1 /************************************************************************** 2 * 3 * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA 4 * All Rights Reserved. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the 8 * "Software"), to deal in the Software without restriction, including 9 * without limitation the rights to use, copy, modify, merge, publish, 10 * distribute, sub license, and/or sell copies of the Software, and to 11 * permit persons to whom the Software is furnished to do so, subject to 12 * the following conditions: 13 * 14 * The above copyright notice and this permission notice (including the 15 * next paragraph) shall be included in all copies or substantial portions 16 * of the Software. 17 * 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 20 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 21 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 22 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 23 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 24 * USE OR OTHER DEALINGS IN THE SOFTWARE. 25 * 26 **************************************************************************/ 27 /* 28 * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com> 29 */ 30 31 #define pr_fmt(fmt) "[TTM] " fmt 32 33 #include <drm/ttm/ttm_module.h> 34 #include <drm/ttm/ttm_bo_driver.h> 35 #include <drm/ttm/ttm_placement.h> 36 #include <linux/jiffies.h> 37 #include <linux/slab.h> 38 #include <linux/sched.h> 39 #include <linux/mm.h> 40 #include <linux/file.h> 41 #include <linux/module.h> 42 #include <linux/atomic.h> 43 44 #define TTM_ASSERT_LOCKED(param) 45 #define TTM_DEBUG(fmt, arg...) 46 #define TTM_BO_HASH_ORDER 13 47 48 static int ttm_bo_swapout(struct ttm_mem_shrink *shrink); 49 static void ttm_bo_global_kobj_release(struct kobject *kobj); 50 51 static struct attribute ttm_bo_count = { 52 .name = "bo_count", 53 .mode = S_IRUGO 54 }; 55 56 static inline int ttm_mem_type_from_flags(uint32_t flags, uint32_t *mem_type) 57 { 58 int i; 59 60 for (i = 0; i <= TTM_PL_PRIV5; i++) 61 if (flags & (1 << i)) { 62 *mem_type = i; 63 return 0; 64 } 65 return -EINVAL; 66 } 67 68 static void ttm_mem_type_debug(struct ttm_bo_device *bdev, int mem_type) 69 { 70 struct ttm_mem_type_manager *man = &bdev->man[mem_type]; 71 72 pr_err(" has_type: %d\n", man->has_type); 73 pr_err(" use_type: %d\n", man->use_type); 74 pr_err(" flags: 0x%08X\n", man->flags); 75 pr_err(" gpu_offset: 0x%08lX\n", man->gpu_offset); 76 pr_err(" size: %llu\n", man->size); 77 pr_err(" available_caching: 0x%08X\n", man->available_caching); 78 pr_err(" default_caching: 0x%08X\n", man->default_caching); 79 if (mem_type != TTM_PL_SYSTEM) 80 (*man->func->debug)(man, TTM_PFX); 81 } 82 83 static void ttm_bo_mem_space_debug(struct ttm_buffer_object *bo, 84 struct ttm_placement *placement) 85 { 86 int i, ret, mem_type; 87 88 pr_err("No space for %p (%lu pages, %luK, %luM)\n", 89 bo, bo->mem.num_pages, bo->mem.size >> 10, 90 bo->mem.size >> 20); 91 for (i = 0; i < placement->num_placement; i++) { 92 ret = ttm_mem_type_from_flags(placement->placement[i], 93 &mem_type); 94 if (ret) 95 return; 96 pr_err(" placement[%d]=0x%08X (%d)\n", 97 i, placement->placement[i], mem_type); 98 ttm_mem_type_debug(bo->bdev, mem_type); 99 } 100 } 101 102 static ssize_t ttm_bo_global_show(struct kobject *kobj, 103 struct attribute *attr, 104 char *buffer) 105 { 106 struct ttm_bo_global *glob = 107 container_of(kobj, struct ttm_bo_global, kobj); 108 109 return snprintf(buffer, PAGE_SIZE, "%lu\n", 110 (unsigned long) atomic_read(&glob->bo_count)); 111 } 112 113 static struct attribute *ttm_bo_global_attrs[] = { 114 &ttm_bo_count, 115 NULL 116 }; 117 118 static const struct sysfs_ops ttm_bo_global_ops = { 119 .show = &ttm_bo_global_show 120 }; 121 122 static struct kobj_type ttm_bo_glob_kobj_type = { 123 .release = &ttm_bo_global_kobj_release, 124 .sysfs_ops = &ttm_bo_global_ops, 125 .default_attrs = ttm_bo_global_attrs 126 }; 127 128 129 static inline uint32_t ttm_bo_type_flags(unsigned type) 130 { 131 return 1 << (type); 132 } 133 134 static void ttm_bo_release_list(struct kref *list_kref) 135 { 136 struct ttm_buffer_object *bo = 137 container_of(list_kref, struct ttm_buffer_object, list_kref); 138 struct ttm_bo_device *bdev = bo->bdev; 139 size_t acc_size = bo->acc_size; 140 141 BUG_ON(atomic_read(&bo->list_kref.refcount)); 142 BUG_ON(atomic_read(&bo->kref.refcount)); 143 BUG_ON(atomic_read(&bo->cpu_writers)); 144 BUG_ON(bo->sync_obj != NULL); 145 BUG_ON(bo->mem.mm_node != NULL); 146 BUG_ON(!list_empty(&bo->lru)); 147 BUG_ON(!list_empty(&bo->ddestroy)); 148 149 if (bo->ttm) 150 ttm_tt_destroy(bo->ttm); 151 atomic_dec(&bo->glob->bo_count); 152 if (bo->resv == &bo->ttm_resv) 153 reservation_object_fini(&bo->ttm_resv); 154 mutex_destroy(&bo->wu_mutex); 155 if (bo->destroy) 156 bo->destroy(bo); 157 else { 158 kfree(bo); 159 } 160 ttm_mem_global_free(bdev->glob->mem_glob, acc_size); 161 } 162 163 void ttm_bo_add_to_lru(struct ttm_buffer_object *bo) 164 { 165 struct ttm_bo_device *bdev = bo->bdev; 166 struct ttm_mem_type_manager *man; 167 168 lockdep_assert_held(&bo->resv->lock.base); 169 170 if (!(bo->mem.placement & TTM_PL_FLAG_NO_EVICT)) { 171 172 BUG_ON(!list_empty(&bo->lru)); 173 174 man = &bdev->man[bo->mem.mem_type]; 175 list_add_tail(&bo->lru, &man->lru); 176 kref_get(&bo->list_kref); 177 178 if (bo->ttm != NULL) { 179 list_add_tail(&bo->swap, &bo->glob->swap_lru); 180 kref_get(&bo->list_kref); 181 } 182 } 183 } 184 EXPORT_SYMBOL(ttm_bo_add_to_lru); 185 186 int ttm_bo_del_from_lru(struct ttm_buffer_object *bo) 187 { 188 int put_count = 0; 189 190 if (!list_empty(&bo->swap)) { 191 list_del_init(&bo->swap); 192 ++put_count; 193 } 194 if (!list_empty(&bo->lru)) { 195 list_del_init(&bo->lru); 196 ++put_count; 197 } 198 199 /* 200 * TODO: Add a driver hook to delete from 201 * driver-specific LRU's here. 202 */ 203 204 return put_count; 205 } 206 207 static void ttm_bo_ref_bug(struct kref *list_kref) 208 { 209 BUG(); 210 } 211 212 void ttm_bo_list_ref_sub(struct ttm_buffer_object *bo, int count, 213 bool never_free) 214 { 215 kref_sub(&bo->list_kref, count, 216 (never_free) ? ttm_bo_ref_bug : ttm_bo_release_list); 217 } 218 219 void ttm_bo_del_sub_from_lru(struct ttm_buffer_object *bo) 220 { 221 int put_count; 222 223 spin_lock(&bo->glob->lru_lock); 224 put_count = ttm_bo_del_from_lru(bo); 225 spin_unlock(&bo->glob->lru_lock); 226 ttm_bo_list_ref_sub(bo, put_count, true); 227 } 228 EXPORT_SYMBOL(ttm_bo_del_sub_from_lru); 229 230 /* 231 * Call bo->mutex locked. 