xref: /openbmc/linux/drivers/gpu/drm/tegra/sor.c (revision a01822e94ee53e8ebc9632fe2764048b81921254)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2013 NVIDIA Corporation
4  */
5 
6 #include <linux/clk.h>
7 #include <linux/clk-provider.h>
8 #include <linux/debugfs.h>
9 #include <linux/gpio.h>
10 #include <linux/io.h>
11 #include <linux/module.h>
12 #include <linux/of_device.h>
13 #include <linux/platform_device.h>
14 #include <linux/pm_runtime.h>
15 #include <linux/regulator/consumer.h>
16 #include <linux/reset.h>
17 
18 #include <soc/tegra/pmc.h>
19 
20 #include <drm/drm_atomic_helper.h>
21 #include <drm/drm_debugfs.h>
22 #include <drm/drm_dp_helper.h>
23 #include <drm/drm_file.h>
24 #include <drm/drm_panel.h>
25 #include <drm/drm_scdc_helper.h>
26 
27 #include "dc.h"
28 #include "dp.h"
29 #include "drm.h"
30 #include "hda.h"
31 #include "sor.h"
32 #include "trace.h"
33 
34 #define SOR_REKEY 0x38
35 
36 struct tegra_sor_hdmi_settings {
37 	unsigned long frequency;
38 
39 	u8 vcocap;
40 	u8 filter;
41 	u8 ichpmp;
42 	u8 loadadj;
43 	u8 tmds_termadj;
44 	u8 tx_pu_value;
45 	u8 bg_temp_coef;
46 	u8 bg_vref_level;
47 	u8 avdd10_level;
48 	u8 avdd14_level;
49 	u8 sparepll;
50 
51 	u8 drive_current[4];
52 	u8 preemphasis[4];
53 };
54 
55 #if 1
56 static const struct tegra_sor_hdmi_settings tegra210_sor_hdmi_defaults[] = {
57 	{
58 		.frequency = 54000000,
59 		.vcocap = 0x0,
60 		.filter = 0x0,
61 		.ichpmp = 0x1,
62 		.loadadj = 0x3,
63 		.tmds_termadj = 0x9,
64 		.tx_pu_value = 0x10,
65 		.bg_temp_coef = 0x3,
66 		.bg_vref_level = 0x8,
67 		.avdd10_level = 0x4,
68 		.avdd14_level = 0x4,
69 		.sparepll = 0x0,
70 		.drive_current = { 0x33, 0x3a, 0x3a, 0x3a },
71 		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
72 	}, {
73 		.frequency = 75000000,
74 		.vcocap = 0x3,
75 		.filter = 0x0,
76 		.ichpmp = 0x1,
77 		.loadadj = 0x3,
78 		.tmds_termadj = 0x9,
79 		.tx_pu_value = 0x40,
80 		.bg_temp_coef = 0x3,
81 		.bg_vref_level = 0x8,
82 		.avdd10_level = 0x4,
83 		.avdd14_level = 0x4,
84 		.sparepll = 0x0,
85 		.drive_current = { 0x33, 0x3a, 0x3a, 0x3a },
86 		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
87 	}, {
88 		.frequency = 150000000,
89 		.vcocap = 0x3,
90 		.filter = 0x0,
91 		.ichpmp = 0x1,
92 		.loadadj = 0x3,
93 		.tmds_termadj = 0x9,
94 		.tx_pu_value = 0x66,
95 		.bg_temp_coef = 0x3,
96 		.bg_vref_level = 0x8,
97 		.avdd10_level = 0x4,
98 		.avdd14_level = 0x4,
99 		.sparepll = 0x0,
100 		.drive_current = { 0x33, 0x3a, 0x3a, 0x3a },
101 		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
102 	}, {
103 		.frequency = 300000000,
104 		.vcocap = 0x3,
105 		.filter = 0x0,
106 		.ichpmp = 0x1,
107 		.loadadj = 0x3,
108 		.tmds_termadj = 0x9,
109 		.tx_pu_value = 0x66,
110 		.bg_temp_coef = 0x3,
111 		.bg_vref_level = 0xa,
112 		.avdd10_level = 0x4,
113 		.avdd14_level = 0x4,
114 		.sparepll = 0x0,
115 		.drive_current = { 0x33, 0x3f, 0x3f, 0x3f },
116 		.preemphasis = { 0x00, 0x17, 0x17, 0x17 },
117 	}, {
118 		.frequency = 600000000,
119 		.vcocap = 0x3,
120 		.filter = 0x0,
121 		.ichpmp = 0x1,
122 		.loadadj = 0x3,
123 		.tmds_termadj = 0x9,
124 		.tx_pu_value = 0x66,
125 		.bg_temp_coef = 0x3,
126 		.bg_vref_level = 0x8,
127 		.avdd10_level = 0x4,
128 		.avdd14_level = 0x4,
129 		.sparepll = 0x0,
130 		.drive_current = { 0x33, 0x3f, 0x3f, 0x3f },
131 		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
132 	},
133 };
134 #else
135 static const struct tegra_sor_hdmi_settings tegra210_sor_hdmi_defaults[] = {
136 	{
137 		.frequency = 75000000,
138 		.vcocap = 0x3,
139 		.filter = 0x0,
140 		.ichpmp = 0x1,
141 		.loadadj = 0x3,
142 		.tmds_termadj = 0x9,
143 		.tx_pu_value = 0x40,
144 		.bg_temp_coef = 0x3,
145 		.bg_vref_level = 0x8,
146 		.avdd10_level = 0x4,
147 		.avdd14_level = 0x4,
148 		.sparepll = 0x0,
149 		.drive_current = { 0x29, 0x29, 0x29, 0x29 },
150 		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
151 	}, {
152 		.frequency = 150000000,
153 		.vcocap = 0x3,
154 		.filter = 0x0,
155 		.ichpmp = 0x1,
156 		.loadadj = 0x3,
157 		.tmds_termadj = 0x9,
158 		.tx_pu_value = 0x66,
159 		.bg_temp_coef = 0x3,
160 		.bg_vref_level = 0x8,
161 		.avdd10_level = 0x4,
162 		.avdd14_level = 0x4,
163 		.sparepll = 0x0,
164 		.drive_current = { 0x30, 0x37, 0x37, 0x37 },
165 		.preemphasis = { 0x01, 0x02, 0x02, 0x02 },
166 	}, {
167 		.frequency = 300000000,
168 		.vcocap = 0x3,
169 		.filter = 0x0,
170 		.ichpmp = 0x6,
171 		.loadadj = 0x3,
172 		.tmds_termadj = 0x9,
173 		.tx_pu_value = 0x66,
174 		.bg_temp_coef = 0x3,
175 		.bg_vref_level = 0xf,
176 		.avdd10_level = 0x4,
177 		.avdd14_level = 0x4,
178 		.sparepll = 0x0,
179 		.drive_current = { 0x30, 0x37, 0x37, 0x37 },
180 		.preemphasis = { 0x10, 0x3e, 0x3e, 0x3e },
181 	}, {
182 		.frequency = 600000000,
183 		.vcocap = 0x3,
184 		.filter = 0x0,
185 		.ichpmp = 0xa,
186 		.loadadj = 0x3,
187 		.tmds_termadj = 0xb,
188 		.tx_pu_value = 0x66,
189 		.bg_temp_coef = 0x3,
190 		.bg_vref_level = 0xe,
191 		.avdd10_level = 0x4,
192 		.avdd14_level = 0x4,
193 		.sparepll = 0x0,
194 		.drive_current = { 0x35, 0x3e, 0x3e, 0x3e },
195 		.preemphasis = { 0x02, 0x3f, 0x3f, 0x3f },
196 	},
197 };
198 #endif
199 
200 static const struct tegra_sor_hdmi_settings tegra186_sor_hdmi_defaults[] = {
201 	{
202 		.frequency = 54000000,
203 		.vcocap = 0,
204 		.filter = 5,
205 		.ichpmp = 5,
206 		.loadadj = 3,
207 		.tmds_termadj = 0xf,
208 		.tx_pu_value = 0,
209 		.bg_temp_coef = 3,
210 		.bg_vref_level = 8,
211 		.avdd10_level = 4,
212 		.avdd14_level = 4,
213 		.sparepll = 0x54,
214 		.drive_current = { 0x3a, 0x3a, 0x3a, 0x33 },
215 		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
216 	}, {
217 		.frequency = 75000000,
218 		.vcocap = 1,
219 		.filter = 5,
220 		.ichpmp = 5,
221 		.loadadj = 3,
222 		.tmds_termadj = 0xf,
223 		.tx_pu_value = 0,
224 		.bg_temp_coef = 3,
225 		.bg_vref_level = 8,
226 		.avdd10_level = 4,
227 		.avdd14_level = 4,
228 		.sparepll = 0x44,
229 		.drive_current = { 0x3a, 0x3a, 0x3a, 0x33 },
230 		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
231 	}, {
232 		.frequency = 150000000,
233 		.vcocap = 3,
234 		.filter = 5,
235 		.ichpmp = 5,
236 		.loadadj = 3,
237 		.tmds_termadj = 15,
238 		.tx_pu_value = 0x66 /* 0 */,
239 		.bg_temp_coef = 3,
240 		.bg_vref_level = 8,
241 		.avdd10_level = 4,
242 		.avdd14_level = 4,
243 		.sparepll = 0x00, /* 0x34 */
244 		.drive_current = { 0x3a, 0x3a, 0x3a, 0x37 },
245 		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
246 	}, {
247 		.frequency = 300000000,
248 		.vcocap = 3,
249 		.filter = 5,
250 		.ichpmp = 5,
251 		.loadadj = 3,
252 		.tmds_termadj = 15,
253 		.tx_pu_value = 64,
254 		.bg_temp_coef = 3,
255 		.bg_vref_level = 8,
256 		.avdd10_level = 4,
257 		.avdd14_level = 4,
258 		.sparepll = 0x34,
259 		.drive_current = { 0x3d, 0x3d, 0x3d, 0x33 },
260 		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
261 	}, {
262 		.frequency = 600000000,
263 		.vcocap = 3,
264 		.filter = 5,
265 		.ichpmp = 5,
266 		.loadadj = 3,
267 		.tmds_termadj = 12,
