1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2016-2018 Texas Instruments Incorporated - https://www.ti.com/ 4 * Author: Jyri Sarha <jsarha@ti.com> 5 */ 6 7 #include <linux/clk.h> 8 #include <linux/delay.h> 9 #include <linux/dma-mapping.h> 10 #include <linux/err.h> 11 #include <linux/interrupt.h> 12 #include <linux/io.h> 13 #include <linux/kernel.h> 14 #include <linux/module.h> 15 #include <linux/mfd/syscon.h> 16 #include <linux/of.h> 17 #include <linux/of_graph.h> 18 #include <linux/of_device.h> 19 #include <linux/platform_device.h> 20 #include <linux/pm_runtime.h> 21 #include <linux/regmap.h> 22 23 #include <drm/drm_fourcc.h> 24 #include <drm/drm_fb_cma_helper.h> 25 #include <drm/drm_gem_cma_helper.h> 26 #include <drm/drm_panel.h> 27 28 #include "tidss_crtc.h" 29 #include "tidss_dispc.h" 30 #include "tidss_drv.h" 31 #include "tidss_irq.h" 32 #include "tidss_plane.h" 33 34 #include "tidss_dispc_regs.h" 35 #include "tidss_scale_coefs.h" 36 37 static const u16 tidss_k2g_common_regs[DISPC_COMMON_REG_TABLE_LEN] = { 38 [DSS_REVISION_OFF] = 0x00, 39 [DSS_SYSCONFIG_OFF] = 0x04, 40 [DSS_SYSSTATUS_OFF] = 0x08, 41 [DISPC_IRQ_EOI_OFF] = 0x20, 42 [DISPC_IRQSTATUS_RAW_OFF] = 0x24, 43 [DISPC_IRQSTATUS_OFF] = 0x28, 44 [DISPC_IRQENABLE_SET_OFF] = 0x2c, 45 [DISPC_IRQENABLE_CLR_OFF] = 0x30, 46 47 [DISPC_GLOBAL_MFLAG_ATTRIBUTE_OFF] = 0x40, 48 [DISPC_GLOBAL_BUFFER_OFF] = 0x44, 49 50 [DISPC_DBG_CONTROL_OFF] = 0x4c, 51 [DISPC_DBG_STATUS_OFF] = 0x50, 52 53 [DISPC_CLKGATING_DISABLE_OFF] = 0x54, 54 }; 55 56 const struct dispc_features dispc_k2g_feats = { 57 .min_pclk_khz = 4375, 58 59 .max_pclk_khz = { 60 [DISPC_VP_DPI] = 150000, 61 }, 62 63 /* 64 * XXX According TRM the RGB input buffer width up to 2560 should 65 * work on 3 taps, but in practice it only works up to 1280. 66 */ 67 .scaling = { 68 .in_width_max_5tap_rgb = 1280, 69 .in_width_max_3tap_rgb = 1280, 70 .in_width_max_5tap_yuv = 2560, 71 .in_width_max_3tap_yuv = 2560, 72 .upscale_limit = 16, 73 .downscale_limit_5tap = 4, 74 .downscale_limit_3tap = 2, 75 /* 76 * The max supported pixel inc value is 255. The value 77 * of pixel inc is calculated like this: 1+(xinc-1)*bpp. 78 * The maximum bpp of all formats supported by the HW 79 * is 8. So the maximum supported xinc value is 32, 80 * because 1+(32-1)*8 < 255 < 1+(33-1)*4. 81 */ 82 .xinc_max = 32, 83 }, 84 85 .subrev = DISPC_K2G, 86 87 .common = "common", 88 89 .common_regs = tidss_k2g_common_regs, 90 91 .num_vps = 1, 92 .vp_name = { "vp1" }, 93 .ovr_name = { "ovr1" }, 94 .vpclk_name = { "vp1" }, 95 .vp_bus_type = { DISPC_VP_DPI }, 96 97 .vp_feat = { .color = { 98 .has_ctm = true, 99 .gamma_size = 256, 100 .gamma_type = TIDSS_GAMMA_8BIT, 101 }, 102 }, 103 104 .num_planes = 1, 105 .vid_name = { "vid1" }, 106 .vid_lite = { false }, 107 .vid_order = { 0 }, 108 }; 109 110 static const u16 tidss_am65x_common_regs[DISPC_COMMON_REG_TABLE_LEN] = { 111 [DSS_REVISION_OFF] = 0x4, 112 [DSS_SYSCONFIG_OFF] = 0x8, 113 [DSS_SYSSTATUS_OFF] = 0x20, 114 [DISPC_IRQ_EOI_OFF] = 0x24, 115 [DISPC_IRQSTATUS_RAW_OFF] = 0x28, 116 [DISPC_IRQSTATUS_OFF] = 0x2c, 117 [DISPC_IRQENABLE_SET_OFF] = 0x30, 118 [DISPC_IRQENABLE_CLR_OFF] = 0x40, 119 [DISPC_VID_IRQENABLE_OFF] = 0x44, 120 [DISPC_VID_IRQSTATUS_OFF] = 0x58, 121 [DISPC_VP_IRQENABLE_OFF] = 0x70, 122 [DISPC_VP_IRQSTATUS_OFF] = 0x7c, 123 124 [WB_IRQENABLE_OFF] = 0x88, 125 [WB_IRQSTATUS_OFF] = 0x8c, 126 127 [DISPC_GLOBAL_MFLAG_ATTRIBUTE_OFF] = 0x90, 128 [DISPC_GLOBAL_OUTPUT_ENABLE_OFF] = 0x94, 129 [DISPC_GLOBAL_BUFFER_OFF] = 0x98, 130 [DSS_CBA_CFG_OFF] = 0x9c, 131 [DISPC_DBG_CONTROL_OFF] = 0xa0, 132 [DISPC_DBG_STATUS_OFF] = 0xa4, 133 [DISPC_CLKGATING_DISABLE_OFF] = 0xa8, 134 [DISPC_SECURE_DISABLE_OFF] = 0xac, 135 }; 136 137 const struct dispc_features dispc_am65x_feats = { 138 .max_pclk_khz = { 139 [DISPC_VP_DPI] = 165000, 140 [DISPC_VP_OLDI] = 165000, 141 }, 142 143 .scaling = { 144 .in_width_max_5tap_rgb = 1280, 145 .in_width_max_3tap_rgb = 2560, 146 .in_width_max_5tap_yuv = 2560, 147 .in_width_max_3tap_yuv = 4096, 148 .upscale_limit = 16, 149 .downscale_limit_5tap = 4, 150 .downscale_limit_3tap = 2, 151 /* 152 * The max supported pixel inc value is 255. The value 153 * of pixel inc is calculated like this: 1+(xinc-1)*bpp. 154 * The maximum bpp of all formats supported by the HW 155 * is 8. So the maximum supported xinc value is 32, 156 * because 1+(32-1)*8 < 255 < 1+(33-1)*4. 157 */ 158 .xinc_max = 32, 159 }, 160 161 .subrev = DISPC_AM65X, 162 163 .common = "common", 164 .common_regs = tidss_am65x_common_regs, 165 166 .num_vps = 2, 167 .vp_name = { "vp1", "vp2" }, 168 .ovr_name = { "ovr1", "ovr2" }, 169 .vpclk_name = { "vp1", "vp2" }, 170 .vp_bus_type = { DISPC_VP_OLDI, DISPC_VP_DPI }, 171 172 .vp_feat = { .color = { 173 .has_ctm = true, 174 .gamma_size = 256, 175 .gamma_type = TIDSS_GAMMA_8BIT, 176 }, 177 }, 178 179 .num_planes = 2, 180 /* note: vid is plane_id 0 and vidl1 is plane_id 1 */ 181 .vid_name = { "vid", "vidl1" }, 182 .vid_lite = { false, true, }, 183 .vid_order = { 1, 0 }, 184 }; 185 186 static const u16 tidss_j721e_common_regs[DISPC_COMMON_REG_TABLE_LEN] = { 187 [DSS_REVISION_OFF] = 0x4, 188 [DSS_SYSCONFIG_OFF] = 0x8, 189 [DSS_SYSSTATUS_OFF] = 0x20, 190 [DISPC_IRQ_EOI_OFF] = 0x80, 191 [DISPC_IRQSTATUS_RAW_OFF] = 0x28, 192 [DISPC_IRQSTATUS_OFF] = 0x2c, 193 [DISPC_IRQENABLE_SET_OFF] = 0x30, 194 [DISPC_IRQENABLE_CLR_OFF] = 0x34, 195 [DISPC_VID_IRQENABLE_OFF] = 0x38, 196 [DISPC_VID_IRQSTATUS_OFF] = 0x48, 197 [DISPC_VP_IRQENABLE_OFF] = 0x58, 198 [DISPC_VP_IRQSTATUS_OFF] = 0x68, 199 200 [WB_IRQENABLE_OFF] = 0x78, 201 [WB_IRQSTATUS_OFF] = 0x7c, 202 203 [DISPC_GLOBAL_MFLAG_ATTRIBUTE_OFF] = 0x98, 204 [DISPC_GLOBAL_OUTPUT_ENABLE_OFF] = 0x9c, 205 [DISPC_GLOBAL_BUFFER_OFF] = 0xa0, 206 [DSS_CBA_CFG_OFF] = 0xa4, 207 [DISPC_DBG_CONTROL_OFF] = 0xa8, 208 [DISPC_DBG_STATUS_OFF] = 0xac, 209 [DISPC_CLKGATING_DISABLE_OFF] = 0xb0, 210 [DISPC_SECURE_DISABLE_OFF] = 0x90, 211 212 [FBDC_REVISION_1_OFF] = 0xb8, 213 [FBDC_REVISION_2_OFF] = 0xbc, 214 [FBDC_REVISION_3_OFF] = 0xc0, 215 [FBDC_REVISION_4_OFF] = 0xc4, 216 [FBDC_REVISION_5_OFF] = 0xc8, 217 [FBDC_REVISION_6_OFF] = 0xcc, 218 [FBDC_COMMON_CONTROL_OFF] = 0xd0, 219 [FBDC_CONSTANT_COLOR_0_OFF] = 0xd4, 220 [FBDC_CONSTANT_COLOR_1_OFF] = 0xd8, 221 [DISPC_CONNECTIONS_OFF] = 0xe4, 222 [DISPC_MSS_VP1_OFF] = 0xe8, 223 [DISPC_MSS_VP3_OFF] = 0xec, 224 }; 225 226 const struct dispc_features dispc_j721e_feats = { 227 .max_pclk_khz = { 228 [DISPC_VP_DPI] = 170000, 229 [DISPC_VP_INTERNAL] = 600000, 230 }, 231 232 .scaling = { 233 .in_width_max_5tap_rgb = 2048, 234 .in_width_max_3tap_rgb = 4096, 235 .in_width_max_5tap_yuv = 4096, 236 .in_width_max_3tap_yuv = 4096, 237 .upscale_limit = 16, 238 .downscale_limit_5tap = 4, 239 .downscale_limit_3tap = 2, 240 /* 241 * The max supported pixel inc value is 255. The value 242 * of pixel inc is calculated like this: 1+(xinc-1)*bpp. 243 * The maximum bpp of all formats supported by the HW 244 * is 8. So the maximum supported xinc value is 32, 245 * because 1+(32-1)*8 < 255 < 1+(33-1)*4. 246 */ 247 .xinc_max = 32, 248 }, 249 250 .subrev = DISPC_J721E, 251 252 .common = "common_m", 253 .common_regs = tidss_j721e_common_regs, 254 255 .num_vps = 4, 256 .vp_name = { "vp1", "vp2", "vp3", "vp4" }, 257 .ovr_name = { "ovr1", "ovr2", "ovr3", "ovr4" }, 258 .vpclk_name = { "vp1", "vp2", "vp3", "vp4" }, 259 /* Currently hard coded VP routing (see dispc_initial_config()) */ 260 .vp_bus_type = { DISPC_VP_INTERNAL, DISPC_VP_DPI, 261 DISPC_VP_INTERNAL, DISPC_VP_DPI, }, 262 .vp_feat = { .color = { 263 .has_ctm = true, 264 .gamma_size = 1024, 265 .gamma_type = TIDSS_GAMMA_10BIT, 266 }, 267 }, 268 .num_planes = 4, 269 .vid_name = { "vid1", "vidl1", "vid2", "vidl2" }, 270 .vid_lite = { 0, 1, 0, 1, }, 271 .vid_order = { 1, 3, 0, 2 }, 272 }; 273 274 static const u16 *dispc_common_regmap; 275 276 struct dss_vp_data { 277 u32 *gamma_table; 278 }; 279 280 struct dispc_device { 281 struct tidss_device *tidss; 282 struct device *dev; 283 284 void __iomem *base_common; 285 void __iomem *base_vid[TIDSS_MAX_PLANES]; 286 void __iomem *base_ovr[TIDSS_MAX_PORTS]; 287 void __iomem *base_vp[TIDSS_MAX_PORTS]; 288 289 struct regmap *oldi_io_ctrl; 290 291 struct clk *vp_clk[TIDSS_MAX_PORTS]; 292 293 const struct dispc_features *feat; 294 295 struct clk *fclk; 296 297 bool is_enabled; 298 299 struct dss_vp_data vp_data[TIDSS_MAX_PORTS]; 300 301 u32 *fourccs; 302 u32 num_fourccs; 303 304 u32 memory_bandwidth_limit; 305 }; 306 307 static void dispc_write(struct dispc_device *dispc, u16 reg, u32 val) 308 { 309 iowrite32(val, dispc->base_common + reg); 310 } 311 312 static u32 dispc_read(struct dispc_device *dispc, u16 reg) 313 { 314 return ioread32(dispc->base_common + reg); 315 } 316 317 static 318 void dispc_vid_write(struct dispc_device *dispc, u32 hw_plane, u16 reg, u32 val) 319 { 320 void __iomem *base = dispc->base_vid[hw_plane]; 321 322 iowrite32(val, base + reg); 323 } 324 325 static u32 dispc_vid_read(struct dispc_device *dispc, u32 hw_plane, u16 reg) 326 { 327 void __iomem *base = dispc->base_vid[hw_plane]; 328 329 return ioread32(base + reg); 330 } 331 332 static void dispc_ovr_write(struct dispc_device *dispc, u32 hw_videoport, 333 u16 reg, u32 val) 334 { 335 void __iomem *base = dispc->base_ovr[hw_videoport]; 336 337 iowrite32(val, base + reg); 338 } 339 340 static u32 dispc_ovr_read(struct dispc_device *dispc, u32 hw_videoport, u16 reg) 341 { 342 void __iomem *base = dispc->base_ovr[hw_videoport]; 343 344 return ioread32(base + reg); 345 } 346 347 static void dispc_vp_write(struct dispc_device *dispc, u32 hw_videoport, 348 u16 reg, u32 val) 349 { 350 void __iomem *base = dispc->base_vp[hw_videoport]; 351 352 iowrite32(val, base + reg); 353 } 354 355 static u32 dispc_vp_read(struct dispc_device *dispc, u32 hw_videoport, u16 reg) 356 { 357 void __iomem *base = dispc->base_vp[hw_videoport]; 358 359 return ioread32(base + reg); 360 } 361 362 /* 363 * TRM gives bitfields as start:end, where start is the higher bit 364 * number. For