232 */ 233 static int ttm_bo_add_ttm(struct ttm_buffer_object *bo, bool zero_alloc) 234 { 235 struct ttm_bo_device *bdev = bo->bdev; 236 struct ttm_bo_global *glob = bo->glob; 237 int ret = 0; 238 uint32_t page_flags = 0; 239 240 TTM_ASSERT_LOCKED(&bo->mutex); 241 bo->ttm = NULL; 242 243 if (bdev->need_dma32) 244 page_flags |= TTM_PAGE_FLAG_DMA32; 245 246 switch (bo->type) { 247 case ttm_bo_type_device: 248 if (zero_alloc) 249 page_flags |= TTM_PAGE_FLAG_ZERO_ALLOC; 250 case ttm_bo_type_kernel: 251 bo->ttm = bdev->driver->ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT, 252 page_flags, glob->dummy_read_page); 253 if (unlikely(bo->ttm == NULL)) 254 ret = -ENOMEM; 255 break; 256 case ttm_bo_type_sg: 257 bo->ttm = bdev->driver->ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT, 258 page_flags | TTM_PAGE_FLAG_SG, 259 glob->dummy_read_page); 260 if (unlikely(bo->ttm == NULL)) { 261 ret = -ENOMEM; 262 break; 263 } 264 bo->ttm->sg = bo->sg; 265 break; 266 default: 267 pr_err("Illegal buffer object type\n"); 268 ret = -EINVAL; 269 break; 270 } 271 272 return ret; 273 } 274 275 static int ttm_bo_handle_move_mem(struct ttm_buffer_object *bo, 276 struct ttm_mem_reg *mem, 277 bool evict, bool interruptible, 278 bool no_wait_gpu) 279 { 280 struct ttm_bo_device *bdev = bo->bdev; 281 bool old_is_pci = ttm_mem_reg_is_pci(bdev, &bo->mem); 282 bool new_is_pci = ttm_mem_reg_is_pci(bdev, mem); 283 struct ttm_mem_type_manager *old_man = &bdev->man[bo->mem.mem_type]; 284 struct ttm_mem_type_manager *new_man = &bdev->man[mem->mem_type]; 285 int ret = 0; 286 287 if (old_is_pci || new_is_pci || 288 ((mem->placement & bo->mem.placement & TTM_PL_MASK_CACHING) == 0)) { 289 ret = ttm_mem_io_lock(old_man, true); 290 if (unlikely(ret != 0)) 291 goto out_err; 292 ttm_bo_unmap_virtual_locked(bo); 293 ttm_mem_io_unlock(old_man); 294 } 295 296 /* 297 * Create and bind a ttm if required. 298 */ 299 300 if (!(new_man->flags & TTM_MEMTYPE_FLAG_FIXED)) { 301 if (bo->ttm == NULL) { 302 bool zero = !(old_man->flags & TTM_MEMTYPE_FLAG_FIXED); 303 ret = ttm_bo_add_ttm(bo, zero); 304 if (ret) 305 goto out_err; 306 } 307 308 ret = ttm_tt_set_placement_caching(bo->ttm, mem->placement); 309 if (ret) 310 goto out_err; 311 312 if (mem->mem_type != TTM_PL_SYSTEM) { 313 ret = ttm_tt_bind(bo->ttm, mem); 314 if (ret) 315 goto out_err; 316 } 317 318 if (bo->mem.mem_type == TTM_PL_SYSTEM) { 319 if (bdev->driver->move_notify) 320 bdev->driver->move_notify(bo, mem); 321 bo->mem = *mem; 322 mem->mm_node = NULL; 323 goto moved; 324 } 325 } 326 327 if (bdev->driver->move_notify) 328 bdev->driver->move_notify(bo, mem); 329 330 if (!(old_man->flags & TTM_MEMTYPE_FLAG_FIXED) && 331 !(new_man->flags & TTM_MEMTYPE_FLAG_FIXED)) 332 ret = ttm_bo_move_ttm(bo, evict, no_wait_gpu, mem); 333 else if (bdev->driver->move) 334 ret = bdev->driver->move(bo, evict, interruptible, 335 no_wait_gpu, mem); 336 else 337 ret = ttm_bo_move_memcpy(bo, evict, no_wait_gpu, mem); 338 339 if (ret) { 340 if (bdev->driver->move_notify) { 341 struct ttm_mem_reg tmp_mem = *mem; 342 *mem = bo->mem; 343 bo->mem = tmp_mem; 344 bdev->driver->move_notify(bo, mem); 345 bo->mem = *mem; 346 *mem = tmp_mem; 347 } 348 349 goto out_err; 350 } 351 352 moved: 353 if (bo->evicted) { 354 ret = bdev->driver->invalidate_caches(bdev, bo->mem.placement); 355 if (ret) 356 pr_err("Can not flush read caches\n"); 357 bo->evicted = false; 358 } 359 360 if (bo->mem.mm_node) { 361 bo->offset = (bo->mem.start << PAGE_SHIFT) + 362 bdev->man[bo->mem.mem_type].gpu_offset; 363 bo->cur_placement = bo->mem.placement; 364 } else 365 bo->offset = 0; 366 367 return 0; 368 369 out_err: 370 new_man = &bdev->man[bo->mem.mem_type]; 371 if ((new_man->flags & TTM_MEMTYPE_FLAG_FIXED) && bo->ttm) { 372 ttm_tt_unbind(bo->ttm); 373 ttm_tt_destroy(bo->ttm); 374 bo->ttm = NULL; 375 } 376 377 return ret; 378 } 379 380 /** 381 * Call bo::reserved. 382 * Will release GPU memory type usage on destruction. 383 * This is the place to put in driver specific hooks to release 384 * driver private resources. 385 * Will release the bo::reserved lock. 386 */ 387 388 static void ttm_bo_cleanup_memtype_use(struct ttm_buffer_object *bo) 389 { 390 if (bo->bdev->driver->move_notify) 391 bo->bdev->driver->move_notify(bo, NULL); 392 393 if (bo->ttm) { 394 ttm_tt_unbind(bo->ttm); 395 ttm_tt_destroy(bo->ttm); 396 bo->ttm = NULL; 397 } 398 ttm_bo_mem_put(bo, &bo->mem); 399 400 ww_mutex_unlock (&bo->resv->lock); 401 } 402 403 static void ttm_bo_cleanup_refs_or_queue(struct ttm_buffer_object *bo) 404 { 405 struct ttm_bo_device *bdev = bo->bdev; 406 struct ttm_bo_global *glob = bo->glob; 407 struct ttm_bo_driver *driver = bdev->driver; 408 void *sync_obj = NULL; 409 int put_count; 410 int ret; 411 412 spin_lock(&glob->lru_lock); 413 ret = ttm_bo_reserve_nolru(bo, false, true, false, 0); 414 415 spin_lock(&bdev->fence_lock); 416 (void) ttm_bo_wait(bo, false, false, true); 417 if (!ret && !bo->sync_obj) { 418 spin_unlock(&bdev->fence_lock); 419 put_count = ttm_bo_del_from_lru(bo); 420 421 spin_unlock(&glob->lru_lock); 422 ttm_bo_cleanup_memtype_use(bo); 423 424 ttm_bo_list_ref_sub(bo, put_count, true); 425 426 return; 427 } 428 if (bo->sync_obj) 429 sync_obj = driver->sync_obj_ref(bo->sync_obj); 430 spin_unlock(&bdev->fence_lock); 431 432 if (!ret) { 433 434 /* 435 * Make NO_EVICT bos immediately available to 436 * shrinkers, now that they are queued for 437 * destruction. 