xref: /openbmc/linux/drivers/gpu/drm/tegra/sor.c (revision d2825fa9)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2013 NVIDIA Corporation
4  */
5 
6 #include <linux/clk.h>
7 #include <linux/clk-provider.h>
8 #include <linux/debugfs.h>
9 #include <linux/io.h>
10 #include <linux/module.h>
11 #include <linux/of_device.h>
12 #include <linux/platform_device.h>
13 #include <linux/pm_runtime.h>
14 #include <linux/regulator/consumer.h>
15 #include <linux/reset.h>
16 
17 #include <soc/tegra/pmc.h>
18 
19 #include <drm/drm_atomic_helper.h>
20 #include <drm/drm_debugfs.h>
21 #include <drm/dp/drm_dp_helper.h>
22 #include <drm/drm_file.h>
23 #include <drm/drm_panel.h>
24 #include <drm/drm_scdc_helper.h>
25 #include <drm/drm_simple_kms_helper.h>
26 
27 #include "dc.h"
28 #include "dp.h"
29 #include "drm.h"
30 #include "hda.h"
31 #include "sor.h"
32 #include "trace.h"
33 
34 #define SOR_REKEY 0x38
35 
36 struct tegra_sor_hdmi_settings {
37 	unsigned long frequency;
38 
39 	u8 vcocap;
40 	u8 filter;
41 	u8 ichpmp;
42 	u8 loadadj;
43 	u8 tmds_termadj;
44 	u8 tx_pu_value;
45 	u8 bg_temp_coef;
46 	u8 bg_vref_level;
47 	u8 avdd10_level;
48 	u8 avdd14_level;
49 	u8 sparepll;
50 
51 	u8 drive_current[4];
52 	u8 preemphasis[4];
53 };
54 
55 #if 1
56 static const struct tegra_sor_hdmi_settings tegra210_sor_hdmi_defaults[] = {
57 	{
58 		.frequency = 54000000,
59 		.vcocap = 0x0,
60 		.filter = 0x0,
61 		.ichpmp = 0x1,
62 		.loadadj = 0x3,
63 		.tmds_termadj = 0x9,
64 		.tx_pu_value = 0x10,
65 		.bg_temp_coef = 0x3,
66 		.bg_vref_level = 0x8,
67 		.avdd10_level = 0x4,
68 		.avdd14_level = 0x4,
69 		.sparepll = 0x0,
70 		.drive_current = { 0x33, 0x3a, 0x3a, 0x3a },
71 		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
72 	}, {
73 		.frequency = 75000000,
74 		.vcocap = 0x3,
75 		.filter = 0x0,
76 		.ichpmp = 0x1,
77 		.loadadj = 0x3,
78 		.tmds_termadj = 0x9,
79 		.tx_pu_value = 0x40,
80 		.bg_temp_coef = 0x3,
81 		.bg_vref_level = 0x8,
82 		.avdd10_level = 0x4,
83 		.avdd14_level = 0x4,
84 		.sparepll = 0x0,
85 		.drive_current = { 0x33, 0x3a, 0x3a, 0x3a },
86 		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
87 	}, {
88 		.frequency = 150000000,
89 		.vcocap = 0x3,
90 		.filter = 0x0,
91 		.ichpmp = 0x1,
92 		.loadadj = 0x3,
93 		.tmds_termadj = 0x9,
94 		.tx_pu_value = 0x66,
95 		.bg_temp_coef = 0x3,
96 		.bg_vref_level = 0x8,
97 		.avdd10_level = 0x4,
98 		.avdd14_level = 0x4,
99 		.sparepll = 0x0,
100 		.drive_current = { 0x33, 0x3a, 0x3a, 0x3a },
101 		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
102 	}, {
103 		.frequency = 300000000,
104 		.vcocap = 0x3,
105 		.filter = 0x0,
106 		.ichpmp = 0x1,
107 		.loadadj = 0x3,
108 		.tmds_termadj = 0x9,
109 		.tx_pu_value = 0x66,
110 		.bg_temp_coef = 0x3,
111 		.bg_vref_level = 0xa,
112 		.avdd10_level = 0x4,
113 		.avdd14_level = 0x4,
114 		.sparepll = 0x0,
115 		.drive_current = { 0x33, 0x3f, 0x3f, 0x3f },
116 		.preemphasis = { 0x00, 0x17, 0x17, 0x17 },
117 	}, {
118 		.frequency = 600000000,
119 		.vcocap = 0x3,
120 		.filter = 0x0,
121 		.ichpmp = 0x1,
122 		.loadadj = 0x3,
123 		.tmds_termadj = 0x9,
124 		.tx_pu_value = 0x66,
125 		.bg_temp_coef = 0x3,
126 		.bg_vref_level = 0x8,
127 		.avdd10_level = 0x4,
128 		.avdd14_level = 0x4,
129 		.sparepll = 0x0,
130 		.drive_current = { 0x33, 0x3f, 0x3f, 0x3f },
131 		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
132 	},
133 };
134 #else
135 static const struct tegra_sor_hdmi_settings tegra210_sor_hdmi_defaults[] = {
136 	{
137 		.frequency = 75000000,
138 		.vcocap = 0x3,
139 		.filter = 0x0,
140 		.ichpmp = 0x1,
141 		.loadadj = 0x3,
142 		.tmds_termadj = 0x9,
143 		.tx_pu_value = 0x40,
144 		.bg_temp_coef = 0x3,
145 		.bg_vref_level = 0x8,
146 		.avdd10_level = 0x4,
147 		.avdd14_level = 0x4,
148 		.sparepll = 0x0,
149 		.drive_current = { 0x29, 0x29, 0x29, 0x29 },
150 		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
151 	}, {
152 		.frequency = 150000000,
153 		.vcocap = 0x3,
154 		.filter = 0x0,
155 		.ichpmp = 0x1,
156 		.loadadj = 0x3,
157 		.tmds_termadj = 0x9,
158 		.tx_pu_value = 0x66,
159 		.bg_temp_coef = 0x3,
160 		.bg_vref_level = 0x8,
161 		.avdd10_level = 0x4,
162 		.avdd14_level = 0x4,
163 		.sparepll = 0x0,
164 		.drive_current = { 0x30, 0x37, 0x37, 0x37 },
165 		.preemphasis = { 0x01, 0x02, 0x02, 0x02 },
166 	}, {
167 		.frequency = 300000000,
168 		.vcocap = 0x3,
169 		.filter = 0x0,
170 		.ichpmp = 0x6,
171 		.loadadj = 0x3,
172 		.tmds_termadj = 0x9,
173 		.tx_pu_value = 0x66,
174 		.bg_temp_coef = 0x3,
175 		.bg_vref_level = 0xf,
176 		.avdd10_level = 0x4,
177 		.avdd14_level = 0x4,
178 		.sparepll = 0x0,
179 		.drive_current = { 0x30, 0x37, 0x37, 0x37 },
180 		.preemphasis = { 0x10, 0x3e, 0x3e, 0x3e },
181 	}, {
182 		.frequency = 600000000,
183 		.vcocap = 0x3,
184 		.filter = 0x0,
185 		.ichpmp = 0xa,
186 		.loadadj = 0x3,
187 		.tmds_termadj = 0xb,
188 		.tx_pu_value = 0x66,
189 		.bg_temp_coef = 0x3,
190 		.bg_vref_level = 0xe,
191 		.avdd10_level = 0x4,
192 		.avdd14_level = 0x4,
193 		.sparepll = 0x0,
194 		.drive_current = { 0x35, 0x3e, 0x3e, 0x3e },
195 		.preemphasis = { 0x02, 0x3f, 0x3f, 0x3f },
196 	},
197 };
198 #endif
199 
200 static const struct tegra_sor_hdmi_settings tegra186_sor_hdmi_defaults[] = {
201 	{
202 		.frequency = 54000000,
203 		.vcocap = 0,
204 		.filter = 5,
205 		.ichpmp = 5,
206 		.loadadj = 3,
207 		.tmds_termadj = 0xf,
208 		.tx_pu_value = 0,
209 		.bg_temp_coef = 3,
210 		.bg_vref_level = 8,
211 		.avdd10_level = 4,
212 		.avdd14_level = 4,
213 		.sparepll = 0x54,
214 		.drive_current = { 0x3a, 0x3a, 0x3a, 0x33 },
215 		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
216 	}, {
217 		.frequency = 75000000,
218 		.vcocap = 1,
219 		.filter = 5,
220 		.ichpmp = 5,
221 		.loadadj = 3,
222 		.tmds_termadj = 0xf,
223 		.tx_pu_value = 0,
224 		.bg_temp_coef = 3,
225 		.bg_vref_level = 8,
226 		.avdd10_level = 4,
227 		.avdd14_level = 4,
228 		.sparepll = 0x44,
229 		.drive_current = { 0x3a, 0x3a, 0x3a, 0x33 },
230 		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
231 	}, {
232 		.frequency = 150000000,
233 		.vcocap = 3,
234 		.filter = 5,
235 		.ichpmp = 5,
236 		.loadadj = 3,
237 		.tmds_termadj = 15,
238 		.tx_pu_value = 0x66 /* 0 */,
239 		.bg_temp_coef = 3,
240 		.bg_vref_level = 8,
241 		.avdd10_level = 4,
242 		.avdd14_level = 4,
243 		.sparepll = 0x00, /* 0x34 */
244 		.drive_current = { 0x3a, 0x3a, 0x3a, 0x37 },
245 		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
246 	}, {
247 		.frequency = 300000000,
248 		.vcocap = 3,
249 		.filter = 5,
250 		.ichpmp = 5,
251 		.loadadj = 3,
252 		.tmds_termadj = 15,
253 		.tx_pu_value = 64,
254 		.bg_temp_coef = 3,
255 		.bg_vref_level = 8,
256 		.avdd10_level = 4,
257 		.avdd14_level = 4,
258 		.sparepll = 0x34,
259 		.drive_current = { 0x3d, 0x3d, 0x3d, 0x33 },
260 		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
261 	}, {
262 		.frequency = 600000000,
263 		.vcocap = 3,
264 		.filter = 5,
265 		.ichpmp = 5,
266 		.loadadj = 3,
267 		.tmds_termadj = 12,
268 		.tx_pu_value = 96,
269 		.bg_temp_coef = 3,
270 		.bg_vref_level = 8,
271 		.avdd10_level = 4,
272 		.avdd14_level = 4,
273 		.sparepll = 0x34,
274 		.drive_current = { 0x3d, 0x3d, 0x3d, 0x33 },
275 		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
276 	}
277 };
278 
279 static const struct tegra_sor_hdmi_settings tegra194_sor_hdmi_defaults[] = {
280 	{
281 		.frequency = 54000000,
282 		.vcocap = 0,
283 		.filter = 5,
284 		.ichpmp = 5,
285 		.loadadj = 3,
286 		.tmds_termadj = 0xf,
287 		.tx_pu_value = 0,
288 		.bg_temp_coef = 3,
289 		.bg_vref_level = 8,
290 		.avdd10_level = 4,
291 		.avdd14_level = 4,
292 		.sparepll = 0x54,
293 		.drive_current = { 0x3a, 0x3a, 0x3a, 0x33 },
294 		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
295 	}, {
296 		.frequency = 75000000,
297 		.vcocap = 1,
298 		.filter = 5,
299 		.ichpmp = 5,
300 		.loadadj = 3,
301 		.tmds_termadj = 0xf,
302 		.tx_pu_value = 0,
303 		.bg_temp_coef = 3,
304 		.bg_vref_level = 8,
305 		.avdd10_level = 4,
306 		.avdd14_level = 4,
307 		.sparepll = 0x44,
308 		.drive_current = { 0x3a, 0x3a, 0x3a, 0x33 },
309 		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
310 	}, {
311 		.frequency = 150000000,
312 		.vcocap = 3,
313 		.filter = 5,
314 		.ichpmp = 5,
315 		.loadadj = 3,
316 		.tmds_termadj = 15,
317 		.tx_pu_value = 0x66 /* 0 */,
318 		.bg_temp_coef = 3,
319 		.bg_vref_level = 8,
320 		.avdd10_level = 4,
321 		.avdd14_level = 4,
322 		.sparepll = 0x00, /* 0x34 */
323 		.drive_current = { 0x3a, 0x3a, 0x3a, 0x37 },
324 		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
325 	}, {
326 		.frequency = 300000000,
327 		.vcocap = 3,
328 		.filter = 5,
329 		.ichpmp = 5,
330 		.loadadj = 3,
331 		.tmds_termadj = 15,
332 		.tx_pu_value = 64,
333 		.bg_temp_coef = 3,
334 		.bg_vref_level = 8,
335 		.avdd10_level = 4,
336 		.avdd14_level = 4,
337 		.sparepll = 0x34,
338 		.drive_current = { 0x3d, 0x3d, 0x3d, 0x33 },
339 		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
340 	}, {
341 		.frequency = 600000000,
342 		.vcocap = 3,
343 		.filter = 5,
344 		.ichpmp = 5,
345 		.loadadj = 3,
346 		.tmds_termadj = 12,
347 		.tx_pu_value = 96,
348 		.bg_temp_coef = 3,
349 		.bg_vref_level = 8,
350 		.avdd10_level = 4,
351 		.avdd14_level = 4,
352 		.sparepll = 0x34,
353 		.drive_current = { 0x3d, 0x3d, 0x3d, 0x33 },
354 		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
355 	}
356 };
357 
358 struct tegra_sor_regs {
359 	unsigned int head_state0;
360 	unsigned int head_state1;
361 	unsigned int head_state2;
362 	unsigned int head_state3;
363 	unsigned int head_state4;
364 	unsigned int head_state5;
365 	unsigned int pll0;
366 	unsigned int pll1;
367 	unsigned int pll2;
368 	unsigned int pll3;
369 	unsigned int dp_padctl0;
370 	unsigned int dp_padctl2;
371 };
372 
373 struct tegra_sor_soc {
374 	bool supports_lvds;
375 	bool supports_hdmi;
376 	bool supports_dp;
377 	bool supports_audio;
378 	bool supports_hdcp;
379 
380 	const struct tegra_sor_regs *regs;
381 	bool has_nvdisplay;
382 
383 	const struct tegra_sor_hdmi_settings *settings;
384 	unsigned int num_settings;
385 
386 	const u8 *xbar_cfg;
387 	const u8 *lane_map;
388 
389 	const u8 (*voltage_swing)[4][4];
390 	const u8 (*pre_emphasis)[4][4];
391 	const u8 (*post_cursor)[4][4];
392 	const u8 (*tx_pu)[4][4];
393 };
394 
395 struct tegra_sor;
396 
397 struct tegra_sor_ops {
398 	const char *name;
399 	int (*probe)(struct tegra_sor *sor);
400 	void (*audio_enable)(struct tegra_sor *sor);
401 	void (*audio_disable)(struct tegra_sor *sor);
402 };
403 
404 struct tegra_sor {
405 	struct host1x_client client;
406 	struct tegra_output output;
407 	struct device *dev;
408 
409 	const struct tegra_sor_soc *soc;
410 	void __iomem *regs;
411 	unsigned int index;
412 	unsigned int irq;
413 
414 	struct reset_control *rst;
415 	struct clk *clk_parent;
416 	struct clk *clk_safe;
417 	struct clk *clk_out;
418 	struct clk *clk_pad;
419 	struct clk *clk_dp;
420 	struct clk *clk;
421 
422 	u8 xbar_cfg[5];
423 
424 	struct drm_dp_link link;
425 	struct drm_dp_aux *aux;
426 
427 	struct drm_info_list *debugfs_files;
428 
429 	const struct tegra_sor_ops *ops;
430 	enum tegra_io_pad pad;
431 
432 	/* for HDMI 2.0 */
433 	struct tegra_sor_hdmi_settings *settings;
434 	unsigned int num_settings;
435 
436 	struct regulator *avdd_io_supply;
437 	struct regulator *vdd_pll_supply;
438 	struct regulator *hdmi_supply;
439 
440 	struct delayed_work scdc;
441 	bool scdc_enabled;
442 
443 	struct tegra_hda_format format;
444 };
445 
446 struct tegra_sor_state {
447 	struct drm_connector_state base;
448 
449 	unsigned int link_speed;
450 	unsigned long pclk;
451 	unsigned int bpc;
452 };
453 
454 static inline struct tegra_sor_state *
455 to_sor_state(struct drm_connector_state *state)
456 {
457 	return container_of(state, struct tegra_sor_state, base);
458 }
459 
460 struct tegra_sor_config {
461 	u32 bits_per_pixel;
462 
463 	u32 active_polarity;
464 	u32 active_count;
465 	u32 tu_size;
466 	u32 active_frac;
467 	u32 watermark;
468 
469 	u32 hblank_symbols;
470 	u32 vblank_symbols;
471 };
472 
473 static inline struct tegra_sor *
474 host1x_client_to_sor(struct host1x_client *client)
475 {
476 	return container_of(client, struct tegra_sor, client);
477 }
478 
479 static inline struct tegra_sor *to_sor(struct tegra_output *output)
480 {
481 	return container_of(output, struct tegra_sor, output);
482 }
483 
484 static inline u32 tegra_sor_readl(struct tegra_sor *sor, unsigned int offset)
485 {
486 	u32 value = readl(sor->regs + (offset << 2));
487 
488 	trace_sor_readl(sor->dev, offset, value);
489 
490 	return value;
491 }
492 
493 static inline void tegra_sor_writel(struct tegra_sor *sor, u32 value,
494 				    unsigned int offset)
495 {
496 	trace_sor_writel(sor->dev, offset, value);
497 	writel(value, sor->regs + (offset << 2));
498 }
499 
500 static int tegra_sor_set_parent_clock(struct tegra_sor *sor, struct clk *parent)
501 {
502 	int err;
503 
504 	clk_disable_unprepare(sor->clk);
505 
506 	err = clk_set_parent(sor->clk_out, parent);
507 	if (err < 0)
508 		return err;
509 
510 	err = clk_prepare_enable(sor->clk);
511 	if (err < 0)
512 		return err;
513 
514 	return 0;
515 }
516 
517 struct tegra_clk_sor_pad {
518 	struct clk_hw hw;
519 	struct tegra_sor *sor;
520 };
521 
522 static inline struct tegra_clk_sor_pad *to_pad(struct clk_hw *hw)
523 {
524 	return container_of(hw, struct tegra_clk_sor_pad, hw);
525 }
526 
527 static const char * const tegra_clk_sor_pad_parents[2][2] = {
528 	{ "pll_d_out0", "pll_dp" },
529 	{ "pll_d2_out0", "pll_dp" },
530 };
531 
532 /*
533  * Implementing ->set_parent() here isn't really required because the parent
534  * will be explicitly selected in the driver code via the DP_CLK_SEL mux in
535  * the SOR_CLK_CNTRL register. This is primarily for compatibility with the
536  * Tegra186 and later SoC generations where the BPMP implements this clock
537  * and doesn't expose the mux via the common clock framework.
538  */
539 
540 static int tegra_clk_sor_pad_set_parent(struct clk_hw *hw, u8 index)
541 {
542 	struct tegra_clk_sor_pad *pad = to_pad(hw);
543 	struct tegra_sor *sor = pad->sor;
544 	u32 value;
545 
546 	value = tegra_sor_readl(sor, SOR_CLK_CNTRL);
547 	value &= ~SOR_CLK_CNTRL_DP_CLK_SEL_MASK;
548 
549 	switch (index) {
550 	case 0:
551 		value |= SOR_CLK_CNTRL_DP_CLK_SEL_SINGLE_PCLK;
552 		break;
553 
554 	case 1:
555 		value |= SOR_CLK_CNTRL_DP_CLK_SEL_SINGLE_DPCLK;
556 		break;
557 	}
558 
559 	tegra_sor_writel(sor, value, SOR_CLK_CNTRL);
560 
561 	return 0;
562 }
563 
564 static u8 tegra_clk_sor_pad_get_parent(struct clk_hw *hw)
565 {
566 	struct tegra_clk_sor_pad *pad = to_pad(hw);
567 	struct tegra_sor *sor = pad->sor;
568 	u8 parent = U8_MAX;
569 	u32 value;
570 
571 	value = tegra_sor_readl(sor, SOR_CLK_CNTRL);
572 
573 	switch (value & SOR_CLK_CNTRL_DP_CLK_SEL_MASK) {
574 	case SOR_CLK_CNTRL_DP_CLK_SEL_SINGLE_PCLK:
575 	case SOR_CLK_CNTRL_DP_CLK_SEL_DIFF_PCLK:
576 		parent = 0;
577 		break;
578 
579 	case SOR_CLK_CNTRL_DP_CLK_SEL_SINGLE_DPCLK:
580 	case SOR_CLK_CNTRL_DP_CLK_SEL_DIFF_DPCLK:
581 		parent = 1;
582 		break;
583 	}
584 
585 	return parent;
586 }
587 
588 static const struct clk_ops tegra_clk_sor_pad_ops = {
589 	.set_parent = tegra_clk_sor_pad_set_parent,
590 	.get_parent = tegra_clk_sor_pad_get_parent,
591 };
592 
593 static struct clk *tegra_clk_sor_pad_register(struct tegra_sor *sor,
594 					      const char *name)
595 {
596 	struct tegra_clk_sor_pad *pad;
597 	struct clk_init_data init;
598 	struct clk *clk;
599 
600 	pad = devm_kzalloc(sor->dev, sizeof(*pad), GFP_KERNEL);
601 	if (!pad)
602 		return ERR_PTR(-ENOMEM);
603 
604 	pad->sor = sor;
605 
606 	init.name = name;
607 	init.flags = 0;
608 	init.parent_names = tegra_clk_sor_pad_parents[sor->index];
609 	init.num_parents = ARRAY_SIZE(tegra_clk_sor_pad_parents[sor->index]);
610 	init.ops = &tegra_clk_sor_pad_ops;
611 
612 	pad->hw.init = &init;
613 
614 	clk = devm_clk_register(sor->dev, &pad->hw);
615 
616 	return clk;
617 }
618 
619 static void tegra_sor_filter_rates(struct tegra_sor *sor)
620 {
621 	struct drm_dp_link *link = &sor->link;
622 	unsigned int i;
623 
624 	/* Tegra only supports RBR, HBR and HBR2 */
625 	for (i = 0; i < link->num_rates; i++) {
626 		switch (link->rates[i]) {
627 		case 1620000:
628 		case 2700000:
629 		case 5400000:
630 			break;
631 
632 		default:
633 			DRM_DEBUG_KMS("link rate %lu kHz not supported\n",
634 				      link->rates[i]);
635 			link->rates[i] = 0;
636 			break;
637 		}
638 	}
639 
640 	drm_dp_link_update_rates(link);
641 }
642 
643 static int tegra_sor_power_up_lanes(struct tegra_sor *sor, unsigned int lanes)
644 {
645 	unsigned long timeout;
646 	u32 value;
647 
648 	/*
649 	 * Clear or set the PD_TXD bit corresponding to each lane, depending
650 	 * on whether it is used or not.