example 7:0 365 */ 366 367 static u32 FLD_MASK(u32 start, u32 end) 368 { 369 return ((1 << (start - end + 1)) - 1) << end; 370 } 371 372 static u32 FLD_VAL(u32 val, u32 start, u32 end) 373 { 374 return (val << end) & FLD_MASK(start, end); 375 } 376 377 static u32 FLD_GET(u32 val, u32 start, u32 end) 378 { 379 return (val & FLD_MASK(start, end)) >> end; 380 } 381 382 static u32 FLD_MOD(u32 orig, u32 val, u32 start, u32 end) 383 { 384 return (orig & ~FLD_MASK(start, end)) | FLD_VAL(val, start, end); 385 } 386 387 static u32 REG_GET(struct dispc_device *dispc, u32 idx, u32 start, u32 end) 388 { 389 return FLD_GET(dispc_read(dispc, idx), start, end); 390 } 391 392 static void REG_FLD_MOD(struct dispc_device *dispc, u32 idx, u32 val, 393 u32 start, u32 end) 394 { 395 dispc_write(dispc, idx, FLD_MOD(dispc_read(dispc, idx), val, 396 start, end)); 397 } 398 399 static u32 VID_REG_GET(struct dispc_device *dispc, u32 hw_plane, u32 idx, 400 u32 start, u32 end) 401 { 402 return FLD_GET(dispc_vid_read(dispc, hw_plane, idx), start, end); 403 } 404 405 static void VID_REG_FLD_MOD(struct dispc_device *dispc, u32 hw_plane, u32 idx, 406 u32 val, u32 start, u32 end) 407 { 408 dispc_vid_write(dispc, hw_plane, idx, 409 FLD_MOD(dispc_vid_read(dispc, hw_plane, idx), 410 val, start, end)); 411 } 412 413 static u32 VP_REG_GET(struct dispc_device *dispc, u32 vp, u32 idx, 414 u32 start, u32 end) 415 { 416 return FLD_GET(dispc_vp_read(dispc, vp, idx), start, end); 417 } 418 419 static void VP_REG_FLD_MOD(struct dispc_device *dispc, u32 vp, u32 idx, u32 val, 420 u32 start, u32 end) 421 { 422 dispc_vp_write(dispc, vp, idx, FLD_MOD(dispc_vp_read(dispc, vp, idx), 423 val, start, end)); 424 } 425 426 __maybe_unused 427 static u32 OVR_REG_GET(struct dispc_device *dispc, u32 ovr, u32 idx, 428 u32 start, u32 end) 429 { 430 return FLD_GET(dispc_ovr_read(dispc, ovr, idx), start, end); 431 } 432 433 static void OVR_REG_FLD_MOD(struct dispc_device *dispc, u32 ovr, u32 idx, 434 u32 val, u32 start, u32 end) 435 { 436 dispc_ovr_write(dispc, ovr, idx, 437 FLD_MOD(dispc_ovr_read(dispc, ovr, idx), 438 val, start, end)); 439 } 440 441 static dispc_irq_t dispc_vp_irq_from_raw(u32 stat, u32 hw_videoport) 442 { 443 dispc_irq_t vp_stat = 0; 444 445 if (stat & BIT(0)) 446 vp_stat |= DSS_IRQ_VP_FRAME_DONE(hw_videoport); 447 if (stat & BIT(1)) 448 vp_stat |= DSS_IRQ_VP_VSYNC_EVEN(hw_videoport); 449 if (stat & BIT(2)) 450 vp_stat |= DSS_IRQ_VP_VSYNC_ODD(hw_videoport); 451 if (stat & BIT(4)) 452 vp_stat |= DSS_IRQ_VP_SYNC_LOST(hw_videoport); 453 454 return vp_stat; 455 } 456 457 static u32 dispc_vp_irq_to_raw(dispc_irq_t vpstat, u32 hw_videoport) 458 { 459 u32 stat = 0; 460 461 if (vpstat & DSS_IRQ_VP_FRAME_DONE(hw_videoport)) 462 stat |= BIT(0); 463 if (vpstat & DSS_IRQ_VP_VSYNC_EVEN(hw_videoport)) 464 stat |= BIT(1); 465 if (vpstat & DSS_IRQ_VP_VSYNC_ODD(hw_videoport)) 466 stat |= BIT(2); 467 if (vpstat & DSS_IRQ_VP_SYNC_LOST(hw_videoport)) 468 stat |= BIT(4); 469 470 return stat; 471 } 472 473 static dispc_irq_t dispc_vid_irq_from_raw(u32 stat, u32 hw_plane) 474 { 475 dispc_irq_t vid_stat = 0; 476 477 if (stat & BIT(0)) 478 vid_stat |= DSS_IRQ_PLANE_FIFO_UNDERFLOW(hw_plane); 479 480 return vid_stat; 481 } 482 483 static u32 dispc_vid_irq_to_raw(dispc_irq_t vidstat, u32 hw_plane) 484 { 485 u32 stat = 0; 486 487 if (vidstat & DSS_IRQ_PLANE_FIFO_UNDERFLOW(hw_plane)) 488 stat |= BIT(0); 489 490 return stat; 491 } 492 493 static dispc_irq_t dispc_k2g_vp_read_irqstatus(struct dispc_device *dispc, 494 u32 hw_videoport) 495 { 496 u32 stat = dispc_vp_read(dispc, hw_videoport, DISPC_VP_K2G_IRQSTATUS); 497 498 return dispc_vp_irq_from_raw(stat, hw_videoport); 499 } 500 501 static void dispc_k2g_vp_write_irqstatus(struct dispc_device *dispc, 502 u32 hw_videoport, dispc_irq_t vpstat) 503 { 504 u32 stat = dispc_vp_irq_to_raw(vpstat, hw_videoport); 505 506 dispc_vp_write(dispc, hw_videoport, DISPC_VP_K2G_IRQSTATUS, stat); 507 } 508 509 static dispc_irq_t dispc_k2g_vid_read_irqstatus(struct dispc_device *dispc, 510 u32 hw_plane) 511 { 512 u32 stat = dispc_vid_read(dispc, hw_plane, DISPC_VID_K2G_IRQSTATUS); 513 514 return dispc_vid_irq_from_raw(stat, hw_plane); 515 } 516 517 static void dispc_k2g_vid_write_irqstatus(struct dispc_device *dispc, 518 u32 hw_plane, dispc_irq_t vidstat) 519 { 520 u32 stat = dispc_vid_irq_to_raw(vidstat, hw_plane); 521 522 dispc_vid_write(dispc, hw_plane, DISPC_VID_K2G_IRQSTATUS, stat); 523 } 524 525 static dispc_irq_t dispc_k2g_vp_read_irqenable(struct dispc_device *dispc, 526 u32 hw_videoport) 527 { 528 u32 stat = dispc_vp_read(dispc, hw_videoport, DISPC_VP_K2G_IRQENABLE); 529 530 return dispc_vp_irq_from_raw(stat, hw_videoport); 531 } 532 533 static void dispc_k2g_vp_set_irqenable(struct dispc_device *dispc, 534 u32 hw_videoport, dispc_irq_t vpstat) 535 { 536 u32 stat = dispc_vp_irq_to_raw(vpstat, hw_videoport); 537 538 dispc_vp_write(dispc, hw_videoport, DISPC_VP_K2G_IRQENABLE, stat); 539 } 540 541 static dispc_irq_t dispc_k2g_vid_read_irqenable(struct dispc_device *dispc, 542 u32 hw_plane) 543 { 544 u32 stat = dispc_vid_read(dispc, hw_plane, DISPC_VID_K2G_IRQENABLE); 545 546 return dispc_vid_irq_from_raw(stat, hw_plane); 547 } 548 549 static void dispc_k2g_vid_set_irqenable(struct dispc_device *dispc, 550 u32 hw_plane, dispc_irq_t vidstat) 551 { 552 u32 stat = dispc_vid_irq_to_raw(vidstat, hw_plane); 553 554 dispc_vid_write(dispc, hw_plane, DISPC_VID_K2G_IRQENABLE, stat); 555 } 556 557 static void dispc_k2g_clear_irqstatus(struct dispc_device *dispc, 558 dispc_irq_t mask) 559 { 560 dispc_k2g_vp_write_irqstatus(dispc, 0, mask); 561 dispc_k2g_vid_write_irqstatus(dispc, 0, mask); 562 } 563 564 static 565 dispc_irq_t dispc_k2g_read_and_clear_irqstatus(struct dispc_device *dispc) 566 { 567 dispc_irq_t stat = 0; 568 569 /* always clear the top level irqstatus */ 570 dispc_write(dispc, DISPC_IRQSTATUS, 571 dispc_read(dispc, DISPC_IRQSTATUS)); 572 573 stat |= dispc_k2g_vp_read_irqstatus(dispc, 0); 574 stat |= dispc_k2g_vid_read_irqstatus(dispc, 0); 575 576 dispc_k2g_clear_irqstatus(dispc, stat); 577 578 return stat; 579 } 580 581 static dispc_irq_t dispc_k2g_read_irqenable(struct dispc_device *dispc) 582 { 583 dispc_irq_t stat = 0; 584 585 stat |= dispc_k2g_vp_read_irqenable(dispc, 0); 586 stat |= dispc_k2g_vid_read_irqenable(dispc, 0); 587 588 return stat; 589 } 590 591 static 592 void dispc_k2g_set_irqenable(struct dispc_device *dispc, dispc_irq_t mask) 593 { 594 dispc_irq_t old_mask = dispc_k2g_read_irqenable(dispc); 595 596 /* clear the irqstatus for newly enabled irqs */ 597 dispc_k2g_clear_irqstatus(dispc, (mask ^ old_mask) & mask); 598 599 dispc_k2g_vp_set_irqenable(dispc, 0, mask); 600 dispc_k2g_vid_set_irqenable(dispc, 0, mask); 601 602 dispc_write(dispc, DISPC_IRQENABLE_SET, (1 << 0) | (1 << 7)); 603 604 /* flush posted write */ 605 dispc_k2g_read_irqenable(dispc); 606 } 607 608 static dispc_irq_t dispc_k3_vp_read_irqstatus(struct dispc_device *dispc, 609 u32 hw_videoport) 610 { 611 u32 stat = dispc_read(dispc, DISPC_VP_IRQSTATUS(hw_videoport)); 612 613 return dispc_vp_irq_from_raw(stat, hw_videoport); 614 } 615 616 static void dispc_k3_vp_write_irqstatus(struct dispc_device *dispc, 617 u32 hw_videoport, dispc_irq_t vpstat) 618 { 619 u32 stat = dispc_vp_irq_to_raw(vpstat, hw_videoport); 620 621 dispc_write(dispc, DISPC_VP_IRQSTATUS(hw_videoport), stat); 622 } 623 624 static dispc_irq_t dispc_k3_vid_read_irqstatus(struct dispc_device *dispc, 625 u32 hw_plane) 626 { 627 u32 stat = dispc_read(dispc, DISPC_VID_IRQSTATUS(hw_plane)); 628 629 return dispc_vid_irq_from_raw(stat, hw_plane); 630 } 631 632 static void dispc_k3_vid_write_irqstatus(struct dispc_device *dispc, 633 u32 hw_plane, dispc_irq_t vidstat) 634 { 635 u32 stat = dispc_vid_irq_to_raw(vidstat, hw_plane); 636 637 dispc_write(dispc, DISPC_VID_IRQSTATUS(hw_plane), stat); 638 } 639 640 static dispc_irq_t dispc_k3_vp_read_irqenable(struct dispc_device *dispc, 641 u32 hw_videoport) 642 { 643 u32 stat = dispc_read(dispc, DISPC_VP_IRQENABLE(hw_videoport)); 644 645 return dispc_vp_irq_from_raw(stat, hw_videoport); 646 } 647 648 static void dispc_k3_vp_set_irqenable(struct dispc_device *dispc, 649 u32 hw_videoport, dispc_irq_t vpstat) 650 { 651 u32 stat = dispc_vp_irq_to_raw(vpstat, hw_videoport); 652 653 dispc_write(dispc, DISPC_VP_IRQENABLE(hw_videoport), stat); 654 } 655 656 static dispc_irq_t dispc_k3_vid_read_irqenable(struct dispc_device *dispc, 657 u32 hw_plane) 658 { 659 u32 stat = dispc_read(dispc, DISPC_VID_IRQENABLE(hw_plane)); 660 661 return dispc_vid_irq_from_raw(stat, hw_plane); 662 } 663 664 static void dispc_k3_vid_set_irqenable(struct dispc_device *dispc, 665 u32 hw_plane, dispc_irq_t vidstat) 666 { 667 u32 stat = dispc_vid_irq_to_raw(vidstat, hw_plane); 668 669 dispc_write(dispc, DISPC_VID_IRQENABLE(hw_plane), stat); 670 } 671 672 static 673 void dispc_k3_clear_irqstatus(struct dispc_device *dispc, dispc_irq_t clearmask) 674 { 675 unsigned int i; 676 u32 top_clear = 0; 677 678 for (i = 0; i < dispc->feat->num_vps; ++i) { 679 if (clearmask & DSS_IRQ_VP_MASK(i)) { 680 dispc_k3_vp_write_irqstatus(dispc, i, clearmask); 681 top_clear |= BIT(i); 682 } 683 } 684 for (i = 0; i < dispc->feat->num_planes; ++i) { 685 if (clearmask & DSS_IRQ_PLANE_MASK(i)) { 686 dispc_k3_vid_write_irqstatus(dispc, i, clearmask); 687 top_clear |= BIT(4 + i); 688 } 689 } 690 if (dispc->feat->subrev == DISPC_K2G) 691 return; 692 693 dispc_write(dispc, DISPC_IRQSTATUS, top_clear); 694 695 /* Flush posted writes */ 696 dispc_read(dispc, DISPC_IRQSTATUS); 697 } 698 699 static 700 dispc_irq_t dispc_k3_read_and_clear_irqstatus(struct dispc_device *dispc) 701 { 702 dispc_irq_t status = 0; 703 unsigned int i; 704 705 for (i = 0; i < dispc->feat->num_vps; ++i) 706 status |= dispc_k3_vp_read_irqstatus(dispc, i); 707 708 for (i = 0; i < dispc->feat->num_planes; ++i) 709 status |= dispc_k3_vid_read_irqstatus(dispc, i); 710 711 dispc_k3_clear_irqstatus(dispc, status); 712 713 return status; 