438 */ 439 if (bo->mem.placement & TTM_PL_FLAG_NO_EVICT) { 440 bo->mem.placement &= ~TTM_PL_FLAG_NO_EVICT; 441 ttm_bo_add_to_lru(bo); 442 } 443 444 ww_mutex_unlock(&bo->resv->lock); 445 } 446 447 kref_get(&bo->list_kref); 448 list_add_tail(&bo->ddestroy, &bdev->ddestroy); 449 spin_unlock(&glob->lru_lock); 450 451 if (sync_obj) { 452 driver->sync_obj_flush(sync_obj); 453 driver->sync_obj_unref(&sync_obj); 454 } 455 schedule_delayed_work(&bdev->wq, 456 ((HZ / 100) < 1) ? 1 : HZ / 100); 457 } 458 459 /** 460 * function ttm_bo_cleanup_refs_and_unlock 461 * If bo idle, remove from delayed- and lru lists, and unref. 462 * If not idle, do nothing. 463 * 464 * Must be called with lru_lock and reservation held, this function 465 * will drop both before returning. 466 * 467 * @interruptible Any sleeps should occur interruptibly. 468 * @no_wait_gpu Never wait for gpu. Return -EBUSY instead. 469 */ 470 471 static int ttm_bo_cleanup_refs_and_unlock(struct ttm_buffer_object *bo, 472 bool interruptible, 473 bool no_wait_gpu) 474 { 475 struct ttm_bo_device *bdev = bo->bdev; 476 struct ttm_bo_driver *driver = bdev->driver; 477 struct ttm_bo_global *glob = bo->glob; 478 int put_count; 479 int ret; 480 481 spin_lock(&bdev->fence_lock); 482 ret = ttm_bo_wait(bo, false, false, true); 483 484 if (ret && !no_wait_gpu) { 485 void *sync_obj; 486 487 /* 488 * Take a reference to the fence and unreserve, 489 * at this point the buffer should be dead, so 490 * no new sync objects can be attached. 491 */ 492 sync_obj = driver->sync_obj_ref(bo->sync_obj); 493 spin_unlock(&bdev->fence_lock); 494 495 ww_mutex_unlock(&bo->resv->lock); 496 spin_unlock(&glob->lru_lock); 497 498 ret = driver->sync_obj_wait(sync_obj, false, interruptible); 499 driver->sync_obj_unref(&sync_obj); 500 if (ret) 501 return ret; 502 503 /* 504 * remove sync_obj with ttm_bo_wait, the wait should be 505 * finished, and no new wait object should have been added. 506 */ 507 spin_lock(&bdev->fence_lock); 508 ret = ttm_bo_wait(bo, false, false, true); 509 WARN_ON(ret); 510 spin_unlock(&bdev->fence_lock); 511 if (ret) 512 return ret; 513 514 spin_lock(&glob->lru_lock); 515 ret = ttm_bo_reserve_nolru(bo, false, true, false, 0); 516 517 /* 518 * We raced, and lost, someone else holds the reservation now, 519 * and is probably busy in ttm_bo_cleanup_memtype_use. 520 * 521 * Even if it's not the case, because we finished waiting any 522 * delayed destruction would succeed, so just return success 523 * here. 524 */ 525 if (ret) { 526 spin_unlock(&glob->lru_lock); 527 return 0; 528 } 529 } else 530 spin_unlock(&bdev->fence_lock); 531 532 if (ret || unlikely(list_empty(&bo->ddestroy))) { 533 ww_mutex_unlock(&bo->resv->lock); 534 spin_unlock(&glob->lru_lock); 535 return ret; 536 } 537 538 put_count = ttm_bo_del_from_lru(bo); 539 list_del_init(&bo->ddestroy); 540 ++put_count; 541 542 spin_unlock(&glob->lru_lock); 543 ttm_bo_cleanup_memtype_use(bo); 544 545 ttm_bo_list_ref_sub(bo, put_count, true); 546 547 return 0; 548 } 549 550 /** 551 * Traverse the delayed list, and call ttm_bo_cleanup_refs on all 552 * encountered buffers. 553 */ 554 555 static int ttm_bo_delayed_delete(struct ttm_bo_device *bdev, bool remove_all) 556 { 557 struct ttm_bo_global *glob = bdev->glob; 558 struct ttm_buffer_object *entry = NULL; 559 int ret = 0; 560 561 spin_lock(&glob->lru_lock); 562 if (list_empty(&bdev->ddestroy)) 563 goto out_unlock; 564 565 entry = list_first_entry(&bdev->ddestroy, 566 struct ttm_buffer_object, ddestroy); 567 kref_get(&entry->list_kref); 568 569 for (;;) { 570 struct ttm_buffer_object *nentry = NULL; 571 572 if (entry->ddestroy.next != &bdev->ddestroy) { 573 nentry = list_first_entry(&entry->ddestroy, 574 struct ttm_buffer_object, ddestroy); 575 kref_get(&nentry->list_kref); 576 } 577 578 ret = ttm_bo_reserve_nolru(entry, false, true, false, 0); 579 if (remove_all && ret) { 580 spin_unlock(&glob->lru_lock); 581 ret = ttm_bo_reserve_nolru(entry, false, false, 582 false, 0); 583 spin_lock(&glob->lru_lock); 584 } 585 586 if (!ret) 587 ret = ttm_bo_cleanup_refs_and_unlock(entry, false, 588 !remove_all); 589 else 590 spin_unlock(&glob->lru_lock); 591 592 kref_put(&entry->list_kref, ttm_bo_release_list); 593 entry = nentry; 594 595 if (ret || !entry) 596 goto out; 597 598 spin_lock(&glob->lru_lock); 599 if (list_empty(&entry->ddestroy)) 600 break; 601 } 602 603 out_unlock: 604 spin_unlock(&glob->lru_lock); 605 out: 606 if (entry) 607 kref_put(&entry->list_kref, ttm_bo_release_list); 608 return ret; 609 } 610 611 static void ttm_bo_delayed_workqueue(struct work_struct *work) 612 { 613 struct ttm_bo_device *bdev = 614 container_of(work, struct ttm_bo_device, wq.work); 615 616 if (ttm_bo_delayed_delete(bdev, false)) { 617 schedule_delayed_work(&bdev->wq, 618 ((HZ / 100) < 1) ? 1 : HZ / 100); 619 } 620 } 621 622 static void ttm_bo_release(struct kref *kref) 623 { 624 struct ttm_buffer_object *bo = 625 container_of(kref, struct ttm_buffer_object, kref); 626 struct ttm_bo_device *bdev = bo->bdev; 627 struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type]; 628 629 drm_vma_offset_remove(&bdev->vma_manager, &bo->vma_node); 630 ttm_mem_io_lock(man, false); 631 ttm_mem_io_free_vm(bo); 632 ttm_mem_io_unlock(man); 633 ttm_bo_cleanup_refs_or_queue(bo); 634 kref_put(&bo->list_kref, ttm_bo_release_list); 635 } 636 637 void ttm_bo_unref(struct ttm_buffer_object **p_bo) 638 { 639 struct ttm_buffer_object *bo = *p_bo; 640 641 *p_bo = NULL; 642 kref_put(&bo->kref, ttm_bo_release); 643 } 644 EXPORT_SYMBOL(ttm_bo_unref); 645 646 int ttm_bo_lock_delayed_workqueue(struct ttm_bo_device *bdev) 647 { 648 return cancel_delayed_work_sync(&bdev->wq); 649 } 650 EXPORT_SYMBOL(ttm_bo_lock_delayed_workqueue); 651 652 void ttm_bo_unlock_delayed_workqueue(struct ttm_bo_device *bdev, int resched) 653 { 654 if (resched) 655 schedule_delayed_work(&bdev->wq, 656 ((HZ / 100) < 1) ? 