268 		.tx_pu_value = 96,
269 		.bg_temp_coef = 3,
270 		.bg_vref_level = 8,
271 		.avdd10_level = 4,
272 		.avdd14_level = 4,
273 		.sparepll = 0x34,
274 		.drive_current = { 0x3d, 0x3d, 0x3d, 0x33 },
275 		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
276 	}
277 };
278 
279 static const struct tegra_sor_hdmi_settings tegra194_sor_hdmi_defaults[] = {
280 	{
281 		.frequency = 54000000,
282 		.vcocap = 0,
283 		.filter = 5,
284 		.ichpmp = 5,
285 		.loadadj = 3,
286 		.tmds_termadj = 0xf,
287 		.tx_pu_value = 0,
288 		.bg_temp_coef = 3,
289 		.bg_vref_level = 8,
290 		.avdd10_level = 4,
291 		.avdd14_level = 4,
292 		.sparepll = 0x54,
293 		.drive_current = { 0x3a, 0x3a, 0x3a, 0x33 },
294 		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
295 	}, {
296 		.frequency = 75000000,
297 		.vcocap = 1,
298 		.filter = 5,
299 		.ichpmp = 5,
300 		.loadadj = 3,
301 		.tmds_termadj = 0xf,
302 		.tx_pu_value = 0,
303 		.bg_temp_coef = 3,
304 		.bg_vref_level = 8,
305 		.avdd10_level = 4,
306 		.avdd14_level = 4,
307 		.sparepll = 0x44,
308 		.drive_current = { 0x3a, 0x3a, 0x3a, 0x33 },
309 		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
310 	}, {
311 		.frequency = 150000000,
312 		.vcocap = 3,
313 		.filter = 5,
314 		.ichpmp = 5,
315 		.loadadj = 3,
316 		.tmds_termadj = 15,
317 		.tx_pu_value = 0x66 /* 0 */,
318 		.bg_temp_coef = 3,
319 		.bg_vref_level = 8,
320 		.avdd10_level = 4,
321 		.avdd14_level = 4,
322 		.sparepll = 0x00, /* 0x34 */
323 		.drive_current = { 0x3a, 0x3a, 0x3a, 0x37 },
324 		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
325 	}, {
326 		.frequency = 300000000,
327 		.vcocap = 3,
328 		.filter = 5,
329 		.ichpmp = 5,
330 		.loadadj = 3,
331 		.tmds_termadj = 15,
332 		.tx_pu_value = 64,
333 		.bg_temp_coef = 3,
334 		.bg_vref_level = 8,
335 		.avdd10_level = 4,
336 		.avdd14_level = 4,
337 		.sparepll = 0x34,
338 		.drive_current = { 0x3d, 0x3d, 0x3d, 0x33 },
339 		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
340 	}, {
341 		.frequency = 600000000,
342 		.vcocap = 3,
343 		.filter = 5,
344 		.ichpmp = 5,
345 		.loadadj = 3,
346 		.tmds_termadj = 12,
347 		.tx_pu_value = 96,
348 		.bg_temp_coef = 3,
349 		.bg_vref_level = 8,
350 		.avdd10_level = 4,
351 		.avdd14_level = 4,
352 		.sparepll = 0x34,
353 		.drive_current = { 0x3d, 0x3d, 0x3d, 0x33 },
354 		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
355 	}
356 };
357 
358 struct tegra_sor_regs {
359 	unsigned int head_state0;
360 	unsigned int head_state1;
361 	unsigned int head_state2;
362 	unsigned int head_state3;
363 	unsigned int head_state4;
364 	unsigned int head_state5;
365 	unsigned int pll0;
366 	unsigned int pll1;
367 	unsigned int pll2;
368 	unsigned int pll3;
369 	unsigned int dp_padctl0;
370 	unsigned int dp_padctl2;
371 };
372 
373 struct tegra_sor_soc {
374 	bool supports_lvds;
375 	bool supports_hdmi;
376 	bool supports_dp;
377 	bool supports_audio;
378 	bool supports_hdcp;
379 
380 	const struct tegra_sor_regs *regs;
381 	bool has_nvdisplay;
382 
383 	const struct tegra_sor_hdmi_settings *settings;
384 	unsigned int num_settings;
385 
386 	const u8 *xbar_cfg;
387 	const u8 *lane_map;
388 
389 	const u8 (*voltage_swing)[4][4];
390 	const u8 (*pre_emphasis)[4][4];
391 	const u8 (*post_cursor)[4][4];
392 	const u8 (*tx_pu)[4][4];
393 };
394 
395 struct tegra_sor;
396 
397 struct tegra_sor_ops {
398 	const char *name;
399 	int (*probe)(struct tegra_sor *sor);
400 	int (*remove)(struct tegra_sor *sor);
401 	void (*audio_enable)(struct tegra_sor *sor);
402 	void (*audio_disable)(struct tegra_sor *sor);
403 };
404 
405 struct tegra_sor {
406 	struct host1x_client client;
407 	struct tegra_output output;
408 	struct device *dev;
409 
410 	const struct tegra_sor_soc *soc;
411 	void __iomem *regs;
412 	unsigned int index;
413 	unsigned int irq;
414 
415 	struct reset_control *rst;
416 	struct clk *clk_parent;
417 	struct clk *clk_safe;
418 	struct clk *clk_out;
419 	struct clk *clk_pad;
420 	struct clk *clk_dp;
421 	struct clk *clk;
422 
423 	u8 xbar_cfg[5];
424 
425 	struct drm_dp_link link;
426 	struct drm_dp_aux *aux;
427 
428 	struct drm_info_list *debugfs_files;
429 
430 	const struct tegra_sor_ops *ops;
431 	enum tegra_io_pad pad;
432 
433 	/* for HDMI 2.0 */
434 	struct tegra_sor_hdmi_settings *settings;
435 	unsigned int num_settings;
436 
437 	struct regulator *avdd_io_supply;
438 	struct regulator *vdd_pll_supply;
439 	struct regulator *hdmi_supply;
440 
441 	struct delayed_work scdc;
442 	bool scdc_enabled;
443 
444 	struct tegra_hda_format format;
445 };
446 
447 struct tegra_sor_state {
448 	struct drm_connector_state base;
449 
450 	unsigned int link_speed;
451 	unsigned long pclk;
452 	unsigned int bpc;
453 };
454 
455 static inline struct tegra_sor_state *
456 to_sor_state(struct drm_connector_state *state)
457 {
458 	return container_of(state, struct tegra_sor_state, base);
459 }
460 
461 struct tegra_sor_config {
462 	u32 bits_per_pixel;
463 
464 	u32 active_polarity;
465 	u32 active_count;
466 	u32 tu_size;
467 	u32 active_frac;
468 	u32 watermark;
469 
470 	u32 hblank_symbols;
471 	u32 vblank_symbols;
472 };
473 
474 static inline struct tegra_sor *
475 host1x_client_to_sor(struct host1x_client *client)
476 {
477 	return container_of(client, struct tegra_sor, client);
478 }
479 
480 static inline struct tegra_sor *to_sor(struct tegra_output *output)
481 {
482 	return container_of(output, struct tegra_sor, output);
483 }
484 
485 static inline u32 tegra_sor_readl(struct tegra_sor *sor, unsigned int offset)
486 {
487 	u32 value = readl(sor->regs + (offset << 2));
488 
489 	trace_sor_readl(sor->dev, offset, value);
490 
491 	return value;
492 }
493 
494 static inline void tegra_sor_writel(struct tegra_sor *sor, u32 value,
495 				    unsigned int offset)
496 {
497 	trace_sor_writel(sor->dev, offset, value);
498 	writel(value, sor->regs + (offset << 2));
499 }
500 
501 static int tegra_sor_set_parent_clock(struct tegra_sor *sor, struct clk *parent)
502 {
503 	int err;
504 
505 	clk_disable_unprepare(sor->clk);
506 
507 	err = clk_set_parent(sor->clk_out, parent);
508 	if (err < 0)
509 		return err;
510 
511 	err = clk_prepare_enable(sor->clk);
512 	if (err < 0)
513 		return err;
514 
515 	return 0;
516 }
517 
518 struct tegra_clk_sor_pad {
519 	struct clk_hw hw;
520 	struct tegra_sor *sor;
521 };
522 
523 static inline struct tegra_clk_sor_pad *to_pad(struct clk_hw *hw)
524 {
525 	return container_of(hw, struct tegra_clk_sor_pad, hw);
526 }
527 
528 static const char * const tegra_clk_sor_pad_parents[2][2] = {
529 	{ "pll_d_out0", "pll_dp" },
530 	{ "pll_d2_out0", "pll_dp" },
531 };
532 
533 /*
534  * Implementing ->set_parent() here isn't really required because the parent
535  * will be explicitly selected in the driver code via the DP_CLK_SEL mux in
536  * the SOR_CLK_CNTRL register. This is primarily for compatibility with the
537  * Tegra186 and later SoC generations where the BPMP implements this clock
538  * and doesn't expose the mux via the common clock framework.
