1 /* SPDX-License-Identifier: GPL-2.0 OR MIT */ 2 /************************************************************************** 3 * 4 * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA 5 * All Rights Reserved. 6 * 7 * Permission is hereby granted, free of charge, to any person obtaining a 8 * copy of this software and associated documentation files (the 9 * "Software"), to deal in the Software without restriction, including 10 * without limitation the rights to use, copy, modify, merge, publish, 11 * distribute, sub license, and/or sell copies of the Software, and to 12 * permit persons to whom the Software is furnished to do so, subject to 13 * the following conditions: 14 * 15 * The above copyright notice and this permission notice (including the 16 * next paragraph) shall be included in all copies or substantial portions 17 * of the Software. 18 * 19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 21 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 22 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 23 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 24 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 25 * USE OR OTHER DEALINGS IN THE SOFTWARE. 26 * 27 **************************************************************************/ 28 /* 29 * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com> 30 */ 31 32 #define pr_fmt(fmt) "[TTM] " fmt 33 34 #include <drm/ttm/ttm_module.h> 35 #include <drm/ttm/ttm_bo_driver.h> 36 #include <drm/ttm/ttm_placement.h> 37 #include <linux/jiffies.h> 38 #include <linux/slab.h> 39 #include <linux/sched.h> 40 #include <linux/mm.h> 41 #include <linux/file.h> 42 #include <linux/module.h> 43 #include <linux/atomic.h> 44 #include <linux/dma-resv.h> 45 46 static void ttm_bo_global_kobj_release(struct kobject *kobj); 47 48 /** 49 * ttm_global_mutex - protecting the global BO state 50 */ 51 DEFINE_MUTEX(ttm_global_mutex); 52 unsigned ttm_bo_glob_use_count; 53 struct ttm_bo_global ttm_bo_glob; 54 EXPORT_SYMBOL(ttm_bo_glob); 55 56 static struct attribute ttm_bo_count = { 57 .name = "bo_count", 58 .mode = S_IRUGO 59 }; 60 61 /* default destructor */ 62 static void ttm_bo_default_destroy(struct ttm_buffer_object *bo) 63 { 64 kfree(bo); 65 } 66 67 static void ttm_bo_mem_space_debug(struct ttm_buffer_object *bo, 68 struct ttm_placement *placement) 69 { 70 struct drm_printer p = drm_debug_printer(TTM_PFX); 71 struct ttm_resource_manager *man; 72 int i, mem_type; 73 74 drm_printf(&p, "No space for %p (%lu pages, %luK, %luM)\n", 75 bo, bo->mem.num_pages, bo->mem.size >> 10, 76 bo->mem.size >> 20); 77 for (i = 0; i < placement->num_placement; i++) { 78 mem_type = placement->placement[i].mem_type; 79 drm_printf(&p, " placement[%d]=0x%08X (%d)\n", 80 i, placement->placement[i].flags, mem_type); 81 man = ttm_manager_type(bo->bdev, mem_type); 82 ttm_resource_manager_debug(man, &p); 83 } 84 } 85 86 static ssize_t ttm_bo_global_show(struct kobject *kobj, 87 struct attribute *attr, 88 char *buffer) 89 { 90 struct ttm_bo_global *glob = 91 container_of(kobj, struct ttm_bo_global, kobj); 92 93 return snprintf(buffer, PAGE_SIZE, "%d\n", 94 atomic_read(&glob->bo_count)); 95 } 96 97 static struct attribute *ttm_bo_global_attrs[] = { 98 &ttm_bo_count, 99 NULL 100 }; 101 102 static const struct sysfs_ops ttm_bo_global_ops = { 103 .show = &ttm_bo_global_show 104 }; 105 106 static struct kobj_type ttm_bo_glob_kobj_type = { 107 .release = &ttm_bo_global_kobj_release, 108 .sysfs_ops = &ttm_bo_global_ops, 109 .default_attrs = ttm_bo_global_attrs 110 }; 111 112 static void ttm_bo_add_mem_to_lru(struct ttm_buffer_object *bo, 113 struct ttm_resource *mem) 114 { 115 struct ttm_bo_device *bdev = bo->bdev; 116 struct ttm_resource_manager *man; 117 118 if (!list_empty(&bo->lru)) 119 return; 120 121 if (mem->placement & TTM_PL_FLAG_NO_EVICT) 122 return; 123 124 man = ttm_manager_type(bdev, mem->mem_type); 125 list_add_tail(&bo->lru, &man->lru[bo->priority]); 126 127 if (man->use_tt && bo->ttm && 128 !(bo->ttm->page_flags & (TTM_PAGE_FLAG_SG | 129 TTM_PAGE_FLAG_SWAPPED))) { 130 list_add_tail(&bo->swap, &ttm_bo_glob.swap_lru[bo->priority]); 131 } 132 } 133 134 static void ttm_bo_del_from_lru(struct ttm_buffer_object *bo) 135 { 136 struct ttm_bo_device *bdev = bo->bdev; 137 bool notify = false; 138 139 if (!list_empty(&bo->swap)) { 140 list_del_init(&bo->swap); 141 notify = true; 142 } 143 if (!list_empty(&bo->lru)) { 144 list_del_init(&bo->lru); 145 notify = true; 146 } 147 148 if (notify && bdev->driver->del_from_lru_notify) 149 bdev->driver->del_from_lru_notify(bo); 150 } 151 152 static void ttm_bo_bulk_move_set_pos(struct ttm_lru_bulk_move_pos *pos, 153 struct ttm_buffer_object *bo) 154 { 155 if (!pos->first) 156 pos->first = bo; 157 pos->last = bo; 158 } 159 160 void ttm_bo_move_to_lru_tail(struct ttm_buffer_object *bo, 161 struct ttm_lru_bulk_move *bulk) 162 { 163 dma_resv_assert_held(bo->base.resv); 164 165 ttm_bo_del_from_lru(bo); 166 ttm_bo_add_mem_to_lru(bo, &bo->mem); 167 168 if (bulk && !(bo->mem.placement & TTM_PL_FLAG_NO_EVICT)) { 169 switch (bo->mem.mem_type) { 170 case TTM_PL_TT: 171 ttm_bo_bulk_move_set_pos(&bulk->tt[bo->priority], bo); 172 break; 173 174 case TTM_PL_VRAM: 175 ttm_bo_bulk_move_set_pos(&bulk->vram[bo->priority], bo); 176 break; 177 } 178 if (bo->ttm && !