1 : HZ / 100); 657 } 658 EXPORT_SYMBOL(ttm_bo_unlock_delayed_workqueue); 659 660 static int ttm_bo_evict(struct ttm_buffer_object *bo, bool interruptible, 661 bool no_wait_gpu) 662 { 663 struct ttm_bo_device *bdev = bo->bdev; 664 struct ttm_mem_reg evict_mem; 665 struct ttm_placement placement; 666 int ret = 0; 667 668 spin_lock(&bdev->fence_lock); 669 ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu); 670 spin_unlock(&bdev->fence_lock); 671 672 if (unlikely(ret != 0)) { 673 if (ret != -ERESTARTSYS) { 674 pr_err("Failed to expire sync object before buffer eviction\n"); 675 } 676 goto out; 677 } 678 679 lockdep_assert_held(&bo->resv->lock.base); 680 681 evict_mem = bo->mem; 682 evict_mem.mm_node = NULL; 683 evict_mem.bus.io_reserved_vm = false; 684 evict_mem.bus.io_reserved_count = 0; 685 686 placement.fpfn = 0; 687 placement.lpfn = 0; 688 placement.num_placement = 0; 689 placement.num_busy_placement = 0; 690 bdev->driver->evict_flags(bo, &placement); 691 ret = ttm_bo_mem_space(bo, &placement, &evict_mem, interruptible, 692 no_wait_gpu); 693 if (ret) { 694 if (ret != -ERESTARTSYS) { 695 pr_err("Failed to find memory space for buffer 0x%p eviction\n", 696 bo); 697 ttm_bo_mem_space_debug(bo, &placement); 698 } 699 goto out; 700 } 701 702 ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, interruptible, 703 no_wait_gpu); 704 if (ret) { 705 if (ret != -ERESTARTSYS) 706 pr_err("Buffer eviction failed\n"); 707 ttm_bo_mem_put(bo, &evict_mem); 708 goto out; 709 } 710 bo->evicted = true; 711 out: 712 return ret; 713 } 714 715 static int ttm_mem_evict_first(struct ttm_bo_device *bdev, 716 uint32_t mem_type, 717 bool interruptible, 718 bool no_wait_gpu) 719 { 720 struct ttm_bo_global *glob = bdev->glob; 721 struct ttm_mem_type_manager *man = &bdev->man[mem_type]; 722 struct ttm_buffer_object *bo; 723 int ret = -EBUSY, put_count; 724 725 spin_lock(&glob->lru_lock); 726 list_for_each_entry(bo, &man->lru, lru) { 727 ret = ttm_bo_reserve_nolru(bo, false, true, false, 0); 728 if (!ret) 729 break; 730 } 731 732 if (ret) { 733 spin_unlock(&glob->lru_lock); 734 return ret; 735 } 736 737 kref_get(&bo->list_kref); 738 739 if (!list_empty(&bo->ddestroy)) { 740 ret = ttm_bo_cleanup_refs_and_unlock(bo, interruptible, 741 no_wait_gpu); 742 kref_put(&bo->list_kref, ttm_bo_release_list); 743 return ret; 744 } 745 746 put_count = ttm_bo_del_from_lru(bo); 747 spin_unlock(&glob->lru_lock); 748 749 BUG_ON(ret != 0); 750 751 ttm_bo_list_ref_sub(bo, put_count, true); 752 753 ret = ttm_bo_evict(bo, interruptible, no_wait_gpu); 754 ttm_bo_unreserve(bo); 755 756 kref_put(&bo->list_kref, ttm_bo_release_list); 757 return ret; 758 } 759 760 void ttm_bo_mem_put(struct ttm_buffer_object *bo, struct ttm_mem_reg *mem) 761 { 762 struct ttm_mem_type_manager *man = &bo->bdev->man[mem->mem_type]; 763 764 if (mem->mm_node) 765 (*man->func->put_node)(man, mem); 766 } 767 EXPORT_SYMBOL(ttm_bo_mem_put); 768 769 /** 770 * Repeatedly evict memory from the LRU for @mem_type until we create enough 771 * space, or we've evicted everything and there isn't enough space. 772 */ 773 static int ttm_bo_mem_force_space(struct ttm_buffer_object *bo, 774 uint32_t mem_type, 775 struct ttm_placement *placement, 776 struct ttm_mem_reg *mem, 777 bool interruptible, 778 bool no_wait_gpu) 779 { 780 struct ttm_bo_device *bdev = bo->bdev; 781 struct ttm_mem_type_manager *man = &bdev->man[mem_type]; 782 int ret; 783 784 do { 785 ret = (*man->func->get_node)(man, bo, placement, mem); 786 if (unlikely(ret != 0)) 787 return ret; 788 if (mem->mm_node) 789 break; 790 ret = ttm_mem_evict_first(bdev, mem_type, 791 interruptible, no_wait_gpu); 792 if (unlikely(ret != 0)) 793 return ret; 794 } while (1); 795 if (mem->mm_node == NULL) 796 return -ENOMEM; 797 mem->mem_type = mem_type; 798 return 0; 799 } 800 801 static uint32_t ttm_bo_select_caching(struct ttm_mem_type_manager *man, 802 uint32_t cur_placement, 803 uint32_t proposed_placement) 804 { 805 uint32_t caching = proposed_placement & TTM_PL_MASK_CACHING; 806 uint32_t result = proposed_placement & ~TTM_PL_MASK_CACHING; 807 808 /** 809 * Keep current caching if possible. 810 */ 811 812 if ((cur_placement & caching) != 0) 813 result |= (cur_placement & caching); 814 else if ((man->default_caching & caching) != 0) 815 result |= man->default_caching; 816 else if ((TTM_PL_FLAG_CACHED & caching) != 0) 817 result |= TTM_PL_FLAG_CACHED; 818 else if ((TTM_PL_FLAG_WC & caching) != 0) 819 result |= TTM_PL_FLAG_WC; 820 else if ((TTM_PL_FLAG_UNCACHED & caching) != 0) 821 result |= TTM_PL_FLAG_UNCACHED; 822 823 return result; 824 } 825 826 static bool ttm_bo_mt_compatible(struct ttm_mem_type_manager *man, 827 uint32_t mem_type, 828 uint32_t proposed_placement, 829 uint32_t *masked_placement) 830 { 831 uint32_t cur_flags = ttm_bo_type_flags(mem_type); 832 833 if ((cur_flags & proposed_placement & TTM_PL_MASK_MEM) == 0) 834 return false; 835 836 if ((proposed_placement & man->available_caching) == 0) 837 return false; 838 839 cur_flags |= (proposed_placement & man->available_caching); 840 841 *masked_placement = cur_flags; 842 return true; 843 } 844 845 /** 846 * Creates space for memory region @mem according to its type. 847 * 848 * This function first searches for free space in compatible memory types in 849 * the priority order defined by the driver. If free space isn't found, then 850 * ttm_bo_mem_force_space is attempted in priority order to evict and find 851 * space. 