1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2016-2018 Texas Instruments Incorporated - http://www.ti.com/ 4 * Author: Jyri Sarha <jsarha@ti.com> 5 */ 6 7 #include <linux/clk.h> 8 #include <linux/delay.h> 9 #include <linux/dma-mapping.h> 10 #include <linux/err.h> 11 #include <linux/interrupt.h> 12 #include <linux/io.h> 13 #include <linux/kernel.h> 14 #include <linux/module.h> 15 #include <linux/mfd/syscon.h> 16 #include <linux/of.h> 17 #include <linux/of_graph.h> 18 #include <linux/of_device.h> 19 #include <linux/platform_device.h> 20 #include <linux/pm_runtime.h> 21 #include <linux/regmap.h> 22 23 #include <drm/drm_fourcc.h> 24 #include <drm/drm_fb_cma_helper.h> 25 #include <drm/drm_gem_cma_helper.h> 26 #include <drm/drm_panel.h> 27 28 #include "tidss_crtc.h" 29 #include "tidss_dispc.h" 30 #include "tidss_drv.h" 31 #include "tidss_irq.h" 32 #include "tidss_plane.h" 33 34 #include "tidss_dispc_regs.h" 35 #include "tidss_scale_coefs.h" 36 37 static const u16 tidss_k2g_common_regs[DISPC_COMMON_REG_TABLE_LEN] = { 38 [DSS_REVISION_OFF] = 0x00, 39 [DSS_SYSCONFIG_OFF] = 0x04, 40 [DSS_SYSSTATUS_OFF] = 0x08, 41 [DISPC_IRQ_EOI_OFF] = 0x20, 42 [DISPC_IRQSTATUS_RAW_OFF] = 0x24, 43 [DISPC_IRQSTATUS_OFF] = 0x28, 44 [DISPC_IRQENABLE_SET_OFF] = 0x2c, 45 [DISPC_IRQENABLE_CLR_OFF] = 0x30, 46 47 [DISPC_GLOBAL_MFLAG_ATTRIBUTE_OFF] = 0x40, 48 [DISPC_GLOBAL_BUFFER_OFF] = 0x44, 49 50 [DISPC_DBG_CONTROL_OFF] = 0x4c, 51 [DISPC_DBG_STATUS_OFF] = 0x50, 52 53 [DISPC_CLKGATING_DISABLE_OFF] = 0x54, 54 }; 55 56 const struct dispc_features dispc_k2g_feats = { 57 .min_pclk_khz = 4375, 58 59 .max_pclk_khz = { 60 [DISPC_VP_DPI] = 150000, 61 }, 62 63 /* 64 * XXX According TRM the RGB input buffer width up to 2560 should 65 * work on 3 taps, but in practice it only works up to 1280. 66 */ 67 .scaling = { 68 .in_width_max_5tap_rgb = 1280, 69 .in_width_max_3tap_rgb = 1280, 70 .in_width_max_5tap_yuv = 2560, 71 .in_width_max_3tap_yuv = 2560, 72 .upscale_limit = 16, 73 .downscale_limit_5tap = 4, 74 .downscale_limit_3tap = 2, 75 /* 76 * The max supported pixel inc value is 255. The value 77 * of pixel inc is calculated like this: 1+(xinc-1)*bpp. 78 * The maximum bpp of all formats supported by the HW 79 * is 8. So the maximum supported xinc value is 32, 80 * because 1+(32-1)*8 < 255 < 1+(33-1)*4. 81 */ 82 .xinc_max = 32, 83 }, 84 85 .subrev = DISPC_K2G, 86 87 .common = "common", 88 89 .common_regs = tidss_k2g_common_regs, 90 91 .num_vps = 1, 92 .vp_name = { "vp1" }, 93 .ovr_name = { "ovr1" }, 94 .vpclk_name = { "vp1" }, 95 .vp_bus_type = { DISPC_VP_DPI }, 96 97 .vp_feat = { .color = { 98 .has_ctm = true, 99 .gamma_size = 256, 100 .gamma_type = TIDSS_GAMMA_8BIT, 101 }, 102 }, 103 104 .num_planes = 1, 105 .vid_name = { "vid1" }, 106 .vid_lite = { false }, 107 .vid_order = { 0 }, 108 }; 109 110 static const u16 tidss_am65x_common_regs[DISPC_COMMON_REG_TABLE_LEN] = { 111 [DSS_REVISION_OFF] = 0x4, 112 [DSS_SYSCONFIG_OFF] = 0x8, 113 [DSS_SYSSTATUS_OFF] = 0x20, 114 [DISPC_IRQ_EOI_OFF] = 0x24, 115 [DISPC_IRQSTATUS_RAW_OFF] = 0x28, 116 [DISPC_IRQSTATUS_OFF] = 0x2c, 117 [DISPC_IRQENABLE_SET_OFF] = 0x30, 118 [DISPC_IRQENABLE_CLR_OFF] = 0x40, 119 [DISPC_VID_IRQENABLE_OFF] = 0x44, 120 [DISPC_VID_IRQSTATUS_OFF] = 0x58, 121 [DISPC_VP_IRQENABLE_OFF] = 0x70, 122 [DISPC_VP_IRQSTATUS_OFF] = 0x7c, 123 124 [WB_IRQENABLE_OFF] = 0x88, 125 [WB_IRQSTATUS_OFF] = 0x8c, 126 127 [DISPC_GLOBAL_MFLAG_ATTRIBUTE_OFF] = 0x90, 128 [DISPC_GLOBAL_OUTPUT_ENABLE_OFF] = 0x94, 129 [DISPC_GLOBAL_BUFFER_OFF] = 0x98, 130 [DSS_CBA_CFG_OFF] = 0x9c, 131 [DISPC_DBG_CONTROL_OFF] = 0xa0, 132 [DISPC_DBG_STATUS_OFF] = 0xa4, 133 [DISPC_CLKGATING_DISABLE_OFF] = 0xa8, 134 [DISPC_SECURE_DISABLE_OFF] = 0xac, 135 }; 136 137 const struct dispc_features dispc_am65x_feats = { 138 .max_pclk_khz = { 139 [DISPC_VP_DPI] = 165000, 140 [DISPC_VP_OLDI] = 165000, 141 }, 142 143 .scaling = { 144 .in_width_max_5tap_rgb = 1280, 145 .in_width_max_3tap_rgb = 2560, 146 .in_width_max_5tap_yuv = 2560, 147 .in_width_max_3tap_yuv = 4096, 148 .upscale_limit = 16, 149 .downscale_limit_5tap = 4, 150 .downscale_limit_3tap = 2, 151 /* 152 * The max supported pixel inc value is 255. The value 153 * of pixel inc is calculated like this: 1+(xinc-1)*bpp. 154 * The maximum bpp of all formats supported by the HW 155 * is 8. So the maximum supported xinc value is 32, 156 * because 1+(32-1)*8 < 255 < 1+(33-1)*4. 157 */ 158 .xinc_max = 32, 159 }, 160 161 .subrev = DISPC_AM65X, 162 163 .common = "common", 164 .common_regs = tidss_am65x_common_regs, 165 166 .num_vps = 2, 167 .vp_name = { "vp1", "vp2" }, 168 .ovr_name = { "ovr1", "ovr2" }, 169 .vpclk_name = { "vp1", "vp2" }, 170 .vp_bus_type = { DISPC_VP_OLDI, DISPC_VP_DPI }, 171 172 .vp_feat = { .color = { 173 .has_ctm = true, 174 .gamma_size = 256, 175 .gamma_type = TIDSS_GAMMA_8BIT, 176 }, 177 }, 178 179 .num_planes = 2, 180 /* note: vid is plane_id 0 and vidl1 is plane_id 1 */ 181 .vid_name = { "vid", "vidl1" }, 182 .vid_lite = { false, true, }, 183 .vid_order = { 1, 0 }, 184 185 .errata = { 186 .i2000 = true, 187 }, 188 }; 189 190 static const u16 tidss_j721e_common_regs[DISPC_COMMON_REG_TABLE_LEN] = { 191 [DSS_REVISION_OFF] = 0x4, 192 [DSS_SYSCONFIG_OFF] = 0x8, 193 [DSS_SYSSTATUS_OFF] = 0x20, 194 [DISPC_IRQ_EOI_OFF] = 0x80, 195 [DISPC_IRQSTATUS_RAW_OFF] = 0x28, 196 [DISPC_IRQSTATUS_OFF] = 0x2c, 197 [DISPC_IRQENABLE_SET_OFF] = 0x30, 198 [DISPC_IRQENABLE_CLR_OFF] = 0x34, 199 [DISPC_VID_IRQENABLE_OFF] = 0x38, 200 [DISPC_VID_IRQSTATUS_OFF] = 0x48, 201 [DISPC_VP_IRQENABLE_OFF] = 0x58, 202 [DISPC_VP_IRQSTATUS_OFF] = 0x68, 203 204 [WB_IRQENABLE_OFF] = 0x78, 205 [WB_IRQSTATUS_OFF] = 0x7c, 206 207 [DISPC_GLOBAL_MFLAG_ATTRIBUTE_OFF] = 0x98, 208 [DISPC_GLOBAL_OUTPUT_ENABLE_OFF] = 0x9c, 209 [DISPC_GLOBAL_BUFFER_OFF] = 0xa0, 210 [DSS_CBA_CFG_OFF] = 0xa4, 211 [DISPC_DBG_CONTROL_OFF] = 0xa8, 212 [DISPC_DBG_STATUS_OFF] = 0xac, 213 [DISPC_CLKGATING_DISABLE_OFF] = 0xb0, 214 [DISPC_SECURE_DISABLE_OFF] = 0x90, 215 216 [FBDC_REVISION_1_OFF] = 0xb8, 217 [FBDC_REVISION_2_OFF] = 0xbc, 218 [FBDC_REVISION_3_OFF] = 0xc0, 219 [FBDC_REVISION_4_OFF] = 0xc4, 220 [FBDC_REVISION_5_OFF] = 0xc8, 221 [FBDC_REVISION_6_OFF] = 0xcc, 222 [FBDC_COMMON_CONTROL_OFF] = 0xd0, 223 [FBDC_CONSTANT_COLOR_0_OFF] = 0xd4, 224 [FBDC_CONSTANT_COLOR_1_OFF] = 0xd8, 225 [DISPC_CONNECTIONS_OFF] = 0xe4, 226 [DISPC_MSS_VP1_OFF] = 0xe8, 227 [DISPC_MSS_VP3_OFF] = 0xec, 228 }; 229 230 const struct dispc_features dispc_j721e_feats = { 231 .max_pclk_khz = { 232 [DISPC_VP_DPI] = 170000, 233 [DISPC_VP_INTERNAL] = 600000, 234 }, 235 236 .scaling = { 237 .in_width_max_5tap_rgb = 2048, 238 .in_width_max_3tap_rgb = 4096, 239 .in_width_max_5tap_yuv = 4096, 240 .in_width_max_3tap_yuv = 4096, 241 .upscale_limit = 16, 242 .downscale_limit_5tap = 4, 243 .downscale_limit_3tap = 2, 244 /* 245 * The max supported pixel inc value is 255. The value 246 * of pixel inc is calculated like this: 1+(xinc-1)*bpp. 247 * The maximum bpp of all formats supported by the HW 248 * is 8. So the maximum supported xinc value is 32, 249 * because 1+(32-1)*8 < 255 < 1+(33-1)*4. 250 */ 251 .xinc_max = 32, 252 }, 253 254 .subrev = DISPC_J721E, 255 256 .common = "common_m", 257 .common_regs = tidss_j721e_common_regs, 258 259 .num_vps = 4, 260 .vp_name = { "vp1", "vp2", "vp3", "vp4" }, 261 .ovr_name = { "ovr1", "ovr2", "ovr3", "ovr4" }, 262 .vpclk_name = { "vp1", "vp2", "vp3", "vp4" }, 263 /* Currently hard coded VP routing (see dispc_initial_config()) */ 264 .vp_bus_type = { DISPC_VP_INTERNAL, DISPC_VP_DPI, 265 DISPC_VP_INTERNAL, DISPC_VP_DPI, }, 266 .vp_feat = { .color = { 267 .has_ctm = true, 268 .gamma_size = 1024, 269 .gamma_type = TIDSS_GAMMA_10BIT, 270 }, 271 }, 272 .num_planes = 4, 273 .vid_name = { "vid1", "vidl1", "vid2", "vidl2" }, 274 .vid_lite = { 0, 1, 0, 1, }, 275 .vid_order = { 1, 3, 0, 2 }, 276 }; 277 278 static const u16 *dispc_common_regmap; 279 280 struct dss_vp_data { 281 u32 *gamma_table; 282 }; 283 284 struct dss_plane_data { 285 u32 zorder; 286 u32 hw_videoport; 287 }; 288 289 struct dispc_device { 290 struct tidss_device *tidss; 291 struct device *dev; 292 293 void __iomem *base_common; 294 void __iomem *base_vid[TIDSS_MAX_PLANES]; 295 void __iomem *base_ovr[TIDSS_MAX_PORTS]; 296 void __iomem *base_vp[TIDSS_MAX_PORTS]; 297 298 struct regmap *oldi_io_ctrl; 299 300 struct clk *vp_clk[TIDSS_MAX_PORTS]; 301 302 const struct dispc_features *feat; 303 304 struct clk *fclk; 305 306 bool is_enabled; 307 308 struct dss_vp_data vp_data[TIDSS_MAX_PORTS]; 309 310 struct dss_plane_data plane_data[TIDSS_MAX_PLANES]; 311 312 u32 *fourccs; 313 u32 num_fourccs; 314 315 u32 memory_bandwidth_limit; 316 }; 317 318 static void dispc_write(struct dispc_device *dispc, u16 reg, u32 val) 319 { 320 iowrite32(val, dispc->base_common + reg); 321 } 322 323 static u32 dispc_read(struct dispc_device *dispc, u16 reg) 324 { 325 return ioread32(dispc->base_common + reg); 326 } 327 328 static 329 void dispc_vid_write(struct dispc_device *dispc, u32 hw_plane, u16 reg, u32 val) 330 { 331 void __iomem *base = dispc->base_vid[hw_plane]; 332 333 iowrite32(val, base + reg); 334 } 335 336 static u32 dispc_vid_read(struct dispc_device *dispc, u32 hw_plane, u16 reg) 337 { 338 void __iomem *base = dispc->base_vid[hw_plane]; 339 340 return ioread32(base + reg); 341 } 342 343 static void dispc_ovr_write(struct dispc_device *dispc, u32 hw_videoport, 344 u16 reg, u32 val) 345 { 346 void __iomem *base = dispc->base_ovr[hw_videoport]; 347 348 iowrite32(val, base + reg); 349 } 350 351 static u32 dispc_ovr_read(struct dispc_device *dispc, u32 hw_videoport, u16 reg) 352 { 353 void __iomem *base = dispc->base_ovr[hw_videoport]; 354 355 return ioread32(base + reg); 356 } 357 358 static void dispc_vp_write(struct dispc_device *dispc, u32 hw_videoport, 359 u16 reg, u32 val) 360 { 361 void __iomem *base = dispc->base_vp[hw_videoport]; 362 363 iowrite32(val, base + reg); 364 } 365 366 static u32 dispc_vp_read(struct dispc_device *dispc, u32 hw_videoport, u16 reg) 367 { 368 void __iomem *base = dispc->base_vp[hw_videoport]; 369 370 return ioread32(base + reg); 