(bo->ttm->page_flags & 179 (TTM_PAGE_FLAG_SG | TTM_PAGE_FLAG_SWAPPED))) 180 ttm_bo_bulk_move_set_pos(&bulk->swap[bo->priority], bo); 181 } 182 } 183 EXPORT_SYMBOL(ttm_bo_move_to_lru_tail); 184 185 void ttm_bo_bulk_move_lru_tail(struct ttm_lru_bulk_move *bulk) 186 { 187 unsigned i; 188 189 for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) { 190 struct ttm_lru_bulk_move_pos *pos = &bulk->tt[i]; 191 struct ttm_resource_manager *man; 192 193 if (!pos->first) 194 continue; 195 196 dma_resv_assert_held(pos->first->base.resv); 197 dma_resv_assert_held(pos->last->base.resv); 198 199 man = ttm_manager_type(pos->first->bdev, TTM_PL_TT); 200 list_bulk_move_tail(&man->lru[i], &pos->first->lru, 201 &pos->last->lru); 202 } 203 204 for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) { 205 struct ttm_lru_bulk_move_pos *pos = &bulk->vram[i]; 206 struct ttm_resource_manager *man; 207 208 if (!pos->first) 209 continue; 210 211 dma_resv_assert_held(pos->first->base.resv); 212 dma_resv_assert_held(pos->last->base.resv); 213 214 man = ttm_manager_type(pos->first->bdev, TTM_PL_VRAM); 215 list_bulk_move_tail(&man->lru[i], &pos->first->lru, 216 &pos->last->lru); 217 } 218 219 for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) { 220 struct ttm_lru_bulk_move_pos *pos = &bulk->swap[i]; 221 struct list_head *lru; 222 223 if (!pos->first) 224 continue; 225 226 dma_resv_assert_held(pos->first->base.resv); 227 dma_resv_assert_held(pos->last->base.resv); 228 229 lru = &ttm_bo_glob.swap_lru[i]; 230 list_bulk_move_tail(lru, &pos->first->swap, &pos->last->swap); 231 } 232 } 233 EXPORT_SYMBOL(ttm_bo_bulk_move_lru_tail); 234 235 static int ttm_bo_handle_move_mem(struct ttm_buffer_object *bo, 236 struct ttm_resource *mem, bool evict, 237 struct ttm_operation_ctx *ctx) 238 { 239 struct ttm_bo_device *bdev = bo->bdev; 240 struct ttm_resource_manager *old_man = ttm_manager_type(bdev, bo->mem.mem_type); 241 struct ttm_resource_manager *new_man = ttm_manager_type(bdev, mem->mem_type); 242 int ret; 243 244 ttm_bo_unmap_virtual(bo); 245 246 /* 247 * Create and bind a ttm if required. 248 */ 249 250 if (new_man->use_tt) { 251 /* Zero init the new TTM structure if the old location should 252 * have used one as well. 253 */ 254 ret = ttm_tt_create(bo, old_man->use_tt); 255 if (ret) 256 goto out_err; 257 258 ret = ttm_tt_set_placement_caching(bo->ttm, mem->placement); 259 if (ret) 260 goto out_err; 261 262 if (mem->mem_type != TTM_PL_SYSTEM) { 263 ret = ttm_tt_populate(bdev, bo->ttm, ctx); 264 if (ret) 265 goto out_err; 266 267 ret = ttm_bo_tt_bind(bo, mem); 268 if (ret) 269 goto out_err; 270 } 271 272 if (bo->mem.mem_type == TTM_PL_SYSTEM) { 273 if (bdev->driver->move_notify) 274 bdev->driver->move_notify(bo, evict, mem); 275 bo->mem = *mem; 276 goto moved; 277 } 278 } 279 280 if (bdev->driver->move_notify) 281 bdev->driver->move_notify(bo, evict, mem); 282 283 if (old_man->use_tt && new_man->use_tt) 284 ret = ttm_bo_move_ttm(bo, ctx, mem); 285 else if (bdev->driver->move) 286 ret = bdev->driver->move(bo, evict, ctx, mem); 287 else 288 ret = ttm_bo_move_memcpy(bo, ctx, mem); 289 290 if (ret) { 291 if (bdev->driver->move_notify) { 292 swap(*mem, bo->mem); 293 bdev->driver->move_notify(bo, false, mem); 294 swap(*mem, bo->mem); 295 } 296 297 goto out_err; 298 } 299 300 moved: 301 ctx->bytes_moved += bo->num_pages << PAGE_SHIFT; 302 return 0; 303 304 out_err: 305 new_man = ttm_manager_type(bdev, bo->mem.mem_type); 306 if (!new_man->use_tt) 307 ttm_bo_tt_destroy(bo); 308 309 return ret; 310 } 311 312 /** 313 * Call bo::reserved. 314 * Will release GPU memory type usage on destruction. 315 * This is the place to put in driver specific hooks to release 316 * driver private resources. 317 * Will release the bo::reserved lock. 318 */ 319 320 static void ttm_bo_cleanup_memtype_use(struct ttm_buffer_object *bo) 321 { 322 if (bo->bdev->driver->move_notify) 323 bo->bdev->driver->move_notify(bo, false, NULL); 324 325 ttm_bo_tt_destroy(bo); 326 ttm_resource_free(bo, &bo->mem); 327 } 328 329 static int ttm_bo_individualize_resv(struct ttm_buffer_object *bo) 330 { 331 int r; 332 333 if (bo->base.resv == &bo->base._resv) 334 return 0; 335 336 BUG_ON(!dma_resv_trylock(&bo->base._resv)); 337 338 r = dma_resv_copy_fences(&bo->base._resv, bo->base.resv); 339 dma_resv_unlock(&bo->base._resv); 340 if (r) 341 return r; 342 343 if (bo->type != ttm_bo_type_sg) { 344 /* This works because the BO is about to be destroyed and nobody 345 * reference it any more. The only tricky case is the trylock on 346 * the resv object while holding the lru_lock. 347 */ 348 spin_lock(&ttm_bo_glob.lru_lock); 349 bo->base.resv = &bo->base._resv; 350 spin_unlock(&ttm_bo_glob.lru_lock); 351 } 352 353 return r; 354 } 355 356 static void ttm_bo_flush_all_fences(struct ttm_buffer_object *bo) 357 { 358 struct dma_resv *resv = &bo->base._resv; 359 struct dma_resv_list *fobj; 360 struct dma_fence *fence; 361 int i; 362 363 rcu_read_lock(); 364 fobj = rcu_dereference(resv->fence); 365 fence = rcu_dereference(resv->fence_excl); 366 if (fence && !fence->ops->signaled) 367 dma_fence_enable_sw_signaling(fence); 368 369 for (i = 0; fobj && i < fobj->shared_count; ++i) { 370 fence = rcu_dereference(fobj->shared[i]); 371 372 if (!fence->ops->signaled) 373 dma_fence_enable_sw_signaling(fence); 374 } 375 rcu_read_unlock(); 376 } 377 378 /** 379 * function ttm_bo_cleanup_refs 380 * If bo idle, remove from lru lists, and unref. 381 * If not idle, block if possible. 382 * 383 * Must be called with lru_lock and reservation held, this function 384 * will drop the lru lock and optionally the reservation lock before returning. 385 * 386 * @interruptible Any sleeps should occur interruptibly. 