539  */
540 
541 static int tegra_clk_sor_pad_set_parent(struct clk_hw *hw, u8 index)
542 {
543 	struct tegra_clk_sor_pad *pad = to_pad(hw);
544 	struct tegra_sor *sor = pad->sor;
545 	u32 value;
546 
547 	value = tegra_sor_readl(sor, SOR_CLK_CNTRL);
548 	value &= ~SOR_CLK_CNTRL_DP_CLK_SEL_MASK;
549 
550 	switch (index) {
551 	case 0:
552 		value |= SOR_CLK_CNTRL_DP_CLK_SEL_SINGLE_PCLK;
553 		break;
554 
555 	case 1:
556 		value |= SOR_CLK_CNTRL_DP_CLK_SEL_SINGLE_DPCLK;
557 		break;
558 	}
559 
560 	tegra_sor_writel(sor, value, SOR_CLK_CNTRL);
561 
562 	return 0;
563 }
564 
565 static u8 tegra_clk_sor_pad_get_parent(struct clk_hw *hw)
566 {
567 	struct tegra_clk_sor_pad *pad = to_pad(hw);
568 	struct tegra_sor *sor = pad->sor;
569 	u8 parent = U8_MAX;
570 	u32 value;
571 
572 	value = tegra_sor_readl(sor, SOR_CLK_CNTRL);
573 
574 	switch (value & SOR_CLK_CNTRL_DP_CLK_SEL_MASK) {
575 	case SOR_CLK_CNTRL_DP_CLK_SEL_SINGLE_PCLK:
576 	case SOR_CLK_CNTRL_DP_CLK_SEL_DIFF_PCLK:
577 		parent = 0;
578 		break;
579 
580 	case SOR_CLK_CNTRL_DP_CLK_SEL_SINGLE_DPCLK:
581 	case SOR_CLK_CNTRL_DP_CLK_SEL_DIFF_DPCLK:
582 		parent = 1;
583 		break;
584 	}
585 
586 	return parent;
587 }
588 
589 static const struct clk_ops tegra_clk_sor_pad_ops = {
590 	.set_parent = tegra_clk_sor_pad_set_parent,
591 	.get_parent = tegra_clk_sor_pad_get_parent,
592 };
593 
594 static struct clk *tegra_clk_sor_pad_register(struct tegra_sor *sor,
595 					      const char *name)
596 {
597 	struct tegra_clk_sor_pad *pad;
598 	struct clk_init_data init;
599 	struct clk *clk;
600 
601 	pad = devm_kzalloc(sor->dev, sizeof(*pad), GFP_KERNEL);
602 	if (!pad)
603 		return ERR_PTR(-ENOMEM);
604 
605 	pad->sor = sor;
606 
607 	init.name = name;
608 	init.flags = 0;
609 	init.parent_names = tegra_clk_sor_pad_parents[sor->index];
610 	init.num_parents = ARRAY_SIZE(tegra_clk_sor_pad_parents[sor->index]);
611 	init.ops = &tegra_clk_sor_pad_ops;
612 
613 	pad->hw.init = &init;
614 
615 	clk = devm_clk_register(sor->dev, &pad->hw);
616 
617 	return clk;
618 }
619 
620 static void tegra_sor_filter_rates(struct tegra_sor *sor)
621 {
622 	struct drm_dp_link *link = &sor->link;
623 	unsigned int i;
624 
625 	/* Tegra only supports RBR, HBR and HBR2 */
626 	for (i = 0; i < link->num_rates; i++) {
627 		switch (link->rates[i]) {
628 		case 1620000:
629 		case 2700000:
630 		case 5400000:
631 			break;
632 
633 		default:
634 			DRM_DEBUG_KMS("link rate %lu kHz not supported\n",
635 				      link->rates[i]);
636 			link->rates[i] = 0;
637 			break;
638 		}
639 	}
640 
641 	drm_dp_link_update_rates(link);
642 }
643 
644 static int tegra_sor_power_up_lanes(struct tegra_sor *sor, unsigned int lanes)
645 {
646 	unsigned long timeout;
647 	u32 value;
648 
649 	/*
650 	 * Clear or set the PD_TXD bit corresponding to each lane, depending
651 	 * on whether it is used or not.
652 	 */
653 	value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
654 
655 	if (lanes <= 2)
656 		value &= ~(SOR_DP_PADCTL_PD_TXD(sor->soc->lane_map[3]) |
657 			   SOR_DP_PADCTL_PD_TXD(sor->soc->lane_map[2]));
658 	else
659 		value |= SOR_DP_PADCTL_PD_TXD(sor->soc->lane_map[3]) |
660 			 SOR_DP_PADCTL_PD_TXD(sor->soc->lane_map[2]);
661 
662 	if (lanes <= 1)
663 		value &= ~SOR_DP_PADCTL_PD_TXD(sor->soc->lane_map[1]);
664 	else
665 		value |= SOR_DP_PADCTL_PD_TXD(sor->soc->lane_map[1]);
666 
667 	if (lanes == 0)
668 		value &= ~SOR_DP_PADCTL_PD_TXD(sor->soc->lane_map[0]);
669 	else
670 		value |= SOR_DP_PADCTL_PD_TXD(sor->soc->lane_map[0]);
671 
672 	tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
673 
674 	/* start lane sequencer */
675 	value = SOR_LANE_SEQ_CTL_TRIGGER | SOR_LANE_SEQ_CTL_SEQUENCE_DOWN |
676 		SOR_LANE_SEQ_CTL_POWER_STATE_UP;
677 	tegra_sor_writel(sor, value, SOR_LANE_SEQ_CTL);
678 
679 	timeout = jiffies + msecs_to_jiffies(250);
680 
681 	while (time_before(jiffies, timeout)) {
682 		value = tegra_sor_readl(sor, SOR_LANE_SEQ_CTL);
683 		if ((value & SOR_LANE_SEQ_CTL_TRIGGER) == 0)
684 			break;
685 
686 		usleep_range(250, 1000);
687 	}
688 
689 	if ((value & SOR_LANE_SEQ_CTL_TRIGGER) != 0)
690 		return -ETIMEDOUT;
691 
692 	return 0;
693 }
694 
695 static int tegra_sor_power_down_lanes(struct tegra_sor *sor)
696 {
697 	unsigned long timeout;
698 	u32 value;
699 
700 	/* power down all lanes */
701 	value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
702 	value &= ~(SOR_DP_PADCTL_PD_TXD_3 | SOR_DP_PADCTL_PD_TXD_0 |
703 		   SOR_DP_PADCTL_PD_TXD_1 | SOR_DP_PADCTL_PD_TXD_2);
704 	tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
705 
706 	/* start lane sequencer */
707 	value = SOR_LANE_SEQ_CTL_TRIGGER | SOR_LANE_SEQ_CTL_SEQUENCE_UP |
708 		SOR_LANE_SEQ_CTL_POWER_STATE_DOWN;
709 	tegra_sor_writel(sor, value, SOR_LANE_SEQ_CTL);
710 
711 	timeout = jiffies + msecs_to_jiffies(250);
712 
713 	while (time_before(jiffies, timeout)) {
714 		value = tegra_sor_readl(sor, SOR_LANE_SEQ_CTL);
715 		if ((value & SOR_LANE_SEQ_CTL_TRIGGER) == 0)
716 			break;
717 
718 		usleep_range(25, 100);
719 	}
720 
721 	if ((value & SOR_LANE_SEQ_CTL_TRIGGER) != 0)
722 		return -ETIMEDOUT;
723 
724 	return 0;
725 }
726 
727 static void tegra_sor_dp_precharge(struct tegra_sor *sor, unsigned int lanes)
728 {
729 	u32 value;
730 
731 	/* pre-charge all used lanes */
732 	value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
733 
734 	if (lanes <= 2)
735 		value &= ~(SOR_DP_PADCTL_CM_TXD(sor->soc->lane_map[3]) |
736 			   SOR_DP_PADCTL_CM_TXD(sor->soc->lane_map[2]));
737 	else
738 		value |= SOR_DP_PADCTL_CM_TXD(sor->soc->lane_map[3]) |
739 			 SOR_DP_PADCTL_CM_TXD(sor->soc->lane_map[2]);
740 
741 	if (lanes <= 1)
742 		value &= ~SOR_DP_PADCTL_CM_TXD(sor->soc->lane_map[1]);
743 	else
744 		value |= SOR_DP_PADCTL_CM_TXD(sor->soc->lane_map[1]);
745 
746 	if (lanes == 0)
747 		value &= ~SOR_DP_PADCTL_CM_TXD(sor->soc->lane_map[0]);
748 	else
749 		value |= SOR_DP_PADCTL_CM_TXD(sor->soc->lane_map[0]);
750 
751 	tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
752 
753 	usleep_range(15, 100);
754 
755 	value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
756 	value &= ~(SOR_DP_PADCTL_CM_TXD_3 | SOR_DP_PADCTL_CM_TXD_2 |
757 		   SOR_DP_PADCTL_CM_TXD_1 | SOR_DP_PADCTL_CM_TXD_0);
758 	tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
759 }
760 
761 static void tegra_sor_dp_term_calibrate(struct tegra_sor *sor)
762 {
763 	u32 mask = 0x08, adj = 0, value;
764 
765 	/* enable pad calibration logic */
766 	value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
767 	value &= ~SOR_DP_PADCTL_PAD_CAL_PD;
768 	tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
769 
770 	value = tegra_sor_readl(sor, sor->soc->regs->pll1);
771 	value |= SOR_PLL1_TMDS_TERM;
772 	tegra_sor_writel(sor, value, sor->soc->regs->pll1);