371 } 372 373 /* 374 * TRM gives bitfields as start:end, where start is the higher bit 375 * number. For example 7:0 376 */ 377 378 static u32 FLD_MASK(u32 start, u32 end) 379 { 380 return ((1 << (start - end + 1)) - 1) << end; 381 } 382 383 static u32 FLD_VAL(u32 val, u32 start, u32 end) 384 { 385 return (val << end) & FLD_MASK(start, end); 386 } 387 388 static u32 FLD_GET(u32 val, u32 start, u32 end) 389 { 390 return (val & FLD_MASK(start, end)) >> end; 391 } 392 393 static u32 FLD_MOD(u32 orig, u32 val, u32 start, u32 end) 394 { 395 return (orig & ~FLD_MASK(start, end)) | FLD_VAL(val, start, end); 396 } 397 398 static u32 REG_GET(struct dispc_device *dispc, u32 idx, u32 start, u32 end) 399 { 400 return FLD_GET(dispc_read(dispc, idx), start, end); 401 } 402 403 static void REG_FLD_MOD(struct dispc_device *dispc, u32 idx, u32 val, 404 u32 start, u32 end) 405 { 406 dispc_write(dispc, idx, FLD_MOD(dispc_read(dispc, idx), val, 407 start, end)); 408 } 409 410 static u32 VID_REG_GET(struct dispc_device *dispc, u32 hw_plane, u32 idx, 411 u32 start, u32 end) 412 { 413 return FLD_GET(dispc_vid_read(dispc, hw_plane, idx), start, end); 414 } 415 416 static void VID_REG_FLD_MOD(struct dispc_device *dispc, u32 hw_plane, u32 idx, 417 u32 val, u32 start, u32 end) 418 { 419 dispc_vid_write(dispc, hw_plane, idx, 420 FLD_MOD(dispc_vid_read(dispc, hw_plane, idx), 421 val, start, end)); 422 } 423 424 static u32 VP_REG_GET(struct dispc_device *dispc, u32 vp, u32 idx, 425 u32 start, u32 end) 426 { 427 return FLD_GET(dispc_vp_read(dispc, vp, idx), start, end); 428 } 429 430 static void VP_REG_FLD_MOD(struct dispc_device *dispc, u32 vp, u32 idx, u32 val, 431 u32 start, u32 end) 432 { 433 dispc_vp_write(dispc, vp, idx, FLD_MOD(dispc_vp_read(dispc, vp, idx), 434 val, start, end)); 435 } 436 437 __maybe_unused 438 static u32 OVR_REG_GET(struct dispc_device *dispc, u32 ovr, u32 idx, 439 u32 start, u32 end) 440 { 441 return FLD_GET(dispc_ovr_read(dispc, ovr, idx), start, end); 442 } 443 444 static void OVR_REG_FLD_MOD(struct dispc_device *dispc, u32 ovr, u32 idx, 445 u32 val, u32 start, u32 end) 446 { 447 dispc_ovr_write(dispc, ovr, idx, 448 FLD_MOD(dispc_ovr_read(dispc, ovr, idx), 449 val, start, end)); 450 } 451 452 static dispc_irq_t dispc_vp_irq_from_raw(u32 stat, u32 hw_videoport) 453 { 454 dispc_irq_t vp_stat = 0; 455 456 if (stat & BIT(0)) 457 vp_stat |= DSS_IRQ_VP_FRAME_DONE(hw_videoport); 458 if (stat & BIT(1)) 459 vp_stat |= DSS_IRQ_VP_VSYNC_EVEN(hw_videoport); 460 if (stat & BIT(2)) 461 vp_stat |= DSS_IRQ_VP_VSYNC_ODD(hw_videoport); 462 if (stat & BIT(4)) 463 vp_stat |= DSS_IRQ_VP_SYNC_LOST(hw_videoport); 464 465 return vp_stat; 466 } 467 468 static u32 dispc_vp_irq_to_raw(dispc_irq_t vpstat, u32 hw_videoport) 469 { 470 u32 stat = 0; 471 472 if (vpstat & DSS_IRQ_VP_FRAME_DONE(hw_videoport)) 473 stat |= BIT(0); 474 if (vpstat & DSS_IRQ_VP_VSYNC_EVEN(hw_videoport)) 475 stat |= BIT(1); 476 if (vpstat & DSS_IRQ_VP_VSYNC_ODD(hw_videoport)) 477 stat |= BIT(2); 478 if (vpstat & DSS_IRQ_VP_SYNC_LOST(hw_videoport)) 479 stat |= BIT(4); 480 481 return stat; 482 } 483 484 static dispc_irq_t dispc_vid_irq_from_raw(u32 stat, u32 hw_plane) 485 { 486 dispc_irq_t vid_stat = 0; 487 488 if (stat & BIT(0)) 489 vid_stat |= DSS_IRQ_PLANE_FIFO_UNDERFLOW(hw_plane); 490 491 return vid_stat; 492 } 493 494 static u32 dispc_vid_irq_to_raw(dispc_irq_t vidstat, u32 hw_plane) 495 { 496 u32 stat = 0; 497 498 if (vidstat & DSS_IRQ_PLANE_FIFO_UNDERFLOW(hw_plane)) 499 stat |= BIT(0); 500 501 return stat; 502 } 503 504 static dispc_irq_t dispc_k2g_vp_read_irqstatus(struct dispc_device *dispc, 505 u32 hw_videoport) 506 { 507 u32 stat = dispc_vp_read(dispc, hw_videoport, DISPC_VP_K2G_IRQSTATUS); 508 509 return dispc_vp_irq_from_raw(stat, hw_videoport); 510 } 511 512 static void dispc_k2g_vp_write_irqstatus(struct dispc_device *dispc, 513 u32 hw_videoport, dispc_irq_t vpstat) 514 { 515 u32 stat = dispc_vp_irq_to_raw(vpstat, hw_videoport); 516 517 dispc_vp_write(dispc, hw_videoport, DISPC_VP_K2G_IRQSTATUS, stat); 518 } 519 520 static dispc_irq_t dispc_k2g_vid_read_irqstatus(struct dispc_device *dispc, 521 u32 hw_plane) 522 { 523 u32 stat = dispc_vid_read(dispc, hw_plane, DISPC_VID_K2G_IRQSTATUS); 524 525 return dispc_vid_irq_from_raw(stat, hw_plane); 526 } 527 528 static void dispc_k2g_vid_write_irqstatus(struct dispc_device *dispc, 529 u32 hw_plane, dispc_irq_t vidstat) 530 { 531 u32 stat = dispc_vid_irq_to_raw(vidstat, hw_plane); 532 533 dispc_vid_write(dispc, hw_plane, DISPC_VID_K2G_IRQSTATUS, stat); 534 } 535 536 static dispc_irq_t dispc_k2g_vp_read_irqenable(struct dispc_device *dispc, 537 u32 hw_videoport) 538 { 539 u32 stat = dispc_vp_read(dispc, hw_videoport, DISPC_VP_K2G_IRQENABLE); 540 541 return dispc_vp_irq_from_raw(stat, hw_videoport); 542 } 543 544 static void dispc_k2g_vp_set_irqenable(struct dispc_device *dispc, 545 u32 hw_videoport, dispc_irq_t vpstat) 546 { 547 u32 stat = dispc_vp_irq_to_raw(vpstat, hw_videoport); 548 549 dispc_vp_write(dispc, hw_videoport, DISPC_VP_K2G_IRQENABLE, stat); 550 } 551 552 static dispc_irq_t dispc_k2g_vid_read_irqenable(struct dispc_device *dispc, 553 u32 hw_plane) 554 { 555 u32 stat = dispc_vid_read(dispc, hw_plane, DISPC_VID_K2G_IRQENABLE); 556 557 return dispc_vid_irq_from_raw(stat, hw_plane); 558 } 559 560 static void dispc_k2g_vid_set_irqenable(struct dispc_device *dispc, 561 u32 hw_plane, dispc_irq_t vidstat) 562 { 563 u32 stat = dispc_vid_irq_to_raw(vidstat, hw_plane); 564 565 dispc_vid_write(dispc, hw_plane, DISPC_VID_K2G_IRQENABLE, stat); 566 } 567 568 static void dispc_k2g_clear_irqstatus(struct dispc_device *dispc, 569 dispc_irq_t mask) 570 { 571 dispc_k2g_vp_write_irqstatus(dispc, 0, mask); 572 dispc_k2g_vid_write_irqstatus(dispc, 0, mask); 573 } 574 575 static 576 dispc_irq_t dispc_k2g_read_and_clear_irqstatus(struct dispc_device *dispc) 577 { 578 dispc_irq_t stat = 0; 579 580 /* always clear the top level irqstatus */ 581 dispc_write(dispc, DISPC_IRQSTATUS, 582 dispc_read(dispc, DISPC_IRQSTATUS)); 583 584 stat |= dispc_k2g_vp_read_irqstatus(dispc, 0); 585 stat |= dispc_k2g_vid_read_irqstatus(dispc, 0); 586 587 dispc_k2g_clear_irqstatus(dispc, stat); 588 589 return stat; 590 } 591 592 static dispc_irq_t dispc_k2g_read_irqenable(struct dispc_device *dispc) 593 { 594 dispc_irq_t stat = 0; 595 596 stat |= dispc_k2g_vp_read_irqenable(dispc, 0); 597 stat |= dispc_k2g_vid_read_irqenable(dispc, 0); 598 599 return stat; 600 } 601 602 static 603 void dispc_k2g_set_irqenable(struct dispc_device *dispc, dispc_irq_t mask) 604 { 605 dispc_irq_t old_mask = dispc_k2g_read_irqenable(dispc); 606 607 /* clear the irqstatus for newly enabled irqs */ 608 dispc_k2g_clear_irqstatus(dispc, (mask ^ old_mask) & mask); 609 610 dispc_k2g_vp_set_irqenable(dispc, 0, mask); 611 dispc_k2g_vid_set_irqenable(dispc, 0, mask); 612 613 dispc_write(dispc, DISPC_IRQENABLE_SET, (1 << 0) | (1 << 7)); 614 615 /* flush posted write */ 616 dispc_k2g_read_irqenable(dispc); 617 } 618 619 static dispc_irq_t dispc_k3_vp_read_irqstatus(struct dispc_device *dispc, 620 u32 hw_videoport) 621 { 622 u32 stat = dispc_read(dispc, DISPC_VP_IRQSTATUS(hw_videoport)); 623 624 return dispc_vp_irq_from_raw(stat, hw_videoport); 625 } 626 627 static void dispc_k3_vp_write_irqstatus(struct dispc_device *dispc, 628 u32 hw_videoport, dispc_irq_t vpstat) 629 { 630 u32 stat = dispc_vp_irq_to_raw(vpstat, hw_videoport); 631 632 dispc_write(dispc, DISPC_VP_IRQSTATUS(hw_videoport), stat); 633 } 634 635 static dispc_irq_t dispc_k3_vid_read_irqstatus(struct dispc_device *dispc, 636 u32 hw_plane) 637 { 638 u32 stat = dispc_read(dispc, DISPC_VID_IRQSTATUS(hw_plane)); 639 640 return dispc_vid_irq_from_raw(stat, hw_plane); 641 } 642 643 static void dispc_k3_vid_write_irqstatus(struct dispc_device *dispc, 644 u32 hw_plane, dispc_irq_t vidstat) 645 { 646 u32 stat = dispc_vid_irq_to_raw(vidstat, hw_plane); 647 648 dispc_write(dispc, DISPC_VID_IRQSTATUS(hw_plane), stat); 649 } 650 651 static dispc_irq_t dispc_k3_vp_read_irqenable(struct dispc_device *dispc, 652 u32 hw_videoport) 653 { 654 u32 stat = dispc_read(dispc, DISPC_VP_IRQENABLE(hw_videoport)); 655 656 return dispc_vp_irq_from_raw(stat, hw_videoport); 657 } 658 659 static void dispc_k3_vp_set_irqenable(struct dispc_device *dispc, 660 u32 hw_videoport, dispc_irq_t vpstat) 661 { 662 u32 stat = dispc_vp_irq_to_raw(vpstat, hw_videoport); 663 664 dispc_write(dispc, DISPC_VP_IRQENABLE(hw_videoport), stat); 665 } 666 667 static dispc_irq_t dispc_k3_vid_read_irqenable(struct dispc_device *dispc, 668 u32 hw_plane) 669 { 670 u32 stat = dispc_read(dispc, DISPC_VID_IRQENABLE(hw_plane)); 671 672 return dispc_vid_irq_from_raw(stat, hw_plane); 673 } 674 675 static void dispc_k3_vid_set_irqenable(struct dispc_device *dispc, 676 u32 hw_plane, dispc_irq_t vidstat) 677 { 678 u32 stat = dispc_vid_irq_to_raw(vidstat, hw_plane); 679 680 dispc_write(dispc, DISPC_VID_IRQENABLE(hw_plane), stat); 681 } 682 683 static 684 void dispc_k3_clear_irqstatus(struct dispc_device *dispc, dispc_irq_t clearmask) 685 { 686 unsigned int i; 687 u32 top_clear = 0; 688 689 for (i = 0; i < dispc->feat->num_vps; ++i) { 690 if (clearmask & DSS_IRQ_VP_MASK(i)) { 691 dispc_k3_vp_write_irqstatus(dispc, i, clearmask); 692 top_clear |= BIT(i); 693 } 694 } 695 for (i = 0; i < dispc->feat->num_planes; ++i) { 696 if (clearmask & DSS_IRQ_PLANE_MASK(i)) { 697 dispc_k3_vid_write_irqstatus(dispc, i, clearmask); 698 top_clear |= BIT(4 + i); 699 } 700 } 701 if (dispc->feat->subrev == DISPC_K2G) 702 return; 703 704 dispc_write(dispc, DISPC_IRQSTATUS, top_clear); 705 706 /* Flush posted writes */ 707 dispc_read(dispc, DISPC_IRQSTATUS); 708 } 709 710 static 711 dispc_irq_t dispc_k3_read_and_clear_irqstatus(struct dispc_device *dispc) 712 { 713 dispc_irq_t status = 0; 714 unsigned int i; 715 716 for (i = 0; i < dispc->feat->num_vps; ++i) 717 status |= dispc_k3_vp_read_irqstatus(dispc, i); 718 719 for (i = 0; i < dispc->feat->num_planes; ++i) 720 status |= dispc_k3_vid_read_irqstatus(dispc, i); 721 722 dispc_k3_clear_irqstatus(dispc, status); 