387 * @no_wait_gpu Never wait for gpu. Return -EBUSY instead. 388 * @unlock_resv Unlock the reservation lock as well. 389 */ 390 391 static int ttm_bo_cleanup_refs(struct ttm_buffer_object *bo, 392 bool interruptible, bool no_wait_gpu, 393 bool unlock_resv) 394 { 395 struct dma_resv *resv = &bo->base._resv; 396 int ret; 397 398 if (dma_resv_test_signaled_rcu(resv, true)) 399 ret = 0; 400 else 401 ret = -EBUSY; 402 403 if (ret && !no_wait_gpu) { 404 long lret; 405 406 if (unlock_resv) 407 dma_resv_unlock(bo->base.resv); 408 spin_unlock(&ttm_bo_glob.lru_lock); 409 410 lret = dma_resv_wait_timeout_rcu(resv, true, interruptible, 411 30 * HZ); 412 413 if (lret < 0) 414 return lret; 415 else if (lret == 0) 416 return -EBUSY; 417 418 spin_lock(&ttm_bo_glob.lru_lock); 419 if (unlock_resv && !dma_resv_trylock(bo->base.resv)) { 420 /* 421 * We raced, and lost, someone else holds the reservation now, 422 * and is probably busy in ttm_bo_cleanup_memtype_use. 423 * 424 * Even if it's not the case, because we finished waiting any 425 * delayed destruction would succeed, so just return success 426 * here. 427 */ 428 spin_unlock(&ttm_bo_glob.lru_lock); 429 return 0; 430 } 431 ret = 0; 432 } 433 434 if (ret || unlikely(list_empty(&bo->ddestroy))) { 435 if (unlock_resv) 436 dma_resv_unlock(bo->base.resv); 437 spin_unlock(&ttm_bo_glob.lru_lock); 438 return ret; 439 } 440 441 ttm_bo_del_from_lru(bo); 442 list_del_init(&bo->ddestroy); 443 spin_unlock(&ttm_bo_glob.lru_lock); 444 ttm_bo_cleanup_memtype_use(bo); 445 446 if (unlock_resv) 447 dma_resv_unlock(bo->base.resv); 448 449 ttm_bo_put(bo); 450 451 return 0; 452 } 453 454 /** 455 * Traverse the delayed list, and call ttm_bo_cleanup_refs on all 456 * encountered buffers. 457 */ 458 static bool ttm_bo_delayed_delete(struct ttm_bo_device *bdev, bool remove_all) 459 { 460 struct ttm_bo_global *glob = &ttm_bo_glob; 461 struct list_head removed; 462 bool empty; 463 464 INIT_LIST_HEAD(&removed); 465 466 spin_lock(&glob->lru_lock); 467 while (!list_empty(&bdev->ddestroy)) { 468 struct ttm_buffer_object *bo; 469 470 bo = list_first_entry(&bdev->ddestroy, struct ttm_buffer_object, 471 ddestroy); 472 list_move_tail(&bo->ddestroy, &removed); 473 if (!ttm_bo_get_unless_zero(bo)) 474 continue; 475 476 if (remove_all || bo->base.resv != &bo->base._resv) { 477 spin_unlock(&glob->lru_lock); 478 dma_resv_lock(bo->base.resv, NULL); 479 480 spin_lock(&glob->lru_lock); 481 ttm_bo_cleanup_refs(bo, false, !remove_all, true); 482 483 } else if (dma_resv_trylock(bo->base.resv)) { 484 ttm_bo_cleanup_refs(bo, false, !remove_all, true); 485 } else { 486 spin_unlock(&glob->lru_lock); 487 } 488 489 ttm_bo_put(bo); 490 spin_lock(&glob->lru_lock); 491 } 492 list_splice_tail(&removed, &bdev->ddestroy); 493 empty = list_empty(&bdev->ddestroy); 494 spin_unlock(&glob->lru_lock); 495 496 return empty; 497 } 498 499 static void ttm_bo_delayed_workqueue(struct work_struct *work) 500 { 501 struct ttm_bo_device *bdev = 502 container_of(work, struct ttm_bo_device, wq.work); 503 504 if (!ttm_bo_delayed_delete(bdev, false)) 505 schedule_delayed_work(&bdev->wq, 506 ((HZ / 100) < 1) ? 1 : HZ / 100); 507 } 508 509 static void ttm_bo_release(struct kref *kref) 510 { 511 struct ttm_buffer_object *bo = 512 container_of(kref, struct ttm_buffer_object, kref); 513 struct ttm_bo_device *bdev = bo->bdev; 514 size_t acc_size = bo->acc_size; 515 int ret; 516 517 if (!bo->deleted) { 518 ret = ttm_bo_individualize_resv(bo); 519 if (ret) { 520 /* Last resort, if we fail to allocate memory for the 521 * fences block for the BO to become idle 522 */ 523 dma_resv_wait_timeout_rcu(bo->base.resv, true, false, 524 30 * HZ); 525 } 526 527 if (bo->bdev->driver->release_notify) 528 bo->bdev->driver->release_notify(bo); 529 530 drm_vma_offset_remove(bdev->vma_manager, &bo->base.vma_node); 531 ttm_mem_io_free(bdev, &bo->mem); 532 } 533 534 if (!dma_resv_test_signaled_rcu(bo->base.resv, true) || 535 !dma_resv_trylock(bo->base.resv)) { 536 /* The BO is not idle, resurrect it for delayed destroy */ 537 ttm_bo_flush_all_fences(bo); 538 bo->deleted = true; 539 540 spin_lock(&ttm_bo_glob.lru_lock); 541 542 /* 543 * Make NO_EVICT bos immediately available to 544 * shrinkers, now that they are queued for 545 * destruction. 546 */ 547 if (bo->mem.placement & TTM_PL_FLAG_NO_EVICT) { 548 bo->mem.placement &= ~TTM_PL_FLAG_NO_EVICT; 549 ttm_bo_del_from_lru(bo); 550 ttm_bo_add_mem_to_lru(bo, &bo->mem); 551 } 552 553 kref_init(&bo->kref); 554 list_add_tail(&bo->ddestroy, &bdev->ddestroy); 555 spin_unlock(&ttm_bo_glob.lru_lock); 556 557 schedule_delayed_work(&bdev->wq, 558 ((HZ / 100) < 1) ? 1 : HZ / 100); 559 return; 560 } 561 562 spin_lock(&ttm_bo_glob.lru_lock); 563 ttm_bo_del_from_lru(bo); 564 list_del(&bo->ddestroy); 565 spin_unlock(&ttm_bo_glob.lru_lock); 566 567 ttm_bo_cleanup_memtype_use(bo); 568 dma_resv_unlock(bo->base.resv); 569 570 atomic_dec(&ttm_bo_glob.bo_count); 571 dma_fence_put(bo->moving); 572 if (!ttm_bo_uses_embedded_gem_object(bo)) 573 dma_resv_fini(&bo->base._resv); 574 bo->destroy(bo); 575 ttm_mem_global_free(&ttm_mem_glob, acc_size); 576 } 577 578 void ttm_bo_put(struct ttm_buffer_object *bo) 579 { 580 kref_put(&bo->kref, ttm_bo_release); 581 } 582 EXPORT_SYMBOL(ttm_bo_put); 583 584 int ttm_bo_lock_delayed_workqueue(struct ttm_bo_device *bdev) 585 { 586 return cancel_delayed_work_sync(&bdev->wq); 587 } 588 EXPORT_SYMBOL(ttm_bo_lock_delayed_workqueue); 589 590 void ttm_bo_unlock_delayed_workqueue(struct ttm_bo_device *bdev, int resched) 591 { 592 if (resched) 593 schedule_delayed_work(&bdev->wq, 594 ((HZ / 100) < 1) ? 