xref: /openbmc/linux/drivers/gpu/drm/tidss/tidss_dispc.c (revision 2b1b838ea8e5437ef06a29818d16e9efdfaf0037)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2016-2018 Texas Instruments Incorporated - https://www.ti.com/
4  * Author: Jyri Sarha <jsarha@ti.com>
5  */
6 
7 #include <linux/clk.h>
8 #include <linux/delay.h>
9 #include <linux/dma-mapping.h>
10 #include <linux/err.h>
11 #include <linux/interrupt.h>
12 #include <linux/io.h>
13 #include <linux/kernel.h>
14 #include <linux/media-bus-format.h>
15 #include <linux/module.h>
16 #include <linux/mfd/syscon.h>
17 #include <linux/of.h>
18 #include <linux/platform_device.h>
19 #include <linux/pm_runtime.h>
20 #include <linux/regmap.h>
21 #include <linux/sys_soc.h>
22 
23 #include <drm/drm_blend.h>
24 #include <drm/drm_fourcc.h>
25 #include <drm/drm_fb_dma_helper.h>
26 #include <drm/drm_framebuffer.h>
27 #include <drm/drm_gem_dma_helper.h>
28 #include <drm/drm_panel.h>
29 
30 #include "tidss_crtc.h"
31 #include "tidss_dispc.h"
32 #include "tidss_drv.h"
33 #include "tidss_irq.h"
34 #include "tidss_plane.h"
35 
36 #include "tidss_dispc_regs.h"
37 #include "tidss_scale_coefs.h"
38 
39 static const u16 tidss_k2g_common_regs[DISPC_COMMON_REG_TABLE_LEN] = {
40 	[DSS_REVISION_OFF] =                    0x00,
41 	[DSS_SYSCONFIG_OFF] =                   0x04,
42 	[DSS_SYSSTATUS_OFF] =                   0x08,
43 	[DISPC_IRQ_EOI_OFF] =                   0x20,
44 	[DISPC_IRQSTATUS_RAW_OFF] =             0x24,
45 	[DISPC_IRQSTATUS_OFF] =                 0x28,
46 	[DISPC_IRQENABLE_SET_OFF] =             0x2c,
47 	[DISPC_IRQENABLE_CLR_OFF] =             0x30,
48 
49 	[DISPC_GLOBAL_MFLAG_ATTRIBUTE_OFF] =    0x40,
50 	[DISPC_GLOBAL_BUFFER_OFF] =             0x44,
51 
52 	[DISPC_DBG_CONTROL_OFF] =               0x4c,
53 	[DISPC_DBG_STATUS_OFF] =                0x50,
54 
55 	[DISPC_CLKGATING_DISABLE_OFF] =         0x54,
56 };
57 
58 const struct dispc_features dispc_k2g_feats = {
59 	.min_pclk_khz = 4375,
60 
61 	.max_pclk_khz = {
62 		[DISPC_VP_DPI] = 150000,
63 	},
64 
65 	/*
66 	 * XXX According TRM the RGB input buffer width up to 2560 should
67 	 *     work on 3 taps, but in practice it only works up to 1280.
68 	 */
69 	.scaling = {
70 		.in_width_max_5tap_rgb = 1280,
71 		.in_width_max_3tap_rgb = 1280,
72 		.in_width_max_5tap_yuv = 2560,
73 		.in_width_max_3tap_yuv = 2560,
74 		.upscale_limit = 16,
75 		.downscale_limit_5tap = 4,
76 		.downscale_limit_3tap = 2,
77 		/*
78 		 * The max supported pixel inc value is 255. The value
79 		 * of pixel inc is calculated like this: 1+(xinc-1)*bpp.
80 		 * The maximum bpp of all formats supported by the HW
81 		 * is 8. So the maximum supported xinc value is 32,
82 		 * because 1+(32-1)*8 < 255 < 1+(33-1)*4.
83 		 */
84 		.xinc_max = 32,
85 	},
86 
87 	.subrev = DISPC_K2G,
88 
89 	.common = "common",
90 
91 	.common_regs = tidss_k2g_common_regs,
92 
93 	.num_vps = 1,
94 	.vp_name = { "vp1" },
95 	.ovr_name = { "ovr1" },
96 	.vpclk_name =  { "vp1" },
97 	.vp_bus_type = { DISPC_VP_DPI },
98 
99 	.vp_feat = { .color = {
100 			.has_ctm = true,
101 			.gamma_size = 256,
102 			.gamma_type = TIDSS_GAMMA_8BIT,
103 		},
104 	},
105 
106 	.num_planes = 1,
107 	.vid_name = { "vid1" },
108 	.vid_lite = { false },
109 	.vid_order = { 0 },
110 };
111 
112 static const u16 tidss_am65x_common_regs[DISPC_COMMON_REG_TABLE_LEN] = {
113 	[DSS_REVISION_OFF] =			0x4,
114 	[DSS_SYSCONFIG_OFF] =			0x8,
115 	[DSS_SYSSTATUS_OFF] =			0x20,
116 	[DISPC_IRQ_EOI_OFF] =			0x24,
117 	[DISPC_IRQSTATUS_RAW_OFF] =		0x28,
118 	[DISPC_IRQSTATUS_OFF] =			0x2c,
119 	[DISPC_IRQENABLE_SET_OFF] =		0x30,
120 	[DISPC_IRQENABLE_CLR_OFF] =		0x40,
121 	[DISPC_VID_IRQENABLE_OFF] =		0x44,
122 	[DISPC_VID_IRQSTATUS_OFF] =		0x58,
123 	[DISPC_VP_IRQENABLE_OFF] =		0x70,
124 	[DISPC_VP_IRQSTATUS_OFF] =		0x7c,
125 
126 	[WB_IRQENABLE_OFF] =			0x88,
127 	[WB_IRQSTATUS_OFF] =			0x8c,
128 
129 	[DISPC_GLOBAL_MFLAG_ATTRIBUTE_OFF] =	0x90,
130 	[DISPC_GLOBAL_OUTPUT_ENABLE_OFF] =	0x94,
131 	[DISPC_GLOBAL_BUFFER_OFF] =		0x98,
132 	[DSS_CBA_CFG_OFF] =			0x9c,
133 	[DISPC_DBG_CONTROL_OFF] =		0xa0,
134 	[DISPC_DBG_STATUS_OFF] =		0xa4,
135 	[DISPC_CLKGATING_DISABLE_OFF] =		0xa8,
136 	[DISPC_SECURE_DISABLE_OFF] =		0xac,
137 };
138 
139 const struct dispc_features dispc_am65x_feats = {
140 	.max_pclk_khz = {
141 		[DISPC_VP_DPI] = 165000,
142 		[DISPC_VP_OLDI] = 165000,
143 	},
144 
145 	.scaling = {
146 		.in_width_max_5tap_rgb = 1280,
147 		.in_width_max_3tap_rgb = 2560,
148 		.in_width_max_5tap_yuv = 2560,
149 		.in_width_max_3tap_yuv = 4096,
150 		.upscale_limit = 16,
151 		.downscale_limit_5tap = 4,
152 		.downscale_limit_3tap = 2,
153 		/*
154 		 * The max supported pixel inc value is 255. The value
155 		 * of pixel inc is calculated like this: 1+(xinc-1)*bpp.
156 		 * The maximum bpp of all formats supported by the HW
157 		 * is 8. So the maximum supported xinc value is 32,
158 		 * because 1+(32-1)*8 < 255 < 1+(33-1)*4.
159 		 */
160 		.xinc_max = 32,
161 	},
162 
163 	.subrev = DISPC_AM65X,
164 
165 	.common = "common",
166 	.common_regs = tidss_am65x_common_regs,
167 
168 	.num_vps = 2,
169 	.vp_name = { "vp1", "vp2" },
170 	.ovr_name = { "ovr1", "ovr2" },
171 	.vpclk_name =  { "vp1", "vp2" },
172 	.vp_bus_type = { DISPC_VP_OLDI, DISPC_VP_DPI },
173 
174 	.vp_feat = { .color = {
175 			.has_ctm = true,
176 			.gamma_size = 256,
177 			.gamma_type = TIDSS_GAMMA_8BIT,
178 		},
179 	},
180 
181 	.num_planes = 2,
182 	/* note: vid is plane_id 0 and vidl1 is plane_id 1 */
183 	.vid_name = { "vid", "vidl1" },
184 	.vid_lite = { false, true, },
185 	.vid_order = { 1, 0 },
186 };
187 
188 static const u16 tidss_j721e_common_regs[DISPC_COMMON_REG_TABLE_LEN] = {
189 	[DSS_REVISION_OFF] =			0x4,
190 	[DSS_SYSCONFIG_OFF] =			0x8,
191 	[DSS_SYSSTATUS_OFF] =			0x20,
192 	[DISPC_IRQ_EOI_OFF] =			0x80,
193 	[DISPC_IRQSTATUS_RAW_OFF] =		0x28,
194 	[DISPC_IRQSTATUS_OFF] =			0x2c,
195 	[DISPC_IRQENABLE_SET_OFF] =		0x30,
196 	[DISPC_IRQENABLE_CLR_OFF] =		0x34,
197 	[DISPC_VID_IRQENABLE_OFF] =		0x38,
198 	[DISPC_VID_IRQSTATUS_OFF] =		0x48,
199 	[DISPC_VP_IRQENABLE_OFF] =		0x58,
200 	[DISPC_VP_IRQSTATUS_OFF] =		0x68,
201 
202 	[WB_IRQENABLE_OFF] =			0x78,
203 	[WB_IRQSTATUS_OFF] =			0x7c,
204 
205 	[DISPC_GLOBAL_MFLAG_ATTRIBUTE_OFF] =	0x98,
206 	[DISPC_GLOBAL_OUTPUT_ENABLE_OFF] =	0x9c,
207 	[DISPC_GLOBAL_BUFFER_OFF] =		0xa0,
208 	[DSS_CBA_CFG_OFF] =			0xa4,
209 	[DISPC_DBG_CONTROL_OFF] =		0xa8,
210 	[DISPC_DBG_STATUS_OFF] =		0xac,
211 	[DISPC_CLKGATING_DISABLE_OFF] =		0xb0,
212 	[DISPC_SECURE_DISABLE_OFF] =		0x90,
213 
214 	[FBDC_REVISION_1_OFF] =			0xb8,
215 	[FBDC_REVISION_2_OFF] =			0xbc,
216 	[FBDC_REVISION_3_OFF] =			0xc0,
217 	[FBDC_REVISION_4_OFF] =			0xc4,
218 	[FBDC_REVISION_5_OFF] =			0xc8,
219 	[FBDC_REVISION_6_OFF] =			0xcc,
220 	[FBDC_COMMON_CONTROL_OFF] =		0xd0,
221 	[FBDC_CONSTANT_COLOR_0_OFF] =		0xd4,
222 	[FBDC_CONSTANT_COLOR_1_OFF] =		0xd8,
223 	[DISPC_CONNECTIONS_OFF] =		0xe4,
224 	[DISPC_MSS_VP1_OFF] =			0xe8,
225 	[DISPC_MSS_VP3_OFF] =			0xec,
226 };
227 
228 const struct dispc_features dispc_j721e_feats = {
229 	.max_pclk_khz = {
230 		[DISPC_VP_DPI] = 170000,
231 		[DISPC_VP_INTERNAL] = 600000,
232 	},
233 
234 	.scaling = {
235 		.in_width_max_5tap_rgb = 2048,
236 		.in_width_max_3tap_rgb = 4096,
237 		.in_width_max_5tap_yuv = 4096,
238 		.in_width_max_3tap_yuv = 4096,
239 		.upscale_limit = 16,
240 		.downscale_limit_5tap = 4,
241 		.downscale_limit_3tap = 2,
242 		/*
243 		 * The max supported pixel inc value is 255. The value
244 		 * of pixel inc is calculated like this: 1+(xinc-1)*bpp.
245 		 * The maximum bpp of all formats supported by the HW
246 		 * is 8. So the maximum supported xinc value is 32,
247 		 * because 1+(32-1)*8 < 255 < 1+(33-1)*4.
248 		 */
249 		.xinc_max = 32,
250 	},
251 
252 	.subrev = DISPC_J721E,
253 
254 	.common = "common_m",
255 	.common_regs = tidss_j721e_common_regs,
256 
257 	.num_vps = 4,
258 	.vp_name = { "vp1", "vp2", "vp3", "vp4" },
259 	.ovr_name = { "ovr1", "ovr2", "ovr3", "ovr4" },
260 	.vpclk_name = { "vp1", "vp2", "vp3", "vp4" },
261 	/* Currently hard coded VP routing (see dispc_initial_config()) */
262 	.vp_bus_type =	{ DISPC_VP_INTERNAL, DISPC_VP_DPI,
263 			  DISPC_VP_INTERNAL, DISPC_VP_DPI, },
264 	.vp_feat = { .color = {
265 			.has_ctm = true,
266 			.gamma_size = 1024,
267 			.gamma_type = TIDSS_GAMMA_10BIT,
268 		},
269 	},
270 	.num_planes = 4,
271 	.vid_name = { "vid1", "vidl1", "vid2", "vidl2" },
272 	.vid_lite = { 0, 1, 0, 1, },
273 	.vid_order = { 1, 3, 0, 2 },
274 };
275 
276 const struct dispc_features dispc_am625_feats = {
277 	.max_pclk_khz = {
278 		[DISPC_VP_DPI] = 165000,
279 		[DISPC_VP_INTERNAL] = 170000,
280 	},
281 
282 	.scaling = {
283 		.in_width_max_5tap_rgb = 1280,
284 		.in_width_max_3tap_rgb = 2560,
285 		.in_width_max_5tap_yuv = 2560,
286 		.in_width_max_3tap_yuv = 4096,
287 		.upscale_limit = 16,
288 		.downscale_limit_5tap = 4,
289 		.downscale_limit_3tap = 2,
290 		/*
291 		 * The max supported pixel inc value is 255. The value
292 		 * of pixel inc is calculated like this: 1+(xinc-1)*bpp.
293 		 * The maximum bpp of all formats supported by the HW
294 		 * is 8. So the maximum supported xinc value is 32,
295 		 * because 1+(32-1)*8 < 255 < 1+(33-1)*4.