651 	 */
652 	value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
653 
654 	if (lanes <= 2)
655 		value &= ~(SOR_DP_PADCTL_PD_TXD(sor->soc->lane_map[3]) |
656 			   SOR_DP_PADCTL_PD_TXD(sor->soc->lane_map[2]));
657 	else
658 		value |= SOR_DP_PADCTL_PD_TXD(sor->soc->lane_map[3]) |
659 			 SOR_DP_PADCTL_PD_TXD(sor->soc->lane_map[2]);
660 
661 	if (lanes <= 1)
662 		value &= ~SOR_DP_PADCTL_PD_TXD(sor->soc->lane_map[1]);
663 	else
664 		value |= SOR_DP_PADCTL_PD_TXD(sor->soc->lane_map[1]);
665 
666 	if (lanes == 0)
667 		value &= ~SOR_DP_PADCTL_PD_TXD(sor->soc->lane_map[0]);
668 	else
669 		value |= SOR_DP_PADCTL_PD_TXD(sor->soc->lane_map[0]);
670 
671 	tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
672 
673 	/* start lane sequencer */
674 	value = SOR_LANE_SEQ_CTL_TRIGGER | SOR_LANE_SEQ_CTL_SEQUENCE_DOWN |
675 		SOR_LANE_SEQ_CTL_POWER_STATE_UP;
676 	tegra_sor_writel(sor, value, SOR_LANE_SEQ_CTL);
677 
678 	timeout = jiffies + msecs_to_jiffies(250);
679 
680 	while (time_before(jiffies, timeout)) {
681 		value = tegra_sor_readl(sor, SOR_LANE_SEQ_CTL);
682 		if ((value & SOR_LANE_SEQ_CTL_TRIGGER) == 0)
683 			break;
684 
685 		usleep_range(250, 1000);
686 	}
687 
688 	if ((value & SOR_LANE_SEQ_CTL_TRIGGER) != 0)
689 		return -ETIMEDOUT;
690 
691 	return 0;
692 }
693 
694 static int tegra_sor_power_down_lanes(struct tegra_sor *sor)
695 {
696 	unsigned long timeout;
697 	u32 value;
698 
699 	/* power down all lanes */
700 	value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
701 	value &= ~(SOR_DP_PADCTL_PD_TXD_3 | SOR_DP_PADCTL_PD_TXD_0 |
702 		   SOR_DP_PADCTL_PD_TXD_1 | SOR_DP_PADCTL_PD_TXD_2);
703 	tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
704 
705 	/* start lane sequencer */
706 	value = SOR_LANE_SEQ_CTL_TRIGGER | SOR_LANE_SEQ_CTL_SEQUENCE_UP |
707 		SOR_LANE_SEQ_CTL_POWER_STATE_DOWN;
708 	tegra_sor_writel(sor, value, SOR_LANE_SEQ_CTL);
709 
710 	timeout = jiffies + msecs_to_jiffies(250);
711 
712 	while (time_before(jiffies, timeout)) {
713 		value = tegra_sor_readl(sor, SOR_LANE_SEQ_CTL);
714 		if ((value & SOR_LANE_SEQ_CTL_TRIGGER) == 0)
715 			break;
716 
717 		usleep_range(25, 100);
718 	}
719 
720 	if ((value & SOR_LANE_SEQ_CTL_TRIGGER) != 0)
721 		return -ETIMEDOUT;
722 
723 	return 0;
724 }
725 
726 static void tegra_sor_dp_precharge(struct tegra_sor *sor, unsigned int lanes)
727 {
728 	u32 value;
729 
730 	/* pre-charge all used lanes */
731 	value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
732 
733 	if (lanes <= 2)
734 		value &= ~(SOR_DP_PADCTL_CM_TXD(sor->soc->lane_map[3]) |
735 			   SOR_DP_PADCTL_CM_TXD(sor->soc->lane_map[2]));
736 	else
737 		value |= SOR_DP_PADCTL_CM_TXD(sor->soc->lane_map[3]) |
738 			 SOR_DP_PADCTL_CM_TXD(sor->soc->lane_map[2]);
739 
740 	if (lanes <= 1)
741 		value &= ~SOR_DP_PADCTL_CM_TXD(sor->soc->lane_map[1]);
742 	else
743 		value |= SOR_DP_PADCTL_CM_TXD(sor->soc->lane_map[1]);
744 
745 	if (lanes == 0)
746 		value &= ~SOR_DP_PADCTL_CM_TXD(sor->soc->lane_map[0]);
747 	else
748 		value |= SOR_DP_PADCTL_CM_TXD(sor->soc->lane_map[0]);
749 
750 	tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
751 
752 	usleep_range(15, 100);
753 
754 	value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
755 	value &= ~(SOR_DP_PADCTL_CM_TXD_3 | SOR_DP_PADCTL_CM_TXD_2 |
756 		   SOR_DP_PADCTL_CM_TXD_1 | SOR_DP_PADCTL_CM_TXD_0);
757 	tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
758 }
759 
760 static void tegra_sor_dp_term_calibrate(struct tegra_sor *sor)
761 {
762 	u32 mask = 0x08, adj = 0, value;
763 
764 	/* enable pad calibration logic */
765 	value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
766 	value &= ~SOR_DP_PADCTL_PAD_CAL_PD;
767 	tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
768 
769 	value = tegra_sor_readl(sor, sor->soc->regs->pll1);
770 	value |= SOR_PLL1_TMDS_TERM;
771 	tegra_sor_writel(sor, value, sor->soc->regs->pll1);
772 
773 	while (mask) {
774 		adj |= mask;
775 
776 		value = tegra_sor_readl(sor, sor->soc->regs->pll1);
777 		value &= ~SOR_PLL1_TMDS_TERMADJ_MASK;
778 		value |= SOR_PLL1_TMDS_TERMADJ(adj);
779 		tegra_sor_writel(sor, value, sor->soc->regs->pll1);
780 
781 		usleep_range(100, 200);
782 
783 		value = tegra_sor_readl(sor, sor->soc->regs->pll1);
784 		if (value & SOR_PLL1_TERM_COMPOUT)
785 			adj &= ~mask;
786 
787 		mask >>= 1;
788 	}
789 
790 	value = tegra_sor_readl(sor, sor->soc->regs->pll1);
791 	value &= ~SOR_PLL1_TMDS_TERMADJ_MASK;
792 	value |= SOR_PLL1_TMDS_TERMADJ(adj);
793 	tegra_sor_writel(sor, value, sor->soc->regs->pll1);
794 
795 	/* disable pad calibration logic */
796 	value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
797 	value |= SOR_DP_PADCTL_PAD_CAL_PD;
798 	tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
799 }
800 
801 static int tegra_sor_dp_link_apply_training(struct drm_dp_link *link)
802 {
803 	struct tegra_sor *sor = container_of(link, struct tegra_sor, link);
804 	u32 voltage_swing = 0, pre_emphasis = 0, post_cursor = 0;
805 	const struct tegra_sor_soc *soc = sor->soc;
806 	u32 pattern = 0, tx_pu = 0, value;
807 	unsigned int i;
808 
809 	for (value = 0, i = 0; i < link->lanes; i++) {
810 		u8 vs = link->train.request.voltage_swing[i];
811 		u8 pe = link->train.request.pre_emphasis[i];
812 		u8 pc = link->train.request.post_cursor[i];
813 		u8 shift = sor->soc->lane_map[i] << 3;
814 
815 		voltage_swing |= soc->voltage_swing[pc][vs][pe] << shift;
816 		pre_emphasis |= soc->pre_emphasis[pc][vs][pe] << shift;
817 		post_cursor |= soc->post_cursor[pc][vs][pe] << shift;
818 
819 		if (sor->soc->tx_pu[pc][vs][pe] > tx_pu)
820 			tx_pu = sor->soc->tx_pu[pc][vs][pe];
821 
822 		switch (link->train.pattern) {
823 		case DP_TRAINING_PATTERN_DISABLE:
824 			value = SOR_DP_TPG_SCRAMBLER_GALIOS |
825 				SOR_DP_TPG_PATTERN_NONE;
826 			break;
827 
828 		case DP_TRAINING_PATTERN_1:
829 			value = SOR_DP_TPG_SCRAMBLER_NONE |
830 				SOR_DP_TPG_PATTERN_TRAIN1;
831 			break;
832 
833 		case DP_TRAINING_PATTERN_2:
834 			value = SOR_DP_TPG_SCRAMBLER_NONE |
835 				SOR_DP_TPG_PATTERN_TRAIN2;
836 			break;
837 
838 		case DP_TRAINING_PATTERN_3:
839 			value = SOR_DP_TPG_SCRAMBLER_NONE |
840 				SOR_DP_TPG_PATTERN_TRAIN3;
841 			break;
842 
843 		default:
844 			return -EINVAL;
845 		}
846 
847 		if (link->caps.channel_coding)
848 			value |= SOR_DP_TPG_CHANNEL_CODING;
849 
850 		pattern = pattern << 8 | value;
851 	}
852 
853 	tegra_sor_writel(sor, voltage_swing, SOR_LANE_DRIVE_CURRENT0);
854 	tegra_sor_writel(sor, pre_emphasis, SOR_LANE_PREEMPHASIS0);
855 
856 	if (link->caps.tps3_supported)
857 		tegra_sor_writel(sor, post_cursor, SOR_LANE_POSTCURSOR0);
858 
859 	tegra_sor_writel(sor, pattern, SOR_DP_TPG);
860 
861 	value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
862 	value &= ~SOR_DP_PADCTL_TX_PU_MASK;
863 	value |= SOR_DP_PADCTL_TX_PU_ENABLE;
864 	value |= SOR_DP_PADCTL_TX_PU(tx_pu);
865 	tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
866 
867 	usleep_range(20, 100);
868 
869 	return 0;
870 }
871 
872 static int tegra_sor_dp_link_configure(struct drm_dp_link *link)
873 {
874 	struct tegra_sor *sor = container_of(link, struct tegra_sor, link);
875 	unsigned int rate, lanes;
876 	u32 value;
877 	int err;
878 
879 	rate = drm_dp_link_rate_to_bw_code(link->rate);
880 	lanes = link->lanes;
881 
882 	/* configure link speed and lane count */
883 	value = tegra_sor_readl(sor, SOR_CLK_CNTRL);
884 	value &= ~SOR_CLK_CNTRL_DP_LINK_SPEED_MASK;
885 	value |= SOR_CLK_CNTRL_DP_LINK_SPEED(rate);
886 	tegra_sor_writel(sor, value, SOR_CLK_CNTRL);
887 
888 	value = tegra_sor_readl(sor, SOR_DP_LINKCTL0);
889 	value &= ~SOR_DP_LINKCTL_LANE_COUNT_MASK;
890 	value |= SOR_DP_LINKCTL_LANE_COUNT(lanes);
891 
892 	if (link->caps.enhanced_framing)
893 		value |= SOR_DP_LINKCTL_ENHANCED_FRAME;
894 
895 	tegra_sor_writel(sor, value, SOR_DP_LINKCTL0);
896 
897 	usleep_range(400, 1000);
898 
899 	/* configure load pulse position adjustment */
900 	value = tegra_sor_readl(sor, sor->soc->regs->pll1);
901 	value &= ~SOR_PLL1_LOADADJ_MASK;
902 
903 	switch (rate) {
904 	case DP_LINK_BW_1_62:
905 		value |= SOR_PLL1_LOADADJ(0x3);
906 		break;
907 
908 	case DP_LINK_BW_2_7:
909 		value |= SOR_PLL1_LOADADJ(0x4);
910 		break;
911 
912 	case DP_LINK_BW_5_4:
913 		value |= SOR_PLL1_LOADADJ(0x6);
914 		break;
915 	}
916 
917 	tegra_sor_writel(sor, value, sor->soc->regs->pll1);
918 
919 	/* use alternate scrambler reset for eDP */
920 	value = tegra_sor_readl(sor, SOR_DP_SPARE0);
921 
922 	if (link->edp == 0)
923 		value &= ~SOR_DP_SPARE_PANEL_INTERNAL;
924 	else
925 		value |= SOR_DP_SPARE_PANEL_INTERNAL;
926 
927 	tegra_sor_writel(sor, value, SOR_DP_SPARE0);
928 
929 	err = tegra_sor_power_down_lanes(sor);
930 	if (err < 0) {
931 		dev_err(sor->dev, "failed to power down lanes: %d\n", err);
932 		return err;
933 	}
934 
935 	/* power up and pre-charge lanes */
936 	err = tegra_sor_power_up_lanes(sor, lanes);
937 	if (err < 0) {
938 		dev_err(sor->dev, "failed to power up %u lane%s: %d\n",
939 			lanes, (lanes != 1) ? "s" : "", err);
940 		return err;
941 	}
942 
943 	tegra_sor_dp_precharge(sor, lanes);
944 
945 	return 0;
946 }
947 
948 static const struct drm_dp_link_ops tegra_sor_dp_link_ops = {
949 	.apply_training = tegra_sor_dp_link_apply_training,
950 	.configure = tegra_sor_dp_link_configure,
951 };
952 
953 static void tegra_sor_super_update(struct tegra_sor *sor)
954 {
955 	tegra_sor_writel(sor, 0, SOR_SUPER_STATE0);
956 	tegra_sor_writel(sor, 1, SOR_SUPER_STATE0);
957 	tegra_sor_writel(sor, 0, SOR_SUPER_STATE0);
958 }
959 
960 static void tegra_sor_update(struct tegra_sor *sor)
961 {
962 	tegra_sor_writel(sor, 0, SOR_STATE0);
963 	tegra_sor_writel(sor, 1, SOR_STATE0);
964 	tegra_sor_writel(sor, 0, SOR_STATE0);
965 }
966 
967 static int tegra_sor_setup_pwm(struct tegra_sor *sor, unsigned long timeout)
968 {
969 	u32 value;
970 
971 	value = tegra_sor_readl(sor, SOR_PWM_DIV);
972 	value &= ~SOR_PWM_DIV_MASK;
973 	value |= 0x400; /* period */
974 	tegra_sor_writel(sor, value, SOR_PWM_DIV);
975 
976 	value = tegra_sor_readl(sor, SOR_PWM_CTL);
977 	value &= ~SOR_PWM_CTL_DUTY_CYCLE_MASK;
978 	value |= 0x400; /* duty cycle */
979 	value &= ~SOR_PWM_CTL_CLK_SEL; /* clock source: PCLK */
980 	value |= SOR_PWM_CTL_TRIGGER;
981 	tegra_sor_writel(sor, value, SOR_PWM_CTL);
982 
983 	timeout = jiffies + msecs_to_jiffies(timeout);
984 
985 	while (time_before(jiffies, timeout)) {
986 		value = tegra_sor_readl(sor, SOR_PWM_CTL);
987 		if ((value & SOR_PWM_CTL_TRIGGER) == 0)
988 			return 0;
989 
990 		usleep_range(25, 100);
991 	}
992 
993 	return -ETIMEDOUT;
994 }
995 
996 static int tegra_sor_attach(struct tegra_sor *sor)
997 {
998 	unsigned long value, timeout;
999 
1000 	/* wake up in normal mode */
1001 	value = tegra_sor_readl(sor, SOR_SUPER_STATE1);
1002 	value |= SOR_SUPER_STATE_HEAD_MODE_AWAKE;
1003 	value |= SOR_SUPER_STATE_MODE_NORMAL;
1004 	tegra_sor_writel(sor, value, SOR_SUPER_STATE1);
1005 	tegra_sor_super_update(sor);
1006 
1007 	/* attach */
1008 	value = tegra_sor_readl(sor, SOR_SUPER_STATE1);
1009 	value |= SOR_SUPER_STATE_ATTACHED;
1010 	tegra_sor_writel(sor, value, SOR_SUPER_STATE1);
1011 	tegra_sor_super_update(sor);
1012 
1013 	timeout = jiffies + msecs_to_jiffies(250);
1014 
1015 	while (time_before(jiffies, timeout)) {
1016 		value = tegra_sor_readl(sor, SOR_TEST);
1017 		if ((value & SOR_TEST_ATTACHED) != 0)
1018 			return 0;
1019 
1020 		usleep_range(25, 100);
1021 	}
1022 
1023 	return -ETIMEDOUT;
1024 }
1025 
1026 static int tegra_sor_wakeup(struct tegra_sor *sor)
1027 {
1028 	unsigned long value, timeout;
1029 
1030 	timeout = jiffies + msecs_to_jiffies(250);
1031 
1032 	/* wait for head to wake up */
1033 	while (time_before(jiffies, timeout)) {
1034 		value = tegra_sor_readl(sor, SOR_TEST);
1035 		value &= SOR_TEST_HEAD_MODE_MASK;
1036 
1037 		if (value == SOR_TEST_HEAD_MODE_AWAKE)
1038 			return 0;
1039 
1040 		usleep_range(25, 100);
1041 	}
1042 
1043 	return -ETIMEDOUT;
1044 }
1045 
1046 static int tegra_sor_power_up(struct tegra_sor *sor, unsigned long timeout)
1047 {
1048 	u32 value;
1049 
1050 	value = tegra_sor_readl(sor, SOR_PWR);
1051 	value |= SOR_PWR_TRIGGER | SOR_PWR_NORMAL_STATE_PU;
1052 	tegra_sor_writel(sor, value, SOR_PWR);
1053 
1054 	timeout = jiffies + msecs_to_jiffies(timeout);
1055 
1056 	while (time_before(jiffies, timeout)) {
1057 		value = tegra_sor_readl(sor, SOR_PWR);
1058 		if ((value & SOR_PWR_TRIGGER) == 0)
1059 			return 0;
1060 
1061 		usleep_range(25, 100);
1062 	}
1063 
1064 	return -ETIMEDOUT;
1065 }
1066 
1067 struct tegra_sor_params {
1068 	/* number of link clocks per line */
1069 	unsigned int num_clocks;
1070 	/* ratio between input and output */
1071 	u64 ratio;
1072 	/* precision factor */
1073 	u64 precision;
1074 
1075 	unsigned int active_polarity;
1076 	unsigned int active_count;
1077 	unsigned int active_frac;
1078 	unsigned int tu_size;
1079 	unsigned int error;
1080 };
1081 
1082 static int tegra_sor_compute_params(struct tegra_sor *sor,
1083 				    struct tegra_sor_params *params,
1084 				    unsigned int tu_size)
1085 {
1086 	u64 active_sym, active_count, frac, approx;
1087 	u32 active_polarity, active_frac = 0;
1088 	const u64 f = params->precision;
1089 	s64 error;
1090 
1091 	active_sym = params->ratio * tu_size;
1092 	active_count = div_u64(active_sym, f) * f;
1093 	frac = active_sym - active_count;
1094 
1095 	/* fraction < 0.5 */
1096 	if (frac >= (f / 2)) {
1097 		active_polarity = 1;
1098 		frac = f - frac;
1099 	} else {
1100 		active_polarity = 0;
1101 	}
1102 
1103 	if (frac != 0) {
1104 		frac = div_u64(f * f,  frac); /* 1/fraction */
1105 		if (frac <= (15 * f)) {
1106 			active_frac = div_u64(frac, f);
1107 
1108 			/* round up */
1109 			if (active_polarity)
1110 				active_frac++;
1111 		} else {
1112 			active_frac = active_polarity ? 1 : 15;
1113 		}
1114 	}
1115 