714 } 715 716 static dispc_irq_t dispc_k3_read_irqenable(struct dispc_device *dispc) 717 { 718 dispc_irq_t enable = 0; 719 unsigned int i; 720 721 for (i = 0; i < dispc->feat->num_vps; ++i) 722 enable |= dispc_k3_vp_read_irqenable(dispc, i); 723 724 for (i = 0; i < dispc->feat->num_planes; ++i) 725 enable |= dispc_k3_vid_read_irqenable(dispc, i); 726 727 return enable; 728 } 729 730 static void dispc_k3_set_irqenable(struct dispc_device *dispc, 731 dispc_irq_t mask) 732 { 733 unsigned int i; 734 u32 main_enable = 0, main_disable = 0; 735 dispc_irq_t old_mask; 736 737 old_mask = dispc_k3_read_irqenable(dispc); 738 739 /* clear the irqstatus for newly enabled irqs */ 740 dispc_k3_clear_irqstatus(dispc, (old_mask ^ mask) & mask); 741 742 for (i = 0; i < dispc->feat->num_vps; ++i) { 743 dispc_k3_vp_set_irqenable(dispc, i, mask); 744 if (mask & DSS_IRQ_VP_MASK(i)) 745 main_enable |= BIT(i); /* VP IRQ */ 746 else 747 main_disable |= BIT(i); /* VP IRQ */ 748 } 749 750 for (i = 0; i < dispc->feat->num_planes; ++i) { 751 dispc_k3_vid_set_irqenable(dispc, i, mask); 752 if (mask & DSS_IRQ_PLANE_MASK(i)) 753 main_enable |= BIT(i + 4); /* VID IRQ */ 754 else 755 main_disable |= BIT(i + 4); /* VID IRQ */ 756 } 757 758 if (main_enable) 759 dispc_write(dispc, DISPC_IRQENABLE_SET, main_enable); 760 761 if (main_disable) 762 dispc_write(dispc, DISPC_IRQENABLE_CLR, main_disable); 763 764 /* Flush posted writes */ 765 dispc_read(dispc, DISPC_IRQENABLE_SET); 766 } 767 768 dispc_irq_t dispc_read_and_clear_irqstatus(struct dispc_device *dispc) 769 { 770 switch (dispc->feat->subrev) { 771 case DISPC_K2G: 772 return dispc_k2g_read_and_clear_irqstatus(dispc); 773 case DISPC_AM65X: 774 case DISPC_J721E: 775 return dispc_k3_read_and_clear_irqstatus(dispc); 776 default: 777 WARN_ON(1); 778 return 0; 779 } 780 } 781 782 void dispc_set_irqenable(struct dispc_device *dispc, dispc_irq_t mask) 783 { 784 switch (dispc->feat->subrev) { 785 case DISPC_K2G: 786 dispc_k2g_set_irqenable(dispc, mask); 787 break; 788 case DISPC_AM65X: 789 case DISPC_J721E: 790 dispc_k3_set_irqenable(dispc, mask); 791 break; 792 default: 793 WARN_ON(1); 794 break; 795 } 796 } 797 798 enum dispc_oldi_mode_reg_val { SPWG_18 = 0, JEIDA_24 = 1, SPWG_24 = 2 }; 799 800 struct dispc_bus_format { 801 u32 bus_fmt; 802 u32 data_width; 803 bool is_oldi_fmt; 804 enum dispc_oldi_mode_reg_val oldi_mode_reg_val; 805 }; 806 807 static const struct dispc_bus_format dispc_bus_formats[] = { 808 { MEDIA_BUS_FMT_RGB444_1X12, 12, false, 0 }, 809 { MEDIA_BUS_FMT_RGB565_1X16, 16, false, 0 }, 810 { MEDIA_BUS_FMT_RGB666_1X18, 18, false, 0 }, 811 { MEDIA_BUS_FMT_RGB888_1X24, 24, false, 0 }, 812 { MEDIA_BUS_FMT_RGB101010_1X30, 30, false, 0 }, 813 { MEDIA_BUS_FMT_RGB121212_1X36, 36, false, 0 }, 814 { MEDIA_BUS_FMT_RGB666_1X7X3_SPWG, 18, true, SPWG_18 }, 815 { MEDIA_BUS_FMT_RGB888_1X7X4_SPWG, 24, true, SPWG_24 }, 816 { MEDIA_BUS_FMT_RGB888_1X7X4_JEIDA, 24, true, JEIDA_24 }, 817 }; 818 819 static const 820 struct dispc_bus_format *dispc_vp_find_bus_fmt(struct dispc_device *dispc, 821 u32 hw_videoport, 822 u32 bus_fmt, u32 bus_flags) 823 { 824 unsigned int i; 825 826 for (i = 0; i < ARRAY_SIZE(dispc_bus_formats); ++i) { 827 if (dispc_bus_formats[i].bus_fmt == bus_fmt) 828 return &dispc_bus_formats[i]; 829 } 830 831 return NULL; 832 } 833 834 int dispc_vp_bus_check(struct dispc_device *dispc, u32 hw_videoport, 835 const struct drm_crtc_state *state) 836 { 837 const struct tidss_crtc_state *tstate = to_tidss_crtc_state(state); 838 const struct dispc_bus_format *fmt; 839 840 fmt = dispc_vp_find_bus_fmt(dispc, hw_videoport, tstate->bus_format, 841 tstate->bus_flags); 842 if (!fmt) { 843 dev_dbg(dispc->dev, "%s: Unsupported bus format: %u\n", 844 __func__, tstate->bus_format); 845 return -EINVAL; 846 } 847 848 if (dispc->feat->vp_bus_type[hw_videoport] != DISPC_VP_OLDI && 849 fmt->is_oldi_fmt) { 850 dev_dbg(dispc->dev, "%s: %s is not OLDI-port\n", 851 __func__, dispc->feat->vp_name[hw_videoport]); 852 return -EINVAL; 853 } 854 855 return 0; 856 } 857 858 static void dispc_oldi_tx_power(struct dispc_device *dispc, bool power) 859 { 860 u32 val = power ? 0 : OLDI_PWRDN_TX; 861 862 if (WARN_ON(!dispc->oldi_io_ctrl)) 863 return; 864 865 regmap_update_bits(dispc->oldi_io_ctrl, OLDI_DAT0_IO_CTRL, 866 OLDI_PWRDN_TX, val); 867 regmap_update_bits(dispc->oldi_io_ctrl, OLDI_DAT1_IO_CTRL, 868 OLDI_PWRDN_TX, val); 869 regmap_update_bits(dispc->oldi_io_ctrl, OLDI_DAT2_IO_CTRL, 870 OLDI_PWRDN_TX, val); 871 regmap_update_bits(dispc->oldi_io_ctrl, OLDI_DAT3_IO_CTRL, 872 OLDI_PWRDN_TX, val); 873 regmap_update_bits(dispc->oldi_io_ctrl, OLDI_CLK_IO_CTRL, 874 OLDI_PWRDN_TX, val); 875 } 876 877 static void dispc_set_num_datalines(struct dispc_device *dispc, 878 u32 hw_videoport, int num_lines) 879 { 880 int v; 881 882 switch (num_lines) { 883 case 12: 884 v = 0; break; 885 case 16: 886 v = 1; break; 887 case 18: 888 v = 2; break; 889 case 24: 890 v = 3; break; 891 case 30: 892 v = 4; break; 893 case 36: 894 v = 5; break; 895 default: 896 WARN_ON(1); 897 v = 3; 898 } 899 900 VP_REG_FLD_MOD(dispc, hw_videoport, DISPC_VP_CONTROL, v, 10, 8); 901 } 902 903 static void dispc_enable_oldi(struct dispc_device *dispc, u32 hw_videoport, 904 const struct dispc_bus_format *fmt) 905 { 906 u32 oldi_cfg = 0; 907 u32 oldi_reset_bit = BIT(5 + hw_videoport); 908 int count = 0; 909 910 /* 911 * For the moment DUALMODESYNC, MASTERSLAVE, MODE, and SRC 912 * bits of DISPC_VP_DSS_OLDI_CFG are set statically to 0. 913 */ 914 915 if (fmt->data_width == 24) 916 oldi_cfg |= BIT(8); /* MSB */ 917 else if (fmt->data_width != 18) 918 dev_warn(dispc->dev, "%s: %d port width not supported\n", 919 __func__, fmt->data_width); 920 921 oldi_cfg |= BIT(7); /* DEPOL */ 922 923 oldi_cfg = FLD_MOD(oldi_cfg, fmt->oldi_mode_reg_val, 3, 1); 924 925 oldi_cfg |= BIT(12); /* SOFTRST */ 926 927 oldi_cfg |= BIT(0); /* ENABLE */ 928 929 dispc_vp_write(dispc, hw_videoport, DISPC_VP_DSS_OLDI_CFG, oldi_cfg); 930 931 while (!(oldi_reset_bit & dispc_read(dispc, DSS_SYSSTATUS)) && 932 count < 10000) 933 count++; 934 935 if (!(oldi_reset_bit & dispc_read(dispc, DSS_SYSSTATUS))) 936 dev_warn(dispc->dev, "%s: timeout waiting OLDI reset done\n", 937 __func__); 938 } 939 940 void dispc_vp_prepare(struct dispc_device *dispc, u32 hw_videoport, 941 const struct drm_crtc_state *state) 942 { 943 const struct tidss_crtc_state *tstate = to_tidss_crtc_state(state); 944 const struct dispc_bus_format *fmt; 945 946 fmt = dispc_vp_find_bus_fmt(dispc, hw_videoport, tstate->bus_format, 947 tstate->bus_flags); 948 949 if (WARN_ON(!fmt)) 950 return; 951 952 if (dispc->feat->vp_bus_type[hw_videoport] == DISPC_VP_OLDI) { 953 dispc_oldi_tx_power(dispc, true); 954 955 dispc_enable_oldi(dispc, hw_videoport, fmt); 956 } 957 } 958 959 void dispc_vp_enable(struct dispc_device *dispc, u32 hw_videoport, 960 const struct drm_crtc_state *state) 961 { 962 const struct drm_display_mode *mode = &state->adjusted_mode; 963 const struct tidss_crtc_state *tstate = to_tidss_crtc_state(state); 964 bool align, onoff, rf, ieo, ipc, ihs, ivs; 965 const struct dispc_bus_format *fmt; 966 u32 hsw, hfp, hbp, vsw, vfp, vbp; 967 968 fmt = dispc_vp_find_bus_fmt(dispc, hw_videoport, tstate->bus_format, 969 tstate->bus_flags); 970 971 if (WARN_ON(!fmt)) 972 return; 973 974 dispc_set_num_datalines(dispc, hw_videoport, fmt->data_width); 975 976 hfp = mode->hsync_start - mode->hdisplay; 977 hsw = mode->hsync_end - mode->hsync_start; 978 hbp = mode->htotal - mode->hsync_end; 979 980 vfp = mode->vsync_start - mode->vdisplay; 981 vsw = mode->vsync_end - mode->vsync_start; 982 vbp = mode->vtotal - mode->vsync_end; 983 984 dispc_vp_write(dispc, hw_videoport, DISPC_VP_TIMING_H, 985 FLD_VAL(hsw - 1, 7, 0) | 986 FLD_VAL(hfp - 1, 19, 8) | 987 FLD_VAL(hbp - 1, 31, 20)); 988 989 dispc_vp_write(dispc, hw_videoport, DISPC_VP_TIMING_V, 990 FLD_VAL(vsw - 1, 7, 0) | 991 FLD_VAL(vfp, 19, 8) | 992 FLD_VAL(vbp, 31, 20)); 993 994 ivs = !!(mode->flags & DRM_MODE_FLAG_NVSYNC); 995 996 ihs = !!(mode->flags & DRM_MODE_FLAG_NHSYNC); 997 998 ieo = !!(tstate->bus_flags & DRM_BUS_FLAG_DE_LOW); 999 1000 ipc = !!(tstate->bus_flags & DRM_BUS_FLAG_PIXDATA_DRIVE_NEGEDGE); 1001 1002 /* always use the 'rf' setting */ 1003 onoff = true; 1004 1005 rf = !!(tstate->bus_flags & DRM_BUS_FLAG_SYNC_DRIVE_POSEDGE); 1006 1007 /* always use aligned syncs */ 1008 align = true; 1009 1010 /* always use DE_HIGH for OLDI */ 1011 if (dispc->feat->vp_bus_type[hw_videoport] == DISPC_VP_OLDI) 1012 ieo = false; 1013 1014 dispc_vp_write(dispc, hw_videoport, DISPC_VP_POL_FREQ, 1015 FLD_VAL(align, 18, 18) | 1016 FLD_VAL(onoff, 17, 17) | 1017 FLD_VAL(rf, 16, 16) | 1018 FLD_VAL(ieo, 15, 15) | 1019 FLD_VAL(ipc, 14, 14) | 1020 FLD_VAL(ihs, 13, 13) | 1021 FLD_VAL(ivs, 12, 12)); 1022 1023 dispc_vp_write(dispc, hw_videoport, DISPC_VP_SIZE_SCREEN, 1024 FLD_VAL(mode->hdisplay - 1, 11, 0) | 1025 FLD_VAL(mode->vdisplay - 1, 27, 16)); 1026 1027 VP_REG_FLD_MOD(dispc, hw_videoport, DISPC_VP_CONTROL, 1, 0, 0); 1028 } 1029 1030 void dispc_vp_disable(struct dispc_device *dispc, u32 hw_videoport) 1031 { 1032 VP_REG_FLD_MOD(dispc, hw_videoport, DISPC_VP_CONTROL, 0, 0, 0); 1033 } 1034 1035 void dispc_vp_unprepare(struct dispc_device *dispc, u32 hw_videoport) 1036 { 1037 if (dispc->feat->vp_bus_type[hw_videoport] == DISPC_VP_OLDI) { 1038 dispc_vp_write(dispc, hw_videoport, DISPC_VP_DSS_OLDI_CFG, 0); 1039 1040 dispc_oldi_tx_power(dispc, false); 1041 } 1042 } 1043 1044 bool dispc_vp_go_busy(struct dispc_device *dispc, u32 hw_videoport) 1045 { 1046 return VP_REG_GET(dispc, hw_videoport, DISPC_VP_CONTROL, 5, 5); 1047 } 1048 1049 void dispc_vp_go(struct dispc_device *dispc, u32 hw_videoport) 1050 { 1051 WARN_ON(VP_REG_GET(dispc, hw_videoport, DISPC_VP_CONTROL, 5, 5)); 1052 VP_REG_FLD_MOD(dispc, hw_videoport, DISPC_VP_CONTROL, 1, 5, 5); 1053 } 1054 1055 enum c8_to_c12_mode { C8_TO_C12_REPLICATE, C8_TO_C12_MAX, C8_TO_C12_MIN }; 1056 1057 static u16 c8_to_c12(u8 c8, enum c8_to_c12_mode mode) 