296 		 */
297 		.xinc_max = 32,
298 	},
299 
300 	.subrev = DISPC_AM625,
301 
302 	.common = "common",
303 	.common_regs = tidss_am65x_common_regs,
304 
305 	.num_vps = 2,
306 	.vp_name = { "vp1", "vp2" },
307 	.ovr_name = { "ovr1", "ovr2" },
308 	.vpclk_name =  { "vp1", "vp2" },
309 	.vp_bus_type = { DISPC_VP_INTERNAL, DISPC_VP_DPI },
310 
311 	.vp_feat = { .color = {
312 			.has_ctm = true,
313 			.gamma_size = 256,
314 			.gamma_type = TIDSS_GAMMA_8BIT,
315 		},
316 	},
317 
318 	.num_planes = 2,
319 	/* note: vid is plane_id 0 and vidl1 is plane_id 1 */
320 	.vid_name = { "vid", "vidl1" },
321 	.vid_lite = { false, true, },
322 	.vid_order = { 1, 0 },
323 };
324 
325 static const u16 *dispc_common_regmap;
326 
327 struct dss_vp_data {
328 	u32 *gamma_table;
329 };
330 
331 struct dispc_device {
332 	struct tidss_device *tidss;
333 	struct device *dev;
334 
335 	void __iomem *base_common;
336 	void __iomem *base_vid[TIDSS_MAX_PLANES];
337 	void __iomem *base_ovr[TIDSS_MAX_PORTS];
338 	void __iomem *base_vp[TIDSS_MAX_PORTS];
339 
340 	struct regmap *oldi_io_ctrl;
341 
342 	struct clk *vp_clk[TIDSS_MAX_PORTS];
343 
344 	const struct dispc_features *feat;
345 
346 	struct clk *fclk;
347 
348 	bool is_enabled;
349 
350 	struct dss_vp_data vp_data[TIDSS_MAX_PORTS];
351 
352 	u32 *fourccs;
353 	u32 num_fourccs;
354 
355 	u32 memory_bandwidth_limit;
356 
357 	struct dispc_errata errata;
358 };
359 
360 static void dispc_write(struct dispc_device *dispc, u16 reg, u32 val)
361 {
362 	iowrite32(val, dispc->base_common + reg);
363 }
364 
365 static u32 dispc_read(struct dispc_device *dispc, u16 reg)
366 {
367 	return ioread32(dispc->base_common + reg);
368 }
369 
370 static
371 void dispc_vid_write(struct dispc_device *dispc, u32 hw_plane, u16 reg, u32 val)
372 {
373 	void __iomem *base = dispc->base_vid[hw_plane];
374 
375 	iowrite32(val, base + reg);
376 }
377 
378 static u32 dispc_vid_read(struct dispc_device *dispc, u32 hw_plane, u16 reg)
379 {
380 	void __iomem *base = dispc->base_vid[hw_plane];
381 
382 	return ioread32(base + reg);
383 }
384 
385 static void dispc_ovr_write(struct dispc_device *dispc, u32 hw_videoport,
386 			    u16 reg, u32 val)
387 {
388 	void __iomem *base = dispc->base_ovr[hw_videoport];
389 
390 	iowrite32(val, base + reg);
391 }
392 
393 static u32 dispc_ovr_read(struct dispc_device *dispc, u32 hw_videoport, u16 reg)
394 {
395 	void __iomem *base = dispc->base_ovr[hw_videoport];
396 
397 	return ioread32(base + reg);
398 }
399 
400 static void dispc_vp_write(struct dispc_device *dispc, u32 hw_videoport,
401 			   u16 reg, u32 val)
402 {
403 	void __iomem *base = dispc->base_vp[hw_videoport];
404 
405 	iowrite32(val, base + reg);
406 }
407 
408 static u32 dispc_vp_read(struct dispc_device *dispc, u32 hw_videoport, u16 reg)
409 {
410 	void __iomem *base = dispc->base_vp[hw_videoport];
411 
412 	return ioread32(base + reg);
413 }
414 
415 /*
416  * TRM gives bitfields as start:end, where start is the higher bit
417  * number. For example 7:0
418  */
419 
420 static u32 FLD_MASK(u32 start, u32 end)
421 {
422 	return ((1 << (start - end + 1)) - 1) << end;
423 }
424 
425 static u32 FLD_VAL(u32 val, u32 start, u32 end)
426 {
427 	return (val << end) & FLD_MASK(start, end);
428 }
429 
430 static u32 FLD_GET(u32 val, u32 start, u32 end)
431 {
432 	return (val & FLD_MASK(start, end)) >> end;
433 }
434 
435 static u32 FLD_MOD(u32 orig, u32 val, u32 start, u32 end)
436 {
437 	return (orig & ~FLD_MASK(start, end)) | FLD_VAL(val, start, end);
438 }
439 
440 static u32 REG_GET(struct dispc_device *dispc, u32 idx, u32 start, u32 end)
441 {
442 	return FLD_GET(dispc_read(dispc, idx), start, end);
443 }
444 
445 static void REG_FLD_MOD(struct dispc_device *dispc, u32 idx, u32 val,
446 			u32 start, u32 end)
447 {
448 	dispc_write(dispc, idx, FLD_MOD(dispc_read(dispc, idx), val,
449 					start, end));
450 }
451 
452 static u32 VID_REG_GET(struct dispc_device *dispc, u32 hw_plane, u32 idx,
453 		       u32 start, u32 end)
454 {
455 	return FLD_GET(dispc_vid_read(dispc, hw_plane, idx), start, end);
456 }
457 
458 static void VID_REG_FLD_MOD(struct dispc_device *dispc, u32 hw_plane, u32 idx,
459 			    u32 val, u32 start, u32 end)
460 {
461 	dispc_vid_write(dispc, hw_plane, idx,
462 			FLD_MOD(dispc_vid_read(dispc, hw_plane, idx),
463 				val, start, end));
464 }
465 
466 static u32 VP_REG_GET(struct dispc_device *dispc, u32 vp, u32 idx,
467 		      u32 start, u32 end)
468 {
469 	return FLD_GET(dispc_vp_read(dispc, vp, idx), start, end);
470 }
471 
472 static void VP_REG_FLD_MOD(struct dispc_device *dispc, u32 vp, u32 idx, u32 val,
473 			   u32 start, u32 end)
474 {
475 	dispc_vp_write(dispc, vp, idx, FLD_MOD(dispc_vp_read(dispc, vp, idx),
476 					       val, start, end));
477 }
478 
479 __maybe_unused
480 static u32 OVR_REG_GET(struct dispc_device *dispc, u32 ovr, u32 idx,
481 		       u32 start, u32 end)
482 {
483 	return FLD_GET(dispc_ovr_read(dispc, ovr, idx), start, end);
484 }
485 
486 static void OVR_REG_FLD_MOD(struct dispc_device *dispc, u32 ovr, u32 idx,
487 			    u32 val, u32 start, u32 end)
488 {
489 	dispc_ovr_write(dispc, ovr, idx,
490 			FLD_MOD(dispc_ovr_read(dispc, ovr, idx),
491 				val, start, end));
492 }
493 
494 static dispc_irq_t dispc_vp_irq_from_raw(u32 stat, u32 hw_videoport)
495 {
496 	dispc_irq_t vp_stat = 0;
497 
498 	if (stat & BIT(0))
499 		vp_stat |= DSS_IRQ_VP_FRAME_DONE(hw_videoport);
500 	if (stat & BIT(1))
501 		vp_stat |= DSS_IRQ_VP_VSYNC_EVEN(hw_videoport);
502 	if (stat & BIT(2))
503 		vp_stat |= DSS_IRQ_VP_VSYNC_ODD(hw_videoport);
504 	if (stat & BIT(4))
505 		vp_stat |= DSS_IRQ_VP_SYNC_LOST(hw_videoport);
506 
507 	return vp_stat;
508 }
509 
510 static u32 dispc_vp_irq_to_raw(dispc_irq_t vpstat, u32 hw_videoport)
511 {
512 	u32 stat = 0;
513 
514 	if (vpstat & DSS_IRQ_VP_FRAME_DONE(hw_videoport))
515 		stat |= BIT(0);
516 	if (vpstat & DSS_IRQ_VP_VSYNC_EVEN(hw_videoport))
517 		stat |= BIT(1);
518 	if (vpstat & DSS_IRQ_VP_VSYNC_ODD(hw_videoport))
519 		stat |= BIT(2);
520 	if (vpstat & DSS_IRQ_VP_SYNC_LOST(hw_videoport))
521 		stat |= BIT(4);
522 
523 	return stat;
524 }
525 
526 static dispc_irq_t dispc_vid_irq_from_raw(u32 stat, u32 hw_plane)
527 {
528 	dispc_irq_t vid_stat = 0;
529 
530 	if (stat & BIT(0))
531 		vid_stat |= DSS_IRQ_PLANE_FIFO_UNDERFLOW(hw_plane);
532 
533 	return vid_stat;
534 }
535 
536 static u32 dispc_vid_irq_to_raw(dispc_irq_t vidstat, u32 hw_plane)
537 {
538 	u32 stat = 0;
539 
540 	if (vidstat & DSS_IRQ_PLANE_FIFO_UNDERFLOW(hw_plane))
541 		stat |= BIT(0);
542 
543 	return stat;
544 }
545 
546 static dispc_irq_t dispc_k2g_vp_read_irqstatus(struct dispc_device *dispc,
547 					       u32 hw_videoport)
548 {
549 	u32 stat = dispc_vp_read(dispc, hw_videoport, DISPC_VP_K2G_IRQSTATUS);
550 
551 	return dispc_vp_irq_from_raw(stat, hw_videoport);
552 }
553 
554 static void dispc_k2g_vp_write_irqstatus(struct dispc_device *dispc,
555 					 u32 hw_videoport, dispc_irq_t vpstat)
556 {
557 	u32 stat = dispc_vp_irq_to_raw(vpstat, hw_videoport);
558 
559 	dispc_vp_write(dispc, hw_videoport, DISPC_VP_K2G_IRQSTATUS, stat);
560 }
561 
562 static dispc_irq_t dispc_k2g_vid_read_irqstatus(struct dispc_device *dispc,
563 						u32 hw_plane)
564 {
565 	u32 stat = dispc_vid_read(dispc, hw_plane, DISPC_VID_K2G_IRQSTATUS);
566 
567 	return dispc_vid_irq_from_raw(stat, hw_plane);
568 }
569 
570 static void dispc_k2g_vid_write_irqstatus(struct dispc_device *dispc,
571 					  u32 hw_plane, dispc_irq_t vidstat)
572 {
573 	u32 stat = dispc_vid_irq_to_raw(vidstat, hw_plane);
574 
575 	dispc_vid_write(dispc, hw_plane, DISPC_VID_K2G_IRQSTATUS, stat);
576 }
577 
578 static dispc_irq_t dispc_k2g_vp_read_irqenable(struct dispc_device *dispc,
579 					       u32 hw_videoport)
580 {
581 	u32 stat = dispc_vp_read(dispc, hw_videoport, DISPC_VP_K2G_IRQENABLE);
582 
583 	return dispc_vp_irq_from_raw(stat, hw_videoport);
584 }
585 
586 static void dispc_k2g_vp_set_irqenable(struct dispc_device *dispc,
587 				       u32 hw_videoport, dispc_irq_t vpstat)
588 {
589 	u32 stat = dispc_vp_irq_to_raw(vpstat, hw_videoport);
590 
591 	dispc_vp_write(dispc, hw_videoport, DISPC_VP_K2G_IRQENABLE, stat);
592 }
593 
594 static dispc_irq_t dispc_k2g_vid_read_irqenable(struct dispc_device *dispc,
595 						u32 hw_plane)
596 {
597 	u32 stat = dispc_vid_read(dispc, hw_plane, DISPC_VID_K2G_IRQENABLE);
598 
599 	return dispc_vid_irq_from_raw(stat, hw_plane);
600 }
601 
602 static void dispc_k2g_vid_set_irqenable(struct dispc_device *dispc,
603 					u32 hw_plane, dispc_irq_t vidstat)
604 {
605 	u32 stat = dispc_vid_irq_to_raw(vidstat, hw_plane);
606 
607 	dispc_vid_write(dispc, hw_plane, DISPC_VID_K2G_IRQENABLE, stat);
608 }
609 
610 static void dispc_k2g_clear_irqstatus(struct dispc_device *dispc,
611 				      dispc_irq_t mask)
612 {
613 	dispc_k2g_vp_write_irqstatus(dispc, 0, mask);
614 	dispc_k2g_vid_write_irqstatus(dispc, 0, mask);
615 }
616 
617 static
618 dispc_irq_t dispc_k2g_read_and_clear_irqstatus(struct dispc_device *dispc)
619 {
620 	dispc_irq_t stat = 0;
621 
622 	/* always clear the top level irqstatus */
623 	dispc_write(dispc, DISPC_IRQSTATUS,
624 		    dispc_read(dispc, DISPC_IRQSTATUS));
625 
626 	stat |= dispc_k2g_vp_read_irqstatus(dispc, 0);
627 	stat |= dispc_k2g_vid_read_irqstatus(dispc, 0);
628 
629 	dispc_k2g_clear_irqstatus(dispc, stat);
630 
631 	return stat;
632 }
633 
634 static dispc_irq_t dispc_k2g_read_irqenable(struct dispc_device *dispc)
635 {
636 	dispc_irq_t stat = 0;
637 
638 	stat |= dispc_k2g_vp_read_irqenable(dispc, 0);
639 	stat |= dispc_k2g_vid_read_irqenable(dispc, 0);
640 
641 	return stat;
642 }
643 
644 static
645 void dispc_k2g_set_irqenable(struct dispc_device *dispc, dispc_irq_t mask)
646 {
647 	dispc_irq_t old_mask = dispc_k2g_read_irqenable(dispc);
648 
649 	/* clear the irqstatus for newly enabled irqs */
650 	dispc_k2g_clear_irqstatus(dispc, (mask ^ old_mask) & mask);
651 
652 	dispc_k2g_vp_set_irqenable(dispc, 0, mask);
653 	dispc_k2g_vid_set_irqenable(dispc, 0, mask);
654 
655 	dispc_write(dispc, DISPC_IRQENABLE_SET, (1 << 0) | (1 << 7));
656 
657 	/* flush posted write */
658 	dispc_k2g_read_irqenable(dispc);
659 }
660 
661 static dispc_irq_t dispc_k3_vp_read_irqstatus(struct dispc_device *dispc,
662 					      u32 hw_videoport)
663 {
664 	u32 stat = dispc_read(dispc, DISPC_VP_IRQSTATUS(hw_videoport));
665 
666 	return dispc_vp_irq_from_raw(stat, hw_videoport);
667 }
668 
669 static void dispc_k3_vp_write_irqstatus(struct dispc_device *dispc,
670 					u32 hw_videoport, dispc_irq_t vpstat)
671 {
672 	u32 stat = dispc_vp_irq_to_raw(vpstat, hw_videoport);
673 
674 	dispc_write(dispc, DISPC_VP_IRQSTATUS(hw_videoport), stat);
675 }
676 
677 static dispc_irq_t dispc_k3_vid_read_irqstatus(struct dispc_device *dispc,
678 					       u32 hw_plane)
679 {
680 	u32 stat = dispc_read(dispc, DISPC_VID_IRQSTATUS(hw_plane));
681 
682 	return dispc_vid_irq_from_raw(stat, hw_plane);
683 }
684 
685 static void dispc_k3_vid_write_irqstatus(struct dispc_device *dispc,
686 					 u32 hw_plane, dispc_irq_t vidstat)
687 {
688 	u32 stat = dispc_vid_irq_to_raw(vidstat, hw_plane);
689 
690 	dispc_write(dispc, DISPC_VID_IRQSTATUS(hw_plane), stat);
691 }
692 
693 static dispc_irq_t dispc_k3_vp_read_irqenable(struct dispc_device *dispc,
694 					      u32 hw_videoport)
695 {
696 	u32 stat = dispc_read(dispc, DISPC_VP_IRQENABLE(hw_videoport));
697 
698 	return dispc_vp_irq_from_raw(stat, hw_videoport);
699 }
700 
701 static void dispc_k3_vp_set_irqenable(struct dispc_device *dispc,
702 				      u32 hw_videoport, dispc_irq_t vpstat)
703 {
704 	u32 stat = dispc_vp_irq_to_raw(vpstat, hw_videoport);
705 
706 	dispc_write(dispc, DISPC_VP_IRQENABLE(hw_videoport), stat);
707 }
708 
709 static dispc_irq_t dispc_k3_vid_read_irqenable(struct dispc_device *dispc,
710 					       u32 hw_plane)
711 {
712 	u32 stat = dispc_read(dispc, DISPC_VID_IRQENABLE(hw_plane));
713 
714 	return dispc_vid_irq_from_raw(stat, hw_plane);
715 }
716 
717 static void dispc_k3_vid_set_irqenable(struct dispc_device *dispc,
718 				       u32 hw_plane, dispc_irq_t vidstat)
719 {
720 	u32 stat = dispc_vid_irq_to_raw(vidstat, hw_plane);
721 
722 	dispc_write(dispc, DISPC_VID_IRQENABLE(hw_plane), stat);
723 }
724 
725 static
726 void dispc_k3_clear_irqstatus(struct dispc_device *dispc, dispc_irq_t clearmask)
727 {
728 	unsigned int i;
729 	u32 top_clear = 0;
730 
731 	for (i = 0; i < dispc->feat->num_vps; ++i) {
732 		if (clearmask & DSS_IRQ_VP_MASK(i)) {
733 			dispc_k3_vp_write_irqstatus(dispc, i, clearmask);
734 			top_clear |= BIT(i);
735 		}
736 	}
737 	for (i = 0; i < dispc->feat->num_planes; ++i) {
738 		if (clearmask & DSS_IRQ_PLANE_MASK(i)) {
739 			dispc_k3_vid_write_irqstatus(dispc, i, clearmask);
740 			top_clear |= BIT(4 + i);
741 		}
742 	}
743 	if (dispc->feat->subrev == DISPC_K2G)
744 		return;
745 
746 	dispc_write(dispc, DISPC_IRQSTATUS, top_clear);
747 
748 	/* Flush posted writes */
749 	dispc_read(dispc, DISPC_IRQSTATUS);
750 }
751 
752 static
753 dispc_irq_t dispc_k3_read_and_clear_irqstatus(struct dispc_device *dispc)
754 {
755 	dispc_irq_t status = 0;
756 	unsigned int i;
757 
758 	for (i = 0; i < dispc->feat->num_vps; ++i)
759 		status |= dispc_k3_vp_read_irqstatus(dispc, i);