723 724 return status; 725 } 726 727 static dispc_irq_t dispc_k3_read_irqenable(struct dispc_device *dispc) 728 { 729 dispc_irq_t enable = 0; 730 unsigned int i; 731 732 for (i = 0; i < dispc->feat->num_vps; ++i) 733 enable |= dispc_k3_vp_read_irqenable(dispc, i); 734 735 for (i = 0; i < dispc->feat->num_planes; ++i) 736 enable |= dispc_k3_vid_read_irqenable(dispc, i); 737 738 return enable; 739 } 740 741 static void dispc_k3_set_irqenable(struct dispc_device *dispc, 742 dispc_irq_t mask) 743 { 744 unsigned int i; 745 u32 main_enable = 0, main_disable = 0; 746 dispc_irq_t old_mask; 747 748 old_mask = dispc_k3_read_irqenable(dispc); 749 750 /* clear the irqstatus for newly enabled irqs */ 751 dispc_k3_clear_irqstatus(dispc, (old_mask ^ mask) & mask); 752 753 for (i = 0; i < dispc->feat->num_vps; ++i) { 754 dispc_k3_vp_set_irqenable(dispc, i, mask); 755 if (mask & DSS_IRQ_VP_MASK(i)) 756 main_enable |= BIT(i); /* VP IRQ */ 757 else 758 main_disable |= BIT(i); /* VP IRQ */ 759 } 760 761 for (i = 0; i < dispc->feat->num_planes; ++i) { 762 dispc_k3_vid_set_irqenable(dispc, i, mask); 763 if (mask & DSS_IRQ_PLANE_MASK(i)) 764 main_enable |= BIT(i + 4); /* VID IRQ */ 765 else 766 main_disable |= BIT(i + 4); /* VID IRQ */ 767 } 768 769 if (main_enable) 770 dispc_write(dispc, DISPC_IRQENABLE_SET, main_enable); 771 772 if (main_disable) 773 dispc_write(dispc, DISPC_IRQENABLE_CLR, main_disable); 774 775 /* Flush posted writes */ 776 dispc_read(dispc, DISPC_IRQENABLE_SET); 777 } 778 779 dispc_irq_t dispc_read_and_clear_irqstatus(struct dispc_device *dispc) 780 { 781 switch (dispc->feat->subrev) { 782 case DISPC_K2G: 783 return dispc_k2g_read_and_clear_irqstatus(dispc); 784 case DISPC_AM65X: 785 case DISPC_J721E: 786 return dispc_k3_read_and_clear_irqstatus(dispc); 787 default: 788 WARN_ON(1); 789 return 0; 790 } 791 } 792 793 void dispc_set_irqenable(struct dispc_device *dispc, dispc_irq_t mask) 794 { 795 switch (dispc->feat->subrev) { 796 case DISPC_K2G: 797 dispc_k2g_set_irqenable(dispc, mask); 798 break; 799 case DISPC_AM65X: 800 case DISPC_J721E: 801 dispc_k3_set_irqenable(dispc, mask); 802 break; 803 default: 804 WARN_ON(1); 805 break; 806 } 807 } 808 809 enum dispc_oldi_mode_reg_val { SPWG_18 = 0, JEIDA_24 = 1, SPWG_24 = 2 }; 810 811 struct dispc_bus_format { 812 u32 bus_fmt; 813 u32 data_width; 814 bool is_oldi_fmt; 815 enum dispc_oldi_mode_reg_val oldi_mode_reg_val; 816 }; 817 818 static const struct dispc_bus_format dispc_bus_formats[] = { 819 { MEDIA_BUS_FMT_RGB444_1X12, 12, false, 0 }, 820 { MEDIA_BUS_FMT_RGB565_1X16, 16, false, 0 }, 821 { MEDIA_BUS_FMT_RGB666_1X18, 18, false, 0 }, 822 { MEDIA_BUS_FMT_RGB888_1X24, 24, false, 0 }, 823 { MEDIA_BUS_FMT_RGB101010_1X30, 30, false, 0 }, 824 { MEDIA_BUS_FMT_RGB121212_1X36, 36, false, 0 }, 825 { MEDIA_BUS_FMT_RGB666_1X7X3_SPWG, 18, true, SPWG_18 }, 826 { MEDIA_BUS_FMT_RGB888_1X7X4_SPWG, 24, true, SPWG_24 }, 827 { MEDIA_BUS_FMT_RGB888_1X7X4_JEIDA, 24, true, JEIDA_24 }, 828 }; 829 830 static const 831 struct dispc_bus_format *dispc_vp_find_bus_fmt(struct dispc_device *dispc, 832 u32 hw_videoport, 833 u32 bus_fmt, u32 bus_flags) 834 { 835 unsigned int i; 836 837 for (i = 0; i < ARRAY_SIZE(dispc_bus_formats); ++i) { 838 if (dispc_bus_formats[i].bus_fmt == bus_fmt) 839 return &dispc_bus_formats[i]; 840 } 841 842 return NULL; 843 } 844 845 int dispc_vp_bus_check(struct dispc_device *dispc, u32 hw_videoport, 846 const struct drm_crtc_state *state) 847 { 848 const struct tidss_crtc_state *tstate = to_tidss_crtc_state(state); 849 const struct dispc_bus_format *fmt; 850 851 fmt = dispc_vp_find_bus_fmt(dispc, hw_videoport, tstate->bus_format, 852 tstate->bus_flags); 853 if (!fmt) { 854 dev_dbg(dispc->dev, "%s: Unsupported bus format: %u\n", 855 __func__, tstate->bus_format); 856 return -EINVAL; 857 } 858 859 if (dispc->feat->vp_bus_type[hw_videoport] != DISPC_VP_OLDI && 860 fmt->is_oldi_fmt) { 861 dev_dbg(dispc->dev, "%s: %s is not OLDI-port\n", 862 __func__, dispc->feat->vp_name[hw_videoport]); 863 return -EINVAL; 864 } 865 866 return 0; 867 } 868 869 static void dispc_oldi_tx_power(struct dispc_device *dispc, bool power) 870 { 871 u32 val = power ? 0 : OLDI_PWRDN_TX; 872 873 if (WARN_ON(!dispc->oldi_io_ctrl)) 874 return; 875 876 regmap_update_bits(dispc->oldi_io_ctrl, OLDI_DAT0_IO_CTRL, 877 OLDI_PWRDN_TX, val); 878 regmap_update_bits(dispc->oldi_io_ctrl, OLDI_DAT1_IO_CTRL, 879 OLDI_PWRDN_TX, val); 880 regmap_update_bits(dispc->oldi_io_ctrl, OLDI_DAT2_IO_CTRL, 881 OLDI_PWRDN_TX, val); 882 regmap_update_bits(dispc->oldi_io_ctrl, OLDI_DAT3_IO_CTRL, 883 OLDI_PWRDN_TX, val); 884 regmap_update_bits(dispc->oldi_io_ctrl, OLDI_CLK_IO_CTRL, 885 OLDI_PWRDN_TX, val); 886 } 887 888 static void dispc_set_num_datalines(struct dispc_device *dispc, 889 u32 hw_videoport, int num_lines) 890 { 891 int v; 892 893 switch (num_lines) { 894 case 12: 895 v = 0; break; 896 case 16: 897 v = 1; break; 898 case 18: 899 v = 2; break; 900 case 24: 901 v = 3; break; 902 case 30: 903 v = 4; break; 904 case 36: 905 v = 5; break; 906 default: 907 WARN_ON(1); 908 v = 3; 909 } 910 911 VP_REG_FLD_MOD(dispc, hw_videoport, DISPC_VP_CONTROL, v, 10, 8); 912 } 913 914 static void dispc_enable_oldi(struct dispc_device *dispc, u32 hw_videoport, 915 const struct dispc_bus_format *fmt) 916 { 917 u32 oldi_cfg = 0; 918 u32 oldi_reset_bit = BIT(5 + hw_videoport); 919 int count = 0; 920 921 /* 922 * For the moment DUALMODESYNC, MASTERSLAVE, MODE, and SRC 923 * bits of DISPC_VP_DSS_OLDI_CFG are set statically to 0. 924 */ 925 926 if (fmt->data_width == 24) 927 oldi_cfg |= BIT(8); /* MSB */ 928 else if (fmt->data_width != 18) 929 dev_warn(dispc->dev, "%s: %d port width not supported\n", 930 __func__, fmt->data_width); 931 932 oldi_cfg |= BIT(7); /* DEPOL */ 933 934 oldi_cfg = FLD_MOD(oldi_cfg, fmt->oldi_mode_reg_val, 3, 1); 935 936 oldi_cfg |= BIT(12); /* SOFTRST */ 937 938 oldi_cfg |= BIT(0); /* ENABLE */ 939 940 dispc_vp_write(dispc, hw_videoport, DISPC_VP_DSS_OLDI_CFG, oldi_cfg); 941 942 while (!(oldi_reset_bit & dispc_read(dispc, DSS_SYSSTATUS)) && 943 count < 10000) 944 count++; 945 946 if (!(oldi_reset_bit & dispc_read(dispc, DSS_SYSSTATUS))) 947 dev_warn(dispc->dev, "%s: timeout waiting OLDI reset done\n", 948 __func__); 949 } 950 951 void dispc_vp_prepare(struct dispc_device *dispc, u32 hw_videoport, 952 const struct drm_crtc_state *state) 953 { 954 const struct tidss_crtc_state *tstate = to_tidss_crtc_state(state); 955 const struct dispc_bus_format *fmt; 956 957 fmt = dispc_vp_find_bus_fmt(dispc, hw_videoport, tstate->bus_format, 958 tstate->bus_flags); 959 960 if (WARN_ON(!fmt)) 961 return; 962 963 if (dispc->feat->vp_bus_type[hw_videoport] == DISPC_VP_OLDI) { 964 dispc_oldi_tx_power(dispc, true); 965 966 dispc_enable_oldi(dispc, hw_videoport, fmt); 967 } 968 } 969 970 void dispc_vp_enable(struct dispc_device *dispc, u32 hw_videoport, 971 const struct drm_crtc_state *state) 972 { 973 const struct drm_display_mode *mode = &state->adjusted_mode; 974 const struct tidss_crtc_state *tstate = to_tidss_crtc_state(state); 975 bool align, onoff, rf, ieo, ipc, ihs, ivs; 976 const struct dispc_bus_format *fmt; 977 u32 hsw, hfp, hbp, vsw, vfp, vbp; 978 979 fmt = dispc_vp_find_bus_fmt(dispc, hw_videoport, tstate->bus_format, 980 tstate->bus_flags); 981 982 if (WARN_ON(!fmt)) 983 return; 984 985 dispc_set_num_datalines(dispc, hw_videoport, fmt->data_width); 986 987 hfp = mode->hsync_start - mode->hdisplay; 988 hsw = mode->hsync_end - mode->hsync_start; 989 hbp = mode->htotal - mode->hsync_end; 990 991 vfp = mode->vsync_start - mode->vdisplay; 992 vsw = mode->vsync_end - mode->vsync_start; 993 vbp = mode->vtotal - mode->vsync_end; 994 995 dispc_vp_write(dispc, hw_videoport, DISPC_VP_TIMING_H, 996 FLD_VAL(hsw - 1, 7, 0) | 997 FLD_VAL(hfp - 1, 19, 8) | 998 FLD_VAL(hbp - 1, 31, 20)); 999 1000 dispc_vp_write(dispc, hw_videoport, DISPC_VP_TIMING_V, 1001 FLD_VAL(vsw - 1, 7, 0) | 1002 FLD_VAL(vfp, 19, 8) | 1003 FLD_VAL(vbp, 31, 20)); 1004 1005 ivs = !!(mode->flags & DRM_MODE_FLAG_NVSYNC); 1006 1007 ihs = !!(mode->flags & DRM_MODE_FLAG_NHSYNC); 1008 1009 ieo = !!(tstate->bus_flags & DRM_BUS_FLAG_DE_LOW); 1010 1011 ipc = !!(tstate->bus_flags & DRM_BUS_FLAG_PIXDATA_NEGEDGE); 1012 1013 /* always use the 'rf' setting */ 1014 onoff = true; 1015 1016 rf = !!(tstate->bus_flags & DRM_BUS_FLAG_SYNC_POSEDGE); 1017 1018 /* always use aligned syncs */ 1019 align = true; 1020 1021 /* always use DE_HIGH for OLDI */ 1022 if (dispc->feat->vp_bus_type[hw_videoport] == DISPC_VP_OLDI) 1023 ieo = false; 1024 1025 dispc_vp_write(dispc, hw_videoport, DISPC_VP_POL_FREQ, 1026 FLD_VAL(align, 18, 18) | 1027 FLD_VAL(onoff, 17, 17) | 1028 FLD_VAL(rf, 16, 16) | 1029 FLD_VAL(ieo, 15, 15) | 1030 FLD_VAL(ipc, 14, 14) | 1031 FLD_VAL(ihs, 13, 13) | 1032 FLD_VAL(ivs, 12, 12)); 1033 1034 dispc_vp_write(dispc, hw_videoport, DISPC_VP_SIZE_SCREEN, 1035 FLD_VAL(mode->hdisplay - 1, 11, 0) | 1036 FLD_VAL(mode->vdisplay - 1, 27, 16)); 1037 1038 VP_REG_FLD_MOD(dispc, hw_videoport, DISPC_VP_CONTROL, 1, 0, 0); 1039 } 1040 1041 void dispc_vp_disable(struct dispc_device *dispc, u32 hw_videoport) 1042 { 1043 VP_REG_FLD_MOD(dispc, hw_videoport, DISPC_VP_CONTROL, 0, 0, 0); 1044 } 1045 1046 void dispc_vp_unprepare(struct dispc_device *dispc, u32 hw_videoport) 1047 { 1048 if (dispc->feat->vp_bus_type[hw_videoport] == DISPC_VP_OLDI) { 1049 dispc_vp_write(dispc, hw_videoport, DISPC_VP_DSS_OLDI_CFG, 0); 1050 1051 dispc_oldi_tx_power(dispc, false); 1052 } 1053 } 1054 1055 bool dispc_vp_go_busy(struct dispc_device *dispc, u32 hw_videoport) 1056 { 1057 return VP_REG_GET(dispc, hw_videoport, DISPC_VP_CONTROL, 5, 5); 1058 } 1059 1060 void dispc_vp_go(struct dispc_device *dispc, u32 hw_videoport) 1061 { 1062 WARN_ON(VP_REG_GET(dispc, hw_videoport, DISPC_VP_CONTROL, 5, 5)); 1063 VP_REG_FLD_MOD(dispc, hw_videoport, DISPC_VP_CONTROL, 1, 5, 5); 1064 } 1065 1066 enum c8_to_c12_mode { C8_TO_C12_REPLICATE, C8_TO_C12_MAX, C8_TO_C12_MIN }; 1067 1068 static u16 c8_to_c12(u8 c8, enum c8_to_c12_mode mode) 1069 { 1070 u16 c12; 1071 1072 c12 = c8 << 4; 1073 