xref: /openbmc/linux/drivers/gpu/drm/tiny/repaper.c (revision c6fddb28)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * DRM driver for Pervasive Displays RePaper branded e-ink panels
4  *
5  * Copyright 2013-2017 Pervasive Displays, Inc.
6  * Copyright 2017 Noralf Trønnes
7  *
8  * The driver supports:
9  * Material Film: Aurora Mb (V231)
10  * Driver IC: G2 (eTC)
11  *
12  * The controller code was taken from the userspace driver:
13  * https://github.com/repaper/gratis
14  */
15 
16 #include <linux/delay.h>
17 #include <linux/dma-buf.h>
18 #include <linux/gpio/consumer.h>
19 #include <linux/module.h>
20 #include <linux/property.h>
21 #include <linux/sched/clock.h>
22 #include <linux/spi/spi.h>
23 #include <linux/thermal.h>
24 
25 #include <drm/drm_atomic_helper.h>
26 #include <drm/drm_connector.h>
27 #include <drm/drm_damage_helper.h>
28 #include <drm/drm_drv.h>
29 #include <drm/drm_fb_cma_helper.h>
30 #include <drm/drm_fb_helper.h>
31 #include <drm/drm_format_helper.h>
32 #include <drm/drm_gem_cma_helper.h>
33 #include <drm/drm_gem_framebuffer_helper.h>
34 #include <drm/drm_modes.h>
35 #include <drm/drm_rect.h>
36 #include <drm/drm_probe_helper.h>
37 #include <drm/drm_simple_kms_helper.h>
38 
39 #define REPAPER_RID_G2_COG_ID	0x12
40 
41 enum repaper_model {
42 	/* 0 is reserved to avoid clashing with NULL */
43 	E1144CS021 = 1,
44 	E1190CS021,
45 	E2200CS021,
46 	E2271CS021,
47 };
48 
49 enum repaper_stage {         /* Image pixel -> Display pixel */
50 	REPAPER_COMPENSATE,  /* B -> W, W -> B (Current Image) */
51 	REPAPER_WHITE,       /* B -> N, W -> W (Current Image) */
52 	REPAPER_INVERSE,     /* B -> N, W -> B (New Image) */
53 	REPAPER_NORMAL       /* B -> B, W -> W (New Image) */
54 };
55 
56 enum repaper_epd_border_byte {
57 	REPAPER_BORDER_BYTE_NONE,
58 	REPAPER_BORDER_BYTE_ZERO,
59 	REPAPER_BORDER_BYTE_SET,
60 };
61 
62 struct repaper_epd {
63 	struct drm_device drm;
64 	struct drm_simple_display_pipe pipe;
65 	const struct drm_display_mode *mode;
66 	struct drm_connector connector;
67 	struct spi_device *spi;
68 
69 	struct gpio_desc *panel_on;
70 	struct gpio_desc *border;
71 	struct gpio_desc *discharge;
72 	struct gpio_desc *reset;
73 	struct gpio_desc *busy;
74 
75 	struct thermal_zone_device *thermal;
76 
77 	unsigned int height;
78 	unsigned int width;
79 	unsigned int bytes_per_scan;
80 	const u8 *channel_select;
81 	unsigned int stage_time;
82 	unsigned int factored_stage_time;
83 	bool middle_scan;
84 	bool pre_border_byte;
85 	enum repaper_epd_border_byte border_byte;
86 
87 	u8 *line_buffer;
88 	void *current_frame;
89 
90 	bool enabled;
91 	bool cleared;
92 	bool partial;
93 };
94 
95 static inline struct repaper_epd *drm_to_epd(struct drm_device *drm)
96 {
97 	return container_of(drm, struct repaper_epd, drm);
98 }
99 
100 static int repaper_spi_transfer(struct spi_device *spi, u8 header,
101 				const void *tx, void *rx, size_t len)
102 {
103 	void *txbuf = NULL, *rxbuf = NULL;
104 	struct spi_transfer tr[2] = {};
105 	u8 *headerbuf;
106 	int ret;
107 
108 	headerbuf = kmalloc(1, GFP_KERNEL);
109 	if (!headerbuf)
110 		return -ENOMEM;
111 
112 	headerbuf[0] = header;
113 	tr[0].tx_buf = headerbuf;
114 	tr[0].len = 1;
115 
116 	/* Stack allocated tx? */
117 	if (tx && len <= 32) {
118 		txbuf = kmemdup(tx, len, GFP_KERNEL);
119 		if (!txbuf) {
120 			ret = -ENOMEM;
121 			goto out_free;
122 		}
123 	}
124 
125 	if (rx) {
126 		rxbuf = kmalloc(len, GFP_KERNEL);
127 		if (!rxbuf) {
128 			ret = -ENOMEM;
129 			goto out_free;
130 		}
131 	}
132 
133 	tr[1].tx_buf = txbuf ? txbuf : tx;
134 	tr[1].rx_buf = rxbuf;
135 	tr[1].len = len;
136 
137 	ndelay(80);
138 	ret = spi_sync_transfer(spi, tr, 2);
139 	if (rx && !ret)
140 		memcpy(rx, rxbuf, len);
141 
142 out_free:
143 	kfree(headerbuf);
144 	kfree(txbuf);
145 	kfree(rxbuf);
146 
147 	return ret;
148 }
149 
150 static int repaper_write_buf(struct spi_device *spi, u8 reg,
151 			     const u8 *buf, size_t len)
152 {
153 	int ret;
154 
155 	ret = repaper_spi_transfer(spi, 0x70, &reg, NULL, 1);
156 	if (ret)
157 		return ret;
158 
159 	return repaper_spi_transfer(spi, 0x72, buf, NULL, len);
160 }
161 
162 static int repaper_write_val(struct spi_device *spi, u8 reg, u8 val)
163 {
164 	return repaper_write_buf(spi, reg, &val, 1);
165 }
166 
167 static int repaper_read_val(struct spi_device *spi, u8 reg)
168 {
169 	int ret;
170 	u8 val;
171 
172 	ret = repaper_spi_transfer(spi, 0x70, &reg, NULL, 1);
173 	if (ret)