1058 { 1059 u16 c12; 1060 1061 c12 = c8 << 4; 1062 1063 switch (mode) { 1064 case C8_TO_C12_REPLICATE: 1065 /* Copy c8 4 MSB to 4 LSB for full scale c12 */ 1066 c12 |= c8 >> 4; 1067 break; 1068 case C8_TO_C12_MAX: 1069 c12 |= 0xF; 1070 break; 1071 default: 1072 case C8_TO_C12_MIN: 1073 break; 1074 } 1075 1076 return c12; 1077 } 1078 1079 static u64 argb8888_to_argb12121212(u32 argb8888, enum c8_to_c12_mode m) 1080 { 1081 u8 a, r, g, b; 1082 u64 v; 1083 1084 a = (argb8888 >> 24) & 0xff; 1085 r = (argb8888 >> 16) & 0xff; 1086 g = (argb8888 >> 8) & 0xff; 1087 b = (argb8888 >> 0) & 0xff; 1088 1089 v = ((u64)c8_to_c12(a, m) << 36) | ((u64)c8_to_c12(r, m) << 24) | 1090 ((u64)c8_to_c12(g, m) << 12) | (u64)c8_to_c12(b, m); 1091 1092 return v; 1093 } 1094 1095 static void dispc_vp_set_default_color(struct dispc_device *dispc, 1096 u32 hw_videoport, u32 default_color) 1097 { 1098 u64 v; 1099 1100 v = argb8888_to_argb12121212(default_color, C8_TO_C12_REPLICATE); 1101 1102 dispc_ovr_write(dispc, hw_videoport, 1103 DISPC_OVR_DEFAULT_COLOR, v & 0xffffffff); 1104 dispc_ovr_write(dispc, hw_videoport, 1105 DISPC_OVR_DEFAULT_COLOR2, (v >> 32) & 0xffff); 1106 } 1107 1108 enum drm_mode_status dispc_vp_mode_valid(struct dispc_device *dispc, 1109 u32 hw_videoport, 1110 const struct drm_display_mode *mode) 1111 { 1112 u32 hsw, hfp, hbp, vsw, vfp, vbp; 1113 enum dispc_vp_bus_type bus_type; 1114 int max_pclk; 1115 1116 bus_type = dispc->feat->vp_bus_type[hw_videoport]; 1117 1118 max_pclk = dispc->feat->max_pclk_khz[bus_type]; 1119 1120 if (WARN_ON(max_pclk == 0)) 1121 return MODE_BAD; 1122 1123 if (mode->clock < dispc->feat->min_pclk_khz) 1124 return MODE_CLOCK_LOW; 1125 1126 if (mode->clock > max_pclk) 1127 return MODE_CLOCK_HIGH; 1128 1129 if (mode->hdisplay > 4096) 1130 return MODE_BAD; 1131 1132 if (mode->vdisplay > 4096) 1133 return MODE_BAD; 1134 1135 /* TODO: add interlace support */ 1136 if (mode->flags & DRM_MODE_FLAG_INTERLACE) 1137 return MODE_NO_INTERLACE; 1138 1139 /* 1140 * Enforce the output width is divisible by 2. Actually this 1141 * is only needed in following cases: 1142 * - YUV output selected (BT656, BT1120) 1143 * - Dithering enabled 1144 * - TDM with TDMCycleFormat == 3 1145 * But for simplicity we enforce that always. 1146 */ 1147 if ((mode->hdisplay % 2) != 0) 1148 return MODE_BAD_HVALUE; 1149 1150 hfp = mode->hsync_start - mode->hdisplay; 1151 hsw = mode->hsync_end - mode->hsync_start; 1152 hbp = mode->htotal - mode->hsync_end; 1153 1154 vfp = mode->vsync_start - mode->vdisplay; 1155 vsw = mode->vsync_end - mode->vsync_start; 1156 vbp = mode->vtotal - mode->vsync_end; 1157 1158 if (hsw < 1 || hsw > 256 || 1159 hfp < 1 || hfp > 4096 || 1160 hbp < 1 || hbp > 4096) 1161 return MODE_BAD_HVALUE; 1162 1163 if (vsw < 1 || vsw > 256 || 1164 vfp > 4095 || vbp > 4095) 1165 return MODE_BAD_VVALUE; 1166 1167 if (dispc->memory_bandwidth_limit) { 1168 const unsigned int bpp = 4; 1169 u64 bandwidth; 1170 1171 bandwidth = 1000 * mode->clock; 1172 bandwidth = bandwidth * mode->hdisplay * mode->vdisplay * bpp; 1173 bandwidth = div_u64(bandwidth, mode->htotal * mode->vtotal); 1174 1175 if (dispc->memory_bandwidth_limit < bandwidth) 1176 return MODE_BAD; 1177 } 1178 1179 return MODE_OK; 1180 } 1181 1182 int dispc_vp_enable_clk(struct dispc_device *dispc, u32 hw_videoport) 1183 { 1184 int ret = clk_prepare_enable(dispc->vp_clk[hw_videoport]); 1185 1186 if (ret) 1187 dev_err(dispc->dev, "%s: enabling clk failed: %d\n", __func__, 1188 ret); 1189 1190 return ret; 1191 } 1192 1193 void dispc_vp_disable_clk(struct dispc_device *dispc, u32 hw_videoport) 1194 { 1195 clk_disable_unprepare(dispc->vp_clk[hw_videoport]); 1196 } 1197 1198 /* 1199 * Calculate the percentage difference between the requested pixel clock rate 1200 * and the effective rate resulting from calculating the clock divider value. 1201 */ 1202 static 1203 unsigned int dispc_pclk_diff(unsigned long rate, unsigned long real_rate) 1204 { 1205 int r = rate / 100, rr = real_rate / 100; 1206 1207 return (unsigned int)(abs(((rr - r) * 100) / r)); 1208 } 1209 1210 int dispc_vp_set_clk_rate(struct dispc_device *dispc, u32 hw_videoport, 1211 unsigned long rate) 1212 { 1213 int r; 1214 unsigned long new_rate; 1215 1216 r = clk_set_rate(dispc->vp_clk[hw_videoport], rate); 1217 if (r) { 1218 dev_err(dispc->dev, "vp%d: failed to set clk rate to %lu\n", 1219 hw_videoport, rate); 1220 return r; 1221 } 1222 1223 new_rate = clk_get_rate(dispc->vp_clk[hw_videoport]); 1224 1225 if (dispc_pclk_diff(rate, new_rate) > 5) 1226 dev_warn(dispc->dev, 1227 "vp%d: Clock rate %lu differs over 5%% from requested %lu\n", 1228 hw_videoport, new_rate, rate); 1229 1230 dev_dbg(dispc->dev, "vp%d: new rate %lu Hz (requested %lu Hz)\n", 1231 hw_videoport, clk_get_rate(dispc->vp_clk[hw_videoport]), rate); 1232 1233 return 0; 1234 } 1235 1236 /* OVR */ 1237 static void dispc_k2g_ovr_set_plane(struct dispc_device *dispc, 1238 u32 hw_plane, u32 hw_videoport, 1239 u32 x, u32 y, u32 layer) 1240 { 1241 /* On k2g there is only one plane and no need for ovr */ 1242 dispc_vid_write(dispc, hw_plane, DISPC_VID_K2G_POSITION, 1243 x | (y << 16)); 1244 } 1245 1246 static void dispc_am65x_ovr_set_plane(struct dispc_device *dispc, 1247 u32 hw_plane, u32 hw_videoport, 1248 u32 x, u32 y, u32 layer) 1249 { 1250 OVR_REG_FLD_MOD(dispc, hw_videoport, DISPC_OVR_ATTRIBUTES(layer), 1251 hw_plane, 4, 1); 1252 OVR_REG_FLD_MOD(dispc, hw_videoport, DISPC_OVR_ATTRIBUTES(layer), 1253 x, 17, 6); 1254 OVR_REG_FLD_MOD(dispc, hw_videoport, DISPC_OVR_ATTRIBUTES(layer), 1255 y, 30, 19); 1256 } 1257 1258 static void dispc_j721e_ovr_set_plane(struct dispc_device *dispc, 1259 u32 hw_plane, u32 hw_videoport, 1260 u32 x, u32 y, u32 layer) 1261 { 1262 OVR_REG_FLD_MOD(dispc, hw_videoport, DISPC_OVR_ATTRIBUTES(layer), 1263 hw_plane, 4, 1); 1264 OVR_REG_FLD_MOD(dispc, hw_videoport, DISPC_OVR_ATTRIBUTES2(layer), 1265 x, 13, 0); 1266 OVR_REG_FLD_MOD(dispc, hw_videoport, DISPC_OVR_ATTRIBUTES2(layer), 1267 y, 29, 16); 1268 } 1269 1270 void dispc_ovr_set_plane(struct dispc_device *dispc, u32 hw_plane, 1271 u32 hw_videoport, u32 x, u32 y, u32 layer) 1272 { 1273 switch (dispc->feat->subrev) { 1274 case DISPC_K2G: 1275 dispc_k2g_ovr_set_plane(dispc, hw_plane, hw_videoport, 1276 x, y, layer); 1277 break; 1278 case DISPC_AM65X: 1279 dispc_am65x_ovr_set_plane(dispc, hw_plane, hw_videoport, 1280 x, y, layer); 1281 break; 1282 case DISPC_J721E: 1283 dispc_j721e_ovr_set_plane(dispc, hw_plane, hw_videoport, 1284 x, y, layer); 1285 break; 1286 default: 1287 WARN_ON(1); 1288 break; 1289 } 1290 } 1291 1292 void dispc_ovr_enable_layer(struct dispc_device *dispc, 1293 u32 hw_videoport, u32 layer, bool enable) 1294 { 1295 if (dispc->feat->subrev == DISPC_K2G) 1296 return; 1297 1298 OVR_REG_FLD_MOD(dispc, hw_videoport, DISPC_OVR_ATTRIBUTES(layer), 1299 !!enable, 0, 0); 1300 } 1301 1302 /* CSC */ 1303 enum csc_ctm { 1304 CSC_RR, CSC_RG, CSC_RB, 1305 CSC_GR, CSC_GG, CSC_GB, 1306 CSC_BR, CSC_BG, CSC_BB, 1307 }; 1308 1309 enum csc_yuv2rgb { 1310 CSC_RY, CSC_RCB, CSC_RCR, 1311 CSC_GY, CSC_GCB, CSC_GCR, 1312 CSC_BY, CSC_BCB, CSC_BCR, 1313 }; 1314 1315 enum csc_rgb2yuv { 1316 CSC_YR, CSC_YG, CSC_YB, 1317 CSC_CBR, CSC_CBG, CSC_CBB, 1318 CSC_CRR, CSC_CRG, CSC_CRB, 1319 }; 1320 1321 struct dispc_csc_coef { 1322 void (*to_regval)(const struct dispc_csc_coef *csc, u32 *regval); 1323 int m[9]; 1324 int preoffset[3]; 1325 int postoffset[3]; 1326 enum { CLIP_LIMITED_RANGE = 0, CLIP_FULL_RANGE = 1, } cliping; 1327 const char *name; 1328 }; 1329 1330 #define DISPC_CSC_REGVAL_LEN 8 1331 1332 static 1333 void dispc_csc_offset_regval(const struct dispc_csc_coef *csc, u32 *regval) 1334 { 1335 #define OVAL(x, y) (FLD_VAL(x, 15, 3) | FLD_VAL(y, 31, 19)) 1336 regval[5] = OVAL(csc->preoffset[0], csc->preoffset[1]); 1337 regval[6] = OVAL(csc->preoffset[2], csc->postoffset[0]); 1338 regval[7] = OVAL(csc->postoffset[1], csc->postoffset[2]); 1339 #undef OVAL 1340 } 1341 1342 #define CVAL(x, y) (FLD_VAL(x, 10, 0) | FLD_VAL(y, 26, 16)) 1343 static 1344 void dispc_csc_yuv2rgb_regval(const struct dispc_csc_coef *csc, u32 *regval) 1345 { 1346 regval[0] = CVAL(csc->m[CSC_RY], csc->m[CSC_RCR]); 1347 regval[1] = CVAL(csc->m[CSC_RCB], csc->m[CSC_GY]); 1348 regval[2] = CVAL(csc->m[CSC_GCR], csc->m[CSC_GCB]); 1349 regval[3] = CVAL(csc->m[CSC_BY], csc->m[CSC_BCR]); 1350 regval[4] = CVAL(csc->m[CSC_BCB], 0); 1351 1352 dispc_csc_offset_regval(csc, regval); 1353 } 1354 1355 __maybe_unused static 1356 void dispc_csc_rgb2yuv_regval(const struct dispc_csc_coef *csc, u32 *regval) 1357 { 1358 regval[0] = CVAL(csc->m[CSC_YR], csc->m[CSC_YG]); 1359 regval[1] = CVAL(csc->m[CSC_YB], csc->m[CSC_CRR]); 1360 regval[2] = CVAL(csc->m[CSC_CRG], csc->m[CSC_CRB]); 1361 regval[3] = CVAL(csc->m[CSC_CBR], csc->m[CSC_CBG]); 1362 regval[4] = CVAL(csc->m[CSC_CBB], 0); 1363 1364 dispc_csc_offset_regval(csc, regval); 1365 } 1366 1367 static void dispc_csc_cpr_regval(const struct dispc_csc_coef *csc, 1368 u32 *regval) 1369 { 1370 regval[0] = CVAL(csc->m[CSC_RR], csc->m[CSC_RG]); 1371 regval[1] = CVAL(csc->m[CSC_RB], csc->m[CSC_GR]); 1372 regval[2] = CVAL(csc->m[CSC_GG], csc->m[CSC_GB]); 1373 regval[3] = CVAL(csc->m[CSC_BR], csc->m[CSC_BG]); 1374 regval[4] = CVAL(csc->m[CSC_BB], 0); 1375 1376 dispc_csc_offset_regval(csc, regval); 1377 } 1378 1379 #undef CVAL 1380 1381 static void dispc_k2g_vid_write_csc(struct dispc_device *dispc, u32 hw_plane, 1382 const struct dispc_csc_coef *csc) 1383 { 1384 static const u16 dispc_vid_csc_coef_reg[] = { 1385 DISPC_VID_CSC_COEF(0), DISPC_VID_CSC_COEF(1), 1386 DISPC_VID_CSC_COEF(2), DISPC_VID_CSC_COEF(3), 1387 DISPC_VID_CSC_COEF(4), DISPC_VID_CSC_COEF(5), 1388 DISPC_VID_CSC_COEF(6), /* K2G has no post offset support */ 1389 }; 1390 u32 regval[DISPC_CSC_REGVAL_LEN]; 1391 unsigned int i; 1392 1393 csc->to_regval(csc, regval); 1394 1395 if (regval[7] != 0) 1396 dev_warn(dispc->dev, "%s: No post offset support for %s\n", 1397 __func__, csc->name); 1398 1399 for (i = 0; i < ARRAY_SIZE(dispc_vid_csc_coef_reg); i++) 1400 dispc_vid_write(dispc, hw_plane, dispc_vid_csc_coef_reg[i], 1401 regval[i]); 1402 } 1403 1404 static void dispc_k3_vid_write_csc(struct dispc_device *dispc, u32 hw_plane, 1405 const struct dispc_csc_coef *csc) 1406 { 1407 static const u16 dispc_vid_csc_coef_reg[DISPC_CSC_REGVAL_LEN] = { 1408 DISPC_VID_CSC_COEF(0), DISPC_VID_CSC_COEF(1), 1409 DISPC_VID_CSC_COEF(2), DISPC_VID_CSC_COEF(3), 1410 DISPC_VID_CSC_COEF(4), DISPC_VID_CSC_COEF(5), 1411 DISPC_VID_CSC_COEF(6), DISPC_VID_CSC_COEF7, 1412 }; 1413 u32 regval[DISPC_CSC_REGVAL_LEN]; 1414 unsigned int i; 1415 1416 csc->to_regval(csc, regval); 1417 1418 for (i = 0; i < ARRAY_SIZE(dispc_vid_csc_coef_reg); i++) 1419 dispc_vid_write(dispc, hw_plane, dispc_vid_csc_coef_reg[i], 1420 regval[i]); 1421 } 1422 1423 /* YUV -> RGB, ITU-R BT.601, full range */ 1424 static const struct dispc_csc_coef csc_yuv2rgb_bt601_full = { 1425 dispc_csc_yuv2rgb_regval, 1426 { 256, 0, 358, /* ry, rcb, rcr |1.000 0.000 1.402|*/ 1427 256, -88, -182, /* gy, gcb, gcr |1.000 -0.344 -0.714|*/ 1428 256, 452, 0, }, /* by, bcb, bcr |1.000 1.772 0.000|*/ 1429 { 0, -2048, -2048, }, /* full range */ 1430 { 0, 0, 0, }, 1431 CLIP_FULL_RANGE, 1432 "BT.601 Full", 1433 }; 1434 1435 /* YUV -> RGB, ITU-R BT.601, limited range */ 1436 static const struct dispc_csc_coef csc_yuv2rgb_bt601_lim = { 1437 dispc_csc_yuv2rgb_regval, 1438 { 298, 0, 409, /* ry, rcb, rcr |1.164 0.000 1.596|*/ 1439 298, -100, -208, /* gy, gcb, gcr |1.164 -0.392 -0.813|*/ 1440 298, 516, 0, }, /* by, bcb, bcr |1.164 2.017 0.000|*/ 1441 { -256, -2048, -2048, }, /* limited range */ 1442 { 0, 0, 0, }, 1443 CLIP_FULL_RANGE, 1444 "BT.601 Limited", 1445 }; 1446 1447 /* YUV -> RGB, ITU-R BT.709, full range */ 1448 static const struct dispc_csc_coef csc_yuv2rgb_bt709_full = { 1449 dispc_csc_yuv2rgb_regval, 1450 { 256, 0, 402, /* ry, rcb, rcr |1.000 0.000 1.570|*/ 1451 256, -48, -120, /* gy, gcb, gcr |1.000 -0.187 -0.467|*/ 1452 256, 475, 0, }, /* by, bcb, bcr |1.000 1.856 0.000|*/ 1453 { 0, -2048, -2048, }, /* full range */ 1454 { 0, 0, 0, }, 1455 CLIP_FULL_RANGE, 1456 "BT.709 Full", 1457 }; 1458 1459 /* YUV -> RGB, ITU-R BT.709, limited range */ 1460 static const struct dispc_csc_coef csc_yuv2rgb_bt709_lim = { 1461 dispc_csc_yuv2rgb_regval, 1462 { 298, 0, 459, /* ry, rcb, rcr |1.164 0.000 1.793|*/ 1463 298, -55, -136, /* gy, gcb, gcr |1.164 -0.213 -0.533|*/ 1464 298, 541, 0, }, /* by, bcb, bcr |1.164 2.112 0.000|*/ 1465 { -256, -2048, -2048, }, /* limited range */ 1466 { 0, 0, 0, }, 1467 CLIP_FULL_RANGE, 1468 "BT.709 Limited", 1469 }; 1470 1471 static const struct { 1472 enum drm_color_encoding encoding; 1473 enum drm_color_range range; 1474 const struct dispc_csc_coef *csc; 1475 } dispc_csc_table[] = { 1476 { DRM_COLOR_YCBCR_BT601, DRM_COLOR_YCBCR_FULL_RANGE, 1477 &csc_yuv2rgb_bt601_full, }, 1478 { DRM_COLOR_YCBCR_BT601, DRM_COLOR_YCBCR_LIMITED_RANGE, 1479 &csc_yuv2rgb_bt601_lim, }, 1480 { DRM_COLOR_YCBCR_BT709, DRM_COLOR_YCBCR_FULL_RANGE, 1481 &csc_yuv2rgb_bt709_full, }, 1482 { DRM_COLOR_YCBCR_BT709, DRM_COLOR_YCBCR_LIMITED_RANGE, 1483 &csc_yuv2rgb_bt709_lim, }, 1484 }; 1485 1486 static const 1487 struct dispc_csc_coef *dispc_find_csc(enum drm_color_encoding encoding, 1488 enum drm_color_range range) 1489 { 1490 unsigned int i; 1491 1492 for (i = 0; i < ARRAY_SIZE(dispc_csc_table); i++) { 1493 if (dispc_csc_table[i].encoding == encoding && 1494 dispc_csc_table[i].range == range) { 1495 return dispc_csc_table[i].csc; 1496 } 1497 } 1498 return NULL; 1499 } 1500 1501 static void dispc_vid_csc_setup(struct dispc_device *dispc, u32 hw_plane, 1502 const struct drm_plane_state *state) 1503 { 1504 const struct dispc_csc_coef *coef; 1505 1506 coef = dispc_find_csc(state->color_encoding, state->color_range); 1507 if (!coef) { 1508 dev_err(dispc->dev, "%s: CSC (%u,%u) not found\n", 1509 __func__, state->color_encoding, state->color_range); 1510 return; 1511 } 1512 1513 if (dispc->feat->subrev == DISPC_K2G) 1514 dispc_k2g_vid_write_csc(dispc, hw_plane, coef); 1515 else 1516 dispc_k3_vid_write_csc(dispc, hw_plane, coef); 1517 } 1518 1519 static void dispc_vid_csc_enable(struct dispc_device *dispc, u32 hw_plane, 1520 bool enable) 1521 { 1522 VID_REG_FLD_MOD(dispc, hw_plane, DISPC_VID_ATTRIBUTES, !!enable, 9, 9); 1523 } 1524 1525 /* SCALER */ 1526 1527 static u32 dispc_calc_fir_inc(u32 in, u32 out) 1528 { 1529 return (u32)div_u64(0x200000ull * in, out); 1530 } 1531 1532 enum dispc_vid_fir_coef_set { 1533 DISPC_VID_FIR_COEF_HORIZ, 1534 DISPC_VID_FIR_COEF_HORIZ_UV, 1535 DISPC_VID_FIR_COEF_VERT, 1536 DISPC_VID_FIR_COEF_VERT_UV, 1537 }; 1538 1539 static void dispc_vid_write_fir_coefs(struct dispc_device *dispc, 1540 u32 hw_plane, 1541 enum dispc_vid_fir_coef_set coef_set, 1542 const struct tidss_scale_coefs *coefs) 1543 { 1544 static const u16 c0_regs[] = { 1545 [DISPC_VID_FIR_COEF_HORIZ] = DISPC_VID_FIR_COEFS_H0, 1546 [DISPC_VID_FIR_COEF_HORIZ_UV] = DISPC_VID_FIR_COEFS_H0_C, 1547 [DISPC_VID_FIR_COEF_VERT] = DISPC_VID_FIR_COEFS_V0, 1548 [DISPC_VID_FIR_COEF_VERT_UV] = DISPC_VID_FIR_COEFS_V0_C, 1549 }; 1550 1551 static const u16 c12_regs[] = { 1552 [DISPC_VID_FIR_COEF_HORIZ] = DISPC_VID_FIR_COEFS_H12, 1553 [DISPC_VID_FIR_COEF_HORIZ_UV] = DISPC_VID_FIR_COEFS_H12_C, 1554 [DISPC_VID_FIR_COEF_VERT] = DISPC_VID_FIR_COEFS_V12, 1555 [DISPC_VID_FIR_COEF_VERT_UV] = DISPC_VID_FIR_COEFS_V12_C, 1556 }; 1557 1558 const u16 c0_base = c0_regs[coef_set]; 1559 const u16 c12_base = c12_regs[coef_set]; 1560 int phase; 1561 1562 if (!coefs) { 1563 dev_err(dispc->dev, "%s: No coefficients given.\n", __func__); 1564 return; 1565 } 1566 1567 for (phase = 0; phase <= 8; ++phase) { 1568 u16 reg = c0_base + phase * 4; 1569 u16 c0 = coefs->c0[phase]; 1570 1571 dispc_vid_write(dispc, hw_plane, reg, c0); 1572 } 1573 1574 for (phase = 0; phase <= 15; ++phase) { 1575 u16 reg = c12_base + phase * 4; 1576 s16 c1, c2; 1577 u32 c12; 1578 1579 c1 = coefs->c1[phase]; 1580 c2 = coefs->c2[phase]; 1581 c12 = FLD_VAL(c1, 19, 10) | FLD_VAL(c2, 29, 20); 1582 1583 dispc_vid_write(dispc, hw_plane, reg, c12); 1584 } 1585 } 1586 1587 static bool dispc_fourcc_is_yuv(u32 fourcc) 1588 { 1589 switch (fourcc) { 1590 case DRM_FORMAT_YUYV: 1591 case DRM_FORMAT_UYVY: 1592 case DRM_FORMAT_NV12: 1593 return true; 1594 default: 1595 return false; 1596 } 1597 } 1598 1599 struct dispc_scaling_params { 1600 int xinc, yinc; 1601 u32 in_w, in_h, in_w_uv, in_h_uv; 1602 u32 fir_xinc, fir_yinc, fir_xinc_uv, fir_yinc_uv; 1603 bool scale_x, scale_y; 1604 const struct tidss_scale_coefs *xcoef, *ycoef, *xcoef_uv, *ycoef_uv; 1605 bool five_taps; 1606 }; 1607 1608 static int dispc_vid_calc_scaling(struct dispc_device *dispc, 1609 const struct drm_plane_state *state, 1610 struct dispc_scaling_params *sp, 1611 bool lite_plane) 1612 { 1613 const struct dispc_features_scaling *f = &dispc->feat->scaling; 1614 u32 fourcc = state->fb->format->format; 1615 u32 in_width_max_5tap = f->in_width_max_5tap_rgb; 1616 u32 in_width_max_3tap = f->in_width_max_3tap_rgb; 1617 u32 downscale_limit; 1618 u32 in_width_max; 1619 1620 memset(sp, 0, sizeof(*sp)); 1621 sp->xinc = 1; 1622 sp->yinc = 1; 1623 sp->in_w = state->src_w >> 16; 1624 sp->in_w_uv = sp->in_w; 1625 sp->in_h = state->src_h >> 16; 1626 sp->in_h_uv = sp->in_h; 1627 1628 sp->scale_x = sp->in_w != state->crtc_w; 1629 sp->scale_y = sp->in_h != state->crtc_h; 1630 1631 if (dispc_fourcc_is_yuv(fourcc)) { 1632 in_width_max_5tap = f->in_width_max_5tap_yuv; 1633 in_width_max_3tap = f->in_width_max_3tap_yuv; 1634 1635 sp->in_w_uv >>= 1; 1636 sp->scale_x = true; 1637 1638 if (fourcc == DRM_FORMAT_NV12) { 1639 sp->in_h_uv >>= 1; 1640 sp->scale_y = true; 1641 } 1642 } 1643 1644 /* Skip the rest if no scaling is used */ 1645 if ((!sp->scale_x && !sp->scale_y) || lite_plane) 1646 return 0; 1647 1648 if (sp->in_w > in_width_max_5tap) { 1649 sp->five_taps = false; 1650 in_width_max = in_width_max_3tap; 1651 downscale_limit = f->downscale_limit_3tap; 1652 } else { 1653 sp->five_taps = true; 1654 in_width_max = in_width_max_5tap; 1655 downscale_limit = f->downscale_limit_5tap; 1656 } 1657 1658 if (sp->scale_x) { 1659 sp->fir_xinc = dispc_calc_fir_inc(sp->in_w, state->crtc_w); 1660 1661 if (sp->fir_xinc < dispc_calc_fir_inc(1, f->upscale_limit)) { 1662 dev_dbg(dispc->dev, 1663 "%s: X-scaling factor %u/%u > %u\n", 1664 __func__, state->crtc_w, state->src_w >> 16, 1665 f->upscale_limit); 1666 return -EINVAL; 1667 } 1668 1669 if (sp->fir_xinc >= dispc_calc_fir_inc(downscale_limit, 1)) { 1670 sp->xinc = DIV_ROUND_UP(DIV_ROUND_UP(sp->in_w, 1671 state->crtc_w), 1672 downscale_limit); 1673 1674 if (sp->xinc > f->xinc_max) { 1675 dev_dbg(dispc->dev, 1676 "%s: X-scaling factor %u/%u < 1/%u\n", 1677 __func__, state->crtc_w, 1678 state->src_w >> 16, 1679 downscale_limit * f->xinc_max); 1680 return -EINVAL; 1681 } 1682 1683 sp->in_w = (state->src_w >> 16) / sp->xinc; 1684 } 1685 1686 while (sp->in_w > in_width_max) { 1687 sp->xinc++; 1688 sp->in_w = (state->src_w >> 16) / sp->xinc; 1689 } 1690 1691 if (sp->xinc > f->xinc_max) { 1692 dev_dbg(dispc->dev, 1693 "%s: Too wide input buffer %u > %u\n", __func__, 1694 state->src_w >> 16, in_width_max * f->xinc_max); 1695 return -EINVAL; 1696 } 1697 1698 /* 1699 * We need even line length for YUV formats. Decimation 1700 * can lead to odd length, so we need to make it even 1701 * again. 1702 */ 1703 if (dispc_fourcc_is_yuv(fourcc)) 1704 sp->in_w &= ~1; 1705 1706 sp->fir_xinc = dispc_calc_fir_inc(sp->in_w, state->crtc_w); 1707 } 1708 1709 if (sp->scale_y) { 1710 sp->fir_yinc = dispc_calc_fir_inc(sp->in_h, state->crtc_h); 1711 1712 if (sp->fir_yinc < dispc_calc_fir_inc(1, f->upscale_limit)) { 1713 dev_dbg(dispc->dev, 1714 "%s: Y-scaling factor %u/%u > %u\n", 1715 __func__, state->crtc_h, state->src_h >> 16, 1716 f->upscale_limit); 1717 return -EINVAL; 1718 } 1719 1720 if (sp->fir_yinc >= dispc_calc_fir_inc(downscale_limit, 1)) { 1721 sp->yinc = DIV_ROUND_UP(DIV_ROUND_UP(sp->in_h, 1722 state->crtc_h), 1723 downscale_limit); 1724 1725 sp->in_h /= sp->yinc; 1726 sp->fir_yinc = dispc_calc_fir_inc(sp->in_h, 1727 state->crtc_h); 1728 } 1729 } 1730 1731 dev_dbg(dispc->dev, 1732 "%s: %ux%u decim %ux%u -> %ux%u firinc %u.