1116 	if (active_frac == 1)
1117 		active_polarity = 0;
1118 
1119 	if (active_polarity == 1) {
1120 		if (active_frac) {
1121 			approx = active_count + (active_frac * (f - 1)) * f;
1122 			approx = div_u64(approx, active_frac * f);
1123 		} else {
1124 			approx = active_count + f;
1125 		}
1126 	} else {
1127 		if (active_frac)
1128 			approx = active_count + div_u64(f, active_frac);
1129 		else
1130 			approx = active_count;
1131 	}
1132 
1133 	error = div_s64(active_sym - approx, tu_size);
1134 	error *= params->num_clocks;
1135 
1136 	if (error <= 0 && abs(error) < params->error) {
1137 		params->active_count = div_u64(active_count, f);
1138 		params->active_polarity = active_polarity;
1139 		params->active_frac = active_frac;
1140 		params->error = abs(error);
1141 		params->tu_size = tu_size;
1142 
1143 		if (error == 0)
1144 			return true;
1145 	}
1146 
1147 	return false;
1148 }
1149 
1150 static int tegra_sor_compute_config(struct tegra_sor *sor,
1151 				    const struct drm_display_mode *mode,
1152 				    struct tegra_sor_config *config,
1153 				    struct drm_dp_link *link)
1154 {
1155 	const u64 f = 100000, link_rate = link->rate * 1000;
1156 	const u64 pclk = mode->clock * 1000;
1157 	u64 input, output, watermark, num;
1158 	struct tegra_sor_params params;
1159 	u32 num_syms_per_line;
1160 	unsigned int i;
1161 
1162 	if (!link_rate || !link->lanes || !pclk || !config->bits_per_pixel)
1163 		return -EINVAL;
1164 
1165 	input = pclk * config->bits_per_pixel;
1166 	output = link_rate * 8 * link->lanes;
1167 
1168 	if (input >= output)
1169 		return -ERANGE;
1170 
1171 	memset(&params, 0, sizeof(params));
1172 	params.ratio = div64_u64(input * f, output);
1173 	params.num_clocks = div_u64(link_rate * mode->hdisplay, pclk);
1174 	params.precision = f;
1175 	params.error = 64 * f;
1176 	params.tu_size = 64;
1177 
1178 	for (i = params.tu_size; i >= 32; i--)
1179 		if (tegra_sor_compute_params(sor, &params, i))
1180 			break;
1181 
1182 	if (params.active_frac == 0) {
1183 		config->active_polarity = 0;
1184 		config->active_count = params.active_count;
1185 
1186 		if (!params.active_polarity)
1187 			config->active_count--;
1188 
1189 		config->tu_size = params.tu_size;
1190 		config->active_frac = 1;
1191 	} else {
1192 		config->active_polarity = params.active_polarity;
1193 		config->active_count = params.active_count;
1194 		config->active_frac = params.active_frac;
1195 		config->tu_size = params.tu_size;
1196 	}
1197 
1198 	dev_dbg(sor->dev,
1199 		"polarity: %d active count: %d tu size: %d active frac: %d\n",
1200 		config->active_polarity, config->active_count,
1201 		config->tu_size, config->active_frac);
1202 
1203 	watermark = params.ratio * config->tu_size * (f - params.ratio);
1204 	watermark = div_u64(watermark, f);
1205 
1206 	watermark = div_u64(watermark + params.error, f);
1207 	config->watermark = watermark + (config->bits_per_pixel / 8) + 2;
1208 	num_syms_per_line = (mode->hdisplay * config->bits_per_pixel) *
1209 			    (link->lanes * 8);
1210 
1211 	if (config->watermark > 30) {
1212 		config->watermark = 30;
1213 		dev_err(sor->dev,
1214 			"unable to compute TU size, forcing watermark to %u\n",
1215 			config->watermark);
1216 	} else if (config->watermark > num_syms_per_line) {
1217 		config->watermark = num_syms_per_line;
1218 		dev_err(sor->dev, "watermark too high, forcing to %u\n",
1219 			config->watermark);
1220 	}
1221 
1222 	/* compute the number of symbols per horizontal blanking interval */
1223 	num = ((mode->htotal - mode->hdisplay) - 7) * link_rate;
1224 	config->hblank_symbols = div_u64(num, pclk);
1225 
1226 	if (link->caps.enhanced_framing)
1227 		config->hblank_symbols -= 3;
1228 
1229 	config->hblank_symbols -= 12 / link->lanes;
1230 
1231 	/* compute the number of symbols per vertical blanking interval */
1232 	num = (mode->hdisplay - 25) * link_rate;
1233 	config->vblank_symbols = div_u64(num, pclk);
1234 	config->vblank_symbols -= 36 / link->lanes + 4;
1235 
1236 	dev_dbg(sor->dev, "blank symbols: H:%u V:%u\n", config->hblank_symbols,
1237 		config->vblank_symbols);
1238 
1239 	return 0;
1240 }
1241 
1242 static void tegra_sor_apply_config(struct tegra_sor *sor,
1243 				   const struct tegra_sor_config *config)
1244 {
1245 	u32 value;
1246 
1247 	value = tegra_sor_readl(sor, SOR_DP_LINKCTL0);
1248 	value &= ~SOR_DP_LINKCTL_TU_SIZE_MASK;
1249 	value |= SOR_DP_LINKCTL_TU_SIZE(config->tu_size);
1250 	tegra_sor_writel(sor, value, SOR_DP_LINKCTL0);
1251 
1252 	value = tegra_sor_readl(sor, SOR_DP_CONFIG0);
1253 	value &= ~SOR_DP_CONFIG_WATERMARK_MASK;
1254 	value |= SOR_DP_CONFIG_WATERMARK(config->watermark);
1255 
1256 	value &= ~SOR_DP_CONFIG_ACTIVE_SYM_COUNT_MASK;
1257 	value |= SOR_DP_CONFIG_ACTIVE_SYM_COUNT(config->active_count);
1258 
1259 	value &= ~SOR_DP_CONFIG_ACTIVE_SYM_FRAC_MASK;
1260 	value |= SOR_DP_CONFIG_ACTIVE_SYM_FRAC(config->active_frac);
1261 
1262 	if (config->active_polarity)
1263 		value |= SOR_DP_CONFIG_ACTIVE_SYM_POLARITY;
1264 	else
1265 		value &= ~SOR_DP_CONFIG_ACTIVE_SYM_POLARITY;
1266 
1267 	value |= SOR_DP_CONFIG_ACTIVE_SYM_ENABLE;
1268 	value |= SOR_DP_CONFIG_DISPARITY_NEGATIVE;
1269 	tegra_sor_writel(sor, value, SOR_DP_CONFIG0);
1270 
1271 	value = tegra_sor_readl(sor, SOR_DP_AUDIO_HBLANK_SYMBOLS);
1272 	value &= ~SOR_DP_AUDIO_HBLANK_SYMBOLS_MASK;
1273 	value |= config->hblank_symbols & 0xffff;
1274 	tegra_sor_writel(sor, value, SOR_DP_AUDIO_HBLANK_SYMBOLS);
1275 
1276 	value = tegra_sor_readl(sor, SOR_DP_AUDIO_VBLANK_SYMBOLS);
1277 	value &= ~SOR_DP_AUDIO_VBLANK_SYMBOLS_MASK;
1278 	value |= config->vblank_symbols & 0xffff;
1279 	tegra_sor_writel(sor, value, SOR_DP_AUDIO_VBLANK_SYMBOLS);
1280 }
1281 
1282 static void tegra_sor_mode_set(struct tegra_sor *sor,
1283 			       const struct drm_display_mode *mode,
1284 			       struct tegra_sor_state *state)
1285 {
1286 	struct tegra_dc *dc = to_tegra_dc(sor->output.encoder.crtc);
1287 	unsigned int vbe, vse, hbe, hse, vbs, hbs;
1288 	u32 value;
1289 
1290 	value = tegra_sor_readl(sor, SOR_STATE1);
1291 	value &= ~SOR_STATE_ASY_PIXELDEPTH_MASK;
1292 	value &= ~SOR_STATE_ASY_CRC_MODE_MASK;
1293 	value &= ~SOR_STATE_ASY_OWNER_MASK;
1294 
1295 	value |= SOR_STATE_ASY_CRC_MODE_COMPLETE |
1296 		 SOR_STATE_ASY_OWNER(dc->pipe + 1);
1297 
1298 	if (mode->flags & DRM_MODE_FLAG_PHSYNC)
1299 		value &= ~SOR_STATE_ASY_HSYNCPOL;
1300 
1301 	if (mode->flags & DRM_MODE_FLAG_NHSYNC)
1302 		value |= SOR_STATE_ASY_HSYNCPOL;
1303 
1304 	if (mode->flags & DRM_MODE_FLAG_PVSYNC)
1305 		value &= ~SOR_STATE_ASY_VSYNCPOL;
1306 
1307 	if (mode->flags & DRM_MODE_FLAG_NVSYNC)
1308 		value |= SOR_STATE_ASY_VSYNCPOL;
1309 
1310 	switch (state->bpc) {
1311 	case 16:
1312 		value |= SOR_STATE_ASY_PIXELDEPTH_BPP_48_444;
1313 		break;
1314 
1315 	case 12:
1316 		value |= SOR_STATE_ASY_PIXELDEPTH_BPP_36_444;
1317 		break;
1318 
1319 	case 10:
1320 		value |= SOR_STATE_ASY_PIXELDEPTH_BPP_30_444;
1321 		break;
1322 
1323 	case 8:
1324 		value |= SOR_STATE_ASY_PIXELDEPTH_BPP_24_444;
1325 		break;
1326 
1327 	case 6:
1328 		value |= SOR_STATE_ASY_PIXELDEPTH_BPP_18_444;
1329 		break;
1330 
1331 	default:
1332 		value |= SOR_STATE_ASY_PIXELDEPTH_BPP_24_444;
1333 		break;
1334 	}
1335 
1336 	tegra_sor_writel(sor, value, SOR_STATE1);
1337 
1338 	/*
1339 	 * TODO: The video timing programming below doesn't seem to match the
1340 	 * register definitions.
1341 	 */
1342 
1343 	value = ((mode->vtotal & 0x7fff) << 16) | (mode->htotal & 0x7fff);
1344 	tegra_sor_writel(sor, value, sor->soc->regs->head_state1 + dc->pipe);
1345 
1346 	/* sync end = sync width - 1 */
1347 	vse = mode->vsync_end - mode->vsync_start - 1;
1348 	hse = mode->hsync_end - mode->hsync_start - 1;
1349 
1350 	value = ((vse & 0x7fff) << 16) | (hse & 0x7fff);
1351 	tegra_sor_writel(sor, value, sor->soc->regs->head_state2 + dc->pipe);
1352 
1353 	/* blank end = sync end + back porch */
1354 	vbe = vse + (mode->vtotal - mode->vsync_end);
1355 	hbe = hse + (mode->htotal - mode->hsync_end);
1356 
1357 	value = ((vbe & 0x7fff) << 16) | (hbe & 0x7fff);
1358 	tegra_sor_writel(sor, value, sor->soc->regs->head_state3 + dc->pipe);
1359 
1360 	/* blank start = blank end + active */
1361 	vbs = vbe + mode->vdisplay;
1362 	hbs = hbe + mode->hdisplay;
1363 
1364 	value = ((vbs & 0x7fff) << 16) | (hbs & 0x7fff);
1365 	tegra_sor_writel(sor, value, sor->soc->regs->head_state4 + dc->pipe);
1366 
1367 	/* XXX interlacing support */
1368 	tegra_sor_writel(sor, 0x001, sor->soc->regs->head_state5 + dc->pipe);
1369 }
1370 
1371 static int tegra_sor_detach(struct tegra_sor *sor)
1372 {
1373 	unsigned long value, timeout;
1374 
1375 	/* switch to safe mode */
1376 	value = tegra_sor_readl(sor, SOR_SUPER_STATE1);
1377 	value &= ~SOR_SUPER_STATE_MODE_NORMAL;
1378 	tegra_sor_writel(sor, value, SOR_SUPER_STATE1);
1379 	tegra_sor_super_update(sor);
1380 
1381 	timeout = jiffies + msecs_to_jiffies(250);
1382 
1383 	while (time_before(jiffies, timeout)) {
1384 		value = tegra_sor_readl(sor, SOR_PWR);
1385 		if (value & SOR_PWR_MODE_SAFE)
1386 			break;
1387 	}
1388 
1389 	if ((value & SOR_PWR_MODE_SAFE) == 0)
1390 		return -ETIMEDOUT;
1391 
1392 	/* go to sleep */
1393 	value = tegra_sor_readl(sor, SOR_SUPER_STATE1);
1394 	value &= ~SOR_SUPER_STATE_HEAD_MODE_MASK;
1395 	tegra_sor_writel(sor, value, SOR_SUPER_STATE1);
1396 	tegra_sor_super_update(sor);
1397 
1398 	/* detach */
1399 	value = tegra_sor_readl(sor, SOR_SUPER_STATE1);
1400 	value &= ~SOR_SUPER_STATE_ATTACHED;
1401 	tegra_sor_writel(sor, value, SOR_SUPER_STATE1);
1402 	tegra_sor_super_update(sor);
1403 
1404 	timeout = jiffies + msecs_to_jiffies(250);
1405 
1406 	while (time_before(jiffies, timeout)) {
1407 		value = tegra_sor_readl(sor, SOR_TEST);
1408 		if ((value & SOR_TEST_ATTACHED) == 0)
1409 			break;
1410 
1411 		usleep_range(25, 100);
1412 	}
1413 
1414 	if ((value & SOR_TEST_ATTACHED) != 0)
1415 		return -ETIMEDOUT;
1416 
1417 	return 0;
1418 }
1419 
1420 static int tegra_sor_power_down(struct tegra_sor *sor)
1421 {
1422 	unsigned long value, timeout;
1423 	int err;
1424 
1425 	value = tegra_sor_readl(sor, SOR_PWR);
1426 	value &= ~SOR_PWR_NORMAL_STATE_PU;
1427 	value |= SOR_PWR_TRIGGER;
1428 	tegra_sor_writel(sor, value, SOR_PWR);
1429 
1430 	timeout = jiffies + msecs_to_jiffies(250);
1431 
1432 	while (time_before(jiffies, timeout)) {
1433 		value = tegra_sor_readl(sor, SOR_PWR);
1434 		if ((value & SOR_PWR_TRIGGER) == 0)
1435 			return 0;
1436 
1437 		usleep_range(25, 100);
1438 	}
1439 
1440 	if ((value & SOR_PWR_TRIGGER) != 0)
1441 		return -ETIMEDOUT;
1442 
1443 	/* switch to safe parent clock */
1444 	err = tegra_sor_set_parent_clock(sor, sor->clk_safe);
1445 	if (err < 0) {
1446 		dev_err(sor->dev, "failed to set safe parent clock: %d\n", err);
1447 		return err;
1448 	}
1449 
1450 	value = tegra_sor_readl(sor, sor->soc->regs->pll2);
1451 	value |= SOR_PLL2_PORT_POWERDOWN;
1452 	tegra_sor_writel(sor, value, sor->soc->regs->pll2);
1453 
1454 	usleep_range(20, 100);
1455 
1456 	value = tegra_sor_readl(sor, sor->soc->regs->pll0);
1457 	value |= SOR_PLL0_VCOPD | SOR_PLL0_PWR;
1458 	tegra_sor_writel(sor, value, sor->soc->regs->pll0);
1459 
1460 	value = tegra_sor_readl(sor, sor->soc->regs->pll2);
1461 	value |= SOR_PLL2_SEQ_PLLCAPPD;
1462 	value |= SOR_PLL2_SEQ_PLLCAPPD_ENFORCE;
1463 	tegra_sor_writel(sor, value, sor->soc->regs->pll2);
1464 
1465 	usleep_range(20, 100);
1466 
1467 	return 0;
1468 }
1469 
1470 static int tegra_sor_crc_wait(struct tegra_sor *sor, unsigned long timeout)
1471 {
1472 	u32 value;
1473 
1474 	timeout = jiffies + msecs_to_jiffies(timeout);
1475 
1476 	while (time_before(jiffies, timeout)) {
1477 		value = tegra_sor_readl(sor, SOR_CRCA);
1478 		if (value & SOR_CRCA_VALID)
1479 			return 0;
1480 
1481 		usleep_range(100, 200);
1482 	}
1483 
1484 	return -ETIMEDOUT;
1485 }
1486 
1487 static int tegra_sor_show_crc(struct seq_file *s, void *data)
1488 {
1489 	struct drm_info_node *node = s->private;
1490 	struct tegra_sor *sor = node->info_ent->data;
1491 	struct drm_crtc *crtc = sor->output.encoder.crtc;
1492 	struct drm_device *drm = node->minor->dev;
1493 	int err = 0;
1494 	u32 value;
1495 
1496 	drm_modeset_lock_all(drm);
1497 
1498 	if (!crtc || !crtc->state->active) {
1499 		err = -EBUSY;
1500 		goto unlock;
1501 	}
1502 
1503 	value = tegra_sor_readl(sor, SOR_STATE1);
1504 	value &= ~SOR_STATE_ASY_CRC_MODE_MASK;
1505 	tegra_sor_writel(sor, value, SOR_STATE1);
1506 
1507 	value = tegra_sor_readl(sor, SOR_CRC_CNTRL);
1508 	value |= SOR_CRC_CNTRL_ENABLE;
1509 	tegra_sor_writel(sor, value, SOR_CRC_CNTRL);
1510 
1511 	value = tegra_sor_readl(sor, SOR_TEST);
1512 	value &= ~SOR_TEST_CRC_POST_SERIALIZE;
1513 	tegra_sor_writel(sor, value, SOR_TEST);
1514 
1515 	err = tegra_sor_crc_wait(sor, 100);
1516 	if (err < 0)
1517 		goto unlock;
1518 
1519 	tegra_sor_writel(sor, SOR_CRCA_RESET, SOR_CRCA);
1520 	value = tegra_sor_readl(sor, SOR_CRCB);
1521 
1522 	seq_printf(s, "%08x\n", value);
1523 
1524 unlock:
1525 	drm_modeset_unlock_all(drm);
1526 	return err;
1527 }
1528 
1529 #define DEBUGFS_REG32(_name) { .name = #_name, .offset = _name }
1530 
1531 static const struct debugfs_reg32 tegra_sor_regs[] = {
1532 	DEBUGFS_REG32(SOR_CTXSW),
1533 	DEBUGFS_REG32(SOR_SUPER_STATE0),
1534 	DEBUGFS_REG32(SOR_SUPER_STATE1),
1535 	DEBUGFS_REG32(SOR_STATE0),
1536 	DEBUGFS_REG32(SOR_STATE1),
1537 	DEBUGFS_REG32(SOR_HEAD_STATE0(0)),
1538 	DEBUGFS_REG32(SOR_HEAD_STATE0(1)),
1539 	DEBUGFS_REG32(SOR_HEAD_STATE1(0)),
1540 	DEBUGFS_REG32(SOR_HEAD_STATE1(1)),
1541 	DEBUGFS_REG32(SOR_HEAD_STATE2(0)),
1542 	DEBUGFS_REG32(SOR_HEAD_STATE2(1)),
1543 	DEBUGFS_REG32(SOR_HEAD_STATE3(0)),
1544 	DEBUGFS_REG32(SOR_HEAD_STATE3(1)),
1545 	DEBUGFS_REG32(SOR_HEAD_STATE4(0)),
1546 	DEBUGFS_REG32(SOR_HEAD_STATE4(1)),
1547 	DEBUGFS_REG32(SOR_HEAD_STATE5(0)),
1548 	DEBUGFS_REG32(SOR_HEAD_STATE5(1)),
1549 	DEBUGFS_REG32(SOR_CRC_CNTRL),
