1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2016-2018 Texas Instruments Incorporated - http://www.ti.com/ 4 * Author: Jyri Sarha <jsarha@ti.com> 5 */ 6 7 #include <linux/clk.h> 8 #include <linux/delay.h> 9 #include <linux/dma-mapping.h> 10 #include <linux/err.h> 11 #include <linux/interrupt.h> 12 #include <linux/io.h> 13 #include <linux/kernel.h> 14 #include <linux/module.h> 15 #include <linux/mfd/syscon.h> 16 #include <linux/of.h> 17 #include <linux/of_graph.h> 18 #include <linux/of_device.h> 19 #include <linux/platform_device.h> 20 #include <linux/pm_runtime.h> 21 #include <linux/regmap.h> 22 23 #include <drm/drm_fourcc.h> 24 #include <drm/drm_fb_cma_helper.h> 25 #include <drm/drm_gem_cma_helper.h> 26 #include <drm/drm_panel.h> 27 28 #include "tidss_crtc.h" 29 #include "tidss_dispc.h" 30 #include "tidss_drv.h" 31 #include "tidss_irq.h" 32 #include "tidss_plane.h" 33 34 #include "tidss_dispc_regs.h" 35 #include "tidss_scale_coefs.h" 36 37 static const u16 tidss_k2g_common_regs[DISPC_COMMON_REG_TABLE_LEN] = { 38 [DSS_REVISION_OFF] = 0x00, 39 [DSS_SYSCONFIG_OFF] = 0x04, 40 [DSS_SYSSTATUS_OFF] = 0x08, 41 [DISPC_IRQ_EOI_OFF] = 0x20, 42 [DISPC_IRQSTATUS_RAW_OFF] = 0x24, 43 [DISPC_IRQSTATUS_OFF] = 0x28, 44 [DISPC_IRQENABLE_SET_OFF] = 0x2c, 45 [DISPC_IRQENABLE_CLR_OFF] = 0x30, 46 47 [DISPC_GLOBAL_MFLAG_ATTRIBUTE_OFF] = 0x40, 48 [DISPC_GLOBAL_BUFFER_OFF] = 0x44, 49 50 [DISPC_DBG_CONTROL_OFF] = 0x4c, 51 [DISPC_DBG_STATUS_OFF] = 0x50, 52 53 [DISPC_CLKGATING_DISABLE_OFF] = 0x54, 54 }; 55 56 const struct dispc_features dispc_k2g_feats = { 57 .min_pclk_khz = 4375, 58 59 .max_pclk_khz = { 60 [DISPC_VP_DPI] = 150000, 61 }, 62 63 /* 64 * XXX According TRM the RGB input buffer width up to 2560 should 65 * work on 3 taps, but in practice it only works up to 1280. 66 */ 67 .scaling = { 68 .in_width_max_5tap_rgb = 1280, 69 .in_width_max_3tap_rgb = 1280, 70 .in_width_max_5tap_yuv = 2560, 71 .in_width_max_3tap_yuv = 2560, 72 .upscale_limit = 16, 73 .downscale_limit_5tap = 4, 74 .downscale_limit_3tap = 2, 75 /* 76 * The max supported pixel inc value is 255. The value 77 * of pixel inc is calculated like this: 1+(xinc-1)*bpp. 78 * The maximum bpp of all formats supported by the HW 79 * is 8. So the maximum supported xinc value is 32, 80 * because 1+(32-1)*8 < 255 < 1+(33-1)*4. 81 */ 82 .xinc_max = 32, 83 }, 84 85 .subrev = DISPC_K2G, 86 87 .common = "common", 88 89 .common_regs = tidss_k2g_common_regs, 90 91 .num_vps = 1, 92 .vp_name = { "vp1" }, 93 .ovr_name = { "ovr1" }, 94 .vpclk_name = { "vp1" }, 95 .vp_bus_type = { DISPC_VP_DPI }, 96 97 .vp_feat = { .color = { 98 .has_ctm = true, 99 .gamma_size = 256, 100 .gamma_type = TIDSS_GAMMA_8BIT, 101 }, 102 }, 103 104 .num_planes = 1, 105 .vid_name = { "vid1" }, 106 .vid_lite = { false }, 107 .vid_order = { 0 }, 108 }; 109 110 static const u16 tidss_am65x_common_regs[DISPC_COMMON_REG_TABLE_LEN] = { 111 [DSS_REVISION_OFF] = 0x4, 112 [DSS_SYSCONFIG_OFF] = 0x8, 113 [DSS_SYSSTATUS_OFF] = 0x20, 114 [DISPC_IRQ_EOI_OFF] = 0x24, 115 [DISPC_IRQSTATUS_RAW_OFF] = 0x28, 116 [DISPC_IRQSTATUS_OFF] = 0x2c, 117 [DISPC_IRQENABLE_SET_OFF] = 0x30, 118 [DISPC_IRQENABLE_CLR_OFF] = 0x40, 119 [DISPC_VID_IRQENABLE_OFF] = 0x44, 120 [DISPC_VID_IRQSTATUS_OFF] = 0x58, 121 [DISPC_VP_IRQENABLE_OFF] = 0x70, 122 [DISPC_VP_IRQSTATUS_OFF] = 0x7c, 123 124 [WB_IRQENABLE_OFF] = 0x88, 125 [WB_IRQSTATUS_OFF] = 0x8c, 126 127 [DISPC_GLOBAL_MFLAG_ATTRIBUTE_OFF] = 0x90, 128 [DISPC_GLOBAL_OUTPUT_ENABLE_OFF] = 0x94, 129 [DISPC_GLOBAL_BUFFER_OFF] = 0x98, 130 [DSS_CBA_CFG_OFF] = 0x9c, 131 [DISPC_DBG_CONTROL_OFF] = 0xa0, 132 [DISPC_DBG_STATUS_OFF] = 0xa4, 133 [DISPC_CLKGATING_DISABLE_OFF] = 0xa8, 134 [DISPC_SECURE_DISABLE_OFF] = 0xac, 135 }; 136 137 const struct dispc_features dispc_am65x_feats = { 138 .max_pclk_khz = { 139 [DISPC_VP_DPI] = 165000, 140 [DISPC_VP_OLDI] = 165000, 141 }, 142 143 .scaling = { 144 .in_width_max_5tap_rgb = 1280, 145 .in_width_max_3tap_rgb = 2560, 146 .in_width_max_5tap_yuv = 2560, 147 .in_width_max_3tap_yuv = 4096, 148 .upscale_limit = 16, 149 .downscale_limit_5tap = 4, 150 .downscale_limit_3tap = 2, 151 /* 152 * The max supported pixel inc value is 255. The value 153 * of pixel inc is calculated like this: 1+(xinc-1)*bpp. 154 * The maximum bpp of all formats supported by the HW 155 * is 8. So the maximum supported xinc value is 32, 156 * because 1+(32-1)*8 < 255 < 1+(33-1)*4. 157 */ 158 .xinc_max = 32, 159 }, 160 161 .subrev = DISPC_AM65X, 162 163 .common = "common", 164 .common_regs = tidss_am65x_common_regs, 165 166 .num_vps = 2, 167 .vp_name = { "vp1", "vp2" }, 168 .ovr_name = { "ovr1", "ovr2" }, 169 .vpclk_name = { "vp1", "vp2" }, 170 .vp_bus_type = { DISPC_VP_OLDI, DISPC_VP_DPI }, 171 172 .vp_feat = { .color = { 173 .has_ctm = true, 174 .gamma_size = 256, 175 .gamma_type = TIDSS_GAMMA_8BIT, 176 }, 177 }, 178 179 .num_planes = 2, 180 /* note: vid is plane_id 0 and vidl1 is plane_id 1 */ 181 .vid_name = { "vid", "vidl1" }, 182 .vid_lite = { false, true, }, 183 .vid_order = { 1, 0 }, 184 185 .errata = { 186 .i2000 = true, 187 }, 188 }; 189 190 static const u16 tidss_j721e_common_regs[DISPC_COMMON_REG_TABLE_LEN] = { 191 [DSS_REVISION_OFF] = 0x4, 192 [DSS_SYSCONFIG_OFF] = 0x8, 193 [DSS_SYSSTATUS_OFF] = 0x20, 194 [DISPC_IRQ_EOI_OFF] = 0x80, 195 [DISPC_IRQSTATUS_RAW_OFF] = 0x28, 196 [DISPC_IRQSTATUS_OFF] = 0x2c, 197 [DISPC_IRQENABLE_SET_OFF] = 0x30, 198 [DISPC_IRQENABLE_CLR_OFF] = 0x34, 199 [DISPC_VID_IRQENABLE_OFF] = 0x38, 200 [DISPC_VID_IRQSTATUS_OFF] = 0x48, 201 [DISPC_VP_IRQENABLE_OFF] = 0x58, 202 [DISPC_VP_IRQSTATUS_OFF] = 0x68, 203 204 [WB_IRQENABLE_OFF] = 0x78, 205 [WB_IRQSTATUS_OFF] = 0x7c, 206 207 [DISPC_GLOBAL_MFLAG_ATTRIBUTE_OFF] = 0x98, 208 [DISPC_GLOBAL_OUTPUT_ENABLE_OFF] = 0x9c, 209 [DISPC_GLOBAL_BUFFER_OFF] = 0xa0, 210 [DSS_CBA_CFG_OFF] = 0xa4, 211 [DISPC_DBG_CONTROL_OFF] = 0xa8, 212 [DISPC_DBG_STATUS_OFF] = 0xac, 213 [DISPC_CLKGATING_DISABLE_OFF] = 0xb0, 214 [DISPC_SECURE_DISABLE_OFF] = 0x90, 215 216 [FBDC_REVISION_1_OFF] = 0xb8, 217 [FBDC_REVISION_2_OFF] = 0xbc, 218 [FBDC_REVISION_3_OFF] = 0xc0, 219 [FBDC_REVISION_4_OFF] = 0xc4, 220 [FBDC_REVISION_5_OFF] = 0xc8, 221 [FBDC_REVISION_6_OFF] = 0xcc, 222 [FBDC_COMMON_CONTROL_OFF] = 0xd0, 223 [FBDC_CONSTANT_COLOR_0_OFF] = 0xd4, 224 [FBDC_CONSTANT_COLOR_1_OFF] = 0xd8, 225 [DISPC_CONNECTIONS_OFF] = 0xe4, 226 [DISPC_MSS_VP1_OFF] = 0xe8, 227 [DISPC_MSS_VP3_OFF] = 0xec, 228 }; 229 230 const struct dispc_features dispc_j721e_feats = { 231 .max_pclk_khz = { 232 [DISPC_VP_DPI] = 170000, 233 [DISPC_VP_INTERNAL] = 600000, 234 }, 235 236 .scaling = { 237 .in_width_max_5tap_rgb = 2048, 238 .in_width_max_3tap_rgb = 4096, 239 .in_width_max_5tap_yuv = 4096, 240 .in_width_max_3tap_yuv = 4096, 241 .upscale_limit = 16, 242 .downscale_limit_5tap = 4, 243 .downscale_limit_3tap = 2, 244 /* 245 * The max supported pixel inc value is 255. The value 246 * of pixel inc is calculated like this: 1+(xinc-1)*bpp. 247 * The maximum bpp of all formats supported by the HW 248 * is 8. So the maximum supported xinc value is 32, 249 * because 1+(32-1)*8 < 255 < 1+(33-1)*4. 250 */ 251 .xinc_max = 32, 252 }, 253 254 .subrev = DISPC_J721E, 255 256 .common = "common_m", 257 .common_regs = tidss_j721e_common_regs, 258 259 .num_vps = 4, 260 .vp_name = { "vp1", "vp2", "vp3", "vp4" }, 261 .ovr_name = { "ovr1", "ovr2", "ovr3", "ovr4" }, 262 .vpclk_name = { "vp1", "vp2", "vp3", "vp4" }, 263 /* Currently hard coded VP routing (see dispc_initial_config()) */ 264 .vp_bus_type = { DISPC_VP_INTERNAL, DISPC_VP_DPI, 265 DISPC_VP_INTERNAL, DISPC_VP_DPI, }, 266 .vp_feat = { .color = { 267 .has_ctm = true, 268 .gamma_size = 1024, 269 .gamma_type = TIDSS_GAMMA_10BIT, 270 }, 271 }, 272 .num_planes = 4, 273 .vid_name = { "vid1", "vidl1", "vid2", "vidl2" }, 274 .vid_lite = { 0, 1, 0, 1, }, 275 .vid_order = { 1, 3, 0, 2 }, 276 }; 277 278 static const u16 *dispc_common_regmap; 279 280 struct dss_vp_data { 281 u32 *gamma_table; 282 }; 283 284 struct dispc_device { 285 struct tidss_device *tidss; 286 struct device *dev; 287 288 void __iomem *base_common; 289 void __iomem *base_vid[TIDSS_MAX_PLANES]; 290 void __iomem *base_ovr[TIDSS_MAX_PORTS]; 291 void __iomem *base_vp[TIDSS_MAX_PORTS]; 292 293 struct regmap *oldi_io_ctrl; 294 295 struct clk *vp_clk[TIDSS_MAX_PORTS]; 296 297 const struct dispc_features *feat; 298 299 struct clk *fclk; 300 301 bool is_enabled; 302 303 struct dss_vp_data vp_data[TIDSS_MAX_PORTS]; 304 305 u32 *fourccs; 306 u32 num_fourccs; 307 308 u32 memory_bandwidth_limit; 309 }; 310 311 static void dispc_write(struct dispc_device *dispc, u16 reg, u32 val) 312 { 313 iowrite32(val, dispc->base_common + reg); 314 } 315 316 static u32 dispc_read(struct dispc_device *dispc, u16 reg) 317 { 318 return ioread32(dispc->base_common + reg); 319 } 320 321 static 322 void dispc_vid_write(struct dispc_device *dispc, u32 hw_plane, u16 reg, u32 val) 323 { 324 void __iomem *base = dispc->base_vid[hw_plane]; 325 326 iowrite32(val, base + reg); 327 } 328 329 static u32 dispc_vid_read(struct dispc_device *dispc, u32 hw_plane, u16 reg) 330 { 331 void __iomem *base = dispc->base_vid[hw_plane]; 332 333 return ioread32(base + reg); 334 } 335 336 static void dispc_ovr_write(struct dispc_device *dispc, u32 hw_videoport, 337 u16 reg, u32 val) 338 { 339 void __iomem *base = dispc->base_ovr[hw_videoport]; 340 341 iowrite32(val, base + reg); 342 } 343 344 static u32 dispc_ovr_read(struct dispc_device *dispc, u32 hw_videoport, u16 reg) 345 { 346 void __iomem *base = dispc->base_ovr[hw_videoport]; 347 348 return ioread32(base + reg); 349 } 350 351 static void dispc_vp_write(struct dispc_device *dispc, u32 hw_videoport, 352 u16 reg, u32 val) 353 { 354 void __iomem *base = dispc->base_vp[hw_videoport]; 355 356 iowrite32(val, base + reg); 357 } 358 359 static u32 dispc_vp_read(struct dispc_device *dispc, u32 hw_videoport, u16 reg) 360 { 361 void __iomem *base = dispc->base_vp[hw_videoport]; 362 363 return ioread32(base + reg); 364 } 365 366 /* 367 * TRM gives bitfields as start:end, where start is the