174 		return ret;
175 
176 	ret = repaper_spi_transfer(spi, 0x73, NULL, &val, 1);
177 
178 	return ret ? ret : val;
179 }
180 
181 static int repaper_read_id(struct spi_device *spi)
182 {
183 	int ret;
184 	u8 id;
185 
186 	ret = repaper_spi_transfer(spi, 0x71, NULL, &id, 1);
187 
188 	return ret ? ret : id;
189 }
190 
191 static void repaper_spi_mosi_low(struct spi_device *spi)
192 {
193 	const u8 buf[1] = { 0 };
194 
195 	spi_write(spi, buf, 1);
196 }
197 
198 /* pixels on display are numbered from 1 so even is actually bits 1,3,5,... */
199 static void repaper_even_pixels(struct repaper_epd *epd, u8 **pp,
200 				const u8 *data, u8 fixed_value, const u8 *mask,
201 				enum repaper_stage stage)
202 {
203 	unsigned int b;
204 
205 	for (b = 0; b < (epd->width / 8); b++) {
206 		if (data) {
207 			u8 pixels = data[b] & 0xaa;
208 			u8 pixel_mask = 0xff;
209 			u8 p1, p2, p3, p4;
210 
211 			if (mask) {
212 				pixel_mask = (mask[b] ^ pixels) & 0xaa;
213 				pixel_mask |= pixel_mask >> 1;
214 			}
215 
216 			switch (stage) {
217 			case REPAPER_COMPENSATE: /* B -> W, W -> B (Current) */
218 				pixels = 0xaa | ((pixels ^ 0xaa) >> 1);
219 				break;
220 			case REPAPER_WHITE:      /* B -> N, W -> W (Current) */
221 				pixels = 0x55 + ((pixels ^ 0xaa) >> 1);
222 				break;
223 			case REPAPER_INVERSE:    /* B -> N, W -> B (New) */
224 				pixels = 0x55 | (pixels ^ 0xaa);
225 				break;
226 			case REPAPER_NORMAL:     /* B -> B, W -> W (New) */
227 				pixels = 0xaa | (pixels >> 1);
228 				break;
229 			}
230 
231 			pixels = (pixels & pixel_mask) | (~pixel_mask & 0x55);
232 			p1 = (pixels >> 6) & 0x03;
233 			p2 = (pixels >> 4) & 0x03;
234 			p3 = (pixels >> 2) & 0x03;
235 			p4 = (pixels >> 0) & 0x03;
236 			pixels = (p1 << 0) | (p2 << 2) | (p3 << 4) | (p4 << 6);
237 			*(*pp)++ = pixels;
238 		} else {
239 			*(*pp)++ = fixed_value;
240 		}
241 	}
242 }
243 
244 /* pixels on display are numbered from 1 so odd is actually bits 0,2,4,... */
245 static void repaper_odd_pixels(struct repaper_epd *epd, u8 **pp,
246 			       const u8 *data, u8 fixed_value, const u8 *mask,
247 			       enum repaper_stage stage)
248 {
249 	unsigned int b;
250 
251 	for (b = epd->width / 8; b > 0; b--) {
252 		if (data) {
253 			u8 pixels = data[b - 1] & 0x55;
254 			u8 pixel_mask = 0xff;
255 
256 			if (mask) {
257 				pixel_mask = (mask[b - 1] ^ pixels) & 0x55;
258 				pixel_mask |= pixel_mask << 1;
259 			}
260 
261 			switch (stage) {
262 			case REPAPER_COMPENSATE: /* B -> W, W -> B (Current) */
263 				pixels = 0xaa | (pixels ^ 0x55);
264 				break;
265 			case REPAPER_WHITE:      /* B -> N, W -> W (Current) */
266 				pixels = 0x55 + (pixels ^ 0x55);
267 				break;
268 			case REPAPER_INVERSE:    /* B -> N, W -> B (New) */
269 				pixels = 0x55 | ((pixels ^ 0x55) << 1);
270 				break;
271 			case REPAPER_NORMAL:     /* B -> B, W -> W (New) */
272 				pixels = 0xaa | pixels;
273 				break;
274 			}
275 
276 			pixels = (pixels & pixel_mask) | (~pixel_mask & 0x55);
277 			*(*pp)++ = pixels;
278 		} else {
279 			*(*pp)++ = fixed_value;
280 		}
281 	}
282 }
283 
284 /* interleave bits: (byte)76543210 -> (16 bit).7.6.5.4.3.2.1 */
285 static inline u16 repaper_interleave_bits(u16 value)
286 {
287 	value = (value | (value << 4)) & 0x0f0f;
288 	value = (value | (value << 2)) & 0x3333;
289 	value = (value | (value << 1)) & 0x5555;
290 
291 	return value;
292 }
293 
294 /* pixels on display are numbered from 1 */
295 static void repaper_all_pixels(struct repaper_epd *epd, u8 **pp,
296 			       const u8 *data, u8 fixed_value, const u8 *mask,
297 			       enum repaper_stage stage)
298 {
299 	unsigned int b;
300 
301 	for (b = epd->width / 8; b > 0; b--) {
302 		if (data) {
303 			u16 pixels = repaper_interleave_bits(data[b - 1]);
304 			u16 pixel_mask = 0xffff;
305 
306 			if (mask) {
307 				pixel_mask = repaper_interleave_bits(mask[b - 1]);
308 
309 				pixel_mask = (pixel_mask ^ pixels) & 0x5555;
310 				pixel_mask |= pixel_mask << 1;
311 			}
312 
313 			switch (stage) {
314 			case REPAPER_COMPENSATE: /* B -> W, W -> B (Current) */
315 				pixels = 0xaaaa | (pixels ^ 0x5555);
316 				break;
317 			case REPAPER_WHITE:      /* B -> N, W -> W (Current) */
318 				pixels = 0x5555 + (pixels ^ 0x5555);
319 				break;
320 			case REPAPER_INVERSE:    /* B -> N, W -> B (New) */
321 				pixels = 0x5555 | ((pixels ^ 0x5555) << 1);
322 				break;
323 			case REPAPER_NORMAL:     /* B -> B, W -> W (New) */