760 
761 	for (i = 0; i < dispc->feat->num_planes; ++i)
762 		status |= dispc_k3_vid_read_irqstatus(dispc, i);
763 
764 	dispc_k3_clear_irqstatus(dispc, status);
765 
766 	return status;
767 }
768 
769 static dispc_irq_t dispc_k3_read_irqenable(struct dispc_device *dispc)
770 {
771 	dispc_irq_t enable = 0;
772 	unsigned int i;
773 
774 	for (i = 0; i < dispc->feat->num_vps; ++i)
775 		enable |= dispc_k3_vp_read_irqenable(dispc, i);
776 
777 	for (i = 0; i < dispc->feat->num_planes; ++i)
778 		enable |= dispc_k3_vid_read_irqenable(dispc, i);
779 
780 	return enable;
781 }
782 
783 static void dispc_k3_set_irqenable(struct dispc_device *dispc,
784 				   dispc_irq_t mask)
785 {
786 	unsigned int i;
787 	u32 main_enable = 0, main_disable = 0;
788 	dispc_irq_t old_mask;
789 
790 	old_mask = dispc_k3_read_irqenable(dispc);
791 
792 	/* clear the irqstatus for newly enabled irqs */
793 	dispc_k3_clear_irqstatus(dispc, (old_mask ^ mask) & mask);
794 
795 	for (i = 0; i < dispc->feat->num_vps; ++i) {
796 		dispc_k3_vp_set_irqenable(dispc, i, mask);
797 		if (mask & DSS_IRQ_VP_MASK(i))
798 			main_enable |= BIT(i);		/* VP IRQ */
799 		else
800 			main_disable |= BIT(i);		/* VP IRQ */
801 	}
802 
803 	for (i = 0; i < dispc->feat->num_planes; ++i) {
804 		dispc_k3_vid_set_irqenable(dispc, i, mask);
805 		if (mask & DSS_IRQ_PLANE_MASK(i))
806 			main_enable |= BIT(i + 4);	/* VID IRQ */
807 		else
808 			main_disable |= BIT(i + 4);	/* VID IRQ */
809 	}
810 
811 	if (main_enable)
812 		dispc_write(dispc, DISPC_IRQENABLE_SET, main_enable);
813 
814 	if (main_disable)
815 		dispc_write(dispc, DISPC_IRQENABLE_CLR, main_disable);
816 
817 	/* Flush posted writes */
818 	dispc_read(dispc, DISPC_IRQENABLE_SET);
819 }
820 
821 dispc_irq_t dispc_read_and_clear_irqstatus(struct dispc_device *dispc)
822 {
823 	switch (dispc->feat->subrev) {
824 	case DISPC_K2G:
825 		return dispc_k2g_read_and_clear_irqstatus(dispc);
826 	case DISPC_AM625:
827 	case DISPC_AM65X:
828 	case DISPC_J721E:
829 		return dispc_k3_read_and_clear_irqstatus(dispc);
830 	default:
831 		WARN_ON(1);
832 		return 0;
833 	}
834 }
835 
836 void dispc_set_irqenable(struct dispc_device *dispc, dispc_irq_t mask)
837 {
838 	switch (dispc->feat->subrev) {
839 	case DISPC_K2G:
840 		dispc_k2g_set_irqenable(dispc, mask);
841 		break;
842 	case DISPC_AM625:
843 	case DISPC_AM65X:
844 	case DISPC_J721E:
845 		dispc_k3_set_irqenable(dispc, mask);
846 		break;
847 	default:
848 		WARN_ON(1);
849 		break;
850 	}
851 }
852 
853 enum dispc_oldi_mode_reg_val { SPWG_18 = 0, JEIDA_24 = 1, SPWG_24 = 2 };
854 
855 struct dispc_bus_format {
856 	u32 bus_fmt;
857 	u32 data_width;
858 	bool is_oldi_fmt;
859 	enum dispc_oldi_mode_reg_val oldi_mode_reg_val;
860 };
861 
862 static const struct dispc_bus_format dispc_bus_formats[] = {
863 	{ MEDIA_BUS_FMT_RGB444_1X12,		12, false, 0 },
864 	{ MEDIA_BUS_FMT_RGB565_1X16,		16, false, 0 },
865 	{ MEDIA_BUS_FMT_RGB666_1X18,		18, false, 0 },
866 	{ MEDIA_BUS_FMT_RGB888_1X24,		24, false, 0 },
867 	{ MEDIA_BUS_FMT_RGB101010_1X30,		30, false, 0 },
868 	{ MEDIA_BUS_FMT_RGB121212_1X36,		36, false, 0 },
869 	{ MEDIA_BUS_FMT_RGB666_1X7X3_SPWG,	18, true, SPWG_18 },
870 	{ MEDIA_BUS_FMT_RGB888_1X7X4_SPWG,	24, true, SPWG_24 },
871 	{ MEDIA_BUS_FMT_RGB888_1X7X4_JEIDA,	24, true, JEIDA_24 },
872 };
873 
874 static const
875 struct dispc_bus_format *dispc_vp_find_bus_fmt(struct dispc_device *dispc,
876 					       u32 hw_videoport,
877 					       u32 bus_fmt, u32 bus_flags)
878 {
879 	unsigned int i;
880 
881 	for (i = 0; i < ARRAY_SIZE(dispc_bus_formats); ++i) {
882 		if (dispc_bus_formats[i].bus_fmt == bus_fmt)
883 			return &dispc_bus_formats[i];
884 	}
885 
886 	return NULL;
887 }
888 
889 int dispc_vp_bus_check(struct dispc_device *dispc, u32 hw_videoport,
890 		       const struct drm_crtc_state *state)
891 {
892 	const struct tidss_crtc_state *tstate = to_tidss_crtc_state(state);
893 	const struct dispc_bus_format *fmt;
894 
895 	fmt = dispc_vp_find_bus_fmt(dispc, hw_videoport, tstate->bus_format,
896 				    tstate->bus_flags);
897 	if (!fmt) {
898 		dev_dbg(dispc->dev, "%s: Unsupported bus format: %u\n",
899 			__func__, tstate->bus_format);
900 		return -EINVAL;
901 	}
902 
903 	if (dispc->feat->vp_bus_type[hw_videoport] != DISPC_VP_OLDI &&
904 	    fmt->is_oldi_fmt) {
905 		dev_dbg(dispc->dev, "%s: %s is not OLDI-port\n",
906 			__func__, dispc->feat->vp_name[hw_videoport]);
907 		return -EINVAL;
908 	}
909 
910 	return 0;
911 }
912 
913 static void dispc_oldi_tx_power(struct dispc_device *dispc, bool power)
914 {
915 	u32 val = power ? 0 : OLDI_PWRDN_TX;
916 
917 	if (WARN_ON(!dispc->oldi_io_ctrl))
918 		return;
919 
920 	regmap_update_bits(dispc->oldi_io_ctrl, OLDI_DAT0_IO_CTRL,
921 			   OLDI_PWRDN_TX, val);
922 	regmap_update_bits(dispc->oldi_io_ctrl, OLDI_DAT1_IO_CTRL,
923 			   OLDI_PWRDN_TX, val);
924 	regmap_update_bits(dispc->oldi_io_ctrl, OLDI_DAT2_IO_CTRL,
925 			   OLDI_PWRDN_TX, val);
926 	regmap_update_bits(dispc->oldi_io_ctrl, OLDI_DAT3_IO_CTRL,
927 			   OLDI_PWRDN_TX, val);
928 	regmap_update_bits(dispc->oldi_io_ctrl, OLDI_CLK_IO_CTRL,
929 			   OLDI_PWRDN_TX, val);
930 }
931 
932 static void dispc_set_num_datalines(struct dispc_device *dispc,
933 				    u32 hw_videoport, int num_lines)
934 {
935 	int v;
936 
937 	switch (num_lines) {
938 	case 12:
939 		v = 0; break;
940 	case 16:
941 		v = 1; break;
942 	case 18:
943 		v = 2; break;
944 	case 24:
945 		v = 3; break;
946 	case 30:
947 		v = 4; break;
948 	case 36:
949 		v = 5; break;
950 	default:
951 		WARN_ON(1);
952 		v = 3;
953 	}
954 
955 	VP_REG_FLD_MOD(dispc, hw_videoport, DISPC_VP_CONTROL, v, 10, 8);
956 }
957 
958 static void dispc_enable_oldi(struct dispc_device *dispc, u32 hw_videoport,
959 			      const struct dispc_bus_format *fmt)
960 {
961 	u32 oldi_cfg = 0;
962 	u32 oldi_reset_bit = BIT(5 + hw_videoport);
963 	int count = 0;
964 
965 	/*
966 	 * For the moment DUALMODESYNC, MASTERSLAVE, MODE, and SRC
967 	 * bits of DISPC_VP_DSS_OLDI_CFG are set statically to 0.
968 	 */
969 
970 	if (fmt->data_width == 24)
971 		oldi_cfg |= BIT(8); /* MSB */
972 	else if (fmt->data_width != 18)
973 		dev_warn(dispc->dev, "%s: %d port width not supported\n",
974 			 __func__, fmt->data_width);
975 
976 	oldi_cfg |= BIT(7); /* DEPOL */
977 
978 	oldi_cfg = FLD_MOD(oldi_cfg, fmt->oldi_mode_reg_val, 3, 1);
979 
980 	oldi_cfg |= BIT(12); /* SOFTRST */
981 
982 	oldi_cfg |= BIT(0); /* ENABLE */
983 
984 	dispc_vp_write(dispc, hw_videoport, DISPC_VP_DSS_OLDI_CFG, oldi_cfg);
985 
986 	while (!(oldi_reset_bit & dispc_read(dispc, DSS_SYSSTATUS)) &&
987 	       count < 10000)
988 		count++;
989 
990 	if (!(oldi_reset_bit & dispc_read(dispc, DSS_SYSSTATUS)))
991 		dev_warn(dispc->dev, "%s: timeout waiting OLDI reset done\n",
992 			 __func__);
993 }
994 
995 void dispc_vp_prepare(struct dispc_device *dispc, u32 hw_videoport,
996 		      const struct drm_crtc_state *state)
997 {
998 	const struct tidss_crtc_state *tstate = to_tidss_crtc_state(state);
999 	const struct dispc_bus_format *fmt;
1000 
1001 	fmt = dispc_vp_find_bus_fmt(dispc, hw_videoport, tstate->bus_format,
1002 				    tstate->bus_flags);
1003 
1004 	if (WARN_ON(!fmt))
1005 		return;
1006 
1007 	if (dispc->feat->vp_bus_type[hw_videoport] == DISPC_VP_OLDI) {
1008 		dispc_oldi_tx_power(dispc, true);
1009 
1010 		dispc_enable_oldi(dispc, hw_videoport, fmt);
1011 	}
1012 }
1013 
1014 void dispc_vp_enable(struct dispc_device *dispc, u32 hw_videoport,
1015 		     const struct drm_crtc_state *state)
1016 {
1017 	const struct drm_display_mode *mode = &state->adjusted_mode;
1018 	const struct tidss_crtc_state *tstate = to_tidss_crtc_state(state);
1019 	bool align, onoff, rf, ieo, ipc, ihs, ivs;
1020 	const struct dispc_bus_format *fmt;
1021 	u32 hsw, hfp, hbp, vsw, vfp, vbp;
1022 
1023 	fmt = dispc_vp_find_bus_fmt(dispc, hw_videoport, tstate->bus_format,
1024 				    tstate->bus_flags);
1025 
1026 	if (WARN_ON(!fmt))
1027 		return;
1028 
1029 	dispc_set_num_datalines(dispc, hw_videoport, fmt->data_width);
1030 
1031 	hfp = mode->hsync_start - mode->hdisplay;
1032 	hsw = mode->hsync_end - mode->hsync_start;
1033 	hbp = mode->htotal - mode->hsync_end;
1034 
1035 	vfp = mode->vsync_start - mode->vdisplay;
1036 	vsw = mode->vsync_end - mode->vsync_start;
1037 	vbp = mode->vtotal - mode->vsync_end;
1038 
1039 	dispc_vp_write(dispc, hw_videoport, DISPC_VP_TIMING_H,
1040 		       FLD_VAL(hsw - 1, 7, 0) |
1041 		       FLD_VAL(hfp - 1, 19, 8) |
1042 		       FLD_VAL(hbp - 1, 31, 20));
1043 
1044 	dispc_vp_write(dispc, hw_videoport, DISPC_VP_TIMING_V,
1045 		       FLD_VAL(vsw - 1, 7, 0) |
1046 		       FLD_VAL(vfp, 19, 8) |
1047 		       FLD_VAL(vbp, 31, 20));
1048 
1049 	ivs = !!(mode->flags & DRM_MODE_FLAG_NVSYNC);
1050 
1051 	ihs = !!(mode->flags & DRM_MODE_FLAG_NHSYNC);
1052 
1053 	ieo = !!(tstate->bus_flags & DRM_BUS_FLAG_DE_LOW);
1054 
1055 	ipc = !!(tstate->bus_flags & DRM_BUS_FLAG_PIXDATA_DRIVE_NEGEDGE);
1056 
1057 	/* always use the 'rf' setting */
1058 	onoff = true;
1059 
1060 	rf = !!(tstate->bus_flags & DRM_BUS_FLAG_SYNC_DRIVE_POSEDGE);
1061 
1062 	/* always use aligned syncs */
1063 	align = true;
1064 
1065 	/* always use DE_HIGH for OLDI */
1066 	if (dispc->feat->vp_bus_type[hw_videoport] == DISPC_VP_OLDI)
1067 		ieo = false;
1068 
1069 	dispc_vp_write(dispc, hw_videoport, DISPC_VP_POL_FREQ,
1070 		       FLD_VAL(align, 18, 18) |
1071 		       FLD_VAL(onoff, 17, 17) |
1072 		       FLD_VAL(rf, 16, 16) |
1073 		       FLD_VAL(ieo, 15, 15) |
1074 		       FLD_VAL(ipc, 14, 14) |
1075 		       FLD_VAL(ihs, 13, 13) |
1076 		       FLD_VAL(ivs, 12, 12));
1077 
1078 	dispc_vp_write(dispc, hw_videoport, DISPC_VP_SIZE_SCREEN,
1079 		       FLD_VAL(mode->hdisplay - 1, 11, 0) |
1080 		       FLD_VAL(mode->vdisplay - 1, 27, 16));
1081 
1082 	VP_REG_FLD_MOD(dispc, hw_videoport, DISPC_VP_CONTROL, 1, 0, 0);
1083 }
1084 
1085 void dispc_vp_disable(struct dispc_device *dispc, u32 hw_videoport)
1086 {
1087 	VP_REG_FLD_MOD(dispc, hw_videoport, DISPC_VP_CONTROL, 0, 0, 0);
1088 }
1089 
1090 void dispc_vp_unprepare(struct dispc_device *dispc, u32 hw_videoport)
1091 {
1092 	if (dispc->feat->vp_bus_type[hw_videoport] == DISPC_VP_OLDI) {
1093 		dispc_vp_write(dispc, hw_videoport, DISPC_VP_DSS_OLDI_CFG, 0);
1094 
1095 		dispc_oldi_tx_power(dispc, false);
1096 	}
1097 }
1098 
1099 bool dispc_vp_go_busy(struct dispc_device *dispc, u32 hw_videoport)
1100 {
1101 	return VP_REG_GET(dispc, hw_videoport, DISPC_VP_CONTROL, 5, 5);
1102 }
1103 
1104 void dispc_vp_go(struct dispc_device *dispc, u32 hw_videoport)
1105 {
1106 	WARN_ON(VP_REG_GET(dispc, hw_videoport, DISPC_VP_CONTROL, 5, 5));
1107 	VP_REG_FLD_MOD(dispc, hw_videoport, DISPC_VP_CONTROL, 1, 5, 5);
1108 }
1109 
1110 enum c8_to_c12_mode { C8_TO_C12_REPLICATE, C8_TO_C12_MAX, C8_TO_C12_MIN };
1111 
1112 static u16 c8_to_c12(u8 c8, enum c8_to_c12_mode mode)
1113 {
1114 	u16 c12;
1115 
1116 	c12 = c8 << 4;
1117 
1118 	switch (mode) {
1119 	case C8_TO_C12_REPLICATE:
1120 		/* Copy c8 4 MSB to 4 LSB for full scale c12 */
1121 		c12 |= c8 >> 4;
1122 		break;
1123 	case C8_TO_C12_MAX:
1124 		c12 |= 0xF;
1125 		break;
1126 	default:
1127 	case C8_TO_C12_MIN:
1128 		break;
1129 	}
1130 
1131 	return c12;
1132 }
1133 
1134 static u64 argb8888_to_argb12121212(u32 argb8888, enum c8_to_c12_mode m)
1135 {
1136 	u8 a, r, g, b;
1137 	u64 v;
1138 
1139 	a = (argb8888 >> 24) & 0xff;
1140 	r = (argb8888 >> 16) & 0xff;
1141 	g = (argb8888 >> 8) & 0xff;
1142 	b = (argb8888 >> 0) & 0xff;
1143 
1144 	v = ((u64)c8_to_c12(a, m) << 36) | ((u64)c8_to_c12(r, m) << 24) |
1145 		((u64)c8_to_c12(g, m) << 12) | (u64)c8_to_c12(b, m);
1146 
1147 	return v;
1148 }
1149 
1150 static void dispc_vp_set_default_color(struct dispc_device *dispc,
1151 				       u32 hw_videoport, u32 default_color)
1152 {
1153 	u64 v;
1154 
1155 	v = argb8888_to_argb12121212(default_color, C8_TO_C12_REPLICATE);
1156 
1157 	dispc_ovr_write(dispc, hw_videoport,
1158 			DISPC_OVR_DEFAULT_COLOR, v & 0xffffffff);
1159 	dispc_ovr_write(dispc, hw_videoport,
1160 			DISPC_OVR_DEFAULT_COLOR2, (v >> 32) & 0xffff);
1161 }
1162 
1163 enum drm_mode_status dispc_vp_mode_valid(struct dispc_device *dispc,
1164 					 u32 hw_videoport,
1165 					 const struct drm_display_mode *mode)
1166 {
1167 	u32 hsw, hfp, hbp, vsw, vfp, vbp;
1168 	enum dispc_vp_bus_type bus_type;
1169 	int max_pclk;
1170 
1171 	bus_type = dispc->feat->vp_bus_type[hw_videoport];
1172 
1173 	max_pclk = dispc->feat->max_pclk_khz[bus_type];
1174 
1175 	if (WARN_ON(max_pclk == 0))
1176 		return MODE_BAD;
1177 
1178 	if (mode->clock < dispc->feat->min_pclk_khz)
1179 		return MODE_CLOCK_LOW;
1180 
1181 	if (mode->clock > max_pclk)
1182 		return MODE_CLOCK_HIGH;
1183 
1184 	if (mode->hdisplay > 4096)
1185 		return MODE_BAD;
1186 
1187 	if (mode->vdisplay > 4096)
1188 		return MODE_BAD;
1189 
1190 	/* TODO: add interlace support */
1191 	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
1192 		return MODE_NO_INTERLACE;
1193 
1194 	/*
1195 	 * Enforce the output width is divisible by 2. Actually this
1196 	 * is only needed in following cases:
1197 	 * - YUV output selected (BT656, BT1120)
1198 	 * - Dithering enabled
1199 	 * - TDM with TDMCycleFormat == 3
1200 	 * But for simplicity we enforce that always.