1 : HZ / 100); 595 } 596 EXPORT_SYMBOL(ttm_bo_unlock_delayed_workqueue); 597 598 static int ttm_bo_evict(struct ttm_buffer_object *bo, 599 struct ttm_operation_ctx *ctx) 600 { 601 struct ttm_bo_device *bdev = bo->bdev; 602 struct ttm_resource evict_mem; 603 struct ttm_placement placement; 604 int ret = 0; 605 606 dma_resv_assert_held(bo->base.resv); 607 608 placement.num_placement = 0; 609 placement.num_busy_placement = 0; 610 bdev->driver->evict_flags(bo, &placement); 611 612 if (!placement.num_placement && !placement.num_busy_placement) { 613 ttm_bo_wait(bo, false, false); 614 615 ttm_bo_cleanup_memtype_use(bo); 616 return ttm_tt_create(bo, false); 617 } 618 619 evict_mem = bo->mem; 620 evict_mem.mm_node = NULL; 621 evict_mem.bus.offset = 0; 622 evict_mem.bus.addr = NULL; 623 624 ret = ttm_bo_mem_space(bo, &placement, &evict_mem, ctx); 625 if (ret) { 626 if (ret != -ERESTARTSYS) { 627 pr_err("Failed to find memory space for buffer 0x%p eviction\n", 628 bo); 629 ttm_bo_mem_space_debug(bo, &placement); 630 } 631 goto out; 632 } 633 634 ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, ctx); 635 if (unlikely(ret)) { 636 if (ret != -ERESTARTSYS) 637 pr_err("Buffer eviction failed\n"); 638 ttm_resource_free(bo, &evict_mem); 639 } 640 out: 641 return ret; 642 } 643 644 bool ttm_bo_eviction_valuable(struct ttm_buffer_object *bo, 645 const struct ttm_place *place) 646 { 647 /* Don't evict this BO if it's outside of the 648 * requested placement range 649 */ 650 if (place->fpfn >= (bo->mem.start + bo->mem.num_pages) || 651 (place->lpfn && place->lpfn <= bo->mem.start)) 652 return false; 653 654 return true; 655 } 656 EXPORT_SYMBOL(ttm_bo_eviction_valuable); 657 658 /** 659 * Check the target bo is allowable to be evicted or swapout, including cases: 660 * 661 * a. if share same reservation object with ctx->resv, have assumption 662 * reservation objects should already be locked, so not lock again and 663 * return true directly when either the opreation allow_reserved_eviction 664 * or the target bo already is in delayed free list; 665 * 666 * b. Otherwise, trylock it. 667 */ 668 static bool ttm_bo_evict_swapout_allowable(struct ttm_buffer_object *bo, 669 struct ttm_operation_ctx *ctx, bool *locked, bool *busy) 670 { 671 bool ret = false; 672 673 if (bo->base.resv == ctx->resv) { 674 dma_resv_assert_held(bo->base.resv); 675 if (ctx->flags & TTM_OPT_FLAG_ALLOW_RES_EVICT) 676 ret = true; 677 *locked = false; 678 if (busy) 679 *busy = false; 680 } else { 681 ret = dma_resv_trylock(bo->base.resv); 682 *locked = ret; 683 if (busy) 684 *busy = !ret; 685 } 686 687 return ret; 688 } 689 690 /** 691 * ttm_mem_evict_wait_busy - wait for a busy BO to become available 692 * 693 * @busy_bo: BO which couldn't be locked with trylock 694 * @ctx: operation context 695 * @ticket: acquire ticket 696 * 697 * Try to lock a busy buffer object to avoid failing eviction. 698 */ 699 static int ttm_mem_evict_wait_busy(struct ttm_buffer_object *busy_bo, 700 struct ttm_operation_ctx *ctx, 701 struct ww_acquire_ctx *ticket) 702 { 703 int r; 704 705 if (!busy_bo || !ticket) 706 return -EBUSY; 707 708 if (ctx->interruptible) 709 r = dma_resv_lock_interruptible(busy_bo->base.resv, 710 ticket); 711 else 712 r = dma_resv_lock(busy_bo->base.resv, ticket); 713 714 /* 715 * TODO: It would be better to keep the BO locked until allocation is at 716 * least tried one more time, but that would mean a much larger rework 717 * of TTM. 718 */ 719 if (!r) 720 dma_resv_unlock(busy_bo->base.resv); 721 722 return r == -EDEADLK ? -EBUSY : r; 723 } 724 725 int ttm_mem_evict_first(struct ttm_bo_device *bdev, 726 struct ttm_resource_manager *man, 727 const struct ttm_place *place, 728 struct ttm_operation_ctx *ctx, 729 struct ww_acquire_ctx *ticket) 730 { 731 struct ttm_buffer_object *bo = NULL, *busy_bo = NULL; 732 bool locked = false; 733 unsigned i; 734 int ret; 735 736 spin_lock(&ttm_bo_glob.lru_lock); 737 for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) { 738 list_for_each_entry(bo, &man->lru[i], lru) { 739 bool busy; 740 741 if (!ttm_bo_evict_swapout_allowable(bo, ctx, &locked, 742 &busy)) { 743 if (busy && !busy_bo && ticket != 744 dma_resv_locking_ctx(bo->base.resv)) 745 busy_bo = bo; 746 continue; 747 } 748 749 if (place && !bdev->driver->eviction_valuable(bo, 750 place)) { 751 if (locked) 752 dma_resv_unlock(bo->base.resv); 753 continue; 754 } 755 if (!ttm_bo_get_unless_zero(bo)) { 756 if (locked) 757 dma_resv_unlock(bo->base.resv); 758 continue; 759 } 760 break; 761 } 762 763 /* If the inner loop terminated early, we have our candidate */ 764 if (&bo->lru != &man->lru[i]) 765 break; 766 767 bo = NULL; 768 } 769 770 if (!bo) { 771 if (busy_bo && !ttm_bo_get_unless_zero(busy_bo)) 772 busy_bo = NULL; 773 spin_unlock(&ttm_bo_glob.lru_lock); 774 ret = ttm_mem_evict_wait_busy(busy_bo, ctx, ticket); 775 if (busy_bo) 776 ttm_bo_put(busy_bo); 777 return ret; 778 } 779 780 if (bo->deleted) { 781 ret = ttm_bo_cleanup_refs(bo, ctx->interruptible, 782 ctx->no_wait_gpu, locked); 783 ttm_bo_put(bo); 784 return ret; 785 } 786 787 spin_unlock(&ttm_bo_glob.lru_lock); 788 789 ret = ttm_bo_evict(bo, ctx); 790 if (locked) 791 ttm_bo_unreserve(bo); 792 793 ttm_bo_put(bo); 794 return ret; 795 } 796 797 /** 798 * Add the last move fence to the BO and reserve a new shared slot. 799 */ 800 static int ttm_bo_add_move_fence(struct ttm_buffer_object *bo, 801 struct ttm_resource_manager *man, 802 struct ttm_resource *mem, 803 bool no_wait_gpu) 804 { 805 struct dma_fence *fence; 806 int ret; 807 808 spin_lock(&man->move_lock); 809 fence = dma_fence_get(man->move); 810 spin_unlock(&man->move_lock); 811 812 if (!fence) 813 return 0; 814 815 if (no_wait_gpu) { 816 dma_fence_put(fence); 817 return -EBUSY; 818 } 819 820 dma_resv_add_shared_fence(bo->base.resv, fence); 821 822 ret = dma_resv_reserve_shared(bo->base.resv, 1); 823 if (unlikely(ret)) { 824 dma_fence_put(fence); 825 return ret; 826 } 827 828 dma_fence_put(bo->moving); 829 bo->moving = fence; 830 return 0; 831 } 832 833 /** 834 * Repeatedly evict memory from the LRU for @mem_type until we create enough 835 * space, or we've evicted everything and there isn't enough space. 