324 				pixels = 0xaaaa | pixels;
325 				break;
326 			}
327 
328 			pixels = (pixels & pixel_mask) | (~pixel_mask & 0x5555);
329 			*(*pp)++ = pixels >> 8;
330 			*(*pp)++ = pixels;
331 		} else {
332 			*(*pp)++ = fixed_value;
333 			*(*pp)++ = fixed_value;
334 		}
335 	}
336 }
337 
338 /* output one line of scan and data bytes to the display */
339 static void repaper_one_line(struct repaper_epd *epd, unsigned int line,
340 			     const u8 *data, u8 fixed_value, const u8 *mask,
341 			     enum repaper_stage stage)
342 {
343 	u8 *p = epd->line_buffer;
344 	unsigned int b;
345 
346 	repaper_spi_mosi_low(epd->spi);
347 
348 	if (epd->pre_border_byte)
349 		*p++ = 0x00;
350 
351 	if (epd->middle_scan) {
352 		/* data bytes */
353 		repaper_odd_pixels(epd, &p, data, fixed_value, mask, stage);
354 
355 		/* scan line */
356 		for (b = epd->bytes_per_scan; b > 0; b--) {
357 			if (line / 4 == b - 1)
358 				*p++ = 0x03 << (2 * (line & 0x03));
359 			else
360 				*p++ = 0x00;
361 		}
362 
363 		/* data bytes */
364 		repaper_even_pixels(epd, &p, data, fixed_value, mask, stage);
365 	} else {
366 		/*
367 		 * even scan line, but as lines on display are numbered from 1,
368 		 * line: 1,3,5,...
369 		 */
370 		for (b = 0; b < epd->bytes_per_scan; b++) {
371 			if (0 != (line & 0x01) && line / 8 == b)
372 				*p++ = 0xc0 >> (line & 0x06);
373 			else
374 				*p++ = 0x00;
375 		}
376 
377 		/* data bytes */
378 		repaper_all_pixels(epd, &p, data, fixed_value, mask, stage);
379 
380 		/*
381 		 * odd scan line, but as lines on display are numbered from 1,
382 		 * line: 0,2,4,6,...
383 		 */
384 		for (b = epd->bytes_per_scan; b > 0; b--) {
385 			if (0 == (line & 0x01) && line / 8 == b - 1)
386 				*p++ = 0x03 << (line & 0x06);
387 			else
388 				*p++ = 0x00;
389 		}
390 	}
391 
392 	switch (epd->border_byte) {
393 	case REPAPER_BORDER_BYTE_NONE:
394 		break;
395 
396 	case REPAPER_BORDER_BYTE_ZERO:
397 		*p++ = 0x00;
398 		break;
399 
400 	case REPAPER_BORDER_BYTE_SET:
401 		switch (stage) {
402 		case REPAPER_COMPENSATE:
403 		case REPAPER_WHITE:
404 		case REPAPER_INVERSE:
405 			*p++ = 0x00;
406 			break;
407 		case REPAPER_NORMAL:
408 			*p++ = 0xaa;
409 			break;
410 		}
411 		break;
412 	}
413 
414 	repaper_write_buf(epd->spi, 0x0a, epd->line_buffer,
415 			  p - epd->line_buffer);
416 
417 	/* Output data to panel */
418 	repaper_write_val(epd->spi, 0x02, 0x07);
419 
420 	repaper_spi_mosi_low(epd->spi);
421 }
422 
423 static void repaper_frame_fixed(struct repaper_epd *epd, u8 fixed_value,
424 				enum repaper_stage stage)
425 {
426 	unsigned int line;
427 
428 	for (line = 0; line < epd->height; line++)
429 		repaper_one_line(epd, line, NULL, fixed_value, NULL, stage);
430 }
431 
432 static void repaper_frame_data(struct repaper_epd *epd, const u8 *image,
433 			       const u8 *mask, enum repaper_stage stage)
434 {
435 	unsigned int line;
436 
437 	if (!mask) {
438 		for (line = 0; line < epd->height; line++) {
439 			repaper_one_line(epd, line,
440 					 &image[line * (epd->width / 8)],
441 					 0, NULL, stage);
442 		}
443 	} else {
444 		for (line = 0; line < epd->height; line++) {
445 			size_t n = line * epd->width / 8;
446 
447 			repaper_one_line(epd, line, &image[n], 0, &mask[n],
448 					 stage);
449 		}
450 	}
451 }
452 
453 static void repaper_frame_fixed_repeat(struct repaper_epd *epd, u8 fixed_value,
454 				       enum repaper_stage stage)
455 {
456 	u64 start = local_clock();
457 	u64 end = start + (epd->factored_stage_time * 1000 * 1000);
458 
459 	do {
460 		repaper_frame_fixed(epd, fixed_value, stage);
461 	} while (local_clock() < end);
462 }
463 
464 static void repaper_frame_data_repeat(struct repaper_epd *epd, const u8 *image,
465 				      const u8 *mask, enum repaper_stage stage)
466 {
467 	u64 start = local_clock();
468 	u64 end = start + (epd->factored_stage_time * 1000 * 1000);
469 
470 	do {
471 		repaper_frame_data(epd, image, mask, stage);
472 	} while (local_clock() < end);
473 }
474 
475 static void repaper_get_temperature(struct repaper_epd *epd)
476 {
477 	int ret, temperature = 0;
478 	unsigned int factor10x;
479 
480 	if (!epd->thermal)
481 		return;
482 
483 	ret = thermal_zone_get_temp(epd->thermal, &temperature);
484 	if (ret) {
485 		DRM_DEV_ERROR(&epd->spi->dev, "Failed to get temperature (%d)\n", ret);
486 		return;
487 	}
488 
489 	temperature /= 1000;
490 
491 	if (temperature <= -10)
492 		factor10x = 170;
493 	else if (temperature <= -5)