773 
774 	while (mask) {
775 		adj |= mask;
776 
777 		value = tegra_sor_readl(sor, sor->soc->regs->pll1);
778 		value &= ~SOR_PLL1_TMDS_TERMADJ_MASK;
779 		value |= SOR_PLL1_TMDS_TERMADJ(adj);
780 		tegra_sor_writel(sor, value, sor->soc->regs->pll1);
781 
782 		usleep_range(100, 200);
783 
784 		value = tegra_sor_readl(sor, sor->soc->regs->pll1);
785 		if (value & SOR_PLL1_TERM_COMPOUT)
786 			adj &= ~mask;
787 
788 		mask >>= 1;
789 	}
790 
791 	value = tegra_sor_readl(sor, sor->soc->regs->pll1);
792 	value &= ~SOR_PLL1_TMDS_TERMADJ_MASK;
793 	value |= SOR_PLL1_TMDS_TERMADJ(adj);
794 	tegra_sor_writel(sor, value, sor->soc->regs->pll1);
795 
796 	/* disable pad calibration logic */
797 	value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
798 	value |= SOR_DP_PADCTL_PAD_CAL_PD;
799 	tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
800 }
801 
802 static int tegra_sor_dp_link_apply_training(struct drm_dp_link *link)
803 {
804 	struct tegra_sor *sor = container_of(link, struct tegra_sor, link);
805 	u32 voltage_swing = 0, pre_emphasis = 0, post_cursor = 0;
806 	const struct tegra_sor_soc *soc = sor->soc;
807 	u32 pattern = 0, tx_pu = 0, value;
808 	unsigned int i;
809 
810 	for (value = 0, i = 0; i < link->lanes; i++) {
811 		u8 vs = link->train.request.voltage_swing[i];
812 		u8 pe = link->train.request.pre_emphasis[i];
813 		u8 pc = link->train.request.post_cursor[i];
814 		u8 shift = sor->soc->lane_map[i] << 3;
815 
816 		voltage_swing |= soc->voltage_swing[pc][vs][pe] << shift;
817 		pre_emphasis |= soc->pre_emphasis[pc][vs][pe] << shift;
818 		post_cursor |= soc->post_cursor[pc][vs][pe] << shift;
819 
820 		if (sor->soc->tx_pu[pc][vs][pe] > tx_pu)
821 			tx_pu = sor->soc->tx_pu[pc][vs][pe];
822 
823 		switch (link->train.pattern) {
824 		case DP_TRAINING_PATTERN_DISABLE:
825 			value = SOR_DP_TPG_SCRAMBLER_GALIOS |
826 				SOR_DP_TPG_PATTERN_NONE;
827 			break;
828 
829 		case DP_TRAINING_PATTERN_1:
830 			value = SOR_DP_TPG_SCRAMBLER_NONE |
831 				SOR_DP_TPG_PATTERN_TRAIN1;
832 			break;
833 
834 		case DP_TRAINING_PATTERN_2:
835 			value = SOR_DP_TPG_SCRAMBLER_NONE |
836 				SOR_DP_TPG_PATTERN_TRAIN2;
837 			break;
838 
839 		case DP_TRAINING_PATTERN_3:
840 			value = SOR_DP_TPG_SCRAMBLER_NONE |
841 				SOR_DP_TPG_PATTERN_TRAIN3;
842 			break;
843 
844 		default:
845 			return -EINVAL;
846 		}
847 
848 		if (link->caps.channel_coding)
849 			value |= SOR_DP_TPG_CHANNEL_CODING;
850 
851 		pattern = pattern << 8 | value;
852 	}
853 
854 	tegra_sor_writel(sor, voltage_swing, SOR_LANE_DRIVE_CURRENT0);
855 	tegra_sor_writel(sor, pre_emphasis, SOR_LANE_PREEMPHASIS0);
856 
857 	if (link->caps.tps3_supported)
858 		tegra_sor_writel(sor, post_cursor, SOR_LANE_POSTCURSOR0);
859 
860 	tegra_sor_writel(sor, pattern, SOR_DP_TPG);
861 
862 	value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
863 	value &= ~SOR_DP_PADCTL_TX_PU_MASK;
864 	value |= SOR_DP_PADCTL_TX_PU_ENABLE;
865 	value |= SOR_DP_PADCTL_TX_PU(tx_pu);
866 	tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
867 
868 	usleep_range(20, 100);
869 
870 	return 0;
871 }
872 
873 static int tegra_sor_dp_link_configure(struct drm_dp_link *link)
874 {
875 	struct tegra_sor *sor = container_of(link, struct tegra_sor, link);
876 	unsigned int rate, lanes;
877 	u32 value;
878 	int err;
879 
880 	rate = drm_dp_link_rate_to_bw_code(link->rate);
881 	lanes = link->lanes;
882 
883 	/* configure link speed and lane count */
884 	value = tegra_sor_readl(sor, SOR_CLK_CNTRL);
885 	value &= ~SOR_CLK_CNTRL_DP_LINK_SPEED_MASK;
886 	value |= SOR_CLK_CNTRL_DP_LINK_SPEED(rate);
887 	tegra_sor_writel(sor, value, SOR_CLK_CNTRL);
888 
889 	value = tegra_sor_readl(sor, SOR_DP_LINKCTL0);
890 	value &= ~SOR_DP_LINKCTL_LANE_COUNT_MASK;
891 	value |= SOR_DP_LINKCTL_LANE_COUNT(lanes);
892 
893 	if (link->caps.enhanced_framing)
894 		value |= SOR_DP_LINKCTL_ENHANCED_FRAME;
895 
896 	tegra_sor_writel(sor, value, SOR_DP_LINKCTL0);
897 
898 	usleep_range(400, 1000);
899 
900 	/* configure load pulse position adjustment */
901 	value = tegra_sor_readl(sor, sor->soc->regs->pll1);
902 	value &= ~SOR_PLL1_LOADADJ_MASK;
903 
904 	switch (rate) {
905 	case DP_LINK_BW_1_62:
906 		value |= SOR_PLL1_LOADADJ(0x3);
907 		break;
908 
909 	case DP_LINK_BW_2_7:
910 		value |= SOR_PLL1_LOADADJ(0x4);
911 		break;
912 
913 	case DP_LINK_BW_5_4:
914 		value |= SOR_PLL1_LOADADJ(0x6);
915 		break;
916 	}
917 
918 	tegra_sor_writel(sor, value, sor->soc->regs->pll1);
919 
920 	/* use alternate scrambler reset for eDP */
921 	value = tegra_sor_readl(sor, SOR_DP_SPARE0);
922 
923 	if (link->edp == 0)
924 		value &= ~SOR_DP_SPARE_PANEL_INTERNAL;
925 	else
926 		value |= SOR_DP_SPARE_PANEL_INTERNAL;
927 
928 	tegra_sor_writel(sor, value, SOR_DP_SPARE0);
929 
930 	err = tegra_sor_power_down_lanes(sor);
931 	if (err < 0) {
932 		dev_err(sor->dev, "failed to power down lanes: %d\n", err);
933 		return err;
934 	}
935 
936 	/* power up and pre-charge lanes */
937 	err = tegra_sor_power_up_lanes(sor, lanes);
938 	if (err < 0) {
939 		dev_err(sor->dev, "failed to power up %u lane%s: %d\n",
940 			lanes, (lanes != 1) ? "s" : "", err);
941 		return err;
942 	}
943 
944 	tegra_sor_dp_precharge(sor, lanes);
945 
946 	return 0;
947 }
948 
949 static const struct drm_dp_link_ops tegra_sor_dp_link_ops = {
950 	.apply_training = tegra_sor_dp_link_apply_training,
951 	.configure = tegra_sor_dp_link_configure,
952 };
953 
954 static void tegra_sor_super_update(struct tegra_sor *sor)
955 {
956 	tegra_sor_writel(sor, 0, SOR_SUPER_STATE0);
957 	tegra_sor_writel(sor, 1, SOR_SUPER_STATE0);
958 	tegra_sor_writel(sor, 0, SOR_SUPER_STATE0);
959 }
960 
961 static void tegra_sor_update(struct tegra_sor *sor)
962 {
963 	tegra_sor_writel(sor, 0, SOR_STATE0);
964 	tegra_sor_writel(sor, 1, SOR_STATE0);
965 	tegra_sor_writel(sor, 0, SOR_STATE0);
966 }
967 
968 static int tegra_sor_setup_pwm(struct tegra_sor *sor, unsigned long timeout)
969 {
970 	u32 value;
971 
972 	value = tegra_sor_readl(sor, SOR_PWM_DIV);
973 	value &= ~SOR_PWM_DIV_MASK;
974 	value |= 0x400; /* period */
975 	tegra_sor_writel(sor, value, SOR_PWM_DIV);
976 
977 	value = tegra_sor_readl(sor, SOR_PWM_CTL);
978 	value &= ~SOR_PWM_CTL_DUTY_CYCLE_MASK;
979 	value |= 0x400; /* duty cycle */
980 	value &= ~SOR_PWM_CTL_CLK_SEL; /* clock source: PCLK */
981 	value |= SOR_PWM_CTL_TRIGGER;
982 	tegra_sor_writel(sor, value, SOR_PWM_CTL);
983 
984 	timeout = jiffies + msecs_to_jiffies(timeout);
985 
986 	while (time_before(jiffies, timeout)) {
987 		value = tegra_sor_readl(sor, SOR_PWM_CTL);
988 		if ((value & SOR_PWM_CTL_TRIGGER) == 0)
989 			return 0;
990 
991 		usleep_range(25, 100);
992 	}
993 
994 	return -ETIMEDOUT;
995 }
996 
997 static int tegra_sor_attach(struct tegra_sor *sor)
998 {