higher bit 368 * number. For example 7:0 369 */ 370 371 static u32 FLD_MASK(u32 start, u32 end) 372 { 373 return ((1 << (start - end + 1)) - 1) << end; 374 } 375 376 static u32 FLD_VAL(u32 val, u32 start, u32 end) 377 { 378 return (val << end) & FLD_MASK(start, end); 379 } 380 381 static u32 FLD_GET(u32 val, u32 start, u32 end) 382 { 383 return (val & FLD_MASK(start, end)) >> end; 384 } 385 386 static u32 FLD_MOD(u32 orig, u32 val, u32 start, u32 end) 387 { 388 return (orig & ~FLD_MASK(start, end)) | FLD_VAL(val, start, end); 389 } 390 391 static u32 REG_GET(struct dispc_device *dispc, u32 idx, u32 start, u32 end) 392 { 393 return FLD_GET(dispc_read(dispc, idx), start, end); 394 } 395 396 static void REG_FLD_MOD(struct dispc_device *dispc, u32 idx, u32 val, 397 u32 start, u32 end) 398 { 399 dispc_write(dispc, idx, FLD_MOD(dispc_read(dispc, idx), val, 400 start, end)); 401 } 402 403 static u32 VID_REG_GET(struct dispc_device *dispc, u32 hw_plane, u32 idx, 404 u32 start, u32 end) 405 { 406 return FLD_GET(dispc_vid_read(dispc, hw_plane, idx), start, end); 407 } 408 409 static void VID_REG_FLD_MOD(struct dispc_device *dispc, u32 hw_plane, u32 idx, 410 u32 val, u32 start, u32 end) 411 { 412 dispc_vid_write(dispc, hw_plane, idx, 413 FLD_MOD(dispc_vid_read(dispc, hw_plane, idx), 414 val, start, end)); 415 } 416 417 static u32 VP_REG_GET(struct dispc_device *dispc, u32 vp, u32 idx, 418 u32 start, u32 end) 419 { 420 return FLD_GET(dispc_vp_read(dispc, vp, idx), start, end); 421 } 422 423 static void VP_REG_FLD_MOD(struct dispc_device *dispc, u32 vp, u32 idx, u32 val, 424 u32 start, u32 end) 425 { 426 dispc_vp_write(dispc, vp, idx, FLD_MOD(dispc_vp_read(dispc, vp, idx), 427 val, start, end)); 428 } 429 430 __maybe_unused 431 static u32 OVR_REG_GET(struct dispc_device *dispc, u32 ovr, u32 idx, 432 u32 start, u32 end) 433 { 434 return FLD_GET(dispc_ovr_read(dispc, ovr, idx), start, end); 435 } 436 437 static void OVR_REG_FLD_MOD(struct dispc_device *dispc, u32 ovr, u32 idx, 438 u32 val, u32 start, u32 end) 439 { 440 dispc_ovr_write(dispc, ovr, idx, 441 FLD_MOD(dispc_ovr_read(dispc, ovr, idx), 442 val, start, end)); 443 } 444 445 static dispc_irq_t dispc_vp_irq_from_raw(u32 stat, u32 hw_videoport) 446 { 447 dispc_irq_t vp_stat = 0; 448 449 if (stat & BIT(0)) 450 vp_stat |= DSS_IRQ_VP_FRAME_DONE(hw_videoport); 451 if (stat & BIT(1)) 452 vp_stat |= DSS_IRQ_VP_VSYNC_EVEN(hw_videoport); 453 if (stat & BIT(2)) 454 vp_stat |= DSS_IRQ_VP_VSYNC_ODD(hw_videoport); 455 if (stat & BIT(4)) 456 vp_stat |= DSS_IRQ_VP_SYNC_LOST(hw_videoport); 457 458 return vp_stat; 459 } 460 461 static u32 dispc_vp_irq_to_raw(dispc_irq_t vpstat, u32 hw_videoport) 462 { 463 u32 stat = 0; 464 465 if (vpstat & DSS_IRQ_VP_FRAME_DONE(hw_videoport)) 466 stat |= BIT(0); 467 if (vpstat & DSS_IRQ_VP_VSYNC_EVEN(hw_videoport)) 468 stat |= BIT(1); 469 if (vpstat & DSS_IRQ_VP_VSYNC_ODD(hw_videoport)) 470 stat |= BIT(2); 471 if (vpstat & DSS_IRQ_VP_SYNC_LOST(hw_videoport)) 472 stat |= BIT(4); 473 474 return stat; 475 } 476 477 static dispc_irq_t dispc_vid_irq_from_raw(u32 stat, u32 hw_plane) 478 { 479 dispc_irq_t vid_stat = 0; 480 481 if (stat & BIT(0)) 482 vid_stat |= DSS_IRQ_PLANE_FIFO_UNDERFLOW(hw_plane); 483 484 return vid_stat; 485 } 486 487 static u32 dispc_vid_irq_to_raw(dispc_irq_t vidstat, u32 hw_plane) 488 { 489 u32 stat = 0; 490 491 if (vidstat & DSS_IRQ_PLANE_FIFO_UNDERFLOW(hw_plane)) 492 stat |= BIT(0); 493 494 return stat; 495 } 496 497 static dispc_irq_t dispc_k2g_vp_read_irqstatus(struct dispc_device *dispc, 498 u32 hw_videoport) 499 { 500 u32 stat = dispc_vp_read(dispc, hw_videoport, DISPC_VP_K2G_IRQSTATUS); 501 502 return dispc_vp_irq_from_raw(stat, hw_videoport); 503 } 504 505 static void dispc_k2g_vp_write_irqstatus(struct dispc_device *dispc, 506 u32 hw_videoport, dispc_irq_t vpstat) 507 { 508 u32 stat = dispc_vp_irq_to_raw(vpstat, hw_videoport); 509 510 dispc_vp_write(dispc, hw_videoport, DISPC_VP_K2G_IRQSTATUS, stat); 511 } 512 513 static dispc_irq_t dispc_k2g_vid_read_irqstatus(struct dispc_device *dispc, 514 u32 hw_plane) 515 { 516 u32 stat = dispc_vid_read(dispc, hw_plane, DISPC_VID_K2G_IRQSTATUS); 517 518 return dispc_vid_irq_from_raw(stat, hw_plane); 519 } 520 521 static void dispc_k2g_vid_write_irqstatus(struct dispc_device *dispc, 522 u32 hw_plane, dispc_irq_t vidstat) 523 { 524 u32 stat = dispc_vid_irq_to_raw(vidstat, hw_plane); 525 526 dispc_vid_write(dispc, hw_plane, DISPC_VID_K2G_IRQSTATUS, stat); 527 } 528 529 static dispc_irq_t dispc_k2g_vp_read_irqenable(struct dispc_device *dispc, 530 u32 hw_videoport) 531 { 532 u32 stat = dispc_vp_read(dispc, hw_videoport, DISPC_VP_K2G_IRQENABLE); 533 534 return dispc_vp_irq_from_raw(stat, hw_videoport); 535 } 536 537 static void dispc_k2g_vp_set_irqenable(struct dispc_device *dispc, 538 u32 hw_videoport, dispc_irq_t vpstat) 539 { 540 u32 stat = dispc_vp_irq_to_raw(vpstat, hw_videoport); 541 542 dispc_vp_write(dispc, hw_videoport, DISPC_VP_K2G_IRQENABLE, stat); 543 } 544 545 static dispc_irq_t dispc_k2g_vid_read_irqenable(struct dispc_device *dispc, 546 u32 hw_plane) 547 { 548 u32 stat = dispc_vid_read(dispc, hw_plane, DISPC_VID_K2G_IRQENABLE); 549 550 return dispc_vid_irq_from_raw(stat, hw_plane); 551 } 552 553 static void dispc_k2g_vid_set_irqenable(struct dispc_device *dispc, 554 u32 hw_plane, dispc_irq_t vidstat) 555 { 556 u32 stat = dispc_vid_irq_to_raw(vidstat, hw_plane); 557 558 dispc_vid_write(dispc, hw_plane, DISPC_VID_K2G_IRQENABLE, stat); 559 } 560 561 static void dispc_k2g_clear_irqstatus(struct dispc_device *dispc, 562 dispc_irq_t mask) 563 { 564 dispc_k2g_vp_write_irqstatus(dispc, 0, mask); 565 dispc_k2g_vid_write_irqstatus(dispc, 0, mask); 566 } 567 568 static 569 dispc_irq_t dispc_k2g_read_and_clear_irqstatus(struct dispc_device *dispc) 570 { 571 dispc_irq_t stat = 0; 572 573 /* always clear the top level irqstatus */ 574 dispc_write(dispc, DISPC_IRQSTATUS, 575 dispc_read(dispc, DISPC_IRQSTATUS)); 576 577 stat |= dispc_k2g_vp_read_irqstatus(dispc, 0); 578 stat |= dispc_k2g_vid_read_irqstatus(dispc, 0); 579 580 dispc_k2g_clear_irqstatus(dispc, stat); 581 582 return stat; 583 } 584 585 static dispc_irq_t dispc_k2g_read_irqenable(struct dispc_device *dispc) 586 { 587 dispc_irq_t stat = 0; 588 589 stat |= dispc_k2g_vp_read_irqenable(dispc, 0); 590 stat |= dispc_k2g_vid_read_irqenable(dispc, 0); 591 592 return stat; 593 } 594 595 static 596 void dispc_k2g_set_irqenable(struct dispc_device *dispc, dispc_irq_t mask) 597 { 598 dispc_irq_t old_mask = dispc_k2g_read_irqenable(dispc); 599 600 /* clear the irqstatus for newly enabled irqs */ 601 dispc_k2g_clear_irqstatus(dispc, (mask ^ old_mask) & mask); 602 603 dispc_k2g_vp_set_irqenable(dispc, 0, mask); 604 dispc_k2g_vid_set_irqenable(dispc, 0, mask); 605 606 dispc_write(dispc, DISPC_IRQENABLE_SET, (1 << 0) | (1 << 7)); 607 608 /* flush posted write */ 609 dispc_k2g_read_irqenable(dispc); 610 } 611 612 static dispc_irq_t dispc_k3_vp_read_irqstatus(struct dispc_device *dispc, 613 u32 hw_videoport) 614 { 615 u32 stat = dispc_read(dispc, DISPC_VP_IRQSTATUS(hw_videoport)); 616 617 return dispc_vp_irq_from_raw(stat, hw_videoport); 618 } 619 620 static void dispc_k3_vp_write_irqstatus(struct dispc_device *dispc, 621 u32 hw_videoport, dispc_irq_t vpstat) 622 { 623 u32 stat = dispc_vp_irq_to_raw(vpstat, hw_videoport); 624 625 dispc_write(dispc, DISPC_VP_IRQSTATUS(hw_videoport), stat); 626 } 627 628 static dispc_irq_t dispc_k3_vid_read_irqstatus(struct dispc_device *dispc, 629 u32 hw_plane) 630 { 631 u32 stat = dispc_read(dispc, DISPC_VID_IRQSTATUS(hw_plane)); 632 633 return dispc_vid_irq_from_raw(stat, hw_plane); 634 } 635 636 static void dispc_k3_vid_write_irqstatus(struct dispc_device *dispc, 637 u32 hw_plane, dispc_irq_t vidstat) 638 { 639 u32 stat = dispc_vid_irq_to_raw(vidstat, hw_plane); 640 641 dispc_write(dispc, DISPC_VID_IRQSTATUS(hw_plane), stat); 642 } 643 644 static dispc_irq_t dispc_k3_vp_read_irqenable(struct dispc_device *dispc, 645 u32 hw_videoport) 646 { 647 u32 stat = dispc_read(dispc, DISPC_VP_IRQENABLE(hw_videoport)); 648 649 return dispc_vp_irq_from_raw(stat, hw_videoport); 650 } 651 652 static void dispc_k3_vp_set_irqenable(struct dispc_device *dispc, 653 u32 hw_videoport, dispc_irq_t vpstat) 654 { 655 u32 stat = dispc_vp_irq_to_raw(vpstat, hw_videoport); 656 657 dispc_write(dispc, DISPC_VP_IRQENABLE(hw_videoport), stat); 658 } 659 660 static dispc_irq_t dispc_k3_vid_read_irqenable(struct dispc_device *dispc, 661 u32 hw_plane) 662 { 663 u32 stat = dispc_read(dispc, DISPC_VID_IRQENABLE(hw_plane)); 664 665 return dispc_vid_irq_from_raw(stat, hw_plane); 666 } 667 668 static void dispc_k3_vid_set_irqenable(struct dispc_device *dispc, 669 u32 hw_plane, dispc_irq_t vidstat) 670 { 671 u32 stat = dispc_vid_irq_to_raw(vidstat, hw_plane); 672 673 dispc_write(dispc, DISPC_VID_IRQENABLE(hw_plane), stat); 674 } 675 676 static 677 void dispc_k3_clear_irqstatus(struct dispc_device *dispc, dispc_irq_t clearmask) 678 { 679 unsigned int i; 680 u32 top_clear = 0; 681 682 for (i = 0; i < dispc->feat->num_vps; ++i) { 683 if (clearmask & DSS_IRQ_VP_MASK(i)) { 684 dispc_k3_vp_write_irqstatus(dispc, i, clearmask); 685 top_clear |= BIT(i); 686 } 687 } 688 for (i = 0; i < dispc->feat->num_planes; ++i) { 689 if (clearmask & DSS_IRQ_PLANE_MASK(i)) { 690 dispc_k3_vid_write_irqstatus(dispc, i, clearmask); 691 top_clear |= BIT(4 + i); 692 } 693 } 694 if (dispc->feat->subrev == DISPC_K2G) 695 return; 696 697 dispc_write(dispc, DISPC_IRQSTATUS, top_clear); 698 699 /* Flush posted writes */ 700 dispc_read(dispc, DISPC_IRQSTATUS); 701 } 702 703 static 704 dispc_irq_t dispc_k3_read_and_clear_irqstatus(struct dispc_device *dispc) 705 { 706 dispc_irq_t status = 0; 707 unsigned int i; 708 709 for (i = 0; i < dispc->feat->num_vps; ++i) 710 status |= dispc_k3_vp_read_irqstatus(dispc, i); 711 712 for (i = 0; i < dispc->feat->num_planes; ++i) 713 status |= dispc_k3_vid_read_irqstatus(dispc, i); 714 715 dispc_k3_clear_irqstatus(dispc, status); 716 717 return