494 		factor10x = 120;
495 	else if (temperature <= 5)
496 		factor10x = 80;
497 	else if (temperature <= 10)
498 		factor10x = 40;
499 	else if (temperature <= 15)
500 		factor10x = 30;
501 	else if (temperature <= 20)
502 		factor10x = 20;
503 	else if (temperature <= 40)
504 		factor10x = 10;
505 	else
506 		factor10x = 7;
507 
508 	epd->factored_stage_time = epd->stage_time * factor10x / 10;
509 }
510 
511 static void repaper_gray8_to_mono_reversed(u8 *buf, u32 width, u32 height)
512 {
513 	u8 *gray8 = buf, *mono = buf;
514 	int y, xb, i;
515 
516 	for (y = 0; y < height; y++)
517 		for (xb = 0; xb < width / 8; xb++) {
518 			u8 byte = 0x00;
519 
520 			for (i = 0; i < 8; i++) {
521 				int x = xb * 8 + i;
522 
523 				byte >>= 1;
524 				if (gray8[y * width + x] >> 7)
525 					byte |= BIT(7);
526 			}
527 			*mono++ = byte;
528 		}
529 }
530 
531 static int repaper_fb_dirty(struct drm_framebuffer *fb)
532 {
533 	struct drm_gem_cma_object *cma_obj = drm_fb_cma_get_gem_obj(fb, 0);
534 	struct dma_buf_attachment *import_attach = cma_obj->base.import_attach;
535 	struct repaper_epd *epd = drm_to_epd(fb->dev);
536 	struct drm_rect clip;
537 	int idx, ret = 0;
538 	u8 *buf = NULL;
539 
540 	if (!epd->enabled)
541 		return 0;
542 
543 	if (!drm_dev_enter(fb->dev, &idx))
544 		return -ENODEV;
545 
546 	/* repaper can't do partial updates */
547 	clip.x1 = 0;
548 	clip.x2 = fb->width;
549 	clip.y1 = 0;
550 	clip.y2 = fb->height;
551 
552 	repaper_get_temperature(epd);
553 
554 	DRM_DEBUG("Flushing [FB:%d] st=%ums\n", fb->base.id,
555 		  epd->factored_stage_time);
556 
557 	buf = kmalloc_array(fb->width, fb->height, GFP_KERNEL);
558 	if (!buf) {
559 		ret = -ENOMEM;
560 		goto out_exit;
561 	}
562 
563 	if (import_attach) {
564 		ret = dma_buf_begin_cpu_access(import_attach->dmabuf,
565 					       DMA_FROM_DEVICE);
566 		if (ret)
567 			goto out_free;
568 	}
569 
570 	drm_fb_xrgb8888_to_gray8(buf, cma_obj->vaddr, fb, &clip);
571 
572 	if (import_attach) {
573 		ret = dma_buf_end_cpu_access(import_attach->dmabuf,
574 					     DMA_FROM_DEVICE);
575 		if (ret)
576 			goto out_free;
577 	}
578 
579 	repaper_gray8_to_mono_reversed(buf, fb->width, fb->height);
580 
581 	if (epd->partial) {
582 		repaper_frame_data_repeat(epd, buf, epd->current_frame,
583 					  REPAPER_NORMAL);
584 	} else if (epd->cleared) {
585 		repaper_frame_data_repeat(epd, epd->current_frame, NULL,
586 					  REPAPER_COMPENSATE);
587 		repaper_frame_data_repeat(epd, epd->current_frame, NULL,
588 					  REPAPER_WHITE);
589 		repaper_frame_data_repeat(epd, buf, NULL, REPAPER_INVERSE);
590 		repaper_frame_data_repeat(epd, buf, NULL, REPAPER_NORMAL);
591 
592 		epd->partial = true;
593 	} else {
594 		/* Clear display (anything -> white) */
595 		repaper_frame_fixed_repeat(epd, 0xff, REPAPER_COMPENSATE);
596 		repaper_frame_fixed_repeat(epd, 0xff, REPAPER_WHITE);
597 		repaper_frame_fixed_repeat(epd, 0xaa, REPAPER_INVERSE);
598 		repaper_frame_fixed_repeat(epd, 0xaa, REPAPER_NORMAL);
599 
600 		/* Assuming a clear (white) screen output an image */
601 		repaper_frame_fixed_repeat(epd, 0xaa, REPAPER_COMPENSATE);
602 		repaper_frame_fixed_repeat(epd, 0xaa, REPAPER_WHITE);
603 		repaper_frame_data_repeat(epd, buf, NULL, REPAPER_INVERSE);
604 		repaper_frame_data_repeat(epd, buf, NULL, REPAPER_NORMAL);
605 
606 		epd->cleared = true;
607 		epd->partial = true;
608 	}
609 
610 	memcpy(epd->current_frame, buf, fb->width * fb->height / 8);
611 
612 	/*
613 	 * An extra frame write is needed if pixels are set in the bottom line,
614 	 * or else grey lines rises up from the pixels
615 	 */
616 	if (epd->pre_border_byte) {
617 		unsigned int x;
618 
619 		for (x = 0; x < (fb->width / 8); x++)
620 			if (buf[x + (fb->width * (fb->height - 1) / 8)]) {
621 				repaper_frame_data_repeat(epd, buf,
622 							  epd->current_frame,
623 							  REPAPER_NORMAL);
624 				break;
625 			}
626 	}
627 
628 out_free:
629 	kfree(buf);
630 out_exit:
631 	drm_dev_exit(idx);
632 
633 	return ret;
634 }
635 
636 static void power_off(struct repaper_epd *epd)
637 {
638 	/* Turn off power and all signals */
639 	gpiod_set_value_cansleep(epd->reset, 0);
640 	gpiod_set_value_cansleep(epd->panel_on, 0);
641 	if (epd->border)
642 		gpiod_set_value_cansleep(epd->border, 0);
643 
644 	/* Ensure SPI MOSI and CLOCK are Low before CS Low */
645 	repaper_spi_mosi_low(epd->spi);
646 
647 	/* Discharge pulse */
648 	gpiod_set_value_cansleep(epd->discharge, 1);
649 	msleep(150);