1201 	 */
1202 	if ((mode->hdisplay % 2) != 0)
1203 		return MODE_BAD_HVALUE;
1204 
1205 	hfp = mode->hsync_start - mode->hdisplay;
1206 	hsw = mode->hsync_end - mode->hsync_start;
1207 	hbp = mode->htotal - mode->hsync_end;
1208 
1209 	vfp = mode->vsync_start - mode->vdisplay;
1210 	vsw = mode->vsync_end - mode->vsync_start;
1211 	vbp = mode->vtotal - mode->vsync_end;
1212 
1213 	if (hsw < 1 || hsw > 256 ||
1214 	    hfp < 1 || hfp > 4096 ||
1215 	    hbp < 1 || hbp > 4096)
1216 		return MODE_BAD_HVALUE;
1217 
1218 	if (vsw < 1 || vsw > 256 ||
1219 	    vfp > 4095 || vbp > 4095)
1220 		return MODE_BAD_VVALUE;
1221 
1222 	if (dispc->memory_bandwidth_limit) {
1223 		const unsigned int bpp = 4;
1224 		u64 bandwidth;
1225 
1226 		bandwidth = 1000 * mode->clock;
1227 		bandwidth = bandwidth * mode->hdisplay * mode->vdisplay * bpp;
1228 		bandwidth = div_u64(bandwidth, mode->htotal * mode->vtotal);
1229 
1230 		if (dispc->memory_bandwidth_limit < bandwidth)
1231 			return MODE_BAD;
1232 	}
1233 
1234 	return MODE_OK;
1235 }
1236 
1237 int dispc_vp_enable_clk(struct dispc_device *dispc, u32 hw_videoport)
1238 {
1239 	int ret = clk_prepare_enable(dispc->vp_clk[hw_videoport]);
1240 
1241 	if (ret)
1242 		dev_err(dispc->dev, "%s: enabling clk failed: %d\n", __func__,
1243 			ret);
1244 
1245 	return ret;
1246 }
1247 
1248 void dispc_vp_disable_clk(struct dispc_device *dispc, u32 hw_videoport)
1249 {
1250 	clk_disable_unprepare(dispc->vp_clk[hw_videoport]);
1251 }
1252 
1253 /*
1254  * Calculate the percentage difference between the requested pixel clock rate
1255  * and the effective rate resulting from calculating the clock divider value.
1256  */
1257 static
1258 unsigned int dispc_pclk_diff(unsigned long rate, unsigned long real_rate)
1259 {
1260 	int r = rate / 100, rr = real_rate / 100;
1261 
1262 	return (unsigned int)(abs(((rr - r) * 100) / r));
1263 }
1264 
1265 int dispc_vp_set_clk_rate(struct dispc_device *dispc, u32 hw_videoport,
1266 			  unsigned long rate)
1267 {
1268 	int r;
1269 	unsigned long new_rate;
1270 
1271 	r = clk_set_rate(dispc->vp_clk[hw_videoport], rate);
1272 	if (r) {
1273 		dev_err(dispc->dev, "vp%d: failed to set clk rate to %lu\n",
1274 			hw_videoport, rate);
1275 		return r;
1276 	}
1277 
1278 	new_rate = clk_get_rate(dispc->vp_clk[hw_videoport]);
1279 
1280 	if (dispc_pclk_diff(rate, new_rate) > 5)
1281 		dev_warn(dispc->dev,
1282 			 "vp%d: Clock rate %lu differs over 5%% from requested %lu\n",
1283 			 hw_videoport, new_rate, rate);
1284 
1285 	dev_dbg(dispc->dev, "vp%d: new rate %lu Hz (requested %lu Hz)\n",
1286 		hw_videoport, clk_get_rate(dispc->vp_clk[hw_videoport]), rate);
1287 
1288 	return 0;
1289 }
1290 
1291 /* OVR */
1292 static void dispc_k2g_ovr_set_plane(struct dispc_device *dispc,
1293 				    u32 hw_plane, u32 hw_videoport,
1294 				    u32 x, u32 y, u32 layer)
1295 {
1296 	/* On k2g there is only one plane and no need for ovr */
1297 	dispc_vid_write(dispc, hw_plane, DISPC_VID_K2G_POSITION,
1298 			x | (y << 16));
1299 }
1300 
1301 static void dispc_am65x_ovr_set_plane(struct dispc_device *dispc,
1302 				      u32 hw_plane, u32 hw_videoport,
1303 				      u32 x, u32 y, u32 layer)
1304 {
1305 	OVR_REG_FLD_MOD(dispc, hw_videoport, DISPC_OVR_ATTRIBUTES(layer),
1306 			hw_plane, 4, 1);
1307 	OVR_REG_FLD_MOD(dispc, hw_videoport, DISPC_OVR_ATTRIBUTES(layer),
1308 			x, 17, 6);
1309 	OVR_REG_FLD_MOD(dispc, hw_videoport, DISPC_OVR_ATTRIBUTES(layer),
1310 			y, 30, 19);
1311 }
1312 
1313 static void dispc_j721e_ovr_set_plane(struct dispc_device *dispc,
1314 				      u32 hw_plane, u32 hw_videoport,
1315 				      u32 x, u32 y, u32 layer)
1316 {
1317 	OVR_REG_FLD_MOD(dispc, hw_videoport, DISPC_OVR_ATTRIBUTES(layer),
1318 			hw_plane, 4, 1);
1319 	OVR_REG_FLD_MOD(dispc, hw_videoport, DISPC_OVR_ATTRIBUTES2(layer),
1320 			x, 13, 0);
1321 	OVR_REG_FLD_MOD(dispc, hw_videoport, DISPC_OVR_ATTRIBUTES2(layer),
1322 			y, 29, 16);
1323 }
1324 
1325 void dispc_ovr_set_plane(struct dispc_device *dispc, u32 hw_plane,
1326 			 u32 hw_videoport, u32 x, u32 y, u32 layer)
1327 {
1328 	switch (dispc->feat->subrev) {
1329 	case DISPC_K2G:
1330 		dispc_k2g_ovr_set_plane(dispc, hw_plane, hw_videoport,
1331 					x, y, layer);
1332 		break;
1333 	case DISPC_AM625:
1334 	case DISPC_AM65X:
1335 		dispc_am65x_ovr_set_plane(dispc, hw_plane, hw_videoport,
1336 					  x, y, layer);
1337 		break;
1338 	case DISPC_J721E:
1339 		dispc_j721e_ovr_set_plane(dispc, hw_plane, hw_videoport,
1340 					  x, y, layer);
1341 		break;
1342 	default:
1343 		WARN_ON(1);
1344 		break;
1345 	}
1346 }
1347 
1348 void dispc_ovr_enable_layer(struct dispc_device *dispc,
1349 			    u32 hw_videoport, u32 layer, bool enable)
1350 {
1351 	if (dispc->feat->subrev == DISPC_K2G)
1352 		return;
1353 
1354 	OVR_REG_FLD_MOD(dispc, hw_videoport, DISPC_OVR_ATTRIBUTES(layer),
1355 			!!enable, 0, 0);
1356 }
1357 
1358 /* CSC */
1359 enum csc_ctm {
1360 	CSC_RR, CSC_RG, CSC_RB,
1361 	CSC_GR, CSC_GG, CSC_GB,
1362 	CSC_BR, CSC_BG, CSC_BB,
1363 };
1364 
1365 enum csc_yuv2rgb {
1366 	CSC_RY, CSC_RCB, CSC_RCR,
1367 	CSC_GY, CSC_GCB, CSC_GCR,
1368 	CSC_BY, CSC_BCB, CSC_BCR,
1369 };
1370 
1371 enum csc_rgb2yuv {
1372 	CSC_YR,  CSC_YG,  CSC_YB,
1373 	CSC_CBR, CSC_CBG, CSC_CBB,
1374 	CSC_CRR, CSC_CRG, CSC_CRB,
1375 };
1376 
1377 struct dispc_csc_coef {
1378 	void (*to_regval)(const struct dispc_csc_coef *csc, u32 *regval);
1379 	int m[9];
1380 	int preoffset[3];
1381 	int postoffset[3];
1382 	enum { CLIP_LIMITED_RANGE = 0, CLIP_FULL_RANGE = 1, } cliping;
1383 	const char *name;
1384 };
1385 
1386 #define DISPC_CSC_REGVAL_LEN 8
1387 
1388 static
1389 void dispc_csc_offset_regval(const struct dispc_csc_coef *csc, u32 *regval)
1390 {
1391 #define OVAL(x, y) (FLD_VAL(x, 15, 3) | FLD_VAL(y, 31, 19))
1392 	regval[5] = OVAL(csc->preoffset[0], csc->preoffset[1]);
1393 	regval[6] = OVAL(csc->preoffset[2], csc->postoffset[0]);
1394 	regval[7] = OVAL(csc->postoffset[1], csc->postoffset[2]);
1395 #undef OVAL
1396 }
1397 
1398 #define CVAL(x, y) (FLD_VAL(x, 10, 0) | FLD_VAL(y, 26, 16))
1399 static
1400 void dispc_csc_yuv2rgb_regval(const struct dispc_csc_coef *csc, u32 *regval)
1401 {
1402 	regval[0] = CVAL(csc->m[CSC_RY], csc->m[CSC_RCR]);
1403 	regval[1] = CVAL(csc->m[CSC_RCB], csc->m[CSC_GY]);
1404 	regval[2] = CVAL(csc->m[CSC_GCR], csc->m[CSC_GCB]);
1405 	regval[3] = CVAL(csc->m[CSC_BY], csc->m[CSC_BCR]);
1406 	regval[4] = CVAL(csc->m[CSC_BCB], 0);
1407 
1408 	dispc_csc_offset_regval(csc, regval);
1409 }
1410 
1411 __maybe_unused static
1412 void dispc_csc_rgb2yuv_regval(const struct dispc_csc_coef *csc, u32 *regval)
1413 {
1414 	regval[0] = CVAL(csc->m[CSC_YR], csc->m[CSC_YG]);
1415 	regval[1] = CVAL(csc->m[CSC_YB], csc->m[CSC_CRR]);
1416 	regval[2] = CVAL(csc->m[CSC_CRG], csc->m[CSC_CRB]);
1417 	regval[3] = CVAL(csc->m[CSC_CBR], csc->m[CSC_CBG]);
1418 	regval[4] = CVAL(csc->m[CSC_CBB], 0);
1419 
1420 	dispc_csc_offset_regval(csc, regval);
1421 }
1422 
1423 static void dispc_csc_cpr_regval(const struct dispc_csc_coef *csc,
1424 				 u32 *regval)
1425 {
1426 	regval[0] = CVAL(csc->m[CSC_RR], csc->m[CSC_RG]);
1427 	regval[1] = CVAL(csc->m[CSC_RB], csc->m[CSC_GR]);
1428 	regval[2] = CVAL(csc->m[CSC_GG], csc->m[CSC_GB]);
1429 	regval[3] = CVAL(csc->m[CSC_BR], csc->m[CSC_BG]);
1430 	regval[4] = CVAL(csc->m[CSC_BB], 0);
1431 
1432 	dispc_csc_offset_regval(csc, regval);
1433 }
1434 
1435 #undef CVAL
1436 
1437 static void dispc_k2g_vid_write_csc(struct dispc_device *dispc, u32 hw_plane,
1438 				    const struct dispc_csc_coef *csc)
1439 {
1440 	static const u16 dispc_vid_csc_coef_reg[] = {
1441 		DISPC_VID_CSC_COEF(0), DISPC_VID_CSC_COEF(1),
1442 		DISPC_VID_CSC_COEF(2), DISPC_VID_CSC_COEF(3),
1443 		DISPC_VID_CSC_COEF(4), DISPC_VID_CSC_COEF(5),
1444 		DISPC_VID_CSC_COEF(6), /* K2G has no post offset support */
1445 	};
1446 	u32 regval[DISPC_CSC_REGVAL_LEN];
1447 	unsigned int i;
1448 
1449 	csc->to_regval(csc, regval);
1450 
1451 	if (regval[7] != 0)
1452 		dev_warn(dispc->dev, "%s: No post offset support for %s\n",
1453 			 __func__, csc->name);
1454 
1455 	for (i = 0; i < ARRAY_SIZE(dispc_vid_csc_coef_reg); i++)
1456 		dispc_vid_write(dispc, hw_plane, dispc_vid_csc_coef_reg[i],
1457 				regval[i]);
1458 }
1459 
1460 static void dispc_k3_vid_write_csc(struct dispc_device *dispc, u32 hw_plane,
1461 				   const struct dispc_csc_coef *csc)
1462 {
1463 	static const u16 dispc_vid_csc_coef_reg[DISPC_CSC_REGVAL_LEN] = {
1464 		DISPC_VID_CSC_COEF(0), DISPC_VID_CSC_COEF(1),
1465 		DISPC_VID_CSC_COEF(2), DISPC_VID_CSC_COEF(3),
1466 		DISPC_VID_CSC_COEF(4), DISPC_VID_CSC_COEF(5),
1467 		DISPC_VID_CSC_COEF(6), DISPC_VID_CSC_COEF7,
1468 	};
1469 	u32 regval[DISPC_CSC_REGVAL_LEN];
1470 	unsigned int i;
1471 
1472 	csc->to_regval(csc, regval);
1473 
1474 	for (i = 0; i < ARRAY_SIZE(dispc_vid_csc_coef_reg); i++)
1475 		dispc_vid_write(dispc, hw_plane, dispc_vid_csc_coef_reg[i],
1476 				regval[i]);
1477 }
1478 
1479 /* YUV -> RGB, ITU-R BT.601, full range */
1480 static const struct dispc_csc_coef csc_yuv2rgb_bt601_full = {