status; 718 } 719 720 static dispc_irq_t dispc_k3_read_irqenable(struct dispc_device *dispc) 721 { 722 dispc_irq_t enable = 0; 723 unsigned int i; 724 725 for (i = 0; i < dispc->feat->num_vps; ++i) 726 enable |= dispc_k3_vp_read_irqenable(dispc, i); 727 728 for (i = 0; i < dispc->feat->num_planes; ++i) 729 enable |= dispc_k3_vid_read_irqenable(dispc, i); 730 731 return enable; 732 } 733 734 static void dispc_k3_set_irqenable(struct dispc_device *dispc, 735 dispc_irq_t mask) 736 { 737 unsigned int i; 738 u32 main_enable = 0, main_disable = 0; 739 dispc_irq_t old_mask; 740 741 old_mask = dispc_k3_read_irqenable(dispc); 742 743 /* clear the irqstatus for newly enabled irqs */ 744 dispc_k3_clear_irqstatus(dispc, (old_mask ^ mask) & mask); 745 746 for (i = 0; i < dispc->feat->num_vps; ++i) { 747 dispc_k3_vp_set_irqenable(dispc, i, mask); 748 if (mask & DSS_IRQ_VP_MASK(i)) 749 main_enable |= BIT(i); /* VP IRQ */ 750 else 751 main_disable |= BIT(i); /* VP IRQ */ 752 } 753 754 for (i = 0; i < dispc->feat->num_planes; ++i) { 755 dispc_k3_vid_set_irqenable(dispc, i, mask); 756 if (mask & DSS_IRQ_PLANE_MASK(i)) 757 main_enable |= BIT(i + 4); /* VID IRQ */ 758 else 759 main_disable |= BIT(i + 4); /* VID IRQ */ 760 } 761 762 if (main_enable) 763 dispc_write(dispc, DISPC_IRQENABLE_SET, main_enable); 764 765 if (main_disable) 766 dispc_write(dispc, DISPC_IRQENABLE_CLR, main_disable); 767 768 /* Flush posted writes */ 769 dispc_read(dispc, DISPC_IRQENABLE_SET); 770 } 771 772 dispc_irq_t dispc_read_and_clear_irqstatus(struct dispc_device *dispc) 773 { 774 switch (dispc->feat->subrev) { 775 case DISPC_K2G: 776 return dispc_k2g_read_and_clear_irqstatus(dispc); 777 case DISPC_AM65X: 778 case DISPC_J721E: 779 return dispc_k3_read_and_clear_irqstatus(dispc); 780 default: 781 WARN_ON(1); 782 return 0; 783 } 784 } 785 786 void dispc_set_irqenable(struct dispc_device *dispc, dispc_irq_t mask) 787 { 788 switch (dispc->feat->subrev) { 789 case DISPC_K2G: 790 dispc_k2g_set_irqenable(dispc, mask); 791 break; 792 case DISPC_AM65X: 793 case DISPC_J721E: 794 dispc_k3_set_irqenable(dispc, mask); 795 break; 796 default: 797 WARN_ON(1); 798 break; 799 } 800 } 801 802 enum dispc_oldi_mode_reg_val { SPWG_18 = 0, JEIDA_24 = 1, SPWG_24 = 2 }; 803 804 struct dispc_bus_format { 805 u32 bus_fmt; 806 u32 data_width; 807 bool is_oldi_fmt; 808 enum dispc_oldi_mode_reg_val oldi_mode_reg_val; 809 }; 810 811 static const struct dispc_bus_format dispc_bus_formats[] = { 812 { MEDIA_BUS_FMT_RGB444_1X12, 12, false, 0 }, 813 { MEDIA_BUS_FMT_RGB565_1X16, 16, false, 0 }, 814 { MEDIA_BUS_FMT_RGB666_1X18, 18, false, 0 }, 815 { MEDIA_BUS_FMT_RGB888_1X24, 24, false, 0 }, 816 { MEDIA_BUS_FMT_RGB101010_1X30, 30, false, 0 }, 817 { MEDIA_BUS_FMT_RGB121212_1X36, 36, false, 0 }, 818 { MEDIA_BUS_FMT_RGB666_1X7X3_SPWG, 18, true, SPWG_18 }, 819 { MEDIA_BUS_FMT_RGB888_1X7X4_SPWG, 24, true, SPWG_24 }, 820 { MEDIA_BUS_FMT_RGB888_1X7X4_JEIDA, 24, true, JEIDA_24 }, 821 }; 822 823 static const 824 struct dispc_bus_format *dispc_vp_find_bus_fmt(struct dispc_device *dispc, 825 u32 hw_videoport, 826 u32 bus_fmt, u32 bus_flags) 827 { 828 unsigned int i; 829 830 for (i = 0; i < ARRAY_SIZE(dispc_bus_formats); ++i) { 831 if (dispc_bus_formats[i].bus_fmt == bus_fmt) 832 return &dispc_bus_formats[i]; 833 } 834 835 return NULL; 836 } 837 838 int dispc_vp_bus_check(struct dispc_device *dispc, u32 hw_videoport, 839 const struct drm_crtc_state *state) 840 { 841 const struct tidss_crtc_state *tstate = to_tidss_crtc_state(state); 842 const struct dispc_bus_format *fmt; 843 844 fmt = dispc_vp_find_bus_fmt(dispc, hw_videoport, tstate->bus_format, 845 tstate->bus_flags); 846 if (!fmt) { 847 dev_dbg(dispc->dev, "%s: Unsupported bus format: %u\n", 848 __func__, tstate->bus_format); 849 return -EINVAL; 850 } 851 852 if (dispc->feat->vp_bus_type[hw_videoport] != DISPC_VP_OLDI && 853 fmt->is_oldi_fmt) { 854 dev_dbg(dispc->dev, "%s: %s is not OLDI-port\n", 855 __func__, dispc->feat->vp_name[hw_videoport]); 856 return -EINVAL; 857 } 858 859 return 0; 860 } 861 862 static void dispc_oldi_tx_power(struct dispc_device *dispc, bool power) 863 { 864 u32 val = power ? 0 : OLDI_PWRDN_TX; 865 866 if (WARN_ON(!dispc->oldi_io_ctrl)) 867 return; 868 869 regmap_update_bits(dispc->oldi_io_ctrl, OLDI_DAT0_IO_CTRL, 870 OLDI_PWRDN_TX, val); 871 regmap_update_bits(dispc->oldi_io_ctrl, OLDI_DAT1_IO_CTRL, 872 OLDI_PWRDN_TX, val); 873 regmap_update_bits(dispc->oldi_io_ctrl, OLDI_DAT2_IO_CTRL, 874 OLDI_PWRDN_TX, val); 875 regmap_update_bits(dispc->oldi_io_ctrl, OLDI_DAT3_IO_CTRL, 876 OLDI_PWRDN_TX, val); 877 regmap_update_bits(dispc->oldi_io_ctrl, OLDI_CLK_IO_CTRL, 878 OLDI_PWRDN_TX, val); 879 } 880 881 static void dispc_set_num_datalines(struct dispc_device *dispc, 882 u32 hw_videoport, int num_lines) 883 { 884 int v; 885 886 switch (num_lines) { 887 case 12: 888 v = 0; break; 889 case 16: 890 v = 1; break; 891 case 18: 892 v = 2; break; 893 case 24: 894 v = 3; break; 895 case 30: 896 v = 4; break; 897 case 36: 898 v = 5; break; 899 default: 900 WARN_ON(1); 901 v = 3; 902 } 903 904 VP_REG_FLD_MOD(dispc, hw_videoport, DISPC_VP_CONTROL, v, 10, 8); 905 } 906 907 static void dispc_enable_oldi(struct dispc_device *dispc, u32 hw_videoport, 908 const struct dispc_bus_format *fmt) 909 { 910 u32 oldi_cfg = 0; 911 u32 oldi_reset_bit = BIT(5 + hw_videoport); 912 int count = 0; 913 914 /* 915 * For the moment DUALMODESYNC, MASTERSLAVE, MODE, and SRC 916 * bits of DISPC_VP_DSS_OLDI_CFG are set statically to 0. 917 */ 918 919 if (fmt->data_width == 24) 920 oldi_cfg |= BIT(8); /* MSB */ 921 else if (fmt->data_width != 18) 922 dev_warn(dispc->dev, "%s: %d port width not supported\n", 923 __func__, fmt->data_width); 924 925 oldi_cfg |= BIT(7); /* DEPOL */ 926 927 oldi_cfg = FLD_MOD(oldi_cfg, fmt->oldi_mode_reg_val, 3, 1); 928 929 oldi_cfg |= BIT(12); /* SOFTRST */ 930 931 oldi_cfg |= BIT(0); /* ENABLE */ 932 933 dispc_vp_write(dispc, hw_videoport, DISPC_VP_DSS_OLDI_CFG, oldi_cfg); 934 935 while (!(oldi_reset_bit & dispc_read(dispc, DSS_SYSSTATUS)) && 936 count < 10000) 937 count++; 938 939 if (!(oldi_reset_bit & dispc_read(dispc, DSS_SYSSTATUS))) 940 dev_warn(dispc->dev, "%s: timeout waiting OLDI reset done\n", 941 __func__); 942 } 943 944 void dispc_vp_prepare(struct dispc_device *dispc, u32 hw_videoport, 945 const struct drm_crtc_state *state) 946 { 947 const struct tidss_crtc_state *tstate = to_tidss_crtc_state(state); 948 const struct dispc_bus_format *fmt; 949 950 fmt = dispc_vp_find_bus_fmt(dispc, hw_videoport, tstate->bus_format, 951 tstate->bus_flags); 952 953 if (WARN_ON(!fmt)) 954 return; 955 956 if (dispc->feat->vp_bus_type[hw_videoport] == DISPC_VP_OLDI) { 957 dispc_oldi_tx_power(dispc, true); 958 959 dispc_enable_oldi(dispc, hw_videoport, fmt); 960 } 961 } 962 963 void dispc_vp_enable(struct dispc_device *dispc, u32 hw_videoport, 964 const struct drm_crtc_state *state) 965 { 966 const struct drm_display_mode *mode = &state->adjusted_mode; 967 const struct tidss_crtc_state *tstate = to_tidss_crtc_state(state); 968 bool align, onoff, rf, ieo, ipc, ihs, ivs; 969 const struct dispc_bus_format *fmt; 970 u32 hsw, hfp, hbp, vsw, vfp, vbp; 971 972 fmt = dispc_vp_find_bus_fmt(dispc, hw_videoport, tstate->bus_format, 973 tstate->bus_flags); 974 975 if (WARN_ON(!fmt)) 976 return; 977 978 dispc_set_num_datalines(dispc, hw_videoport, fmt->data_width); 979 980 hfp = mode->hsync_start - mode->hdisplay; 981 hsw = mode->hsync_end - mode->hsync_start; 982 hbp = mode->htotal - mode->hsync_end; 983 984 vfp = mode->vsync_start - mode->vdisplay; 985 vsw = mode->vsync_end - mode->vsync_start; 986 vbp = mode->vtotal - mode->vsync_end; 987 988 dispc_vp_write(dispc, hw_videoport, DISPC_VP_TIMING_H, 989 FLD_VAL(hsw - 1, 7, 0) | 990 FLD_VAL(hfp - 1, 19, 8) | 991 FLD_VAL(hbp - 1, 31, 20)); 992 993 dispc_vp_write(dispc, hw_videoport, DISPC_VP_TIMING_V, 994 FLD_VAL(vsw - 1, 7, 0) | 995 FLD_VAL(vfp, 19, 8) | 996 FLD_VAL(vbp, 31, 20)); 997 998 ivs = !!(mode->flags & DRM_MODE_FLAG_NVSYNC); 999 1000 ihs = !!(mode->flags & DRM_MODE_FLAG_NHSYNC); 1001 1002 ieo = !!(tstate->bus_flags & DRM_BUS_FLAG_DE_LOW); 1003 1004 ipc = !!(tstate->bus_flags & DRM_BUS_FLAG_PIXDATA_NEGEDGE); 1005 1006 /* always use the 'rf' setting */ 1007 onoff = true; 1008 1009 rf = !!(tstate->bus_flags & DRM_BUS_FLAG_SYNC_POSEDGE); 1010 1011 /* always use aligned syncs */ 1012 align = true; 1013 1014 /* always use DE_HIGH for OLDI */ 1015 if (dispc->feat->vp_bus_type[hw_videoport] == DISPC_VP_OLDI) 1016 ieo = false; 1017 1018 dispc_vp_write(dispc, hw_videoport, DISPC_VP_POL_FREQ, 1019 FLD_VAL(align, 18, 18) | 1020 FLD_VAL(onoff, 17, 17) | 1021 FLD_VAL(rf, 16, 16) | 1022 FLD_VAL(ieo, 15, 15) | 1023 FLD_VAL(ipc, 14, 14) | 1024 FLD_VAL(ihs, 13, 13) | 1025 FLD_VAL(ivs, 12, 12)); 1026 1027 dispc_vp_write(dispc, hw_videoport, DISPC_VP_SIZE_SCREEN, 1028 FLD_VAL(mode->hdisplay - 1, 11, 0) | 1029 FLD_VAL(mode->vdisplay - 1, 27, 16)); 1030 1031 VP_REG_FLD_MOD(dispc, hw_videoport, DISPC_VP_CONTROL, 1, 0, 0); 1032 } 1033 1034 void dispc_vp_disable(struct dispc_device *dispc, u32 hw_videoport) 1035 { 1036 VP_REG_FLD_MOD(dispc, hw_videoport, DISPC_VP_CONTROL, 0, 0, 0); 1037 } 1038 1039 void dispc_vp_unprepare(struct dispc_device *dispc, u32 hw_videoport) 1040 { 1041 if (dispc->feat->vp_bus_type[hw_videoport] == DISPC_VP_OLDI) { 1042 dispc_vp_write(dispc, hw_videoport, DISPC_VP_DSS_OLDI_CFG, 0); 1043 1044 dispc_oldi_tx_power(dispc, false); 1045 } 1046 } 1047 1048 bool dispc_vp_go_busy(struct dispc_device *dispc, u32 hw_videoport) 1049 { 1050 return VP_REG_GET(dispc, hw_videoport, DISPC_VP_CONTROL, 5, 5); 1051 } 1052 1053 void dispc_vp_go(struct dispc_device *dispc, u32 hw_videoport) 1054 { 1055 WARN_ON(VP_REG_GET(dispc, hw_videoport, DISPC_VP_CONTROL, 5, 5)); 1056 VP_REG_FLD_MOD(dispc, hw_videoport, DISPC_VP_CONTROL, 1, 5, 5); 1057 } 1058 1059 enum c8_to_c12_mode { C8_TO_C12_REPLICATE, C8_TO_C12_MAX, C8_TO_C12_MIN }; 1060 1061 static u16 c8_to_c12(u8 c8, enum c8_to_c12_mode mode) 1062 { 1063 u16 