%03ux%u.%03u taps %u -> %ux%u\n", 1733 __func__, state->src_w >> 16, state->src_h >> 16, 1734 sp->xinc, sp->yinc, sp->in_w, sp->in_h, 1735 sp->fir_xinc / 0x200000u, 1736 ((sp->fir_xinc & 0x1FFFFFu) * 999u) / 0x1FFFFFu, 1737 sp->fir_yinc / 0x200000u, 1738 ((sp->fir_yinc & 0x1FFFFFu) * 999u) / 0x1FFFFFu, 1739 sp->five_taps ? 5 : 3, 1740 state->crtc_w, state->crtc_h); 1741 1742 if (dispc_fourcc_is_yuv(fourcc)) { 1743 if (sp->scale_x) { 1744 sp->in_w_uv /= sp->xinc; 1745 sp->fir_xinc_uv = dispc_calc_fir_inc(sp->in_w_uv, 1746 state->crtc_w); 1747 sp->xcoef_uv = tidss_get_scale_coefs(dispc->dev, 1748 sp->fir_xinc_uv, 1749 true); 1750 } 1751 if (sp->scale_y) { 1752 sp->in_h_uv /= sp->yinc; 1753 sp->fir_yinc_uv = dispc_calc_fir_inc(sp->in_h_uv, 1754 state->crtc_h); 1755 sp->ycoef_uv = tidss_get_scale_coefs(dispc->dev, 1756 sp->fir_yinc_uv, 1757 sp->five_taps); 1758 } 1759 } 1760 1761 if (sp->scale_x) 1762 sp->xcoef = tidss_get_scale_coefs(dispc->dev, sp->fir_xinc, 1763 true); 1764 1765 if (sp->scale_y) 1766 sp->ycoef = tidss_get_scale_coefs(dispc->dev, sp->fir_yinc, 1767 sp->five_taps); 1768 1769 return 0; 1770 } 1771 1772 static void dispc_vid_set_scaling(struct dispc_device *dispc, 1773 u32 hw_plane, 1774 struct dispc_scaling_params *sp, 1775 u32 fourcc) 1776 { 1777 /* HORIZONTAL RESIZE ENABLE */ 1778 VID_REG_FLD_MOD(dispc, hw_plane, DISPC_VID_ATTRIBUTES, 1779 sp->scale_x, 7, 7); 1780 1781 /* VERTICAL RESIZE ENABLE */ 1782 VID_REG_FLD_MOD(dispc, hw_plane, DISPC_VID_ATTRIBUTES, 1783 sp->scale_y, 8, 8); 1784 1785 /* Skip the rest if no scaling is used */ 1786 if (!sp->scale_x && !sp->scale_y) 1787 return; 1788 1789 /* VERTICAL 5-TAPS */ 1790 VID_REG_FLD_MOD(dispc, hw_plane, DISPC_VID_ATTRIBUTES, 1791 sp->five_taps, 21, 21); 1792 1793 if (dispc_fourcc_is_yuv(fourcc)) { 1794 if (sp->scale_x) { 1795 dispc_vid_write(dispc, hw_plane, DISPC_VID_FIRH2, 1796 sp->fir_xinc_uv); 1797 dispc_vid_write_fir_coefs(dispc, hw_plane, 1798 DISPC_VID_FIR_COEF_HORIZ_UV, 1799 sp->xcoef_uv); 1800 } 1801 if (sp->scale_y) { 1802 dispc_vid_write(dispc, hw_plane, DISPC_VID_FIRV2, 1803 sp->fir_yinc_uv); 1804 dispc_vid_write_fir_coefs(dispc, hw_plane, 1805 DISPC_VID_FIR_COEF_VERT_UV, 1806 sp->ycoef_uv); 1807 } 1808 } 1809 1810 if (sp->scale_x) { 1811 dispc_vid_write(dispc, hw_plane, DISPC_VID_FIRH, sp->fir_xinc); 1812 dispc_vid_write_fir_coefs(dispc, hw_plane, 1813 DISPC_VID_FIR_COEF_HORIZ, 1814 sp->xcoef); 1815 } 1816 1817 if (sp->scale_y) { 1818 dispc_vid_write(dispc, hw_plane, DISPC_VID_FIRV, sp->fir_yinc); 1819 dispc_vid_write_fir_coefs(dispc, hw_plane, 1820 DISPC_VID_FIR_COEF_VERT, sp->ycoef); 1821 } 1822 } 1823 1824 /* OTHER */ 1825 1826 static const struct { 1827 u32 fourcc; 1828 u8 dss_code; 1829 } dispc_color_formats[] = { 1830 { DRM_FORMAT_ARGB4444, 0x0, }, 1831 { DRM_FORMAT_ABGR4444, 0x1, }, 1832 { DRM_FORMAT_RGBA4444, 0x2, }, 1833 1834 { DRM_FORMAT_RGB565, 0x3, }, 1835 { DRM_FORMAT_BGR565, 0x4, }, 1836 1837 { DRM_FORMAT_ARGB1555, 0x5, }, 1838 { DRM_FORMAT_ABGR1555, 0x6, }, 1839 1840 { DRM_FORMAT_ARGB8888, 0x7, }, 1841 { DRM_FORMAT_ABGR8888, 0x8, }, 1842 { DRM_FORMAT_RGBA8888, 0x9, }, 1843 { DRM_FORMAT_BGRA8888, 0xa, }, 1844 1845 { DRM_FORMAT_RGB888, 0xb, }, 1846 { DRM_FORMAT_BGR888, 0xc, }, 1847 1848 { DRM_FORMAT_ARGB2101010, 0xe, }, 1849 { DRM_FORMAT_ABGR2101010, 0xf, }, 1850 1851 { DRM_FORMAT_XRGB4444, 0x20, }, 1852 { DRM_FORMAT_XBGR4444, 0x21, }, 1853 { DRM_FORMAT_RGBX4444, 0x22, }, 1854 1855 { DRM_FORMAT_ARGB1555, 0x25, }, 1856 { DRM_FORMAT_ABGR1555, 0x26, }, 1857 1858 { DRM_FORMAT_XRGB8888, 0x27, }, 1859 { DRM_FORMAT_XBGR8888, 0x28, }, 1860 { DRM_FORMAT_RGBX8888, 0x29, }, 1861 { DRM_FORMAT_BGRX8888, 0x2a, }, 1862 1863 { DRM_FORMAT_XRGB2101010, 0x2e, }, 1864 { DRM_FORMAT_XBGR2101010, 0x2f, }, 1865 1866 { DRM_FORMAT_YUYV, 0x3e, }, 1867 { DRM_FORMAT_UYVY, 0x3f, }, 1868 1869 { DRM_FORMAT_NV12, 0x3d, }, 1870 }; 1871 1872 static void dispc_plane_set_pixel_format(struct dispc_device *dispc, 1873 u32 hw_plane, u32 fourcc) 1874 { 1875 unsigned int i; 1876 1877 for (i = 0; i < ARRAY_SIZE(dispc_color_formats); ++i) { 1878 if (dispc_color_formats[i].fourcc == fourcc) { 1879 VID_REG_FLD_MOD(dispc, hw_plane, DISPC_VID_ATTRIBUTES, 1880 dispc_color_formats[i].dss_code, 1881 6, 1); 1882 return; 1883 } 1884 } 1885 1886 WARN_ON(1); 1887 } 1888 1889 const u32 *dispc_plane_formats(struct dispc_device *dispc, unsigned int *len) 1890 { 1891 WARN_ON(!dispc->fourccs); 1892 1893 *len = dispc->num_fourccs; 1894 1895 return dispc->fourccs; 1896 } 1897 1898 static s32 pixinc(int pixels, u8 ps) 1899 { 1900 if (pixels == 1) 1901 return 1; 1902 else if (pixels > 1) 1903 return 1 + (pixels - 1) * ps; 1904 else if (pixels < 0) 1905 return 1 - (-pixels + 1) * ps; 1906 1907 WARN_ON(1); 1908 return 0; 1909 } 1910 1911 int dispc_plane_check(struct dispc_device *dispc, u32 hw_plane, 1912 const struct drm_plane_state *state, 1913 u32 hw_videoport) 1914 { 1915 bool lite = dispc->feat->vid_lite[hw_plane]; 1916 u32 fourcc = state->fb->format->format; 1917 bool need_scaling = state->src_w >> 16 != state->crtc_w || 1918 state->src_h >> 16 != state->crtc_h; 1919 struct dispc_scaling_params scaling; 1920 int ret; 1921 1922 if (dispc_fourcc_is_yuv(fourcc)) { 1923 if (!dispc_find_csc(state->color_encoding, 1924 state->color_range)) { 1925 dev_dbg(dispc->dev, 1926 "%s: Unsupported CSC (%u,%u) for HW plane %u\n", 1927 __func__, state->color_encoding, 1928 state->color_range, hw_plane); 1929 return -EINVAL; 1930 } 1931 } 1932 1933 if (need_scaling) { 1934 if (lite) { 1935 dev_dbg(dispc->dev, 1936 "%s: Lite plane %u can't scale %ux%u!=%ux%u\n", 1937 __func__, hw_plane, 1938 state->src_w >> 16, state->src_h >> 16, 1939 state->crtc_w, state->crtc_h); 1940 return -EINVAL; 1941 } 1942 ret = dispc_vid_calc_scaling(dispc, state, &scaling, false); 1943 if (ret) 1944 return ret; 1945 } 1946 1947 return 0; 1948 } 1949 1950 static 1951 dma_addr_t dispc_plane_state_paddr(const struct drm_plane_state *state) 1952 { 1953 struct drm_framebuffer *fb = state->fb; 1954 struct drm_gem_cma_object *gem; 1955 u32 x = state->src_x >> 16; 1956 u32 y = state->src_y >> 16; 1957 1958 gem = drm_fb_cma_get_gem_obj(state->fb, 0); 1959 1960 return gem->paddr + fb->offsets[0] + x * fb->format->cpp[0] + 1961 y * fb->pitches[0]; 1962 } 1963 1964 static 1965 dma_addr_t dispc_plane_state_p_uv_addr(const struct drm_plane_state *state) 1966 { 1967 struct drm_framebuffer *fb = state->fb; 1968 struct drm_gem_cma_object *gem; 1969 u32 x = state->src_x >> 16; 1970 u32 y = state->src_y >> 16; 1971 1972 if (WARN_ON(state->fb->format->num_planes != 2)) 1973 return 0; 1974 1975 gem = drm_fb_cma_get_gem_obj(fb, 1); 1976 1977 return gem->paddr + fb->offsets[1] + 1978 (x * fb->format->cpp[1] / fb->format->hsub) + 1979 (y * fb->pitches[1] / fb->format->vsub); 1980 } 1981 1982 int dispc_plane_setup(struct dispc_device *dispc, u32 hw_plane, 1983 const struct drm_plane_state *state, 1984 u32 hw_videoport) 1985 { 1986 bool lite = dispc->feat->vid_lite[hw_plane]; 1987 u32 fourcc = state->fb->format->format; 1988 u16 cpp = state->fb->format->cpp[0]; 1989 u32 fb_width = state->fb->pitches[0] / cpp; 1990 dma_addr_t paddr = dispc_plane_state_paddr(state); 1991 struct dispc_scaling_params scale; 1992 1993 dispc_vid_calc_scaling(dispc, state, &scale, lite); 1994 1995 dispc_plane_set_pixel_format(dispc, hw_plane, fourcc); 1996 1997 dispc_vid_write(dispc, hw_plane, DISPC_VID_BA_0, paddr & 0xffffffff); 1998 dispc_vid_write(dispc, hw_plane, DISPC_VID_BA_EXT_0, (u64)paddr >> 32); 1999 dispc_vid_write(dispc, hw_plane, DISPC_VID_BA_1, paddr & 0xffffffff); 2000 dispc_vid_write(dispc, hw_plane, DISPC_VID_BA_EXT_1, (u64)paddr >> 32); 2001 2002 dispc_vid_write(dispc, hw_plane, DISPC_VID_PICTURE_SIZE, 2003 (scale.in_w - 1) | ((scale.in_h - 1) << 16)); 2004 2005 /* For YUV422 format we use the macropixel size for pixel inc */ 2006 if (fourcc == DRM_FORMAT_YUYV || fourcc == DRM_FORMAT_UYVY) 2007 dispc_vid_write(dispc, hw_plane, DISPC_VID_PIXEL_INC, 2008 pixinc(scale.xinc, cpp * 2)); 2009 else 2010 dispc_vid_write(dispc, hw_plane, DISPC_VID_PIXEL_INC, 2011 pixinc(scale.xinc, cpp)); 2012 2013 dispc_vid_write(dispc, hw_plane, DISPC_VID_ROW_INC, 2014 pixinc(1 + (scale.yinc * fb_width - 2015 scale.xinc * scale.in_w), 2016 cpp)); 2017 2018 if (state->fb->format->num_planes == 2) { 2019 u16 cpp_uv = state->fb->format->cpp[1]; 2020 u32 fb_width_uv = state->fb->pitches[1] / cpp_uv; 2021 dma_addr_t p_uv_addr = dispc_plane_state_p_uv_addr(state); 2022 2023 dispc_vid_write(dispc, hw_plane, 2024 DISPC_VID_BA_UV_0, p_uv_addr & 0xffffffff); 2025 dispc_vid_write(dispc, hw_plane, 2026 DISPC_VID_BA_UV_EXT_0, (u64)p_uv_addr >> 32); 2027 dispc_vid_write(dispc, hw_plane, 2028 DISPC_VID_BA_UV_1, p_uv_addr & 0xffffffff); 2029 dispc_vid_write(dispc, hw_plane, 2030 DISPC_VID_BA_UV_EXT_1, (u64)p_uv_addr >> 32); 2031 2032 dispc_vid_write(dispc, hw_plane, DISPC_VID_ROW_INC_UV, 2033 pixinc(1 + (scale.yinc * fb_width_uv - 2034 scale.xinc * scale.in_w_uv), 2035 cpp_uv)); 2036 } 2037 2038 if (!lite) { 2039 dispc_vid_write(dispc, hw_plane, DISPC_VID_SIZE, 2040 (state->crtc_w - 1) | 2041 ((state->crtc_h - 1) << 16)); 2042 2043 dispc_vid_set_scaling(dispc, hw_plane, &scale, fourcc); 2044 } 2045 2046 /* enable YUV->RGB color conversion */ 2047 if (dispc_fourcc_is_yuv(fourcc)) { 2048 dispc_vid_csc_setup(dispc, hw_plane, state); 2049 dispc_vid_csc_enable(dispc, hw_plane, true); 2050 } else { 2051 dispc_vid_csc_enable(dispc, hw_plane, false); 2052 } 2053 2054 dispc_vid_write(dispc, hw_plane, DISPC_VID_GLOBAL_ALPHA, 2055 0xFF & (state->alpha >> 8)); 2056 2057 if (state->pixel_blend_mode == DRM_MODE_BLEND_PREMULTI) 2058 VID_REG_FLD_MOD(dispc, hw_plane, DISPC_VID_ATTRIBUTES, 1, 2059 28, 28); 2060 else 2061 VID_REG_FLD_MOD(dispc, hw_plane, DISPC_VID_ATTRIBUTES, 0, 2062 