999 	unsigned long value, timeout;
1000 
1001 	/* wake up in normal mode */
1002 	value = tegra_sor_readl(sor, SOR_SUPER_STATE1);
1003 	value |= SOR_SUPER_STATE_HEAD_MODE_AWAKE;
1004 	value |= SOR_SUPER_STATE_MODE_NORMAL;
1005 	tegra_sor_writel(sor, value, SOR_SUPER_STATE1);
1006 	tegra_sor_super_update(sor);
1007 
1008 	/* attach */
1009 	value = tegra_sor_readl(sor, SOR_SUPER_STATE1);
1010 	value |= SOR_SUPER_STATE_ATTACHED;
1011 	tegra_sor_writel(sor, value, SOR_SUPER_STATE1);
1012 	tegra_sor_super_update(sor);
1013 
1014 	timeout = jiffies + msecs_to_jiffies(250);
1015 
1016 	while (time_before(jiffies, timeout)) {
1017 		value = tegra_sor_readl(sor, SOR_TEST);
1018 		if ((value & SOR_TEST_ATTACHED) != 0)
1019 			return 0;
1020 
1021 		usleep_range(25, 100);
1022 	}
1023 
1024 	return -ETIMEDOUT;
1025 }
1026 
1027 static int tegra_sor_wakeup(struct tegra_sor *sor)
1028 {
1029 	unsigned long value, timeout;
1030 
1031 	timeout = jiffies + msecs_to_jiffies(250);
1032 
1033 	/* wait for head to wake up */
1034 	while (time_before(jiffies, timeout)) {
1035 		value = tegra_sor_readl(sor, SOR_TEST);
1036 		value &= SOR_TEST_HEAD_MODE_MASK;
1037 
1038 		if (value == SOR_TEST_HEAD_MODE_AWAKE)
1039 			return 0;
1040 
1041 		usleep_range(25, 100);
1042 	}
1043 
1044 	return -ETIMEDOUT;
1045 }
1046 
1047 static int tegra_sor_power_up(struct tegra_sor *sor, unsigned long timeout)
1048 {
1049 	u32 value;
1050 
1051 	value = tegra_sor_readl(sor, SOR_PWR);
1052 	value |= SOR_PWR_TRIGGER | SOR_PWR_NORMAL_STATE_PU;
1053 	tegra_sor_writel(sor, value, SOR_PWR);
1054 
1055 	timeout = jiffies + msecs_to_jiffies(timeout);
1056 
1057 	while (time_before(jiffies, timeout)) {
1058 		value = tegra_sor_readl(sor, SOR_PWR);
1059 		if ((value & SOR_PWR_TRIGGER) == 0)
1060 			return 0;
1061 
1062 		usleep_range(25, 100);
1063 	}
1064 
1065 	return -ETIMEDOUT;
1066 }
1067 
1068 struct tegra_sor_params {
1069 	/* number of link clocks per line */
1070 	unsigned int num_clocks;
1071 	/* ratio between input and output */
1072 	u64 ratio;
1073 	/* precision factor */
1074 	u64 precision;
1075 
1076 	unsigned int active_polarity;
1077 	unsigned int active_count;
1078 	unsigned int active_frac;
1079 	unsigned int tu_size;
1080 	unsigned int error;
1081 };
1082 
1083 static int tegra_sor_compute_params(struct tegra_sor *sor,
1084 				    struct tegra_sor_params *params,
1085 				    unsigned int tu_size)
1086 {
1087 	u64 active_sym, active_count, frac, approx;
1088 	u32 active_polarity, active_frac = 0;
1089 	const u64 f = params->precision;
1090 	s64 error;
1091 
1092 	active_sym = params->ratio * tu_size;
1093 	active_count = div_u64(active_sym, f) * f;
1094 	frac = active_sym - active_count;
1095 
1096 	/* fraction < 0.5 */
1097 	if (frac >= (f / 2)) {
1098 		active_polarity = 1;
1099 		frac = f - frac;
1100 	} else {
1101 		active_polarity = 0;
1102 	}
1103 
1104 	if (frac != 0) {
1105 		frac = div_u64(f * f,  frac); /* 1/fraction */
1106 		if (frac <= (15 * f)) {
1107 			active_frac = div_u64(frac, f);
1108 
1109 			/* round up */
1110 			if (active_polarity)
1111 				active_frac++;
1112 		} else {
1113 			active_frac = active_polarity ? 1 : 15;
1114 		}
1115 	}
1116 
1117 	if (active_frac == 1)
1118 		active_polarity = 0;
1119 
1120 	if (active_polarity == 1) {
1121 		if (active_frac) {
1122 			approx = active_count + (active_frac * (f - 1)) * f;
1123 			approx = div_u64(approx, active_frac * f);
1124 		} else {
1125 			approx = active_count + f;
1126 		}
1127 	} else {
1128 		if (active_frac)
1129 			approx = active_count + div_u64(f, active_frac);
1130 		else
1131 			approx = active_count;
1132 	}
1133 
1134 	error = div_s64(active_sym - approx, tu_size);
1135 	error *= params->num_clocks;
1136 
1137 	if (error <= 0 && abs(error) < params->error) {
1138 		params->active_count = div_u64(active_count, f);
1139 		params->active_polarity = active_polarity;
1140 		params->active_frac = active_frac;
1141 		params->error = abs(error);
1142 		params->tu_size = tu_size;
1143 
1144 		if (error == 0)
1145 			return true;
1146 	}
1147 
1148 	return false;
1149 }
1150 
1151 static int tegra_sor_compute_config(struct tegra_sor *sor,
1152 				    const struct drm_display_mode *mode,
1153 				    struct tegra_sor_config *config,
1154 				    struct drm_dp_link *link)
1155 {
1156 	const u64 f = 100000, link_rate = link->rate * 1000;
1157 	const u64 pclk = mode->clock * 1000;
1158 	u64 input, output, watermark, num;
1159 	struct tegra_sor_params params;
1160 	u32 num_syms_per_line;
1161 	unsigned int i;
1162 
1163 	if (!link_rate || !link->lanes || !pclk || !config->bits_per_pixel)
1164 		return -EINVAL;
1165 
1166 	input = pclk * config->bits_per_pixel;
1167 	output = link_rate * 8 * link->lanes;
1168 
1169 	if (input >= output)
1170 		return -ERANGE;
1171 
1172 	memset(&params, 0, sizeof(params));
1173 	params.ratio = div64_u64(input * f, output);
1174 	params.num_clocks = div_u64(link_rate * mode->hdisplay, pclk);
1175 	params.precision = f;
1176 	params.error = 64 * f;
1177 	params.tu_size = 64;
1178 
1179 	for (i = params.tu_size; i >= 32; i--)
1180 		if (tegra_sor_compute_params(sor, &params, i))
1181 			break;
1182 
1183 	if (params.active_frac == 0) {
1184 		config->active_polarity = 0;
1185 		config->active_count = params.active_count;
1186 
1187 		if (!params.active_polarity)
1188 			config->active_count--;
1189 
1190 		config->tu_size = params.tu_size;
1191 		config->active_frac = 1;
1192 	} else {
1193 		config->active_polarity = params.active_polarity;
1194 		config->active_count = params.active_count;
1195 		config->active_frac = params.active_frac;
1196 		config->tu_size = params.tu_size;
1197 	}
1198 
1199 	dev_dbg(sor->dev,
1200 		"polarity: %d active count: %d tu size: %d active frac: %d\n",
1201 		config->active_polarity, config->active_count,
1202 		config->tu_size, config->active_frac);
1203 
1204 	watermark = params.ratio * config->tu_size * (f - params.ratio);
1205 	watermark = div_u64(watermark, f);
1206 
1207 	watermark = div_u64(watermark + params.error, f);
1208 	config->watermark = watermark + (config->bits_per_pixel / 8) + 2;
1209 	num_syms_per_line = (mode->hdisplay * config->bits_per_pixel) *
1210 			    (link->lanes * 8);
1211 
1212 	if (config->watermark > 30) {
1213 		config->watermark = 30;
1214 		dev_err(sor->dev,
1215 			"unable to compute TU size, forcing watermark to %u\n",
1216 			config->watermark);
1217 	} else if (config->watermark > num_syms_per_line) {
1218 		config->watermark = num_syms_per_line;
1219 		dev_err(sor->dev, "watermark too high, forcing to %u\n",
1220 			config->watermark);
1221 	}
1222 
1223 	/* compute the number of symbols per horizontal blanking interval */
1224 	num = ((mode->htotal - mode->hdisplay) - 7) * link_rate;