836 */ 837 static int ttm_bo_mem_force_space(struct ttm_buffer_object *bo, 838 const struct ttm_place *place, 839 struct ttm_resource *mem, 840 struct ttm_operation_ctx *ctx) 841 { 842 struct ttm_bo_device *bdev = bo->bdev; 843 struct ttm_resource_manager *man = ttm_manager_type(bdev, mem->mem_type); 844 struct ww_acquire_ctx *ticket; 845 int ret; 846 847 ticket = dma_resv_locking_ctx(bo->base.resv); 848 do { 849 ret = ttm_resource_alloc(bo, place, mem); 850 if (likely(!ret)) 851 break; 852 if (unlikely(ret != -ENOSPC)) 853 return ret; 854 ret = ttm_mem_evict_first(bdev, man, place, ctx, 855 ticket); 856 if (unlikely(ret != 0)) 857 return ret; 858 } while (1); 859 860 return ttm_bo_add_move_fence(bo, man, mem, ctx->no_wait_gpu); 861 } 862 863 static uint32_t ttm_bo_select_caching(struct ttm_resource_manager *man, 864 uint32_t cur_placement, 865 uint32_t proposed_placement) 866 { 867 uint32_t caching = proposed_placement & TTM_PL_MASK_CACHING; 868 uint32_t result = proposed_placement & ~TTM_PL_MASK_CACHING; 869 870 /** 871 * Keep current caching if possible. 872 */ 873 874 if ((cur_placement & caching) != 0) 875 result |= (cur_placement & caching); 876 else if ((TTM_PL_FLAG_CACHED & caching) != 0) 877 result |= TTM_PL_FLAG_CACHED; 878 else if ((TTM_PL_FLAG_WC & caching) != 0) 879 result |= TTM_PL_FLAG_WC; 880 else if ((TTM_PL_FLAG_UNCACHED & caching) != 0) 881 result |= TTM_PL_FLAG_UNCACHED; 882 883 return result; 884 } 885 886 /** 887 * ttm_bo_mem_placement - check if placement is compatible 888 * @bo: BO to find memory for 889 * @place: where to search 890 * @mem: the memory object to fill in 891 * @ctx: operation context 892 * 893 * Check if placement is compatible and fill in mem structure. 894 * Returns -EBUSY if placement won't work or negative error code. 895 * 0 when placement can be used. 896 */ 897 static int ttm_bo_mem_placement(struct ttm_buffer_object *bo, 898 const struct ttm_place *place, 899 struct ttm_resource *mem, 900 struct ttm_operation_ctx *ctx) 901 { 902 struct ttm_bo_device *bdev = bo->bdev; 903 struct ttm_resource_manager *man; 904 uint32_t cur_flags = 0; 905 906 man = ttm_manager_type(bdev, place->mem_type); 907 if (!man || !ttm_resource_manager_used(man)) 908 return -EBUSY; 909 910 cur_flags = ttm_bo_select_caching(man, bo->mem.placement, 911 place->flags); 912 cur_flags |= place->flags & ~TTM_PL_MASK_CACHING; 913 914 mem->mem_type = place->mem_type; 915 mem->placement = cur_flags; 916 917 spin_lock(&ttm_bo_glob.lru_lock); 918 ttm_bo_del_from_lru(bo); 919 ttm_bo_add_mem_to_lru(bo, mem); 920 spin_unlock(&ttm_bo_glob.lru_lock); 921 922 return 0; 923 } 924 925 /** 926 * Creates space for memory region @mem according to its type. 927 * 928 * This function first searches for free space in compatible memory types in 929 * the priority order defined by the driver. If free space isn't found, then 930 * ttm_bo_mem_force_space is attempted in priority order to evict and find 931 * space. 932 */ 933 int ttm_bo_mem_space(struct ttm_buffer_object *bo, 934 struct ttm_placement *placement, 935 struct ttm_resource *mem, 936 struct ttm_operation_ctx *ctx) 937 { 938 struct ttm_bo_device *bdev = bo->bdev; 939 bool type_found = false; 940 int i, ret; 941 942 ret = dma_resv_reserve_shared(bo->base.resv, 1); 943 if (unlikely(ret)) 944 return ret; 945 946 for (i = 0; i < placement->num_placement; ++i) { 947 const struct ttm_place *place = &placement->placement[i]; 948 struct ttm_resource_manager *man; 949 950 ret = ttm_bo_mem_placement(bo, place, mem, ctx); 951 if (ret) 952 continue; 953 954 type_found = true; 955 ret = ttm_resource_alloc(bo, place, mem); 956 if (ret == -ENOSPC) 957 continue; 958 if (unlikely(ret)) 959 goto error; 960 961 man = ttm_manager_type(bdev, mem->mem_type); 962 ret = ttm_bo_add_move_fence(bo, man, mem, ctx->no_wait_gpu); 963 if (unlikely(ret)) { 964 ttm_resource_free(bo, mem); 965 if (ret == -EBUSY) 966 continue; 967 968 goto error; 969 } 970 return 0; 971 } 972 973 for (i = 0; i < placement->num_busy_placement; ++i) { 974 const struct ttm_place *place = &placement->busy_placement[i]; 975 976 ret = ttm_bo_mem_placement(bo, place, mem, ctx); 977 if (ret) 978 continue; 979 980 type_found = true; 981 ret = ttm_bo_mem_force_space(bo, place, mem, ctx); 982 if (likely(!ret)) 983 return 0; 984 985 if (ret && ret != -EBUSY) 986 goto error; 987 } 988 989 ret = -ENOMEM; 990 if (!type_found) { 991 pr_err(TTM_PFX "No compatible memory type found\n"); 992 ret = -EINVAL; 993 } 994 995 error: 996 if (bo->mem.mem_type == TTM_PL_SYSTEM && !list_empty(&bo->lru)) { 997 ttm_bo_move_to_lru_tail_unlocked(bo); 998 } 999 1000 return ret; 1001 } 1002 EXPORT_SYMBOL(ttm_bo_mem_space); 1003 1004 static int ttm_bo_move_buffer(struct ttm_buffer_object *bo, 1005 struct ttm_placement *placement, 1006 struct ttm_operation_ctx *ctx) 1007 { 1008 int ret = 0; 1009 struct ttm_resource mem; 1010 1011 dma_resv_assert_held(bo->base.resv); 1012 1013 mem.num_pages = bo->num_pages; 1014 mem.size = mem.num_pages << PAGE_SHIFT; 1015 mem.page_alignment = bo->mem.page_alignment; 1016 mem.bus.offset = 0; 1017 mem.bus.addr = NULL; 1018 mem.mm_node = NULL; 1019 1020 /* 1021 * Determine where to move the buffer. 