650 	gpiod_set_value_cansleep(epd->discharge, 0);
651 }
652 
653 static void repaper_pipe_enable(struct drm_simple_display_pipe *pipe,
654 				struct drm_crtc_state *crtc_state,
655 				struct drm_plane_state *plane_state)
656 {
657 	struct repaper_epd *epd = drm_to_epd(pipe->crtc.dev);
658 	struct spi_device *spi = epd->spi;
659 	struct device *dev = &spi->dev;
660 	bool dc_ok = false;
661 	int i, ret, idx;
662 
663 	if (!drm_dev_enter(pipe->crtc.dev, &idx))
664 		return;
665 
666 	DRM_DEBUG_DRIVER("\n");
667 
668 	/* Power up sequence */
669 	gpiod_set_value_cansleep(epd->reset, 0);
670 	gpiod_set_value_cansleep(epd->panel_on, 0);
671 	gpiod_set_value_cansleep(epd->discharge, 0);
672 	if (epd->border)
673 		gpiod_set_value_cansleep(epd->border, 0);
674 	repaper_spi_mosi_low(spi);
675 	usleep_range(5000, 10000);
676 
677 	gpiod_set_value_cansleep(epd->panel_on, 1);
678 	/*
679 	 * This delay comes from the repaper.org userspace driver, it's not
680 	 * mentioned in the datasheet.
681 	 */
682 	usleep_range(10000, 15000);
683 	gpiod_set_value_cansleep(epd->reset, 1);
684 	if (epd->border)
685 		gpiod_set_value_cansleep(epd->border, 1);
686 	usleep_range(5000, 10000);
687 	gpiod_set_value_cansleep(epd->reset, 0);
688 	usleep_range(5000, 10000);
689 	gpiod_set_value_cansleep(epd->reset, 1);
690 	usleep_range(5000, 10000);
691 
692 	/* Wait for COG to become ready */
693 	for (i = 100; i > 0; i--) {
694 		if (!gpiod_get_value_cansleep(epd->busy))
695 			break;
696 
697 		usleep_range(10, 100);
698 	}
699 
700 	if (!i) {
701 		DRM_DEV_ERROR(dev, "timeout waiting for panel to become ready.\n");
702 		power_off(epd);
703 		goto out_exit;
704 	}
705 
706 	repaper_read_id(spi);
707 	ret = repaper_read_id(spi);
708 	if (ret != REPAPER_RID_G2_COG_ID) {
709 		if (ret < 0)
710 			dev_err(dev, "failed to read chip (%d)\n", ret);
711 		else
712 			dev_err(dev, "wrong COG ID 0x%02x\n", ret);
713 		power_off(epd);
714 		goto out_exit;
715 	}
716 
717 	/* Disable OE */
718 	repaper_write_val(spi, 0x02, 0x40);
719 
720 	ret = repaper_read_val(spi, 0x0f);
721 	if (ret < 0 || !(ret & 0x80)) {
722 		if (ret < 0)
723 			DRM_DEV_ERROR(dev, "failed to read chip (%d)\n", ret);
724 		else
725 			DRM_DEV_ERROR(dev, "panel is reported broken\n");
726 		power_off(epd);
727 		goto out_exit;
728 	}
729 
730 	/* Power saving mode */
731 	repaper_write_val(spi, 0x0b, 0x02);
732 	/* Channel select */
733 	repaper_write_buf(spi, 0x01, epd->channel_select, 8);
734 	/* High power mode osc */
735 	repaper_write_val(spi, 0x07, 0xd1);
736 	/* Power setting */
737 	repaper_write_val(spi, 0x08, 0x02);
738 	/* Vcom level */
739 	repaper_write_val(spi, 0x09, 0xc2);
740 	/* Power setting */
741 	repaper_write_val(spi, 0x04, 0x03);
742 	/* Driver latch on */
743 	repaper_write_val(spi, 0x03, 0x01);
744 	/* Driver latch off */
745 	repaper_write_val(spi, 0x03, 0x00);
746 	usleep_range(5000, 10000);
747 
748 	/* Start chargepump */
749 	for (i = 0; i < 4; ++i) {
750 		/* Charge pump positive voltage on - VGH/VDL on */
751 		repaper_write_val(spi, 0x05, 0x01);
752 		msleep(240);
753 
754 		/* Charge pump negative voltage on - VGL/VDL on */
755 		repaper_write_val(spi, 0x05, 0x03);
756 		msleep(40);
757 
758 		/* Charge pump Vcom on - Vcom driver on */
759 		repaper_write_val(spi, 0x05, 0x0f);
760 		msleep(40);
761 
762 		/* check DC/DC */
763 		ret = repaper_read_val(spi, 0x0f);
764 		if (ret < 0) {
765 			DRM_DEV_ERROR(dev, "failed to read chip (%d)\n", ret);
766 			power_off(epd);
767 			goto out_exit;
768 		}
769 
770 		if (ret & 0x40) {
771 			dc_ok = true;
772 			break;
773 		}
774 	}
775 
776 	if (!dc_ok) {
777 		DRM_DEV_ERROR(dev, "dc/dc failed\n");
778 		power_off(epd);
779 		goto out_exit;
780 	}
781 
782 	/*
783 	 * Output enable to disable
784 	 * The userspace driver sets this to 0x04, but the datasheet says 0x06
785 	 */
786 	repaper_write_val(spi, 0x02, 0x04);
787 
788 	epd->enabled = true;
789 	epd->partial = false;
790 out_exit:
791 	drm_dev_exit(idx);
792 }
793 
794 static void repaper_pipe_disable(struct drm_simple_display_pipe *pipe)
795 {
796 	struct repaper_epd *epd = drm_to_epd(pipe->crtc.dev);
797 	struct spi_device *spi = epd->spi;
798 	unsigned int line;
799 
800 	/*
801 	 * This callback is not protected by drm_dev_enter/exit since we want to
802 	 * turn off the display on regular driver unload. It's highly unlikely
803 	 * that the underlying SPI controller is gone should this be called after
804 	 * unplug.