1225 	config->hblank_symbols = div_u64(num, pclk);
1226 
1227 	if (link->caps.enhanced_framing)
1228 		config->hblank_symbols -= 3;
1229 
1230 	config->hblank_symbols -= 12 / link->lanes;
1231 
1232 	/* compute the number of symbols per vertical blanking interval */
1233 	num = (mode->hdisplay - 25) * link_rate;
1234 	config->vblank_symbols = div_u64(num, pclk);
1235 	config->vblank_symbols -= 36 / link->lanes + 4;
1236 
1237 	dev_dbg(sor->dev, "blank symbols: H:%u V:%u\n", config->hblank_symbols,
1238 		config->vblank_symbols);
1239 
1240 	return 0;
1241 }
1242 
1243 static void tegra_sor_apply_config(struct tegra_sor *sor,
1244 				   const struct tegra_sor_config *config)
1245 {
1246 	u32 value;
1247 
1248 	value = tegra_sor_readl(sor, SOR_DP_LINKCTL0);
1249 	value &= ~SOR_DP_LINKCTL_TU_SIZE_MASK;
1250 	value |= SOR_DP_LINKCTL_TU_SIZE(config->tu_size);
1251 	tegra_sor_writel(sor, value, SOR_DP_LINKCTL0);
1252 
1253 	value = tegra_sor_readl(sor, SOR_DP_CONFIG0);
1254 	value &= ~SOR_DP_CONFIG_WATERMARK_MASK;
1255 	value |= SOR_DP_CONFIG_WATERMARK(config->watermark);
1256 
1257 	value &= ~SOR_DP_CONFIG_ACTIVE_SYM_COUNT_MASK;
1258 	value |= SOR_DP_CONFIG_ACTIVE_SYM_COUNT(config->active_count);
1259 
1260 	value &= ~SOR_DP_CONFIG_ACTIVE_SYM_FRAC_MASK;
1261 	value |= SOR_DP_CONFIG_ACTIVE_SYM_FRAC(config->active_frac);
1262 
1263 	if (config->active_polarity)
1264 		value |= SOR_DP_CONFIG_ACTIVE_SYM_POLARITY;
1265 	else
1266 		value &= ~SOR_DP_CONFIG_ACTIVE_SYM_POLARITY;
1267 
1268 	value |= SOR_DP_CONFIG_ACTIVE_SYM_ENABLE;
1269 	value |= SOR_DP_CONFIG_DISPARITY_NEGATIVE;
1270 	tegra_sor_writel(sor, value, SOR_DP_CONFIG0);
1271 
1272 	value = tegra_sor_readl(sor, SOR_DP_AUDIO_HBLANK_SYMBOLS);
1273 	value &= ~SOR_DP_AUDIO_HBLANK_SYMBOLS_MASK;
1274 	value |= config->hblank_symbols & 0xffff;
1275 	tegra_sor_writel(sor, value, SOR_DP_AUDIO_HBLANK_SYMBOLS);
1276 
1277 	value = tegra_sor_readl(sor, SOR_DP_AUDIO_VBLANK_SYMBOLS);
1278 	value &= ~SOR_DP_AUDIO_VBLANK_SYMBOLS_MASK;
1279 	value |= config->vblank_symbols & 0xffff;
1280 	tegra_sor_writel(sor, value, SOR_DP_AUDIO_VBLANK_SYMBOLS);
1281 }
1282 
1283 static void tegra_sor_mode_set(struct tegra_sor *sor,
1284 			       const struct drm_display_mode *mode,
1285 			       struct tegra_sor_state *state)
1286 {
1287 	struct tegra_dc *dc = to_tegra_dc(sor->output.encoder.crtc);
1288 	unsigned int vbe, vse, hbe, hse, vbs, hbs;
1289 	u32 value;
1290 
1291 	value = tegra_sor_readl(sor, SOR_STATE1);
1292 	value &= ~SOR_STATE_ASY_PIXELDEPTH_MASK;
1293 	value &= ~SOR_STATE_ASY_CRC_MODE_MASK;
1294 	value &= ~SOR_STATE_ASY_OWNER_MASK;
1295 
1296 	value |= SOR_STATE_ASY_CRC_MODE_COMPLETE |
1297 		 SOR_STATE_ASY_OWNER(dc->pipe + 1);
1298 
1299 	if (mode->flags & DRM_MODE_FLAG_PHSYNC)
1300 		value &= ~SOR_STATE_ASY_HSYNCPOL;
1301 
1302 	if (mode->flags & DRM_MODE_FLAG_NHSYNC)
1303 		value |= SOR_STATE_ASY_HSYNCPOL;
1304 
1305 	if (mode->flags & DRM_MODE_FLAG_PVSYNC)
1306 		value &= ~SOR_STATE_ASY_VSYNCPOL;
1307 
1308 	if (mode->flags & DRM_MODE_FLAG_NVSYNC)
1309 		value |= SOR_STATE_ASY_VSYNCPOL;
1310 
1311 	switch (state->bpc) {
1312 	case 16:
1313 		value |= SOR_STATE_ASY_PIXELDEPTH_BPP_48_444;
1314 		break;
1315 
1316 	case 12:
1317 		value |= SOR_STATE_ASY_PIXELDEPTH_BPP_36_444;
1318 		break;
1319 
1320 	case 10:
1321 		value |= SOR_STATE_ASY_PIXELDEPTH_BPP_30_444;
1322 		break;
1323 
1324 	case 8:
1325 		value |= SOR_STATE_ASY_PIXELDEPTH_BPP_24_444;
1326 		break;
1327 
1328 	case 6:
1329 		value |= SOR_STATE_ASY_PIXELDEPTH_BPP_18_444;
1330 		break;
1331 
1332 	default:
1333 		value |= SOR_STATE_ASY_PIXELDEPTH_BPP_24_444;
1334 		break;
1335 	}
1336 
1337 	tegra_sor_writel(sor, value, SOR_STATE1);
1338 
1339 	/*
1340 	 * TODO: The video timing programming below doesn't seem to match the
1341 	 * register definitions.
1342 	 */
1343 
1344 	value = ((mode->vtotal & 0x7fff) << 16) | (mode->htotal & 0x7fff);
1345 	tegra_sor_writel(sor, value, sor->soc->regs->head_state1 + dc->pipe);
1346 
1347 	/* sync end = sync width - 1 */
1348 	vse = mode->vsync_end - mode->vsync_start - 1;
1349 	hse = mode->hsync_end - mode->hsync_start - 1;
1350 
1351 	value = ((vse & 0x7fff) << 16) | (hse & 0x7fff);
1352 	tegra_sor_writel(sor, value, sor->soc->regs->head_state2 + dc->pipe);
1353 
1354 	/* blank end = sync end + back porch */
1355 	vbe = vse + (mode->vtotal - mode->vsync_end);
1356 	hbe = hse + (mode->htotal - mode->hsync_end);
1357 
1358 	value = ((vbe & 0x7fff) << 16) | (hbe & 0x7fff);
1359 	tegra_sor_writel(sor, value, sor->soc->regs->head_state3 + dc->pipe);
1360 
1361 	/* blank start = blank end + active */
1362 	vbs = vbe + mode->vdisplay;
1363 	hbs = hbe + mode->hdisplay;
1364 
1365 	value = ((vbs & 0x7fff) << 16) | (hbs & 0x7fff);
1366 	tegra_sor_writel(sor, value, sor->soc->regs->head_state4 + dc->pipe);
1367 
1368 	/* XXX interlacing support */
1369 	tegra_sor_writel(sor, 0x001, sor->soc->regs->head_state5 + dc->pipe);
1370 }
1371 
1372 static int tegra_sor_detach(struct tegra_sor *sor)
1373 {
1374 	unsigned long value, timeout;
1375 
1376 	/* switch to safe mode */
1377 	value = tegra_sor_readl(sor, SOR_SUPER_STATE1);
1378 	value &= ~SOR_SUPER_STATE_MODE_NORMAL;
1379 	tegra_sor_writel(sor, value, SOR_SUPER_STATE1);
1380 	tegra_sor_super_update(sor);
1381 
1382 	timeout = jiffies + msecs_to_jiffies(250);
1383 
1384 	while (time_before(jiffies, timeout)) {
1385 		value = tegra_sor_readl(sor, SOR_PWR);
1386 		if (value & SOR_PWR_MODE_SAFE)
1387 			break;
1388 	}
1389 
1390 	if ((value & SOR_PWR_MODE_SAFE) == 0)
1391 		return -ETIMEDOUT;
1392 
1393 	/* go to sleep */
1394 	value = tegra_sor_readl(sor, SOR_SUPER_STATE1);
1395 	value &= ~SOR_SUPER_STATE_HEAD_MODE_MASK;
1396 	tegra_sor_writel(sor, value, SOR_SUPER_STATE1);
1397 	tegra_sor_super_update(sor);
1398 
1399 	/* detach */
1400 	value = tegra_sor_readl(sor, SOR_SUPER_STATE1);
1401 	value &= ~SOR_SUPER_STATE_ATTACHED;
1402 	tegra_sor_writel(sor, value, SOR_SUPER_STATE1);
1403 	tegra_sor_super_update(sor);
1404 
1405 	timeout = jiffies + msecs_to_jiffies(250);
1406 
1407 	while (time_before(jiffies, timeout)) {
1408 		value = tegra_sor_readl(sor, SOR_TEST);
1409 		if ((value & SOR_TEST_ATTACHED) == 0)
1410 			break;
1411 
1412 		usleep_range(25, 100);
1413 	}
1414 
1415 	if ((value & SOR_TEST_ATTACHED) != 0)
1416 		return -ETIMEDOUT;
1417 
1418 	return 0;
1419 }
1420 
1421 static int tegra_sor_power_down(struct tegra_sor *sor)
1422 {
1423 	unsigned long value, timeout;
1424 	int err;
1425 
1426 	value = tegra_sor_readl(sor, SOR_PWR);
1427 	value &= ~SOR_PWR_NORMAL_STATE_PU;
1428 	value |= SOR_PWR_TRIGGER;
1429 	tegra_sor_writel(sor, value, SOR_PWR);
1430 
1431 	timeout = jiffies + msecs_to_jiffies(250);
1432 
1433 	while (time_before(jiffies, timeout)) {
1434 		value = tegra_sor_readl(sor, SOR_PWR);