1022 */ 1023 ret = ttm_bo_mem_space(bo, placement, &mem, ctx); 1024 if (ret) 1025 goto out_unlock; 1026 ret = ttm_bo_handle_move_mem(bo, &mem, false, ctx); 1027 out_unlock: 1028 if (ret) 1029 ttm_resource_free(bo, &mem); 1030 return ret; 1031 } 1032 1033 static bool ttm_bo_places_compat(const struct ttm_place *places, 1034 unsigned num_placement, 1035 struct ttm_resource *mem, 1036 uint32_t *new_flags) 1037 { 1038 unsigned i; 1039 1040 for (i = 0; i < num_placement; i++) { 1041 const struct ttm_place *heap = &places[i]; 1042 1043 if ((mem->start < heap->fpfn || 1044 (heap->lpfn != 0 && (mem->start + mem->num_pages) > heap->lpfn))) 1045 continue; 1046 1047 *new_flags = heap->flags; 1048 if ((*new_flags & mem->placement & TTM_PL_MASK_CACHING) && 1049 (mem->mem_type == heap->mem_type) && 1050 (!(*new_flags & TTM_PL_FLAG_CONTIGUOUS) || 1051 (mem->placement & TTM_PL_FLAG_CONTIGUOUS))) 1052 return true; 1053 } 1054 return false; 1055 } 1056 1057 bool ttm_bo_mem_compat(struct ttm_placement *placement, 1058 struct ttm_resource *mem, 1059 uint32_t *new_flags) 1060 { 1061 if (ttm_bo_places_compat(placement->placement, placement->num_placement, 1062 mem, new_flags)) 1063 return true; 1064 1065 if ((placement->busy_placement != placement->placement || 1066 placement->num_busy_placement > placement->num_placement) && 1067 ttm_bo_places_compat(placement->busy_placement, 1068 placement->num_busy_placement, 1069 mem, new_flags)) 1070 return true; 1071 1072 return false; 1073 } 1074 EXPORT_SYMBOL(ttm_bo_mem_compat); 1075 1076 int ttm_bo_validate(struct ttm_buffer_object *bo, 1077 struct ttm_placement *placement, 1078 struct ttm_operation_ctx *ctx) 1079 { 1080 int ret; 1081 uint32_t new_flags; 1082 1083 dma_resv_assert_held(bo->base.resv); 1084 1085 /* 1086 * Remove the backing store if no placement is given. 1087 */ 1088 if (!placement->num_placement && !placement->num_busy_placement) { 1089 ret = ttm_bo_pipeline_gutting(bo); 1090 if (ret) 1091 return ret; 1092 1093 return ttm_tt_create(bo, false); 1094 } 1095 1096 /* 1097 * Check whether we need to move buffer. 1098 */ 1099 if (!ttm_bo_mem_compat(placement, &bo->mem, &new_flags)) { 1100 ret = ttm_bo_move_buffer(bo, placement, ctx); 1101 if (ret) 1102 return ret; 1103 } else { 1104 bo->mem.placement &= TTM_PL_MASK_CACHING; 1105 bo->mem.placement |= new_flags & ~TTM_PL_MASK_CACHING; 1106 } 1107 /* 1108 * We might need to add a TTM. 1109 */ 1110 if (bo->mem.mem_type == TTM_PL_SYSTEM) { 1111 ret = ttm_tt_create(bo, true); 1112 if (ret) 1113 return ret; 1114 } 1115 return 0; 1116 } 1117 EXPORT_SYMBOL(ttm_bo_validate); 1118 1119 int ttm_bo_init_reserved(struct ttm_bo_device *bdev, 1120 struct ttm_buffer_object *bo, 1121 unsigned long size, 1122 enum ttm_bo_type type, 1123 struct ttm_placement *placement, 1124 uint32_t page_alignment, 1125 struct ttm_operation_ctx *ctx, 1126 size_t acc_size, 1127 struct sg_table *sg, 1128 struct dma_resv *resv, 1129 void (*destroy) (struct ttm_buffer_object *)) 1130 { 1131 struct ttm_mem_global *mem_glob = &ttm_mem_glob; 1132 int ret = 0; 1133 unsigned long num_pages; 1134 bool locked; 1135 1136 ret = ttm_mem_global_alloc(mem_glob, acc_size, ctx); 1137 if (ret) { 1138 pr_err("Out of kernel memory\n"); 1139 if (destroy) 1140 (*destroy)(bo); 1141 else 1142 kfree(bo); 1143 return -ENOMEM; 1144 } 1145 1146 num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; 1147 if (num_pages == 0) { 1148 pr_err("Illegal buffer object size\n"); 1149 if (destroy) 1150 (*destroy)(bo); 1151 else 1152 kfree(bo); 1153 ttm_mem_global_free(mem_glob, acc_size); 1154 return -EINVAL; 1155 } 1156 bo->destroy = destroy ? destroy : ttm_bo_default_destroy; 1157 1158 kref_init(&bo->kref); 1159 INIT_LIST_HEAD(&bo->lru); 1160 INIT_LIST_HEAD(&bo->ddestroy); 1161 INIT_LIST_HEAD(&bo->swap); 1162 bo->bdev = bdev; 1163 bo->type = type; 1164 bo->num_pages = num_pages; 1165 bo->mem.size = num_pages << PAGE_SHIFT; 1166 bo->mem.mem_type = TTM_PL_SYSTEM; 1167 bo->mem.num_pages = bo->num_pages; 1168 bo->mem.mm_node = NULL; 1169 bo->mem.page_alignment = page_alignment; 1170 bo->mem.bus.offset = 0; 1171 bo->mem.bus.addr = NULL; 1172 bo->moving = NULL; 1173 bo->mem.placement = TTM_PL_FLAG_CACHED; 1174 bo->acc_size = acc_size; 1175 bo->sg = sg; 1176 if (resv) { 1177 bo->base.resv = resv; 1178 dma_resv_assert_held(bo->base.resv); 1179 } else { 1180 bo->base.resv = &bo->base._resv; 1181 } 1182 if (!ttm_bo_uses_embedded_gem_object(bo)) { 1183 /* 1184 * bo.gem is not initialized, so we have to setup the 1185 * struct elements we want use regardless. 1186 */ 1187 dma_resv_init(&bo->base._resv); 1188 drm_vma_node_reset(&bo->base.vma_node); 1189 } 1190 atomic_inc(&ttm_bo_glob.bo_count); 1191 1192 /* 1193 * For ttm_bo_type_device buffers, allocate 1194 * address space from the device. 1195 */ 1196 if (bo->type == ttm_bo_type_device || 1197 bo->type == ttm_bo_type_sg) 1198 ret = drm_vma_offset_add(bdev->vma_manager, &bo->base.vma_node, 1199 bo->mem.num_pages); 1200 1201 /* passed reservation objects should already be locked, 1202 * since otherwise lockdep will be angered in radeon. 