28, 28); 2063 2064 return 0; 2065 } 2066 2067 int dispc_plane_enable(struct dispc_device *dispc, u32 hw_plane, bool enable) 2068 { 2069 VID_REG_FLD_MOD(dispc, hw_plane, DISPC_VID_ATTRIBUTES, !!enable, 0, 0); 2070 2071 return 0; 2072 } 2073 2074 static u32 dispc_vid_get_fifo_size(struct dispc_device *dispc, u32 hw_plane) 2075 { 2076 return VID_REG_GET(dispc, hw_plane, DISPC_VID_BUF_SIZE_STATUS, 15, 0); 2077 } 2078 2079 static void dispc_vid_set_mflag_threshold(struct dispc_device *dispc, 2080 u32 hw_plane, u32 low, u32 high) 2081 { 2082 dispc_vid_write(dispc, hw_plane, DISPC_VID_MFLAG_THRESHOLD, 2083 FLD_VAL(high, 31, 16) | FLD_VAL(low, 15, 0)); 2084 } 2085 2086 static void dispc_vid_set_buf_threshold(struct dispc_device *dispc, 2087 u32 hw_plane, u32 low, u32 high) 2088 { 2089 dispc_vid_write(dispc, hw_plane, DISPC_VID_BUF_THRESHOLD, 2090 FLD_VAL(high, 31, 16) | FLD_VAL(low, 15, 0)); 2091 } 2092 2093 static void dispc_k2g_plane_init(struct dispc_device *dispc) 2094 { 2095 unsigned int hw_plane; 2096 2097 dev_dbg(dispc->dev, "%s()\n", __func__); 2098 2099 /* MFLAG_CTRL = ENABLED */ 2100 REG_FLD_MOD(dispc, DISPC_GLOBAL_MFLAG_ATTRIBUTE, 2, 1, 0); 2101 /* MFLAG_START = MFLAGNORMALSTARTMODE */ 2102 REG_FLD_MOD(dispc, DISPC_GLOBAL_MFLAG_ATTRIBUTE, 0, 6, 6); 2103 2104 for (hw_plane = 0; hw_plane < dispc->feat->num_planes; hw_plane++) { 2105 u32 size = dispc_vid_get_fifo_size(dispc, hw_plane); 2106 u32 thr_low, thr_high; 2107 u32 mflag_low, mflag_high; 2108 u32 preload; 2109 2110 thr_high = size - 1; 2111 thr_low = size / 2; 2112 2113 mflag_high = size * 2 / 3; 2114 mflag_low = size / 3; 2115 2116 preload = thr_low; 2117 2118 dev_dbg(dispc->dev, 2119 "%s: bufsize %u, buf_threshold %u/%u, mflag threshold %u/%u preload %u\n", 2120 dispc->feat->vid_name[hw_plane], 2121 size, 2122 thr_high, thr_low, 2123 mflag_high, mflag_low, 2124 preload); 2125 2126 dispc_vid_set_buf_threshold(dispc, hw_plane, 2127 thr_low, thr_high); 2128 dispc_vid_set_mflag_threshold(dispc, hw_plane, 2129 mflag_low, mflag_high); 2130 2131 dispc_vid_write(dispc, hw_plane, DISPC_VID_PRELOAD, preload); 2132 2133 /* 2134 * Prefetch up to fifo high-threshold value to minimize the 2135 * possibility of underflows. Note that this means the PRELOAD 2136 * register is ignored. 2137 */ 2138 VID_REG_FLD_MOD(dispc, hw_plane, DISPC_VID_ATTRIBUTES, 1, 2139 19, 19); 2140 } 2141 } 2142 2143 static void dispc_k3_plane_init(struct dispc_device *dispc) 2144 { 2145 unsigned int hw_plane; 2146 u32 cba_lo_pri = 1; 2147 u32 cba_hi_pri = 0; 2148 2149 dev_dbg(dispc->dev, "%s()\n", __func__); 2150 2151 REG_FLD_MOD(dispc, DSS_CBA_CFG, cba_lo_pri, 2, 0); 2152 REG_FLD_MOD(dispc, DSS_CBA_CFG, cba_hi_pri, 5, 3); 2153 2154 /* MFLAG_CTRL = ENABLED */ 2155 REG_FLD_MOD(dispc, DISPC_GLOBAL_MFLAG_ATTRIBUTE, 2, 1, 0); 2156 /* MFLAG_START = MFLAGNORMALSTARTMODE */ 2157 REG_FLD_MOD(dispc, DISPC_GLOBAL_MFLAG_ATTRIBUTE, 0, 6, 6); 2158 2159 for (hw_plane = 0; hw_plane < dispc->feat->num_planes; hw_plane++) { 2160 u32 size = dispc_vid_get_fifo_size(dispc, hw_plane); 2161 u32 thr_low, thr_high; 2162 u32 mflag_low, mflag_high; 2163 u32 preload; 2164 2165 thr_high = size - 1; 2166 thr_low = size / 2; 2167 2168 mflag_high = size * 2 / 3; 2169 mflag_low = size / 3; 2170 2171 preload = thr_low; 2172 2173 dev_dbg(dispc->dev, 2174 "%s: bufsize %u, buf_threshold %u/%u, mflag threshold %u/%u preload %u\n", 2175 dispc->feat->vid_name[hw_plane], 2176 size, 2177 thr_high, thr_low, 2178 mflag_high, mflag_low, 2179 preload); 2180 2181 dispc_vid_set_buf_threshold(dispc, hw_plane, 2182 thr_low, thr_high); 2183 dispc_vid_set_mflag_threshold(dispc, hw_plane, 2184 mflag_low, mflag_high); 2185 2186 dispc_vid_write(dispc, hw_plane, DISPC_VID_PRELOAD, preload); 2187 2188 /* Prefech up to PRELOAD value */ 2189 VID_REG_FLD_MOD(dispc, hw_plane, DISPC_VID_ATTRIBUTES, 0, 2190 19, 19); 2191 } 2192 } 2193 2194 static void dispc_plane_init(struct dispc_device *dispc) 2195 { 2196 switch (dispc->feat->subrev) { 2197 case DISPC_K2G: 2198 dispc_k2g_plane_init(dispc); 2199 break; 2200 case DISPC_AM65X: 2201 case DISPC_J721E: 2202 dispc_k3_plane_init(dispc); 2203 break; 2204 default: 2205 WARN_ON(1); 2206 } 2207 } 2208 2209 static void dispc_vp_init(struct dispc_device *dispc) 2210 { 2211 unsigned int i; 2212 2213 dev_dbg(dispc->dev, "%s()\n", __func__); 2214 2215 /* Enable the gamma Shadow bit-field for all VPs*/ 2216 for (i = 0; i < dispc->feat->num_vps; i++) 2217 VP_REG_FLD_MOD(dispc, i, DISPC_VP_CONFIG, 1, 2, 2); 2218 } 2219 2220 static void dispc_initial_config(struct dispc_device *dispc) 2221 { 2222 dispc_plane_init(dispc); 2223 dispc_vp_init(dispc); 2224 2225 /* Note: Hardcoded DPI routing on J721E for now */ 2226 if (dispc->feat->subrev == DISPC_J721E) { 2227 dispc_write(dispc, DISPC_CONNECTIONS, 2228 FLD_VAL(2, 3, 0) | /* VP1 to DPI0 */ 2229 FLD_VAL(8, 7, 4) /* VP3 to DPI1 */ 2230 ); 2231 } 2232 } 2233 2234 static void dispc_k2g_vp_write_gamma_table(struct dispc_device *dispc, 2235 u32 hw_videoport) 2236 { 2237 u32 *table = dispc->vp_data[hw_videoport].gamma_table; 2238 u32 hwlen = dispc->feat->vp_feat.color.gamma_size; 2239 unsigned int i; 2240 2241 dev_dbg(dispc->dev, "%s: hw_videoport %d\n", __func__, hw_videoport); 2242 2243 if (WARN_ON(dispc->feat->vp_feat.color.gamma_type != TIDSS_GAMMA_8BIT)) 2244 return; 2245 2246 for (i = 0; i < hwlen; ++i) { 2247 u32 v = table[i]; 2248 2249 v |= i << 24; 2250 2251 dispc_vp_write(dispc, hw_videoport, DISPC_VP_K2G_GAMMA_TABLE, 2252 v); 2253 } 2254 } 2255 2256 static void dispc_am65x_vp_write_gamma_table(struct dispc_device *dispc, 2257 u32 hw_videoport) 2258 { 2259 u32 *table = dispc->vp_data[hw_videoport].gamma_table; 2260 u32 hwlen = dispc->feat->vp_feat.color.gamma_size; 2261 unsigned int i; 2262 2263 dev_dbg(dispc->dev, "%s: hw_videoport %d\n", __func__, hw_videoport); 2264 2265 if (WARN_ON(dispc->feat->vp_feat.color.gamma_type != TIDSS_GAMMA_8BIT)) 2266 return; 2267 2268 for (i = 0; i < hwlen; ++i) { 2269 u32 v = table[i]; 2270 2271 v |= i << 24; 2272 2273 dispc_vp_write(dispc, hw_videoport, DISPC_VP_GAMMA_TABLE, v); 2274 } 2275 } 2276 2277 static void dispc_j721e_vp_write_gamma_table(struct dispc_device *dispc, 2278 u32 hw_videoport) 2279 { 2280 u32 *table = dispc->vp_data[hw_videoport].gamma_table; 2281 u32 hwlen = dispc->feat->vp_feat.color.gamma_size; 2282 unsigned int i; 2283 2284 dev_dbg(dispc->dev, "%s: hw_videoport %d\n", __func__, hw_videoport); 2285 2286 if (WARN_ON(dispc->feat->vp_feat.color.gamma_type != TIDSS_GAMMA_10BIT)) 2287 return; 2288 2289 for (i = 0; i < hwlen; ++i) { 2290 u32 v = table[i]; 2291 2292 if (i == 0) 2293 v |= 1 << 31; 2294 2295 dispc_vp_write(dispc, hw_videoport, DISPC_VP_GAMMA_TABLE, v); 2296 } 2297 } 2298 2299 static void dispc_vp_write_gamma_table(struct dispc_device *dispc, 2300 u32 hw_videoport) 2301 { 2302 switch (dispc->feat->subrev) { 2303 case DISPC_K2G: 2304 dispc_k2g_vp_write_gamma_table(dispc, hw_videoport); 2305 break; 2306 case DISPC_AM65X: 2307 dispc_am65x_vp_write_gamma_table(dispc, hw_videoport); 2308 break; 2309 case DISPC_J721E: 2310 dispc_j721e_vp_write_gamma_table(dispc, hw_videoport); 2311 break; 2312 default: 2313 WARN_ON(1); 2314 break; 2315 } 2316 } 2317 2318 static const struct drm_color_lut dispc_vp_gamma_default_lut[] = { 2319 { .red = 0, .green = 0, .blue = 0, }, 2320 { .red = U16_MAX, .green = U16_MAX, .blue = U16_MAX, }, 2321 }; 2322 2323 static void dispc_vp_set_gamma(struct dispc_device *dispc, 2324 u32 hw_videoport, 2325 const struct drm_color_lut *lut, 2326 unsigned int length) 2327 { 2328 u32 *table = dispc->vp_data[hw_videoport].gamma_table; 2329 u32 hwlen = dispc->feat->vp_feat.color.gamma_size; 2330 u32 hwbits; 2331 unsigned int i; 2332 2333 dev_dbg(dispc->dev, "%s: hw_videoport %d, lut len %u, hw len %u\n", 2334 __func__, hw_videoport, length, hwlen); 2335 2336 if (dispc->feat->vp_feat.color.gamma_type == TIDSS_GAMMA_10BIT) 2337 hwbits = 10; 2338 else 2339 hwbits = 8; 2340 2341 if (!lut || length < 2) { 2342 lut = dispc_vp_gamma_default_lut; 2343 length = ARRAY_SIZE(dispc_vp_gamma_default_lut); 2344 } 2345 2346 for (i = 0; i < length - 1; ++i) { 2347 unsigned int first = i * (hwlen - 1) / (length - 1); 2348 unsigned int last = (i + 1) * (hwlen - 1) / (length - 1); 2349 unsigned int w = last - first; 2350 u16 r, g, b; 2351 unsigned int j; 2352 2353 if (w == 0) 2354 continue; 2355 2356 for (j = 0; j <= w; j++) { 2357 r = (lut[i].red * (w - j) + lut[i + 1].red * j) / w; 2358 g = (lut[i].green * (w - j) + lut[i + 1].green * j) / w; 2359 b = (lut[i].blue * (w - j) + lut[i + 1].blue * j) / w; 2360 2361 r >>= 16 - hwbits; 2362 g >>= 16 - hwbits; 2363 b >>= 16 - hwbits; 2364 2365 table[first + j] = (r << (hwbits * 2)) | 2366 (g << hwbits) | b; 2367 } 2368 } 2369 2370 dispc_vp_write_gamma_table(dispc, hw_videoport); 2371 } 2372 2373 static s16 dispc_S31_32_to_s2_8(s64 coef) 2374 { 2375 u64 sign_bit = 1ULL << 63; 2376 u64 cbits = (u64)coef; 2377 s16 ret; 2378 2379 if (cbits & sign_bit) 2380 ret = -clamp_val(((cbits & ~sign_bit) >> 24), 0, 0x200); 2381 else 2382 ret = clamp_val(((cbits & ~sign_bit) >> 24), 0, 0x1FF); 2383 2384 return ret; 2385 } 2386 2387 static void dispc_k2g_cpr_from_ctm(const struct drm_color_ctm *ctm, 2388 struct dispc_csc_coef *cpr) 2389 { 2390 memset(cpr, 0, sizeof(*cpr)); 2391 2392 cpr->to_regval = dispc_csc_cpr_regval; 2393 cpr->m[CSC_RR] = dispc_S31_32_to_s2_8(ctm->matrix[0]); 2394 cpr->m[CSC_RG] = dispc_S31_32_to_s2_8(ctm->matrix[1]); 2395 cpr->m[CSC_RB] = dispc_S31_32_to_s2_8(ctm->matrix[2]); 2396 cpr->m[CSC_GR] = dispc_S31_32_to_s2_8(ctm->matrix[3]); 2397 cpr->m[CSC_GG] = dispc_S31_32_to_s2_8(ctm->matrix[4]); 2398 cpr->m[CSC_GB] = dispc_S31_32_to_s2_8(ctm->matrix[5]); 2399 cpr->m[CSC_BR] = dispc_S31_32_to_s2_8(ctm->matrix[6]); 2400 cpr->m[CSC_BG] = dispc_S31_32_to_s2_8(ctm->matrix[7]); 2401 cpr->m[CSC_BB] = dispc_S31_32_to_s2_8(ctm->matrix[8]); 2402 } 2403 2404 #define CVAL(xR, xG, xB) (FLD_VAL(xR, 9, 0) | FLD_VAL(xG, 20, 11) | \ 2405 FLD_VAL(xB, 31, 22)) 