1550 	DEBUGFS_REG32(SOR_DP_DEBUG_MVID),
1551 	DEBUGFS_REG32(SOR_CLK_CNTRL),
1552 	DEBUGFS_REG32(SOR_CAP),
1553 	DEBUGFS_REG32(SOR_PWR),
1554 	DEBUGFS_REG32(SOR_TEST),
1555 	DEBUGFS_REG32(SOR_PLL0),
1556 	DEBUGFS_REG32(SOR_PLL1),
1557 	DEBUGFS_REG32(SOR_PLL2),
1558 	DEBUGFS_REG32(SOR_PLL3),
1559 	DEBUGFS_REG32(SOR_CSTM),
1560 	DEBUGFS_REG32(SOR_LVDS),
1561 	DEBUGFS_REG32(SOR_CRCA),
1562 	DEBUGFS_REG32(SOR_CRCB),
1563 	DEBUGFS_REG32(SOR_BLANK),
1564 	DEBUGFS_REG32(SOR_SEQ_CTL),
1565 	DEBUGFS_REG32(SOR_LANE_SEQ_CTL),
1566 	DEBUGFS_REG32(SOR_SEQ_INST(0)),
1567 	DEBUGFS_REG32(SOR_SEQ_INST(1)),
1568 	DEBUGFS_REG32(SOR_SEQ_INST(2)),
1569 	DEBUGFS_REG32(SOR_SEQ_INST(3)),
1570 	DEBUGFS_REG32(SOR_SEQ_INST(4)),
1571 	DEBUGFS_REG32(SOR_SEQ_INST(5)),
1572 	DEBUGFS_REG32(SOR_SEQ_INST(6)),
1573 	DEBUGFS_REG32(SOR_SEQ_INST(7)),
1574 	DEBUGFS_REG32(SOR_SEQ_INST(8)),
1575 	DEBUGFS_REG32(SOR_SEQ_INST(9)),
1576 	DEBUGFS_REG32(SOR_SEQ_INST(10)),
1577 	DEBUGFS_REG32(SOR_SEQ_INST(11)),
1578 	DEBUGFS_REG32(SOR_SEQ_INST(12)),
1579 	DEBUGFS_REG32(SOR_SEQ_INST(13)),
1580 	DEBUGFS_REG32(SOR_SEQ_INST(14)),
1581 	DEBUGFS_REG32(SOR_SEQ_INST(15)),
1582 	DEBUGFS_REG32(SOR_PWM_DIV),
1583 	DEBUGFS_REG32(SOR_PWM_CTL),
1584 	DEBUGFS_REG32(SOR_VCRC_A0),
1585 	DEBUGFS_REG32(SOR_VCRC_A1),
1586 	DEBUGFS_REG32(SOR_VCRC_B0),
1587 	DEBUGFS_REG32(SOR_VCRC_B1),
1588 	DEBUGFS_REG32(SOR_CCRC_A0),
1589 	DEBUGFS_REG32(SOR_CCRC_A1),
1590 	DEBUGFS_REG32(SOR_CCRC_B0),
1591 	DEBUGFS_REG32(SOR_CCRC_B1),
1592 	DEBUGFS_REG32(SOR_EDATA_A0),
1593 	DEBUGFS_REG32(SOR_EDATA_A1),
1594 	DEBUGFS_REG32(SOR_EDATA_B0),
1595 	DEBUGFS_REG32(SOR_EDATA_B1),
1596 	DEBUGFS_REG32(SOR_COUNT_A0),
1597 	DEBUGFS_REG32(SOR_COUNT_A1),
1598 	DEBUGFS_REG32(SOR_COUNT_B0),
1599 	DEBUGFS_REG32(SOR_COUNT_B1),
1600 	DEBUGFS_REG32(SOR_DEBUG_A0),
1601 	DEBUGFS_REG32(SOR_DEBUG_A1),
1602 	DEBUGFS_REG32(SOR_DEBUG_B0),
1603 	DEBUGFS_REG32(SOR_DEBUG_B1),
1604 	DEBUGFS_REG32(SOR_TRIG),
1605 	DEBUGFS_REG32(SOR_MSCHECK),
1606 	DEBUGFS_REG32(SOR_XBAR_CTRL),
1607 	DEBUGFS_REG32(SOR_XBAR_POL),
1608 	DEBUGFS_REG32(SOR_DP_LINKCTL0),
1609 	DEBUGFS_REG32(SOR_DP_LINKCTL1),
1610 	DEBUGFS_REG32(SOR_LANE_DRIVE_CURRENT0),
1611 	DEBUGFS_REG32(SOR_LANE_DRIVE_CURRENT1),
1612 	DEBUGFS_REG32(SOR_LANE4_DRIVE_CURRENT0),
1613 	DEBUGFS_REG32(SOR_LANE4_DRIVE_CURRENT1),
1614 	DEBUGFS_REG32(SOR_LANE_PREEMPHASIS0),
1615 	DEBUGFS_REG32(SOR_LANE_PREEMPHASIS1),
1616 	DEBUGFS_REG32(SOR_LANE4_PREEMPHASIS0),
1617 	DEBUGFS_REG32(SOR_LANE4_PREEMPHASIS1),
1618 	DEBUGFS_REG32(SOR_LANE_POSTCURSOR0),
1619 	DEBUGFS_REG32(SOR_LANE_POSTCURSOR1),
1620 	DEBUGFS_REG32(SOR_DP_CONFIG0),
1621 	DEBUGFS_REG32(SOR_DP_CONFIG1),
1622 	DEBUGFS_REG32(SOR_DP_MN0),
1623 	DEBUGFS_REG32(SOR_DP_MN1),
1624 	DEBUGFS_REG32(SOR_DP_PADCTL0),
1625 	DEBUGFS_REG32(SOR_DP_PADCTL1),
1626 	DEBUGFS_REG32(SOR_DP_PADCTL2),
1627 	DEBUGFS_REG32(SOR_DP_DEBUG0),
1628 	DEBUGFS_REG32(SOR_DP_DEBUG1),
1629 	DEBUGFS_REG32(SOR_DP_SPARE0),
1630 	DEBUGFS_REG32(SOR_DP_SPARE1),
1631 	DEBUGFS_REG32(SOR_DP_AUDIO_CTRL),
1632 	DEBUGFS_REG32(SOR_DP_AUDIO_HBLANK_SYMBOLS),
1633 	DEBUGFS_REG32(SOR_DP_AUDIO_VBLANK_SYMBOLS),
1634 	DEBUGFS_REG32(SOR_DP_GENERIC_INFOFRAME_HEADER),
1635 	DEBUGFS_REG32(SOR_DP_GENERIC_INFOFRAME_SUBPACK0),
1636 	DEBUGFS_REG32(SOR_DP_GENERIC_INFOFRAME_SUBPACK1),
1637 	DEBUGFS_REG32(SOR_DP_GENERIC_INFOFRAME_SUBPACK2),
1638 	DEBUGFS_REG32(SOR_DP_GENERIC_INFOFRAME_SUBPACK3),
1639 	DEBUGFS_REG32(SOR_DP_GENERIC_INFOFRAME_SUBPACK4),
1640 	DEBUGFS_REG32(SOR_DP_GENERIC_INFOFRAME_SUBPACK5),
1641 	DEBUGFS_REG32(SOR_DP_GENERIC_INFOFRAME_SUBPACK6),
1642 	DEBUGFS_REG32(SOR_DP_TPG),
1643 	DEBUGFS_REG32(SOR_DP_TPG_CONFIG),
1644 	DEBUGFS_REG32(SOR_DP_LQ_CSTM0),
1645 	DEBUGFS_REG32(SOR_DP_LQ_CSTM1),
1646 	DEBUGFS_REG32(SOR_DP_LQ_CSTM2),
1647 };
1648 
1649 static int tegra_sor_show_regs(struct seq_file *s, void *data)
1650 {
1651 	struct drm_info_node *node = s->private;
1652 	struct tegra_sor *sor = node->info_ent->data;
1653 	struct drm_crtc *crtc = sor->output.encoder.crtc;
1654 	struct drm_device *drm = node->minor->dev;
1655 	unsigned int i;
1656 	int err = 0;
1657 
1658 	drm_modeset_lock_all(drm);
1659 
1660 	if (!crtc || !crtc->state->active) {
1661 		err = -EBUSY;
1662 		goto unlock;
1663 	}
1664 
1665 	for (i = 0; i < ARRAY_SIZE(tegra_sor_regs); i++) {
1666 		unsigned int offset = tegra_sor_regs[i].offset;
1667 
1668 		seq_printf(s, "%-38s %#05x %08x\n", tegra_sor_regs[i].name,
1669 			   offset, tegra_sor_readl(sor, offset));
1670 	}
1671 
1672 unlock:
1673 	drm_modeset_unlock_all(drm);
1674 	return err;
1675 }
1676 
1677 static const struct drm_info_list debugfs_files[] = {
1678 	{ "crc", tegra_sor_show_crc, 0, NULL },
1679 	{ "regs", tegra_sor_show_regs, 0, NULL },
1680 };
1681 
1682 static int tegra_sor_late_register(struct drm_connector *connector)
1683 {
1684 	struct tegra_output *output = connector_to_output(connector);
1685 	unsigned int i, count = ARRAY_SIZE(debugfs_files);
1686 	struct drm_minor *minor = connector->dev->primary;
1687 	struct dentry *root = connector->debugfs_entry;
1688 	struct tegra_sor *sor = to_sor(output);
1689 
1690 	sor->debugfs_files = kmemdup(debugfs_files, sizeof(debugfs_files),
1691 				     GFP_KERNEL);
1692 	if (!sor->debugfs_files)
1693 		return -ENOMEM;
1694 
1695 	for (i = 0; i < count; i++)
1696 		sor->debugfs_files[i].data = sor;
1697 
1698 	drm_debugfs_create_files(sor->debugfs_files, count, root, minor);
1699 
1700 	return 0;
1701 }
1702 
1703 static void tegra_sor_early_unregister(struct drm_connector *connector)
1704 {
1705 	struct tegra_output *output = connector_to_output(connector);
1706 	unsigned int count = ARRAY_SIZE(debugfs_files);
1707 	struct tegra_sor *sor = to_sor(output);
1708 
1709 	drm_debugfs_remove_files(sor->debugfs_files, count,
1710 				 connector->dev->primary);
1711 	kfree(sor->debugfs_files);
1712 	sor->debugfs_files = NULL;
1713 }
1714 
1715 static void tegra_sor_connector_reset(struct drm_connector *connector)
1716 {
1717 	struct tegra_sor_state *state;
1718 
1719 	state = kzalloc(sizeof(*state), GFP_KERNEL);
1720 	if (!state)
1721 		return;
1722 
1723 	if (connector->state) {
1724 		__drm_atomic_helper_connector_destroy_state(connector->state);
1725 		kfree(connector->state);
1726 	}
1727 
1728 	__drm_atomic_helper_connector_reset(connector, &state->base);
1729 }
1730 
1731 static enum drm_connector_status
1732 tegra_sor_connector_detect(struct drm_connector *connector, bool force)
1733 {
1734 	struct tegra_output *output = connector_to_output(connector);
1735 	struct tegra_sor *sor = to_sor(output);
1736 
1737 	if (sor->aux)
1738 		return drm_dp_aux_detect(sor->aux);
1739 
1740 	return tegra_output_connector_detect(connector, force);
1741 }
1742 
1743 static struct drm_connector_state *
1744 tegra_sor_connector_duplicate_state(struct drm_connector *connector)
1745 {
1746 	struct tegra_sor_state *state = to_sor_state(connector->state);
1747 	struct tegra_sor_state *copy;
1748 
1749 	copy = kmemdup(state, sizeof(*state), GFP_KERNEL);
1750 	if (!copy)
1751 		return NULL;
1752 
1753 	__drm_atomic_helper_connector_duplicate_state(connector, &copy->base);
1754 
1755 	return &copy->base;
1756 }
1757 
1758 static const struct drm_connector_funcs tegra_sor_connector_funcs = {
1759 	.reset = tegra_sor_connector_reset,
1760 	.detect = tegra_sor_connector_detect,
1761 	.fill_modes = drm_helper_probe_single_connector_modes,
1762 	.destroy = tegra_output_connector_destroy,
1763 	.atomic_duplicate_state = tegra_sor_connector_duplicate_state,
1764 	.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
1765 	.late_register = tegra_sor_late_register,
1766 	.early_unregister = tegra_sor_early_unregister,
1767 };
1768 
1769 static int tegra_sor_connector_get_modes(struct drm_connector *connector)
1770 {
1771 	struct tegra_output *output = connector_to_output(connector);
1772 	struct tegra_sor *sor = to_sor(output);
1773 	int err;
1774 
1775 	if (sor->aux)
1776 		drm_dp_aux_enable(sor->aux);
1777 
1778 	err = tegra_output_connector_get_modes(connector);
1779 
1780 	if (sor->aux)
1781 		drm_dp_aux_disable(sor->aux);
1782 
1783 	return err;
1784 }
1785 
1786 static enum drm_mode_status
1787 tegra_sor_connector_mode_valid(struct drm_connector *connector,
1788 			       struct drm_display_mode *mode)
1789 {
1790 	return MODE_OK;
1791 }
1792 
1793 static const struct drm_connector_helper_funcs tegra_sor_connector_helper_funcs = {
1794 	.get_modes = tegra_sor_connector_get_modes,
1795 	.mode_valid = tegra_sor_connector_mode_valid,
1796 };
1797 
1798 static int
1799 tegra_sor_encoder_atomic_check(struct drm_encoder *encoder,
1800 			       struct drm_crtc_state *crtc_state,
1801 			       struct drm_connector_state *conn_state)
1802 {
1803 	struct tegra_output *output = encoder_to_output(encoder);
1804 	struct tegra_sor_state *state = to_sor_state(conn_state);
1805 	struct tegra_dc *dc = to_tegra_dc(conn_state->crtc);
1806 	unsigned long pclk = crtc_state->mode.clock * 1000;
1807 	struct tegra_sor *sor = to_sor(output);
1808 	struct drm_display_info *info;
1809 	int err;
1810 
1811 	info = &output->connector.display_info;
1812 
1813 	/*
1814 	 * For HBR2 modes, the SOR brick needs to use the x20 multiplier, so
1815 	 * the pixel clock must be corrected accordingly.
1816 	 */
1817 	if (pclk >= 340000000) {
1818 		state->link_speed = 20;
1819 		state->pclk = pclk / 2;
1820 	} else {
1821 		state->link_speed = 10;
1822 		state->pclk = pclk;
1823 	}
1824 
1825 	err = tegra_dc_state_setup_clock(dc, crtc_state, sor->clk_parent,
1826 					 pclk, 0);
1827 	if (err < 0) {
1828 		dev_err(output->dev, "failed to setup CRTC state: %d\n", err);
1829 		return err;
1830 	}
1831 
1832 	switch (info->bpc) {
1833 	case 8:
1834 	case 6:
1835 		state->bpc = info->bpc;
1836 		break;
1837 
1838 	default:
1839 		DRM_DEBUG_KMS("%u bits-per-color not supported\n", info->bpc);
1840 		state->bpc = 8;
1841 		break;
1842 	}
1843 
1844 	return 0;
1845 }
1846 
1847 static inline u32 tegra_sor_hdmi_subpack(const u8 *ptr, size_t size)
1848 {
1849 	u32 value = 0;
1850 	size_t i;
1851 
1852 	for (i = size; i > 0; i--)
1853 		value = (value << 8) | ptr[i - 1];
1854 
1855 	return value;
1856 }
1857 
1858 static void tegra_sor_hdmi_write_infopack(struct tegra_sor *sor,
1859 					  const void *data, size_t size)
1860 {
1861 	const u8 *ptr = data;
1862 	unsigned long offset;
1863 	size_t i, j;
1864 	u32 value;
1865 
1866 	switch (ptr[0]) {
1867 	case HDMI_INFOFRAME_TYPE_AVI:
1868 		offset = SOR_HDMI_AVI_INFOFRAME_HEADER;
1869 		break;
1870 
1871 	case HDMI_INFOFRAME_TYPE_AUDIO:
1872 		offset = SOR_HDMI_AUDIO_INFOFRAME_HEADER;
1873 		break;
1874 
1875 	case HDMI_INFOFRAME_TYPE_VENDOR:
1876 		offset = SOR_HDMI_VSI_INFOFRAME_HEADER;
1877 		break;
1878 
1879 	default:
1880 		dev_err(sor->dev, "unsupported infoframe type: %02x\n",
1881 			ptr[0]);
1882 		return;
1883 	}
1884 
1885 	value = INFOFRAME_HEADER_TYPE(ptr[0]) |
1886 		INFOFRAME_HEADER_VERSION(ptr[1]) |
1887 		INFOFRAME_HEADER_LEN(ptr[2]);
1888 	tegra_sor_writel(sor, value, offset);
1889 	offset++;
1890 
1891 	/*
1892 	 * Each subpack contains 7 bytes, divided into:
1893 	 * - subpack_low: bytes 0 - 3
1894 	 * - subpack_high: bytes 4 - 6 (with byte 7 padded to 0x00)
1895 	 */
1896 	for (i = 3, j = 0; i < size; i += 7, j += 8) {
1897 		size_t rem = size - i, num = min_t(size_t, rem, 4);
1898 
1899 		value = tegra_sor_hdmi_subpack(&ptr[i], num);
1900 		tegra_sor_writel(sor, value, offset++);
1901 
1902 		num = min_t(size_t, rem - num, 3);
1903 
1904 		value = tegra_sor_hdmi_subpack(&ptr[i + 4], num);
1905 		tegra_sor_writel(sor, value, offset++);
1906 	}
1907 }
1908 
1909 static int
1910 tegra_sor_hdmi_setup_avi_infoframe(struct tegra_sor *sor,
1911 				   const struct drm_display_mode *mode)
1912 {
1913 	u8 buffer[HDMI_INFOFRAME_SIZE(AVI)];
1914 	struct hdmi_avi_infoframe frame;
1915 	u32 value;
1916 	int err;
1917 
1918 	/* disable AVI infoframe */
1919 	value = tegra_sor_readl(sor, SOR_HDMI_AVI_INFOFRAME_CTRL);
1920 	value &= ~INFOFRAME_CTRL_SINGLE;
1921 	value &= ~INFOFRAME_CTRL_OTHER;
1922 	value &= ~INFOFRAME_CTRL_ENABLE;
1923 	tegra_sor_writel(sor, value, SOR_HDMI_AVI_INFOFRAME_CTRL);
1924 
1925 	err = drm_hdmi_avi_infoframe_from_display_mode(&frame,
1926 						       &sor->output.connector, mode);
1927 	if (err < 0) {
1928 		dev_err(sor->dev, "failed to setup AVI infoframe: %d\n", err);
1929 		return err;
1930 	}
1931 
1932 	err = hdmi_avi_infoframe_pack(&frame, buffer, sizeof(buffer));
1933 	if (err < 0) {
1934 		dev_err(sor->dev, "failed to pack AVI infoframe: %d\n", err);
1935 		return err;
1936 	}
1937 
1938 	tegra_sor_hdmi_write_infopack(sor, buffer, err);
1939 
1940 	/* enable AVI infoframe */
1941 	value = tegra_sor_readl(sor, SOR_HDMI_AVI_INFOFRAME_CTRL);
1942 	value |= INFOFRAME_CTRL_CHECKSUM_ENABLE;
1943 	value |= INFOFRAME_CTRL_ENABLE;
1944 	tegra_sor_writel(sor, value, SOR_HDMI_AVI_INFOFRAME_CTRL);
1945 
1946 	return 0;
1947 }
1948 
1949 static void tegra_sor_write_eld(struct tegra_sor *sor)
1950 {
1951 	size_t length = drm_eld_size(sor->output.connector.eld), i;
1952 
1953 	for (i = 0; i < length; i++)
1954 		tegra_sor_writel(sor, i << 8 | sor->output.connector.eld[i],
1955 				 SOR_AUDIO_HDA_ELD_BUFWR);
1956 
1957 	/*
1958 	 * The HDA codec will always report an ELD buffer size of 96 bytes and
1959 	 * the HDA codec driver will check that each byte read from the buffer
1960 	 * is valid. Therefore every byte must be written, even if no 96 bytes
1961 	 * were parsed from EDID.
1962 	 */
1963 	for (i = length; i < 96; i++)
1964 		tegra_sor_writel(sor, i << 8 | 0, SOR_AUDIO_HDA_ELD_BUFWR);
1965 }
1966 
1967 static void tegra_sor_audio_prepare(struct tegra_sor *sor)
1968 {
1969 	u32 value;
1970 
1971 	/*
1972 	 * Enable and unmask the HDA codec SCRATCH0 register interrupt. This
1973 	 * is used for interoperability between the HDA codec driver and the
1974 	 * HDMI/DP driver.