1481 	dispc_csc_yuv2rgb_regval,
1482 	{ 256,   0,  358,	/* ry, rcb, rcr |1.000  0.000  1.402|*/
1483 	  256, -88, -182,	/* gy, gcb, gcr |1.000 -0.344 -0.714|*/
1484 	  256, 452,    0, },	/* by, bcb, bcr |1.000  1.772  0.000|*/
1485 	{    0, -2048, -2048, },	/* full range */
1486 	{    0,     0,     0, },
1487 	CLIP_FULL_RANGE,
1488 	"BT.601 Full",
1489 };
1490 
1491 /* YUV -> RGB, ITU-R BT.601, limited range */
1492 static const struct dispc_csc_coef csc_yuv2rgb_bt601_lim = {
1493 	dispc_csc_yuv2rgb_regval,
1494 	{ 298,    0,  409,	/* ry, rcb, rcr |1.164  0.000  1.596|*/
1495 	  298, -100, -208,	/* gy, gcb, gcr |1.164 -0.392 -0.813|*/
1496 	  298,  516,    0, },	/* by, bcb, bcr |1.164  2.017  0.000|*/
1497 	{ -256, -2048, -2048, },	/* limited range */
1498 	{    0,     0,     0, },
1499 	CLIP_FULL_RANGE,
1500 	"BT.601 Limited",
1501 };
1502 
1503 /* YUV -> RGB, ITU-R BT.709, full range */
1504 static const struct dispc_csc_coef csc_yuv2rgb_bt709_full = {
1505 	dispc_csc_yuv2rgb_regval,
1506 	{ 256,	  0,  402,	/* ry, rcb, rcr |1.000	0.000  1.570|*/
1507 	  256,  -48, -120,	/* gy, gcb, gcr |1.000 -0.187 -0.467|*/
1508 	  256,  475,    0, },	/* by, bcb, bcr |1.000	1.856  0.000|*/
1509 	{    0, -2048, -2048, },	/* full range */
1510 	{    0,     0,     0, },
1511 	CLIP_FULL_RANGE,
1512 	"BT.709 Full",
1513 };
1514 
1515 /* YUV -> RGB, ITU-R BT.709, limited range */
1516 static const struct dispc_csc_coef csc_yuv2rgb_bt709_lim = {
1517 	dispc_csc_yuv2rgb_regval,
1518 	{ 298,    0,  459,	/* ry, rcb, rcr |1.164  0.000  1.793|*/
1519 	  298,  -55, -136,	/* gy, gcb, gcr |1.164 -0.213 -0.533|*/
1520 	  298,  541,    0, },	/* by, bcb, bcr |1.164  2.112  0.000|*/
1521 	{ -256, -2048, -2048, },	/* limited range */
1522 	{    0,     0,     0, },
1523 	CLIP_FULL_RANGE,
1524 	"BT.709 Limited",
1525 };
1526 
1527 static const struct {
1528 	enum drm_color_encoding encoding;
1529 	enum drm_color_range range;
1530 	const struct dispc_csc_coef *csc;
1531 } dispc_csc_table[] = {
1532 	{ DRM_COLOR_YCBCR_BT601, DRM_COLOR_YCBCR_FULL_RANGE,
1533 	  &csc_yuv2rgb_bt601_full, },
1534 	{ DRM_COLOR_YCBCR_BT601, DRM_COLOR_YCBCR_LIMITED_RANGE,
1535 	  &csc_yuv2rgb_bt601_lim, },
1536 	{ DRM_COLOR_YCBCR_BT709, DRM_COLOR_YCBCR_FULL_RANGE,
1537 	  &csc_yuv2rgb_bt709_full, },
1538 	{ DRM_COLOR_YCBCR_BT709, DRM_COLOR_YCBCR_LIMITED_RANGE,
1539 	  &csc_yuv2rgb_bt709_lim, },
1540 };
1541 
1542 static const
1543 struct dispc_csc_coef *dispc_find_csc(enum drm_color_encoding encoding,
1544 				      enum drm_color_range range)
1545 {
1546 	unsigned int i;
1547 
1548 	for (i = 0; i < ARRAY_SIZE(dispc_csc_table); i++) {
1549 		if (dispc_csc_table[i].encoding == encoding &&
1550 		    dispc_csc_table[i].range == range) {
1551 			return dispc_csc_table[i].csc;
1552 		}
1553 	}
1554 	return NULL;
1555 }
1556 
1557 static void dispc_vid_csc_setup(struct dispc_device *dispc, u32 hw_plane,
1558 				const struct drm_plane_state *state)
1559 {
1560 	const struct dispc_csc_coef *coef;
1561 
1562 	coef = dispc_find_csc(state->color_encoding, state->color_range);
1563 	if (!coef) {
1564 		dev_err(dispc->dev, "%s: CSC (%u,%u) not found\n",
1565 			__func__, state->color_encoding, state->color_range);
1566 		return;
1567 	}
1568 
1569 	if (dispc->feat->subrev == DISPC_K2G)
1570 		dispc_k2g_vid_write_csc(dispc, hw_plane, coef);
1571 	else
1572 		dispc_k3_vid_write_csc(dispc, hw_plane, coef);
1573 }
1574 
1575 static void dispc_vid_csc_enable(struct dispc_device *dispc, u32 hw_plane,
1576 				 bool enable)
1577 {
1578 	VID_REG_FLD_MOD(dispc, hw_plane, DISPC_VID_ATTRIBUTES, !!enable, 9, 9);
1579 }
1580 
1581 /* SCALER */
1582 
1583 static u32 dispc_calc_fir_inc(u32 in, u32 out)
1584 {
1585 	return (u32)div_u64(0x200000ull * in, out);
1586 }
1587 
1588 enum dispc_vid_fir_coef_set {
1589 	DISPC_VID_FIR_COEF_HORIZ,
1590 	DISPC_VID_FIR_COEF_HORIZ_UV,
1591 	DISPC_VID_FIR_COEF_VERT,
1592 	DISPC_VID_FIR_COEF_VERT_UV,
1593 };
1594 
1595 static void dispc_vid_write_fir_coefs(struct dispc_device *dispc,
1596 				      u32 hw_plane,
1597 				      enum dispc_vid_fir_coef_set coef_set,
1598 				      const struct tidss_scale_coefs *coefs)
1599 {
1600 	static const u16 c0_regs[] = {
1601 		[DISPC_VID_FIR_COEF_HORIZ] = DISPC_VID_FIR_COEFS_H0,
1602 		[DISPC_VID_FIR_COEF_HORIZ_UV] = DISPC_VID_FIR_COEFS_H0_C,
1603 		[DISPC_VID_FIR_COEF_VERT] = DISPC_VID_FIR_COEFS_V0,
1604 		[DISPC_VID_FIR_COEF_VERT_UV] = DISPC_VID_FIR_COEFS_V0_C,
1605 	};
1606 
1607 	static const u16 c12_regs[] = {
1608 		[DISPC_VID_FIR_COEF_HORIZ] = DISPC_VID_FIR_COEFS_H12,
1609 		[DISPC_VID_FIR_COEF_HORIZ_UV] = DISPC_VID_FIR_COEFS_H12_C,
1610 		[DISPC_VID_FIR_COEF_VERT] = DISPC_VID_FIR_COEFS_V12,
1611 		[DISPC_VID_FIR_COEF_VERT_UV] = DISPC_VID_FIR_COEFS_V12_C,
1612 	};
1613 
1614 	const u16 c0_base = c0_regs[coef_set];
1615 	const u16 c12_base = c12_regs[coef_set];
1616 	int phase;
1617 
1618 	if (!coefs) {
1619 		dev_err(dispc->dev, "%s: No coefficients given.\n", __func__);
1620 		return;
1621 	}
1622 
1623 	for (phase = 0; phase <= 8; ++phase) {
1624 		u16 reg = c0_base + phase * 4;
1625 		u16 c0 = coefs->c0[phase];
1626 
1627 		dispc_vid_write(dispc, hw_plane, reg, c0);
1628 	}
1629 
1630 	for (phase = 0; phase <= 15; ++phase) {
1631 		u16 reg = c12_base + phase * 4;
1632 		s16 c1, c2;
1633 		u32 c12;
1634 
1635 		c1 = coefs->c1[phase];
1636 		c2 = coefs->c2[phase];
1637 		c12 = FLD_VAL(c1, 19, 10) | FLD_VAL(c2, 29, 20);
1638 
1639 		dispc_vid_write(dispc, hw_plane, reg, c12);
1640 	}
1641 }
1642 
1643 static bool dispc_fourcc_is_yuv(u32 fourcc)
1644 {
1645 	switch (fourcc) {
1646 	case DRM_FORMAT_YUYV:
1647 	case DRM_FORMAT_UYVY:
1648 	case DRM_FORMAT_NV12:
1649 		return true;
1650 	default:
1651 		return false;
1652 	}
1653 }
1654 
1655 struct dispc_scaling_params {
1656 	int xinc, yinc;
1657 	u32 in_w, in_h, in_w_uv, in_h_uv;
1658 	u32 fir_xinc, fir_yinc, fir_xinc_uv, fir_yinc_uv;
1659 	bool scale_x, scale_y;
1660 	const struct tidss_scale_coefs *xcoef, *ycoef, *xcoef_uv, *ycoef_uv;
1661 	bool five_taps;
1662 };
1663 
1664 static int dispc_vid_calc_scaling(struct dispc_device *dispc,
1665 				  const struct drm_plane_state *state,
1666 				  struct dispc_scaling_params *sp,
1667 				  bool lite_plane)
1668 {
1669 	const struct dispc_features_scaling *f = &dispc->feat->scaling;
1670 	u32 fourcc = state->fb->format->format;
1671 	u32 in_width_max_5tap = f->in_width_max_5tap_rgb;
1672 	u32 in_width_max_3tap = f->in_width_max_3tap_rgb;
1673 	u32 downscale_limit;
1674 	u32 in_width_max;
1675 
1676 	memset(sp, 0, sizeof(*sp));
1677 	sp->xinc = 1;
1678 	sp->yinc = 1;
1679 	sp->in_w = state->src_w >> 16;
1680 	sp->in_w_uv = sp->in_w;
1681 	sp->in_h = state->src_h >> 16;
1682 	sp->in_h_uv = sp->in_h;
1683 
1684 	sp->scale_x = sp->in_w != state->crtc_w;
1685 	sp->scale_y = sp->in_h != state->crtc_h;
1686 
1687 	if (dispc_fourcc_is_yuv(fourcc)) {
1688 		in_width_max_5tap = f->in_width_max_5tap_yuv;
1689 		in_width_max_3tap = f->in_width_max_3tap_yuv;
1690 
1691 		sp->in_w_uv >>= 1;
1692 		sp->scale_x = true;
1693 
1694 		if (fourcc == DRM_FORMAT_NV12) {
1695 			sp->in_h_uv >>= 1;
1696 			sp->scale_y = true;
1697 		}
1698 	}
1699 
1700 	/* Skip the rest if no scaling is used */
1701 	if ((!sp->scale_x && !sp->scale_y) || lite_plane)
1702 		return 0;
1703 
1704 	if (sp->in_w > in_width_max_5tap) {
1705 		sp->five_taps = false;
1706 		in_width_max = in_width_max_3tap;
1707 		downscale_limit = f->downscale_limit_3tap;
1708 	} else {
1709 		sp->five_taps = true;
1710 		in_width_max = in_width_max_5tap;
1711 		downscale_limit = f->downscale_limit_5tap;
1712 	}
1713 
1714 	if (sp->scale_x) {
1715 		sp->fir_xinc = dispc_calc_fir_inc(sp->in_w, state->crtc_w);
1716 
1717 		if (sp->fir_xinc < dispc_calc_fir_inc(1, f->upscale_limit)) {
1718 			dev_dbg(dispc->dev,
1719 				"%s: X-scaling factor %u/%u > %u\n",
1720 				__func__, state->crtc_w, state->src_w >> 16,
1721 				f->upscale_limit);
1722 			return -EINVAL;
1723 		}
1724 
1725 		if (sp->fir_xinc >= dispc_calc_fir_inc(downscale_limit, 1)) {
1726 			sp->xinc = DIV_ROUND_UP(DIV_ROUND_UP(sp->in_w,
1727 							     state->crtc_w),
1728 						downscale_limit);
1729 
1730 			if (sp->xinc > f->xinc_max) {
1731 				dev_dbg(dispc->dev,
1732 					"%s: X-scaling factor %u/%u < 1/%u\n",
1733 					__func__, state->crtc_w,
1734 					state->src_w >> 16,
1735 					downscale_limit * f->xinc_max);
1736 				return -EINVAL;
1737 			}
1738 
1739 			sp->in_w = (state->src_w >> 16) / sp->xinc;
1740 		}
1741 
1742 		while (sp->in_w > in_width_max) {
1743 			sp->xinc++;
1744 			sp->in_w = (state->src_w >> 16) / sp->xinc;
1745 		}
1746 
1747 		if (sp->xinc > f->xinc_max) {
1748 			dev_dbg(dispc->dev,
1749 				"%s: Too wide input buffer %u > %u\n", __func__,
1750 				state->src_w >> 16, in_width_max * f->xinc_max);
1751 			return -EINVAL;
1752 		}
1753 
1754 		/*
1755 		 * We need even line length for YUV formats. Decimation
1756 		 * can lead to odd length, so we need to make it even
1757 		 * again.