c12; 1064 1065 c12 = c8 << 4; 1066 1067 switch (mode) { 1068 case C8_TO_C12_REPLICATE: 1069 /* Copy c8 4 MSB to 4 LSB for full scale c12 */ 1070 c12 |= c8 >> 4; 1071 break; 1072 case C8_TO_C12_MAX: 1073 c12 |= 0xF; 1074 break; 1075 default: 1076 case C8_TO_C12_MIN: 1077 break; 1078 } 1079 1080 return c12; 1081 } 1082 1083 static u64 argb8888_to_argb12121212(u32 argb8888, enum c8_to_c12_mode m) 1084 { 1085 u8 a, r, g, b; 1086 u64 v; 1087 1088 a = (argb8888 >> 24) & 0xff; 1089 r = (argb8888 >> 16) & 0xff; 1090 g = (argb8888 >> 8) & 0xff; 1091 b = (argb8888 >> 0) & 0xff; 1092 1093 v = ((u64)c8_to_c12(a, m) << 36) | ((u64)c8_to_c12(r, m) << 24) | 1094 ((u64)c8_to_c12(g, m) << 12) | (u64)c8_to_c12(b, m); 1095 1096 return v; 1097 } 1098 1099 static void dispc_vp_set_default_color(struct dispc_device *dispc, 1100 u32 hw_videoport, u32 default_color) 1101 { 1102 u64 v; 1103 1104 v = argb8888_to_argb12121212(default_color, C8_TO_C12_REPLICATE); 1105 1106 dispc_ovr_write(dispc, hw_videoport, 1107 DISPC_OVR_DEFAULT_COLOR, v & 0xffffffff); 1108 dispc_ovr_write(dispc, hw_videoport, 1109 DISPC_OVR_DEFAULT_COLOR2, (v >> 32) & 0xffff); 1110 } 1111 1112 enum drm_mode_status dispc_vp_mode_valid(struct dispc_device *dispc, 1113 u32 hw_videoport, 1114 const struct drm_display_mode *mode) 1115 { 1116 u32 hsw, hfp, hbp, vsw, vfp, vbp; 1117 enum dispc_vp_bus_type bus_type; 1118 int max_pclk; 1119 1120 bus_type = dispc->feat->vp_bus_type[hw_videoport]; 1121 1122 max_pclk = dispc->feat->max_pclk_khz[bus_type]; 1123 1124 if (WARN_ON(max_pclk == 0)) 1125 return MODE_BAD; 1126 1127 if (mode->clock < dispc->feat->min_pclk_khz) 1128 return MODE_CLOCK_LOW; 1129 1130 if (mode->clock > max_pclk) 1131 return MODE_CLOCK_HIGH; 1132 1133 if (mode->hdisplay > 4096) 1134 return MODE_BAD; 1135 1136 if (mode->vdisplay > 4096) 1137 return MODE_BAD; 1138 1139 /* TODO: add interlace support */ 1140 if (mode->flags & DRM_MODE_FLAG_INTERLACE) 1141 return MODE_NO_INTERLACE; 1142 1143 /* 1144 * Enforce the output width is divisible by 2. Actually this 1145 * is only needed in following cases: 1146 * - YUV output selected (BT656, BT1120) 1147 * - Dithering enabled 1148 * - TDM with TDMCycleFormat == 3 1149 * But for simplicity we enforce that always. 1150 */ 1151 if ((mode->hdisplay % 2) != 0) 1152 return MODE_BAD_HVALUE; 1153 1154 hfp = mode->hsync_start - mode->hdisplay; 1155 hsw = mode->hsync_end - mode->hsync_start; 1156 hbp = mode->htotal - mode->hsync_end; 1157 1158 vfp = mode->vsync_start - mode->vdisplay; 1159 vsw = mode->vsync_end - mode->vsync_start; 1160 vbp = mode->vtotal - mode->vsync_end; 1161 1162 if (hsw < 1 || hsw > 256 || 1163 hfp < 1 || hfp > 4096 || 1164 hbp < 1 || hbp > 4096) 1165 return MODE_BAD_HVALUE; 1166 1167 if (vsw < 1 || vsw > 256 || 1168 vfp > 4095 || vbp > 4095) 1169 return MODE_BAD_VVALUE; 1170 1171 if (dispc->memory_bandwidth_limit) { 1172 const unsigned int bpp = 4; 1173 u64 bandwidth; 1174 1175 bandwidth = 1000 * mode->clock; 1176 bandwidth = bandwidth * mode->hdisplay * mode->vdisplay * bpp; 1177 bandwidth = div_u64(bandwidth, mode->htotal * mode->vtotal); 1178 1179 if (dispc->memory_bandwidth_limit < bandwidth) 1180 return MODE_BAD; 1181 } 1182 1183 return MODE_OK; 1184 } 1185 1186 int dispc_vp_enable_clk(struct dispc_device *dispc, u32 hw_videoport) 1187 { 1188 int ret = clk_prepare_enable(dispc->vp_clk[hw_videoport]); 1189 1190 if (ret) 1191 dev_err(dispc->dev, "%s: enabling clk failed: %d\n", __func__, 1192 ret); 1193 1194 return ret; 1195 } 1196 1197 void dispc_vp_disable_clk(struct dispc_device *dispc, u32 hw_videoport) 1198 { 1199 clk_disable_unprepare(dispc->vp_clk[hw_videoport]); 1200 } 1201 1202 /* 1203 * Calculate the percentage difference between the requested pixel clock rate 1204 * and the effective rate resulting from calculating the clock divider value. 1205 */ 1206 static 1207 unsigned int dispc_pclk_diff(unsigned long rate, unsigned long real_rate) 1208 { 1209 int r = rate / 100, rr = real_rate / 100; 1210 1211 return (unsigned int)(abs(((rr - r) * 100) / r)); 1212 } 1213 1214 int dispc_vp_set_clk_rate(struct dispc_device *dispc, u32 hw_videoport, 1215 unsigned long rate) 1216 { 1217 int r; 1218 unsigned long new_rate; 1219 1220 r = clk_set_rate(dispc->vp_clk[hw_videoport], rate); 1221 if (r) { 1222 dev_err(dispc->dev, "vp%d: failed to set clk rate to %lu\n", 1223 hw_videoport, rate); 1224 return r; 1225 } 1226 1227 new_rate = clk_get_rate(dispc->vp_clk[hw_videoport]); 1228 1229 if (dispc_pclk_diff(rate, new_rate) > 5) 1230 dev_warn(dispc->dev, 1231 "vp%d: Clock rate %lu differs over 5%% from requested %lu\n", 1232 hw_videoport, new_rate, rate); 1233 1234 dev_dbg(dispc->dev, "vp%d: new rate %lu Hz (requested %lu Hz)\n", 1235 hw_videoport, clk_get_rate(dispc->vp_clk[hw_videoport]), rate); 1236 1237 return 0; 1238 } 1239 1240 /* OVR */ 1241 static void dispc_k2g_ovr_set_plane(struct dispc_device *dispc, 1242 u32 hw_plane, u32 hw_videoport, 1243 u32 x, u32 y, u32 layer) 1244 { 1245 /* On k2g there is only one plane and no need for ovr */ 1246 dispc_vid_write(dispc, hw_plane, DISPC_VID_K2G_POSITION, 1247 x | (y << 16)); 1248 } 1249 1250 static void dispc_am65x_ovr_set_plane(struct dispc_device *dispc, 1251 u32 hw_plane, u32 hw_videoport, 1252 u32 x, u32 y, u32 layer) 1253 { 1254 OVR_REG_FLD_MOD(dispc, hw_videoport, DISPC_OVR_ATTRIBUTES(layer), 1255 hw_plane, 4, 1); 1256 OVR_REG_FLD_MOD(dispc, hw_videoport, DISPC_OVR_ATTRIBUTES(layer), 1257 x, 17, 6); 1258 OVR_REG_FLD_MOD(dispc, hw_videoport, DISPC_OVR_ATTRIBUTES(layer), 1259 y, 30, 19); 1260 } 1261 1262 static void dispc_j721e_ovr_set_plane(struct dispc_device *dispc, 1263 u32 hw_plane, u32 hw_videoport, 1264 u32 x, u32 y, u32 layer) 1265 { 1266 OVR_REG_FLD_MOD(dispc, hw_videoport, DISPC_OVR_ATTRIBUTES(layer), 1267 hw_plane, 4, 1); 1268 OVR_REG_FLD_MOD(dispc, hw_videoport, DISPC_OVR_ATTRIBUTES2(layer), 1269 x, 13, 0); 1270 OVR_REG_FLD_MOD(dispc, hw_videoport, DISPC_OVR_ATTRIBUTES2(layer), 1271 y, 29, 16); 1272 } 1273 1274 void dispc_ovr_set_plane(struct dispc_device *dispc, u32 hw_plane, 1275 u32 hw_videoport, u32 x, u32 y, u32 layer) 1276 { 1277 switch (dispc->feat->subrev) { 1278 case DISPC_K2G: 1279 dispc_k2g_ovr_set_plane(dispc, hw_plane, hw_videoport, 1280 x, y, layer); 1281 break; 1282 case DISPC_AM65X: 1283 dispc_am65x_ovr_set_plane(dispc, hw_plane, hw_videoport, 1284 x, y, layer); 1285 break; 1286 case DISPC_J721E: 1287 dispc_j721e_ovr_set_plane(dispc, hw_plane, hw_videoport, 1288 x, y, layer); 1289 break; 1290 default: 1291 WARN_ON(1); 1292 break; 1293 } 1294 } 1295 1296 void dispc_ovr_enable_layer(struct dispc_device *dispc, 1297 u32 hw_videoport, u32 layer, bool enable) 1298 { 1299 if (dispc->feat->subrev == DISPC_K2G) 1300 return; 1301 1302 OVR_REG_FLD_MOD(dispc, hw_videoport, DISPC_OVR_ATTRIBUTES(layer), 1303 !!enable, 0, 0); 1304 } 1305 1306 /* CSC */ 1307 enum csc_ctm { 1308 CSC_RR, CSC_RG, CSC_RB, 1309 CSC_GR, CSC_GG, CSC_GB, 1310 CSC_BR, CSC_BG, CSC_BB, 1311 }; 1312 1313 enum csc_yuv2rgb { 1314 CSC_RY, CSC_RCB, CSC_RCR, 1315 CSC_GY, CSC_GCB, CSC_GCR, 1316 CSC_BY, CSC_BCB, CSC_BCR, 1317 }; 1318 1319 enum csc_rgb2yuv { 1320 CSC_YR, CSC_YG, CSC_YB, 1321 CSC_CBR, CSC_CBG, CSC_CBB, 1322 CSC_CRR, CSC_CRG, CSC_CRB, 1323 }; 1324 1325 struct dispc_csc_coef { 1326 void (*to_regval)(const struct dispc_csc_coef *csc, u32 *regval); 1327 int m[9]; 1328 int preoffset[3]; 1329 int postoffset[3]; 1330 enum { CLIP_LIMITED_RANGE = 0, CLIP_FULL_RANGE = 1, } cliping; 1331 const char *name; 1332 }; 1333 1334 #define DISPC_CSC_REGVAL_LEN 8 1335 1336 static 1337 void dispc_csc_offset_regval(const struct dispc_csc_coef *csc, u32 *regval) 1338 { 1339 #define OVAL(x, y) (FLD_VAL(x, 15, 3) | FLD_VAL(y, 31, 19)) 1340 regval[5] = OVAL(csc->preoffset[0], csc->preoffset[1]); 1341 regval[6] = OVAL(csc->preoffset[2], csc->postoffset[0]); 1342 regval[7] = OVAL(csc->postoffset[1], csc->postoffset[2]); 1343 #undef OVAL 1344 } 1345 1346 #define CVAL(x, y) (FLD_VAL(x, 10, 0) | FLD_VAL(y, 26, 16)) 1347 static 1348 void dispc_csc_yuv2rgb_regval(const struct dispc_csc_coef *csc, u32 *regval) 1349 { 1350 regval[0] = CVAL(csc->m[CSC_RY], csc->m[CSC_RCR]); 1351 regval[1] = CVAL(csc->m[CSC_RCB], csc->m[CSC_GY]); 1352 regval[2] = CVAL(csc->m[CSC_GCR], csc->m[CSC_GCB]); 1353 regval[3] = CVAL(csc->m[CSC_BY], csc->m[CSC_BCR]); 1354 regval[4] = CVAL(csc->m[CSC_BCB], 0); 1355 1356 dispc_csc_offset_regval(csc, regval); 1357 } 1358 1359 __maybe_unused static 1360 void dispc_csc_rgb2yuv_regval(const struct dispc_csc_coef *csc, u32 *regval) 1361 { 1362 regval[0] = CVAL(csc->m[CSC_YR], csc->m[CSC_YG]); 1363 regval[1] = CVAL(csc->m[CSC_YB], csc->m[CSC_CRR]); 1364 regval[2] = CVAL(csc->m[CSC_CRG], csc->m[CSC_CRB]); 1365 regval[3] = CVAL(csc->m[CSC_CBR], csc->m[CSC_CBG]); 1366 regval[4] = CVAL(csc->m[CSC_CBB], 0); 1367 1368 dispc_csc_offset_regval(csc, regval); 1369 } 1370 1371 static void dispc_csc_cpr_regval(const struct dispc_csc_coef *csc, 1372 u32 *regval) 1373 { 1374 regval[0] = CVAL(csc->m[CSC_RR], csc->m[CSC_RG]); 1375 regval[1] = CVAL(csc->m[CSC_RB], csc->m[CSC_GR]); 1376 regval[2] = CVAL(csc->m[CSC_GG], csc->m[CSC_GB]); 1377 regval[3] = CVAL(csc->m[CSC_BR], csc->m[CSC_BG]); 1378 regval[4] = CVAL(csc->m[CSC_BB], 0); 1379 1380 dispc_csc_offset_regval(csc, regval); 1381 } 1382 1383 #undef CVAL 1384 1385 static void dispc_k2g_vid_write_csc(struct dispc_device *dispc, u32 hw_plane, 1386 const struct dispc_csc_coef *csc) 1387 { 1388 static const u16 dispc_vid_csc_coef_reg[] = { 1389 DISPC_VID_CSC_COEF(0), DISPC_VID_CSC_COEF(1), 1390 DISPC_VID_CSC_COEF(2), DISPC_VID_CSC_COEF(3), 1391 DISPC_VID_CSC_COEF(4), DISPC_VID_CSC_COEF(5), 1392 DISPC_VID_CSC_COEF(6), /* K2G has no post offset support */ 1393 }; 1394 u32 regval[DISPC_CSC_REGVAL_LEN]; 1395 unsigned int i; 1396 1397 csc->to_regval(csc, regval); 1398 1399 if (regval[7] != 0) 1400 dev_warn(dispc->dev, "%s: No post offset support for %s\n", 1401 __func__, csc->name); 1402 1403 for (i = 0; i < ARRAY_SIZE(dispc_vid_csc_coef_reg); i++) 