1975 	 */
1976 	value = SOR_INT_CODEC_SCRATCH1 | SOR_INT_CODEC_SCRATCH0;
1977 	tegra_sor_writel(sor, value, SOR_INT_ENABLE);
1978 	tegra_sor_writel(sor, value, SOR_INT_MASK);
1979 
1980 	tegra_sor_write_eld(sor);
1981 
1982 	value = SOR_AUDIO_HDA_PRESENSE_ELDV | SOR_AUDIO_HDA_PRESENSE_PD;
1983 	tegra_sor_writel(sor, value, SOR_AUDIO_HDA_PRESENSE);
1984 }
1985 
1986 static void tegra_sor_audio_unprepare(struct tegra_sor *sor)
1987 {
1988 	tegra_sor_writel(sor, 0, SOR_AUDIO_HDA_PRESENSE);
1989 	tegra_sor_writel(sor, 0, SOR_INT_MASK);
1990 	tegra_sor_writel(sor, 0, SOR_INT_ENABLE);
1991 }
1992 
1993 static void tegra_sor_audio_enable(struct tegra_sor *sor)
1994 {
1995 	u32 value;
1996 
1997 	value = tegra_sor_readl(sor, SOR_AUDIO_CNTRL);
1998 
1999 	/* select HDA audio input */
2000 	value &= ~SOR_AUDIO_CNTRL_SOURCE_SELECT(SOURCE_SELECT_MASK);
2001 	value |= SOR_AUDIO_CNTRL_SOURCE_SELECT(SOURCE_SELECT_HDA);
2002 
2003 	/* inject null samples */
2004 	if (sor->format.channels != 2)
2005 		value &= ~SOR_AUDIO_CNTRL_INJECT_NULLSMPL;
2006 	else
2007 		value |= SOR_AUDIO_CNTRL_INJECT_NULLSMPL;
2008 
2009 	value |= SOR_AUDIO_CNTRL_AFIFO_FLUSH;
2010 
2011 	tegra_sor_writel(sor, value, SOR_AUDIO_CNTRL);
2012 
2013 	/* enable advertising HBR capability */
2014 	tegra_sor_writel(sor, SOR_AUDIO_SPARE_HBR_ENABLE, SOR_AUDIO_SPARE);
2015 }
2016 
2017 static int tegra_sor_hdmi_enable_audio_infoframe(struct tegra_sor *sor)
2018 {
2019 	u8 buffer[HDMI_INFOFRAME_SIZE(AUDIO)];
2020 	struct hdmi_audio_infoframe frame;
2021 	u32 value;
2022 	int err;
2023 
2024 	err = hdmi_audio_infoframe_init(&frame);
2025 	if (err < 0) {
2026 		dev_err(sor->dev, "failed to setup audio infoframe: %d\n", err);
2027 		return err;
2028 	}
2029 
2030 	frame.channels = sor->format.channels;
2031 
2032 	err = hdmi_audio_infoframe_pack(&frame, buffer, sizeof(buffer));
2033 	if (err < 0) {
2034 		dev_err(sor->dev, "failed to pack audio infoframe: %d\n", err);
2035 		return err;
2036 	}
2037 
2038 	tegra_sor_hdmi_write_infopack(sor, buffer, err);
2039 
2040 	value = tegra_sor_readl(sor, SOR_HDMI_AUDIO_INFOFRAME_CTRL);
2041 	value |= INFOFRAME_CTRL_CHECKSUM_ENABLE;
2042 	value |= INFOFRAME_CTRL_ENABLE;
2043 	tegra_sor_writel(sor, value, SOR_HDMI_AUDIO_INFOFRAME_CTRL);
2044 
2045 	return 0;
2046 }
2047 
2048 static void tegra_sor_hdmi_audio_enable(struct tegra_sor *sor)
2049 {
2050 	u32 value;
2051 
2052 	tegra_sor_audio_enable(sor);
2053 
2054 	tegra_sor_writel(sor, 0, SOR_HDMI_ACR_CTRL);
2055 
2056 	value = SOR_HDMI_SPARE_ACR_PRIORITY_HIGH |
2057 		SOR_HDMI_SPARE_CTS_RESET(1) |
2058 		SOR_HDMI_SPARE_HW_CTS_ENABLE;
2059 	tegra_sor_writel(sor, value, SOR_HDMI_SPARE);
2060 
2061 	/* enable HW CTS */
2062 	value = SOR_HDMI_ACR_SUBPACK_LOW_SB1(0);
2063 	tegra_sor_writel(sor, value, SOR_HDMI_ACR_0441_SUBPACK_LOW);
2064 
2065 	/* allow packet to be sent */
2066 	value = SOR_HDMI_ACR_SUBPACK_HIGH_ENABLE;
2067 	tegra_sor_writel(sor, value, SOR_HDMI_ACR_0441_SUBPACK_HIGH);
2068 
2069 	/* reset N counter and enable lookup */
2070 	value = SOR_HDMI_AUDIO_N_RESET | SOR_HDMI_AUDIO_N_LOOKUP;
2071 	tegra_sor_writel(sor, value, SOR_HDMI_AUDIO_N);
2072 
2073 	value = (24000 * 4096) / (128 * sor->format.sample_rate / 1000);
2074 	tegra_sor_writel(sor, value, SOR_AUDIO_AVAL_0320);
2075 	tegra_sor_writel(sor, 4096, SOR_AUDIO_NVAL_0320);
2076 
2077 	tegra_sor_writel(sor, 20000, SOR_AUDIO_AVAL_0441);
2078 	tegra_sor_writel(sor, 4704, SOR_AUDIO_NVAL_0441);
2079 
2080 	tegra_sor_writel(sor, 20000, SOR_AUDIO_AVAL_0882);
2081 	tegra_sor_writel(sor, 9408, SOR_AUDIO_NVAL_0882);
2082 
2083 	tegra_sor_writel(sor, 20000, SOR_AUDIO_AVAL_1764);
2084 	tegra_sor_writel(sor, 18816, SOR_AUDIO_NVAL_1764);
2085 
2086 	value = (24000 * 6144) / (128 * sor->format.sample_rate / 1000);
2087 	tegra_sor_writel(sor, value, SOR_AUDIO_AVAL_0480);
2088 	tegra_sor_writel(sor, 6144, SOR_AUDIO_NVAL_0480);
2089 
2090 	value = (24000 * 12288) / (128 * sor->format.sample_rate / 1000);
2091 	tegra_sor_writel(sor, value, SOR_AUDIO_AVAL_0960);
2092 	tegra_sor_writel(sor, 12288, SOR_AUDIO_NVAL_0960);
2093 
2094 	value = (24000 * 24576) / (128 * sor->format.sample_rate / 1000);
2095 	tegra_sor_writel(sor, value, SOR_AUDIO_AVAL_1920);
2096 	tegra_sor_writel(sor, 24576, SOR_AUDIO_NVAL_1920);
2097 
2098 	value = tegra_sor_readl(sor, SOR_HDMI_AUDIO_N);
2099 	value &= ~SOR_HDMI_AUDIO_N_RESET;
2100 	tegra_sor_writel(sor, value, SOR_HDMI_AUDIO_N);
2101 
2102 	tegra_sor_hdmi_enable_audio_infoframe(sor);
2103 }
2104 
2105 static void tegra_sor_hdmi_disable_audio_infoframe(struct tegra_sor *sor)
2106 {
2107 	u32 value;
2108 
2109 	value = tegra_sor_readl(sor, SOR_HDMI_AUDIO_INFOFRAME_CTRL);
2110 	value &= ~INFOFRAME_CTRL_ENABLE;
2111 	tegra_sor_writel(sor, value, SOR_HDMI_AUDIO_INFOFRAME_CTRL);
2112 }
2113 
2114 static void tegra_sor_hdmi_audio_disable(struct tegra_sor *sor)
2115 {
2116 	tegra_sor_hdmi_disable_audio_infoframe(sor);
2117 }
2118 
2119 static struct tegra_sor_hdmi_settings *
2120 tegra_sor_hdmi_find_settings(struct tegra_sor *sor, unsigned long frequency)
2121 {
2122 	unsigned int i;
2123 
2124 	for (i = 0; i < sor->num_settings; i++)
2125 		if (frequency <= sor->settings[i].frequency)
2126 			return &sor->settings[i];
2127 
2128 	return NULL;
2129 }
2130 
2131 static void tegra_sor_hdmi_disable_scrambling(struct tegra_sor *sor)
2132 {
2133 	u32 value;
2134 
2135 	value = tegra_sor_readl(sor, SOR_HDMI2_CTRL);
2136 	value &= ~SOR_HDMI2_CTRL_CLOCK_MODE_DIV_BY_4;
2137 	value &= ~SOR_HDMI2_CTRL_SCRAMBLE;
2138 	tegra_sor_writel(sor, value, SOR_HDMI2_CTRL);
2139 }
2140 
2141 static void tegra_sor_hdmi_scdc_disable(struct tegra_sor *sor)
2142 {
2143 	struct i2c_adapter *ddc = sor->output.ddc;
2144 
2145 	drm_scdc_set_high_tmds_clock_ratio(ddc, false);
2146 	drm_scdc_set_scrambling(ddc, false);
2147 
2148 	tegra_sor_hdmi_disable_scrambling(sor);
2149 }
2150 
2151 static void tegra_sor_hdmi_scdc_stop(struct tegra_sor *sor)
2152 {
2153 	if (sor->scdc_enabled) {
2154 		cancel_delayed_work_sync(&sor->scdc);
2155 		tegra_sor_hdmi_scdc_disable(sor);
2156 	}
2157 }
2158 
2159 static void tegra_sor_hdmi_enable_scrambling(struct tegra_sor *sor)
2160 {
2161 	u32 value;
2162 
2163 	value = tegra_sor_readl(sor, SOR_HDMI2_CTRL);
2164 	value |= SOR_HDMI2_CTRL_CLOCK_MODE_DIV_BY_4;
2165 	value |= SOR_HDMI2_CTRL_SCRAMBLE;
2166 	tegra_sor_writel(sor, value, SOR_HDMI2_CTRL);
2167 }
2168 
2169 static void tegra_sor_hdmi_scdc_enable(struct tegra_sor *sor)
2170 {
2171 	struct i2c_adapter *ddc = sor->output.ddc;
2172 
2173 	drm_scdc_set_high_tmds_clock_ratio(ddc, true);
2174 	drm_scdc_set_scrambling(ddc, true);
2175 
2176 	tegra_sor_hdmi_enable_scrambling(sor);
2177 }
2178 
2179 static void tegra_sor_hdmi_scdc_work(struct work_struct *work)
2180 {
2181 	struct tegra_sor *sor = container_of(work, struct tegra_sor, scdc.work);
2182 	struct i2c_adapter *ddc = sor->output.ddc;
2183 
2184 	if (!drm_scdc_get_scrambling_status(ddc)) {
2185 		DRM_DEBUG_KMS("SCDC not scrambled\n");
2186 		tegra_sor_hdmi_scdc_enable(sor);
2187 	}
2188 
2189 	schedule_delayed_work(&sor->scdc, msecs_to_jiffies(5000));
2190 }
2191 
2192 static void tegra_sor_hdmi_scdc_start(struct tegra_sor *sor)
2193 {
2194 	struct drm_scdc *scdc = &sor->output.connector.display_info.hdmi.scdc;
2195 	struct drm_display_mode *mode;
2196 
2197 	mode = &sor->output.encoder.crtc->state->adjusted_mode;
2198 
2199 	if (mode->clock >= 340000 && scdc->supported) {
2200 		schedule_delayed_work(&sor->scdc, msecs_to_jiffies(5000));
2201 		tegra_sor_hdmi_scdc_enable(sor);
2202 		sor->scdc_enabled = true;
2203 	}
2204 }
2205 
2206 static void tegra_sor_hdmi_disable(struct drm_encoder *encoder)
2207 {
2208 	struct tegra_output *output = encoder_to_output(encoder);
2209 	struct tegra_dc *dc = to_tegra_dc(encoder->crtc);
2210 	struct tegra_sor *sor = to_sor(output);
2211 	u32 value;
2212 	int err;
2213 
2214 	tegra_sor_audio_unprepare(sor);
2215 	tegra_sor_hdmi_scdc_stop(sor);
2216 
2217 	err = tegra_sor_detach(sor);
2218 	if (err < 0)
2219 		dev_err(sor->dev, "failed to detach SOR: %d\n", err);
2220 
2221 	tegra_sor_writel(sor, 0, SOR_STATE1);
2222 	tegra_sor_update(sor);
2223 
2224 	/* disable display to SOR clock */
2225 	value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
2226 
2227 	if (!sor->soc->has_nvdisplay)
2228 		value &= ~SOR1_TIMING_CYA;
2229 
2230 	value &= ~SOR_ENABLE(sor->index);
2231 
2232 	tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
2233 
2234 	tegra_dc_commit(dc);
2235 
2236 	err = tegra_sor_power_down(sor);
2237 	if (err < 0)
2238 		dev_err(sor->dev, "failed to power down SOR: %d\n", err);
2239 
2240 	err = tegra_io_pad_power_disable(sor->pad);
2241 	if (err < 0)
2242 		dev_err(sor->dev, "failed to power off I/O pad: %d\n", err);
2243 
2244 	host1x_client_suspend(&sor->client);
2245 }
2246 
2247 static void tegra_sor_hdmi_enable(struct drm_encoder *encoder)
2248 {
2249 	struct tegra_output *output = encoder_to_output(encoder);
2250 	unsigned int h_ref_to_sync = 1, pulse_start, max_ac;
2251 	struct tegra_dc *dc = to_tegra_dc(encoder->crtc);
2252 	struct tegra_sor_hdmi_settings *settings;
2253 	struct tegra_sor *sor = to_sor(output);
2254 	struct tegra_sor_state *state;
2255 	struct drm_display_mode *mode;
2256 	unsigned long rate, pclk;
2257 	unsigned int div, i;
2258 	u32 value;
2259 	int err;
2260 
2261 	state = to_sor_state(output->connector.state);
2262 	mode = &encoder->crtc->state->adjusted_mode;
2263 	pclk = mode->clock * 1000;
2264 
2265 	err = host1x_client_resume(&sor->client);
2266 	if (err < 0) {
2267 		dev_err(sor->dev, "failed to resume: %d\n", err);
2268 		return;
2269 	}
2270 
2271 	/* switch to safe parent clock */
2272 	err = tegra_sor_set_parent_clock(sor, sor->clk_safe);
2273 	if (err < 0) {
2274 		dev_err(sor->dev, "failed to set safe parent clock: %d\n", err);
2275 		return;
2276 	}
2277 
2278 	div = clk_get_rate(sor->clk) / 1000000 * 4;
2279 
2280 	err = tegra_io_pad_power_enable(sor->pad);
2281 	if (err < 0)
2282 		dev_err(sor->dev, "failed to power on I/O pad: %d\n", err);
2283 
2284 	usleep_range(20, 100);
2285 
2286 	value = tegra_sor_readl(sor, sor->soc->regs->pll2);
2287 	value &= ~SOR_PLL2_BANDGAP_POWERDOWN;
2288 	tegra_sor_writel(sor, value, sor->soc->regs->pll2);
2289 
2290 	usleep_range(20, 100);
2291 
2292 	value = tegra_sor_readl(sor, sor->soc->regs->pll3);
2293 	value &= ~SOR_PLL3_PLL_VDD_MODE_3V3;
2294 	tegra_sor_writel(sor, value, sor->soc->regs->pll3);
2295 
2296 	value = tegra_sor_readl(sor, sor->soc->regs->pll0);
2297 	value &= ~SOR_PLL0_VCOPD;
2298 	value &= ~SOR_PLL0_PWR;
2299 	tegra_sor_writel(sor, value, sor->soc->regs->pll0);
2300 
2301 	value = tegra_sor_readl(sor, sor->soc->regs->pll2);
2302 	value &= ~SOR_PLL2_SEQ_PLLCAPPD_ENFORCE;
2303 	tegra_sor_writel(sor, value, sor->soc->regs->pll2);
2304 
2305 	usleep_range(200, 400);
2306 
2307 	value = tegra_sor_readl(sor, sor->soc->regs->pll2);
2308 	value &= ~SOR_PLL2_POWERDOWN_OVERRIDE;
2309 	value &= ~SOR_PLL2_PORT_POWERDOWN;
2310 	tegra_sor_writel(sor, value, sor->soc->regs->pll2);
2311 
2312 	usleep_range(20, 100);
2313 
2314 	value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
2315 	value |= SOR_DP_PADCTL_PD_TXD_3 | SOR_DP_PADCTL_PD_TXD_0 |
2316 		 SOR_DP_PADCTL_PD_TXD_1 | SOR_DP_PADCTL_PD_TXD_2;
2317 	tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
2318 
2319 	while (true) {
2320 		value = tegra_sor_readl(sor, SOR_LANE_SEQ_CTL);
2321 		if ((value & SOR_LANE_SEQ_CTL_STATE_BUSY) == 0)
2322 			break;
2323 
2324 		usleep_range(250, 1000);
2325 	}
2326 
2327 	value = SOR_LANE_SEQ_CTL_TRIGGER | SOR_LANE_SEQ_CTL_SEQUENCE_DOWN |
2328 		SOR_LANE_SEQ_CTL_POWER_STATE_UP | SOR_LANE_SEQ_CTL_DELAY(5);
2329 	tegra_sor_writel(sor, value, SOR_LANE_SEQ_CTL);
2330 
2331 	while (true) {
2332 		value = tegra_sor_readl(sor, SOR_LANE_SEQ_CTL);
2333 		if ((value & SOR_LANE_SEQ_CTL_TRIGGER) == 0)
2334 			break;
2335 
2336 		usleep_range(250, 1000);
2337 	}
2338 
2339 	value = tegra_sor_readl(sor, SOR_CLK_CNTRL);
2340 	value &= ~SOR_CLK_CNTRL_DP_LINK_SPEED_MASK;
2341 	value &= ~SOR_CLK_CNTRL_DP_CLK_SEL_MASK;
2342 
2343 	if (mode->clock < 340000) {
2344 		DRM_DEBUG_KMS("setting 2.7 GHz link speed\n");
2345 		value |= SOR_CLK_CNTRL_DP_LINK_SPEED_G2_70;
2346 	} else {
2347 		DRM_DEBUG_KMS("setting 5.4 GHz link speed\n");
2348 		value |= SOR_CLK_CNTRL_DP_LINK_SPEED_G5_40;
2349 	}
2350 
2351 	value |= SOR_CLK_CNTRL_DP_CLK_SEL_SINGLE_PCLK;
2352 	tegra_sor_writel(sor, value, SOR_CLK_CNTRL);
2353 
2354 	/* SOR pad PLL stabilization time */
2355 	usleep_range(250, 1000);
2356 
2357 	value = tegra_sor_readl(sor, SOR_DP_LINKCTL0);
2358 	value &= ~SOR_DP_LINKCTL_LANE_COUNT_MASK;
2359 	value |= SOR_DP_LINKCTL_LANE_COUNT(4);
2360 	tegra_sor_writel(sor, value, SOR_DP_LINKCTL0);
2361 
2362 	value = tegra_sor_readl(sor, SOR_DP_SPARE0);
2363 	value &= ~SOR_DP_SPARE_DISP_VIDEO_PREAMBLE;
2364 	value &= ~SOR_DP_SPARE_PANEL_INTERNAL;
2365 	value &= ~SOR_DP_SPARE_SEQ_ENABLE;
2366 	value &= ~SOR_DP_SPARE_MACRO_SOR_CLK;
2367 	tegra_sor_writel(sor, value, SOR_DP_SPARE0);
2368 
2369 	value = SOR_SEQ_CTL_PU_PC(0) | SOR_SEQ_CTL_PU_PC_ALT(0) |
2370 		SOR_SEQ_CTL_PD_PC(8) | SOR_SEQ_CTL_PD_PC_ALT(8);
2371 	tegra_sor_writel(sor, value, SOR_SEQ_CTL);
2372 
2373 	value = SOR_SEQ_INST_DRIVE_PWM_OUT_LO | SOR_SEQ_INST_HALT |
2374 		SOR_SEQ_INST_WAIT_VSYNC | SOR_SEQ_INST_WAIT(1);
2375 	tegra_sor_writel(sor, value, SOR_SEQ_INST(0));
2376 	tegra_sor_writel(sor, value, SOR_SEQ_INST(8));
2377 
2378 	if (!sor->soc->has_nvdisplay) {
2379 		/* program the reference clock */
2380 		value = SOR_REFCLK_DIV_INT(div) | SOR_REFCLK_DIV_FRAC(div);
2381 		tegra_sor_writel(sor, value, SOR_REFCLK);
2382 	}
2383 
2384 	/* XXX not in TRM */
2385 	for (value = 0, i = 0; i < 5; i++)
2386 		value |= SOR_XBAR_CTRL_LINK0_XSEL(i, sor->xbar_cfg[i]) |
2387 			 SOR_XBAR_CTRL_LINK1_XSEL(i, i);
2388 
2389 	tegra_sor_writel(sor, 0x00000000, SOR_XBAR_POL);
2390 	tegra_sor_writel(sor, value, SOR_XBAR_CTRL);
2391 
2392 	/*
2393 	 * Switch the pad clock to the DP clock. Note that we cannot actually
2394 	 * do this because Tegra186 and later don't support clk_set_parent()
2395 	 * on the sorX_pad_clkout clocks. We already do the equivalent above
2396 	 * using the DP_CLK_SEL mux of the SOR_CLK_CNTRL register.