852 */ 853 int ttm_bo_mem_space(struct ttm_buffer_object *bo, 854 struct ttm_placement *placement, 855 struct ttm_mem_reg *mem, 856 bool interruptible, 857 bool no_wait_gpu) 858 { 859 struct ttm_bo_device *bdev = bo->bdev; 860 struct ttm_mem_type_manager *man; 861 uint32_t mem_type = TTM_PL_SYSTEM; 862 uint32_t cur_flags = 0; 863 bool type_found = false; 864 bool type_ok = false; 865 bool has_erestartsys = false; 866 int i, ret; 867 868 mem->mm_node = NULL; 869 for (i = 0; i < placement->num_placement; ++i) { 870 ret = ttm_mem_type_from_flags(placement->placement[i], 871 &mem_type); 872 if (ret) 873 return ret; 874 man = &bdev->man[mem_type]; 875 876 type_ok = ttm_bo_mt_compatible(man, 877 mem_type, 878 placement->placement[i], 879 &cur_flags); 880 881 if (!type_ok) 882 continue; 883 884 cur_flags = ttm_bo_select_caching(man, bo->mem.placement, 885 cur_flags); 886 /* 887 * Use the access and other non-mapping-related flag bits from 888 * the memory placement flags to the current flags 889 */ 890 ttm_flag_masked(&cur_flags, placement->placement[i], 891 ~TTM_PL_MASK_MEMTYPE); 892 893 if (mem_type == TTM_PL_SYSTEM) 894 break; 895 896 if (man->has_type && man->use_type) { 897 type_found = true; 898 ret = (*man->func->get_node)(man, bo, placement, mem); 899 if (unlikely(ret)) 900 return ret; 901 } 902 if (mem->mm_node) 903 break; 904 } 905 906 if ((type_ok && (mem_type == TTM_PL_SYSTEM)) || mem->mm_node) { 907 mem->mem_type = mem_type; 908 mem->placement = cur_flags; 909 return 0; 910 } 911 912 if (!type_found) 913 return -EINVAL; 914 915 for (i = 0; i < placement->num_busy_placement; ++i) { 916 ret = ttm_mem_type_from_flags(placement->busy_placement[i], 917 &mem_type); 918 if (ret) 919 return ret; 920 man = &bdev->man[mem_type]; 921 if (!man->has_type) 922 continue; 923 if (!ttm_bo_mt_compatible(man, 924 mem_type, 925 placement->busy_placement[i], 926 &cur_flags)) 927 continue; 928 929 cur_flags = ttm_bo_select_caching(man, bo->mem.placement, 930 cur_flags); 931 /* 932 * Use the access and other non-mapping-related flag bits from 933 * the memory placement flags to the current flags 934 */ 935 ttm_flag_masked(&cur_flags, placement->busy_placement[i], 936 ~TTM_PL_MASK_MEMTYPE); 937 938 939 if (mem_type == TTM_PL_SYSTEM) { 940 mem->mem_type = mem_type; 941 mem->placement = cur_flags; 942 mem->mm_node = NULL; 943 return 0; 944 } 945 946 ret = ttm_bo_mem_force_space(bo, mem_type, placement, mem, 947 interruptible, no_wait_gpu); 948 if (ret == 0 && mem->mm_node) { 949 mem->placement = cur_flags; 950 return 0; 951 } 952 if (ret == -ERESTARTSYS) 953 has_erestartsys = true; 954 } 955 ret = (has_erestartsys) ? -ERESTARTSYS : -ENOMEM; 956 return ret; 957 } 958 EXPORT_SYMBOL(ttm_bo_mem_space); 959 960 int ttm_bo_move_buffer(struct ttm_buffer_object *bo, 961 struct ttm_placement *placement, 962 bool interruptible, 963 bool no_wait_gpu) 964 { 965 int ret = 0; 966 struct ttm_mem_reg mem; 967 struct ttm_bo_device *bdev = bo->bdev; 968 969 lockdep_assert_held(&bo->resv->lock.base); 970 971 /* 972 * FIXME: It's possible to pipeline buffer moves. 973 * Have the driver move function wait for idle when necessary, 974 * instead of doing it here. 975 */ 976 spin_lock(&bdev->fence_lock); 977 ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu); 978 spin_unlock(&bdev->fence_lock); 979 if (ret) 980 return ret; 981 mem.num_pages = bo->num_pages; 982 mem.size = mem.num_pages << PAGE_SHIFT; 983 mem.page_alignment = bo->mem.page_alignment; 984 mem.bus.io_reserved_vm = false; 985 mem.bus.io_reserved_count = 0; 986 /* 987 * Determine where to move the buffer. 988 */ 989 ret = ttm_bo_mem_space(bo, placement, &mem, 990 interruptible, no_wait_gpu); 991 if (ret) 992 goto out_unlock; 993 ret = ttm_bo_handle_move_mem(bo, &mem, false, 994 interruptible, no_wait_gpu); 995 out_unlock: 996 if (ret && mem.mm_node) 997 ttm_bo_mem_put(bo, &mem); 998 return ret; 999 } 1000 1001 static bool ttm_bo_mem_compat(struct ttm_placement *placement, 1002 struct ttm_mem_reg *mem, 1003 uint32_t *new_flags) 1004 { 1005 int i; 1006 1007 if (mem->mm_node && placement->lpfn != 0 && 1008 (mem->start < placement->fpfn || 1009 mem->start + mem->num_pages > placement->lpfn)) 1010 return false; 1011 1012 for (i = 0; i < placement->num_placement; i++) { 1013 *new_flags = placement->placement[i]; 1014 if ((*new_flags & mem->placement & TTM_PL_MASK_CACHING) && 1015 (*new_flags & mem->placement & TTM_PL_MASK_MEM)) 1016 return true; 1017 } 1018 1019 for (i = 0; i < placement->num_busy_placement; i++) { 1020 *new_flags = placement->busy_placement[i]; 1021 if ((*new_flags & mem->placement & TTM_PL_MASK_CACHING) && 1022 (*new_flags & mem->placement & TTM_PL_MASK_MEM)) 1023 return true; 1024 } 1025 1026 return false; 1027 } 1028 1029 int ttm_bo_validate(struct ttm_buffer_object *bo, 1030 struct ttm_placement *placement, 1031 bool interruptible, 1032 bool no_wait_gpu) 1033 { 1034 int ret; 1035 uint32_t new_flags; 1036 1037 lockdep_assert_held(&bo->resv->lock.base); 1038 /* Check that range is valid */ 1039 if (placement->lpfn || placement->fpfn) 1040 if (placement->fpfn > placement->lpfn || 1041 (placement->lpfn - placement->fpfn) < bo->num_pages) 1042 return -EINVAL; 1043 /* 1044 * Check whether we need to move buffer. 1045 */ 1046 if (!ttm_bo_mem_compat(placement, &bo->mem, &new_flags)) { 1047 ret = ttm_bo_move_buffer(bo, placement, interruptible, 1048 no_wait_gpu); 1049 if (ret) 1050 return ret; 1051 } else { 1052 /* 1053 * Use the access and other non-mapping-related flag bits from 1054 * the compatible memory placement flags to the active flags 1055 */ 1056 ttm_flag_masked(&bo->mem.placement, new_flags, 1057 ~TTM_PL_MASK_MEMTYPE); 1058 } 1059 /* 1060 * We might need to add a TTM. 1061 */ 1062 if (bo->mem.mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) { 1063 ret = ttm_bo_add_ttm(bo, true); 1064 if (ret) 1065 return ret; 1066 } 1067 return 0; 1068 } 1069 EXPORT_SYMBOL(ttm_bo_validate); 1070 1071 int ttm_bo_check_placement(struct ttm_buffer_object *bo, 1072 struct ttm_placement *placement) 1073 { 1074 BUG_ON((placement->fpfn || placement->lpfn) && 1075 (bo->mem.num_pages > (placement->lpfn - placement->fpfn))); 1076 1077 return 0; 1078 } 1079 1080 int ttm_bo_init(struct ttm_bo_device *bdev, 1081 struct ttm_buffer_object *bo, 1082 unsigned long size, 1083 enum ttm_bo_type type, 1084 struct ttm_placement *placement, 1085 uint32_t page_alignment, 1086 bool interruptible, 1087 struct file *persistent_swap_storage, 1088 size_t acc_size, 1089 struct sg_table *sg, 1090 void (*destroy) (struct ttm_buffer_object *)) 1091 { 1092 int ret = 0; 1093 unsigned long num_pages; 1094 struct ttm_mem_global *mem_glob = bdev->glob->mem_glob; 1095 bool locked; 1096 1097 ret = ttm_mem_global_alloc(mem_glob, acc_size, false, false); 1098 if (ret) { 1099 pr_err("Out of kernel memory\n"); 1100 if (destroy) 1101 (*destroy)(bo); 1102 else 1103 kfree(bo); 1104 return -ENOMEM; 1105 } 1106 1107 num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 1108 if (num_pages == 0) { 1109 pr_err("Illegal buffer object size\n"); 1110 if (destroy) 1111 (*destroy)(bo); 1112 else 1113 kfree(bo); 1114 ttm_mem_global_free(mem_glob, acc_size); 1115 return -EINVAL; 1116 } 1117 bo->destroy = destroy; 1118 1119 kref_init(&bo->kref); 1120 kref_init(&bo->list_kref); 1121 atomic_set(&bo->cpu_writers, 0); 1122 INIT_LIST_HEAD(&bo->lru); 1123 INIT_LIST_HEAD(&bo->ddestroy); 1124 INIT_LIST_HEAD(&bo->swap); 1125 INIT_LIST_HEAD(&bo->io_reserve_lru); 1126 mutex_init(&bo->wu_mutex); 1127 bo->bdev = bdev; 1128 bo->glob = bdev->glob; 1129 bo->type = type; 1130 bo->num_pages = num_pages; 1131 bo->mem.size = num_pages << PAGE_SHIFT; 1132 bo->mem.mem_type = TTM_PL_SYSTEM; 1133 bo->mem.num_pages = bo->num_pages; 1134 bo->mem.mm_node = NULL; 1135 bo->mem.page_alignment = page_alignment; 1136 bo->mem.bus.io_reserved_vm = false; 1137 bo->mem.bus.io_reserved_count = 0; 1138 bo->priv_flags = 0; 1139 bo->mem.placement = (TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED); 1140 bo->persistent_swap_storage = persistent_swap_storage; 1141 bo->acc_size = acc_size; 1142 bo->sg = sg; 1143 bo->resv = &bo->ttm_resv; 1144 reservation_object_init(bo->resv); 1145 atomic_inc(&bo->glob->bo_count); 1146 drm_vma_node_reset(&bo->vma_node); 1147 1148 ret = ttm_bo_check_placement(bo, placement); 1149 1150 /* 1151 * For ttm_bo_type_device buffers, allocate 1152 * address space from the device. 1153 */ 1154 if (likely(!ret) && 1155 (bo->type == ttm_bo_type_device || 1156 bo->type == ttm_bo_type_sg)) 1157 ret = drm_vma_offset_add(&bdev->vma_manager, &bo->vma_node, 1158 bo->mem.num_pages); 1159 1160 locked = ww_mutex_trylock(&bo->resv->lock); 1161 WARN_ON(!locked); 1162 1163 if (likely(!ret)) 1164 ret = ttm_bo_validate(bo, placement, interruptible, false); 1165 1166 ttm_bo_unreserve(bo); 1167 1168 if (unlikely(ret)) 1169 ttm_bo_unref(&bo); 1170 1171 return ret; 1172 } 1173 EXPORT_SYMBOL(ttm_bo_init); 1174 1175 size_t ttm_bo_acc_size(struct ttm_bo_device *bdev, 1176 unsigned long bo_size, 1177 unsigned struct_size) 1178 { 1179 unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT; 1180 size_t size = 0; 1181 1182 size += ttm_round_pot(struct_size); 1183 size += PAGE_ALIGN(npages * sizeof(void *)); 1184 size += ttm_round_pot(sizeof(struct ttm_tt)); 1185 return size; 1186 } 1187 EXPORT_SYMBOL(ttm_bo_acc_size); 1188 1189 size_t ttm_bo_dma_acc_size(struct ttm_bo_device *bdev, 1190 unsigned long bo_size, 1191 unsigned struct_size) 1192 { 1193 unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT; 1194 size_t size = 0; 1195 1196 size += ttm_round_pot(struct_size); 1197 size += PAGE_ALIGN(npages * sizeof(void *)); 1198 size += PAGE_ALIGN(npages * sizeof(dma_addr_t)); 1199 size += ttm_round_pot(sizeof(struct ttm_dma_tt)); 1200 return size; 1201 } 1202 EXPORT_SYMBOL(ttm_bo_dma_acc_size); 1203 1204 int ttm_bo_create(struct ttm_bo_device *bdev, 1205 unsigned long size, 1206 enum ttm_bo_type type, 1207 struct ttm_placement *placement, 1208 uint32_t page_alignment, 1209 bool interruptible, 1210 struct file *persistent_swap_storage, 1211 struct ttm_buffer_object **p_bo) 1212 { 1213 struct ttm_buffer_object *bo; 1214 size_t acc_size; 1215 int ret; 1216 1217 bo = kzalloc(sizeof(*bo), GFP_KERNEL); 1218 if (unlikely(bo == NULL)) 1219 return -ENOMEM; 1220 1221 acc_size = ttm_bo_acc_size(bdev, size, sizeof(struct ttm_buffer_object)); 1222 ret = ttm_bo_init(bdev, bo, size, type, placement, page_alignment, 1223 interruptible, persistent_swap_storage, acc_size, 1224 NULL, NULL); 1225 if (likely(ret == 0)) 1226 *p_bo = bo; 1227 1228 return ret; 1229 } 1230 EXPORT_SYMBOL(ttm_bo_create); 1231 1232 static int ttm_bo_force_list_clean(struct ttm_bo_device *bdev, 1233 unsigned mem_type, bool allow_errors) 1234 { 1235 struct ttm_mem_type_manager *man = &bdev->man[mem_type]; 1236 struct ttm_bo_global *glob = bdev->glob; 1237 int ret; 1238 1239 /* 1240 * Can't use standard list traversal since we're unlocking. 1241 */ 1242 1243 spin_lock(&glob->lru_lock); 1244 while (!list_empty(&man->lru)) { 1245 spin_unlock(&glob->lru_lock); 1246 ret = ttm_mem_evict_first(bdev, mem_type, false, false); 1247 if (ret) { 1248 if (allow_errors) { 1249 return ret; 1250 } else { 1251 pr_err("Cleanup eviction failed\n"); 1252 } 1253 } 1254 spin_lock(&glob->lru_lock); 1255 } 1256 spin_unlock(&glob->lru_lock); 1257 return 0; 1258 } 1259 1260 int ttm_bo_clean_mm(struct ttm_bo_device *bdev, unsigned mem_type) 1261 { 1262 struct ttm_mem_type_manager *man; 1263 int ret = -EINVAL; 1264 1265 if (mem_type >= TTM_NUM_MEM_TYPES) { 1266 pr_err("Illegal memory type %d\n", mem_type); 1267 return ret; 1268 } 1269 man = &bdev->man[mem_type]; 1270 1271 if (!man->has_type) { 1272 pr_err("Trying to take down uninitialized memory manager type %u\n", 1273 mem_type); 1274 return ret; 1275 } 1276 1277 man->use_type = false; 1278 man->has_type = false; 1279 1280 ret = 0; 1281 if (mem_type > 0) { 1282 ttm_bo_force_list_clean(bdev, mem_type, false); 1283 1284 ret = (*man->func->takedown)(man); 1285 } 1286 1287 return ret; 1288 } 1289 EXPORT_SYMBOL(ttm_bo_clean_mm); 1290 1291 int ttm_bo_evict_mm(struct ttm_bo_device *bdev, unsigned mem_type) 1292 { 1293 struct ttm_mem_type_manager *man = &bdev->man[mem_type]; 1294 1295 if (mem_type == 0 || mem_type >= TTM_NUM_MEM_TYPES) { 1296 pr_err("Illegal memory manager memory type %u\n", mem_type); 1297 return -EINVAL; 1298 } 1299 1300 if (!man->has_type) { 1301 pr_err("Memory type %u has not been initialized\n", mem_type); 1302 return 