1404 dispc_vid_write(dispc, hw_plane, dispc_vid_csc_coef_reg[i], 1405 regval[i]); 1406 } 1407 1408 static void dispc_k3_vid_write_csc(struct dispc_device *dispc, u32 hw_plane, 1409 const struct dispc_csc_coef *csc) 1410 { 1411 static const u16 dispc_vid_csc_coef_reg[DISPC_CSC_REGVAL_LEN] = { 1412 DISPC_VID_CSC_COEF(0), DISPC_VID_CSC_COEF(1), 1413 DISPC_VID_CSC_COEF(2), DISPC_VID_CSC_COEF(3), 1414 DISPC_VID_CSC_COEF(4), DISPC_VID_CSC_COEF(5), 1415 DISPC_VID_CSC_COEF(6), DISPC_VID_CSC_COEF7, 1416 }; 1417 u32 regval[DISPC_CSC_REGVAL_LEN]; 1418 unsigned int i; 1419 1420 csc->to_regval(csc, regval); 1421 1422 for (i = 0; i < ARRAY_SIZE(dispc_vid_csc_coef_reg); i++) 1423 dispc_vid_write(dispc, hw_plane, dispc_vid_csc_coef_reg[i], 1424 regval[i]); 1425 } 1426 1427 /* YUV -> RGB, ITU-R BT.601, full range */ 1428 static const struct dispc_csc_coef csc_yuv2rgb_bt601_full = { 1429 dispc_csc_yuv2rgb_regval, 1430 { 256, 0, 358, /* ry, rcb, rcr |1.000 0.000 1.402|*/ 1431 256, -88, -182, /* gy, gcb, gcr |1.000 -0.344 -0.714|*/ 1432 256, 452, 0, }, /* by, bcb, bcr |1.000 1.772 0.000|*/ 1433 { 0, -2048, -2048, }, /* full range */ 1434 { 0, 0, 0, }, 1435 CLIP_FULL_RANGE, 1436 "BT.601 Full", 1437 }; 1438 1439 /* YUV -> RGB, ITU-R BT.601, limited range */ 1440 static const struct dispc_csc_coef csc_yuv2rgb_bt601_lim = { 1441 dispc_csc_yuv2rgb_regval, 1442 { 298, 0, 409, /* ry, rcb, rcr |1.164 0.000 1.596|*/ 1443 298, -100, -208, /* gy, gcb, gcr |1.164 -0.392 -0.813|*/ 1444 298, 516, 0, }, /* by, bcb, bcr |1.164 2.017 0.000|*/ 1445 { -256, -2048, -2048, }, /* limited range */ 1446 { 0, 0, 0, }, 1447 CLIP_FULL_RANGE, 1448 "BT.601 Limited", 1449 }; 1450 1451 /* YUV -> RGB, ITU-R BT.709, full range */ 1452 static const struct dispc_csc_coef csc_yuv2rgb_bt709_full = { 1453 dispc_csc_yuv2rgb_regval, 1454 { 256, 0, 402, /* ry, rcb, rcr |1.000 0.000 1.570|*/ 1455 256, -48, -120, /* gy, gcb, gcr |1.000 -0.187 -0.467|*/ 1456 256, 475, 0, }, /* by, bcb, bcr |1.000 1.856 0.000|*/ 1457 { 0, -2048, -2048, }, /* full range */ 1458 { 0, 0, 0, }, 1459 CLIP_FULL_RANGE, 1460 "BT.709 Full", 1461 }; 1462 1463 /* YUV -> RGB, ITU-R BT.709, limited range */ 1464 static const struct dispc_csc_coef csc_yuv2rgb_bt709_lim = { 1465 dispc_csc_yuv2rgb_regval, 1466 { 298, 0, 459, /* ry, rcb, rcr |1.164 0.000 1.793|*/ 1467 298, -55, -136, /* gy, gcb, gcr |1.164 -0.213 -0.533|*/ 1468 298, 541, 0, }, /* by, bcb, bcr |1.164 2.112 0.000|*/ 1469 { -256, -2048, -2048, }, /* limited range */ 1470 { 0, 0, 0, }, 1471 CLIP_FULL_RANGE, 1472 "BT.709 Limited", 1473 }; 1474 1475 static const struct { 1476 enum drm_color_encoding encoding; 1477 enum drm_color_range range; 1478 const struct dispc_csc_coef *csc; 1479 } dispc_csc_table[] = { 1480 { DRM_COLOR_YCBCR_BT601, DRM_COLOR_YCBCR_FULL_RANGE, 1481 &csc_yuv2rgb_bt601_full, }, 1482 { DRM_COLOR_YCBCR_BT601, DRM_COLOR_YCBCR_LIMITED_RANGE, 1483 &csc_yuv2rgb_bt601_lim, }, 1484 { DRM_COLOR_YCBCR_BT709, DRM_COLOR_YCBCR_FULL_RANGE, 1485 &csc_yuv2rgb_bt709_full, }, 1486 { DRM_COLOR_YCBCR_BT709, DRM_COLOR_YCBCR_LIMITED_RANGE, 1487 &csc_yuv2rgb_bt709_lim, }, 1488 }; 1489 1490 static const 1491 struct dispc_csc_coef *dispc_find_csc(enum drm_color_encoding encoding, 1492 enum drm_color_range range) 1493 { 1494 unsigned int i; 1495 1496 for (i = 0; i < ARRAY_SIZE(dispc_csc_table); i++) { 1497 if (dispc_csc_table[i].encoding == encoding && 1498 dispc_csc_table[i].range == range) { 1499 return dispc_csc_table[i].csc; 1500 } 1501 } 1502 return NULL; 1503 } 1504 1505 static void dispc_vid_csc_setup(struct dispc_device *dispc, u32 hw_plane, 1506 const struct drm_plane_state *state) 1507 { 1508 const struct dispc_csc_coef *coef; 1509 1510 coef = dispc_find_csc(state->color_encoding, state->color_range); 1511 if (!coef) { 1512 dev_err(dispc->dev, "%s: CSC (%u,%u) not found\n", 1513 __func__, state->color_encoding, state->color_range); 1514 return; 1515 } 1516 1517 if (dispc->feat->subrev == DISPC_K2G) 1518 dispc_k2g_vid_write_csc(dispc, hw_plane, coef); 1519 else 1520 dispc_k3_vid_write_csc(dispc, hw_plane, coef); 1521 } 1522 1523 static void dispc_vid_csc_enable(struct dispc_device *dispc, u32 hw_plane, 1524 bool enable) 1525 { 1526 VID_REG_FLD_MOD(dispc, hw_plane, DISPC_VID_ATTRIBUTES, !!enable, 9, 9); 1527 } 1528 1529 /* SCALER */ 1530 1531 static u32 dispc_calc_fir_inc(u32 in, u32 out) 1532 { 1533 return (u32)div_u64(0x200000ull * in, out); 1534 } 1535 1536 enum dispc_vid_fir_coef_set { 1537 DISPC_VID_FIR_COEF_HORIZ, 1538 DISPC_VID_FIR_COEF_HORIZ_UV, 1539 DISPC_VID_FIR_COEF_VERT, 1540 DISPC_VID_FIR_COEF_VERT_UV, 1541 }; 1542 1543 static void dispc_vid_write_fir_coefs(struct dispc_device *dispc, 1544 u32 hw_plane, 1545 enum dispc_vid_fir_coef_set coef_set, 1546 const struct tidss_scale_coefs *coefs) 1547 { 1548 static const u16 c0_regs[] = { 1549 [DISPC_VID_FIR_COEF_HORIZ] = DISPC_VID_FIR_COEFS_H0, 1550 [DISPC_VID_FIR_COEF_HORIZ_UV] = DISPC_VID_FIR_COEFS_H0_C, 1551 [DISPC_VID_FIR_COEF_VERT] = DISPC_VID_FIR_COEFS_V0, 1552 [DISPC_VID_FIR_COEF_VERT_UV] = DISPC_VID_FIR_COEFS_V0_C, 1553 }; 1554 1555 static const u16 c12_regs[] = { 1556 [DISPC_VID_FIR_COEF_HORIZ] = DISPC_VID_FIR_COEFS_H12, 1557 [DISPC_VID_FIR_COEF_HORIZ_UV] = DISPC_VID_FIR_COEFS_H12_C, 1558 [DISPC_VID_FIR_COEF_VERT] = DISPC_VID_FIR_COEFS_V12, 1559 [DISPC_VID_FIR_COEF_VERT_UV] = DISPC_VID_FIR_COEFS_V12_C, 1560 }; 1561 1562 const u16 c0_base = c0_regs[coef_set]; 1563 const u16 c12_base = c12_regs[coef_set]; 1564 int phase; 1565 1566 if (!coefs) { 1567 dev_err(dispc->dev, "%s: No coefficients given.\n", __func__); 1568 return; 1569 } 1570 1571 for (phase = 0; phase <= 8; ++phase) { 1572 u16 reg = c0_base + phase * 4; 1573 u16 c0 = coefs->c0[phase]; 1574 1575 dispc_vid_write(dispc, hw_plane, reg, c0); 1576 } 1577 1578 for (phase = 0; phase <= 15; ++phase) { 1579 u16 reg = c12_base + phase * 4; 1580 s16 c1, c2; 1581 u32 c12; 1582 1583 c1 = coefs->c1[phase]; 1584 c2 = coefs->c2[phase]; 1585 c12 = FLD_VAL(c1, 19, 10) | FLD_VAL(c2, 29, 20); 1586 1587 dispc_vid_write(dispc, hw_plane, reg, c12); 1588 } 1589 } 1590 1591 static bool dispc_fourcc_is_yuv(u32 fourcc) 1592 { 1593 switch (fourcc) { 1594 case DRM_FORMAT_YUYV: 1595 case DRM_FORMAT_UYVY: 1596 case DRM_FORMAT_NV12: 1597 return true; 1598 default: 1599 return false; 1600 } 1601 } 1602 1603 struct dispc_scaling_params { 1604 int xinc, yinc; 1605 u32 in_w, in_h, in_w_uv, in_h_uv; 1606 u32 fir_xinc, fir_yinc, fir_xinc_uv, fir_yinc_uv; 1607 bool scale_x, scale_y; 1608 const struct tidss_scale_coefs *xcoef, *ycoef, *xcoef_uv, *ycoef_uv; 1609 bool five_taps; 1610 }; 1611 1612 static int dispc_vid_calc_scaling(struct dispc_device *dispc, 1613 const struct drm_plane_state *state, 1614 struct dispc_scaling_params *sp, 1615 bool lite_plane) 1616 { 1617 const struct dispc_features_scaling *f = &dispc->feat->scaling; 1618 u32 fourcc = state->fb->format->format; 1619 u32 in_width_max_5tap = f->in_width_max_5tap_rgb; 1620 u32 in_width_max_3tap = f->in_width_max_3tap_rgb; 1621 u32 downscale_limit; 1622 u32 in_width_max; 1623 1624 memset(sp, 0, sizeof(*sp)); 1625 sp->xinc = 1; 1626 sp->yinc = 1; 1627 sp->in_w = state->src_w >> 16; 1628 sp->in_w_uv = sp->in_w; 1629 sp->in_h = state->src_h >> 16; 1630 sp->in_h_uv = sp->in_h; 1631 1632 sp->scale_x = sp->in_w != state->crtc_w; 1633 sp->scale_y = sp->in_h != state->crtc_h; 1634 1635 if (dispc_fourcc_is_yuv(fourcc)) { 1636 in_width_max_5tap = f->in_width_max_5tap_yuv; 1637 in_width_max_3tap = f->in_width_max_3tap_yuv; 1638 1639 sp->in_w_uv >>= 1; 1640 sp->scale_x = true; 1641 1642 if (fourcc == DRM_FORMAT_NV12) { 1643 sp->in_h_uv >>= 1; 1644 sp->scale_y = true; 1645 } 1646 } 1647 1648 /* Skip the rest if no scaling is used */ 1649 if ((!sp->scale_x && !sp->scale_y) || lite_plane) 1650 return 0; 1651 1652 if (sp->in_w > in_width_max_5tap) { 1653 sp->five_taps = false; 1654 in_width_max = in_width_max_3tap; 1655 downscale_limit = f->downscale_limit_3tap; 1656 } else { 1657 sp->five_taps = true; 1658 in_width_max = in_width_max_5tap; 1659 downscale_limit = f->downscale_limit_5tap; 1660 } 1661 1662 if (sp->scale_x) { 1663 sp->fir_xinc = dispc_calc_fir_inc(sp->in_w, state->crtc_w); 1664 1665 if (sp->fir_xinc < dispc_calc_fir_inc(1, f->upscale_limit)) { 1666 dev_dbg(dispc->dev, 1667 "%s: X-scaling factor %u/%u > %u\n", 1668 __func__, state->crtc_w, state->src_w >> 16, 1669 f->upscale_limit); 1670 return -EINVAL; 1671 } 1672 1673 if (sp->fir_xinc >= dispc_calc_fir_inc(downscale_limit, 1)) { 1674 sp->xinc = DIV_ROUND_UP(DIV_ROUND_UP(sp->in_w, 1675 state->crtc_w), 1676 downscale_limit); 1677 1678 if (sp->xinc > f->xinc_max) { 1679 dev_dbg(dispc->dev, 1680 "%s: X-scaling factor %u/%u < 1/%u\n", 1681 __func__, state->crtc_w, 1682 state->src_w >> 16, 1683 downscale_limit * f->xinc_max); 1684 return -EINVAL; 1685 } 1686 1687 sp->in_w = (state->src_w >> 16) / sp->xinc; 1688 } 1689 1690 while (sp->in_w > in_width_max) { 1691 sp->xinc++; 1692 sp->in_w = (state->src_w >> 16) / sp->xinc; 1693 } 1694 1695 if (sp->xinc > f->xinc_max) { 1696 dev_dbg(dispc->dev, 1697 "%s: Too wide input buffer %u > %u\n", __func__, 1698 state->src_w >> 16, in_width_max * f->xinc_max); 1699 return -EINVAL; 1700 } 1701 1702 /* 1703 * We need even line length for YUV formats. Decimation 1704 * can lead to odd length, so we need to make it even 1705 * again. 1706 */ 1707 if (dispc_fourcc_is_yuv(fourcc)) 1708 sp->in_w &= ~1; 1709 1710 sp->fir_xinc = dispc_calc_fir_inc(sp->in_w, state->crtc_w); 1711 } 1712 1713 if (sp->scale_y) { 1714 sp->fir_yinc = dispc_calc_fir_inc(sp->in_h, state->crtc_h); 1715 1716 if (sp->fir_yinc < dispc_calc_fir_inc(1, f->upscale_limit)) { 1717 dev_dbg(dispc->dev, 1718 "%s: Y-scaling factor %u/%u > %u\n", 1719 __func__, state->crtc_h, state->src_h >> 16, 1720 f->upscale_limit); 1721 return -EINVAL; 1722 } 1723 1724 if (sp->fir_yinc >= dispc_calc_fir_inc(downscale_limit, 1)) { 1725 sp->yinc = DIV_ROUND_UP(DIV_ROUND_UP(sp->in_h, 1726 state->crtc_h), 1727 downscale_limit); 1728 1729 sp->in_h /= sp->yinc; 1730 sp->fir_yinc = dispc_calc_fir_inc(sp->in_h, 1731 state->crtc_h); 1732 } 1733 } 1734 1735 dev_dbg(dispc->dev, 1736 "%s: %ux%u decim %ux%u -> %ux%u firinc %u.