805 	 */
806 
807 	if (!epd->enabled)
808 		return;
809 
810 	DRM_DEBUG_DRIVER("\n");
811 
812 	epd->enabled = false;
813 
814 	/* Nothing frame */
815 	for (line = 0; line < epd->height; line++)
816 		repaper_one_line(epd, 0x7fffu, NULL, 0x00, NULL,
817 				 REPAPER_COMPENSATE);
818 
819 	/* 2.7" */
820 	if (epd->border) {
821 		/* Dummy line */
822 		repaper_one_line(epd, 0x7fffu, NULL, 0x00, NULL,
823 				 REPAPER_COMPENSATE);
824 		msleep(25);
825 		gpiod_set_value_cansleep(epd->border, 0);
826 		msleep(200);
827 		gpiod_set_value_cansleep(epd->border, 1);
828 	} else {
829 		/* Border dummy line */
830 		repaper_one_line(epd, 0x7fffu, NULL, 0x00, NULL,
831 				 REPAPER_NORMAL);
832 		msleep(200);
833 	}
834 
835 	/* not described in datasheet */
836 	repaper_write_val(spi, 0x0b, 0x00);
837 	/* Latch reset turn on */
838 	repaper_write_val(spi, 0x03, 0x01);
839 	/* Power off charge pump Vcom */
840 	repaper_write_val(spi, 0x05, 0x03);
841 	/* Power off charge pump neg voltage */
842 	repaper_write_val(spi, 0x05, 0x01);
843 	msleep(120);
844 	/* Discharge internal */
845 	repaper_write_val(spi, 0x04, 0x80);
846 	/* turn off all charge pumps */
847 	repaper_write_val(spi, 0x05, 0x00);
848 	/* Turn off osc */
849 	repaper_write_val(spi, 0x07, 0x01);
850 	msleep(50);
851 
852 	power_off(epd);
853 }
854 
855 static void repaper_pipe_update(struct drm_simple_display_pipe *pipe,
856 				struct drm_plane_state *old_state)
857 {
858 	struct drm_plane_state *state = pipe->plane.state;
859 	struct drm_rect rect;
860 
861 	if (drm_atomic_helper_damage_merged(old_state, state, &rect))
862 		repaper_fb_dirty(state->fb);
863 }
864 
865 static const struct drm_simple_display_pipe_funcs repaper_pipe_funcs = {
866 	.enable = repaper_pipe_enable,
867 	.disable = repaper_pipe_disable,
868 	.update = repaper_pipe_update,
869 	.prepare_fb = drm_gem_fb_simple_display_pipe_prepare_fb,
870 };
871 
872 static int repaper_connector_get_modes(struct drm_connector *connector)
873 {
874 	struct repaper_epd *epd = drm_to_epd(connector->dev);
875 	struct drm_display_mode *mode;
876 
877 	mode = drm_mode_duplicate(connector->dev, epd->mode);
878 	if (!mode) {
879 		DRM_ERROR("Failed to duplicate mode\n");
880 		return 0;
881 	}
882 
883 	drm_mode_set_name(mode);
884 	mode->type |= DRM_MODE_TYPE_PREFERRED;
885 	drm_mode_probed_add(connector, mode);
886 
887 	connector->display_info.width_mm = mode->width_mm;
888 	connector->display_info.height_mm = mode->height_mm;
889 
890 	return 1;
891 }
892 
893 static const struct drm_connector_helper_funcs repaper_connector_hfuncs = {
894 	.get_modes = repaper_connector_get_modes,
895 };
896 
897 static const struct drm_connector_funcs repaper_connector_funcs = {
898 	.reset = drm_atomic_helper_connector_reset,
899 	.fill_modes = drm_helper_probe_single_connector_modes,
900 	.destroy = drm_connector_cleanup,
901 	.atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
902 	.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
903 };
904 
905 static const struct drm_mode_config_funcs repaper_mode_config_funcs = {
906 	.fb_create = drm_gem_fb_create_with_dirty,
907 	.atomic_check = drm_atomic_helper_check,
908 	.atomic_commit = drm_atomic_helper_commit,
909 };
910 
911 static void repaper_release(struct drm_device *drm)
912 {
913 	struct repaper_epd *epd = drm_to_epd(drm);
914 
915 	DRM_DEBUG_DRIVER("\n");
916 
917 	drm_mode_config_cleanup(drm);
918 	drm_dev_fini(drm);
919 	kfree(epd);
920 }
921 
922 static const uint32_t repaper_formats[] = {
923 	DRM_FORMAT_XRGB8888,
924 };
925 
926 static const struct drm_display_mode repaper_e1144cs021_mode = {
927 	DRM_SIMPLE_MODE(128, 96, 29, 22),
928 };
929 
930 static const u8 repaper_e1144cs021_cs[] = { 0x00, 0x00, 0x00, 0x00,
931 					    0x00, 0x0f, 0xff, 0x00 };
932 
933 static const struct drm_display_mode repaper_e1190cs021_mode = {
934 	DRM_SIMPLE_MODE(144, 128, 36, 32),
935 };
936 
937 static const u8 repaper_e1190cs021_cs[] = { 0x00, 0x00, 0x00, 0x03,
938 					    0xfc, 0x00, 0x00, 0xff };
939 
940 static const struct drm_display_mode repaper_e2200cs021_mode = {