1074 switch (mode) { 1075 case C8_TO_C12_REPLICATE: 1076 /* Copy c8 4 MSB to 4 LSB for full scale c12 */ 1077 c12 |= c8 >> 4; 1078 break; 1079 case C8_TO_C12_MAX: 1080 c12 |= 0xF; 1081 break; 1082 default: 1083 case C8_TO_C12_MIN: 1084 break; 1085 } 1086 1087 return c12; 1088 } 1089 1090 static u64 argb8888_to_argb12121212(u32 argb8888, enum c8_to_c12_mode m) 1091 { 1092 u8 a, r, g, b; 1093 u64 v; 1094 1095 a = (argb8888 >> 24) & 0xff; 1096 r = (argb8888 >> 16) & 0xff; 1097 g = (argb8888 >> 8) & 0xff; 1098 b = (argb8888 >> 0) & 0xff; 1099 1100 v = ((u64)c8_to_c12(a, m) << 36) | ((u64)c8_to_c12(r, m) << 24) | 1101 ((u64)c8_to_c12(g, m) << 12) | (u64)c8_to_c12(b, m); 1102 1103 return v; 1104 } 1105 1106 static void dispc_vp_set_default_color(struct dispc_device *dispc, 1107 u32 hw_videoport, u32 default_color) 1108 { 1109 u64 v; 1110 1111 v = argb8888_to_argb12121212(default_color, C8_TO_C12_REPLICATE); 1112 1113 dispc_ovr_write(dispc, hw_videoport, 1114 DISPC_OVR_DEFAULT_COLOR, v & 0xffffffff); 1115 dispc_ovr_write(dispc, hw_videoport, 1116 DISPC_OVR_DEFAULT_COLOR2, (v >> 32) & 0xffff); 1117 } 1118 1119 enum drm_mode_status dispc_vp_mode_valid(struct dispc_device *dispc, 1120 u32 hw_videoport, 1121 const struct drm_display_mode *mode) 1122 { 1123 u32 hsw, hfp, hbp, vsw, vfp, vbp; 1124 enum dispc_vp_bus_type bus_type; 1125 int max_pclk; 1126 1127 bus_type = dispc->feat->vp_bus_type[hw_videoport]; 1128 1129 max_pclk = dispc->feat->max_pclk_khz[bus_type]; 1130 1131 if (WARN_ON(max_pclk == 0)) 1132 return MODE_BAD; 1133 1134 if (mode->clock < dispc->feat->min_pclk_khz) 1135 return MODE_CLOCK_LOW; 1136 1137 if (mode->clock > max_pclk) 1138 return MODE_CLOCK_HIGH; 1139 1140 if (mode->hdisplay > 4096) 1141 return MODE_BAD; 1142 1143 if (mode->vdisplay > 4096) 1144 return MODE_BAD; 1145 1146 /* TODO: add interlace support */ 1147 if (mode->flags & DRM_MODE_FLAG_INTERLACE) 1148 return MODE_NO_INTERLACE; 1149 1150 /* 1151 * Enforce the output width is divisible by 2. Actually this 1152 * is only needed in following cases: 1153 * - YUV output selected (BT656, BT1120) 1154 * - Dithering enabled 1155 * - TDM with TDMCycleFormat == 3 1156 * But for simplicity we enforce that always. 1157 */ 1158 if ((mode->hdisplay % 2) != 0) 1159 return MODE_BAD_HVALUE; 1160 1161 hfp = mode->hsync_start - mode->hdisplay; 1162 hsw = mode->hsync_end - mode->hsync_start; 1163 hbp = mode->htotal - mode->hsync_end; 1164 1165 vfp = mode->vsync_start - mode->vdisplay; 1166 vsw = mode->vsync_end - mode->vsync_start; 1167 vbp = mode->vtotal - mode->vsync_end; 1168 1169 if (hsw < 1 || hsw > 256 || 1170 hfp < 1 || hfp > 4096 || 1171 hbp < 1 || hbp > 4096) 1172 return MODE_BAD_HVALUE; 1173 1174 if (vsw < 1 || vsw > 256 || 1175 vfp > 4095 || vbp > 4095) 1176 return MODE_BAD_VVALUE; 1177 1178 if (dispc->memory_bandwidth_limit) { 1179 const unsigned int bpp = 4; 1180 u64 bandwidth; 1181 1182 bandwidth = 1000 * mode->clock; 1183 bandwidth = bandwidth * mode->hdisplay * mode->vdisplay * bpp; 1184 bandwidth = div_u64(bandwidth, mode->htotal * mode->vtotal); 1185 1186 if (dispc->memory_bandwidth_limit < bandwidth) 1187 return MODE_BAD; 1188 } 1189 1190 return MODE_OK; 1191 } 1192 1193 int dispc_vp_enable_clk(struct dispc_device *dispc, u32 hw_videoport) 1194 { 1195 int ret = clk_prepare_enable(dispc->vp_clk[hw_videoport]); 1196 1197 if (ret) 1198 dev_err(dispc->dev, "%s: enabling clk failed: %d\n", __func__, 1199 ret); 1200 1201 return ret; 1202 } 1203 1204 void dispc_vp_disable_clk(struct dispc_device *dispc, u32 hw_videoport) 1205 { 1206 clk_disable_unprepare(dispc->vp_clk[hw_videoport]); 1207 } 1208 1209 /* 1210 * Calculate the percentage difference between the requested pixel clock rate 1211 * and the effective rate resulting from calculating the clock divider value. 1212 */ 1213 static 1214 unsigned int dispc_pclk_diff(unsigned long rate, unsigned long real_rate) 1215 { 1216 int r = rate / 100, rr = real_rate / 100; 1217 1218 return (unsigned int)(abs(((rr - r) * 100) / r)); 1219 } 1220 1221 int dispc_vp_set_clk_rate(struct dispc_device *dispc, u32 hw_videoport, 1222 unsigned long rate) 1223 { 1224 int r; 1225 unsigned long new_rate; 1226 1227 r = clk_set_rate(dispc->vp_clk[hw_videoport], rate); 1228 if (r) { 1229 dev_err(dispc->dev, "vp%d: failed to set clk rate to %lu\n", 1230 hw_videoport, rate); 1231 return r; 1232 } 1233 1234 new_rate = clk_get_rate(dispc->vp_clk[hw_videoport]); 1235 1236 if (dispc_pclk_diff(rate, new_rate) > 5) 1237 dev_warn(dispc->dev, 1238 "vp%d: Clock rate %lu differs over 5%% from requsted %lu\n", 1239 hw_videoport, new_rate, rate); 1240 1241 dev_dbg(dispc->dev, "vp%d: new rate %lu Hz (requested %lu Hz)\n", 1242 hw_videoport, clk_get_rate(dispc->vp_clk[hw_videoport]), rate); 1243 1244 return 0; 1245 } 1246 1247 /* OVR */ 1248 static void dispc_k2g_ovr_set_plane(struct dispc_device *dispc, 1249 u32 hw_plane, u32 hw_videoport, 1250 u32 x, u32 y, u32 zpos) 1251 { 1252 /* On k2g there is only one plane and no need for ovr */ 1253 dispc_vid_write(dispc, hw_plane, DISPC_VID_K2G_POSITION, 1254 x | (y << 16)); 1255 } 1256 1257 static void dispc_am65x_ovr_set_plane(struct dispc_device *dispc, 1258 u32 hw_plane, u32 hw_videoport, 1259 u32 x, u32 y, u32 zpos) 1260 { 1261 OVR_REG_FLD_MOD(dispc, hw_videoport, DISPC_OVR_ATTRIBUTES(zpos), 1262 hw_plane, 4, 1); 1263 OVR_REG_FLD_MOD(dispc, hw_videoport, DISPC_OVR_ATTRIBUTES(zpos), 1264 x, 17, 6); 1265 OVR_REG_FLD_MOD(dispc, hw_videoport, DISPC_OVR_ATTRIBUTES(zpos), 1266 y, 30, 19); 1267 } 1268 1269 static void dispc_j721e_ovr_set_plane(struct dispc_device *dispc, 1270 u32 hw_plane, u32 hw_videoport, 1271 u32 x, u32 y, u32 zpos) 1272 { 1273 OVR_REG_FLD_MOD(dispc, hw_videoport, DISPC_OVR_ATTRIBUTES(zpos), 1274 hw_plane, 4, 1); 1275 OVR_REG_FLD_MOD(dispc, hw_videoport, DISPC_OVR_ATTRIBUTES2(zpos), 1276 x, 13, 0); 1277 OVR_REG_FLD_MOD(dispc, hw_videoport, DISPC_OVR_ATTRIBUTES2(zpos), 1278 y, 29, 16); 1279 } 1280 1281 static void dispc_ovr_set_plane(struct dispc_device *dispc, 1282 u32 hw_plane, u32 hw_videoport, 1283 u32 x, u32 y, u32 zpos) 1284 { 1285 switch (dispc->feat->subrev) { 1286 case DISPC_K2G: 1287 dispc_k2g_ovr_set_plane(dispc, hw_plane, hw_videoport, 1288 x, y, zpos); 1289 break; 1290 case DISPC_AM65X: 1291 dispc_am65x_ovr_set_plane(dispc, hw_plane, hw_videoport, 1292 x, y, zpos); 1293 break; 1294 case DISPC_J721E: 1295 dispc_j721e_ovr_set_plane(dispc, hw_plane, hw_videoport, 1296 x, y, zpos); 1297 break; 1298 default: 1299 WARN_ON(1); 1300 break; 1301 } 1302 } 1303 1304 static void dispc_ovr_enable_plane(struct dispc_device *dispc, 1305 u32 hw_videoport, u32 zpos, bool enable) 1306 { 1307 OVR_REG_FLD_MOD(dispc, hw_videoport, DISPC_OVR_ATTRIBUTES(zpos), 1308 !!enable, 0, 0); 1309 } 1310 1311 /* CSC */ 1312 enum csc_ctm { 1313 CSC_RR, CSC_RG, CSC_RB, 1314 CSC_GR, CSC_GG, CSC_GB, 1315 CSC_BR, CSC_BG, CSC_BB, 1316 }; 1317 1318 enum csc_yuv2rgb { 1319 CSC_RY, CSC_RCB, CSC_RCR, 1320 CSC_GY, CSC_GCB, CSC_GCR, 1321 CSC_BY, CSC_BCB, CSC_BCR, 1322 }; 1323 1324 enum csc_rgb2yuv { 1325 CSC_YR, CSC_YG, CSC_YB, 1326 CSC_CBR, CSC_CBG, CSC_CBB, 1327 CSC_CRR, CSC_CRG, CSC_CRB, 1328 }; 1329 1330 struct dispc_csc_coef { 1331 void (*to_regval)(const struct dispc_csc_coef *csc, u32 *regval); 1332 int m[9]; 1333 int preoffset[3]; 1334 int postoffset[3]; 1335 enum { CLIP_LIMITED_RANGE = 0, CLIP_FULL_RANGE = 1, } cliping; 1336 const char *name; 1337 }; 1338 1339 #define DISPC_CSC_REGVAL_LEN 8 1340 1341 static 1342 void dispc_csc_offset_regval(const struct dispc_csc_coef *csc, u32 *regval) 1343 { 1344 #define OVAL(x, y) (FLD_VAL(x, 15, 3) | FLD_VAL(y, 31, 19)) 1345 regval[5] = OVAL(csc->preoffset[0], csc->preoffset[1]); 1346 regval[6] = OVAL(csc->preoffset[2], csc->postoffset[0]); 1347 regval[7] = OVAL(csc->postoffset[1], csc->postoffset[2]); 1348 #undef OVAL 1349 } 1350 1351 #define CVAL(x, y) (FLD_VAL(x, 10, 0) | FLD_VAL(y, 26, 16)) 1352 static 1353 void dispc_csc_yuv2rgb_regval(const struct dispc_csc_coef *csc, u32 *regval) 1354 { 1355 regval[0] = CVAL(csc->m[CSC_RY], csc->m[CSC_RCR]); 1356 regval[1] = CVAL(csc->m[CSC_RCB], csc->m[CSC_GY]); 1357 regval[2] = CVAL(csc->m[CSC_GCR], csc->m[CSC_GCB]); 1358 regval[3] = CVAL(csc->m[CSC_BY], csc->m[CSC_BCR]); 1359 regval[4] = CVAL(csc->m[CSC_BCB], 0); 1360 1361 dispc_csc_offset_regval(csc, regval); 1362 } 1363 1364 __maybe_unused static 1365 void dispc_csc_rgb2yuv_regval(const struct dispc_csc_coef *csc, u32 *regval) 1366 { 1367 regval[0] = CVAL(csc->m[CSC_YR], csc->m[CSC_YG]); 1368 regval[1] = CVAL(csc->m[CSC_YB], csc->m[CSC_CRR]); 1369 regval[2] = CVAL(csc->m[CSC_CRG], csc->m[CSC_CRB]); 1370 regval[3] = CVAL(csc->m[CSC_CBR], csc->m[CSC_CBG]); 1371 regval[4] = CVAL(csc->m[CSC_CBB], 0); 1372 1373 dispc_csc_offset_regval(csc, regval); 1374 } 1375 1376 static void dispc_csc_cpr_regval(const struct dispc_csc_coef *csc, 1377 u32 *regval) 1378 { 1379 regval[0] = CVAL(csc->m[CSC_RR], csc->m[CSC_RG]); 1380 regval[1] = CVAL(csc->m[CSC_RB], csc->m[CSC_GR]); 1381 regval[2] = CVAL(csc->m[CSC_GG], csc->m[CSC_GB]); 1382 regval[3] = CVAL(csc->m[CSC_BR], csc->m[CSC_BG]); 1383 regval[4] = CVAL(csc->m[CSC_BB], 0); 1384 1385 dispc_csc_offset_regval(csc, regval); 1386 } 1387 1388 #undef CVAL 1389 1390 static void dispc_k2g_vid_write_csc(struct dispc_device *dispc, u32 hw_plane, 1391 const struct dispc_csc_coef *csc) 1392 { 1393 static const u16 dispc_vid_csc_coef_reg[] = { 1394 DISPC_VID_CSC_COEF(0), DISPC_VID_CSC_COEF(1), 1395 DISPC_VID_CSC_COEF(2), DISPC_VID_CSC_COEF(3), 1396 DISPC_VID_CSC_COEF(4), DISPC_VID_CSC_COEF(5), 1397 DISPC_VID_CSC_COEF(6), /* K2G has no post offset support */ 1398 }; 1399 u32 regval[DISPC_CSC_REGVAL_LEN]; 1400 unsigned int i; 1401 1402 csc->to_regval(csc, regval); 1403 1404 if (regval[7] != 0) 1405 dev_warn(dispc->dev, "%s: No post offset support for %s\n", 1406 __func__, csc->name); 1407 1408 for (i = 0; i < ARRAY_SIZE(dispc_vid_csc_coef_reg); i++) 1409 dispc_vid_write(dispc, hw_plane, dispc_vid_csc_coef_reg[i], 1410 regval[i]); 1411 } 1412 1413 static void dispc_k3_vid_write_csc(struct dispc_device *dispc, u32 hw_plane, 1414 const struct dispc_csc_coef *csc) 1415 { 1416 static const u16 dispc_vid_csc_coef_reg[DISPC_CSC_REGVAL_LEN] = { 1417 DISPC_VID_CSC_COEF(0), DISPC_VID_CSC_COEF(1), 1418 DISPC_VID_CSC_COEF(2), DISPC_VID_CSC_COEF(3), 1419 DISPC_VID_CSC_COEF(4), DISPC_VID_CSC_COEF(5), 1420 DISPC_VID_CSC_COEF(6), DISPC_VID_CSC_COEF7, 1421 }; 1422 u32 regval[DISPC_CSC_REGVAL_LEN]; 1423 unsigned int i; 1424 1425 csc->to_regval(csc, regval); 1426 1427 for (i = 0; i < ARRAY_SIZE(dispc_vid_csc_coef_reg); i++) 1428 dispc_vid_write(dispc, hw_plane, dispc_vid_csc_coef_reg[i], 1429 regval[i]); 1430 } 1431 1432 /* YUV -> RGB, ITU-R BT.601, full range */ 1433 static const struct dispc_csc_coef csc_yuv2rgb_bt601_full = { 1434 dispc_csc_yuv2rgb_regval, 1435 { 256, 0, 358, /* ry, rcb, rcr |1.000 0.000 1.402|*/ 1436 256, -88, -182, /* gy, gcb, gcr |1.000 -0.344 -0.714|*/ 1437 256, 452, 0, }, /* by, bcb, bcr |1.000 1.772 0.000|*/ 1438 { 0, -2048, -2048, }, /* full range */ 1439 { 0, 0, 0, }, 1440 CLIP_FULL_RANGE, 1441 "BT.601 Full", 1442 }; 1443 1444 /* YUV -> RGB, ITU-R BT.601, limited range */ 1445 static const struct dispc_csc_coef csc_yuv2rgb_bt601_lim = { 1446 dispc_csc_yuv2rgb_regval, 1447 { 298, 0, 409, /* ry, rcb, rcr |1.164 0.000 1.596|*/ 1448 298, -100, -208, /* gy, gcb, gcr |1.164 -0.392 -0.813|*/ 1449 298, 516, 0, }, /* by, bcb, bcr |1.164 2.017 0.000|*/ 1450 { -256, -2048, -2048, }, /* limited range */ 1451 { 0, 0, 0, }, 1452 CLIP_FULL_RANGE, 1453 "BT.601 Limited", 1454 }; 1455 1456 /* YUV -> RGB, ITU-R BT.709, full range */ 1457 static const struct dispc_csc_coef csc_yuv2rgb_bt709_full = { 1458 dispc_csc_yuv2rgb_regval, 1459 { 256, 0, 402, /* ry, rcb, rcr |1.000 0.000 1.570|*/ 1460 256, -48, -120, /* gy, gcb, gcr |1.000 -0.187 -0.467|*/ 1461 256, 475, 0, }, /* by, bcb, bcr |1.000 1.856 0.000|*/ 1462 { 0, -2048, -2048, }, /* full range */ 1463 { 0, 0, 0, }, 1464 CLIP_FULL_RANGE, 1465 "BT.709 Full", 1466 }; 1467 1468 /* YUV -> RGB, ITU-R BT.709, limited range */ 1469 static const struct dispc_csc_coef csc_yuv2rgb_bt709_lim = { 1470 dispc_csc_yuv2rgb_regval, 1471 { 298, 0, 459, /* ry, rcb, rcr |1.164 0.000 1.793|*/ 1472 298, -55, -136, /* gy, gcb, gcr |1.164 -0.213 -0.533|*/ 1473 298, 541, 0, }, /* by, bcb, bcr |1.164 2.112 0.000|*/ 1474 { -256, -2048, -2048, }, /* limited range */ 1475 { 0, 0, 0, }, 1476 CLIP_FULL_RANGE, 1477 "BT.709 Limited", 1478 }; 1479 1480 static const struct { 1481 enum drm_color_encoding encoding; 1482 enum drm_color_range range; 1483 const struct dispc_csc_coef *csc; 1484 } dispc_csc_table[] = { 1485 { DRM_COLOR_YCBCR_BT601, DRM_COLOR_YCBCR_FULL_RANGE, 1486 &csc_yuv2rgb_bt601_full, }, 1487 { DRM_COLOR_YCBCR_BT601, DRM_COLOR_YCBCR_LIMITED_RANGE, 1488 &csc_yuv2rgb_bt601_lim, }, 1489 { DRM_COLOR_YCBCR_BT709, DRM_COLOR_YCBCR_FULL_RANGE, 1490 &csc_yuv2rgb_bt709_full, }, 1491 { DRM_COLOR_YCBCR_BT709, DRM_COLOR_YCBCR_LIMITED_RANGE, 1492 &csc_yuv2rgb_bt709_lim, }, 1493 }; 1494 1495 static const 1496 struct dispc_csc_coef *dispc_find_csc(enum drm_color_encoding encoding, 1497 enum drm_color_range range) 1498 { 1499 unsigned int i; 1500 1501 for (i = 0; i < ARRAY_SIZE(dispc_csc_table); i++) { 1502 if (dispc_csc_table[i].encoding == encoding && 1503 dispc_csc_table[i].range == range) { 1504 return dispc_csc_table[i].csc; 1505 } 1506 } 1507 return NULL; 1508 } 1509 1510 static void dispc_vid_csc_setup(struct dispc_device *dispc, u32 hw_plane, 1511 const struct drm_plane_state *state) 1512 { 1513 static const struct dispc_csc_coef *coef; 1514 1515 coef = dispc_find_csc(state->color_encoding, state->color_range); 1516 if (!coef) { 1517 dev_err(dispc->dev, "%s: CSC (%u,%u) not found\n", 1518 __func__, state->color_encoding, state->color_range); 1519 return; 1520 } 1521 1522 if (dispc->feat->subrev == DISPC_K2G) 1523 dispc_k2g_vid_write_csc(dispc, hw_plane, coef); 1524 else 1525 dispc_k3_vid_write_csc(dispc, hw_plane, coef); 1526 } 1527 1528 static void dispc_vid_csc_enable(struct dispc_device *dispc, u32 hw_plane, 1529 bool enable) 1530 { 1531 VID_REG_FLD_MOD(dispc, hw_plane, DISPC_VID_ATTRIBUTES, !!enable, 9, 9); 1532 } 1533 1534 /* SCALER */ 1535 1536 static u32 dispc_calc_fir_inc(u32 in, u32 out) 1537 { 1538 return (u32)div_u64(0x200000ull * in, out); 1539 } 1540 1541 enum dispc_vid_fir_coef_set { 1542 DISPC_VID_FIR_COEF_HORIZ, 1543 DISPC_VID_FIR_COEF_HORIZ_UV, 1544 DISPC_VID_FIR_COEF_VERT, 1545 DISPC_VID_FIR_COEF_VERT_UV, 1546 }; 1547 1548 static void dispc_vid_write_fir_coefs(struct dispc_device *dispc, 1549 u32 hw_plane, 1550 enum dispc_vid_fir_coef_set coef_set, 1551 const struct tidss_scale_coefs *coefs) 1552 { 1553 static const u16 c0_regs[] = { 1554 [DISPC_VID_FIR_COEF_HORIZ] = DISPC_VID_FIR_COEFS_H0, 1555 [DISPC_VID_FIR_COEF_HORIZ_UV] = DISPC_VID_FIR_COEFS_H0_C, 1556 [DISPC_VID_FIR_COEF_VERT] = DISPC_VID_FIR_COEFS_V0, 1557 [DISPC_VID_FIR_COEF_VERT_UV] = DISPC_VID_FIR_COEFS_V0_C, 1558 }; 1559 1560 static const u16 c12_regs[] = { 1561 [DISPC_VID_FIR_COEF_HORIZ] = DISPC_VID_FIR_COEFS_H12, 1562 [DISPC_VID_FIR_COEF_HORIZ_UV] = DISPC_VID_FIR_COEFS_H12_C, 1563 [DISPC_VID_FIR_COEF_VERT] = DISPC_VID_FIR_COEFS_V12, 1564 [DISPC_VID_FIR_COEF_VERT_UV] = DISPC_VID_FIR_COEFS_V12_C, 1565 }; 1566 1567 const u16 c0_base = c0_regs[coef_set]; 1568 const u16 c12_base = c12_regs[coef_set]; 1569 int phase; 1570 1571 if (!coefs) { 1572 dev_err(dispc->dev, "%s: No coefficients given.\n", __func__); 1573 return; 1574 } 1575 1576 for (phase = 0; phase <= 8; ++phase) { 1577 u16 reg = c0_base + phase * 4; 1578 u16 c0 = coefs->c0[phase]; 1579 1580 dispc_vid_write(dispc, hw_plane, reg, c0); 1581 } 1582 1583 for (phase = 0; phase <= 15; ++phase) { 1584 u16 reg = c12_base + phase * 4; 1585 s16 c1, c2; 1586 u32 c12; 1587 1588 c1 = coefs->c1[phase]; 1589 c2 = coefs->c2[phase]; 1590 c12 = FLD_VAL(c1, 19, 10) | FLD_VAL(c2, 29, 20); 1591 1592 dispc_vid_write(dispc, hw_plane, reg, c12); 1593 } 1594 } 1595 1596 static bool dispc_fourcc_is_yuv(u32 fourcc) 1597 { 1598 switch (fourcc) { 1599 case DRM_FORMAT_YUYV: 1600 case DRM_FORMAT_UYVY: 1601 case DRM_FORMAT_NV12: 1602 return true; 1603 default: 1604 return false; 1605 } 1606 } 1607 1608 struct dispc_scaling_params { 1609 int xinc, yinc; 1610 u32 in_w, in_h, in_w_uv, in_h_uv; 1611 u32 fir_xinc, fir_yinc, fir_xinc_uv, fir_yinc_uv; 1612 bool scale_x, scale_y; 1613 const struct tidss_scale_coefs *xcoef, *ycoef, *xcoef_uv, *ycoef_uv; 1614 bool five_taps; 1615 }; 1616 1617 static int dispc_vid_calc_scaling(struct dispc_device *dispc, 1618 const struct drm_plane_state *state, 1619 struct dispc_scaling_params *sp, 1620 bool lite_plane) 1621 { 1622 const struct dispc_features_scaling *f = &dispc->feat->scaling; 1623 u32 fourcc = state->fb->format->format; 1624 u32 in_width_max_5tap = f->in_width_max_5tap_rgb; 1625 u32 in_width_max_3tap = f->in_width_max_3tap_rgb; 1626 u32 downscale_limit; 1627 u32 in_width_max; 1628 1629 memset(sp, 0, sizeof(*sp)); 1630 sp->xinc = 1; 1631 sp->yinc = 1; 1632 sp->in_w = state->src_w >> 16; 1633 sp->in_w_uv = sp->in_w; 1634 sp->in_h = state->src_h >> 16; 1635 sp->in_h_uv = sp->in_h; 1636 1637 sp->scale_x = sp->in_w != state->crtc_w; 1638 sp->scale_y = sp->in_h != state->crtc_h; 1639 1640 if (dispc_fourcc_is_yuv(fourcc)) { 1641 in_width_max_5tap = f->in_width_max_5tap_yuv; 1642 in_width_max_3tap = f->in_width_max_3tap_yuv; 1643 1644 sp->in_w_uv >>= 1; 1645 sp->scale_x = true; 1646 1647 if (fourcc == DRM_FORMAT_NV12) { 1648 sp->in_h_uv >>= 1; 1649 sp->scale_y = true; 1650 } 1651 } 1652 1653 /* Skip the rest if no scaling is used */ 1654 if ((!sp->scale_x && !sp->scale_y) || lite_plane) 1655 return 0; 1656 1657 if (sp->in_w > in_width_max_5tap) { 1658 sp->five_taps = false; 1659 in_width_max = in_width_max_3tap; 1660 downscale_limit = f->downscale_limit_3tap; 1661 } else { 1662 sp->five_taps = true; 1663 in_width_max = in_width_max_5tap; 1664 downscale_limit = f->downscale_limit_5tap; 1665 } 1666 1667 if (sp->scale_x) { 1668 sp->fir_xinc = dispc_calc_fir_inc(sp->in_w, state->crtc_w); 1669 1670 if (sp->fir_xinc < dispc_calc_fir_inc(1, f->upscale_limit)) { 1671 dev_dbg(dispc->dev, 1672 "%s: X-scaling factor %u/%u > %u\n", 1673 __func__, state->crtc_w, state->src_w >> 16, 1674 f->upscale_limit); 1675 return -EINVAL; 1676 } 1677 1678 if (sp->fir_xinc >= dispc_calc_fir_inc(downscale_limit, 1)) { 1679 sp->xinc = DIV_ROUND_UP(DIV_ROUND_UP(sp->in_w, 1680 state->crtc_w), 1681 downscale_limit); 1682 1683 if (sp->xinc > f->xinc_max) { 1684 dev_dbg(dispc->dev, 1685 "%s: X-scaling factor %u/%u < 1/%u\n", 1686 __func__, state->crtc_w, 1687 state->src_w >> 16, 1688 downscale_limit * f->xinc_max); 1689 return -EINVAL; 1690 } 1691 1692 sp->in_w = (state->src_w >> 16) / sp->xinc; 1693 } 1694 1695 while (sp->in_w > in_width_max) { 1696 sp->xinc++; 1697 sp->in_w = (state->src_w >> 16) / sp->xinc; 1698 } 1699 1700 if (sp->xinc > f->xinc_max) { 1701 dev_dbg(dispc->dev, 1702 "%s: Too wide input bufer %u > %u\n", __func__, 1703 state->src_w >> 16, in_width_max * f->xinc_max); 1704 return -EINVAL; 1705 } 1706 1707 /* 1708 * We need even line length for YUV formats. Decimation 1709 * can lead to odd length, so we need to make it even 1710 * again. 1711 */ 1712 if (dispc_fourcc_is_yuv(fourcc)) 1713 sp->in_w &= ~1; 1714 1715 sp->fir_xinc = dispc_calc_fir_inc(sp->in_w, state->crtc_w); 1716 } 1717 1718 if (sp->scale_y) { 1719 sp->fir_yinc = dispc_calc_fir_inc(sp->in_h, state->crtc_h); 1720 1721 if (sp->fir_yinc < dispc_calc_fir_inc(1, f->upscale_limit)) { 1722 dev_dbg(dispc->dev, 1723 "%s: Y-scaling factor %u/%u > %u\n", 1724 __func__, state->crtc_h, state->src_h >> 16, 1725 f->upscale_limit); 1726 return -EINVAL; 1727 } 1728 1729 if (sp->fir_yinc >= dispc_calc_fir_inc(downscale_limit, 1)) { 1730 sp->yinc = DIV_ROUND_UP(DIV_ROUND_UP(sp->in_h, 1731 state->crtc_h), 1732 downscale_limit); 1733 1734 sp->in_h /= sp->yinc; 1735 sp->fir_yinc = dispc_calc_fir_inc(sp->in_h, 1736 state->crtc_h); 1737 } 1738 } 1739 1740 dev_dbg(dispc->dev, 1741 "%s: %ux%u decim %ux%u -> %ux%u firinc %u.%03ux%u.