1203 */ 1204 if (!resv) { 1205 locked = dma_resv_trylock(bo->base.resv); 1206 WARN_ON(!locked); 1207 } 1208 1209 if (likely(!ret)) 1210 ret = ttm_bo_validate(bo, placement, ctx); 1211 1212 if (unlikely(ret)) { 1213 if (!resv) 1214 ttm_bo_unreserve(bo); 1215 1216 ttm_bo_put(bo); 1217 return ret; 1218 } 1219 1220 ttm_bo_move_to_lru_tail_unlocked(bo); 1221 1222 return ret; 1223 } 1224 EXPORT_SYMBOL(ttm_bo_init_reserved); 1225 1226 int ttm_bo_init(struct ttm_bo_device *bdev, 1227 struct ttm_buffer_object *bo, 1228 unsigned long size, 1229 enum ttm_bo_type type, 1230 struct ttm_placement *placement, 1231 uint32_t page_alignment, 1232 bool interruptible, 1233 size_t acc_size, 1234 struct sg_table *sg, 1235 struct dma_resv *resv, 1236 void (*destroy) (struct ttm_buffer_object *)) 1237 { 1238 struct ttm_operation_ctx ctx = { interruptible, false }; 1239 int ret; 1240 1241 ret = ttm_bo_init_reserved(bdev, bo, size, type, placement, 1242 page_alignment, &ctx, acc_size, 1243 sg, resv, destroy); 1244 if (ret) 1245 return ret; 1246 1247 if (!resv) 1248 ttm_bo_unreserve(bo); 1249 1250 return 0; 1251 } 1252 EXPORT_SYMBOL(ttm_bo_init); 1253 1254 static size_t ttm_bo_acc_size(struct ttm_bo_device *bdev, 1255 unsigned long bo_size, 1256 unsigned struct_size) 1257 { 1258 unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT; 1259 size_t size = 0; 1260 1261 size += ttm_round_pot(struct_size); 1262 size += ttm_round_pot(npages * sizeof(void *)); 1263 size += ttm_round_pot(sizeof(struct ttm_tt)); 1264 return size; 1265 } 1266 1267 size_t ttm_bo_dma_acc_size(struct ttm_bo_device *bdev, 1268 unsigned long bo_size, 1269 unsigned struct_size) 1270 { 1271 unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT; 1272 size_t size = 0; 1273 1274 size += ttm_round_pot(struct_size); 1275 size += ttm_round_pot(npages * (2*sizeof(void *) + sizeof(dma_addr_t))); 1276 size += ttm_round_pot(sizeof(struct ttm_dma_tt)); 1277 return size; 1278 } 1279 EXPORT_SYMBOL(ttm_bo_dma_acc_size); 1280 1281 int ttm_bo_create(struct ttm_bo_device *bdev, 1282 unsigned long size, 1283 enum ttm_bo_type type, 1284 struct ttm_placement *placement, 1285 uint32_t page_alignment, 1286 bool interruptible, 1287 struct ttm_buffer_object **p_bo) 1288 { 1289 struct ttm_buffer_object *bo; 1290 size_t acc_size; 1291 int ret; 1292 1293 bo = kzalloc(sizeof(*bo), GFP_KERNEL); 1294 if (unlikely(bo == NULL)) 1295 return -ENOMEM; 1296 1297 acc_size = ttm_bo_acc_size(bdev, size, sizeof(struct ttm_buffer_object)); 1298 ret = ttm_bo_init(bdev, bo, size, type, placement, page_alignment, 1299 interruptible, acc_size, 1300 NULL, NULL, NULL); 1301 if (likely(ret == 0)) 1302 *p_bo = bo; 1303 1304 return ret; 1305 } 1306 EXPORT_SYMBOL(ttm_bo_create); 1307 1308 int ttm_bo_evict_mm(struct ttm_bo_device *bdev, unsigned mem_type) 1309 { 1310 struct ttm_resource_manager *man = ttm_manager_type(bdev, mem_type); 1311 1312 if (mem_type == 0 || mem_type >= TTM_NUM_MEM_TYPES) { 1313 pr_err("Illegal memory manager memory type %u\n", mem_type); 1314 return -EINVAL; 1315 } 1316 1317 if (!man) { 1318 pr_err("Memory type %u has not been initialized\n", mem_type); 1319 return 0; 1320 } 1321 1322 return ttm_resource_manager_force_list_clean(bdev, man); 1323 } 1324 EXPORT_SYMBOL(ttm_bo_evict_mm); 1325 1326 static void ttm_bo_global_kobj_release(struct kobject *kobj) 1327 { 1328 struct ttm_bo_global *glob = 1329 container_of(kobj, struct ttm_bo_global, kobj); 1330 1331 __free_page(glob->dummy_read_page); 1332 } 1333 1334 static void ttm_bo_global_release(void) 1335 { 1336 struct ttm_bo_global *glob = &ttm_bo_glob; 1337 1338 mutex_lock(&ttm_global_mutex); 1339 if (--ttm_bo_glob_use_count > 0) 1340 goto out; 1341 1342 kobject_del(&glob->kobj); 1343 kobject_put(&glob->kobj); 1344 ttm_mem_global_release(&ttm_mem_glob); 1345 memset(glob, 0, sizeof(*glob)); 1346 out: 1347 mutex_unlock(&ttm_global_mutex); 1348 } 1349 1350 static int ttm_bo_global_init(void) 1351 { 1352 struct ttm_bo_global *glob = &ttm_bo_glob; 1353 int ret = 0; 1354 unsigned i; 1355 1356 mutex_lock(&ttm_global_mutex); 1357 if (++ttm_bo_glob_use_count > 1) 1358 goto out; 1359 1360 ret = ttm_mem_global_init(&ttm_mem_glob); 1361 if (ret) 1362 goto out; 1363 1364 spin_lock_init(&glob->lru_lock); 1365 glob->dummy_read_page = alloc_page(__GFP_ZERO | GFP_DMA32); 1366 1367 if (unlikely(glob->dummy_read_page == NULL)) { 1368 ret = -ENOMEM; 1369 goto out; 1370 } 1371 1372 for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) 1373 INIT_LIST_HEAD(&glob->swap_lru[i]); 1374 INIT_LIST_HEAD(&glob->device_list); 1375 atomic_set(&glob->bo_count, 0); 1376 1377 ret = kobject_init_and_add( 1378 &glob->kobj, &ttm_bo_glob_kobj_type, ttm_get_kobj(), "buffer_objects"); 1379 if (unlikely(ret != 0)) 1380 kobject_put(&glob->kobj); 1381 out: 1382 mutex_unlock(&ttm_global_mutex); 1383 return ret; 1384 } 1385 1386 int ttm_bo_device_release(struct ttm_bo_device *bdev) 1387 { 1388 struct ttm_bo_global *glob = &ttm_bo_glob; 1389 int ret = 0; 1390 unsigned i; 1391 struct ttm_resource_manager *man; 1392 1393 man = ttm_manager_type(bdev, TTM_PL_SYSTEM); 1394 ttm_resource_manager_set_used(man, false); 1395 ttm_set_driver_manager(bdev, TTM_PL_SYSTEM, NULL); 1396 1397 mutex_lock(&ttm_global_mutex); 1398 list_del(&bdev->device_list); 1399 mutex_unlock(&ttm_global_mutex); 1400 1401 cancel_delayed_work_sync(&bdev->wq); 1402 1403 if (ttm_bo_delayed_delete(bdev, true)) 1404 pr_debug("Delayed destroy list was clean\n"); 1405 1406 spin_lock(&glob->lru_lock); 1407 for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) 1408 if (list_empty(&man->lru[0])) 1409 pr_debug("Swap list %d was clean\n", i); 1410 spin_unlock(&glob->lru_lock); 1411 1412 if (!ret) 1413 ttm_bo_global_release(); 1414 1415 return ret; 1416 } 1417 EXPORT_SYMBOL(ttm_bo_device_release); 1418 1419 static void ttm_bo_init_sysman(struct ttm_bo_device *bdev) 1420 { 1421 struct ttm_resource_manager *man = &bdev->sysman; 1422 1423 /* 1424 * Initialize the system memory buffer type. 1425 * Other types need to be driver / IOCTL initialized. 