1758 		 */
1759 		if (dispc_fourcc_is_yuv(fourcc))
1760 			sp->in_w &= ~1;
1761 
1762 		sp->fir_xinc = dispc_calc_fir_inc(sp->in_w, state->crtc_w);
1763 	}
1764 
1765 	if (sp->scale_y) {
1766 		sp->fir_yinc = dispc_calc_fir_inc(sp->in_h, state->crtc_h);
1767 
1768 		if (sp->fir_yinc < dispc_calc_fir_inc(1, f->upscale_limit)) {
1769 			dev_dbg(dispc->dev,
1770 				"%s: Y-scaling factor %u/%u > %u\n",
1771 				__func__, state->crtc_h, state->src_h >> 16,
1772 				f->upscale_limit);
1773 			return -EINVAL;
1774 		}
1775 
1776 		if (sp->fir_yinc >= dispc_calc_fir_inc(downscale_limit, 1)) {
1777 			sp->yinc = DIV_ROUND_UP(DIV_ROUND_UP(sp->in_h,
1778 							     state->crtc_h),
1779 						downscale_limit);
1780 
1781 			sp->in_h /= sp->yinc;
1782 			sp->fir_yinc = dispc_calc_fir_inc(sp->in_h,
1783 							  state->crtc_h);
1784 		}
1785 	}
1786 
1787 	dev_dbg(dispc->dev,
1788 		"%s: %ux%u decim %ux%u -> %ux%u firinc %u.%03ux%u.%03u taps %u -> %ux%u\n",
1789 		__func__, state->src_w >> 16, state->src_h >> 16,
1790 		sp->xinc, sp->yinc, sp->in_w, sp->in_h,
1791 		sp->fir_xinc / 0x200000u,
1792 		((sp->fir_xinc & 0x1FFFFFu) * 999u) / 0x1FFFFFu,
1793 		sp->fir_yinc / 0x200000u,
1794 		((sp->fir_yinc & 0x1FFFFFu) * 999u) / 0x1FFFFFu,
1795 		sp->five_taps ? 5 : 3,
1796 		state->crtc_w, state->crtc_h);
1797 
1798 	if (dispc_fourcc_is_yuv(fourcc)) {
1799 		if (sp->scale_x) {
1800 			sp->in_w_uv /= sp->xinc;
1801 			sp->fir_xinc_uv = dispc_calc_fir_inc(sp->in_w_uv,
1802 							     state->crtc_w);
1803 			sp->xcoef_uv = tidss_get_scale_coefs(dispc->dev,
1804 							     sp->fir_xinc_uv,
1805 							     true);
1806 		}
1807 		if (sp->scale_y) {
1808 			sp->in_h_uv /= sp->yinc;
1809 			sp->fir_yinc_uv = dispc_calc_fir_inc(sp->in_h_uv,
1810 							     state->crtc_h);
1811 			sp->ycoef_uv = tidss_get_scale_coefs(dispc->dev,
1812 							     sp->fir_yinc_uv,
1813 							     sp->five_taps);
1814 		}
1815 	}
1816 
1817 	if (sp->scale_x)
1818 		sp->xcoef = tidss_get_scale_coefs(dispc->dev, sp->fir_xinc,
1819 						  true);
1820 
1821 	if (sp->scale_y)
1822 		sp->ycoef = tidss_get_scale_coefs(dispc->dev, sp->fir_yinc,
1823 						  sp->five_taps);
1824 
1825 	return 0;
1826 }
1827 
1828 static void dispc_vid_set_scaling(struct dispc_device *dispc,
1829 				  u32 hw_plane,
1830 				  struct dispc_scaling_params *sp,
1831 				  u32 fourcc)
1832 {
1833 	/* HORIZONTAL RESIZE ENABLE */
1834 	VID_REG_FLD_MOD(dispc, hw_plane, DISPC_VID_ATTRIBUTES,
1835 			sp->scale_x, 7, 7);
1836 
1837 	/* VERTICAL RESIZE ENABLE */
1838 	VID_REG_FLD_MOD(dispc, hw_plane, DISPC_VID_ATTRIBUTES,
1839 			sp->scale_y, 8, 8);
1840 
1841 	/* Skip the rest if no scaling is used */
1842 	if (!sp->scale_x && !sp->scale_y)
1843 		return;
1844 
1845 	/* VERTICAL 5-TAPS  */
1846 	VID_REG_FLD_MOD(dispc, hw_plane, DISPC_VID_ATTRIBUTES,
1847 			sp->five_taps, 21, 21);
1848 
1849 	if (dispc_fourcc_is_yuv(fourcc)) {
1850 		if (sp->scale_x) {
1851 			dispc_vid_write(dispc, hw_plane, DISPC_VID_FIRH2,
1852 					sp->fir_xinc_uv);
1853 			dispc_vid_write_fir_coefs(dispc, hw_plane,
1854 						  DISPC_VID_FIR_COEF_HORIZ_UV,
1855 						  sp->xcoef_uv);
1856 		}
1857 		if (sp->scale_y) {
1858 			dispc_vid_write(dispc, hw_plane, DISPC_VID_FIRV2,
1859 					sp->fir_yinc_uv);
1860 			dispc_vid_write_fir_coefs(dispc, hw_plane,
1861 						  DISPC_VID_FIR_COEF_VERT_UV,
1862 						  sp->ycoef_uv);
1863 		}
1864 	}
1865 
1866 	if (sp->scale_x) {
1867 		dispc_vid_write(dispc, hw_plane, DISPC_VID_FIRH, sp->fir_xinc);
1868 		dispc_vid_write_fir_coefs(dispc, hw_plane,
1869 					  DISPC_VID_FIR_COEF_HORIZ,
1870 					  sp->xcoef);
1871 	}
1872 
1873 	if (sp->scale_y) {
1874 		dispc_vid_write(dispc, hw_plane, DISPC_VID_FIRV, sp->fir_yinc);
1875 		dispc_vid_write_fir_coefs(dispc, hw_plane,
1876 					  DISPC_VID_FIR_COEF_VERT, sp->ycoef);
1877 	}
1878 }
1879 
1880 /* OTHER */
1881 
1882 static const struct {
1883 	u32 fourcc;
1884 	u8 dss_code;
1885 } dispc_color_formats[] = {
1886 	{ DRM_FORMAT_ARGB4444, 0x0, },
1887 	{ DRM_FORMAT_ABGR4444, 0x1, },
1888 	{ DRM_FORMAT_RGBA4444, 0x2, },
1889 
1890 	{ DRM_FORMAT_RGB565, 0x3, },
1891 	{ DRM_FORMAT_BGR565, 0x4, },
1892 
1893 	{ DRM_FORMAT_ARGB1555, 0x5, },
1894 	{ DRM_FORMAT_ABGR1555, 0x6, },
1895 
1896 	{ DRM_FORMAT_ARGB8888, 0x7, },
1897 	{ DRM_FORMAT_ABGR8888, 0x8, },
1898 	{ DRM_FORMAT_RGBA8888, 0x9, },
1899 	{ DRM_FORMAT_BGRA8888, 0xa, },
1900 
1901 	{ DRM_FORMAT_RGB888, 0xb, },
1902 	{ DRM_FORMAT_BGR888, 0xc, },
1903 
1904 	{ DRM_FORMAT_ARGB2101010, 0xe, },
1905 	{ DRM_FORMAT_ABGR2101010, 0xf, },
1906 
1907 	{ DRM_FORMAT_XRGB4444, 0x20, },
1908 	{ DRM_FORMAT_XBGR4444, 0x21, },
1909 	{ DRM_FORMAT_RGBX4444, 0x22, },
1910 
1911 	{ DRM_FORMAT_XRGB1555, 0x25, },
1912 	{ DRM_FORMAT_XBGR1555, 0x26, },
1913 
1914 	{ DRM_FORMAT_XRGB8888, 0x27, },
1915 	{ DRM_FORMAT_XBGR8888, 0x28, },
1916 	{ DRM_FORMAT_RGBX8888, 0x29, },
1917 	{ DRM_FORMAT_BGRX8888, 0x2a, },
1918 
1919 	{ DRM_FORMAT_XRGB2101010, 0x2e, },
1920 	{ DRM_FORMAT_XBGR2101010, 0x2f, },
1921 
1922 	{ DRM_FORMAT_YUYV, 0x3e, },
1923 	{ DRM_FORMAT_UYVY, 0x3f, },
1924 
1925 	{ DRM_FORMAT_NV12, 0x3d, },
1926 };
1927 
1928 static void dispc_plane_set_pixel_format(struct dispc_device *dispc,
1929 					 u32 hw_plane, u32 fourcc)
1930 {
1931 	unsigned int i;
1932 
1933 	for (i = 0; i < ARRAY_SIZE(dispc_color_formats); ++i) {
1934 		if (dispc_color_formats[i].fourcc == fourcc) {
1935 			VID_REG_FLD_MOD(dispc, hw_plane, DISPC_VID_ATTRIBUTES,
1936 					dispc_color_formats[i].dss_code,
1937 					6, 1);
1938 			return;
1939 		}
1940 	}
1941 
1942 	WARN_ON(1);
1943 }
1944 
1945 const u32 *dispc_plane_formats(struct dispc_device *dispc, unsigned int *len)
1946 {
1947 	WARN_ON(!dispc->fourccs);
1948 
1949 	*len = dispc->num_fourccs;
1950 
1951 	return dispc->fourccs;
1952 }
1953 
1954 static s32 pixinc(int pixels, u8 ps)
1955 {
1956 	if (pixels == 1)
1957 		return 1;
1958 	else if (pixels > 1)
1959 		return 1 + (pixels - 1) * ps;
1960 	else if (pixels < 0)
1961 		return 1 - (-pixels + 1) * ps;
1962 
1963 	WARN_ON(1);
1964 	return 0;
1965 }
1966 
1967 int dispc_plane_check(struct dispc_device *dispc, u32 hw_plane,
1968 		      const struct drm_plane_state *state,
1969 		      u32 hw_videoport)
1970 {
1971 	bool lite = dispc->feat->vid_lite[hw_plane];
1972 	u32 fourcc = state->fb->format->format;
1973 	bool need_scaling = state->src_w >> 16 != state->crtc_w ||
1974 		state->src_h >> 16 != state->crtc_h;
1975 	struct dispc_scaling_params scaling;
1976 	int ret;
1977 
1978 	if (dispc_fourcc_is_yuv(fourcc)) {
1979 		if (!dispc_find_csc(state->color_encoding,
1980 				    state->color_range)) {
1981 			dev_dbg(dispc->dev,
1982 				"%s: Unsupported CSC (%u,%u) for HW plane %u\n",
1983 				__func__, state->color_encoding,
1984 				state->color_range, hw_plane);
1985 			return -EINVAL;
1986 		}
1987 	}
1988 
1989 	if (need_scaling) {
1990 		if (lite) {
1991 			dev_dbg(dispc->dev,
1992 				"%s: Lite plane %u can't scale %ux%u!=%ux%u\n",
1993 				__func__, hw_plane,
1994 				state->src_w >> 16, state->src_h >> 16,
1995 				state->crtc_w, state->crtc_h);
1996 			return -EINVAL;
1997 		}
1998 		ret = dispc_vid_calc_scaling(dispc, state, &scaling, false);
1999 		if (ret)
2000 			return ret;
2001 	}
2002 
2003 	return 0;
2004 }
2005 
2006 static
2007 dma_addr_t dispc_plane_state_dma_addr(const struct drm_plane_state *state)
2008 {
2009 	struct drm_framebuffer *fb = state->fb;
2010 	struct drm_gem_dma_object *gem;
2011 	u32 x = state->src_x >> 16;
2012 	u32 y = state->src_y >> 16;
2013 
2014 	gem = drm_fb_dma_get_gem_obj(state->fb, 0);
2015 
2016 	return gem->dma_addr + fb->offsets[0] + x * fb->format->cpp[0] +
2017 		y * fb->pitches[0];
2018 }
2019 
2020 static
2021 dma_addr_t dispc_plane_state_p_uv_addr(const struct drm_plane_state *state)
2022 {
2023 	struct drm_framebuffer *fb = state->fb;
2024 	struct drm_gem_dma_object *gem;
2025 	u32 x = state->src_x >> 16;
2026 	u32 y = state->src_y >> 16;
2027 
2028 	if (WARN_ON(state->fb->format->num_planes != 2))
2029 		return 0;
2030 
2031 	gem = drm_fb_dma_get_gem_obj(fb, 1);
2032 
2033 	return gem->dma_addr + fb->offsets[1] +
2034 		(x * fb->format->cpp[1] / fb->format->hsub) +
2035 		(y * fb->pitches[1] / fb->format->vsub);
2036 }
2037 
2038 void dispc_plane_setup(struct dispc_device *dispc, u32 hw_plane,
2039 		       const struct drm_plane_state *state,
2040 		       u32 hw_videoport)
2041 {
2042 	bool lite = dispc->feat->vid_lite[hw_plane];
2043 	u32 fourcc = state->fb->format->format;
2044 	u16 cpp = state->fb->format->cpp[0];
2045 	u32 fb_width = state->fb->pitches[0] / cpp;
2046 	dma_addr_t dma_addr = dispc_plane_state_dma_addr(state);
2047 	struct dispc_scaling_params scale;
2048 
2049 	dispc_vid_calc_scaling(dispc, state, &scale, lite);
2050 
2051 	dispc_plane_set_pixel_format(dispc, hw_plane, fourcc);
2052 
2053 	dispc_vid_write(dispc, hw_plane, DISPC_VID_BA_0, dma_addr & 0xffffffff);
2054 	dispc_vid_write(dispc, hw_plane, DISPC_VID_BA_EXT_0, (u64)dma_addr >> 32);
2055 	dispc_vid_write(dispc, hw_plane, DISPC_VID_BA_1, dma_addr & 0xffffffff);
2056 	dispc_vid_write(dispc, hw_plane, DISPC_VID_BA_EXT_1, (u64)dma_addr >> 32);
2057 
2058 	dispc_vid_write(dispc, hw_plane, DISPC_VID_PICTURE_SIZE,
2059 			(scale.in_w - 1) | ((scale.in_h - 1) << 16));
2060 
2061 	/* For YUV422 format we use the macropixel size for pixel inc */
2062 	if (fourcc == DRM_FORMAT_YUYV || fourcc == DRM_FORMAT_UYVY)
2063 		dispc_vid_write(dispc, hw_plane, DISPC_VID_PIXEL_INC,
2064 				pixinc(scale.xinc, cpp * 2));
2065 	else
2066 		dispc_vid_write(dispc, hw_plane, DISPC_VID_PIXEL_INC,
2067 				pixinc(scale.xinc, cpp));
2068 
2069 	dispc_vid_write(dispc, hw_plane, DISPC_VID_ROW_INC,
2070 			pixinc(1 + (scale.yinc * fb_width -
2071 				    scale.xinc * scale.in_w),
2072 			       cpp));
2073 
2074 	if (state->fb->format->num_planes == 2) {
2075 		u16 cpp_uv = state->fb->format->cpp[1];
2076 		u32 fb_width_uv = state->fb->pitches[1] / cpp_uv;
2077 		dma_addr_t p_uv_addr = dispc_plane_state_p_uv_addr(state);
2078 
2079 		dispc_vid_write(dispc, hw_plane,
2080 				DISPC_VID_BA_UV_0, p_uv_addr & 0xffffffff);
2081 		dispc_vid_write(dispc, hw_plane,
2082 				DISPC_VID_BA_UV_EXT_0, (u64)p_uv_addr >> 32);
2083 		dispc_vid_write(dispc, hw_plane,
2084 				DISPC_VID_BA_UV_1, p_uv_addr & 0xffffffff);
2085 		dispc_vid_write(dispc, hw_plane,
2086 				DISPC_VID_BA_UV_EXT_1, (u64)p_uv_addr >> 32);
2087 
2088 		dispc_vid_write(dispc, hw_plane, DISPC_VID_ROW_INC_UV,
2089 				pixinc(1 + (scale.yinc * fb_width_uv -
2090 					    scale.xinc * scale.in_w_uv),
2091 				       cpp_uv));
2092 	}
2093 
2094 	if (!lite) {
2095 		dispc_vid_write(dispc, hw_plane, DISPC_VID_SIZE,
2096 				(state->crtc_w - 1) |
2097 				((state->crtc_h - 1) << 16));
2098 
2099 		dispc_vid_set_scaling(dispc, hw_plane, &scale, fourcc);
2100 	}
2101 
2102 	/* enable YUV->RGB color conversion */
2103 	if (dispc_fourcc_is_yuv(fourcc)) {
2104 		dispc_vid_csc_setup(dispc, hw_plane, state);
2105 		dispc_vid_csc_enable(dispc, hw_plane, true);
2106 	} else {
2107 		dispc_vid_csc_enable(dispc, hw_plane, false);
2108 	}
2109 
2110 	dispc_vid_write(dispc, hw_plane, DISPC_VID_GLOBAL_ALPHA,
2111 			0xFF & (state->alpha >> 8));
2112 
2113 	if (state->pixel_blend_mode == DRM_MODE_BLEND_PREMULTI)
2114 		VID_REG_FLD_MOD(dispc, hw_plane, DISPC_VID_ATTRIBUTES, 1,
2115 				28, 28);
2116 	else
2117 		VID_REG_FLD_MOD(dispc, hw_plane, DISPC_VID_ATTRIBUTES, 0,
2118 				28, 28);
2119 }
2120 
2121 void dispc_plane_enable(struct dispc_device *dispc, u32 hw_plane, bool enable)
2122 {
2123 	VID_REG_FLD_MOD(dispc, hw_plane, DISPC_VID_ATTRIBUTES, !!enable, 0, 0);
2124 }
2125 
2126 static u32 dispc_vid_get_fifo_size(struct dispc_device *dispc, u32 hw_plane)
2127 {
2128 	return VID_REG_GET(dispc, hw_plane, DISPC_VID_BUF_SIZE_STATUS, 15, 0);
2129 }
2130 
2131 static void dispc_vid_set_mflag_threshold(struct dispc_device *dispc,
2132 					  u32 hw_plane, u32 low, u32 high)
2133 {
2134 	dispc_vid_write(dispc, hw_plane, DISPC_VID_MFLAG_THRESHOLD,
2135 			FLD_VAL(high, 31, 16) | FLD_VAL(low, 15, 0));
2136 }
2137 
2138 static void dispc_vid_set_buf_threshold(struct dispc_device *dispc,
2139 					u32 hw_plane, u32 low, u32 high)
2140 {
2141 	dispc_vid_write(dispc, hw_plane, DISPC_VID_BUF_THRESHOLD,
2142 			FLD_VAL(high, 31, 16) | FLD_VAL(low, 15, 0));
2143 }
2144 
2145 static void dispc_k2g_plane_init(struct dispc_device *dispc)
2146 {
2147 	unsigned int hw_plane;
2148 
2149 	dev_dbg(dispc->dev, "%s()\n", __func__);
2150 
2151 	/* MFLAG_CTRL = ENABLED */
2152 	REG_FLD_MOD(dispc, DISPC_GLOBAL_MFLAG_ATTRIBUTE, 2, 1, 0);
2153 	/* MFLAG_START = MFLAGNORMALSTARTMODE */
2154 	REG_FLD_MOD(dispc, DISPC_GLOBAL_MFLAG_ATTRIBUTE, 0, 6, 6);
2155 
2156 	for (hw_plane = 0; hw_plane < dispc->feat->num_planes; hw_plane++) {
2157 		u32 size = dispc_vid_get_fifo_size(dispc, hw_plane);
2158 		u32 thr_low, thr_high;
2159 		u32 mflag_low, mflag_high;
2160 		u32 preload;
2161 
2162 		thr_high = size - 1;
2163 		thr_low = size / 2;
2164 
2165 		mflag_high = size * 2 / 3;
2166 		mflag_low = size / 3;
2167 
2168 		preload = thr_low;
2169 
2170 		dev_dbg(dispc->dev,
2171 			"%s: bufsize %u, buf_threshold %u/%u, mflag threshold %u/%u preload %u\n",
2172 			dispc->feat->vid_name[hw_plane],
2173 			size,
2174 			thr_high, thr_low,
2175 			mflag_high, mflag_low,
2176 			preload);
2177 
2178 		dispc_vid_set_buf_threshold(dispc, hw_plane,
2179 					    thr_low, thr_high);
2180 		dispc_vid_set_mflag_threshold(dispc, hw_plane,
2181 					      mflag_low, mflag_high);
2182 
2183 		dispc_vid_write(dispc, hw_plane, DISPC_VID_PRELOAD, preload);
2184 
2185 		/*
2186 		 * Prefetch up to fifo high-threshold value to minimize the
2187 		 * possibility of underflows. Note that this means the PRELOAD
2188 		 * register is ignored.