2397 	 */
2398 #if 0
2399 	err = clk_set_parent(sor->clk_pad, sor->clk_dp);
2400 	if (err < 0) {
2401 		dev_err(sor->dev, "failed to select pad parent clock: %d\n",
2402 			err);
2403 		return;
2404 	}
2405 #endif
2406 
2407 	/* switch the SOR clock to the pad clock */
2408 	err = tegra_sor_set_parent_clock(sor, sor->clk_pad);
2409 	if (err < 0) {
2410 		dev_err(sor->dev, "failed to select SOR parent clock: %d\n",
2411 			err);
2412 		return;
2413 	}
2414 
2415 	/* switch the output clock to the parent pixel clock */
2416 	err = clk_set_parent(sor->clk, sor->clk_parent);
2417 	if (err < 0) {
2418 		dev_err(sor->dev, "failed to select output parent clock: %d\n",
2419 			err);
2420 		return;
2421 	}
2422 
2423 	/* adjust clock rate for HDMI 2.0 modes */
2424 	rate = clk_get_rate(sor->clk_parent);
2425 
2426 	if (mode->clock >= 340000)
2427 		rate /= 2;
2428 
2429 	DRM_DEBUG_KMS("setting clock to %lu Hz, mode: %lu Hz\n", rate, pclk);
2430 
2431 	clk_set_rate(sor->clk, rate);
2432 
2433 	if (!sor->soc->has_nvdisplay) {
2434 		value = SOR_INPUT_CONTROL_HDMI_SRC_SELECT(dc->pipe);
2435 
2436 		/* XXX is this the proper check? */
2437 		if (mode->clock < 75000)
2438 			value |= SOR_INPUT_CONTROL_ARM_VIDEO_RANGE_LIMITED;
2439 
2440 		tegra_sor_writel(sor, value, SOR_INPUT_CONTROL);
2441 	}
2442 
2443 	max_ac = ((mode->htotal - mode->hdisplay) - SOR_REKEY - 18) / 32;
2444 
2445 	value = SOR_HDMI_CTRL_ENABLE | SOR_HDMI_CTRL_MAX_AC_PACKET(max_ac) |
2446 		SOR_HDMI_CTRL_AUDIO_LAYOUT | SOR_HDMI_CTRL_REKEY(SOR_REKEY);
2447 	tegra_sor_writel(sor, value, SOR_HDMI_CTRL);
2448 
2449 	if (!dc->soc->has_nvdisplay) {
2450 		/* H_PULSE2 setup */
2451 		pulse_start = h_ref_to_sync +
2452 			      (mode->hsync_end - mode->hsync_start) +
2453 			      (mode->htotal - mode->hsync_end) - 10;
2454 
2455 		value = PULSE_LAST_END_A | PULSE_QUAL_VACTIVE |
2456 			PULSE_POLARITY_HIGH | PULSE_MODE_NORMAL;
2457 		tegra_dc_writel(dc, value, DC_DISP_H_PULSE2_CONTROL);
2458 
2459 		value = PULSE_END(pulse_start + 8) | PULSE_START(pulse_start);
2460 		tegra_dc_writel(dc, value, DC_DISP_H_PULSE2_POSITION_A);
2461 
2462 		value = tegra_dc_readl(dc, DC_DISP_DISP_SIGNAL_OPTIONS0);
2463 		value |= H_PULSE2_ENABLE;
2464 		tegra_dc_writel(dc, value, DC_DISP_DISP_SIGNAL_OPTIONS0);
2465 	}
2466 
2467 	/* infoframe setup */
2468 	err = tegra_sor_hdmi_setup_avi_infoframe(sor, mode);
2469 	if (err < 0)
2470 		dev_err(sor->dev, "failed to setup AVI infoframe: %d\n", err);
2471 
2472 	/* XXX HDMI audio support not implemented yet */
2473 	tegra_sor_hdmi_disable_audio_infoframe(sor);
2474 
2475 	/* use single TMDS protocol */
2476 	value = tegra_sor_readl(sor, SOR_STATE1);
2477 	value &= ~SOR_STATE_ASY_PROTOCOL_MASK;
2478 	value |= SOR_STATE_ASY_PROTOCOL_SINGLE_TMDS_A;
2479 	tegra_sor_writel(sor, value, SOR_STATE1);
2480 
2481 	/* power up pad calibration */
2482 	value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
2483 	value &= ~SOR_DP_PADCTL_PAD_CAL_PD;
2484 	tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
2485 
2486 	/* production settings */
2487 	settings = tegra_sor_hdmi_find_settings(sor, mode->clock * 1000);
2488 	if (!settings) {
2489 		dev_err(sor->dev, "no settings for pixel clock %d Hz\n",
2490 			mode->clock * 1000);
2491 		return;
2492 	}
2493 
2494 	value = tegra_sor_readl(sor, sor->soc->regs->pll0);
2495 	value &= ~SOR_PLL0_ICHPMP_MASK;
2496 	value &= ~SOR_PLL0_FILTER_MASK;
2497 	value &= ~SOR_PLL0_VCOCAP_MASK;
2498 	value |= SOR_PLL0_ICHPMP(settings->ichpmp);
2499 	value |= SOR_PLL0_FILTER(settings->filter);
2500 	value |= SOR_PLL0_VCOCAP(settings->vcocap);
2501 	tegra_sor_writel(sor, value, sor->soc->regs->pll0);
2502 
2503 	/* XXX not in TRM */
2504 	value = tegra_sor_readl(sor, sor->soc->regs->pll1);
2505 	value &= ~SOR_PLL1_LOADADJ_MASK;
2506 	value &= ~SOR_PLL1_TMDS_TERMADJ_MASK;
2507 	value |= SOR_PLL1_LOADADJ(settings->loadadj);
2508 	value |= SOR_PLL1_TMDS_TERMADJ(settings->tmds_termadj);
2509 	value |= SOR_PLL1_TMDS_TERM;
2510 	tegra_sor_writel(sor, value, sor->soc->regs->pll1);
2511 
2512 	value = tegra_sor_readl(sor, sor->soc->regs->pll3);
2513 	value &= ~SOR_PLL3_BG_TEMP_COEF_MASK;
2514 	value &= ~SOR_PLL3_BG_VREF_LEVEL_MASK;
2515 	value &= ~SOR_PLL3_AVDD10_LEVEL_MASK;
2516 	value &= ~SOR_PLL3_AVDD14_LEVEL_MASK;
2517 	value |= SOR_PLL3_BG_TEMP_COEF(settings->bg_temp_coef);
2518 	value |= SOR_PLL3_BG_VREF_LEVEL(settings->bg_vref_level);
2519 	value |= SOR_PLL3_AVDD10_LEVEL(settings->avdd10_level);
2520 	value |= SOR_PLL3_AVDD14_LEVEL(settings->avdd14_level);
2521 	tegra_sor_writel(sor, value, sor->soc->regs->pll3);
2522 
2523 	value = settings->drive_current[3] << 24 |
2524 		settings->drive_current[2] << 16 |
2525 		settings->drive_current[1] <<  8 |
2526 		settings->drive_current[0] <<  0;
2527 	tegra_sor_writel(sor, value, SOR_LANE_DRIVE_CURRENT0);
2528 
2529 	value = settings->preemphasis[3] << 24 |
2530 		settings->preemphasis[2] << 16 |
2531 		settings->preemphasis[1] <<  8 |
2532 		settings->preemphasis[0] <<  0;
2533 	tegra_sor_writel(sor, value, SOR_LANE_PREEMPHASIS0);
2534 
2535 	value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
2536 	value &= ~SOR_DP_PADCTL_TX_PU_MASK;
2537 	value |= SOR_DP_PADCTL_TX_PU_ENABLE;
2538 	value |= SOR_DP_PADCTL_TX_PU(settings->tx_pu_value);
2539 	tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
2540 
2541 	value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl2);
2542 	value &= ~SOR_DP_PADCTL_SPAREPLL_MASK;
2543 	value |= SOR_DP_PADCTL_SPAREPLL(settings->sparepll);
2544 	tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl2);
2545 
2546 	/* power down pad calibration */
2547 	value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
2548 	value |= SOR_DP_PADCTL_PAD_CAL_PD;
2549 	tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
2550 
2551 	if (!dc->soc->has_nvdisplay) {
2552 		/* miscellaneous display controller settings */
2553 		value = VSYNC_H_POSITION(1);
2554 		tegra_dc_writel(dc, value, DC_DISP_DISP_TIMING_OPTIONS);
2555 	}
2556 
2557 	value = tegra_dc_readl(dc, DC_DISP_DISP_COLOR_CONTROL);
2558 	value &= ~DITHER_CONTROL_MASK;
2559 	value &= ~BASE_COLOR_SIZE_MASK;
2560 
2561 	switch (state->bpc) {
2562 	case 6:
2563 		value |= BASE_COLOR_SIZE_666;
2564 		break;
2565 
2566 	case 8:
2567 		value |= BASE_COLOR_SIZE_888;
2568 		break;
2569 
2570 	case 10:
2571 		value |= BASE_COLOR_SIZE_101010;
2572 		break;
2573 
2574 	case 12:
2575 		value |= BASE_COLOR_SIZE_121212;
2576 		break;
2577 
2578 	default:
2579 		WARN(1, "%u bits-per-color not supported\n", state->bpc);
2580 		value |= BASE_COLOR_SIZE_888;
2581 		break;
2582 	}
2583 
2584 	tegra_dc_writel(dc, value, DC_DISP_DISP_COLOR_CONTROL);
2585 
2586 	/* XXX set display head owner */
2587 	value = tegra_sor_readl(sor, SOR_STATE1);
2588 	value &= ~SOR_STATE_ASY_OWNER_MASK;
2589 	value |= SOR_STATE_ASY_OWNER(1 + dc->pipe);
2590 	tegra_sor_writel(sor, value, SOR_STATE1);
2591 
2592 	err = tegra_sor_power_up(sor, 250);
2593 	if (err < 0)
2594 		dev_err(sor->dev, "failed to power up SOR: %d\n", err);
2595 
2596 	/* configure dynamic range of output */
2597 	value = tegra_sor_readl(sor, sor->soc->regs->head_state0 + dc->pipe);
2598 	value &= ~SOR_HEAD_STATE_RANGECOMPRESS_MASK;
2599 	value &= ~SOR_HEAD_STATE_DYNRANGE_MASK;
2600 	tegra_sor_writel(sor, value, sor->soc->regs->head_state0 + dc->pipe);
2601 
2602 	/* configure colorspace */
2603 	value = tegra_sor_readl(sor, sor->soc->regs->head_state0 + dc->pipe);
2604 	value &= ~SOR_HEAD_STATE_COLORSPACE_MASK;
2605 	value |= SOR_HEAD_STATE_COLORSPACE_RGB;
2606 	tegra_sor_writel(sor, value, sor->soc->regs->head_state0 + dc->pipe);
2607 
2608 	tegra_sor_mode_set(sor, mode, state);
2609 
2610 	tegra_sor_update(sor);
2611 
2612 	/* program preamble timing in SOR (XXX) */
2613 	value = tegra_sor_readl(sor, SOR_DP_SPARE0);
2614 	value &= ~SOR_DP_SPARE_DISP_VIDEO_PREAMBLE;
2615 	tegra_sor_writel(sor, value, SOR_DP_SPARE0);
2616 
2617 	err = tegra_sor_attach(sor);
2618 	if (err < 0)
2619 		dev_err(sor->dev, "failed to attach SOR: %d\n", err);
2620 
2621 	/* enable display to SOR clock and generate HDMI preamble */
2622 	value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
2623 
2624 	if (!sor->soc->has_nvdisplay)
2625 		value |= SOR1_TIMING_CYA;
2626 
2627 	value |= SOR_ENABLE(sor->index);
2628 
2629 	tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
2630 
2631 	if (dc->soc->has_nvdisplay) {
2632 		value = tegra_dc_readl(dc, DC_DISP_CORE_SOR_SET_CONTROL(sor->index));
2633 		value &= ~PROTOCOL_MASK;
2634 		value |= PROTOCOL_SINGLE_TMDS_A;
2635 		tegra_dc_writel(dc, value, DC_DISP_CORE_SOR_SET_CONTROL(sor->index));
2636 	}
2637 
2638 	tegra_dc_commit(dc);
2639 
2640 	err = tegra_sor_wakeup(sor);
2641 	if (err < 0)
2642 		dev_err(sor->dev, "failed to wakeup SOR: %d\n", err);
2643 
2644 	tegra_sor_hdmi_scdc_start(sor);
2645 	tegra_sor_audio_prepare(sor);
2646 }
2647 
2648 static const struct drm_encoder_helper_funcs tegra_sor_hdmi_helpers = {
2649 	.disable = tegra_sor_hdmi_disable,
2650 	.enable = tegra_sor_hdmi_enable,
2651 	.atomic_check = tegra_sor_encoder_atomic_check,
2652 };
2653 
2654 static void tegra_sor_dp_disable(struct drm_encoder *encoder)
2655 {
2656 	struct tegra_output *output = encoder_to_output(encoder);
2657 	struct tegra_dc *dc = to_tegra_dc(encoder->crtc);
2658 	struct tegra_sor *sor = to_sor(output);
2659 	u32 value;
2660 	int err;
2661 
2662 	if (output->panel)
2663 		drm_panel_disable(output->panel);
2664 
2665 	/*
2666 	 * Do not attempt to power down a DP link if we're not connected since
2667 	 * the AUX transactions would just be timing out.
2668 	 */
2669 	if (output->connector.status != connector_status_disconnected) {
2670 		err = drm_dp_link_power_down(sor->aux, &sor->link);
2671 		if (err < 0)
2672 			dev_err(sor->dev, "failed to power down link: %d\n",
2673 				err);
2674 	}
2675 
2676 	err = tegra_sor_detach(sor);
2677 	if (err < 0)
2678 		dev_err(sor->dev, "failed to detach SOR: %d\n", err);
2679 
2680 	tegra_sor_writel(sor, 0, SOR_STATE1);
2681 	tegra_sor_update(sor);
2682 
2683 	value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
2684 	value &= ~SOR_ENABLE(sor->index);
2685 	tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
2686 	tegra_dc_commit(dc);
2687 
2688 	value = tegra_sor_readl(sor, SOR_STATE1);
2689 	value &= ~SOR_STATE_ASY_PROTOCOL_MASK;
2690 	value &= ~SOR_STATE_ASY_SUBOWNER_MASK;
2691 	value &= ~SOR_STATE_ASY_OWNER_MASK;
2692 	tegra_sor_writel(sor, value, SOR_STATE1);
2693 	tegra_sor_update(sor);
2694 
2695 	/* switch to safe parent clock */
2696 	err = tegra_sor_set_parent_clock(sor, sor->clk_safe);
2697 	if (err < 0)
2698 		dev_err(sor->dev, "failed to set safe clock: %d\n", err);
2699 
2700 	err = tegra_sor_power_down(sor);
2701 	if (err < 0)
2702 		dev_err(sor->dev, "failed to power down SOR: %d\n", err);
2703 
2704 	err = tegra_io_pad_power_disable(sor->pad);
2705 	if (err < 0)
2706 		dev_err(sor->dev, "failed to power off I/O pad: %d\n", err);
2707 
2708 	err = drm_dp_aux_disable(sor->aux);
2709 	if (err < 0)
2710 		dev_err(sor->dev, "failed disable DPAUX: %d\n", err);
2711 
2712 	if (output->panel)
2713 		drm_panel_unprepare(output->panel);
2714 
2715 	host1x_client_suspend(&sor->client);
2716 }
2717 
2718 static void tegra_sor_dp_enable(struct drm_encoder *encoder)
2719 {
2720 	struct tegra_output *output = encoder_to_output(encoder);
2721 	struct tegra_dc *dc = to_tegra_dc(encoder->crtc);
2722 	struct tegra_sor *sor = to_sor(output);
2723 	struct tegra_sor_config config;
2724 	struct tegra_sor_state *state;
2725 	struct drm_display_mode *mode;
2726 	struct drm_display_info *info;
2727 	unsigned int i;
2728 	u32 value;
2729 	int err;
2730 
2731 	state = to_sor_state(output->connector.state);
2732 	mode = &encoder->crtc->state->adjusted_mode;
2733 	info = &output->connector.display_info;
2734 
2735 	err = host1x_client_resume(&sor->client);
2736 	if (err < 0) {
2737 		dev_err(sor->dev, "failed to resume: %d\n", err);
2738 		return;
2739 	}
2740 
2741 	/* switch to safe parent clock */
2742 	err = tegra_sor_set_parent_clock(sor, sor->clk_safe);
2743 	if (err < 0)
2744 		dev_err(sor->dev, "failed to set safe parent clock: %d\n", err);
2745 
2746 	err = tegra_io_pad_power_enable(sor->pad);
2747 	if (err < 0)
2748 		dev_err(sor->dev, "failed to power on LVDS rail: %d\n", err);
2749 
2750 	usleep_range(20, 100);
2751 
2752 	err = drm_dp_aux_enable(sor->aux);
2753 	if (err < 0)
2754 		dev_err(sor->dev, "failed to enable DPAUX: %d\n", err);
2755 
2756 	err = drm_dp_link_probe(sor->aux, &sor->link);
2757 	if (err < 0)
2758 		dev_err(sor->dev, "failed to probe DP link: %d\n", err);
2759 
2760 	tegra_sor_filter_rates(sor);
2761 
2762 	err = drm_dp_link_choose(&sor->link, mode, info);
2763 	if (err < 0)
2764 		dev_err(sor->dev, "failed to choose link: %d\n", err);
2765 
2766 	if (output->panel)
2767 		drm_panel_prepare(output->panel);
2768 
2769 	value = tegra_sor_readl(sor, sor->soc->regs->pll2);
2770 	value &= ~SOR_PLL2_BANDGAP_POWERDOWN;
2771 	tegra_sor_writel(sor, value, sor->soc->regs->pll2);
2772 
2773 	usleep_range(20, 40);
2774 
2775 	value = tegra_sor_readl(sor, sor->soc->regs->pll3);
2776 	value |= SOR_PLL3_PLL_VDD_MODE_3V3;
2777 	tegra_sor_writel(sor, value, sor->soc->regs->pll3);
2778 
2779 	value = tegra_sor_readl(sor, sor->soc->regs->pll0);
2780 	value &= ~(SOR_PLL0_VCOPD | SOR_PLL0_PWR);
2781 	tegra_sor_writel(sor, value, sor->soc->regs->pll0);
2782 
2783 	value = tegra_sor_readl(sor, sor->soc->regs->pll2);
2784 	value &= ~SOR_PLL2_SEQ_PLLCAPPD_ENFORCE;
2785 	value |= SOR_PLL2_SEQ_PLLCAPPD;
2786 	tegra_sor_writel(sor, value, sor->soc->regs->pll2);
2787 
2788 	usleep_range(200, 400);
2789 
2790 	value = tegra_sor_readl(sor, sor->soc->regs->pll2);
2791 	value &= ~SOR_PLL2_POWERDOWN_OVERRIDE;
2792 	value &= ~SOR_PLL2_PORT_POWERDOWN;
2793 	tegra_sor_writel(sor, value, sor->soc->regs->pll2);
2794 
2795 	value = tegra_sor_readl(sor, SOR_CLK_CNTRL);
2796 	value &= ~SOR_CLK_CNTRL_DP_CLK_SEL_MASK;
2797 
2798 	if (output->panel)
2799 		value |= SOR_CLK_CNTRL_DP_CLK_SEL_SINGLE_DPCLK;
2800 	else
2801 		value |= SOR_CLK_CNTRL_DP_CLK_SEL_DIFF_DPCLK;
2802 
2803 	tegra_sor_writel(sor, value, SOR_CLK_CNTRL);
2804 
2805 	usleep_range(200, 400);
2806 
2807 	value = tegra_sor_readl(sor, SOR_DP_SPARE0);
2808 	/* XXX not in TRM */
2809 	if (output->panel)
2810 		value |= SOR_DP_SPARE_PANEL_INTERNAL;
2811 	else
2812 		value &= ~SOR_DP_SPARE_PANEL_INTERNAL;
2813 
2814 	value |= SOR_DP_SPARE_SEQ_ENABLE;
2815 	tegra_sor_writel(sor, value, SOR_DP_SPARE0);
2816 
2817 	/* XXX not in TRM */
2818 	tegra_sor_writel(sor, 0, SOR_LVDS);
2819 
2820 	value = tegra_sor_readl(sor, sor->soc->regs->pll0);
2821 	value &= ~SOR_PLL0_ICHPMP_MASK;
2822 	value &= ~SOR_PLL0_VCOCAP_MASK;
2823 	value |= SOR_PLL0_ICHPMP(0x1);
2824 	value |= SOR_PLL0_VCOCAP(0x3);
2825 	value |= SOR_PLL0_RESISTOR_EXT;
2826 	tegra_sor_writel(sor, value, sor->soc->regs->pll0);
2827 
2828 	/* XXX not in TRM */
2829 	for (value = 0, i = 0; i < 5; i++)
2830 		value |= SOR_XBAR_CTRL_LINK0_XSEL(i, sor->soc->xbar_cfg[i]) |
2831 			 SOR_XBAR_CTRL_LINK1_XSEL(i, i);
2832 
2833 	tegra_sor_writel(sor, 0x00000000, SOR_XBAR_POL);
2834 	tegra_sor_writel(sor, value, SOR_XBAR_CTRL);
2835 
2836 	/*
2837 	 * Switch the pad clock to the DP clock. Note that we cannot actually
2838 	 * do this because Tegra186 and later don't support clk_set_parent()
2839 	 * on the sorX_pad_clkout clocks. We already do the equivalent above
2840 	 * using the DP_CLK_SEL mux of the SOR_CLK_CNTRL register.