%03ux%u.%03u taps %u -> %ux%u\n", 1737 __func__, state->src_w >> 16, state->src_h >> 16, 1738 sp->xinc, sp->yinc, sp->in_w, sp->in_h, 1739 sp->fir_xinc / 0x200000u, 1740 ((sp->fir_xinc & 0x1FFFFFu) * 999u) / 0x1FFFFFu, 1741 sp->fir_yinc / 0x200000u, 1742 ((sp->fir_yinc & 0x1FFFFFu) * 999u) / 0x1FFFFFu, 1743 sp->five_taps ? 5 : 3, 1744 state->crtc_w, state->crtc_h); 1745 1746 if (dispc_fourcc_is_yuv(fourcc)) { 1747 if (sp->scale_x) { 1748 sp->in_w_uv /= sp->xinc; 1749 sp->fir_xinc_uv = dispc_calc_fir_inc(sp->in_w_uv, 1750 state->crtc_w); 1751 sp->xcoef_uv = tidss_get_scale_coefs(dispc->dev, 1752 sp->fir_xinc_uv, 1753 true); 1754 } 1755 if (sp->scale_y) { 1756 sp->in_h_uv /= sp->yinc; 1757 sp->fir_yinc_uv = dispc_calc_fir_inc(sp->in_h_uv, 1758 state->crtc_h); 1759 sp->ycoef_uv = tidss_get_scale_coefs(dispc->dev, 1760 sp->fir_yinc_uv, 1761 sp->five_taps); 1762 } 1763 } 1764 1765 if (sp->scale_x) 1766 sp->xcoef = tidss_get_scale_coefs(dispc->dev, sp->fir_xinc, 1767 true); 1768 1769 if (sp->scale_y) 1770 sp->ycoef = tidss_get_scale_coefs(dispc->dev, sp->fir_yinc, 1771 sp->five_taps); 1772 1773 return 0; 1774 } 1775 1776 static void dispc_vid_set_scaling(struct dispc_device *dispc, 1777 u32 hw_plane, 1778 struct dispc_scaling_params *sp, 1779 u32 fourcc) 1780 { 1781 /* HORIZONTAL RESIZE ENABLE */ 1782 VID_REG_FLD_MOD(dispc, hw_plane, DISPC_VID_ATTRIBUTES, 1783 sp->scale_x, 7, 7); 1784 1785 /* VERTICAL RESIZE ENABLE */ 1786 VID_REG_FLD_MOD(dispc, hw_plane, DISPC_VID_ATTRIBUTES, 1787 sp->scale_y, 8, 8); 1788 1789 /* Skip the rest if no scaling is used */ 1790 if (!sp->scale_x && !sp->scale_y) 1791 return; 1792 1793 /* VERTICAL 5-TAPS */ 1794 VID_REG_FLD_MOD(dispc, hw_plane, DISPC_VID_ATTRIBUTES, 1795 sp->five_taps, 21, 21); 1796 1797 if (dispc_fourcc_is_yuv(fourcc)) { 1798 if (sp->scale_x) { 1799 dispc_vid_write(dispc, hw_plane, DISPC_VID_FIRH2, 1800 sp->fir_xinc_uv); 1801 dispc_vid_write_fir_coefs(dispc, hw_plane, 1802 DISPC_VID_FIR_COEF_HORIZ_UV, 1803 sp->xcoef_uv); 1804 } 1805 if (sp->scale_y) { 1806 dispc_vid_write(dispc, hw_plane, DISPC_VID_FIRV2, 1807 sp->fir_yinc_uv); 1808 dispc_vid_write_fir_coefs(dispc, hw_plane, 1809 DISPC_VID_FIR_COEF_VERT_UV, 1810 sp->ycoef_uv); 1811 } 1812 } 1813 1814 if (sp->scale_x) { 1815 dispc_vid_write(dispc, hw_plane, DISPC_VID_FIRH, sp->fir_xinc); 1816 dispc_vid_write_fir_coefs(dispc, hw_plane, 1817 DISPC_VID_FIR_COEF_HORIZ, 1818 sp->xcoef); 1819 } 1820 1821 if (sp->scale_y) { 1822 dispc_vid_write(dispc, hw_plane, DISPC_VID_FIRV, sp->fir_yinc); 1823 dispc_vid_write_fir_coefs(dispc, hw_plane, 1824 DISPC_VID_FIR_COEF_VERT, sp->ycoef); 1825 } 1826 } 1827 1828 /* OTHER */ 1829 1830 static const struct { 1831 u32 fourcc; 1832 u8 dss_code; 1833 } dispc_color_formats[] = { 1834 { DRM_FORMAT_ARGB4444, 0x0, }, 1835 { DRM_FORMAT_ABGR4444, 0x1, }, 1836 { DRM_FORMAT_RGBA4444, 0x2, }, 1837 1838 { DRM_FORMAT_RGB565, 0x3, }, 1839 { DRM_FORMAT_BGR565, 0x4, }, 1840 1841 { DRM_FORMAT_ARGB1555, 0x5, }, 1842 { DRM_FORMAT_ABGR1555, 0x6, }, 1843 1844 { DRM_FORMAT_ARGB8888, 0x7, }, 1845 { DRM_FORMAT_ABGR8888, 0x8, }, 1846 { DRM_FORMAT_RGBA8888, 0x9, }, 1847 { DRM_FORMAT_BGRA8888, 0xa, }, 1848 1849 { DRM_FORMAT_RGB888, 0xb, }, 1850 { DRM_FORMAT_BGR888, 0xc, }, 1851 1852 { DRM_FORMAT_ARGB2101010, 0xe, }, 1853 { DRM_FORMAT_ABGR2101010, 0xf, }, 1854 1855 { DRM_FORMAT_XRGB4444, 0x20, }, 1856 { DRM_FORMAT_XBGR4444, 0x21, }, 1857 { DRM_FORMAT_RGBX4444, 0x22, }, 1858 1859 { DRM_FORMAT_ARGB1555, 0x25, }, 1860 { DRM_FORMAT_ABGR1555, 0x26, }, 1861 1862 { DRM_FORMAT_XRGB8888, 0x27, }, 1863 { DRM_FORMAT_XBGR8888, 0x28, }, 1864 { DRM_FORMAT_RGBX8888, 0x29, }, 1865 { DRM_FORMAT_BGRX8888, 0x2a, }, 1866 1867 { DRM_FORMAT_XRGB2101010, 0x2e, }, 1868 { DRM_FORMAT_XBGR2101010, 0x2f, }, 1869 1870 { DRM_FORMAT_YUYV, 0x3e, }, 1871 { DRM_FORMAT_UYVY, 0x3f, }, 1872 1873 { DRM_FORMAT_NV12, 0x3d, }, 1874 }; 1875 1876 static void dispc_plane_set_pixel_format(struct dispc_device *dispc, 1877 u32 hw_plane, u32 fourcc) 1878 { 1879 unsigned int i; 1880 1881 for (i = 0; i < ARRAY_SIZE(dispc_color_formats); ++i) { 1882 if (dispc_color_formats[i].fourcc == fourcc) { 1883 VID_REG_FLD_MOD(dispc, hw_plane, DISPC_VID_ATTRIBUTES, 1884 dispc_color_formats[i].dss_code, 1885 6, 1); 1886 return; 1887 } 1888 } 1889 1890 WARN_ON(1); 1891 } 1892 1893 const u32 *dispc_plane_formats(struct dispc_device *dispc, unsigned int *len) 1894 { 1895 WARN_ON(!dispc->fourccs); 1896 1897 *len = dispc->num_fourccs; 1898 1899 return dispc->fourccs; 1900 } 1901 1902 static s32 pixinc(int pixels, u8 ps) 1903 { 1904 if (pixels == 1) 1905 return 1; 1906 else if (pixels > 1) 1907 return 1 + (pixels - 1) * ps; 1908 else if (pixels < 0) 1909 return 1 - (-pixels + 1) * ps; 1910 1911 WARN_ON(1); 1912 return 0; 1913 } 1914 1915 int dispc_plane_check(struct dispc_device *dispc, u32 hw_plane, 1916 const struct drm_plane_state *state, 1917 u32 hw_videoport) 1918 { 1919 bool lite = dispc->feat->vid_lite[hw_plane]; 1920 u32 fourcc = state->fb->format->format; 1921 bool need_scaling = state->src_w >> 16 != state->crtc_w || 1922 state->src_h >> 16 != state->crtc_h; 1923 struct dispc_scaling_params scaling; 1924 int ret; 1925 1926 if (dispc_fourcc_is_yuv(fourcc)) { 1927 if (!dispc_find_csc(state->color_encoding, 1928 state->color_range)) { 1929 dev_dbg(dispc->dev, 1930 "%s: Unsupported CSC (%u,%u) for HW plane %u\n", 1931 __func__, state->color_encoding, 1932 state->color_range, hw_plane); 1933 return -EINVAL; 1934 } 1935 } 1936 1937 if (need_scaling) { 1938 if (lite) { 1939 dev_dbg(dispc->dev, 1940 "%s: Lite plane %u can't scale %ux%u!=%ux%u\n", 1941 __func__, hw_plane, 1942 state->src_w >> 16, state->src_h >> 16, 1943 state->crtc_w, state->crtc_h); 1944 return -EINVAL; 1945 } 1946 ret = dispc_vid_calc_scaling(dispc, state, &scaling, false); 1947 if (ret) 1948 return ret; 1949 } 1950 1951 return 0; 1952 } 1953 1954 static 1955 dma_addr_t dispc_plane_state_paddr(const struct drm_plane_state *state) 1956 { 1957 struct drm_framebuffer *fb = state->fb; 1958 struct drm_gem_cma_object *gem; 1959 u32 x = state->src_x >> 16; 1960 u32 y = state->src_y >> 16; 1961 1962 gem = drm_fb_cma_get_gem_obj(state->fb, 0); 1963 1964 return gem->paddr + fb->offsets[0] + x * fb->format->cpp[0] + 1965 y * fb->pitches[0]; 1966 } 1967 1968 static 1969 dma_addr_t dispc_plane_state_p_uv_addr(const struct drm_plane_state *state) 1970 { 1971 struct drm_framebuffer *fb = state->fb; 1972 struct drm_gem_cma_object *gem; 1973 u32 x = state->src_x >> 16; 1974 u32 y = state->src_y >> 16; 1975 1976 if (WARN_ON(state->fb->format->num_planes != 2)) 1977 return 0; 1978 1979 gem = drm_fb_cma_get_gem_obj(fb, 1); 1980 1981 return gem->paddr + fb->offsets[1] + 1982 (x * fb->format->cpp[1] / fb->format->hsub) + 1983 (y * fb->pitches[1] / fb->format->vsub); 1984 } 1985 1986 int dispc_plane_setup(struct dispc_device *dispc, u32 hw_plane, 1987 const struct drm_plane_state *state, 1988 u32 hw_videoport) 1989 { 1990 bool lite = dispc->feat->vid_lite[hw_plane]; 1991 u32 fourcc = state->fb->format->format; 1992 u16 cpp = state->fb->format->cpp[0]; 1993 u32 fb_width = state->fb->pitches[0] / cpp; 1994 dma_addr_t paddr = dispc_plane_state_paddr(state); 1995 struct dispc_scaling_params scale; 1996 1997 dispc_vid_calc_scaling(dispc, state, &scale, lite); 1998 1999 dispc_plane_set_pixel_format(dispc, hw_plane, fourcc); 2000 2001 dispc_vid_write(dispc, hw_plane, DISPC_VID_BA_0, paddr & 0xffffffff); 2002 dispc_vid_write(dispc, hw_plane, DISPC_VID_BA_EXT_0, (u64)paddr >> 32); 2003 dispc_vid_write(dispc, hw_plane, DISPC_VID_BA_1, paddr & 0xffffffff); 2004 dispc_vid_write(dispc, hw_plane, DISPC_VID_BA_EXT_1, (u64)paddr >> 32); 2005 2006 dispc_vid_write(dispc, hw_plane, DISPC_VID_PICTURE_SIZE, 2007 (scale.in_w - 1) | ((scale.in_h - 1) << 16)); 2008 2009 /* For YUV422 format we use the macropixel size for pixel inc */ 2010 if (fourcc == DRM_FORMAT_YUYV || fourcc == DRM_FORMAT_UYVY) 2011 dispc_vid_write(dispc, hw_plane, DISPC_VID_PIXEL_INC, 2012 pixinc(scale.xinc, cpp * 2)); 2013 else 2014 dispc_vid_write(dispc, hw_plane, DISPC_VID_PIXEL_INC, 2015 pixinc(scale.xinc, cpp)); 2016 2017 dispc_vid_write(dispc, hw_plane, DISPC_VID_ROW_INC, 2018 pixinc(1 + (scale.yinc * fb_width - 2019 scale.xinc * scale.in_w), 2020 cpp)); 2021 2022 if (state->fb->format->num_planes == 2) { 2023 u16 cpp_uv = state->fb->format->cpp[1]; 2024 u32 fb_width_uv = state->fb->pitches[1] / cpp_uv; 2025 dma_addr_t p_uv_addr = dispc_plane_state_p_uv_addr(state); 2026 2027 dispc_vid_write(dispc, hw_plane, 2028 DISPC_VID_BA_UV_0, p_uv_addr & 0xffffffff); 2029 dispc_vid_write(dispc, hw_plane, 2030 DISPC_VID_BA_UV_EXT_0, (u64)p_uv_addr >> 32); 2031 dispc_vid_write(dispc, hw_plane, 2032 DISPC_VID_BA_UV_1, p_uv_addr & 0xffffffff); 2033 dispc_vid_write(dispc, hw_plane, 2034 DISPC_VID_BA_UV_EXT_1, (u64)p_uv_addr >> 32); 2035 2036 dispc_vid_write(dispc, hw_plane, DISPC_VID_ROW_INC_UV, 2037 pixinc(1 + (scale.yinc * fb_width_uv - 2038 scale.xinc * scale.in_w_uv), 2039 cpp_uv)); 2040 } 2041 2042 if (!lite) { 2043 dispc_vid_write(dispc, hw_plane, DISPC_VID_SIZE, 2044 (state->crtc_w - 1) | 2045 ((state->crtc_h - 1) << 16)); 2046 2047 dispc_vid_set_scaling(dispc, hw_plane, &scale, fourcc); 2048 } 2049 2050 /* enable YUV->RGB color conversion */ 2051 if (dispc_fourcc_is_yuv(fourcc)) { 2052 dispc_vid_csc_setup(dispc, hw_plane, state); 2053 dispc_vid_csc_enable(dispc, hw_plane, true); 2054 } else { 2055 dispc_vid_csc_enable(dispc, hw_plane, false); 2056 } 2057 2058 dispc_vid_write(dispc, hw_plane, DISPC_VID_GLOBAL_ALPHA, 2059 0xFF & (state->alpha >> 8)); 2060 2061 if (state->pixel_blend_mode == DRM_MODE_BLEND_PREMULTI) 2062 VID_REG_FLD_MOD(dispc, hw_plane, DISPC_VID_ATTRIBUTES, 1, 2063 28, 28); 2064 else 2065 VID_REG_FLD_MOD(dispc, hw_plane, DISPC_VID_ATTRIBUTES, 0, 2066 28, 28); 2067 2068 return 0; 2069 } 2070 2071 int dispc_plane_enable(struct