1435 		if ((value & SOR_PWR_TRIGGER) == 0)
1436 			return 0;
1437 
1438 		usleep_range(25, 100);
1439 	}
1440 
1441 	if ((value & SOR_PWR_TRIGGER) != 0)
1442 		return -ETIMEDOUT;
1443 
1444 	/* switch to safe parent clock */
1445 	err = tegra_sor_set_parent_clock(sor, sor->clk_safe);
1446 	if (err < 0) {
1447 		dev_err(sor->dev, "failed to set safe parent clock: %d\n", err);
1448 		return err;
1449 	}
1450 
1451 	value = tegra_sor_readl(sor, sor->soc->regs->pll2);
1452 	value |= SOR_PLL2_PORT_POWERDOWN;
1453 	tegra_sor_writel(sor, value, sor->soc->regs->pll2);
1454 
1455 	usleep_range(20, 100);
1456 
1457 	value = tegra_sor_readl(sor, sor->soc->regs->pll0);
1458 	value |= SOR_PLL0_VCOPD | SOR_PLL0_PWR;
1459 	tegra_sor_writel(sor, value, sor->soc->regs->pll0);
1460 
1461 	value = tegra_sor_readl(sor, sor->soc->regs->pll2);
1462 	value |= SOR_PLL2_SEQ_PLLCAPPD;
1463 	value |= SOR_PLL2_SEQ_PLLCAPPD_ENFORCE;
1464 	tegra_sor_writel(sor, value, sor->soc->regs->pll2);
1465 
1466 	usleep_range(20, 100);
1467 
1468 	return 0;
1469 }
1470 
1471 static int tegra_sor_crc_wait(struct tegra_sor *sor, unsigned long timeout)
1472 {
1473 	u32 value;
1474 
1475 	timeout = jiffies + msecs_to_jiffies(timeout);
1476 
1477 	while (time_before(jiffies, timeout)) {
1478 		value = tegra_sor_readl(sor, SOR_CRCA);
1479 		if (value & SOR_CRCA_VALID)
1480 			return 0;
1481 
1482 		usleep_range(100, 200);
1483 	}
1484 
1485 	return -ETIMEDOUT;
1486 }
1487 
1488 static int tegra_sor_show_crc(struct seq_file *s, void *data)
1489 {
1490 	struct drm_info_node *node = s->private;
1491 	struct tegra_sor *sor = node->info_ent->data;
1492 	struct drm_crtc *crtc = sor->output.encoder.crtc;
1493 	struct drm_device *drm = node->minor->dev;
1494 	int err = 0;
1495 	u32 value;
1496 
1497 	drm_modeset_lock_all(drm);
1498 
1499 	if (!crtc || !crtc->state->active) {
1500 		err = -EBUSY;
1501 		goto unlock;
1502 	}
1503 
1504 	value = tegra_sor_readl(sor, SOR_STATE1);
1505 	value &= ~SOR_STATE_ASY_CRC_MODE_MASK;
1506 	tegra_sor_writel(sor, value, SOR_STATE1);
1507 
1508 	value = tegra_sor_readl(sor, SOR_CRC_CNTRL);
1509 	value |= SOR_CRC_CNTRL_ENABLE;
1510 	tegra_sor_writel(sor, value, SOR_CRC_CNTRL);
1511 
1512 	value = tegra_sor_readl(sor, SOR_TEST);
1513 	value &= ~SOR_TEST_CRC_POST_SERIALIZE;
1514 	tegra_sor_writel(sor, value, SOR_TEST);
1515 
1516 	err = tegra_sor_crc_wait(sor, 100);
1517 	if (err < 0)
1518 		goto unlock;
1519 
1520 	tegra_sor_writel(sor, SOR_CRCA_RESET, SOR_CRCA);
1521 	value = tegra_sor_readl(sor, SOR_CRCB);
1522 
1523 	seq_printf(s, "%08x\n", value);
1524 
1525 unlock:
1526 	drm_modeset_unlock_all(drm);
1527 	return err;
1528 }
1529 
1530 #define DEBUGFS_REG32(_name) { .name = #_name, .offset = _name }
1531 
1532 static const struct debugfs_reg32 tegra_sor_regs[] = {
1533 	DEBUGFS_REG32(SOR_CTXSW),
1534 	DEBUGFS_REG32(SOR_SUPER_STATE0),
1535 	DEBUGFS_REG32(SOR_SUPER_STATE1),
1536 	DEBUGFS_REG32(SOR_STATE0),
1537 	DEBUGFS_REG32(SOR_STATE1),
1538 	DEBUGFS_REG32(SOR_HEAD_STATE0(0)),
1539 	DEBUGFS_REG32(SOR_HEAD_STATE0(1)),
1540 	DEBUGFS_REG32(SOR_HEAD_STATE1(0)),
1541 	DEBUGFS_REG32(SOR_HEAD_STATE1(1)),
1542 	DEBUGFS_REG32(SOR_HEAD_STATE2(0)),
1543 	DEBUGFS_REG32(SOR_HEAD_STATE2(1)),
1544 	DEBUGFS_REG32(SOR_HEAD_STATE3(0)),
1545 	DEBUGFS_REG32(SOR_HEAD_STATE3(1)),
1546 	DEBUGFS_REG32(SOR_HEAD_STATE4(0)),
1547 	DEBUGFS_REG32(SOR_HEAD_STATE4(1)),
1548 	DEBUGFS_REG32(SOR_HEAD_STATE5(0)),
1549 	DEBUGFS_REG32(SOR_HEAD_STATE5(1)),
1550 	DEBUGFS_REG32(SOR_CRC_CNTRL),
1551 	DEBUGFS_REG32(SOR_DP_DEBUG_MVID),
1552 	DEBUGFS_REG32(SOR_CLK_CNTRL),
1553 	DEBUGFS_REG32(SOR_CAP),
1554 	DEBUGFS_REG32(SOR_PWR),
1555 	DEBUGFS_REG32(SOR_TEST),
1556 	DEBUGFS_REG32(SOR_PLL0),
1557 	DEBUGFS_REG32(SOR_PLL1),
1558 	DEBUGFS_REG32(SOR_PLL2),
1559 	DEBUGFS_REG32(SOR_PLL3),
1560 	DEBUGFS_REG32(SOR_CSTM),
1561 	DEBUGFS_REG32(SOR_LVDS),
1562 	DEBUGFS_REG32(SOR_CRCA),
1563 	DEBUGFS_REG32(SOR_CRCB),
1564 	DEBUGFS_REG32(SOR_BLANK),
1565 	DEBUGFS_REG32(SOR_SEQ_CTL),
1566 	DEBUGFS_REG32(SOR_LANE_SEQ_CTL),
1567 	DEBUGFS_REG32(SOR_SEQ_INST(0)),
1568 	DEBUGFS_REG32(SOR_SEQ_INST(1)),
1569 	DEBUGFS_REG32(SOR_SEQ_INST(2)),
1570 	DEBUGFS_REG32(SOR_SEQ_INST(3)),
1571 	DEBUGFS_REG32(SOR_SEQ_INST(4)),
1572 	DEBUGFS_REG32(SOR_SEQ_INST(5)),
1573 	DEBUGFS_REG32(SOR_SEQ_INST(6)),
1574 	DEBUGFS_REG32(SOR_SEQ_INST(7)),
1575 	DEBUGFS_REG32(SOR_SEQ_INST(8)),
1576 	DEBUGFS_REG32(SOR_SEQ_INST(9)),
1577 	DEBUGFS_REG32(SOR_SEQ_INST(10)),
1578 	DEBUGFS_REG32(SOR_SEQ_INST(11)),
1579 	DEBUGFS_REG32(SOR_SEQ_INST(12)),
1580 	DEBUGFS_REG32(SOR_SEQ_INST(13)),
1581 	DEBUGFS_REG32(SOR_SEQ_INST(14)),
1582 	DEBUGFS_REG32(SOR_SEQ_INST(15)),
1583 	DEBUGFS_REG32(SOR_PWM_DIV),
1584 	DEBUGFS_REG32(SOR_PWM_CTL),
1585 	DEBUGFS_REG32(SOR_VCRC_A0),
1586 	DEBUGFS_REG32(SOR_VCRC_A1),
1587 	DEBUGFS_REG32(SOR_VCRC_B0),
1588 	DEBUGFS_REG32(SOR_VCRC_B1),
1589 	DEBUGFS_REG32(SOR_CCRC_A0),
1590 	DEBUGFS_REG32(SOR_CCRC_A1),
1591 	DEBUGFS_REG32(SOR_CCRC_B0),
1592 	DEBUGFS_REG32(SOR_CCRC_B1),
1593 	DEBUGFS_REG32(SOR_EDATA_A0),
1594 	DEBUGFS_REG32(SOR_EDATA_A1),
1595 	DEBUGFS_REG32(SOR_EDATA_B0),
1596 	DEBUGFS_REG32(SOR_EDATA_B1),
1597 	DEBUGFS_REG32(SOR_COUNT_A0),
1598 	DEBUGFS_REG32(SOR_COUNT_A1),
1599 	DEBUGFS_REG32(SOR_COUNT_B0),
1600 	DEBUGFS_REG32(SOR_COUNT_B1),
1601 	DEBUGFS_REG32(SOR_DEBUG_A0),
1602 	DEBUGFS_REG32(SOR_DEBUG_A1),
1603 	DEBUGFS_REG32(SOR_DEBUG_B0),
1604 	DEBUGFS_REG32(SOR_DEBUG_B1),
1605 	DEBUGFS_REG32(SOR_TRIG),
1606 	DEBUGFS_REG32(SOR_MSCHECK),
1607 	DEBUGFS_REG32(SOR_XBAR_CTRL),
1608 	DEBUGFS_REG32(SOR_XBAR_POL),
1609 	DEBUGFS_REG32(SOR_DP_LINKCTL0),
1610 	DEBUGFS_REG32(SOR_DP_LINKCTL1),
1611 	DEBUGFS_REG32(SOR_LANE_DRIVE_CURRENT0),
1612 	DEBUGFS_REG32(SOR_LANE_DRIVE_CURRENT1),
1613 	DEBUGFS_REG32(SOR_LANE4_DRIVE_CURRENT0),
1614 	DEBUGFS_REG32(SOR_LANE4_DRIVE_CURRENT1),
1615 	DEBUGFS_REG32(SOR_LANE_PREEMPHASIS0),
1616 	DEBUGFS_REG32(SOR_LANE_PREEMPHASIS1),
1617 	DEBUGFS_REG32(SOR_LANE4_PREEMPHASIS0),
1618 	DEBUGFS_REG32(SOR_LANE4_PREEMPHASIS1),
1619 	DEBUGFS_REG32(SOR_LANE_POSTCURSOR0),
1620 	DEBUGFS_REG32(SOR_LANE_POSTCURSOR1),
1621 	DEBUGFS_REG32(SOR_DP_CONFIG0),
1622 	DEBUGFS_REG32(SOR_DP_CONFIG1),
1623 	DEBUGFS_REG32(SOR_DP_MN0),
1624 	DEBUGFS_REG32(SOR_DP_MN1),
1625 	DEBUGFS_REG32(SOR_DP_PADCTL0),
1626 	DEBUGFS_REG32(SOR_DP_PADCTL1),
1627 	DEBUGFS_REG32(SOR_DP_PADCTL2),
1628 	DEBUGFS_REG32(SOR_DP_DEBUG0),
1629 	DEBUGFS_REG32(SOR_DP_DEBUG1),
1630 	DEBUGFS_REG32(SOR_DP_SPARE0),
1631 	DEBUGFS_REG32(SOR_DP_SPARE1),
1632 	DEBUGFS_REG32(SOR_DP_AUDIO_CTRL),
1633 	DEBUGFS_REG32(SOR_DP_AUDIO_HBLANK_SYMBOLS),
1634 	DEBUGFS_REG32(SOR_DP_AUDIO_VBLANK_SYMBOLS),
1635 	DEBUGFS_REG32(SOR_DP_GENERIC_INFOFRAME_HEADER),
1636 	DEBUGFS_REG32(SOR_DP_GENERIC_INFOFRAME_SUBPACK0),
1637 	DEBUGFS_REG32(SOR_DP_GENERIC_INFOFRAME_SUBPACK1),