0; 1303 } 1304 1305 return ttm_bo_force_list_clean(bdev, mem_type, true); 1306 } 1307 EXPORT_SYMBOL(ttm_bo_evict_mm); 1308 1309 int ttm_bo_init_mm(struct ttm_bo_device *bdev, unsigned type, 1310 unsigned long p_size) 1311 { 1312 int ret = -EINVAL; 1313 struct ttm_mem_type_manager *man; 1314 1315 BUG_ON(type >= TTM_NUM_MEM_TYPES); 1316 man = &bdev->man[type]; 1317 BUG_ON(man->has_type); 1318 man->io_reserve_fastpath = true; 1319 man->use_io_reserve_lru = false; 1320 mutex_init(&man->io_reserve_mutex); 1321 INIT_LIST_HEAD(&man->io_reserve_lru); 1322 1323 ret = bdev->driver->init_mem_type(bdev, type, man); 1324 if (ret) 1325 return ret; 1326 man->bdev = bdev; 1327 1328 ret = 0; 1329 if (type != TTM_PL_SYSTEM) { 1330 ret = (*man->func->init)(man, p_size); 1331 if (ret) 1332 return ret; 1333 } 1334 man->has_type = true; 1335 man->use_type = true; 1336 man->size = p_size; 1337 1338 INIT_LIST_HEAD(&man->lru); 1339 1340 return 0; 1341 } 1342 EXPORT_SYMBOL(ttm_bo_init_mm); 1343 1344 static void ttm_bo_global_kobj_release(struct kobject *kobj) 1345 { 1346 struct ttm_bo_global *glob = 1347 container_of(kobj, struct ttm_bo_global, kobj); 1348 1349 ttm_mem_unregister_shrink(glob->mem_glob, &glob->shrink); 1350 __free_page(glob->dummy_read_page); 1351 kfree(glob); 1352 } 1353 1354 void ttm_bo_global_release(struct drm_global_reference *ref) 1355 { 1356 struct ttm_bo_global *glob = ref->object; 1357 1358 kobject_del(&glob->kobj); 1359 kobject_put(&glob->kobj); 1360 } 1361 EXPORT_SYMBOL(ttm_bo_global_release); 1362 1363 int ttm_bo_global_init(struct drm_global_reference *ref) 1364 { 1365 struct ttm_bo_global_ref *bo_ref = 1366 container_of(ref, struct ttm_bo_global_ref, ref); 1367 struct ttm_bo_global *glob = ref->object; 1368 int ret; 1369 1370 mutex_init(&glob->device_list_mutex); 1371 spin_lock_init(&glob->lru_lock); 1372 glob->mem_glob = bo_ref->mem_glob; 1373 glob->dummy_read_page = alloc_page(__GFP_ZERO | GFP_DMA32); 1374 1375 if (unlikely(glob->dummy_read_page == NULL)) { 1376 ret = -ENOMEM; 1377 goto out_no_drp; 1378 } 1379 1380 INIT_LIST_HEAD(&glob->swap_lru); 1381 INIT_LIST_HEAD(&glob->device_list); 1382 1383 ttm_mem_init_shrink(&glob->shrink, ttm_bo_swapout); 1384 ret = ttm_mem_register_shrink(glob->mem_glob, &glob->shrink); 1385 if (unlikely(ret != 0)) { 1386 pr_err("Could not register buffer object swapout\n"); 1387 goto out_no_shrink; 1388 } 1389 1390 atomic_set(&glob->bo_count, 0); 1391 1392 ret = kobject_init_and_add( 1393 &glob->kobj, &ttm_bo_glob_kobj_type, ttm_get_kobj(), "buffer_objects"); 1394 if (unlikely(ret != 0)) 1395 kobject_put(&glob->kobj); 1396 return ret; 1397 out_no_shrink: 1398 __free_page(glob->dummy_read_page); 1399 out_no_drp: 1400 kfree(glob); 1401 return ret; 1402 } 1403 EXPORT_SYMBOL(ttm_bo_global_init); 1404 1405 1406 int ttm_bo_device_release(struct ttm_bo_device *bdev) 1407 { 1408 int ret = 0; 1409 unsigned i = TTM_NUM_MEM_TYPES; 1410 struct ttm_mem_type_manager *man; 1411 struct ttm_bo_global *glob = bdev->glob; 1412 1413 while (i--) { 1414 man = &bdev->man[i]; 1415 if (man->has_type) { 1416 man->use_type = false; 1417 if ((i != TTM_PL_SYSTEM) && ttm_bo_clean_mm(bdev, i)) { 1418 ret = -EBUSY; 1419 pr_err("DRM memory manager type %d is not clean\n", 1420 i); 1421 } 1422 man->has_type = false; 1423 } 1424 } 1425 1426 mutex_lock(&glob->device_list_mutex); 1427 list_del(&bdev->device_list); 1428 mutex_unlock(&glob->device_list_mutex); 1429 1430 cancel_delayed_work_sync(&bdev->wq); 1431 1432 while (ttm_bo_delayed_delete(bdev, true)) 1433 ; 1434 1435 spin_lock(&glob->lru_lock); 1436 if (list_empty(&bdev->ddestroy)) 1437 TTM_DEBUG("Delayed destroy list was clean\n"); 1438 1439 if (list_empty(&bdev->man[0].lru)) 1440 TTM_DEBUG("Swap list was clean\n"); 1441 spin_unlock(&glob->lru_lock); 1442 1443 drm_vma_offset_manager_destroy(&bdev->vma_manager); 1444 1445 return ret; 1446 } 1447 EXPORT_SYMBOL(ttm_bo_device_release); 1448 1449 int ttm_bo_device_init(struct ttm_bo_device *bdev, 1450 struct ttm_bo_global *glob, 1451 struct ttm_bo_driver *driver, 1452 uint64_t file_page_offset, 1453 bool need_dma32) 1454 { 1455 int ret = -EINVAL; 1456 1457 bdev->driver = driver; 1458 1459 memset(bdev->man, 0, sizeof(bdev->man)); 1460 1461 /* 1462 * Initialize the system memory buffer type. 1463 * Other types need to be driver / IOCTL initialized. 1464 */ 1465 ret = ttm_bo_init_mm(bdev, TTM_PL_SYSTEM, 0); 1466 if (unlikely(ret != 0)) 1467 goto out_no_sys; 1468 1469 drm_vma_offset_manager_init(&bdev->vma_manager, file_page_offset, 1470 0x10000000); 1471 INIT_DELAYED_WORK(&bdev->wq, ttm_bo_delayed_workqueue); 1472 INIT_LIST_HEAD(&bdev->ddestroy); 1473 bdev->dev_mapping = NULL; 1474 bdev->glob = glob; 1475 bdev->need_dma32 = need_dma32; 1476 bdev->val_seq = 0; 1477 spin_lock_init(&bdev->fence_lock); 1478 mutex_lock(&glob->device_list_mutex); 1479 list_add_tail(&bdev->device_list, &glob->device_list); 1480 mutex_unlock(&glob->device_list_mutex); 1481 1482 return 0; 1483 out_no_sys: 1484 return ret; 1485 } 1486 EXPORT_SYMBOL(ttm_bo_device_init); 1487 1488 /* 1489 * buffer object vm functions. 1490 */ 1491 1492 bool ttm_mem_reg_is_pci(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem) 1493 { 1494 struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type]; 1495 1496 if (!