dispc_device *dispc, u32 hw_plane, bool enable) 2072 { 2073 VID_REG_FLD_MOD(dispc, hw_plane, DISPC_VID_ATTRIBUTES, !!enable, 0, 0); 2074 2075 return 0; 2076 } 2077 2078 static u32 dispc_vid_get_fifo_size(struct dispc_device *dispc, u32 hw_plane) 2079 { 2080 return VID_REG_GET(dispc, hw_plane, DISPC_VID_BUF_SIZE_STATUS, 15, 0); 2081 } 2082 2083 static void dispc_vid_set_mflag_threshold(struct dispc_device *dispc, 2084 u32 hw_plane, u32 low, u32 high) 2085 { 2086 dispc_vid_write(dispc, hw_plane, DISPC_VID_MFLAG_THRESHOLD, 2087 FLD_VAL(high, 31, 16) | FLD_VAL(low, 15, 0)); 2088 } 2089 2090 static void dispc_vid_set_buf_threshold(struct dispc_device *dispc, 2091 u32 hw_plane, u32 low, u32 high) 2092 { 2093 dispc_vid_write(dispc, hw_plane, DISPC_VID_BUF_THRESHOLD, 2094 FLD_VAL(high, 31, 16) | FLD_VAL(low, 15, 0)); 2095 } 2096 2097 static void dispc_k2g_plane_init(struct dispc_device *dispc) 2098 { 2099 unsigned int hw_plane; 2100 2101 dev_dbg(dispc->dev, "%s()\n", __func__); 2102 2103 /* MFLAG_CTRL = ENABLED */ 2104 REG_FLD_MOD(dispc, DISPC_GLOBAL_MFLAG_ATTRIBUTE, 2, 1, 0); 2105 /* MFLAG_START = MFLAGNORMALSTARTMODE */ 2106 REG_FLD_MOD(dispc, DISPC_GLOBAL_MFLAG_ATTRIBUTE, 0, 6, 6); 2107 2108 for (hw_plane = 0; hw_plane < dispc->feat->num_planes; hw_plane++) { 2109 u32 size = dispc_vid_get_fifo_size(dispc, hw_plane); 2110 u32 thr_low, thr_high; 2111 u32 mflag_low, mflag_high; 2112 u32 preload; 2113 2114 thr_high = size - 1; 2115 thr_low = size / 2; 2116 2117 mflag_high = size * 2 / 3; 2118 mflag_low = size / 3; 2119 2120 preload = thr_low; 2121 2122 dev_dbg(dispc->dev, 2123 "%s: bufsize %u, buf_threshold %u/%u, mflag threshold %u/%u preload %u\n", 2124 dispc->feat->vid_name[hw_plane], 2125 size, 2126 thr_high, thr_low, 2127 mflag_high, mflag_low, 2128 preload); 2129 2130 dispc_vid_set_buf_threshold(dispc, hw_plane, 2131 thr_low, thr_high); 2132 dispc_vid_set_mflag_threshold(dispc, hw_plane, 2133 mflag_low, mflag_high); 2134 2135 dispc_vid_write(dispc, hw_plane, DISPC_VID_PRELOAD, preload); 2136 2137 /* 2138 * Prefetch up to fifo high-threshold value to minimize the 2139 * possibility of underflows. Note that this means the PRELOAD 2140 * register is ignored. 2141 */ 2142 VID_REG_FLD_MOD(dispc, hw_plane, DISPC_VID_ATTRIBUTES, 1, 2143 19, 19); 2144 } 2145 } 2146 2147 static void dispc_k3_plane_init(struct dispc_device *dispc) 2148 { 2149 unsigned int hw_plane; 2150 u32 cba_lo_pri = 1; 2151 u32 cba_hi_pri = 0; 2152 2153 dev_dbg(dispc->dev, "%s()\n", __func__); 2154 2155 REG_FLD_MOD(dispc, DSS_CBA_CFG, cba_lo_pri, 2, 0); 2156 REG_FLD_MOD(dispc, DSS_CBA_CFG, cba_hi_pri, 5, 3); 2157 2158 /* MFLAG_CTRL = ENABLED */ 2159 REG_FLD_MOD(dispc, DISPC_GLOBAL_MFLAG_ATTRIBUTE, 2, 1, 0); 2160 /* MFLAG_START = MFLAGNORMALSTARTMODE */ 2161 REG_FLD_MOD(dispc, DISPC_GLOBAL_MFLAG_ATTRIBUTE, 0, 6, 6); 2162 2163 for (hw_plane = 0; hw_plane < dispc->feat->num_planes; hw_plane++) { 2164 u32 size = dispc_vid_get_fifo_size(dispc, hw_plane); 2165 u32 thr_low, thr_high; 2166 u32 mflag_low, mflag_high; 2167 u32 preload; 2168 2169 thr_high = size - 1; 2170 thr_low = size / 2; 2171 2172 mflag_high = size * 2 / 3; 2173 mflag_low = size / 3; 2174 2175 preload = thr_low; 2176 2177 dev_dbg(dispc->dev, 2178 "%s: bufsize %u, buf_threshold %u/%u, mflag threshold %u/%u preload %u\n", 2179 dispc->feat->vid_name[hw_plane], 2180 size, 2181 thr_high, thr_low, 2182 mflag_high, mflag_low, 2183 preload); 2184 2185 dispc_vid_set_buf_threshold(dispc, hw_plane, 2186 thr_low, thr_high); 2187 dispc_vid_set_mflag_threshold(dispc, hw_plane, 2188 mflag_low, mflag_high); 2189 2190 dispc_vid_write(dispc, hw_plane, DISPC_VID_PRELOAD, preload); 2191 2192 /* Prefech up to PRELOAD value */ 2193 VID_REG_FLD_MOD(dispc, hw_plane, DISPC_VID_ATTRIBUTES, 0, 2194 19, 19); 2195 } 2196 } 2197 2198 static void dispc_plane_init(struct dispc_device *dispc) 2199 { 2200 switch (dispc->feat->subrev) { 2201 case DISPC_K2G: 2202 dispc_k2g_plane_init(dispc); 2203 break; 2204 case DISPC_AM65X: 2205 case DISPC_J721E: 2206 dispc_k3_plane_init(dispc); 2207 break; 2208 default: 2209 WARN_ON(1); 2210 } 2211 } 2212 2213 static void dispc_vp_init(struct dispc_device *dispc) 2214 { 2215 unsigned int i; 2216 2217 dev_dbg(dispc->dev, "%s()\n", __func__); 2218 2219 /* Enable the gamma Shadow bit-field for all VPs*/ 2220 for (i = 0; i < dispc->feat->num_vps; i++) 2221 VP_REG_FLD_MOD(dispc, i, DISPC_VP_CONFIG, 1, 2, 2); 2222 } 2223 2224 static void dispc_initial_config(struct dispc_device *dispc) 2225 { 2226 dispc_plane_init(dispc); 2227 dispc_vp_init(dispc); 2228 2229 /* Note: Hardcoded DPI routing on J721E for now */ 2230 if (dispc->feat->subrev == DISPC_J721E) { 2231 dispc_write(dispc, DISPC_CONNECTIONS, 2232 FLD_VAL(2, 3, 0) | /* VP1 to DPI0 */ 2233 FLD_VAL(8, 7, 4) /* VP3 to DPI1 */ 2234 ); 2235 } 2236 } 2237 2238 static void dispc_k2g_vp_write_gamma_table(struct dispc_device *dispc, 2239 u32 hw_videoport) 2240 { 2241 u32 *table = dispc->vp_data[hw_videoport].gamma_table; 2242 u32 hwlen = dispc->feat->vp_feat.color.gamma_size; 2243 unsigned int i; 2244 2245 dev_dbg(dispc->dev, "%s: hw_videoport %d\n", __func__, hw_videoport); 2246 2247 if (WARN_ON(dispc->feat->vp_feat.color.gamma_type != TIDSS_GAMMA_8BIT)) 2248 return; 2249 2250 for (i = 0; i < hwlen; ++i) { 2251 u32 v = table[i]; 2252 2253 v |= i << 24; 2254 2255 dispc_vp_write(dispc, hw_videoport, DISPC_VP_K2G_GAMMA_TABLE, 2256 v); 2257 } 2258 } 2259 2260 static void dispc_am65x_vp_write_gamma_table(struct dispc_device *dispc, 2261 u32 hw_videoport) 2262 { 2263 u32 *table = dispc->vp_data[hw_videoport].gamma_table; 2264 u32 hwlen = dispc->feat->vp_feat.color.gamma_size; 2265 unsigned int i; 2266 2267 dev_dbg(dispc->dev, "%s: hw_videoport %d\n", __func__, hw_videoport); 2268 2269 if (WARN_ON(dispc->feat->vp_feat.color.gamma_type != TIDSS_GAMMA_8BIT)) 2270 return; 2271 2272 for (i = 0; i < hwlen; ++i) { 2273 u32 v = table[i]; 2274 2275 v |= i << 24; 2276 2277 dispc_vp_write(dispc, hw_videoport, DISPC_VP_GAMMA_TABLE, v); 2278 } 2279 } 2280 2281 static void dispc_j721e_vp_write_gamma_table(struct dispc_device *dispc, 2282 u32 hw_videoport) 2283 { 2284 u32 *table = dispc->vp_data[hw_videoport].gamma_table; 2285 u32 hwlen = dispc->feat->vp_feat.color.gamma_size; 2286 unsigned int i; 2287 2288 dev_dbg(dispc->dev, "%s: hw_videoport %d\n", __func__, hw_videoport); 2289 2290 if (WARN_ON(dispc->feat->vp_feat.color.gamma_type != TIDSS_GAMMA_10BIT)) 2291 return; 2292 2293 for (i = 0; i < hwlen; ++i) { 2294 u32 v = table[i]; 2295 2296 if (i == 0) 2297 v |= 1 << 31; 2298 2299 dispc_vp_write(dispc, hw_videoport, DISPC_VP_GAMMA_TABLE, v); 2300 } 2301 } 2302 2303 static void dispc_vp_write_gamma_table(struct dispc_device *dispc, 2304 u32 hw_videoport) 2305 { 2306 switch (dispc->feat->subrev) { 2307 case DISPC_K2G: 2308 dispc_k2g_vp_write_gamma_table(dispc, hw_videoport); 2309 break; 2310 case DISPC_AM65X: 2311 dispc_am65x_vp_write_gamma_table(dispc, hw_videoport); 2312 break; 2313 case DISPC_J721E: 2314 dispc_j721e_vp_write_gamma_table(dispc, hw_videoport); 2315 break; 2316 default: 2317 WARN_ON(1); 2318 break; 2319 } 2320 } 2321 2322 static const struct drm_color_lut dispc_vp_gamma_default_lut[] = { 2323 { .red = 0, .green = 0, .blue = 0, }, 2324 { .red = U16_MAX, .green = U16_MAX, .blue = U16_MAX, }, 2325 }; 2326 2327 static void dispc_vp_set_gamma(struct dispc_device *dispc, 2328 u32 hw_videoport, 2329 const struct drm_color_lut *lut, 2330 unsigned int length) 2331 { 2332 u32 *table = dispc->vp_data[hw_videoport].gamma_table; 2333 u32 hwlen = dispc->feat->vp_feat.color.gamma_size; 2334 u32 hwbits; 2335 unsigned int i; 2336 2337 dev_dbg(dispc->dev, "%s: hw_videoport %d, lut len %u, hw len %u\n", 2338 __func__, hw_videoport, length, hwlen); 2339 2340 if (dispc->feat->vp_feat.color.gamma_type == TIDSS_GAMMA_10BIT) 2341 hwbits = 10; 2342 else 2343 hwbits = 8; 2344 2345 if (!lut || length < 2) { 2346 lut = dispc_vp_gamma_default_lut; 2347 length = ARRAY_SIZE(dispc_vp_gamma_default_lut); 2348 } 2349 2350 for (i = 0; i < length - 1; ++i) { 2351 unsigned int first = i * (hwlen - 1) / (length - 1); 2352 unsigned int last = (i + 1) * (hwlen - 1) / (length - 1); 2353 unsigned int w = last - first; 2354 u16 r, g, b; 2355 unsigned int j; 2356 2357 if (w == 0) 2358 continue; 2359 2360 for (j = 0; j <= w; j++) { 2361 r = (lut[i].red * (w - j) + lut[i + 1].red * j) / w; 2362 g = (lut[i].green * (w - j) + lut[i + 1].green * j) / w; 2363 b = (lut[i].blue * (w - j) + lut[i + 1].blue * j) / w; 2364 2365 r >>= 16 - hwbits; 2366 g >>= 16 - hwbits; 2367 b >>= 16 - hwbits; 2368 2369 table[first + j] = (r << (hwbits * 2)) | 2370 (g << hwbits) | b; 2371 } 2372 } 2373 2374 dispc_vp_write_gamma_table(dispc, hw_videoport); 2375 } 2376 2377 static s16 dispc_S31_32_to_s2_8(s64 coef) 2378 { 2379 u64 sign_bit = 1ULL << 63; 2380 u64 cbits = (u64)coef; 2381 s16 ret; 2382 2383 if (cbits & sign_bit) 2384 ret = -clamp_val(((cbits & ~sign_bit) >> 24), 0, 0x200); 2385 else 2386 ret = clamp_val(((cbits & ~sign_bit) >> 24), 0, 0x1FF); 2387 2388 return ret; 2389 } 2390 2391 static void dispc_k2g_cpr_from_ctm(const struct drm_color_ctm *ctm, 2392 struct dispc_csc_coef *cpr) 2393 { 2394 memset(cpr, 0, sizeof(*cpr)); 2395 2396 cpr->to_regval = dispc_csc_cpr_regval; 2397 cpr->m[CSC_RR] = dispc_S31_32_to_s2_8(ctm->matrix[0]); 2398 cpr->m[CSC_RG] = dispc_S31_32_to_s2_8(ctm->matrix[1]); 2399 cpr->m[CSC_RB] = dispc_S31_32_to_s2_8(ctm->matrix[2]); 2400 cpr->m[CSC_GR] = dispc_S31_32_to_s2_8(ctm->matrix[3]); 2401 cpr->m[CSC_GG] = dispc_S31_32_to_s2_8(ctm->matrix[4]); 2402 cpr->m[CSC_GB] = dispc_S31_32_to_s2_8(ctm->matrix[5]); 2403 cpr->m[CSC_BR] = dispc_S31_32_to_s2_8(ctm->matrix[6]); 2404 cpr->m[CSC_BG] = dispc_S31_32_to_s2_8(ctm->matrix[7]); 2405 cpr->m[CSC_BB] = dispc_S31_32_to_s2_8(ctm->matrix[8]); 2406 } 2407 2408 #define CVAL(xR, xG, xB) (FLD_VAL(xR, 9, 0) | FLD_VAL(xG, 20, 11) | \ 2409 FLD_VAL(xB, 31, 22)) 2410 2411 static void dispc_k2g_vp_csc_cpr_regval(const struct dispc_csc_coef *csc, 2412 