffer_object *bo, 1570 bool interruptible, bool no_wait) 1571 { 1572 long timeout = 15 * HZ; 1573 1574 if (no_wait) { 1575 if (dma_resv_test_signaled_rcu(bo->base.resv, true)) 1576 return 0; 1577 else 1578 return -EBUSY; 1579 } 1580 1581 timeout = dma_resv_wait_timeout_rcu(bo->base.resv, true, 1582 interruptible, timeout); 1583 if (timeout < 0) 1584 return timeout; 1585 1586 if (timeout == 0) 1587 return -EBUSY; 1588 1589 dma_resv_add_excl_fence(bo->base.resv, NULL); 1590 return 0; 1591 } 1592 EXPORT_SYMBOL(ttm_bo_wait); 1593 1594 /** 1595 * A buffer object shrink method that tries to swap out the first 1596 * buffer object on the bo_global::swap_lru list. 1597 */ 1598 int ttm_bo_swapout(struct ttm_bo_global *glob, struct ttm_operation_ctx *ctx) 1599 { 1600 struct ttm_buffer_object *bo; 1601 int ret = -EBUSY; 1602 bool locked; 1603 unsigned i; 1604 1605 spin_lock(&glob->lru_lock); 1606 for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) { 1607 list_for_each_entry(bo, &glob->swap_lru[i], swap) { 1608 if (!ttm_bo_evict_swapout_allowable(bo, ctx, &locked, 1609 NULL)) 1610 continue; 1611 1612 if (!ttm_bo_get_unless_zero(bo)) { 1613 if (locked) 1614 dma_resv_unlock(bo->base.resv); 1615 continue; 1616 } 1617 1618 ret = 0; 1619 break; 1620 } 1621 if (!ret) 1622 break; 1623 } 1624 1625 if (ret) { 1626 spin_unlock(&glob->lru_lock); 1627 return ret; 1628 } 1629 1630 if (bo->deleted) { 1631 ret = ttm_bo_cleanup_refs(bo, false, false, locked); 1632 ttm_bo_put(bo); 1633 return ret; 1634 } 1635 1636 ttm_bo_del_from_lru(bo); 1637 spin_unlock(&glob->lru_lock); 1638 1639 /** 1640 * Move to system cached 1641 */ 1642 1643 if (bo->mem.mem_type != TTM_PL_SYSTEM || 1644 bo->ttm->caching_state != tt_cached) { 1645 struct ttm_operation_ctx ctx = { false, false }; 1646 struct ttm_resource evict_mem; 1647 1648 evict_mem = bo->mem; 1649 evict_mem.mm_node = NULL; 1650 evict_mem.placement = TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED; 1651 evict_mem.mem_type = TTM_PL_SYSTEM; 1652 1653 ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, &ctx); 1654 if (unlikely(ret != 0)) 1655 goto out; 1656 } 1657 1658 /** 1659 * Make sure BO is idle. 1660 */ 1661 1662 ret = ttm_bo_wait(bo, false, false); 1663 if (unlikely(ret != 0)) 1664 goto out; 1665 1666 ttm_bo_unmap_virtual(bo); 1667 1668 /** 1669 * Swap out. Buffer will be swapped in again as soon as 1670 * anyone tries to access a ttm page. 1671 */ 1672 1673 if (bo->bdev->driver->swap_notify) 1674 bo->bdev->driver->swap_notify(bo); 1675 1676 ret = ttm_tt_swapout(bo->ttm, bo->persistent_swap_storage); 1677 out: 1678 1679 /** 1680 * 1681 * Unreserve without putting on LRU to avoid swapping out an 1682 * already swapped buffer. 1683 */ 1684 if (locked) 1685 dma_resv_unlock(bo->base.resv); 1686 ttm_bo_put(bo); 1687 return ret; 1688 } 1689 EXPORT_SYMBOL(ttm_bo_swapout); 1690 1691 void ttm_bo_swapout_all(void) 1692 { 1693 struct ttm_operation_ctx ctx = { 1694 .interruptible = false, 1695 .no_wait_gpu = false 1696 }; 1697 1698 while (ttm_bo_swapout(&ttm_bo_glob, &ctx) == 0); 1699 } 1700 EXPORT_SYMBOL(ttm_bo_swapout_all); 1701