941 	DRM_SIMPLE_MODE(200, 96, 46, 22),
942 };
943 
944 static const u8 repaper_e2200cs021_cs[] = { 0x00, 0x00, 0x00, 0x00,
945 					    0x01, 0xff, 0xe0, 0x00 };
946 
947 static const struct drm_display_mode repaper_e2271cs021_mode = {
948 	DRM_SIMPLE_MODE(264, 176, 57, 38),
949 };
950 
951 static const u8 repaper_e2271cs021_cs[] = { 0x00, 0x00, 0x00, 0x7f,
952 					    0xff, 0xfe, 0x00, 0x00 };
953 
954 DEFINE_DRM_GEM_CMA_FOPS(repaper_fops);
955 
956 static struct drm_driver repaper_driver = {
957 	.driver_features	= DRIVER_GEM | DRIVER_MODESET | DRIVER_ATOMIC,
958 	.fops			= &repaper_fops,
959 	.release		= repaper_release,
960 	DRM_GEM_CMA_VMAP_DRIVER_OPS,
961 	.name			= "repaper",
962 	.desc			= "Pervasive Displays RePaper e-ink panels",
963 	.date			= "20170405",
964 	.major			= 1,
965 	.minor			= 0,
966 };
967 
968 static const struct of_device_id repaper_of_match[] = {
969 	{ .compatible = "pervasive,e1144cs021", .data = (void *)E1144CS021 },
970 	{ .compatible = "pervasive,e1190cs021", .data = (void *)E1190CS021 },
971 	{ .compatible = "pervasive,e2200cs021", .data = (void *)E2200CS021 },
972 	{ .compatible = "pervasive,e2271cs021", .data = (void *)E2271CS021 },
973 	{},
974 };
975 MODULE_DEVICE_TABLE(of, repaper_of_match);
976 
977 static const struct spi_device_id repaper_id[] = {
978 	{ "e1144cs021", E1144CS021 },
979 	{ "e1190cs021", E1190CS021 },
980 	{ "e2200cs021", E2200CS021 },
981 	{ "e2271cs021", E2271CS021 },
982 	{ },
983 };
984 MODULE_DEVICE_TABLE(spi, repaper_id);
985 
986 static int repaper_probe(struct spi_device *spi)
987 {
988 	const struct drm_display_mode *mode;
989 	const struct spi_device_id *spi_id;
990 	struct device *dev = &spi->dev;
991 	enum repaper_model model;
992 	const char *thermal_zone;
993 	struct repaper_epd *epd;
994 	size_t line_buffer_size;
995 	struct drm_device *drm;
996 	const void *match;
997 	int ret;
998 
999 	match = device_get_match_data(dev);
1000 	if (match) {
1001 		model = (enum repaper_model)match;
1002 	} else {
1003 		spi_id = spi_get_device_id(spi);
1004 		model = (enum repaper_model)spi_id->driver_data;
1005 	}
1006 
1007 	/* The SPI device is used to allocate dma memory */
1008 	if (!dev->coherent_dma_mask) {
1009 		ret = dma_coerce_mask_and_coherent(dev, DMA_BIT_MASK(32));
1010 		if (ret) {
1011 			dev_warn(dev, "Failed to set dma mask %d\n", ret);
1012 			return ret;
1013 		}
1014 	}
1015 
1016 	epd = kzalloc(sizeof(*epd), GFP_KERNEL);
1017 	if (!epd)
1018 		return -ENOMEM;
1019 
1020 	drm = &epd->drm;
1021 
1022 	ret = devm_drm_dev_init(dev, drm, &repaper_driver);
1023 	if (ret) {
1024 		kfree(epd);
1025 		return ret;
1026 	}
1027 
1028 	drm_mode_config_init(drm);
1029 	drm->mode_config.funcs = &repaper_mode_config_funcs;
1030 
1031 	epd->spi = spi;
1032 
1033 	epd->panel_on = devm_gpiod_get(dev, "panel-on", GPIOD_OUT_LOW);
1034 	if (IS_ERR(epd->panel_on)) {
1035 		ret = PTR_ERR(epd->panel_on);
1036 		if (ret != -EPROBE_DEFER)
1037 			DRM_DEV_ERROR(dev, "Failed to get gpio 'panel-on'\n");
1038 		return ret;
1039 	}
1040 
1041 	epd->discharge = devm_gpiod_get(dev, "discharge", GPIOD_OUT_LOW);
1042 	if (IS_ERR(epd->discharge)) {
1043 		ret = PTR_ERR(epd->discharge);
1044 		if (ret != -EPROBE_DEFER)
1045 			DRM_DEV_ERROR(dev, "Failed to get gpio 'discharge'\n");
1046 		return ret;
1047 	}
1048 
1049 	epd->reset = devm_gpiod_get(dev, "reset", GPIOD_OUT_LOW);
1050 	if (IS_ERR(epd->reset)) {
1051 		ret = PTR_ERR(epd->reset);
1052 		if (ret != -EPROBE_DEFER)
1053 			DRM_DEV_ERROR(dev, "Failed to get gpio 'reset'\n");
1054 		return ret;
1055 	}
1056 
1057 	epd->busy = devm_gpiod_get(dev, "busy", GPIOD_IN);
1058 	if (IS_ERR(epd->busy)) {
1059 		ret = PTR_ERR(epd->busy);
1060 		if (ret != -EPROBE_DEFER)
1061 			DRM_DEV_ERROR(dev, "Failed to get gpio 'busy'\n");
1062 		return ret;
1063 	}
1064 
1065 	if (!device_property_read_string(dev, "pervasive,thermal-zone",
1066 					 &thermal_zone)) {
1067 		epd->thermal = thermal_zone_get_zone_by_name(thermal_zone);
1068 		if (IS_ERR(epd->thermal)) {
1069 			DRM_DEV_ERROR(dev, "Failed to get thermal zone: %s\n", thermal_zone);