2189 		 */
2190 		VID_REG_FLD_MOD(dispc, hw_plane, DISPC_VID_ATTRIBUTES, 1,
2191 				19, 19);
2192 	}
2193 }
2194 
2195 static void dispc_k3_plane_init(struct dispc_device *dispc)
2196 {
2197 	unsigned int hw_plane;
2198 	u32 cba_lo_pri = 1;
2199 	u32 cba_hi_pri = 0;
2200 
2201 	dev_dbg(dispc->dev, "%s()\n", __func__);
2202 
2203 	REG_FLD_MOD(dispc, DSS_CBA_CFG, cba_lo_pri, 2, 0);
2204 	REG_FLD_MOD(dispc, DSS_CBA_CFG, cba_hi_pri, 5, 3);
2205 
2206 	/* MFLAG_CTRL = ENABLED */
2207 	REG_FLD_MOD(dispc, DISPC_GLOBAL_MFLAG_ATTRIBUTE, 2, 1, 0);
2208 	/* MFLAG_START = MFLAGNORMALSTARTMODE */
2209 	REG_FLD_MOD(dispc, DISPC_GLOBAL_MFLAG_ATTRIBUTE, 0, 6, 6);
2210 
2211 	for (hw_plane = 0; hw_plane < dispc->feat->num_planes; hw_plane++) {
2212 		u32 size = dispc_vid_get_fifo_size(dispc, hw_plane);
2213 		u32 thr_low, thr_high;
2214 		u32 mflag_low, mflag_high;
2215 		u32 preload;
2216 
2217 		thr_high = size - 1;
2218 		thr_low = size / 2;
2219 
2220 		mflag_high = size * 2 / 3;
2221 		mflag_low = size / 3;
2222 
2223 		preload = thr_low;
2224 
2225 		dev_dbg(dispc->dev,
2226 			"%s: bufsize %u, buf_threshold %u/%u, mflag threshold %u/%u preload %u\n",
2227 			dispc->feat->vid_name[hw_plane],
2228 			size,
2229 			thr_high, thr_low,
2230 			mflag_high, mflag_low,
2231 			preload);
2232 
2233 		dispc_vid_set_buf_threshold(dispc, hw_plane,
2234 					    thr_low, thr_high);
2235 		dispc_vid_set_mflag_threshold(dispc, hw_plane,
2236 					      mflag_low, mflag_high);
2237 
2238 		dispc_vid_write(dispc, hw_plane, DISPC_VID_PRELOAD, preload);
2239 
2240 		/* Prefech up to PRELOAD value */
2241 		VID_REG_FLD_MOD(dispc, hw_plane, DISPC_VID_ATTRIBUTES, 0,
2242 				19, 19);
2243 	}
2244 }
2245 
2246 static void dispc_plane_init(struct dispc_device *dispc)
2247 {
2248 	switch (dispc->feat->subrev) {
2249 	case DISPC_K2G:
2250 		dispc_k2g_plane_init(dispc);
2251 		break;
2252 	case DISPC_AM625:
2253 	case DISPC_AM65X:
2254 	case DISPC_J721E:
2255 		dispc_k3_plane_init(dispc);
2256 		break;
2257 	default:
2258 		WARN_ON(1);
2259 	}
2260 }
2261 
2262 static void dispc_vp_init(struct dispc_device *dispc)
2263 {
2264 	unsigned int i;
2265 
2266 	dev_dbg(dispc->dev, "%s()\n", __func__);
2267 
2268 	/* Enable the gamma Shadow bit-field for all VPs*/
2269 	for (i = 0; i < dispc->feat->num_vps; i++)
2270 		VP_REG_FLD_MOD(dispc, i, DISPC_VP_CONFIG, 1, 2, 2);
2271 }
2272 
2273 static void dispc_initial_config(struct dispc_device *dispc)
2274 {
2275 	dispc_plane_init(dispc);
2276 	dispc_vp_init(dispc);
2277 
2278 	/* Note: Hardcoded DPI routing on J721E for now */
2279 	if (dispc->feat->subrev == DISPC_J721E) {
2280 		dispc_write(dispc, DISPC_CONNECTIONS,
2281 			    FLD_VAL(2, 3, 0) |		/* VP1 to DPI0 */
2282 			    FLD_VAL(8, 7, 4)		/* VP3 to DPI1 */
2283 			);
2284 	}
2285 }
2286 
2287 static void dispc_k2g_vp_write_gamma_table(struct dispc_device *dispc,
2288 					   u32 hw_videoport)
2289 {
2290 	u32 *table = dispc->vp_data[hw_videoport].gamma_table;
2291 	u32 hwlen = dispc->feat->vp_feat.color.gamma_size;
2292 	unsigned int i;
2293 
2294 	dev_dbg(dispc->dev, "%s: hw_videoport %d\n", __func__, hw_videoport);
2295 
2296 	if (WARN_ON(dispc->feat->vp_feat.color.gamma_type != TIDSS_GAMMA_8BIT))
2297 		return;
2298 
2299 	for (i = 0; i < hwlen; ++i) {
2300 		u32 v = table[i];
2301 
2302 		v |= i << 24;
2303 
2304 		dispc_vp_write(dispc, hw_videoport, DISPC_VP_K2G_GAMMA_TABLE,
2305 			       v);
2306 	}
2307 }
2308 
2309 static void dispc_am65x_vp_write_gamma_table(struct dispc_device *dispc,
2310 					     u32 hw_videoport)
2311 {
2312 	u32 *table = dispc->vp_data[hw_videoport].gamma_table;
2313 	u32 hwlen = dispc->feat->vp_feat.color.gamma_size;
2314 	unsigned int i;
2315 
2316 	dev_dbg(dispc->dev, "%s: hw_videoport %d\n", __func__, hw_videoport);
2317 
2318 	if (WARN_ON(dispc->feat->vp_feat.color.gamma_type != TIDSS_GAMMA_8BIT))
2319 		return;
2320 
2321 	for (i = 0; i < hwlen; ++i) {
2322 		u32 v = table[i];
2323 
2324 		v |= i << 24;
2325 
2326 		dispc_vp_write(dispc, hw_videoport, DISPC_VP_GAMMA_TABLE, v);
2327 	}
2328 }
2329 
2330 static void dispc_j721e_vp_write_gamma_table(struct dispc_device *dispc,
2331 					     u32 hw_videoport)
2332 {
2333 	u32 *table = dispc->vp_data[hw_videoport].gamma_table;
2334 	u32 hwlen = dispc->feat->vp_feat.color.gamma_size;
2335 	unsigned int i;
2336 
2337 	dev_dbg(dispc->dev, "%s: hw_videoport %d\n", __func__, hw_videoport);
2338 
2339 	if (WARN_ON(dispc->feat->vp_feat.color.gamma_type != TIDSS_GAMMA_10BIT))
2340 		return;
2341 
2342 	for (i = 0; i < hwlen; ++i) {
2343 		u32 v = table[i];
2344 
2345 		if (i == 0)
2346 			v |= 1 << 31;
2347 
2348 		dispc_vp_write(dispc, hw_videoport, DISPC_VP_GAMMA_TABLE, v);
2349 	}
2350 }
2351 
2352 static void dispc_vp_write_gamma_table(struct dispc_device *dispc,
2353 				       u32 hw_videoport)
2354 {
2355 	switch (dispc->feat->subrev) {
2356 	case DISPC_K2G:
2357 		dispc_k2g_vp_write_gamma_table(dispc, hw_videoport);
2358 		break;
2359 	case DISPC_AM625:
2360 	case DISPC_AM65X:
2361 		dispc_am65x_vp_write_gamma_table(dispc, hw_videoport);
2362 		break;
2363 	case DISPC_J721E:
2364 		dispc_j721e_vp_write_gamma_table(dispc, hw_videoport);
2365 		break;
2366 	default:
2367 		WARN_ON(1);
2368 		break;
2369 	}
2370 }
2371 
2372 static const struct drm_color_lut dispc_vp_gamma_default_lut[] = {
2373 	{ .red = 0, .green = 0, .blue = 0, },
2374 	{ .red = U16_MAX, .green = U16_MAX, .blue = U16_MAX, },
2375 };
2376 
2377 static void dispc_vp_set_gamma(struct dispc_device *dispc,
2378 			       u32 hw_videoport,
2379 			       const struct drm_color_lut *lut,
2380 			       unsigned int length)
2381 {
2382 	u32 *table = dispc->vp_data[hw_videoport].gamma_table;
2383 	u32 hwlen = dispc->feat->vp_feat.color.gamma_size;
2384 	u32 hwbits;
2385 	unsigned int i;
2386 
2387 	dev_dbg(dispc->dev, "%s: hw_videoport %d, lut len %u, hw len %u\n",
2388 		__func__, hw_videoport, length, hwlen);
2389 
2390 	if (dispc->feat->vp_feat.color.gamma_type == TIDSS_GAMMA_10BIT)
2391 		hwbits = 10;
2392 	else
2393 		hwbits = 8;
2394 
2395 	if (!lut || length < 2) {
2396 		lut = dispc_vp_gamma_default_lut;
2397 		length = ARRAY_SIZE(dispc_vp_gamma_default_lut);
2398 	}
2399 
2400 	for (i = 0; i < length - 1; ++i) {
2401 		unsigned int first = i * (hwlen - 1) / (length - 1);
2402 		unsigned int last = (i + 1) * (hwlen - 1) / (length - 1);
2403 		unsigned int w = last - first;
2404 		u16 r, g, b;
2405 		unsigned int j;
2406 
2407 		if (w == 0)
2408 			continue;
2409 
2410 		for (j = 0; j <= w; j++) {
2411 			r = (lut[i].red * (w - j) + lut[i + 1].red * j) / w;
2412 			g = (lut[i].green * (w - j) + lut[i + 1].green * j) / w;
2413 			b = (lut[i].blue * (w - j) + lut[i + 1].blue * j) / w;
2414 
2415 			r >>= 16 - hwbits;
2416 			g >>= 16 - hwbits;
2417 			b >>= 16 - hwbits;
2418 
2419 			table[first + j] = (r << (hwbits * 2)) |
2420 				(g << hwbits) | b;
2421 		}
2422 	}
2423 
2424 	dispc_vp_write_gamma_table(dispc, hw_videoport);
2425 }
2426 
2427 static s16 dispc_S31_32_to_s2_8(s64 coef)
2428 {
2429 	u64 sign_bit = 1ULL << 63;
2430 	u64 cbits = (u64)coef;
2431 	s16 ret;
2432 
2433 	if (cbits & sign_bit)
2434 		ret = -clamp_val(((cbits & ~sign_bit) >> 24), 0, 0x200);
2435 	else
2436 		ret = clamp_val(((cbits & ~sign_bit) >> 24), 0, 0x1FF);
2437 
2438 	return ret;
2439 }
2440 
2441 static void dispc_k2g_cpr_from_ctm(const struct drm_color_ctm *ctm,
2442 				   struct dispc_csc_coef *cpr)
2443 {
2444 	memset(cpr, 0, sizeof(*cpr));
2445 
2446 	cpr->to_regval = dispc_csc_cpr_regval;
2447 	cpr->m[CSC_RR] = dispc_S31_32_to_s2_8(ctm->matrix[0]);
2448 	cpr->m[CSC_RG] = dispc_S31_32_to_s2_8(ctm->matrix[1]);
2449 	cpr->m[CSC_RB] = dispc_S31_32_to_s2_8(ctm->matrix[2]);
2450 	cpr->m[CSC_GR] = dispc_S31_32_to_s2_8(ctm->matrix[3]);
2451 	cpr->m[CSC_GG] = dispc_S31_32_to_s2_8(ctm->matrix[4]);
2452 	cpr->m[CSC_GB] = dispc_S31_32_to_s2_8(ctm->matrix[5]);
2453 	cpr->m[CSC_BR] = dispc_S31_32_to_s2_8(ctm->matrix[6]);
2454 	cpr->m[CSC_BG] = dispc_S31_32_to_s2_8(ctm->matrix[7]);
2455 	cpr->m[CSC_BB] = dispc_S31_32_to_s2_8(ctm->matrix[8]);
2456 }
2457 
2458 #define CVAL(xR, xG, xB) (FLD_VAL(xR, 9, 0) | FLD_VAL(xG, 20, 11) |	\
2459 			  FLD_VAL(xB, 31, 22))
2460 
2461 static void dispc_k2g_vp_csc_cpr_regval(const struct dispc_csc_coef *csc,
2462 					u32 *regval)
2463 {
2464 	regval[0] = CVAL(csc->m[CSC_BB], csc->m[CSC_BG], csc->m[CSC_BR]);
2465 	regval[1] = CVAL(csc->m[CSC_GB], csc->m[CSC_GG], csc->m[CSC_GR]);
2466 	regval[2] = CVAL(csc->m[CSC_RB], csc->m[CSC_RG], csc->m[CSC_RR]);
2467 }
2468 
2469 #undef CVAL
2470 
2471 static void dispc_k2g_vp_write_csc(struct dispc_device *dispc, u32 hw_videoport,
2472 				   const struct dispc_csc_coef *csc)
2473 {
2474 	static const u16 dispc_vp_cpr_coef_reg[] = {
2475 		DISPC_VP_CSC_COEF0, DISPC_VP_CSC_COEF1, DISPC_VP_CSC_COEF2,
2476 		/* K2G CPR is packed to three registers. */
2477 	};
2478 	u32 regval[DISPC_CSC_REGVAL_LEN];
2479 	unsigned int i;
2480 
2481 	dispc_k2g_vp_csc_cpr_regval(csc, regval);
2482 
2483 	for (i = 0; i < ARRAY_SIZE(dispc_vp_cpr_coef_reg); i++)
2484 		dispc_vp_write(dispc, hw_videoport, dispc_vp_cpr_coef_reg[i],
2485 			       regval[i]);
2486 }
2487 
2488 static void dispc_k2g_vp_set_ctm(struct dispc_device *dispc, u32 hw_videoport,
2489 				 struct drm_color_ctm *ctm)
2490 {
2491 	u32 cprenable = 0;
2492 
2493 	if (ctm) {
2494 		struct dispc_csc_coef cpr;
2495 
2496 		dispc_k2g_cpr_from_ctm(ctm, &cpr);
2497 		dispc_k2g_vp_write_csc(dispc, hw_videoport, &cpr);
2498 		cprenable = 1;
2499 	}
2500 
2501 	VP_REG_FLD_MOD(dispc, hw_videoport, DISPC_VP_CONFIG,
2502 		       cprenable, 15, 15);
2503 }
2504 
2505 static s16 dispc_S31_32_to_s3_8(s64 coef)
2506 {
2507 	u64 sign_bit = 1ULL << 63;
2508 	u64 cbits = (u64)coef;
2509 	s16 ret;
2510 
2511 	if (cbits & sign_bit)
2512 		ret = -clamp_val(((cbits & ~sign_bit) >> 24), 0, 0x400);
2513 	else