u32 *regval) 2413 { 2414 regval[0] = CVAL(csc->m[CSC_BB], csc->m[CSC_BG], csc->m[CSC_BR]); 2415 regval[1] = CVAL(csc->m[CSC_GB], csc->m[CSC_GG], csc->m[CSC_GR]); 2416 regval[2] = CVAL(csc->m[CSC_RB], csc->m[CSC_RG], csc->m[CSC_RR]); 2417 } 2418 2419 #undef CVAL 2420 2421 static void dispc_k2g_vp_write_csc(struct dispc_device *dispc, u32 hw_videoport, 2422 const struct dispc_csc_coef *csc) 2423 { 2424 static const u16 dispc_vp_cpr_coef_reg[] = { 2425 DISPC_VP_CSC_COEF0, DISPC_VP_CSC_COEF1, DISPC_VP_CSC_COEF2, 2426 /* K2G CPR is packed to three registers. */ 2427 }; 2428 u32 regval[DISPC_CSC_REGVAL_LEN]; 2429 unsigned int i; 2430 2431 dispc_k2g_vp_csc_cpr_regval(csc, regval); 2432 2433 for (i = 0; i < ARRAY_SIZE(dispc_vp_cpr_coef_reg); i++) 2434 dispc_vp_write(dispc, hw_videoport, dispc_vp_cpr_coef_reg[i], 2435 regval[i]); 2436 } 2437 2438 static void dispc_k2g_vp_set_ctm(struct dispc_device *dispc, u32 hw_videoport, 2439 struct drm_color_ctm *ctm) 2440 { 2441 u32 cprenable = 0; 2442 2443 if (ctm) { 2444 struct dispc_csc_coef cpr; 2445 2446 dispc_k2g_cpr_from_ctm(ctm, &cpr); 2447 dispc_k2g_vp_write_csc(dispc, hw_videoport, &cpr); 2448 cprenable = 1; 2449 } 2450 2451 VP_REG_FLD_MOD(dispc, hw_videoport, DISPC_VP_CONFIG, 2452 cprenable, 15, 15); 2453 } 2454 2455 static s16 dispc_S31_32_to_s3_8(s64 coef) 2456 { 2457 u64 sign_bit = 1ULL << 63; 2458 u64 cbits = (u64)coef; 2459 s16 ret; 2460 2461 if (cbits & sign_bit) 2462 ret = -clamp_val(((cbits & ~sign_bit) >> 24), 0, 0x400); 2463 else 2464 ret = clamp_val(((cbits & ~sign_bit) >> 24), 0, 0x3FF); 2465 2466 return ret; 2467 } 2468 2469 static void dispc_csc_from_ctm(const struct drm_color_ctm *ctm, 2470 struct dispc_csc_coef *cpr) 2471 { 2472 memset(cpr, 0, sizeof(*cpr)); 2473 2474 cpr->to_regval = dispc_csc_cpr_regval; 2475 cpr->m[CSC_RR] = dispc_S31_32_to_s3_8(ctm->matrix[0]); 2476 cpr->m[CSC_RG] = dispc_S31_32_to_s3_8(ctm->matrix[1]); 2477 cpr->m[CSC_RB] = dispc_S31_32_to_s3_8(ctm->matrix[2]); 2478 cpr->m[CSC_GR] = dispc_S31_32_to_s3_8(ctm->matrix[3]); 2479 cpr->m[CSC_GG] = dispc_S31_32_to_s3_8(ctm->matrix[4]); 2480 cpr->m[CSC_GB] = dispc_S31_32_to_s3_8(ctm->matrix[5]); 2481 cpr->m[CSC_BR] = dispc_S31_32_to_s3_8(ctm->matrix[6]); 2482 cpr->m[CSC_BG] = dispc_S31_32_to_s3_8(ctm->matrix[7]); 2483 cpr->m[CSC_BB] = dispc_S31_32_to_s3_8(ctm->matrix[8]); 2484 } 2485 2486 static void dispc_k3_vp_write_csc(struct dispc_device *dispc, u32 hw_videoport, 2487 const struct dispc_csc_coef *csc) 2488 { 2489 static const u16 dispc_vp_csc_coef_reg[DISPC_CSC_REGVAL_LEN] = { 2490 DISPC_VP_CSC_COEF0, DISPC_VP_CSC_COEF1, DISPC_VP_CSC_COEF2, 2491 DISPC_VP_CSC_COEF3, DISPC_VP_CSC_COEF4, DISPC_VP_CSC_COEF5, 2492 DISPC_VP_CSC_COEF6, DISPC_VP_CSC_COEF7, 2493 }; 2494 u32 regval[DISPC_CSC_REGVAL_LEN]; 2495 unsigned int i; 2496 2497 csc->to_regval(csc, regval); 2498 2499 for (i = 0; i < ARRAY_SIZE(regval); i++) 2500 dispc_vp_write(dispc, hw_videoport, dispc_vp_csc_coef_reg[i], 2501 regval[i]); 2502 } 2503 2504 static void dispc_k3_vp_set_ctm(struct dispc_device *dispc, u32 hw_videoport, 2505 struct drm_color_ctm *ctm) 2506 { 2507 u32 colorconvenable = 0; 2508 2509 if (ctm) { 2510 struct dispc_csc_coef csc; 2511 2512 dispc_csc_from_ctm(ctm, &csc); 2513 dispc_k3_vp_write_csc(dispc, hw_videoport, &csc); 2514 colorconvenable = 1; 2515 } 2516 2517 VP_REG_FLD_MOD(dispc, hw_videoport, DISPC_VP_CONFIG, 2518 colorconvenable, 24, 24); 2519 } 2520 2521 static void dispc_vp_set_color_mgmt(struct dispc_device *dispc, 2522 u32 hw_videoport, 2523 const struct drm_crtc_state *state, 2524 bool newmodeset) 2525 { 2526 struct drm_color_lut *lut = NULL; 2527 struct drm_color_ctm *ctm = NULL; 2528 unsigned int length = 0; 2529 2530 if (!(state->color_mgmt_changed || newmodeset)) 2531 return; 2532 2533 if (state->gamma_lut) { 2534 lut = (struct drm_color_lut *)state->gamma_lut->data; 2535 length = state->gamma_lut->length / sizeof(*lut); 2536 } 2537 2538 dispc_vp_set_gamma(dispc, hw_videoport, lut, length); 2539 2540 if (state->ctm) 2541 ctm = (struct drm_color_ctm *)state->ctm->data; 2542 2543 if (dispc->feat->subrev == DISPC_K2G) 2544 dispc_k2g_vp_set_ctm(dispc, hw_videoport, ctm); 2545 else 2546 dispc_k3_vp_set_ctm(dispc, hw_videoport, ctm); 2547 } 2548 2549 void dispc_vp_setup(struct dispc_device *dispc, u32 hw_videoport, 2550 const struct drm_crtc_state *state, bool newmodeset) 2551 { 2552 dispc_vp_set_default_color(dispc, hw_videoport, 0); 2553 dispc_vp_set_color_mgmt(dispc, hw_videoport, state, newmodeset); 2554 } 2555 2556 int dispc_runtime_suspend(struct dispc_device *dispc) 2557 { 2558 dev_dbg(dispc->dev, "suspend\n"); 2559 2560 dispc->is_enabled = false; 2561 2562 clk_disable_unprepare(dispc->fclk); 2563 2564 return 0; 2565 } 2566 2567 int dispc_runtime_resume(struct dispc_device *dispc) 2568 { 2569 dev_dbg(dispc->dev, "resume\n"); 2570 2571 clk_prepare_enable(dispc->fclk); 2572 2573 if (REG_GET(dispc, DSS_SYSSTATUS, 0, 0) == 0) 2574 dev_warn(dispc->dev, "DSS FUNC RESET not done!\n"); 2575 2576 dev_dbg(dispc->dev, "OMAP DSS7 rev 0x%x\n", 2577 dispc_read(dispc, DSS_REVISION)); 2578 2579 dev_dbg(dispc->dev, "VP RESETDONE %d,%d,%d\n", 2580 REG_GET(dispc, DSS_SYSSTATUS, 1, 1), 2581 REG_GET(dispc, DSS_SYSSTATUS, 2, 2), 2582 REG_GET(dispc, DSS_SYSSTATUS, 3, 3)); 2583 2584 if (dispc->feat->subrev == DISPC_AM65X) 2585 dev_dbg(dispc->dev, "OLDI RESETDONE %d,%d,%d\n", 2586 REG_GET(dispc, DSS_SYSSTATUS, 5, 5), 2587 REG_GET(dispc, DSS_SYSSTATUS, 6, 6), 2588 REG_GET(dispc, DSS_SYSSTATUS, 7, 7)); 2589 2590 dev_dbg(dispc->dev, "DISPC IDLE %d\n", 2591 REG_GET(dispc, DSS_SYSSTATUS, 9, 9)); 2592 2593 dispc_initial_config(dispc); 2594 2595 dispc->is_enabled = true; 2596 2597 tidss_irq_resume(dispc->tidss); 2598 2599 return 0; 2600 } 2601 2602 void dispc_remove(struct tidss_device *tidss) 2603 { 2604 dev_dbg(tidss->dev, "%s\n", __func__); 2605 2606 tidss->dispc = NULL; 2607 } 2608 2609 static int dispc_iomap_resource(struct platform_device *pdev, const char *name, 2610 void __iomem **base) 2611 { 2612 struct resource *res; 2613 void __iomem *b; 2614 2615 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, name); 2616 if (!res) { 2617 dev_err(&pdev->dev, "cannot get mem resource '%s'\n", name); 2618 return -EINVAL; 2619 } 2620 2621 b = devm_ioremap_resource(&pdev->dev, res); 2622 if (IS_ERR(b)) { 2623 dev_err(&pdev->dev, "cannot ioremap resource '%s'\n", name); 2624 return PTR_ERR(b); 2625 } 2626 2627 *base = b; 2628 2629 return 0; 2630 } 2631 2632 static int dispc_init_am65x_oldi_io_ctrl(struct device *dev, 2633 struct dispc_device *dispc) 2634 { 2635 dispc->oldi_io_ctrl = 2636 syscon_regmap_lookup_by_phandle(dev->of_node, 2637 "ti,am65x-oldi-io-ctrl"); 2638 if (PTR_ERR(dispc->oldi_io_ctrl) == -ENODEV) { 2639 dispc->oldi_io_ctrl = NULL; 2640 } else if (IS_ERR(dispc->oldi_io_ctrl)) { 2641 dev_err(dev, "%s: syscon_regmap_lookup_by_phandle failed %ld\n", 2642 __func__, PTR_ERR(dispc->oldi_io_ctrl)); 2643 return PTR_ERR(dispc->oldi_io_ctrl); 2644 } 2645 return 0; 2646 } 2647 2648 int dispc_init(struct tidss_device *tidss) 2649 { 2650 struct device *dev = tidss->dev; 2651 struct platform_device *pdev = to_platform_device(dev); 2652 struct dispc_device *dispc; 2653 const struct dispc_features *feat; 2654 unsigned int i, num_fourccs; 2655 int r = 0; 2656 2657 dev_dbg(dev, "%s\n", __func__); 2658 2659 feat = tidss->feat; 2660 2661 if (feat->subrev != DISPC_K2G) { 2662 r = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(48)); 2663 if (r) 2664 dev_warn(dev, "cannot set DMA masks to 48-bit\n"); 2665 } 2666 2667 dispc = devm_kzalloc(dev, sizeof(*dispc), GFP_KERNEL); 2668 if (!dispc) 2669 return -ENOMEM; 2670 2671 dispc->fourccs = devm_kcalloc(dev, ARRAY_SIZE(dispc_color_formats), 2672 sizeof(*dispc->fourccs), GFP_KERNEL); 2673 if (!dispc->fourccs) 2674 return -ENOMEM; 2675 2676 num_fourccs = 0; 2677 for (i = 0; i < ARRAY_SIZE(dispc_color_formats); ++i) { 2678 if (feat->errata.i2000 && 2679 dispc_fourcc_is_yuv(dispc_color_formats[i].fourcc)) 2680 continue; 2681 dispc->fourccs[num_fourccs++] = dispc_color_formats[i].fourcc; 2682 } 2683 dispc->num_fourccs = num_fourccs; 2684 dispc->tidss = tidss; 2685 dispc->dev = dev; 2686 dispc->feat = feat; 2687 2688 dispc_common_regmap = dispc->feat->common_regs; 2689 2690 r = dispc_iomap_resource(pdev, dispc->feat->common, 2691 &dispc->base_common); 2692 if (r) 2693 return r; 2694 2695 for (i = 0; i < dispc->feat->num_planes; i++) { 2696 r = dispc_iomap_resource(pdev, dispc->feat->vid_name[i], 2697 &dispc->base_vid[i]); 2698 if (r) 2699 return r; 2700 } 2701 2702 for (i = 0; i < dispc->feat->num_vps; i++) { 2703 u32 gamma_size = dispc->feat->vp_feat.color.gamma_size; 2704 u32 *gamma_table; 2705 struct clk *clk; 2706 2707 r = dispc_iomap_resource(pdev, dispc->feat->ovr_name[i], 2708 &dispc->base_ovr[i]); 2709 if (r) 2710 return r; 2711 2712 r = dispc_iomap_resource(pdev, dispc->feat->vp_name[i], 2713 &dispc->base_vp[i]); 2714 if (r) 2715 return r; 2716 2717 clk = devm_clk_get(dev, dispc->feat->vpclk_name[i]); 2718 if (IS_ERR(clk)) { 2719 dev_err(dev, "%s: Failed to get clk %s:%ld\n", __func__, 2720 dispc->feat->vpclk_name[i], PTR_ERR(clk)); 2721 return PTR_ERR(clk); 2722 } 2723 dispc->vp_clk[i] = clk; 2724 2725 gamma_table = devm_kmalloc_array(dev, gamma_size, 2726 sizeof(*gamma_table), 2727 GFP_KERNEL); 2728 if (!gamma_table) 2729 return -ENOMEM; 2730 dispc->vp_data[i].gamma_table = gamma_table; 2731 } 2732 2733 if (feat->subrev == DISPC_AM65X) { 2734 r = dispc_init_am65x_oldi_io_ctrl(dev, dispc); 2735 if (r) 2736 return r; 2737 } 2738 2739 dispc->fclk = devm_clk_get(dev, "fck"); 2740 if (IS_ERR(dispc->fclk)) { 2741 dev_err(dev, "%s: Failed to get fclk: %ld\n", 2742 __func__, PTR_ERR(dispc->fclk)); 2743 return PTR_ERR(dispc->fclk); 2744 } 2745 dev_dbg(dev, "DSS fclk %lu Hz\n", clk_get_rate(dispc->fclk)); 2746 2747 of_property_read_u32(dispc->dev->of_node, "max-memory-bandwidth", 2748 &dispc->memory_bandwidth_limit); 2749 2750 tidss->dispc = dispc; 2751 2752 return 0; 2753 } 2754