2406 2407 static void dispc_k2g_vp_csc_cpr_regval(const struct dispc_csc_coef *csc, 2408 u32 *regval) 2409 { 2410 regval[0] = CVAL(csc->m[CSC_BB], csc->m[CSC_BG], csc->m[CSC_BR]); 2411 regval[1] = CVAL(csc->m[CSC_GB], csc->m[CSC_GG], csc->m[CSC_GR]); 2412 regval[2] = CVAL(csc->m[CSC_RB], csc->m[CSC_RG], csc->m[CSC_RR]); 2413 } 2414 2415 #undef CVAL 2416 2417 static void dispc_k2g_vp_write_csc(struct dispc_device *dispc, u32 hw_videoport, 2418 const struct dispc_csc_coef *csc) 2419 { 2420 static const u16 dispc_vp_cpr_coef_reg[] = { 2421 DISPC_VP_CSC_COEF0, DISPC_VP_CSC_COEF1, DISPC_VP_CSC_COEF2, 2422 /* K2G CPR is packed to three registers. */ 2423 }; 2424 u32 regval[DISPC_CSC_REGVAL_LEN]; 2425 unsigned int i; 2426 2427 dispc_k2g_vp_csc_cpr_regval(csc, regval); 2428 2429 for (i = 0; i < ARRAY_SIZE(dispc_vp_cpr_coef_reg); i++) 2430 dispc_vp_write(dispc, hw_videoport, dispc_vp_cpr_coef_reg[i], 2431 regval[i]); 2432 } 2433 2434 static void dispc_k2g_vp_set_ctm(struct dispc_device *dispc, u32 hw_videoport, 2435 struct drm_color_ctm *ctm) 2436 { 2437 u32 cprenable = 0; 2438 2439 if (ctm) { 2440 struct dispc_csc_coef cpr; 2441 2442 dispc_k2g_cpr_from_ctm(ctm, &cpr); 2443 dispc_k2g_vp_write_csc(dispc, hw_videoport, &cpr); 2444 cprenable = 1; 2445 } 2446 2447 VP_REG_FLD_MOD(dispc, hw_videoport, DISPC_VP_CONFIG, 2448 cprenable, 15, 15); 2449 } 2450 2451 static s16 dispc_S31_32_to_s3_8(s64 coef) 2452 { 2453 u64 sign_bit = 1ULL << 63; 2454 u64 cbits = (u64)coef; 2455 s16 ret; 2456 2457 if (cbits & sign_bit) 2458 ret = -clamp_val(((cbits & ~sign_bit) >> 24), 0, 0x400); 2459 else 2460 ret = clamp_val(((cbits & ~sign_bit) >> 24), 0, 0x3FF); 2461 2462 return ret; 2463 } 2464 2465 static void dispc_csc_from_ctm(const struct drm_color_ctm *ctm, 2466 struct dispc_csc_coef *cpr) 2467 { 2468 memset(cpr, 0, sizeof(*cpr)); 2469 2470 cpr->to_regval = dispc_csc_cpr_regval; 2471 cpr->m[CSC_RR] = dispc_S31_32_to_s3_8(ctm->matrix[0]); 2472 cpr->m[CSC_RG] = dispc_S31_32_to_s3_8(ctm->matrix[1]); 2473 cpr->m[CSC_RB] = dispc_S31_32_to_s3_8(ctm->matrix[2]); 2474 cpr->m[CSC_GR] = dispc_S31_32_to_s3_8(ctm->matrix[3]); 2475 cpr->m[CSC_GG] = dispc_S31_32_to_s3_8(ctm->matrix[4]); 2476 cpr->m[CSC_GB] = dispc_S31_32_to_s3_8(ctm->matrix[5]); 2477 cpr->m[CSC_BR] = dispc_S31_32_to_s3_8(ctm->matrix[6]); 2478 cpr->m[CSC_BG] = dispc_S31_32_to_s3_8(ctm->matrix[7]); 2479 cpr->m[CSC_BB] = dispc_S31_32_to_s3_8(ctm->matrix[8]); 2480 } 2481 2482 static void dispc_k3_vp_write_csc(struct dispc_device *dispc, u32 hw_videoport, 2483 const struct dispc_csc_coef *csc) 2484 { 2485 static const u16 dispc_vp_csc_coef_reg[DISPC_CSC_REGVAL_LEN] = { 2486 DISPC_VP_CSC_COEF0, DISPC_VP_CSC_COEF1, DISPC_VP_CSC_COEF2, 2487 DISPC_VP_CSC_COEF3, DISPC_VP_CSC_COEF4, DISPC_VP_CSC_COEF5, 2488 DISPC_VP_CSC_COEF6, DISPC_VP_CSC_COEF7, 2489 }; 2490 u32 regval[DISPC_CSC_REGVAL_LEN]; 2491 unsigned int i; 2492 2493 csc->to_regval(csc, regval); 2494 2495 for (i = 0; i < ARRAY_SIZE(regval); i++) 2496 dispc_vp_write(dispc, hw_videoport, dispc_vp_csc_coef_reg[i], 2497 regval[i]); 2498 } 2499 2500 static void dispc_k3_vp_set_ctm(struct dispc_device *dispc, u32 hw_videoport, 2501 struct drm_color_ctm *ctm) 2502 { 2503 u32 colorconvenable = 0; 2504 2505 if (ctm) { 2506 struct dispc_csc_coef csc; 2507 2508 dispc_csc_from_ctm(ctm, &csc); 2509 dispc_k3_vp_write_csc(dispc, hw_videoport, &csc); 2510 colorconvenable = 1; 2511 } 2512 2513 VP_REG_FLD_MOD(dispc, hw_videoport, DISPC_VP_CONFIG, 2514 colorconvenable, 24, 24); 2515 } 2516 2517 static void dispc_vp_set_color_mgmt(struct dispc_device *dispc, 2518 u32 hw_videoport, 2519 const struct drm_crtc_state *state, 2520 bool newmodeset) 2521 { 2522 struct drm_color_lut *lut = NULL; 2523 struct drm_color_ctm *ctm = NULL; 2524 unsigned int length = 0; 2525 2526 if (!(state->color_mgmt_changed || newmodeset)) 2527 return; 2528 2529 if (state->gamma_lut) { 2530 lut = (struct drm_color_lut *)state->gamma_lut->data; 2531 length = state->gamma_lut->length / sizeof(*lut); 2532 } 2533 2534 dispc_vp_set_gamma(dispc, hw_videoport, lut, length); 2535 2536 if (state->ctm) 2537 ctm = (struct drm_color_ctm *)state->ctm->data; 2538 2539 if (dispc->feat->subrev == DISPC_K2G) 2540 dispc_k2g_vp_set_ctm(dispc, hw_videoport, ctm); 2541 else 2542 dispc_k3_vp_set_ctm(dispc, hw_videoport, ctm); 2543 } 2544 2545 void dispc_vp_setup(struct dispc_device *dispc, u32 hw_videoport, 2546 const struct drm_crtc_state *state, bool newmodeset) 2547 { 2548 dispc_vp_set_default_color(dispc, hw_videoport, 0); 2549 dispc_vp_set_color_mgmt(dispc, hw_videoport, state, newmodeset); 2550 } 2551 2552 int dispc_runtime_suspend(struct dispc_device *dispc) 2553 { 2554 dev_dbg(dispc->dev, "suspend\n"); 2555 2556 dispc->is_enabled = false; 2557 2558 clk_disable_unprepare(dispc->fclk); 2559 2560 return 0; 2561 } 2562 2563 int dispc_runtime_resume(struct dispc_device *dispc) 2564 { 2565 dev_dbg(dispc->dev, "resume\n"); 2566 2567 clk_prepare_enable(dispc->fclk); 2568 2569 if (REG_GET(dispc, DSS_SYSSTATUS, 0, 0) == 0) 2570 dev_warn(dispc->dev, "DSS FUNC RESET not done!\n"); 2571 2572 dev_dbg(dispc->dev, "OMAP DSS7 rev 0x%x\n", 2573 dispc_read(dispc, DSS_REVISION)); 2574 2575 dev_dbg(dispc->dev, "VP RESETDONE %d,%d,%d\n", 2576 REG_GET(dispc, DSS_SYSSTATUS, 1, 1), 2577 REG_GET(dispc, DSS_SYSSTATUS, 2, 2), 2578 REG_GET(dispc, DSS_SYSSTATUS, 3, 3)); 2579 2580 if (dispc->feat->subrev == DISPC_AM65X) 2581 dev_dbg(dispc->dev, "OLDI RESETDONE %d,%d,%d\n", 2582 REG_GET(dispc, DSS_SYSSTATUS, 5, 5), 2583 REG_GET(dispc, DSS_SYSSTATUS, 6, 6), 2584 REG_GET(dispc, DSS_SYSSTATUS, 7, 7)); 2585 2586 dev_dbg(dispc->dev, "DISPC IDLE %d\n", 2587 REG_GET(dispc, DSS_SYSSTATUS, 9, 9)); 2588 2589 dispc_initial_config(dispc); 2590 2591 dispc->is_enabled = true; 2592 2593 tidss_irq_resume(dispc->tidss); 2594 2595 return 0; 2596 } 2597 2598 void dispc_remove(struct tidss_device *tidss) 2599 { 2600 dev_dbg(tidss->dev, "%s\n", __func__); 2601 2602 tidss->dispc = NULL; 2603 } 2604 2605 static int dispc_iomap_resource(struct platform_device *pdev, const char *name, 2606 void __iomem **base) 2607 { 2608 struct resource *res; 2609 void __iomem *b; 2610 2611 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, name); 2612 if (!res) { 2613 dev_err(&pdev->dev, "cannot get mem resource '%s'\n", name); 2614 return -EINVAL; 2615 } 2616 2617 b = devm_ioremap_resource(&pdev->dev, res); 2618 if (IS_ERR(b)) { 2619 dev_err(&pdev->dev, "cannot ioremap resource '%s'\n", name); 2620 return PTR_ERR(b); 2621 } 2622 2623 *base = b; 2624 2625 return 0; 2626 } 2627 2628 static int dispc_init_am65x_oldi_io_ctrl(struct device *dev, 2629 struct dispc_device *dispc) 2630 { 2631 dispc->oldi_io_ctrl = 2632 syscon_regmap_lookup_by_phandle(dev->of_node, 2633 "ti,am65x-oldi-io-ctrl"); 2634 if (PTR_ERR(dispc->oldi_io_ctrl) == -ENODEV) { 2635 dispc->oldi_io_ctrl = NULL; 2636 } else if (IS_ERR(dispc->oldi_io_ctrl)) { 2637 dev_err(dev, "%s: syscon_regmap_lookup_by_phandle failed %ld\n", 2638 __func__, PTR_ERR(dispc->oldi_io_ctrl)); 2639 return PTR_ERR(dispc->oldi_io_ctrl); 2640 } 2641 return 0; 2642 } 2643 2644 int dispc_init(struct tidss_device *tidss) 2645 { 2646 struct device *dev = tidss->dev; 2647 struct platform_device *pdev = to_platform_device(dev); 2648 struct dispc_device *dispc; 2649 const struct dispc_features *feat; 2650 unsigned int i, num_fourccs; 2651 int r = 0; 2652 2653 dev_dbg(dev, "%s\n", __func__); 2654 2655 feat = tidss->feat; 2656 2657 if (feat->subrev != DISPC_K2G) { 2658 r = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(48)); 2659 if (r) 2660 dev_warn(dev, "cannot set DMA masks to 48-bit\n"); 2661 } 2662 2663 dispc = devm_kzalloc(dev, sizeof(*dispc), GFP_KERNEL); 2664 if (!dispc) 2665 return -ENOMEM; 2666 2667 dispc->fourccs = devm_kcalloc(dev, ARRAY_SIZE(dispc_color_formats), 2668 sizeof(*dispc->fourccs), GFP_KERNEL); 2669 if (!dispc->fourccs) 2670 return -ENOMEM; 2671 2672 num_fourccs = 0; 2673 for (i = 0; i < ARRAY_SIZE(dispc_color_formats); ++i) 2674 dispc->fourccs[num_fourccs++] = dispc_color_formats[i].fourcc; 2675 2676 dispc->num_fourccs = num_fourccs; 2677 dispc->tidss = tidss; 2678 dispc->dev = dev; 2679 dispc->feat = feat; 2680 2681 dispc_common_regmap = dispc->feat->common_regs; 2682 2683 r = dispc_iomap_resource(pdev, dispc->feat->common, 2684 &dispc->base_common); 2685 if (r) 2686 return r; 2687 2688 for (i = 0; i < dispc->feat->num_planes; i++) { 2689 r = dispc_iomap_resource(pdev, dispc->feat->vid_name[i], 2690 &dispc->base_vid[i]); 2691 if (r) 2692 return r; 2693 } 2694 2695 for (i = 0; i < dispc->feat->num_vps; i++) { 2696 u32 gamma_size = dispc->feat->vp_feat.color.gamma_size; 2697 u32 *gamma_table; 2698 struct clk *clk; 2699 2700 r = dispc_iomap_resource(pdev, dispc->feat->ovr_name[i], 2701 &dispc->base_ovr[i]); 2702 if (r) 2703 return r; 2704 2705 r = dispc_iomap_resource(pdev, dispc->feat->vp_name[i], 2706 &dispc->base_vp[i]); 2707 if (r) 2708 return r; 2709 2710 clk = devm_clk_get(dev, dispc->feat->vpclk_name[i]); 2711 if (IS_ERR(clk)) { 2712 dev_err(dev, "%s: Failed to get clk %s:%ld\n", __func__, 2713 dispc->feat->vpclk_name[i], PTR_ERR(clk)); 2714 return PTR_ERR(clk); 2715 } 2716 dispc->vp_clk[i] = clk; 2717 2718 gamma_table = devm_kmalloc_array(dev, gamma_size, 2719 sizeof(*gamma_table), 2720 GFP_KERNEL); 2721 if (!gamma_table) 2722 return -ENOMEM; 2723 dispc->vp_data[i].gamma_table = gamma_table; 2724 } 2725 2726 if (feat->subrev == DISPC_AM65X) { 2727 r = dispc_init_am65x_oldi_io_ctrl(dev, dispc); 2728 if (r) 2729 return r; 2730 } 2731 2732 dispc->fclk = devm_clk_get(dev, "fck"); 2733 if (IS_ERR(dispc->fclk)) { 2734 dev_err(dev, "%s: Failed to get fclk: %ld\n", 2735 __func__, PTR_ERR(dispc->fclk)); 2736 return PTR_ERR(dispc->fclk); 2737 } 2738 dev_dbg(dev, "DSS fclk %lu Hz\n", clk_get_rate(dispc->fclk)); 2739 2740 of_property_read_u32(dispc->dev->of_node, "max-memory-bandwidth", 2741 &dispc->memory_bandwidth_limit); 2742 2743 tidss->dispc = dispc; 2744 2745 return 0; 2746 } 2747