1070 			return PTR_ERR(epd->thermal);
1071 		}
1072 	}
1073 
1074 	switch (model) {
1075 	case E1144CS021:
1076 		mode = &repaper_e1144cs021_mode;
1077 		epd->channel_select = repaper_e1144cs021_cs;
1078 		epd->stage_time = 480;
1079 		epd->bytes_per_scan = 96 / 4;
1080 		epd->middle_scan = true; /* data-scan-data */
1081 		epd->pre_border_byte = false;
1082 		epd->border_byte = REPAPER_BORDER_BYTE_ZERO;
1083 		break;
1084 
1085 	case E1190CS021:
1086 		mode = &repaper_e1190cs021_mode;
1087 		epd->channel_select = repaper_e1190cs021_cs;
1088 		epd->stage_time = 480;
1089 		epd->bytes_per_scan = 128 / 4 / 2;
1090 		epd->middle_scan = false; /* scan-data-scan */
1091 		epd->pre_border_byte = false;
1092 		epd->border_byte = REPAPER_BORDER_BYTE_SET;
1093 		break;
1094 
1095 	case E2200CS021:
1096 		mode = &repaper_e2200cs021_mode;
1097 		epd->channel_select = repaper_e2200cs021_cs;
1098 		epd->stage_time = 480;
1099 		epd->bytes_per_scan = 96 / 4;
1100 		epd->middle_scan = true; /* data-scan-data */
1101 		epd->pre_border_byte = true;
1102 		epd->border_byte = REPAPER_BORDER_BYTE_NONE;
1103 		break;
1104 
1105 	case E2271CS021:
1106 		epd->border = devm_gpiod_get(dev, "border", GPIOD_OUT_LOW);
1107 		if (IS_ERR(epd->border)) {
1108 			ret = PTR_ERR(epd->border);
1109 			if (ret != -EPROBE_DEFER)
1110 				DRM_DEV_ERROR(dev, "Failed to get gpio 'border'\n");
1111 			return ret;
1112 		}
1113 
1114 		mode = &repaper_e2271cs021_mode;
1115 		epd->channel_select = repaper_e2271cs021_cs;
1116 		epd->stage_time = 630;
1117 		epd->bytes_per_scan = 176 / 4;
1118 		epd->middle_scan = true; /* data-scan-data */
1119 		epd->pre_border_byte = true;
1120 		epd->border_byte = REPAPER_BORDER_BYTE_NONE;
1121 		break;
1122 
1123 	default:
1124 		return -ENODEV;
1125 	}
1126 
1127 	epd->mode = mode;
1128 	epd->width = mode->hdisplay;
1129 	epd->height = mode->vdisplay;
1130 	epd->factored_stage_time = epd->stage_time;
1131 
1132 	line_buffer_size = 2 * epd->width / 8 + epd->bytes_per_scan + 2;
1133 	epd->line_buffer = devm_kzalloc(dev, line_buffer_size, GFP_KERNEL);
1134 	if (!epd->line_buffer)
1135 		return -ENOMEM;
1136 
1137 	epd->current_frame = devm_kzalloc(dev, epd->width * epd->height / 8,
1138 					  GFP_KERNEL);
1139 	if (!epd->current_frame)
1140 		return -ENOMEM;
1141 
1142 	drm->mode_config.min_width = mode->hdisplay;
1143 	drm->mode_config.max_width = mode->hdisplay;
1144 	drm->mode_config.min_height = mode->vdisplay;
1145 	drm->mode_config.max_height = mode->vdisplay;
1146 
1147 	drm_connector_helper_add(&epd->connector, &repaper_connector_hfuncs);
1148 	ret = drm_connector_init(drm, &epd->connector, &repaper_connector_funcs,
1149 				 DRM_MODE_CONNECTOR_SPI);
1150 	if (ret)
1151 		return ret;
1152 
1153 	ret = drm_simple_display_pipe_init(drm, &epd->pipe, &repaper_pipe_funcs,
1154 					   repaper_formats, ARRAY_SIZE(repaper_formats),
1155 					   NULL, &epd->connector);
1156 	if (ret)
1157 		return ret;
1158 
1159 	drm_mode_config_reset(drm);
1160 
1161 	ret = drm_dev_register(drm, 0);
1162 	if (ret)
1163 		return ret;
1164 
1165 	spi_set_drvdata(spi, drm);
1166 
1167 	DRM_DEBUG_DRIVER("SPI speed: %uMHz\n", spi->max_speed_hz / 1000000);
1168 
1169 	drm_fbdev_generic_setup(drm, 0);
1170 
1171 	return 0;
1172 }
1173 
1174 static int repaper_remove(struct spi_device *spi)
1175 {
1176 	struct drm_device *drm = spi_get_drvdata(spi);
1177 
1178 	drm_dev_unplug(drm);
1179 	drm_atomic_helper_shutdown(drm);
1180 
1181 	return 0;
1182 }
1183 
1184 static void repaper_shutdown(struct spi_device *spi)
1185 {
1186 	drm_atomic_helper_shutdown(spi_get_drvdata(spi));
1187 }
1188 
1189 static struct spi_driver repaper_spi_driver = {
1190 	.driver = {
1191 		.name = "repaper",
1192 		.of_match_table = repaper_of_match,
1193 	},
1194 	.id_table = repaper_id,
1195 	.probe = repaper_probe,
1196 	.remove = repaper_remove,
1197 	.shutdown = repaper_shutdown,
1198 };
1199 module_spi_driver(repaper_spi_driver);
1200 
1201 MODULE_DESCRIPTION("Pervasive Displays RePaper DRM driver");
1202 MODULE_AUTHOR("Noralf Trønnes");
1203 MODULE_LICENSE("GPL");
1204