%03u taps %u -> %ux%u\n", 1742 __func__, state->src_w >> 16, state->src_h >> 16, 1743 sp->xinc, sp->yinc, sp->in_w, sp->in_h, 1744 sp->fir_xinc / 0x200000u, 1745 ((sp->fir_xinc & 0x1FFFFFu) * 999u) / 0x1FFFFFu, 1746 sp->fir_yinc / 0x200000u, 1747 ((sp->fir_yinc & 0x1FFFFFu) * 999u) / 0x1FFFFFu, 1748 sp->five_taps ? 5 : 3, 1749 state->crtc_w, state->crtc_h); 1750 1751 if (dispc_fourcc_is_yuv(fourcc)) { 1752 if (sp->scale_x) { 1753 sp->in_w_uv /= sp->xinc; 1754 sp->fir_xinc_uv = dispc_calc_fir_inc(sp->in_w_uv, 1755 state->crtc_w); 1756 sp->xcoef_uv = tidss_get_scale_coefs(dispc->dev, 1757 sp->fir_xinc_uv, 1758 true); 1759 } 1760 if (sp->scale_y) { 1761 sp->in_h_uv /= sp->yinc; 1762 sp->fir_yinc_uv = dispc_calc_fir_inc(sp->in_h_uv, 1763 state->crtc_h); 1764 sp->ycoef_uv = tidss_get_scale_coefs(dispc->dev, 1765 sp->fir_yinc_uv, 1766 sp->five_taps); 1767 } 1768 } 1769 1770 if (sp->scale_x) 1771 sp->xcoef = tidss_get_scale_coefs(dispc->dev, sp->fir_xinc, 1772 true); 1773 1774 if (sp->scale_y) 1775 sp->ycoef = tidss_get_scale_coefs(dispc->dev, sp->fir_yinc, 1776 sp->five_taps); 1777 1778 return 0; 1779 } 1780 1781 static void dispc_vid_set_scaling(struct dispc_device *dispc, 1782 u32 hw_plane, 1783 struct dispc_scaling_params *sp, 1784 u32 fourcc) 1785 { 1786 /* HORIZONTAL RESIZE ENABLE */ 1787 VID_REG_FLD_MOD(dispc, hw_plane, DISPC_VID_ATTRIBUTES, 1788 sp->scale_x, 7, 7); 1789 1790 /* VERTICAL RESIZE ENABLE */ 1791 VID_REG_FLD_MOD(dispc, hw_plane, DISPC_VID_ATTRIBUTES, 1792 sp->scale_y, 8, 8); 1793 1794 /* Skip the rest if no scaling is used */ 1795 if (!sp->scale_x && !sp->scale_y) 1796 return; 1797 1798 /* VERTICAL 5-TAPS */ 1799 VID_REG_FLD_MOD(dispc, hw_plane, DISPC_VID_ATTRIBUTES, 1800 sp->five_taps, 21, 21); 1801 1802 if (dispc_fourcc_is_yuv(fourcc)) { 1803 if (sp->scale_x) { 1804 dispc_vid_write(dispc, hw_plane, DISPC_VID_FIRH2, 1805 sp->fir_xinc_uv); 1806 dispc_vid_write_fir_coefs(dispc, hw_plane, 1807 DISPC_VID_FIR_COEF_HORIZ_UV, 1808 sp->xcoef_uv); 1809 } 1810 if (sp->scale_y) { 1811 dispc_vid_write(dispc, hw_plane, DISPC_VID_FIRV2, 1812 sp->fir_yinc_uv); 1813 dispc_vid_write_fir_coefs(dispc, hw_plane, 1814 DISPC_VID_FIR_COEF_VERT_UV, 1815 sp->ycoef_uv); 1816 } 1817 } 1818 1819 if (sp->scale_x) { 1820 dispc_vid_write(dispc, hw_plane, DISPC_VID_FIRH, sp->fir_xinc); 1821 dispc_vid_write_fir_coefs(dispc, hw_plane, 1822 DISPC_VID_FIR_COEF_HORIZ, 1823 sp->xcoef); 1824 } 1825 1826 if (sp->scale_y) { 1827 dispc_vid_write(dispc, hw_plane, DISPC_VID_FIRV, sp->fir_yinc); 1828 dispc_vid_write_fir_coefs(dispc, hw_plane, 1829 DISPC_VID_FIR_COEF_VERT, sp->ycoef); 1830 } 1831 } 1832 1833 /* OTHER */ 1834 1835 static const struct { 1836 u32 fourcc; 1837 u8 dss_code; 1838 } dispc_color_formats[] = { 1839 { DRM_FORMAT_ARGB4444, 0x0, }, 1840 { DRM_FORMAT_ABGR4444, 0x1, }, 1841 { DRM_FORMAT_RGBA4444, 0x2, }, 1842 1843 { DRM_FORMAT_RGB565, 0x3, }, 1844 { DRM_FORMAT_BGR565, 0x4, }, 1845 1846 { DRM_FORMAT_ARGB1555, 0x5, }, 1847 { DRM_FORMAT_ABGR1555, 0x6, }, 1848 1849 { DRM_FORMAT_ARGB8888, 0x7, }, 1850 { DRM_FORMAT_ABGR8888, 0x8, }, 1851 { DRM_FORMAT_RGBA8888, 0x9, }, 1852 { DRM_FORMAT_BGRA8888, 0xa, }, 1853 1854 { DRM_FORMAT_RGB888, 0xb, }, 1855 { DRM_FORMAT_BGR888, 0xc, }, 1856 1857 { DRM_FORMAT_ARGB2101010, 0xe, }, 1858 { DRM_FORMAT_ABGR2101010, 0xf, }, 1859 1860 { DRM_FORMAT_XRGB4444, 0x20, }, 1861 { DRM_FORMAT_XBGR4444, 0x21, }, 1862 { DRM_FORMAT_RGBX4444, 0x22, }, 1863 1864 { DRM_FORMAT_ARGB1555, 0x25, }, 1865 { DRM_FORMAT_ABGR1555, 0x26, }, 1866 1867 { DRM_FORMAT_XRGB8888, 0x27, }, 1868 { DRM_FORMAT_XBGR8888, 0x28, }, 1869 { DRM_FORMAT_RGBX8888, 0x29, }, 1870 { DRM_FORMAT_BGRX8888, 0x2a, }, 1871 1872 { DRM_FORMAT_XRGB2101010, 0x2e, }, 1873 { DRM_FORMAT_XBGR2101010, 0x2f, }, 1874 1875 { DRM_FORMAT_YUYV, 0x3e, }, 1876 { DRM_FORMAT_UYVY, 0x3f, }, 1877 1878 { DRM_FORMAT_NV12, 0x3d, }, 1879 }; 1880 1881 static void dispc_plane_set_pixel_format(struct dispc_device *dispc, 1882 u32 hw_plane, u32 fourcc) 1883 { 1884 unsigned int i; 1885 1886 for (i = 0; i < ARRAY_SIZE(dispc_color_formats); ++i) { 1887 if (dispc_color_formats[i].fourcc == fourcc) { 1888 VID_REG_FLD_MOD(dispc, hw_plane, DISPC_VID_ATTRIBUTES, 1889 dispc_color_formats[i].dss_code, 1890 6, 1); 1891 return; 1892 } 1893 } 1894 1895 WARN_ON(1); 1896 } 1897 1898 const u32 *dispc_plane_formats(struct dispc_device *dispc, unsigned int *len) 1899 { 1900 WARN_ON(!dispc->fourccs); 1901 1902 *len = dispc->num_fourccs; 1903 1904 return dispc->fourccs; 1905 } 1906 1907 static s32 pixinc(int pixels, u8 ps) 1908 { 1909 if (pixels == 1) 1910 return 1; 1911 else if (pixels > 1) 1912 return 1 + (pixels - 1) * ps; 1913 else if (pixels < 0) 1914 return 1 - (-pixels + 1) * ps; 1915 1916 WARN_ON(1); 1917 return 0; 1918 } 1919 1920 int dispc_plane_check(struct dispc_device *dispc, u32 hw_plane, 1921 const struct drm_plane_state *state, 1922 u32 hw_videoport) 1923 { 1924 bool lite = dispc->feat->vid_lite[hw_plane]; 1925 u32 fourcc = state->fb->format->format; 1926 bool need_scaling = state->src_w >> 16 != state->crtc_w || 1927 state->src_h >> 16 != state->crtc_h; 1928 struct dispc_scaling_params scaling; 1929 int ret; 1930 1931 if (dispc_fourcc_is_yuv(fourcc)) { 1932 if (!dispc_find_csc(state->color_encoding, 1933 state->color_range)) { 1934 dev_dbg(dispc->dev, 1935 "%s: Unsupported CSC (%u,%u) for HW plane %u\n", 1936 __func__, state->color_encoding, 1937 state->color_range, hw_plane); 1938 return -EINVAL; 1939 } 1940 } 1941 1942 if (need_scaling) { 1943 if (lite) { 1944 dev_dbg(dispc->dev, 1945 "%s: Lite plane %u can't scale %ux%u!=%ux%u\n", 1946 __func__, hw_plane, 1947 state->src_w >> 16, state->src_h >> 16, 1948 state->crtc_w, state->crtc_h); 1949 return -EINVAL; 1950 } 1951 ret = dispc_vid_calc_scaling(dispc, state, &scaling, false); 1952 if (ret) 1953 return ret; 1954 } 1955 1956 return 0; 1957 } 1958 1959 static 1960 dma_addr_t dispc_plane_state_paddr(const struct drm_plane_state *state) 1961 { 1962 struct drm_framebuffer *fb = state->fb; 1963 struct drm_gem_cma_object *gem; 1964 u32 x = state->src_x >> 16; 1965 u32 y = state->src_y >> 16; 1966 1967 gem = drm_fb_cma_get_gem_obj(state->fb, 0); 1968 1969 return gem->paddr + fb->offsets[0] + x * fb->format->cpp[0] + 1970 y * fb->pitches[0]; 1971 } 1972 1973 static 1974 dma_addr_t dispc_plane_state_p_uv_addr(const struct drm_plane_state *state) 1975 { 1976 struct drm_framebuffer *fb = state->fb; 1977 struct drm_gem_cma_object *gem; 1978 u32 x = state->src_x >> 16; 1979 u32 y = state->src_y >> 16; 1980 1981 if (WARN_ON(state->fb->format->num_planes != 2)) 1982 return 0; 1983 1984 gem = drm_fb_cma_get_gem_obj(fb, 1); 1985 1986 return gem->paddr + fb->offsets[1] + 1987 (x * fb->format->cpp[1] / fb->format->hsub) + 1988 (y * fb->pitches[1] / fb->format->vsub); 1989 } 1990 1991 int dispc_plane_setup(struct dispc_device *dispc, u32 hw_plane, 1992 const struct drm_plane_state *state, 1993 u32 hw_videoport) 1994 { 1995 bool lite = dispc->feat->vid_lite[hw_plane]; 1996 u32 fourcc = state->fb->format->format; 1997 u16 cpp = state->fb->format->cpp[0]; 1998 u32 fb_width = state->fb->pitches[0] / cpp; 1999 dma_addr_t paddr = dispc_plane_state_paddr(state); 2000 struct dispc_scaling_params scale; 2001 2002 dispc_vid_calc_scaling(dispc, state, &scale, lite); 2003 2004 dispc_plane_set_pixel_format(dispc, hw_plane, fourcc); 2005 2006 dispc_vid_write(dispc, hw_plane, DISPC_VID_BA_0, paddr & 0xffffffff); 2007 dispc_vid_write(dispc, hw_plane, DISPC_VID_BA_EXT_0, (u64)paddr >> 32); 2008 dispc_vid_write(dispc, hw_plane, DISPC_VID_BA_1, paddr & 0xffffffff); 2009 dispc_vid_write(dispc, hw_plane, DISPC_VID_BA_EXT_1, (u64)paddr >> 32); 2010 2011 dispc_vid_write(dispc, hw_plane, DISPC_VID_PICTURE_SIZE, 2012 (scale.in_w - 1) | ((scale.in_h - 1) << 16)); 2013 2014 /* For YUV422 format we use the macropixel size for pixel inc */ 2015 if (fourcc == DRM_FORMAT_YUYV || fourcc == DRM_FORMAT_UYVY) 2016 dispc_vid_write(dispc, hw_plane, DISPC_VID_PIXEL_INC, 2017 pixinc(scale.xinc, cpp * 2)); 2018 else 2019 dispc_vid_write(dispc, hw_plane, DISPC_VID_PIXEL_INC, 2020 pixinc(scale.xinc, cpp)); 2021 2022 dispc_vid_write(dispc, hw_plane, DISPC_VID_ROW_INC, 2023 pixinc(1 + (scale.yinc * fb_width - 2024 scale.xinc * scale.in_w), 2025 cpp)); 2026 2027 if (state->fb->format->num_planes == 2) { 2028 u16 cpp_uv = state->fb->format->cpp[1]; 2029 u32 fb_width_uv = state->fb->pitches[1] / cpp_uv; 2030 dma_addr_t p_uv_addr = dispc_plane_state_p_uv_addr(state); 2031 2032 dispc_vid_write(dispc, hw_plane, 2033 DISPC_VID_BA_UV_0, p_uv_addr & 0xffffffff); 2034 dispc_vid_write(dispc, hw_plane, 2035 DISPC_VID_BA_UV_EXT_0, (u64)p_uv_addr >> 32); 2036 dispc_vid_write(dispc, hw_plane, 2037 DISPC_VID_BA_UV_1, p_uv_addr & 0xffffffff); 2038 dispc_vid_write(dispc, hw_plane, 2039 DISPC_VID_BA_UV_EXT_1, (u64)p_uv_addr >> 32); 2040 2041 dispc_vid_write(dispc, hw_plane, DISPC_VID_ROW_INC_UV, 2042 pixinc(1 + (scale.yinc * fb_width_uv - 2043 scale.xinc * scale.in_w_uv), 2044 cpp_uv)); 2045 } 2046 2047 if (!lite) { 2048 dispc_vid_write(dispc, hw_plane, DISPC_VID_SIZE, 2049 (state->crtc_w - 1) | 2050 ((state->crtc_h - 1) << 16)); 2051 2052 dispc_vid_set_scaling(dispc, hw_plane, &scale, fourcc); 2053 } 2054 2055 /* enable YUV->RGB color conversion */ 2056 if (dispc_fourcc_is_yuv(fourcc)) { 2057 dispc_vid_csc_setup(dispc, hw_plane, state); 2058 dispc_vid_csc_enable(dispc, hw_plane, true); 2059 } else { 2060 dispc_vid_csc_enable(dispc, hw_plane, false); 2061 } 2062 2063 dispc_vid_write(dispc, hw_plane, DISPC_VID_GLOBAL_ALPHA, 2064 0xFF & (state->alpha >> 8)); 2065 2066 if (state->pixel_blend_mode == DRM_MODE_BLEND_PREMULTI) 2067 VID_REG_FLD_MOD(dispc, hw_plane, DISPC_VID_ATTRIBUTES, 1, 2068 28, 28); 2069 else 2070 VID_REG_FLD_MOD(dispc, hw_plane, DISPC_VID_ATTRIBUTES, 0, 2071 28, 28); 2072 2073 dispc_ovr_set_plane(dispc, hw_plane, hw_videoport, 2074 state->crtc_x, state->crtc_y, 2075 state->normalized_zpos); 2076 2077 dispc->plane_data[hw_plane].zorder = state->normalized_zpos; 2078 dispc->plane_data[hw_plane].hw_videoport = hw_videoport; 2079 2080 return 0; 2081 } 2082 2083 int dispc_plane_enable(struct