2841 	 */
2842 #if 0
2843 	err = clk_set_parent(sor->clk_pad, sor->clk_parent);
2844 	if (err < 0) {
2845 		dev_err(sor->dev, "failed to select pad parent clock: %d\n",
2846 			err);
2847 		return;
2848 	}
2849 #endif
2850 
2851 	/* switch the SOR clock to the pad clock */
2852 	err = tegra_sor_set_parent_clock(sor, sor->clk_pad);
2853 	if (err < 0) {
2854 		dev_err(sor->dev, "failed to select SOR parent clock: %d\n",
2855 			err);
2856 		return;
2857 	}
2858 
2859 	/* switch the output clock to the parent pixel clock */
2860 	err = clk_set_parent(sor->clk, sor->clk_parent);
2861 	if (err < 0) {
2862 		dev_err(sor->dev, "failed to select output parent clock: %d\n",
2863 			err);
2864 		return;
2865 	}
2866 
2867 	/* use DP-A protocol */
2868 	value = tegra_sor_readl(sor, SOR_STATE1);
2869 	value &= ~SOR_STATE_ASY_PROTOCOL_MASK;
2870 	value |= SOR_STATE_ASY_PROTOCOL_DP_A;
2871 	tegra_sor_writel(sor, value, SOR_STATE1);
2872 
2873 	/* enable port */
2874 	value = tegra_sor_readl(sor, SOR_DP_LINKCTL0);
2875 	value |= SOR_DP_LINKCTL_ENABLE;
2876 	tegra_sor_writel(sor, value, SOR_DP_LINKCTL0);
2877 
2878 	tegra_sor_dp_term_calibrate(sor);
2879 
2880 	err = drm_dp_link_train(&sor->link);
2881 	if (err < 0)
2882 		dev_err(sor->dev, "link training failed: %d\n", err);
2883 	else
2884 		dev_dbg(sor->dev, "link training succeeded\n");
2885 
2886 	err = drm_dp_link_power_up(sor->aux, &sor->link);
2887 	if (err < 0)
2888 		dev_err(sor->dev, "failed to power up DP link: %d\n", err);
2889 
2890 	/* compute configuration */
2891 	memset(&config, 0, sizeof(config));
2892 	config.bits_per_pixel = state->bpc * 3;
2893 
2894 	err = tegra_sor_compute_config(sor, mode, &config, &sor->link);
2895 	if (err < 0)
2896 		dev_err(sor->dev, "failed to compute configuration: %d\n", err);
2897 
2898 	tegra_sor_apply_config(sor, &config);
2899 	tegra_sor_mode_set(sor, mode, state);
2900 
2901 	if (output->panel) {
2902 		/* CSTM (LVDS, link A/B, upper) */
2903 		value = SOR_CSTM_LVDS | SOR_CSTM_LINK_ACT_A | SOR_CSTM_LINK_ACT_B |
2904 			SOR_CSTM_UPPER;
2905 		tegra_sor_writel(sor, value, SOR_CSTM);
2906 
2907 		/* PWM setup */
2908 		err = tegra_sor_setup_pwm(sor, 250);
2909 		if (err < 0)
2910 			dev_err(sor->dev, "failed to setup PWM: %d\n", err);
2911 	}
2912 
2913 	tegra_sor_update(sor);
2914 
2915 	err = tegra_sor_power_up(sor, 250);
2916 	if (err < 0)
2917 		dev_err(sor->dev, "failed to power up SOR: %d\n", err);
2918 
2919 	/* attach and wake up */
2920 	err = tegra_sor_attach(sor);
2921 	if (err < 0)
2922 		dev_err(sor->dev, "failed to attach SOR: %d\n", err);
2923 
2924 	value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
2925 	value |= SOR_ENABLE(sor->index);
2926 	tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
2927 
2928 	tegra_dc_commit(dc);
2929 
2930 	err = tegra_sor_wakeup(sor);
2931 	if (err < 0)
2932 		dev_err(sor->dev, "failed to wakeup SOR: %d\n", err);
2933 
2934 	if (output->panel)
2935 		drm_panel_enable(output->panel);
2936 }
2937 
2938 static const struct drm_encoder_helper_funcs tegra_sor_dp_helpers = {
2939 	.disable = tegra_sor_dp_disable,
2940 	.enable = tegra_sor_dp_enable,
2941 	.atomic_check = tegra_sor_encoder_atomic_check,
2942 };
2943 
2944 static void tegra_sor_disable_regulator(void *data)
2945 {
2946 	struct regulator *reg = data;
2947 
2948 	regulator_disable(reg);
2949 }
2950 
2951 static int tegra_sor_enable_regulator(struct tegra_sor *sor, struct regulator *reg)
2952 {
2953 	int err;
2954 
2955 	err = regulator_enable(reg);
2956 	if (err)
2957 		return err;
2958 
2959 	return devm_add_action_or_reset(sor->dev, tegra_sor_disable_regulator, reg);
2960 }
2961 
2962 static int tegra_sor_hdmi_probe(struct tegra_sor *sor)
2963 {
2964 	int err;
2965 
2966 	sor->avdd_io_supply = devm_regulator_get(sor->dev, "avdd-io-hdmi-dp");
2967 	if (IS_ERR(sor->avdd_io_supply)) {
2968 		dev_err(sor->dev, "cannot get AVDD I/O supply: %ld\n",
2969 			PTR_ERR(sor->avdd_io_supply));
2970 		return PTR_ERR(sor->avdd_io_supply);
2971 	}
2972 
2973 	err = tegra_sor_enable_regulator(sor, sor->avdd_io_supply);
2974 	if (err < 0) {
2975 		dev_err(sor->dev, "failed to enable AVDD I/O supply: %d\n",
2976 			err);
2977 		return err;
2978 	}
2979 
2980 	sor->vdd_pll_supply = devm_regulator_get(sor->dev, "vdd-hdmi-dp-pll");
2981 	if (IS_ERR(sor->vdd_pll_supply)) {
2982 		dev_err(sor->dev, "cannot get VDD PLL supply: %ld\n",
2983 			PTR_ERR(sor->vdd_pll_supply));
2984 		return PTR_ERR(sor->vdd_pll_supply);
2985 	}
2986 
2987 	err = tegra_sor_enable_regulator(sor, sor->vdd_pll_supply);
2988 	if (err < 0) {
2989 		dev_err(sor->dev, "failed to enable VDD PLL supply: %d\n",
2990 			err);
2991 		return err;
2992 	}
2993 
2994 	sor->hdmi_supply = devm_regulator_get(sor->dev, "hdmi");
2995 	if (IS_ERR(sor->hdmi_supply)) {
2996 		dev_err(sor->dev, "cannot get HDMI supply: %ld\n",
2997 			PTR_ERR(sor->hdmi_supply));
2998 		return PTR_ERR(sor->hdmi_supply);
2999 	}
3000 
3001 	err = tegra_sor_enable_regulator(sor, sor->hdmi_supply);
3002 	if (err < 0) {
3003 		dev_err(sor->dev, "failed to enable HDMI supply: %d\n", err);
3004 		return err;
3005 	}
3006 
3007 	INIT_DELAYED_WORK(&sor->scdc, tegra_sor_hdmi_scdc_work);
3008 
3009 	return 0;
3010 }
3011 
3012 static const struct tegra_sor_ops tegra_sor_hdmi_ops = {
3013 	.name = "HDMI",
3014 	.probe = tegra_sor_hdmi_probe,
3015 	.audio_enable = tegra_sor_hdmi_audio_enable,
3016 	.audio_disable = tegra_sor_hdmi_audio_disable,
3017 };
3018 
3019 static int tegra_sor_dp_probe(struct tegra_sor *sor)
3020 {
3021 	int err;
3022 
3023 	sor->avdd_io_supply = devm_regulator_get(sor->dev, "avdd-io-hdmi-dp");
3024 	if (IS_ERR(sor->avdd_io_supply))
3025 		return PTR_ERR(sor->avdd_io_supply);
3026 
3027 	err = tegra_sor_enable_regulator(sor, sor->avdd_io_supply);
3028 	if (err < 0)
3029 		return err;
3030 
3031 	sor->vdd_pll_supply = devm_regulator_get(sor->dev, "vdd-hdmi-dp-pll");
3032 	if (IS_ERR(sor->vdd_pll_supply))
3033 		return PTR_ERR(sor->vdd_pll_supply);
3034 
3035 	err = tegra_sor_enable_regulator(sor, sor->vdd_pll_supply);
3036 	if (err < 0)
3037 		return err;
3038 
3039 	return 0;
3040 }
3041 
3042 static const struct tegra_sor_ops tegra_sor_dp_ops = {
3043 	.name = "DP",
3044 	.probe = tegra_sor_dp_probe,
3045 };
3046 
3047 static int tegra_sor_init(struct host1x_client *client)
3048 {
3049 	struct drm_device *drm = dev_get_drvdata(client->host);
3050 	const struct drm_encoder_helper_funcs *helpers = NULL;
3051 	struct tegra_sor *sor = host1x_client_to_sor(client);
3052 	int connector = DRM_MODE_CONNECTOR_Unknown;
3053 	int encoder = DRM_MODE_ENCODER_NONE;
3054 	int err;
3055 
3056 	if (!sor->aux) {
3057 		if (sor->ops == &tegra_sor_hdmi_ops) {
3058 			connector = DRM_MODE_CONNECTOR_HDMIA;
3059 			encoder = DRM_MODE_ENCODER_TMDS;
3060 			helpers = &tegra_sor_hdmi_helpers;
3061 		} else if (sor->soc->supports_lvds) {
3062 			connector = DRM_MODE_CONNECTOR_LVDS;
3063 			encoder = DRM_MODE_ENCODER_LVDS;
3064 		}
3065 	} else {
3066 		if (sor->output.panel) {
3067 			connector = DRM_MODE_CONNECTOR_eDP;
3068 			encoder = DRM_MODE_ENCODER_TMDS;
3069 			helpers = &tegra_sor_dp_helpers;
3070 		} else {
3071 			connector = DRM_MODE_CONNECTOR_DisplayPort;
3072 			encoder = DRM_MODE_ENCODER_TMDS;
3073 			helpers = &tegra_sor_dp_helpers;
3074 		}
3075 
3076 		sor->link.ops = &tegra_sor_dp_link_ops;
3077 		sor->link.aux = sor->aux;
3078 	}
3079 
3080 	sor->output.dev = sor->dev;
3081 
3082 	drm_connector_init_with_ddc(drm, &sor->output.connector,
3083 				    &tegra_sor_connector_funcs,
3084 				    connector,
3085 				    sor->output.ddc);
3086 	drm_connector_helper_add(&sor->output.connector,
3087 				 &tegra_sor_connector_helper_funcs);
3088 	sor->output.connector.dpms = DRM_MODE_DPMS_OFF;
3089 
3090 	drm_simple_encoder_init(drm, &sor->output.encoder, encoder);
3091 	drm_encoder_helper_add(&sor->output.encoder, helpers);
3092 
3093 	drm_connector_attach_encoder(&sor->output.connector,
3094 					  &sor->output.encoder);
3095 	drm_connector_register(&sor->output.connector);
3096 
3097 	err = tegra_output_init(drm, &sor->output);
3098 	if (err < 0) {
3099 		dev_err(client->dev, "failed to initialize output: %d\n", err);
3100 		return err;
3101 	}
3102 
3103 	tegra_output_find_possible_crtcs(&sor->output, drm);
3104 
3105 	if (sor->aux) {
3106 		err = drm_dp_aux_attach(sor->aux, &sor->output);
3107 		if (err < 0) {
3108 			dev_err(sor->dev, "failed to attach DP: %d\n", err);
3109 			return err;
3110 		}
3111 	}
3112 
3113 	/*
3114 	 * XXX: Remove this reset once proper hand-over from firmware to
3115 	 * kernel is possible.
3116 	 */
3117 	if (sor->rst) {
3118 		err = pm_runtime_resume_and_get(sor->dev);
3119 		if (err < 0) {
3120 			dev_err(sor->dev, "failed to get runtime PM: %d\n", err);
3121 			return err;
3122 		}
3123 
3124 		err = reset_control_acquire(sor->rst);
3125 		if (err < 0) {
3126 			dev_err(sor->dev, "failed to acquire SOR reset: %d\n",
3127 				err);
3128 			goto rpm_put;
3129 		}
3130 
3131 		err = reset_control_assert(sor->rst);
3132 		if (err < 0) {
3133 			dev_err(sor->dev, "failed to assert SOR reset: %d\n",
3134 				err);
3135 			goto rpm_put;
3136 		}
3137 	}
3138 
3139 	err = clk_prepare_enable(sor->clk);
3140 	if (err < 0) {
3141 		dev_err(sor->dev, "failed to enable clock: %d\n", err);
3142 		goto rpm_put;
3143 	}
3144 
3145 	usleep_range(1000, 3000);
3146 
3147 	if (sor->rst) {
3148 		err = reset_control_deassert(sor->rst);
3149 		if (err < 0) {
3150 			dev_err(sor->dev, "failed to deassert SOR reset: %d\n",
3151 				err);
3152 			clk_disable_unprepare(sor->clk);
3153 			goto rpm_put;
3154 		}
3155 
3156 		reset_control_release(sor->rst);
3157 		pm_runtime_put(sor->dev);
3158 	}
3159 
3160 	err = clk_prepare_enable(sor->clk_safe);
3161 	if (err < 0) {
3162 		clk_disable_unprepare(sor->clk);
3163 		return err;
3164 	}
3165 
3166 	err = clk_prepare_enable(sor->clk_dp);
3167 	if (err < 0) {
3168 		clk_disable_unprepare(sor->clk_safe);
3169 		clk_disable_unprepare(sor->clk);
3170 		return err;
3171 	}
3172 
3173 	return 0;
3174 
3175 rpm_put:
3176 	if (sor->rst)
3177 		pm_runtime_put(sor->dev);
3178 
3179 	return err;
3180 }
3181 
3182 static int tegra_sor_exit(struct host1x_client *client)
3183 {
3184 	struct tegra_sor *sor = host1x_client_to_sor(client);
3185 	int err;
3186 
3187 	tegra_output_exit(&sor->output);
3188 
3189 	if (sor->aux) {
3190 		err = drm_dp_aux_detach(sor->aux);
3191 		if (err < 0) {
3192 			dev_err(sor->dev, "failed to detach DP: %d\n", err);
3193 			return err;
3194 		}
3195 	}
3196 
3197 	clk_disable_unprepare(sor->clk_safe);
3198 	clk_disable_unprepare(sor->clk_dp);
3199 	clk_disable_unprepare(sor->clk);
3200 
3201 	return 0;
3202 }
3203 
3204 static int tegra_sor_runtime_suspend(struct host1x_client *client)
3205 {
3206 	struct tegra_sor *sor = host1x_client_to_sor(client);
3207 	struct device *dev = client->dev;
3208 	int err;
3209 
3210 	if (sor->rst) {
3211 		err = reset_control_assert(sor->rst);
3212 		if (err < 0) {
3213 			dev_err(dev, "failed to assert reset: %d\n", err);
3214 			return err;
3215 		}
3216 
3217 		reset_control_release(sor->rst);
3218 	}
3219 
3220 	usleep_range(1000, 2000);
3221 
3222 	clk_disable_unprepare(sor->clk);
3223 	pm_runtime_put_sync(dev);
3224 
3225 	return 0;
3226 }
3227 
3228 static int tegra_sor_runtime_resume(struct host1x_client *client)
3229 {
3230 	struct tegra_sor *sor = host1x_client_to_sor(client);
3231 	struct device *dev = client->dev;
3232 	int err;
3233 
3234 	err = pm_runtime_resume_and_get(dev);
3235 	if (err < 0) {
3236 		dev_err(dev, "failed to get runtime PM: %d\n", err);
3237 		return err;
3238 	}
3239 
3240 	err = clk_prepare_enable(sor->clk);
3241 	if (err < 0) {
3242 		dev_err(dev, "failed to enable clock: %d\n", err);
3243 		goto put_rpm;
3244 	}
3245 
3246 	usleep_range(1000, 2000);
3247 
3248 	if (sor->rst) {
3249 		err = reset_control_acquire(sor->rst);
3250 		if (err < 0) {
3251 			dev_err(dev, "failed to acquire reset: %d\n", err);
3252 			goto disable_clk;
3253 		}
3254 
3255 		err = reset_control_deassert(sor->rst);
3256 		if (err < 0) {
3257 			dev_err(dev, "failed to deassert reset: %d\n", err);
3258 			goto release_reset;
3259 		}
3260 	}
3261 
3262 	return 0;
3263 
3264 release_reset:
3265 	reset_control_release(sor->rst);
3266 disable_clk:
3267 	clk_disable_unprepare(sor->clk);
3268 put_rpm:
3269 	pm_runtime_put_sync(dev);
3270 	return err;
3271 }
3272 
3273 static const struct host1x_client_ops sor_client_ops = {
3274 	.init = tegra_sor_init,
3275 	.exit = tegra_sor_exit,
3276 	.suspend = tegra_sor_runtime_suspend,
3277 	.resume = tegra_sor_runtime_resume,
3278 };
3279 
3280 static const u8 tegra124_sor_xbar_cfg[5] = {
3281 	0, 1, 2, 3, 4
3282 };
3283 
3284 static const struct tegra_sor_regs tegra124_sor_regs = {
3285 	.head_state0 = 0x05,
3286 	.head_state1 = 0x07,
3287 	.head_state2 = 0x09,
3288 	.head_state3 = 0x0b,
3289 	.head_state4 = 0x0d,
3290 	.head_state5 = 0x0f,
3291 	.pll0 = 0x17,
3292 	.pll1 = 0x18,
3293 	.pll2 = 0x19,
3294 	.pll3 = 0x1a,
3295 	.dp_padctl0 = 0x5c,
3296 	.dp_padctl2 = 0x73,
3297 };
3298 
3299 /* Tegra124 and Tegra132 have lanes 0 and 2 swapped. */
3300 static const u8 tegra124_sor_lane_map[4] = {
3301 	2, 1, 0, 3,
3302 };
3303 
3304 static const u8 tegra124_sor_voltage_swing[4][4][4] = {
3305 	{
3306 		{ 0x13, 0x19, 0x1e, 0x28 },
3307 		{ 0x1e, 0x25, 0x2d, },
3308 		{ 0x28, 0x32, },
3309 		{ 0x3c, },
3310 	}, {
3311 		{ 0x12, 0x17, 0x1b, 0x25 },
3312 		{ 0x1c, 0x23, 0x2a, },
3313 		{ 0x25, 0x2f, },
3314 		{ 0x39, }
3315 	}, {
3316 		{ 0x12, 0x16, 0x1a, 0x22 },
3317 		{ 0x1b, 0x20, 0x27, },
3318 		{ 0x24, 0x2d, },
3319 		{ 0x36, },
3320 	}, {
3321 		{ 0x11, 0x14, 0x17, 0x1f },
3322 		{ 0x19, 0x1e, 0x24, },
3323 		{ 0x22, 0x2a, },
3324 		{ 0x32, },
3325 	},
3326 };
3327 
3328 static const u8 tegra124_sor_pre_emphasis[4][4][4] = {
3329 	{
3330 		{ 0x00, 0x09, 0x13, 0x25 },
3331 		{ 0x00, 0x0f, 0x1e, },
3332 		{ 0x00, 0x14, },
3333 		{ 0x00, },
3334 	}, {
3335 		{ 0x00, 0x0a, 0x14, 0x28 },
3336 		{ 0x00, 0x0f, 0x1e, },
3337 		{ 0x00, 0x14, },
3338 		{ 0x00 },
3339 	}, {
3340 		{ 0x00, 0x0a, 0x14, 0x28 },
3341 		{ 0x00, 0x0f, 0x1e, },
3342 		{ 0x00, 0x14, },
3343 		{ 0x00, },
3344 	}, {
3345 		{ 0x00, 0x0a, 0x14, 0x28 },
3346 		{ 0x00, 0x0f, 0x1e, },
3347 		{ 0x00, 0x14, },
3348 		{ 0x00, },
3349 	},
3350 };
3351 
3352 static const u8 tegra124_sor_post_cursor[4][4][4] = {
3353 	{
3354 		{ 0x00, 0x00, 0x00, 0x00 },
3355 		{ 0x00, 0x00, 0x00, },
3356 		{ 0x00, 0x00, },
3357 		{ 0x00, },
3358 	}, {
3359 		{ 0x02, 0x02, 0x04, 0x05 },
3360 		{ 0x02, 0x04, 0x05, },
3361 		{ 0x04, 0x05, },
3362 		{ 0x05, },
3363 	}, {
3364 		{ 0x04, 0x05, 0x08, 0x0b },
3365 		{ 0x05, 0x09, 0x0b, },
3366 		{ 0x08, 0x0a, },
3367 		{ 0x0b, },
3368 	}, {
3369 		{ 0x05, 0x09, 0x0b, 0x12 },
3370 		{ 0x09, 0x0d, 0x12, },
3371 		{ 0x0b, 0x0f, },
3372 		{ 0x12, },
3373 	},
3374 };
3375 
3376 static const u8 tegra124_sor_tx_pu[4][4][4] = {
3377 	{
3378 		{ 0x20, 0x30, 0x40, 0x60 },
3379 		{ 0x30, 0x40, 0x60, },
3380 		{ 0x40, 0x60, },
3381 		{ 0x60, },
3382 	}, {
3383 		{ 0x20, 0x20, 0x30, 0x50 },
3384 		{ 0x30, 0x40, 0x50, },
3385 		{ 0x40, 0x50, },
3386 		{ 0x60, },
3387 	}, {
3388 		{ 0x20, 0x20, 0x30, 0x40, },
3389 		{ 0x30, 0x30, 0x40, },
3390 		{ 0x40, 0x50, },
3391 		{ 0x60, },
3392 	}, {
3393 		{ 0x20, 0x20, 0x20, 0x40, },
3394 		{ 0x30, 0x30, 0x40, },
3395 		{ 0x40, 0x40, },
3396 		{ 0x60, },
3397 	},
3398 };
3399 
3400 static const struct tegra_sor_soc tegra124_sor = {
3401 	.supports_lvds = true,
3402 	.supports_hdmi = false,
3403 	.supports_dp = true,
3404 	.supports_audio = false,
3405 	.supports_hdcp = false,
3406 	.regs = &tegra124_sor_regs,
3407 	.has_nvdisplay = false,
3408 	.xbar_cfg = tegra124_sor_xbar_cfg,
3409 	.lane_map = tegra124_sor_lane_map,
3410 	.voltage_swing = tegra124_sor_voltage_swing,
3411 	.pre_emphasis = tegra124_sor_pre_emphasis,
3412 	.post_cursor = tegra124_sor_post_cursor,
3413 	.tx_pu = tegra124_sor_tx_pu,
3414 };
3415 
3416 static const u8 tegra132_sor_pre_emphasis[4][4][4] = {
3417 	{
3418 		{ 0x00, 0x08, 0x12, 0x24 },
3419 		{ 0x01, 0x0e, 0x1d, },
3420 		{ 0x01, 0x13, },
3421 		{ 0x00, },
3422 	}, {
3423 		{ 0x00, 0x08, 0x12, 0x24 },
3424 		{ 0x00, 0x0e, 0x1d, },
3425 		{ 0x00, 0x13, },
3426 		{ 0x00 },
3427 	}, {
3428 		{ 0x00, 0x08, 0x12, 0x24 },
3429 		{ 0x00, 0x0e, 0x1d, },
3430 		{ 0x00, 0x13, },
3431 		{ 0x00, },
3432 	}, {
3433 		{ 0x00, 0x08, 0x12, 0x24 },
3434 		{ 0x00, 0x0e, 0x1d, },
3435 		{ 0x00, 0x13, },
3436 		{ 0x00, },
3437 	},
3438 };
3439 
3440 static const struct tegra_sor_soc tegra132_sor = {
3441 	.supports_lvds = true,
3442 	.supports_hdmi = false,
3443 	.supports_dp = true,
3444 	.supports_audio = false,
3445 	.supports_hdcp = false,
3446 	.regs = &tegra124_sor_regs,
3447 	.has_nvdisplay = false,
3448 	.xbar_cfg = tegra124_sor_xbar_cfg,
3449 	.lane_map = tegra124_sor_lane_map,
3450 	.voltage_swing = tegra124_sor_voltage_swing,
3451 	.pre_emphasis = tegra132_sor_pre_emphasis,
3452 	.post_cursor = tegra124_sor_post_cursor,
3453 	.tx_pu = tegra124_sor_tx_pu,
3454 };
3455 
3456 static const struct tegra_sor_regs tegra210_sor_regs = {