1426 */ 1427 man->use_tt = true; 1428 1429 ttm_resource_manager_init(man, 0); 1430 ttm_set_driver_manager(bdev, TTM_PL_SYSTEM, man); 1431 ttm_resource_manager_set_used(man, true); 1432 } 1433 1434 int ttm_bo_device_init(struct ttm_bo_device *bdev, 1435 struct ttm_bo_driver *driver, 1436 struct address_space *mapping, 1437 struct drm_vma_offset_manager *vma_manager, 1438 bool need_dma32) 1439 { 1440 struct ttm_bo_global *glob = &ttm_bo_glob; 1441 int ret; 1442 1443 if (WARN_ON(vma_manager == NULL)) 1444 return -EINVAL; 1445 1446 ret = ttm_bo_global_init(); 1447 if (ret) 1448 return ret; 1449 1450 bdev->driver = driver; 1451 1452 ttm_bo_init_sysman(bdev); 1453 1454 bdev->vma_manager = vma_manager; 1455 INIT_DELAYED_WORK(&bdev->wq, ttm_bo_delayed_workqueue); 1456 INIT_LIST_HEAD(&bdev->ddestroy); 1457 bdev->dev_mapping = mapping; 1458 bdev->need_dma32 = need_dma32; 1459 mutex_lock(&ttm_global_mutex); 1460 list_add_tail(&bdev->device_list, &glob->device_list); 1461 mutex_unlock(&ttm_global_mutex); 1462 1463 return 0; 1464 } 1465 EXPORT_SYMBOL(ttm_bo_device_init); 1466 1467 /* 1468 * buffer object vm functions. 1469 */ 1470 1471 void ttm_bo_unmap_virtual(struct ttm_buffer_object *bo) 1472 { 1473 struct ttm_bo_device *bdev = bo->bdev; 1474 1475 drm_vma_node_unmap(&bo->base.vma_node, bdev->dev_mapping); 1476 ttm_mem_io_free(bdev, &bo->mem); 1477 } 1478 EXPORT_SYMBOL(ttm_bo_unmap_virtual); 1479 1480 int ttm_bo_wait(struct ttm_buffer_object *bo, 1481 bool interruptible, bool no_wait) 1482 { 1483 long timeout = 15 * HZ; 1484 1485 if (no_wait) { 1486 if (dma_resv_test_signaled_rcu(bo->base.resv, true)) 1487 return 0; 1488 else 1489 return -EBUSY; 1490 } 1491 1492 timeout = dma_resv_wait_timeout_rcu(bo->base.resv, true, 1493 interruptible, timeout); 1494 if (timeout < 0) 1495 return timeout; 1496 1497 if (timeout == 0) 1498 return -EBUSY; 1499 1500 dma_resv_add_excl_fence(bo->base.resv, NULL); 1501 return 0; 1502 } 1503 EXPORT_SYMBOL(ttm_bo_wait); 1504 1505 /** 1506 * A buffer object shrink method that tries to swap out the first 1507 * buffer object on the bo_global::swap_lru list. 1508 */ 1509 int ttm_bo_swapout(struct ttm_bo_global *glob, struct ttm_operation_ctx *ctx) 1510 { 1511 struct ttm_buffer_object *bo; 1512 int ret = -EBUSY; 1513 bool locked; 1514 unsigned i; 1515 1516 spin_lock(&glob->lru_lock); 1517 for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) { 1518 list_for_each_entry(bo, &glob->swap_lru[i], swap) { 1519 if (!ttm_bo_evict_swapout_allowable(bo, ctx, &locked, 1520 NULL)) 1521 continue; 1522 1523 if (!ttm_bo_get_unless_zero(bo)) { 1524 if (locked) 1525 dma_resv_unlock(bo->base.resv); 1526 continue; 1527 } 1528 1529 ret = 0; 1530 break; 1531 } 1532 if (!ret) 1533 break; 1534 } 1535 1536 if (ret) { 1537 spin_unlock(&glob->lru_lock); 1538 return ret; 1539 } 1540 1541 if (bo->deleted) { 1542 ret = ttm_bo_cleanup_refs(bo, false, false, locked); 1543 ttm_bo_put(bo); 1544 return ret; 1545 } 1546 1547 ttm_bo_del_from_lru(bo); 1548 spin_unlock(&glob->lru_lock); 1549 1550 /** 1551 * Move to system cached 1552 */ 1553 1554 if (bo->mem.mem_type != TTM_PL_SYSTEM || 1555 bo->ttm->caching_state != tt_cached) { 1556 struct ttm_operation_ctx ctx = { false, false }; 1557 struct ttm_resource evict_mem; 1558 1559 evict_mem = bo->mem; 1560 evict_mem.mm_node = NULL; 1561 evict_mem.placement = TTM_PL_FLAG_CACHED; 1562 evict_mem.mem_type = TTM_PL_SYSTEM; 1563 1564 ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, &ctx); 1565 if (unlikely(ret != 0)) 1566 goto out; 1567 } 1568 1569 /** 1570 * Make sure BO is idle. 1571 */ 1572 1573 ret = ttm_bo_wait(bo, false, false); 1574 if (unlikely(ret != 0)) 1575 goto out; 1576 1577 ttm_bo_unmap_virtual(bo); 1578 1579 /** 1580 * Swap out. Buffer will be swapped in again as soon as 1581 * anyone tries to access a ttm page. 1582 */ 1583 1584 if (bo->bdev->driver->swap_notify) 1585 bo->bdev->driver->swap_notify(bo); 1586 1587 ret = ttm_tt_swapout(bo->bdev, bo->ttm, bo->persistent_swap_storage); 1588 out: 1589 1590 /** 1591 * 1592 * Unreserve without putting on LRU to avoid swapping out an 1593 * already swapped buffer. 1594 */ 1595 if (locked) 1596 dma_resv_unlock(bo->base.resv); 1597 ttm_bo_put(bo); 1598 return ret; 1599 } 1600 EXPORT_SYMBOL(ttm_bo_swapout); 1601 1602 void ttm_bo_swapout_all(void) 1603 { 1604 struct ttm_operation_ctx ctx = { 1605 .interruptible = false, 1606 .no_wait_gpu = false 1607 }; 1608 1609 while (ttm_bo_swapout(&ttm_bo_glob, &ctx) == 0); 1610 } 1611 EXPORT_SYMBOL(ttm_bo_swapout_all); 1612 1613 void ttm_bo_tt_destroy(struct ttm_buffer_object *bo) 1614 { 1615 if (bo->ttm == NULL) 1616 return; 1617 1618 ttm_tt_destroy(bo->bdev, bo->ttm); 1619 bo->ttm = NULL; 1620 } 1621 1622 int ttm_bo_tt_bind(struct ttm_buffer_object *bo, struct ttm_resource *mem) 1623 { 1624 return bo->bdev->driver->ttm_tt_bind(bo->bdev, bo->ttm, mem); 1625 } 1626 1627 void ttm_bo_tt_unbind(struct ttm_buffer_object *bo) 1628 { 1629 bo->bdev->driver->ttm_tt_unbind(bo->bdev, bo->ttm); 1630 } 1631