dispc_device *dispc, u32 hw_plane, bool enable) 2084 { 2085 dispc_ovr_enable_plane(dispc, dispc->plane_data[hw_plane].hw_videoport, 2086 dispc->plane_data[hw_plane].zorder, enable); 2087 2088 VID_REG_FLD_MOD(dispc, hw_plane, DISPC_VID_ATTRIBUTES, !!enable, 0, 0); 2089 2090 return 0; 2091 } 2092 2093 static u32 dispc_vid_get_fifo_size(struct dispc_device *dispc, u32 hw_plane) 2094 { 2095 return VID_REG_GET(dispc, hw_plane, DISPC_VID_BUF_SIZE_STATUS, 15, 0); 2096 } 2097 2098 static void dispc_vid_set_mflag_threshold(struct dispc_device *dispc, 2099 u32 hw_plane, u32 low, u32 high) 2100 { 2101 dispc_vid_write(dispc, hw_plane, DISPC_VID_MFLAG_THRESHOLD, 2102 FLD_VAL(high, 31, 16) | FLD_VAL(low, 15, 0)); 2103 } 2104 2105 static void dispc_vid_set_buf_threshold(struct dispc_device *dispc, 2106 u32 hw_plane, u32 low, u32 high) 2107 { 2108 dispc_vid_write(dispc, hw_plane, DISPC_VID_BUF_THRESHOLD, 2109 FLD_VAL(high, 31, 16) | FLD_VAL(low, 15, 0)); 2110 } 2111 2112 static void dispc_k2g_plane_init(struct dispc_device *dispc) 2113 { 2114 unsigned int hw_plane; 2115 2116 dev_dbg(dispc->dev, "%s()\n", __func__); 2117 2118 /* MFLAG_CTRL = ENABLED */ 2119 REG_FLD_MOD(dispc, DISPC_GLOBAL_MFLAG_ATTRIBUTE, 2, 1, 0); 2120 /* MFLAG_START = MFLAGNORMALSTARTMODE */ 2121 REG_FLD_MOD(dispc, DISPC_GLOBAL_MFLAG_ATTRIBUTE, 0, 6, 6); 2122 2123 for (hw_plane = 0; hw_plane < dispc->feat->num_planes; hw_plane++) { 2124 u32 size = dispc_vid_get_fifo_size(dispc, hw_plane); 2125 u32 thr_low, thr_high; 2126 u32 mflag_low, mflag_high; 2127 u32 preload; 2128 2129 thr_high = size - 1; 2130 thr_low = size / 2; 2131 2132 mflag_high = size * 2 / 3; 2133 mflag_low = size / 3; 2134 2135 preload = thr_low; 2136 2137 dev_dbg(dispc->dev, 2138 "%s: bufsize %u, buf_threshold %u/%u, mflag threshold %u/%u preload %u\n", 2139 dispc->feat->vid_name[hw_plane], 2140 size, 2141 thr_high, thr_low, 2142 mflag_high, mflag_low, 2143 preload); 2144 2145 dispc_vid_set_buf_threshold(dispc, hw_plane, 2146 thr_low, thr_high); 2147 dispc_vid_set_mflag_threshold(dispc, hw_plane, 2148 mflag_low, mflag_high); 2149 2150 dispc_vid_write(dispc, hw_plane, DISPC_VID_PRELOAD, preload); 2151 2152 /* 2153 * Prefetch up to fifo high-threshold value to minimize the 2154 * possibility of underflows. Note that this means the PRELOAD 2155 * register is ignored. 2156 */ 2157 VID_REG_FLD_MOD(dispc, hw_plane, DISPC_VID_ATTRIBUTES, 1, 2158 19, 19); 2159 } 2160 } 2161 2162 static void dispc_k3_plane_init(struct dispc_device *dispc) 2163 { 2164 unsigned int hw_plane; 2165 u32 cba_lo_pri = 1; 2166 u32 cba_hi_pri = 0; 2167 2168 dev_dbg(dispc->dev, "%s()\n", __func__); 2169 2170 REG_FLD_MOD(dispc, DSS_CBA_CFG, cba_lo_pri, 2, 0); 2171 REG_FLD_MOD(dispc, DSS_CBA_CFG, cba_hi_pri, 5, 3); 2172 2173 /* MFLAG_CTRL = ENABLED */ 2174 REG_FLD_MOD(dispc, DISPC_GLOBAL_MFLAG_ATTRIBUTE, 2, 1, 0); 2175 /* MFLAG_START = MFLAGNORMALSTARTMODE */ 2176 REG_FLD_MOD(dispc, DISPC_GLOBAL_MFLAG_ATTRIBUTE, 0, 6, 6); 2177 2178 for (hw_plane = 0; hw_plane < dispc->feat->num_planes; hw_plane++) { 2179 u32 size = dispc_vid_get_fifo_size(dispc, hw_plane); 2180 u32 thr_low, thr_high; 2181 u32 mflag_low, mflag_high; 2182 u32 preload; 2183 2184 thr_high = size - 1; 2185 thr_low = size / 2; 2186 2187 mflag_high = size * 2 / 3; 2188 mflag_low = size / 3; 2189 2190 preload = thr_low; 2191 2192 dev_dbg(dispc->dev, 2193 "%s: bufsize %u, buf_threshold %u/%u, mflag threshold %u/%u preload %u\n", 2194 dispc->feat->vid_name[hw_plane], 2195 size, 2196 thr_high, thr_low, 2197 mflag_high, mflag_low, 2198 preload); 2199 2200 dispc_vid_set_buf_threshold(dispc, hw_plane, 2201 thr_low, thr_high); 2202 dispc_vid_set_mflag_threshold(dispc, hw_plane, 2203 mflag_low, mflag_high); 2204 2205 dispc_vid_write(dispc, hw_plane, DISPC_VID_PRELOAD, preload); 2206 2207 /* Prefech up to PRELOAD value */ 2208 VID_REG_FLD_MOD(dispc, hw_plane, DISPC_VID_ATTRIBUTES, 0, 2209 19, 19); 2210 } 2211 } 2212 2213 static void dispc_plane_init(struct dispc_device *dispc) 2214 { 2215 switch (dispc->feat->subrev) { 2216 case DISPC_K2G: 2217 dispc_k2g_plane_init(dispc); 2218 break; 2219 case DISPC_AM65X: 2220 case DISPC_J721E: 2221 dispc_k3_plane_init(dispc); 2222 break; 2223 default: 2224 WARN_ON(1); 2225 } 2226 } 2227 2228 static void dispc_vp_init(struct dispc_device *dispc) 2229 { 2230 unsigned int i; 2231 2232 dev_dbg(dispc->dev, "%s()\n", __func__); 2233 2234 /* Enable the gamma Shadow bit-field for all VPs*/ 2235 for (i = 0; i < dispc->feat->num_vps; i++) 2236 VP_REG_FLD_MOD(dispc, i, DISPC_VP_CONFIG, 1, 2, 2); 2237 } 2238 2239 static void dispc_initial_config(struct dispc_device *dispc) 2240 { 2241 dispc_plane_init(dispc); 2242 dispc_vp_init(dispc); 2243 2244 /* Note: Hardcoded DPI routing on J721E for now */ 2245 if (dispc->feat->subrev == DISPC_J721E) { 2246 dispc_write(dispc, DISPC_CONNECTIONS, 2247 FLD_VAL(2, 3, 0) | /* VP1 to DPI0 */ 2248 FLD_VAL(8, 7, 4) /* VP3 to DPI1 */ 2249 ); 2250 } 2251 } 2252 2253 static void dispc_k2g_vp_write_gamma_table(struct dispc_device *dispc, 2254 u32 hw_videoport) 2255 { 2256 u32 *table = dispc->vp_data[hw_videoport].gamma_table; 2257 u32 hwlen = dispc->feat->vp_feat.color.gamma_size; 2258 unsigned int i; 2259 2260 dev_dbg(dispc->dev, "%s: hw_videoport %d\n", __func__, hw_videoport); 2261 2262 if (WARN_ON(dispc->feat->vp_feat.color.gamma_type != TIDSS_GAMMA_8BIT)) 2263 return; 2264 2265 for (i = 0; i < hwlen; ++i) { 2266 u32 v = table[i]; 2267 2268 v |= i << 24; 2269 2270 dispc_vp_write(dispc, hw_videoport, DISPC_VP_K2G_GAMMA_TABLE, 2271 v); 2272 } 2273 } 2274 2275 static void dispc_am65x_vp_write_gamma_table(struct dispc_device *dispc, 2276 u32 hw_videoport) 2277 { 2278 u32 *table = dispc->vp_data[hw_videoport].gamma_table; 2279 u32 hwlen = dispc->feat->vp_feat.color.gamma_size; 2280 unsigned int i; 2281 2282 dev_dbg(dispc->dev, "%s: hw_videoport %d\n", __func__, hw_videoport); 2283 2284 if (WARN_ON(dispc->feat->vp_feat.color.gamma_type != TIDSS_GAMMA_8BIT)) 2285 return; 2286 2287 for (i = 0; i < hwlen; ++i) { 2288 u32 v = table[i]; 2289 2290 v |= i << 24; 2291 2292 dispc_vp_write(dispc, hw_videoport, DISPC_VP_GAMMA_TABLE, v); 2293 } 2294 } 2295 2296 static void dispc_j721e_vp_write_gamma_table(struct dispc_device *dispc, 2297 u32 hw_videoport) 2298 { 2299 u32 *table = dispc->vp_data[hw_videoport].gamma_table; 2300 u32 hwlen = dispc->feat->vp_feat.color.gamma_size; 2301 unsigned int i; 2302 2303 dev_dbg(dispc->dev, "%s: hw_videoport %d\n", __func__, hw_videoport); 2304 2305 if (WARN_ON(dispc->feat->vp_feat.color.gamma_type != TIDSS_GAMMA_10BIT)) 2306 return; 2307 2308 for (i = 0; i < hwlen; ++i) { 2309 u32 v = table[i]; 2310 2311 if (i == 0) 2312 v |= 1 << 31; 2313 2314 dispc_vp_write(dispc, hw_videoport, DISPC_VP_GAMMA_TABLE, v); 2315 } 2316 } 2317 2318 static void dispc_vp_write_gamma_table(struct dispc_device *dispc, 2319 u32 hw_videoport) 2320 { 2321 switch (dispc->feat->subrev) { 2322 case DISPC_K2G: 2323 dispc_k2g_vp_write_gamma_table(dispc, hw_videoport); 2324 break; 2325 case DISPC_AM65X: 2326 dispc_am65x_vp_write_gamma_table(dispc, hw_videoport); 2327 break; 2328 case DISPC_J721E: 2329 dispc_j721e_vp_write_gamma_table(dispc, hw_videoport); 2330 break; 2331 default: 2332 WARN_ON(1); 2333 break; 2334 } 2335 } 2336 2337 static const struct drm_color_lut dispc_vp_gamma_default_lut[] = { 2338 { .red = 0, .green = 0, .blue = 0, }, 2339 { .red = U16_MAX, .green = U16_MAX, .blue = U16_MAX, }, 2340 }; 2341 2342 static void dispc_vp_set_gamma(struct dispc_device *dispc, 2343 u32 hw_videoport, 2344 const struct drm_color_lut *lut, 2345 unsigned int length) 2346 { 2347 u32 *table = dispc->vp_data[hw_videoport].gamma_table; 2348 u32 hwlen = dispc->feat->vp_feat.color.gamma_size; 2349 u32 hwbits; 2350 unsigned int i; 2351 2352 dev_dbg(dispc->dev, "%s: hw_videoport %d, lut len %u, hw len %u\n", 2353 __func__, hw_videoport, length, hwlen); 2354 2355 if (dispc->feat->vp_feat.color.gamma_type == TIDSS_GAMMA_10BIT) 2356 hwbits = 10; 2357 else 2358 hwbits = 8; 2359 2360 if (!lut || length < 2) { 2361 lut = dispc_vp_gamma_default_lut; 2362 length = ARRAY_SIZE(dispc_vp_gamma_default_lut); 2363 } 2364 2365 for (i = 0; i < length - 1; ++i) { 2366 unsigned int first = i * (hwlen - 1) / (length - 1); 2367 unsigned int last = (i + 1) * (hwlen - 1) / (length - 1); 2368 unsigned int w = last - first; 2369 u16 r, g, b; 2370 unsigned int j; 2371 2372 if (w == 0) 2373 continue; 2374 2375 for (j = 0; j <= w; j++) { 2376 r = (lut[i].red * (w - j) + lut[i + 1].red * j) / w; 2377 g = (lut[i].green * (w - j) + lut[i + 1].green * j) / w; 2378 b = (lut[i].blue * (w - j) + lut[i + 1].blue * j) / w; 2379 2380 r >>= 16 - hwbits; 2381 g >>= 16 - hwbits; 2382 b >>= 16 - hwbits; 2383 2384 table[first + j] = (r << (hwbits * 2)) | 2385 (g << hwbits) | b; 2386 } 2387 } 2388 2389 dispc_vp_write_gamma_table(dispc, hw_videoport); 2390 } 2391 2392 static s16 dispc_S31_32_to_s2_8(s64 coef) 2393 { 2394 u64 sign_bit = 1ULL << 63; 2395 u64 cbits = (u64)coef; 2396 s16 ret; 2397 2398 if (cbits & sign_bit) 2399 ret = -clamp_val(((cbits & ~sign_bit) >> 24), 0, 0x200); 2400 else 2401 ret = clamp_val(((cbits & ~sign_bit) >> 24), 0, 0x1FF); 2402 2403 return ret; 2404 } 2405 2406 static void dispc_k2g_cpr_from_ctm(const struct drm_color_ctm *ctm, 2407 struct dispc_csc_coef *cpr) 2408 { 2409 memset(cpr, 0, sizeof(*cpr)); 2410 2411 cpr->to_regval = dispc_csc_cpr_regval; 2412 cpr->m[CSC_RR] = dispc_S31_32_to_s2_8(ctm->matrix[0]); 2413 cpr->m[CSC_RG] = dispc_S31_32_to_s2_8(ctm->matrix[1]); 2414 cpr->m[CSC_RB] = dispc_S31_32_to_s2_8(ctm->matrix[2]); 2415 cpr->m[CSC_GR] = dispc_S31_32_to_s2_8(ctm->matrix[3]); 2416 cpr->m[CSC_GG] = dispc_S31_32_to_s2_8(ctm->matrix[4]); 2417 cpr->m[CSC_GB] = dispc_S31_32_to_s2_8(ctm->matrix[5]); 2418 cpr->m[CSC_BR] = dispc_S31_32_to_s2_8(ctm->matrix[6]); 2419 cpr->m[CSC_BG] = dispc_S31_32_to_s2_8(ctm->matrix[7]); 2420 cpr->m[CSC_BB] = dispc_S31_32_to_s2_8(ctm->matrix[8]); 2421 } 2422 2423 #define CVAL(xR, xG, xB) (FLD_VAL(xR, 9, 0) | FLD_VAL(xG, 20, 11) | \ 2424 FLD_VAL(xB, 31, 22)) 2425 2426 static void