2514 		ret = clamp_val(((cbits & ~sign_bit) >> 24), 0, 0x3FF);
2515 
2516 	return ret;
2517 }
2518 
2519 static void dispc_csc_from_ctm(const struct drm_color_ctm *ctm,
2520 			       struct dispc_csc_coef *cpr)
2521 {
2522 	memset(cpr, 0, sizeof(*cpr));
2523 
2524 	cpr->to_regval = dispc_csc_cpr_regval;
2525 	cpr->m[CSC_RR] = dispc_S31_32_to_s3_8(ctm->matrix[0]);
2526 	cpr->m[CSC_RG] = dispc_S31_32_to_s3_8(ctm->matrix[1]);
2527 	cpr->m[CSC_RB] = dispc_S31_32_to_s3_8(ctm->matrix[2]);
2528 	cpr->m[CSC_GR] = dispc_S31_32_to_s3_8(ctm->matrix[3]);
2529 	cpr->m[CSC_GG] = dispc_S31_32_to_s3_8(ctm->matrix[4]);
2530 	cpr->m[CSC_GB] = dispc_S31_32_to_s3_8(ctm->matrix[5]);
2531 	cpr->m[CSC_BR] = dispc_S31_32_to_s3_8(ctm->matrix[6]);
2532 	cpr->m[CSC_BG] = dispc_S31_32_to_s3_8(ctm->matrix[7]);
2533 	cpr->m[CSC_BB] = dispc_S31_32_to_s3_8(ctm->matrix[8]);
2534 }
2535 
2536 static void dispc_k3_vp_write_csc(struct dispc_device *dispc, u32 hw_videoport,
2537 				  const struct dispc_csc_coef *csc)
2538 {
2539 	static const u16 dispc_vp_csc_coef_reg[DISPC_CSC_REGVAL_LEN] = {
2540 		DISPC_VP_CSC_COEF0, DISPC_VP_CSC_COEF1, DISPC_VP_CSC_COEF2,
2541 		DISPC_VP_CSC_COEF3, DISPC_VP_CSC_COEF4, DISPC_VP_CSC_COEF5,
2542 		DISPC_VP_CSC_COEF6, DISPC_VP_CSC_COEF7,
2543 	};
2544 	u32 regval[DISPC_CSC_REGVAL_LEN];
2545 	unsigned int i;
2546 
2547 	csc->to_regval(csc, regval);
2548 
2549 	for (i = 0; i < ARRAY_SIZE(regval); i++)
2550 		dispc_vp_write(dispc, hw_videoport, dispc_vp_csc_coef_reg[i],
2551 			       regval[i]);
2552 }
2553 
2554 static void dispc_k3_vp_set_ctm(struct dispc_device *dispc, u32 hw_videoport,
2555 				struct drm_color_ctm *ctm)
2556 {
2557 	u32 colorconvenable = 0;
2558 
2559 	if (ctm) {
2560 		struct dispc_csc_coef csc;
2561 
2562 		dispc_csc_from_ctm(ctm, &csc);
2563 		dispc_k3_vp_write_csc(dispc, hw_videoport, &csc);
2564 		colorconvenable = 1;
2565 	}
2566 
2567 	VP_REG_FLD_MOD(dispc, hw_videoport, DISPC_VP_CONFIG,
2568 		       colorconvenable, 24, 24);
2569 }
2570 
2571 static void dispc_vp_set_color_mgmt(struct dispc_device *dispc,
2572 				    u32 hw_videoport,
2573 				    const struct drm_crtc_state *state,
2574 				    bool newmodeset)
2575 {
2576 	struct drm_color_lut *lut = NULL;
2577 	struct drm_color_ctm *ctm = NULL;
2578 	unsigned int length = 0;
2579 
2580 	if (!(state->color_mgmt_changed || newmodeset))
2581 		return;
2582 
2583 	if (state->gamma_lut) {
2584 		lut = (struct drm_color_lut *)state->gamma_lut->data;
2585 		length = state->gamma_lut->length / sizeof(*lut);
2586 	}
2587 
2588 	dispc_vp_set_gamma(dispc, hw_videoport, lut, length);
2589 
2590 	if (state->ctm)
2591 		ctm = (struct drm_color_ctm *)state->ctm->data;
2592 
2593 	if (dispc->feat->subrev == DISPC_K2G)
2594 		dispc_k2g_vp_set_ctm(dispc, hw_videoport, ctm);
2595 	else
2596 		dispc_k3_vp_set_ctm(dispc, hw_videoport, ctm);
2597 }
2598 
2599 void dispc_vp_setup(struct dispc_device *dispc, u32 hw_videoport,
2600 		    const struct drm_crtc_state *state, bool newmodeset)
2601 {
2602 	dispc_vp_set_default_color(dispc, hw_videoport, 0);
2603 	dispc_vp_set_color_mgmt(dispc, hw_videoport, state, newmodeset);
2604 }
2605 
2606 int dispc_runtime_suspend(struct dispc_device *dispc)
2607 {
2608 	dev_dbg(dispc->dev, "suspend\n");
2609 
2610 	dispc->is_enabled = false;
2611 
2612 	clk_disable_unprepare(dispc->fclk);
2613 
2614 	return 0;
2615 }
2616 
2617 int dispc_runtime_resume(struct dispc_device *dispc)
2618 {
2619 	dev_dbg(dispc->dev, "resume\n");
2620 
2621 	clk_prepare_enable(dispc->fclk);
2622 
2623 	if (REG_GET(dispc, DSS_SYSSTATUS, 0, 0) == 0)
2624 		dev_warn(dispc->dev, "DSS FUNC RESET not done!\n");
2625 
2626 	dev_dbg(dispc->dev, "OMAP DSS7 rev 0x%x\n",
2627 		dispc_read(dispc, DSS_REVISION));
2628 
2629 	dev_dbg(dispc->dev, "VP RESETDONE %d,%d,%d\n",
2630 		REG_GET(dispc, DSS_SYSSTATUS, 1, 1),
2631 		REG_GET(dispc, DSS_SYSSTATUS, 2, 2),
2632 		REG_GET(dispc, DSS_SYSSTATUS, 3, 3));
2633 
2634 	if (dispc->feat->subrev == DISPC_AM625 ||
2635 	    dispc->feat->subrev == DISPC_AM65X)
2636 		dev_dbg(dispc->dev, "OLDI RESETDONE %d,%d,%d\n",
2637 			REG_GET(dispc, DSS_SYSSTATUS, 5, 5),
2638 			REG_GET(dispc, DSS_SYSSTATUS, 6, 6),
2639 			REG_GET(dispc, DSS_SYSSTATUS, 7, 7));
2640 
2641 	dev_dbg(dispc->dev, "DISPC IDLE %d\n",
2642 		REG_GET(dispc, DSS_SYSSTATUS, 9, 9));
2643 
2644 	dispc_initial_config(dispc);
2645 
2646 	dispc->is_enabled = true;
2647 
2648 	tidss_irq_resume(dispc->tidss);
2649 
2650 	return 0;
2651 }
2652 
2653 void dispc_remove(struct tidss_device *tidss)
2654 {
2655 	dev_dbg(tidss->dev, "%s\n", __func__);
2656 
2657 	tidss->dispc = NULL;
2658 }
2659 
2660 static int dispc_iomap_resource(struct platform_device *pdev, const char *name,
2661 				void __iomem **base)
2662 {
2663 	void __iomem *b;
2664 
2665 	b = devm_platform_ioremap_resource_byname(pdev, name);
2666 	if (IS_ERR(b)) {
2667 		dev_err(&pdev->dev, "cannot ioremap resource '%s'\n", name);
2668 		return PTR_ERR(b);
2669 	}
2670 
2671 	*base = b;
2672 
2673 	return 0;
2674 }
2675 
2676 static int dispc_init_am65x_oldi_io_ctrl(struct device *dev,
2677 					 struct dispc_device *dispc)
2678 {
2679 	dispc->oldi_io_ctrl =
2680 		syscon_regmap_lookup_by_phandle(dev->of_node,
2681 						"ti,am65x-oldi-io-ctrl");
2682 	if (PTR_ERR(dispc->oldi_io_ctrl) == -ENODEV) {
2683 		dispc->oldi_io_ctrl = NULL;
2684 	} else if (IS_ERR(dispc->oldi_io_ctrl)) {
2685 		dev_err(dev, "%s: syscon_regmap_lookup_by_phandle failed %ld\n",
2686 			__func__, PTR_ERR(dispc->oldi_io_ctrl));
2687 		return PTR_ERR(dispc->oldi_io_ctrl);
2688 	}
2689 	return 0;
2690 }
2691 
2692 static void dispc_init_errata(struct dispc_device *dispc)
2693 {
2694 	static const struct soc_device_attribute am65x_sr10_soc_devices[] = {
2695 		{ .family = "AM65X", .revision = "SR1.0" },
2696 		{ /* sentinel */ }
2697 	};
2698 
2699 	if (soc_device_match(am65x_sr10_soc_devices)) {
2700 		dispc->errata.i2000 = true;
2701 		dev_info(dispc->dev, "WA for erratum i2000: YUV formats disabled\n");
2702 	}
2703 }
2704 
2705 static void dispc_softreset(struct dispc_device *dispc)
2706 {
2707 	u32 val;
2708 	int ret = 0;
2709 
2710 	/* Soft reset */
2711 	REG_FLD_MOD(dispc, DSS_SYSCONFIG, 1, 1, 1);
2712 	/* Wait for reset to complete */
2713 	ret = readl_poll_timeout(dispc->base_common + DSS_SYSSTATUS,
2714 				 val, val & 1, 100, 5000);
2715 	if (ret)
2716 		dev_warn(dispc->dev, "failed to reset dispc\n");
2717 }
2718 
2719 int dispc_init(struct tidss_device *tidss)
2720 {
2721 	struct device *dev = tidss->dev;
2722 	struct platform_device *pdev = to_platform_device(dev);
2723 	struct dispc_device *dispc;
2724 	const struct dispc_features *feat;
2725 	unsigned int i, num_fourccs;
2726 	int r = 0;
2727 
2728 	dev_dbg(dev, "%s\n", __func__);
2729 
2730 	feat = tidss->feat;
2731 
2732 	if (feat->subrev != DISPC_K2G) {
2733 		r = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(48));
2734 		if (r)
2735 			dev_warn(dev, "cannot set DMA masks to 48-bit\n");
2736 	}
2737 
2738 	dma_set_max_seg_size(dev, UINT_MAX);
2739 
2740 	dispc = devm_kzalloc(dev, sizeof(*dispc), GFP_KERNEL);
2741 	if (!dispc)
2742 		return -ENOMEM;
2743 
2744 	dispc->tidss = tidss;
2745 	dispc->dev = dev;
2746 	dispc->feat = feat;
2747 
2748 	dispc_init_errata(dispc);
2749 
2750 	dispc->fourccs = devm_kcalloc(dev, ARRAY_SIZE(dispc_color_formats),
2751 				      sizeof(*dispc->fourccs), GFP_KERNEL);
2752 	if (!dispc->fourccs)
2753 		return -ENOMEM;
2754 
2755 	num_fourccs = 0;
2756 	for (i = 0; i < ARRAY_SIZE(dispc_color_formats); ++i) {
2757 		if (dispc->errata.i2000 &&
2758 		    dispc_fourcc_is_yuv(dispc_color_formats[i].fourcc)) {
2759 			continue;
2760 		}
2761 		dispc->fourccs[num_fourccs++] = dispc_color_formats[i].fourcc;
2762 	}
2763 
2764 	dispc->num_fourccs = num_fourccs;
2765 
2766 	dispc_common_regmap = dispc->feat->common_regs;
2767 
2768 	r = dispc_iomap_resource(pdev, dispc->feat->common,
2769 				 &dispc->base_common);
2770 	if (r)
2771 		return r;
2772 
2773 	for (i = 0; i < dispc->feat->num_planes; i++) {
2774 		r = dispc_iomap_resource(pdev, dispc->feat->vid_name[i],
2775 					 &dispc->base_vid[i]);
2776 		if (r)
2777 			return r;
2778 	}
2779 
2780 	/* K2G display controller does not support soft reset */
2781 	if (feat->subrev != DISPC_K2G)
2782 		dispc_softreset(dispc);
2783 
2784 	for (i = 0; i < dispc->feat->num_vps; i++) {
2785 		u32 gamma_size = dispc->feat->vp_feat.color.gamma_size;
2786 		u32 *gamma_table;
2787 		struct clk *clk;
2788 
2789 		r = dispc_iomap_resource(pdev, dispc->feat->ovr_name[i],
2790 					 &dispc->base_ovr[i]);
2791 		if (r)
2792 			return r;
2793 
2794 		r = dispc_iomap_resource(pdev, dispc->feat->vp_name[i],
2795 					 &dispc->base_vp[i]);
2796 		if (r)
2797 			return r;
2798 
2799 		clk = devm_clk_get(dev, dispc->feat->vpclk_name[i]);
2800 		if (IS_ERR(clk)) {
2801 			dev_err(dev, "%s: Failed to get clk %s:%ld\n", __func__,
2802 				dispc->feat->vpclk_name[i], PTR_ERR(clk));
2803 			return PTR_ERR(clk);
2804 		}
2805 		dispc->vp_clk[i] = clk;
2806 
2807 		gamma_table = devm_kmalloc_array(dev, gamma_size,
2808 						 sizeof(*gamma_table),
2809 						 GFP_KERNEL);
2810 		if (!gamma_table)
2811 			return -ENOMEM;
2812 		dispc->vp_data[i].gamma_table = gamma_table;
2813 	}
2814 
2815 	if (feat->subrev == DISPC_AM65X) {
2816 		r = dispc_init_am65x_oldi_io_ctrl(dev, dispc);
2817 		if (r)
2818 			return r;
2819 	}
2820 
2821 	dispc->fclk = devm_clk_get(dev, "fck");
2822 	if (IS_ERR(dispc->fclk)) {
2823 		dev_err(dev, "%s: Failed to get fclk: %ld\n",
2824 			__func__, PTR_ERR(dispc->fclk));
2825 		return PTR_ERR(dispc->fclk);
2826 	}
2827 	dev_dbg(dev, "DSS fclk %lu Hz\n", clk_get_rate(dispc->fclk));
2828 
2829 	of_property_read_u32(dispc->dev->of_node, "max-memory-bandwidth",
2830 			     &dispc->memory_bandwidth_limit);
2831 
2832 	tidss->dispc = dispc;
2833 
2834 	return 0;
2835 }
2836