3457 	.head_state0 = 0x05,
3458 	.head_state1 = 0x07,
3459 	.head_state2 = 0x09,
3460 	.head_state3 = 0x0b,
3461 	.head_state4 = 0x0d,
3462 	.head_state5 = 0x0f,
3463 	.pll0 = 0x17,
3464 	.pll1 = 0x18,
3465 	.pll2 = 0x19,
3466 	.pll3 = 0x1a,
3467 	.dp_padctl0 = 0x5c,
3468 	.dp_padctl2 = 0x73,
3469 };
3470 
3471 static const u8 tegra210_sor_xbar_cfg[5] = {
3472 	2, 1, 0, 3, 4
3473 };
3474 
3475 static const u8 tegra210_sor_lane_map[4] = {
3476 	0, 1, 2, 3,
3477 };
3478 
3479 static const struct tegra_sor_soc tegra210_sor = {
3480 	.supports_lvds = false,
3481 	.supports_hdmi = false,
3482 	.supports_dp = true,
3483 	.supports_audio = false,
3484 	.supports_hdcp = false,
3485 
3486 	.regs = &tegra210_sor_regs,
3487 	.has_nvdisplay = false,
3488 
3489 	.xbar_cfg = tegra210_sor_xbar_cfg,
3490 	.lane_map = tegra210_sor_lane_map,
3491 	.voltage_swing = tegra124_sor_voltage_swing,
3492 	.pre_emphasis = tegra124_sor_pre_emphasis,
3493 	.post_cursor = tegra124_sor_post_cursor,
3494 	.tx_pu = tegra124_sor_tx_pu,
3495 };
3496 
3497 static const struct tegra_sor_soc tegra210_sor1 = {
3498 	.supports_lvds = false,
3499 	.supports_hdmi = true,
3500 	.supports_dp = true,
3501 	.supports_audio = true,
3502 	.supports_hdcp = true,
3503 
3504 	.regs = &tegra210_sor_regs,
3505 	.has_nvdisplay = false,
3506 
3507 	.num_settings = ARRAY_SIZE(tegra210_sor_hdmi_defaults),
3508 	.settings = tegra210_sor_hdmi_defaults,
3509 	.xbar_cfg = tegra210_sor_xbar_cfg,
3510 	.lane_map = tegra210_sor_lane_map,
3511 	.voltage_swing = tegra124_sor_voltage_swing,
3512 	.pre_emphasis = tegra124_sor_pre_emphasis,
3513 	.post_cursor = tegra124_sor_post_cursor,
3514 	.tx_pu = tegra124_sor_tx_pu,
3515 };
3516 
3517 static const struct tegra_sor_regs tegra186_sor_regs = {
3518 	.head_state0 = 0x151,
3519 	.head_state1 = 0x154,
3520 	.head_state2 = 0x157,
3521 	.head_state3 = 0x15a,
3522 	.head_state4 = 0x15d,
3523 	.head_state5 = 0x160,
3524 	.pll0 = 0x163,
3525 	.pll1 = 0x164,
3526 	.pll2 = 0x165,
3527 	.pll3 = 0x166,
3528 	.dp_padctl0 = 0x168,
3529 	.dp_padctl2 = 0x16a,
3530 };
3531 
3532 static const u8 tegra186_sor_voltage_swing[4][4][4] = {
3533 	{
3534 		{ 0x13, 0x19, 0x1e, 0x28 },
3535 		{ 0x1e, 0x25, 0x2d, },
3536 		{ 0x28, 0x32, },
3537 		{ 0x39, },
3538 	}, {
3539 		{ 0x12, 0x16, 0x1b, 0x25 },
3540 		{ 0x1c, 0x23, 0x2a, },
3541 		{ 0x25, 0x2f, },
3542 		{ 0x37, }
3543 	}, {
3544 		{ 0x12, 0x16, 0x1a, 0x22 },
3545 		{ 0x1b, 0x20, 0x27, },
3546 		{ 0x24, 0x2d, },
3547 		{ 0x35, },
3548 	}, {
3549 		{ 0x11, 0x14, 0x17, 0x1f },
3550 		{ 0x19, 0x1e, 0x24, },
3551 		{ 0x22, 0x2a, },
3552 		{ 0x32, },
3553 	},
3554 };
3555 
3556 static const u8 tegra186_sor_pre_emphasis[4][4][4] = {
3557 	{
3558 		{ 0x00, 0x08, 0x12, 0x24 },
3559 		{ 0x01, 0x0e, 0x1d, },
3560 		{ 0x01, 0x13, },
3561 		{ 0x00, },
3562 	}, {
3563 		{ 0x00, 0x08, 0x12, 0x24 },
3564 		{ 0x00, 0x0e, 0x1d, },
3565 		{ 0x00, 0x13, },
3566 		{ 0x00 },
3567 	}, {
3568 		{ 0x00, 0x08, 0x14, 0x24 },
3569 		{ 0x00, 0x0e, 0x1d, },
3570 		{ 0x00, 0x13, },
3571 		{ 0x00, },
3572 	}, {
3573 		{ 0x00, 0x08, 0x12, 0x24 },
3574 		{ 0x00, 0x0e, 0x1d, },
3575 		{ 0x00, 0x13, },
3576 		{ 0x00, },
3577 	},
3578 };
3579 
3580 static const struct tegra_sor_soc tegra186_sor = {
3581 	.supports_lvds = false,
3582 	.supports_hdmi = true,
3583 	.supports_dp = true,
3584 	.supports_audio = true,
3585 	.supports_hdcp = true,
3586 
3587 	.regs = &tegra186_sor_regs,
3588 	.has_nvdisplay = true,
3589 
3590 	.num_settings = ARRAY_SIZE(tegra186_sor_hdmi_defaults),
3591 	.settings = tegra186_sor_hdmi_defaults,
3592 	.xbar_cfg = tegra124_sor_xbar_cfg,
3593 	.lane_map = tegra124_sor_lane_map,
3594 	.voltage_swing = tegra186_sor_voltage_swing,
3595 	.pre_emphasis = tegra186_sor_pre_emphasis,
3596 	.post_cursor = tegra124_sor_post_cursor,
3597 	.tx_pu = tegra124_sor_tx_pu,
3598 };
3599 
3600 static const struct tegra_sor_regs tegra194_sor_regs = {
3601 	.head_state0 = 0x151,
3602 	.head_state1 = 0x155,
3603 	.head_state2 = 0x159,
3604 	.head_state3 = 0x15d,
3605 	.head_state4 = 0x161,
3606 	.head_state5 = 0x165,
3607 	.pll0 = 0x169,
3608 	.pll1 = 0x16a,
3609 	.pll2 = 0x16b,
3610 	.pll3 = 0x16c,
3611 	.dp_padctl0 = 0x16e,
3612 	.dp_padctl2 = 0x16f,
3613 };
3614 
3615 static const struct tegra_sor_soc tegra194_sor = {
3616 	.supports_lvds = false,
3617 	.supports_hdmi = true,
3618 	.supports_dp = true,
3619 	.supports_audio = true,
3620 	.supports_hdcp = true,
3621 
3622 	.regs = &tegra194_sor_regs,
3623 	.has_nvdisplay = true,
3624 
3625 	.num_settings = ARRAY_SIZE(tegra194_sor_hdmi_defaults),
3626 	.settings = tegra194_sor_hdmi_defaults,
3627 
3628 	.xbar_cfg = tegra210_sor_xbar_cfg,
3629 	.lane_map = tegra124_sor_lane_map,
3630 	.voltage_swing = tegra186_sor_voltage_swing,
3631 	.pre_emphasis = tegra186_sor_pre_emphasis,
3632 	.post_cursor = tegra124_sor_post_cursor,
3633 	.tx_pu = tegra124_sor_tx_pu,
3634 };
3635 
3636 static const struct of_device_id tegra_sor_of_match[] = {
3637 	{ .compatible = "nvidia,tegra194-sor", .data = &tegra194_sor },
3638 	{ .compatible = "nvidia,tegra186-sor", .data = &tegra186_sor },
3639 	{ .compatible = "nvidia,tegra210-sor1", .data = &tegra210_sor1 },
3640 	{ .compatible = "nvidia,tegra210-sor", .data = &tegra210_sor },
3641 	{ .compatible = "nvidia,tegra132-sor", .data = &tegra132_sor },
3642 	{ .compatible = "nvidia,tegra124-sor", .data = &tegra124_sor },
3643 	{ },
3644 };
3645 MODULE_DEVICE_TABLE(of, tegra_sor_of_match);
3646 
3647 static int tegra_sor_parse_dt(struct tegra_sor *sor)
3648 {
3649 	struct device_node *np = sor->dev->of_node;
3650 	u32 xbar_cfg[5];
3651 	unsigned int i;
3652 	u32 value;
3653 	int err;
3654 
3655 	if (sor->soc->has_nvdisplay) {
3656 		err = of_property_read_u32(np, "nvidia,interface", &value);
3657 		if (err < 0)
3658 			return err;
3659 
3660 		sor->index = value;
3661 
3662 		/*
3663 		 * override the default that we already set for Tegra210 and
3664 		 * earlier
3665 		 */
3666 		sor->pad = TEGRA_IO_PAD_HDMI_DP0 + sor->index;
3667 	} else {
3668 		if (!sor->soc->supports_audio)
3669 			sor->index = 0;
3670 		else
3671 			sor->index = 1;
3672 	}
3673 
3674 	err = of_property_read_u32_array(np, "nvidia,xbar-cfg", xbar_cfg, 5);
3675 	if (err < 0) {
3676 		/* fall back to default per-SoC XBAR configuration */
3677 		for (i = 0; i < 5; i++)
3678 			sor->xbar_cfg[i] = sor->soc->xbar_cfg[i];
3679 	} else {
3680 		/* copy cells to SOR XBAR configuration */
3681 		for (i = 0; i < 5; i++)
3682 			sor->xbar_cfg[i] = xbar_cfg[i];
3683 	}
3684 
3685 	return 0;
3686 }
3687 
3688 static irqreturn_t tegra_sor_irq(int irq, void *data)
3689 {
3690 	struct tegra_sor *sor = data;
3691 	u32 value;
3692 
3693 	value = tegra_sor_readl(sor, SOR_INT_STATUS);
3694 	tegra_sor_writel(sor, value, SOR_INT_STATUS);
3695 
3696 	if (value & SOR_INT_CODEC_SCRATCH0) {
3697 		value = tegra_sor_readl(sor, SOR_AUDIO_HDA_CODEC_SCRATCH0);
3698 
3699 		if (value & SOR_AUDIO_HDA_CODEC_SCRATCH0_VALID) {
3700 			unsigned int format;
3701 
3702 			format = value & SOR_AUDIO_HDA_CODEC_SCRATCH0_FMT_MASK;
3703 
3704 			tegra_hda_parse_format(format, &sor->format);
3705 
3706 			if (sor->ops->audio_enable)
3707 				sor->ops->audio_enable(sor);
3708 		} else {
3709 			if (sor->ops->audio_disable)
3710 				sor->ops->audio_disable(sor);
3711 		}
3712 	}
3713 
3714 	return IRQ_HANDLED;
3715 }
3716 
3717 static int tegra_sor_probe(struct platform_device *pdev)
3718 {
3719 	struct device_node *np;
3720 	struct tegra_sor *sor;
3721 	struct resource *regs;
3722 	int err;
3723 
3724 	sor = devm_kzalloc(&pdev->dev, sizeof(*sor), GFP_KERNEL);
3725 	if (!sor)
3726 		return -ENOMEM;
3727 
3728 	sor->soc = of_device_get_match_data(&pdev->dev);
3729 	sor->output.dev = sor->dev = &pdev->dev;
3730 
3731 	sor->settings = devm_kmemdup(&pdev->dev, sor->soc->settings,
3732 				     sor->soc->num_settings *
3733 					sizeof(*sor->settings),
3734 				     GFP_KERNEL);
3735 	if (!sor->settings)
3736 		return -ENOMEM;
3737 
3738 	sor->num_settings = sor->soc->num_settings;
3739 
3740 	np = of_parse_phandle(pdev->dev.of_node, "nvidia,dpaux", 0);
3741 	if (np) {
3742 		sor->aux = drm_dp_aux_find_by_of_node(np);
3743 		of_node_put(np);
3744 
3745 		if (!sor->aux)
3746 			return -EPROBE_DEFER;
3747 
3748 		if (get_device(sor->aux->dev))
3749 			sor->output.ddc = &sor->aux->ddc;
3750 	}
3751 
3752 	if (!sor->aux) {
3753 		if (sor->soc->supports_hdmi) {
3754 			sor->ops = &tegra_sor_hdmi_ops;
3755 			sor->pad = TEGRA_IO_PAD_HDMI;
3756 		} else if (sor->soc->supports_lvds) {
3757 			dev_err(&pdev->dev, "LVDS not supported yet\n");
3758 			return -ENODEV;
3759 		} else {
3760 			dev_err(&pdev->dev, "unknown (non-DP) support\n");
3761 			return -ENODEV;
3762 		}
3763 	} else {
3764 		np = of_parse_phandle(pdev->dev.of_node, "nvidia,panel", 0);
3765 		/*
3766 		 * No need to keep this around since we only use it as a check
3767 		 * to see if a panel is connected (eDP) or not (DP).
3768 		 */
3769 		of_node_put(np);
3770 
3771 		sor->ops = &tegra_sor_dp_ops;
3772 		sor->pad = TEGRA_IO_PAD_LVDS;
3773 	}
3774 
3775 	err = tegra_sor_parse_dt(sor);
3776 	if (err < 0)
3777 		goto put_aux;
3778 
3779 	err = tegra_output_probe(&sor->output);
3780 	if (err < 0) {
3781 		dev_err_probe(&pdev->dev, err, "failed to probe output\n");
3782 		goto put_aux;
3783 	}
3784 
3785 	if (sor->ops && sor->ops->probe) {
3786 		err = sor->ops->probe(sor);
3787 		if (err < 0) {
3788 			dev_err(&pdev->dev, "failed to probe %s: %d\n",
3789 				sor->ops->name, err);
3790 			goto remove;
3791 		}
3792 	}
3793 
3794 	regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3795 	sor->regs = devm_ioremap_resource(&pdev->dev, regs);
3796 	if (IS_ERR(sor->regs)) {
3797 		err = PTR_ERR(sor->regs);
3798 		goto remove;
3799 	}
3800 
3801 	err = platform_get_irq(pdev, 0);
3802 	if (err < 0) {
3803 		dev_err(&pdev->dev, "failed to get IRQ: %d\n", err);
3804 		goto remove;
3805 	}
3806 
3807 	sor->irq = err;
3808 
3809 	err = devm_request_irq(sor->dev, sor->irq, tegra_sor_irq, 0,
3810 			       dev_name(sor->dev), sor);
3811 	if (err < 0) {
3812 		dev_err(&pdev->dev, "failed to request IRQ: %d\n", err);
3813 		goto remove;
3814 	}
3815 
3816 	sor->rst = devm_reset_control_get_exclusive_released(&pdev->dev, "sor");
3817 	if (IS_ERR(sor->rst)) {
3818 		err = PTR_ERR(sor->rst);
3819 
3820 		if (err != -EBUSY || WARN_ON(!pdev->dev.pm_domain)) {
3821 			dev_err(&pdev->dev, "failed to get reset control: %d\n",
3822 				err);
3823 			goto remove;
3824 		}
3825 
3826 		/*
3827 		 * At this point, the reset control is most likely being used
3828 		 * by the generic power domain implementation. With any luck
3829 		 * the power domain will have taken care of resetting the SOR
3830 		 * and we don't have to do anything.
3831 		 */
3832 		sor->rst = NULL;
3833 	}
3834 
3835 	sor->clk = devm_clk_get(&pdev->dev, NULL);
3836 	if (IS_ERR(sor->clk)) {
3837 		err = PTR_ERR(sor->clk);
3838 		dev_err(&pdev->dev, "failed to get module clock: %d\n", err);
3839 		goto remove;
3840 	}
3841 
3842 	if (sor->soc->supports_hdmi || sor->soc->supports_dp) {
3843 		struct device_node *np = pdev->dev.of_node;
3844 		const char *name;
3845 
3846 		/*
3847 		 * For backwards compatibility with Tegra210 device trees,
3848 		 * fall back to the old clock name "source" if the new "out"
3849 		 * clock is not available.
3850 		 */
3851 		if (of_property_match_string(np, "clock-names", "out") < 0)
3852 			name = "source";
3853 		else
3854 			name = "out";
3855 
3856 		sor->clk_out = devm_clk_get(&pdev->dev, name);
3857 		if (IS_ERR(sor->clk_out)) {
3858 			err = PTR_ERR(sor->clk_out);
3859 			dev_err(sor->dev, "failed to get %s clock: %d\n",
3860 				name, err);
3861 			goto remove;
3862 		}
3863 	} else {
3864 		/* fall back to the module clock on SOR0 (eDP/LVDS only) */
3865 		sor->clk_out = sor->clk;
3866 	}
3867 
3868 	sor->clk_parent = devm_clk_get(&pdev->dev, "parent");
3869 	if (IS_ERR(sor->clk_parent)) {
3870 		err = PTR_ERR(sor->clk_parent);
3871 		dev_err(&pdev->dev, "failed to get parent clock: %d\n", err);
3872 		goto remove;
3873 	}
3874 
3875 	sor->clk_safe = devm_clk_get(&pdev->dev, "safe");
3876 	if (IS_ERR(sor->clk_safe)) {
3877 		err = PTR_ERR(sor->clk_safe);
3878 		dev_err(&pdev->dev, "failed to get safe clock: %d\n", err);
3879 		goto remove;
3880 	}
3881 
3882 	sor->clk_dp = devm_clk_get(&pdev->dev, "dp");
3883 	if (IS_ERR(sor->clk_dp)) {
3884 		err = PTR_ERR(sor->clk_dp);
3885 		dev_err(&pdev->dev, "failed to get DP clock: %d\n", err);
3886 		goto remove;
3887 	}
3888 
3889 	/*
3890 	 * Starting with Tegra186, the BPMP provides an implementation for
3891 	 * the pad output clock, so we have to look it up from device tree.
3892 	 */
3893 	sor->clk_pad = devm_clk_get(&pdev->dev, "pad");
3894 	if (IS_ERR(sor->clk_pad)) {
3895 		if (sor->clk_pad != ERR_PTR(-ENOENT)) {
3896 			err = PTR_ERR(sor->clk_pad);
3897 			goto remove;
3898 		}
3899 
3900 		/*
3901 		 * If the pad output clock is not available, then we assume
3902 		 * we're on Tegra210 or earlier and have to provide our own
3903 		 * implementation.
3904 		 */
3905 		sor->clk_pad = NULL;
3906 	}
3907 
3908 	/*
3909 	 * The bootloader may have set up the SOR such that it's module clock
3910 	 * is sourced by one of the display PLLs. However, that doesn't work
3911 	 * without properly having set up other bits of the SOR.
3912 	 */
3913 	err = clk_set_parent(sor->clk_out, sor->clk_safe);
3914 	if (err < 0) {
3915 		dev_err(&pdev->dev, "failed to use safe clock: %d\n", err);
3916 		goto remove;
3917 	}
3918 
3919 	platform_set_drvdata(pdev, sor);
3920 	pm_runtime_enable(&pdev->dev);
3921 
3922 	host1x_client_init(&sor->client);
3923 	sor->client.ops = &sor_client_ops;
3924 	sor->client.dev = &pdev->dev;
3925 
3926 	/*
3927 	 * On Tegra210 and earlier, provide our own implementation for the
3928 	 * pad output clock.
3929 	 */
3930 	if (!sor->clk_pad) {
3931 		char *name;
3932 
3933 		name = devm_kasprintf(sor->dev, GFP_KERNEL, "sor%u_pad_clkout",
3934 				      sor->index);
3935 		if (!name) {
3936 			err = -ENOMEM;
3937 			goto uninit;
3938 		}
3939 
3940 		err = host1x_client_resume(&sor->client);
3941 		if (err < 0) {
3942 			dev_err(sor->dev, "failed to resume: %d\n", err);
3943 			goto uninit;
3944 		}
3945 
3946 		sor->clk_pad = tegra_clk_sor_pad_register(sor, name);
3947 		host1x_client_suspend(&sor->client);
3948 	}
3949 
3950 	if (IS_ERR(sor->clk_pad)) {
3951 		err = PTR_ERR(sor->clk_pad);
3952 		dev_err(sor->dev, "failed to register SOR pad clock: %d\n",
3953 			err);
3954 		goto uninit;
3955 	}
3956 
3957 	err = __host1x_client_register(&sor->client);
3958 	if (err < 0) {
3959 		dev_err(&pdev->dev, "failed to register host1x client: %d\n",
3960 			err);
3961 		goto uninit;
3962 	}
3963 
3964 	return 0;
3965 
3966 uninit:
3967 	host1x_client_exit(&sor->client);
3968 	pm_runtime_disable(&pdev->dev);
3969 remove:
3970 	if (sor->aux)
3971 		sor->output.ddc = NULL;
3972 
3973 	tegra_output_remove(&sor->output);
3974 put_aux:
3975 	if (sor->aux)
3976 		put_device(sor->aux->dev);
3977 
3978 	return err;
3979 }
3980 
3981 static int tegra_sor_remove(struct platform_device *pdev)
3982 {
3983 	struct tegra_sor *sor = platform_get_drvdata(pdev);
3984 	int err;
3985 
3986 	err = host1x_client_unregister(&sor->client);
3987 	if (err < 0) {
3988 		dev_err(&pdev->dev, "failed to unregister host1x client: %d\n",
3989 			err);
3990 		return err;
3991 	}
3992 
3993 	pm_runtime_disable(&pdev->dev);
3994 
3995 	if (sor->aux) {
3996 		put_device(sor->aux->dev);
3997 		sor->output.ddc = NULL;
3998 	}
3999 
4000 	tegra_output_remove(&sor->output);
4001 
4002 	return 0;
4003 }
4004 
4005 static int __maybe_unused tegra_sor_suspend(struct device *dev)
4006 {
4007 	struct tegra_sor *sor = dev_get_drvdata(dev);
4008 	int err;
4009 
4010 	err = tegra_output_suspend(&sor->output);
4011 	if (err < 0) {
4012 		dev_err(dev, "failed to suspend output: %d\n", err);
4013 		return err;
4014 	}
4015 
4016 	if (sor->hdmi_supply) {
4017 		err = regulator_disable(sor->hdmi_supply);
4018 		if (err < 0) {
4019 			tegra_output_resume(&sor->output);
4020 			return err;
4021 		}
4022 	}
4023 
4024 	return 0;
4025 }
4026 
4027 static int __maybe_unused tegra_sor_resume(struct device *dev)
4028 {
4029 	struct tegra_sor *sor = dev_get_drvdata(dev);
4030 	int err;
4031 
4032 	if (sor->hdmi_supply) {
4033 		err = regulator_enable(sor->hdmi_supply);
4034 		if (err < 0)
4035 			return err;
4036 	}
4037 
4038 	err = tegra_output_resume(&sor->output);
4039 	if (err < 0) {
4040 		dev_err(dev, "failed to resume output: %d\n", err);
4041 
4042 		if (sor->hdmi_supply)
4043 			regulator_disable(sor->hdmi_supply);
4044 
4045 		return err;
4046 	}
4047 
4048 	return 0;
4049 }
4050 
4051 static const struct dev_pm_ops tegra_sor_pm_ops = {
4052 	SET_SYSTEM_SLEEP_PM_OPS(tegra_sor_suspend, tegra_sor_resume)
4053 };
4054 
4055 struct platform_driver tegra_sor_driver = {
4056 	.driver = {
4057 		.name = "tegra-sor",
4058 		.of_match_table = tegra_sor_of_match,
4059 		.pm = &tegra_sor_pm_ops,
4060 	},
4061 	.probe = tegra_sor_probe,
4062 	.remove = tegra_sor_remove,
4063 };
4064