dispc_k2g_vp_csc_cpr_regval(const struct dispc_csc_coef *csc, 2427 u32 *regval) 2428 { 2429 regval[0] = CVAL(csc->m[CSC_BB], csc->m[CSC_BG], csc->m[CSC_BR]); 2430 regval[1] = CVAL(csc->m[CSC_GB], csc->m[CSC_GG], csc->m[CSC_GR]); 2431 regval[2] = CVAL(csc->m[CSC_RB], csc->m[CSC_RG], csc->m[CSC_RR]); 2432 } 2433 2434 #undef CVAL 2435 2436 static void dispc_k2g_vp_write_csc(struct dispc_device *dispc, u32 hw_videoport, 2437 const struct dispc_csc_coef *csc) 2438 { 2439 static const u16 dispc_vp_cpr_coef_reg[] = { 2440 DISPC_VP_CSC_COEF0, DISPC_VP_CSC_COEF1, DISPC_VP_CSC_COEF2, 2441 /* K2G CPR is packed to three registers. */ 2442 }; 2443 u32 regval[DISPC_CSC_REGVAL_LEN]; 2444 unsigned int i; 2445 2446 dispc_k2g_vp_csc_cpr_regval(csc, regval); 2447 2448 for (i = 0; i < ARRAY_SIZE(dispc_vp_cpr_coef_reg); i++) 2449 dispc_vp_write(dispc, hw_videoport, dispc_vp_cpr_coef_reg[i], 2450 regval[i]); 2451 } 2452 2453 static void dispc_k2g_vp_set_ctm(struct dispc_device *dispc, u32 hw_videoport, 2454 struct drm_color_ctm *ctm) 2455 { 2456 u32 cprenable = 0; 2457 2458 if (ctm) { 2459 struct dispc_csc_coef cpr; 2460 2461 dispc_k2g_cpr_from_ctm(ctm, &cpr); 2462 dispc_k2g_vp_write_csc(dispc, hw_videoport, &cpr); 2463 cprenable = 1; 2464 } 2465 2466 VP_REG_FLD_MOD(dispc, hw_videoport, DISPC_VP_CONFIG, 2467 cprenable, 15, 15); 2468 } 2469 2470 static s16 dispc_S31_32_to_s3_8(s64 coef) 2471 { 2472 u64 sign_bit = 1ULL << 63; 2473 u64 cbits = (u64)coef; 2474 s16 ret; 2475 2476 if (cbits & sign_bit) 2477 ret = -clamp_val(((cbits & ~sign_bit) >> 24), 0, 0x400); 2478 else 2479 ret = clamp_val(((cbits & ~sign_bit) >> 24), 0, 0x3FF); 2480 2481 return ret; 2482 } 2483 2484 static void dispc_csc_from_ctm(const struct drm_color_ctm *ctm, 2485 struct dispc_csc_coef *cpr) 2486 { 2487 memset(cpr, 0, sizeof(*cpr)); 2488 2489 cpr->to_regval = dispc_csc_cpr_regval; 2490 cpr->m[CSC_RR] = dispc_S31_32_to_s3_8(ctm->matrix[0]); 2491 cpr->m[CSC_RG] = dispc_S31_32_to_s3_8(ctm->matrix[1]); 2492 cpr->m[CSC_RB] = dispc_S31_32_to_s3_8(ctm->matrix[2]); 2493 cpr->m[CSC_GR] = dispc_S31_32_to_s3_8(ctm->matrix[3]); 2494 cpr->m[CSC_GG] = dispc_S31_32_to_s3_8(ctm->matrix[4]); 2495 cpr->m[CSC_GB] = dispc_S31_32_to_s3_8(ctm->matrix[5]); 2496 cpr->m[CSC_BR] = dispc_S31_32_to_s3_8(ctm->matrix[6]); 2497 cpr->m[CSC_BG] = dispc_S31_32_to_s3_8(ctm->matrix[7]); 2498 cpr->m[CSC_BB] = dispc_S31_32_to_s3_8(ctm->matrix[8]); 2499 } 2500 2501 static void dispc_k3_vp_write_csc(struct dispc_device *dispc, u32 hw_videoport, 2502 const struct dispc_csc_coef *csc) 2503 { 2504 static const u16 dispc_vp_csc_coef_reg[DISPC_CSC_REGVAL_LEN] = { 2505 DISPC_VP_CSC_COEF0, DISPC_VP_CSC_COEF1, DISPC_VP_CSC_COEF2, 2506 DISPC_VP_CSC_COEF3, DISPC_VP_CSC_COEF4, DISPC_VP_CSC_COEF5, 2507 DISPC_VP_CSC_COEF6, DISPC_VP_CSC_COEF7, 2508 }; 2509 u32 regval[DISPC_CSC_REGVAL_LEN]; 2510 unsigned int i; 2511 2512 csc->to_regval(csc, regval); 2513 2514 for (i = 0; i < ARRAY_SIZE(regval); i++) 2515 dispc_vp_write(dispc, hw_videoport, dispc_vp_csc_coef_reg[i], 2516 regval[i]); 2517 } 2518 2519 static void dispc_k3_vp_set_ctm(struct dispc_device *dispc, u32 hw_videoport, 2520 struct drm_color_ctm *ctm) 2521 { 2522 u32 colorconvenable = 0; 2523 2524 if (ctm) { 2525 struct dispc_csc_coef csc; 2526 2527 dispc_csc_from_ctm(ctm, &csc); 2528 dispc_k3_vp_write_csc(dispc, hw_videoport, &csc); 2529 colorconvenable = 1; 2530 } 2531 2532 VP_REG_FLD_MOD(dispc, hw_videoport, DISPC_VP_CONFIG, 2533 colorconvenable, 24, 24); 2534 } 2535 2536 static void dispc_vp_set_color_mgmt(struct dispc_device *dispc, 2537 u32 hw_videoport, 2538 const struct drm_crtc_state *state, 2539 bool newmodeset) 2540 { 2541 struct drm_color_lut *lut = NULL; 2542 struct drm_color_ctm *ctm = NULL; 2543 unsigned int length = 0; 2544 2545 if (!(state->color_mgmt_changed || newmodeset)) 2546 return; 2547 2548 if (state->gamma_lut) { 2549 lut = (struct drm_color_lut *)state->gamma_lut->data; 2550 length = state->gamma_lut->length / sizeof(*lut); 2551 } 2552 2553 dispc_vp_set_gamma(dispc, hw_videoport, lut, length); 2554 2555 if (state->ctm) 2556 ctm = (struct drm_color_ctm *)state->ctm->data; 2557 2558 if (dispc->feat->subrev == DISPC_K2G) 2559 dispc_k2g_vp_set_ctm(dispc, hw_videoport, ctm); 2560 else 2561 dispc_k3_vp_set_ctm(dispc, hw_videoport, ctm); 2562 } 2563 2564 void dispc_vp_setup(struct dispc_device *dispc, u32 hw_videoport, 2565 const struct drm_crtc_state *state, bool newmodeset) 2566 { 2567 dispc_vp_set_default_color(dispc, hw_videoport, 0); 2568 dispc_vp_set_color_mgmt(dispc, hw_videoport, state, newmodeset); 2569 } 2570 2571 int dispc_runtime_suspend(struct dispc_device *dispc) 2572 { 2573 dev_dbg(dispc->dev, "suspend\n"); 2574 2575 dispc->is_enabled = false; 2576 2577 clk_disable_unprepare(dispc->fclk); 2578 2579 return 0; 2580 } 2581 2582 int dispc_runtime_resume(struct dispc_device *dispc) 2583 { 2584 dev_dbg(dispc->dev, "resume\n"); 2585 2586 clk_prepare_enable(dispc->fclk); 2587 2588 if (REG_GET(dispc, DSS_SYSSTATUS, 0, 0) == 0) 2589 dev_warn(dispc->dev, "DSS FUNC RESET not done!\n"); 2590 2591 dev_dbg(dispc->dev, "OMAP DSS7 rev 0x%x\n", 2592 dispc_read(dispc, DSS_REVISION)); 2593 2594 dev_dbg(dispc->dev, "VP RESETDONE %d,%d,%d\n", 2595 REG_GET(dispc, DSS_SYSSTATUS, 1, 1), 2596 REG_GET(dispc, DSS_SYSSTATUS, 2, 2), 2597 REG_GET(dispc, DSS_SYSSTATUS, 3, 3)); 2598 2599 if (dispc->feat->subrev == DISPC_AM65X) 2600 dev_dbg(dispc->dev, "OLDI RESETDONE %d,%d,%d\n", 2601 REG_GET(dispc, DSS_SYSSTATUS, 5, 5), 2602 REG_GET(dispc, DSS_SYSSTATUS, 6, 6), 2603 REG_GET(dispc, DSS_SYSSTATUS, 7, 7)); 2604 2605 dev_dbg(dispc->dev, "DISPC IDLE %d\n", 2606 REG_GET(dispc, DSS_SYSSTATUS, 9, 9)); 2607 2608 dispc_initial_config(dispc); 2609 2610 dispc->is_enabled = true; 2611 2612 tidss_irq_resume(dispc->tidss); 2613 2614 return 0; 2615 } 2616 2617 void dispc_remove(struct tidss_device *tidss) 2618 { 2619 dev_dbg(tidss->dev, "%s\n", __func__); 2620 2621 tidss->dispc = NULL; 2622 } 2623 2624 static int dispc_iomap_resource(struct platform_device *pdev, const char *name, 2625 void __iomem **base) 2626 { 2627 struct resource *res; 2628 void __iomem *b; 2629 2630 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, name); 2631 if (!res) { 2632 dev_err(&pdev->dev, "cannot get mem resource '%s'\n", name); 2633 return -EINVAL; 2634 } 2635 2636 b = devm_ioremap_resource(&pdev->dev, res); 2637 if (IS_ERR(b)) { 2638 dev_err(&pdev->dev, "cannot ioremap resource '%s'\n", name); 2639 return PTR_ERR(b); 2640 } 2641 2642 *base = b; 2643 2644 return 0; 2645 } 2646 2647 static int dispc_init_am65x_oldi_io_ctrl(struct device *dev, 2648 struct dispc_device *dispc) 2649 { 2650 dispc->oldi_io_ctrl = 2651 syscon_regmap_lookup_by_phandle(dev->of_node, 2652 "ti,am65x-oldi-io-ctrl"); 2653 if (PTR_ERR(dispc->oldi_io_ctrl) == -ENODEV) { 2654 dispc->oldi_io_ctrl = NULL; 2655 } else if (IS_ERR(dispc->oldi_io_ctrl)) { 2656 dev_err(dev, "%s: syscon_regmap_lookup_by_phandle failed %ld\n", 2657 __func__, PTR_ERR(dispc->oldi_io_ctrl)); 2658 return PTR_ERR(dispc->oldi_io_ctrl); 2659 } 2660 return 0; 2661 } 2662 2663 int dispc_init(struct tidss_device *tidss) 2664 { 2665 struct device *dev = tidss->dev; 2666 struct platform_device *pdev = to_platform_device(dev); 2667 struct dispc_device *dispc; 2668 const struct dispc_features *feat; 2669 unsigned int i, num_fourccs; 2670 int r = 0; 2671 2672 dev_dbg(dev, "%s\n", __func__); 2673 2674 feat = tidss->feat; 2675 2676 if (feat->subrev != DISPC_K2G) { 2677 r = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(48)); 2678 if (r) 2679 dev_warn(dev, "cannot set DMA masks to 48-bit\n"); 2680 } 2681 2682 dispc = devm_kzalloc(dev, sizeof(*dispc), GFP_KERNEL); 2683 if (!dispc) 2684 return -ENOMEM; 2685 2686 dispc->fourccs = devm_kcalloc(dev, ARRAY_SIZE(dispc_color_formats), 2687 sizeof(*dispc->fourccs), GFP_KERNEL); 2688 if (!dispc->fourccs) 2689 return -ENOMEM; 2690 2691 num_fourccs = 0; 2692 for (i = 0; i < ARRAY_SIZE(dispc_color_formats); ++i) { 2693 if (feat->errata.i2000 && 2694 dispc_fourcc_is_yuv(dispc_color_formats[i].fourcc)) 2695 continue; 2696 dispc->fourccs[num_fourccs++] = dispc_color_formats[i].fourcc; 2697 } 2698 dispc->num_fourccs = num_fourccs; 2699 dispc->tidss = tidss; 2700 dispc->dev = dev; 2701 dispc->feat = feat; 2702 2703 dispc_common_regmap = dispc->feat->common_regs; 2704 2705 r = dispc_iomap_resource(pdev, dispc->feat->common, 2706 &dispc->base_common); 2707 if (r) 2708 return r; 2709 2710 for (i = 0; i < dispc->feat->num_planes; i++) { 2711 r = dispc_iomap_resource(pdev, dispc->feat->vid_name[i], 2712 &dispc->base_vid[i]); 2713 if (r) 2714 return r; 2715 } 2716 2717 for (i = 0; i < dispc->feat->num_vps; i++) { 2718 u32 gamma_size = dispc->feat->vp_feat.color.gamma_size; 2719 u32 *gamma_table; 2720 struct clk *clk; 2721 2722 r = dispc_iomap_resource(pdev, dispc->feat->ovr_name[i], 2723 &dispc->base_ovr[i]); 2724 if (r) 2725 return r; 2726 2727 r = dispc_iomap_resource(pdev, dispc->feat->vp_name[i], 2728 &dispc->base_vp[i]); 2729 if (r) 2730 return r; 2731 2732 clk = devm_clk_get(dev, dispc->feat->vpclk_name[i]); 2733 if (IS_ERR(clk)) { 2734 dev_err(dev, "%s: Failed to get clk %s:%ld\n", __func__, 2735 dispc->feat->vpclk_name[i], PTR_ERR(clk)); 2736 return PTR_ERR(clk); 2737 } 2738 dispc->vp_clk[i] = clk; 2739 2740 gamma_table = devm_kmalloc_array(dev, gamma_size, 2741 sizeof(*gamma_table), 2742 GFP_KERNEL); 2743 if (!gamma_table) 2744 return -ENOMEM; 2745 dispc->vp_data[i].gamma_table = gamma_table; 2746 } 2747 2748 if (feat->subrev == DISPC_AM65X) { 2749 r = dispc_init_am65x_oldi_io_ctrl(dev, dispc); 2750 if (r) 2751 return r; 2752 } 2753 2754 dispc->fclk = devm_clk_get(dev, "fck"); 2755 if (IS_ERR(dispc->fclk)) { 2756 dev_err(dev, "%s: Failed to get fclk: %ld\n", 2757 __func__, PTR_ERR(dispc->fclk)); 2758 return PTR_ERR(dispc->fclk); 2759 } 2760 dev_dbg(dev, "DSS fclk %lu Hz\n", clk_get_rate(dispc->fclk)); 2761 2762 of_property_read_u32(dispc->dev->of_node, "max-memory-bandwidth", 2763 &dispc->memory_bandwidth_limit); 2764 2765 tidss->dispc = dispc; 2766 2767 return 0; 2768 } 2769