(man->flags & TTM_MEMTYPE_FLAG_FIXED)) { 1497 if (mem->mem_type == TTM_PL_SYSTEM) 1498 return false; 1499 1500 if (man->flags & TTM_MEMTYPE_FLAG_CMA) 1501 return false; 1502 1503 if (mem->placement & TTM_PL_FLAG_CACHED) 1504 return false; 1505 } 1506 return true; 1507 } 1508 1509 void ttm_bo_unmap_virtual_locked(struct ttm_buffer_object *bo) 1510 { 1511 struct ttm_bo_device *bdev = bo->bdev; 1512 1513 drm_vma_node_unmap(&bo->vma_node, bdev->dev_mapping); 1514 ttm_mem_io_free_vm(bo); 1515 } 1516 1517 void ttm_bo_unmap_virtual(struct ttm_buffer_object *bo) 1518 { 1519 struct ttm_bo_device *bdev = bo->bdev; 1520 struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type]; 1521 1522 ttm_mem_io_lock(man, false); 1523 ttm_bo_unmap_virtual_locked(bo); 1524 ttm_mem_io_unlock(man); 1525 } 1526 1527 1528 EXPORT_SYMBOL(ttm_bo_unmap_virtual); 1529 1530 1531 int ttm_bo_wait(struct ttm_buffer_object *bo, 1532 bool lazy, bool interruptible, bool no_wait) 1533 { 1534 struct ttm_bo_driver *driver = bo->bdev->driver; 1535 struct ttm_bo_device *bdev = bo->bdev; 1536 void *sync_obj; 1537 int ret = 0; 1538 1539 if (likely(bo->sync_obj == NULL)) 1540 return 0; 1541 1542 while (bo->sync_obj) { 1543 1544 if (driver->sync_obj_signaled(bo->sync_obj)) { 1545 void *tmp_obj = bo->sync_obj; 1546 bo->sync_obj = NULL; 1547 clear_bit(TTM_BO_PRIV_FLAG_MOVING, &bo->priv_flags); 1548 spin_unlock(&bdev->fence_lock); 1549 driver->sync_obj_unref(&tmp_obj); 1550 spin_lock(&bdev->fence_lock); 1551 continue; 1552 } 1553 1554 if (no_wait) 1555 return -EBUSY; 1556 1557 sync_obj = driver->sync_obj_ref(bo->sync_obj); 1558 spin_unlock(&bdev->fence_lock); 1559 ret = driver->sync_obj_wait(sync_obj, 1560 lazy, interruptible); 1561 if (unlikely(ret != 0)) { 1562 driver->sync_obj_unref(&sync_obj); 1563 spin_lock(&bdev->fence_lock); 1564 return ret; 1565 } 1566 spin_lock(&bdev->fence_lock); 1567 if (likely(bo->sync_obj == sync_obj)) { 1568 void *tmp_obj = bo->sync_obj; 1569 bo->sync_obj = NULL; 1570 clear_bit(TTM_BO_PRIV_FLAG_MOVING, 1571 &bo->priv_flags); 1572 spin_unlock(&bdev->fence_lock); 1573 driver->sync_obj_unref(&sync_obj); 1574 driver->sync_obj_unref(&tmp_obj); 1575 spin_lock(&bdev->fence_lock); 1576 } else { 1577 spin_unlock(&bdev->fence_lock); 1578 driver->sync_obj_unref(&sync_obj); 1579 spin_lock(&bdev->fence_lock); 1580 } 1581 } 1582 return 0; 1583 } 1584 EXPORT_SYMBOL(ttm_bo_wait); 1585 1586 int ttm_bo_synccpu_write_grab(struct ttm_buffer_object *bo, bool no_wait) 1587 { 1588 struct ttm_bo_device *bdev = bo->bdev; 1589 int ret = 0; 1590 1591 /* 1592 * Using ttm_bo_reserve makes sure the lru lists are updated. 1593 */ 1594 1595 ret = ttm_bo_reserve(bo, true, no_wait, false, 0); 1596 if (unlikely(ret != 0)) 1597 return ret; 1598 spin_lock(&bdev->fence_lock); 1599 ret = ttm_bo_wait(bo, false, true, no_wait); 1600 spin_unlock(&bdev->fence_lock); 1601 if (likely(ret == 0)) 1602 atomic_inc(&bo->cpu_writers); 1603 ttm_bo_unreserve(bo); 1604 return ret; 1605 } 1606 EXPORT_SYMBOL(ttm_bo_synccpu_write_grab); 1607 1608 void ttm_bo_synccpu_write_release(struct ttm_buffer_object *bo) 1609 { 1610 atomic_dec(&bo->cpu_writers); 1611 } 1612 EXPORT_SYMBOL(ttm_bo_synccpu_write_release); 1613 1614 /** 1615 * A buffer object shrink method that tries to swap out the first 1616 * buffer object on the bo_global::swap_lru list. 1617 */ 1618 1619 static int ttm_bo_swapout(struct ttm_mem_shrink *shrink) 1620 { 1621 struct ttm_bo_global *glob = 1622 container_of(shrink, struct ttm_bo_global, shrink); 1623 struct ttm_buffer_object *bo; 1624 int ret = -EBUSY; 1625 int put_count; 1626 uint32_t swap_placement = (TTM_PL_FLAG_CACHED | TTM_PL_FLAG_SYSTEM); 1627 1628 spin_lock(&glob->lru_lock); 1629 list_for_each_entry(bo, &glob->swap_lru, swap) { 1630 ret = ttm_bo_reserve_nolru(bo, false, true, false, 0); 1631 if (!ret) 1632 break; 1633 } 1634 1635 if (ret) { 1636 spin_unlock(&glob->lru_lock); 1637 return ret; 1638 } 1639 1640 kref_get(&bo->list_kref); 1641 1642 if (!list_empty(&bo->ddestroy)) { 1643 ret = ttm_bo_cleanup_refs_and_unlock(bo, false, false); 1644 kref_put(&bo->list_kref, ttm_bo_release_list); 1645 return ret; 1646 } 1647 1648 put_count = ttm_bo_del_from_lru(bo); 1649 spin_unlock(&glob->lru_lock); 1650 1651 ttm_bo_list_ref_sub(bo, put_count, true); 1652 1653 /** 1654 * Wait for GPU, then move to system cached. 1655 */ 1656 1657 spin_lock(&bo->bdev->fence_lock); 1658 ret = ttm_bo_wait(bo, false, false, false); 1659 spin_unlock(&bo->bdev->fence_lock); 1660 1661 if (unlikely(ret != 0)) 1662 goto out; 1663 1664 if ((bo->mem.placement & swap_placement) != swap_placement) { 1665 struct ttm_mem_reg evict_mem; 1666 1667 evict_mem = bo->mem; 1668 evict_mem.mm_node = NULL; 1669 evict_mem.placement = TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED; 1670 evict_mem.mem_type = TTM_PL_SYSTEM; 1671 1672 ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, 1673 false, false); 1674 if (unlikely(ret != 0)) 1675 goto out; 1676 } 1677 1678 ttm_bo_unmap_virtual(bo); 1679 1680 /** 1681 * Swap out. Buffer will be swapped in again as soon as 1682 * anyone tries to access a ttm page. 1683 */ 1684 1685 if (bo->bdev->driver->swap_notify) 1686 bo->bdev->driver->swap_notify(bo); 1687 1688 ret = ttm_tt_swapout(bo->ttm, bo->persistent_swap_storage); 1689 out: 1690 1691 /** 1692 * 1693 * Unreserve without putting on LRU to avoid swapping out an 1694 * already swapped buffer. 1695 */ 1696 1697 ww_mutex_unlock(&bo->resv->lock); 1698 kref_put(&bo->list_kref, ttm_bo_release_list); 1699 return ret; 1700 } 1701 1702 void ttm_bo_swapout_all(struct ttm_bo_device *bdev) 1703 { 1704 while (ttm_bo_swapout(&bdev->glob->shrink) == 0) 1705 ; 1706 } 1707 EXPORT_SYMBOL(ttm_bo_swapout_all); 1708 1709 /** 1710 * ttm_bo_wait_unreserved - interruptible wait for a buffer object to become 1711 * unreserved 1712 * 1713 * @bo: Pointer to buffer 1714 */ 1715 int ttm_bo_wait_unreserved(struct ttm_buffer_object *bo) 1716 { 1717 int ret; 1718 1719 /* 1720 * In the absense of a wait_unlocked API, 1721 * Use the bo::wu_mutex to avoid triggering livelocks due to 1722 * concurrent use of this function. Note that this use of 1723 * bo::wu_mutex can go away if we change locking order to 1724 * mmap_sem -> bo::reserve. 1725 */ 1726 ret = mutex_lock_interruptible(&bo->wu_mutex); 1727 if (unlikely(ret != 0)) 1728 return -ERESTARTSYS; 1729 if (!ww_mutex_is_locked(&bo->resv->lock)) 1730 goto out_unlock; 1731 ret = ttm_bo_reserve_nolru(bo, true, false, false, NULL); 1732 if (unlikely(ret != 0)) 1733 goto out_unlock; 1734 ww_mutex_unlock(&bo->resv->lock); 1735 1736 out_unlock: 1737 mutex_unlock(&bo->wu_mutex); 1738 return ret; 1739 } 1740