1638 	DEBUGFS_REG32(SOR_DP_GENERIC_INFOFRAME_SUBPACK2),
1639 	DEBUGFS_REG32(SOR_DP_GENERIC_INFOFRAME_SUBPACK3),
1640 	DEBUGFS_REG32(SOR_DP_GENERIC_INFOFRAME_SUBPACK4),
1641 	DEBUGFS_REG32(SOR_DP_GENERIC_INFOFRAME_SUBPACK5),
1642 	DEBUGFS_REG32(SOR_DP_GENERIC_INFOFRAME_SUBPACK6),
1643 	DEBUGFS_REG32(SOR_DP_TPG),
1644 	DEBUGFS_REG32(SOR_DP_TPG_CONFIG),
1645 	DEBUGFS_REG32(SOR_DP_LQ_CSTM0),
1646 	DEBUGFS_REG32(SOR_DP_LQ_CSTM1),
1647 	DEBUGFS_REG32(SOR_DP_LQ_CSTM2),
1648 };
1649 
1650 static int tegra_sor_show_regs(struct seq_file *s, void *data)
1651 {
1652 	struct drm_info_node *node = s->private;
1653 	struct tegra_sor *sor = node->info_ent->data;
1654 	struct drm_crtc *crtc = sor->output.encoder.crtc;
1655 	struct drm_device *drm = node->minor->dev;
1656 	unsigned int i;
1657 	int err = 0;
1658 
1659 	drm_modeset_lock_all(drm);
1660 
1661 	if (!crtc || !crtc->state->active) {
1662 		err = -EBUSY;
1663 		goto unlock;
1664 	}
1665 
1666 	for (i = 0; i < ARRAY_SIZE(tegra_sor_regs); i++) {
1667 		unsigned int offset = tegra_sor_regs[i].offset;
1668 
1669 		seq_printf(s, "%-38s %#05x %08x\n", tegra_sor_regs[i].name,
1670 			   offset, tegra_sor_readl(sor, offset));
1671 	}
1672 
1673 unlock:
1674 	drm_modeset_unlock_all(drm);
1675 	return err;
1676 }
1677 
1678 static const struct drm_info_list debugfs_files[] = {
1679 	{ "crc", tegra_sor_show_crc, 0, NULL },
1680 	{ "regs", tegra_sor_show_regs, 0, NULL },
1681 };
1682 
1683 static int tegra_sor_late_register(struct drm_connector *connector)
1684 {
1685 	struct tegra_output *output = connector_to_output(connector);
1686 	unsigned int i, count = ARRAY_SIZE(debugfs_files);
1687 	struct drm_minor *minor = connector->dev->primary;
1688 	struct dentry *root = connector->debugfs_entry;
1689 	struct tegra_sor *sor = to_sor(output);
1690 	int err;
1691 
1692 	sor->debugfs_files = kmemdup(debugfs_files, sizeof(debugfs_files),
1693 				     GFP_KERNEL);
1694 	if (!sor->debugfs_files)
1695 		return -ENOMEM;
1696 
1697 	for (i = 0; i < count; i++)
1698 		sor->debugfs_files[i].data = sor;
1699 
1700 	err = drm_debugfs_create_files(sor->debugfs_files, count, root, minor);
1701 	if (err < 0)
1702 		goto free;
1703 
1704 	return 0;
1705 
1706 free:
1707 	kfree(sor->debugfs_files);
1708 	sor->debugfs_files = NULL;
1709 
1710 	return err;
1711 }
1712 
1713 static void tegra_sor_early_unregister(struct drm_connector *connector)
1714 {
1715 	struct tegra_output *output = connector_to_output(connector);
1716 	unsigned int count = ARRAY_SIZE(debugfs_files);
1717 	struct tegra_sor *sor = to_sor(output);
1718 
1719 	drm_debugfs_remove_files(sor->debugfs_files, count,
1720 				 connector->dev->primary);
1721 	kfree(sor->debugfs_files);
1722 	sor->debugfs_files = NULL;
1723 }
1724 
1725 static void tegra_sor_connector_reset(struct drm_connector *connector)
1726 {
1727 	struct tegra_sor_state *state;
1728 
1729 	state = kzalloc(sizeof(*state), GFP_KERNEL);
1730 	if (!state)
1731 		return;
1732 
1733 	if (connector->state) {
1734 		__drm_atomic_helper_connector_destroy_state(connector->state);
1735 		kfree(connector->state);
1736 	}
1737 
1738 	__drm_atomic_helper_connector_reset(connector, &state->base);
1739 }
1740 
1741 static enum drm_connector_status
1742 tegra_sor_connector_detect(struct drm_connector *connector, bool force)
1743 {
1744 	struct tegra_output *output = connector_to_output(connector);
1745 	struct tegra_sor *sor = to_sor(output);
1746 
1747 	if (sor->aux)
1748 		return drm_dp_aux_detect(sor->aux);
1749 
1750 	return tegra_output_connector_detect(connector, force);
1751 }
1752 
1753 static struct drm_connector_state *
1754 tegra_sor_connector_duplicate_state(struct drm_connector *connector)
1755 {
1756 	struct tegra_sor_state *state = to_sor_state(connector->state);
1757 	struct tegra_sor_state *copy;
1758 
1759 	copy = kmemdup(state, sizeof(*state), GFP_KERNEL);
1760 	if (!copy)
1761 		return NULL;
1762 
1763 	__drm_atomic_helper_connector_duplicate_state(connector, &copy->base);
1764 
1765 	return &copy->base;
1766 }
1767 
1768 static const struct drm_connector_funcs tegra_sor_connector_funcs = {
1769 	.reset = tegra_sor_connector_reset,
1770 	.detect = tegra_sor_connector_detect,
1771 	.fill_modes = drm_helper_probe_single_connector_modes,
1772 	.destroy = tegra_output_connector_destroy,
1773 	.atomic_duplicate_state = tegra_sor_connector_duplicate_state,
1774 	.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
1775 	.late_register = tegra_sor_late_register,
1776 	.early_unregister = tegra_sor_early_unregister,
1777 };
1778 
1779 static int tegra_sor_connector_get_modes(struct drm_connector *connector)
1780 {
1781 	struct tegra_output *output = connector_to_output(connector);
1782 	struct tegra_sor *sor = to_sor(output);
1783 	int err;
1784 
1785 	if (sor->aux)
1786 		drm_dp_aux_enable(sor->aux);
1787 
1788 	err = tegra_output_connector_get_modes(connector);
1789 
1790 	if (sor->aux)
1791 		drm_dp_aux_disable(sor->aux);
1792 
1793 	return err;
1794 }
1795 
1796 static enum drm_mode_status
1797 tegra_sor_connector_mode_valid(struct drm_connector *connector,
1798 			       struct drm_display_mode *mode)
1799 {
1800 	return MODE_OK;
1801 }
1802 
1803 static const struct drm_connector_helper_funcs tegra_sor_connector_helper_funcs = {
1804 	.get_modes = tegra_sor_connector_get_modes,
1805 	.mode_valid = tegra_sor_connector_mode_valid,
1806 };
1807 
1808 static const struct drm_encoder_funcs tegra_sor_encoder_funcs = {
1809 	.destroy = tegra_output_encoder_destroy,
1810 };
1811 
1812 static int
1813 tegra_sor_encoder_atomic_check(struct drm_encoder *encoder,
1814 			       struct drm_crtc_state *crtc_state,
1815 			       struct drm_connector_state *conn_state)
1816 {
1817 	struct tegra_output *output = encoder_to_output(encoder);
1818 	struct tegra_sor_state *state = to_sor_state(conn_state);
1819 	struct tegra_dc *dc = to_tegra_dc(conn_state->crtc);
1820 	unsigned long pclk = crtc_state->mode.clock * 1000;
1821 	struct tegra_sor *sor = to_sor(output);
1822 	struct drm_display_info *info;
1823 	int err;
1824 
1825 	info = &output->connector.display_info;
1826 
1827 	/*
1828 	 * For HBR2 modes, the SOR brick needs to use the x20 multiplier, so
1829 	 * the pixel clock must be corrected accordingly.
1830 	 */
1831 	if (pclk >= 340000000) {
1832 		state->link_speed = 20;
1833 		state->pclk = pclk / 2;
1834 	} else {
1835 		state->link_speed = 10;
1836 		state->pclk = pclk;
1837 	}
1838 
1839 	err = tegra_dc_state_setup_clock(dc, crtc_state, sor->clk_parent,
1840 					 pclk, 0);
1841 	if (err < 0) {
1842 		dev_err(output->dev, "failed to setup CRTC state: %d\n", err);
1843 		return err;
1844 	}
1845 
1846 	switch (info->bpc) {
1847 	case 8:
1848 	case 6:
1849 		state->bpc = info->bpc;
1850 		break;
1851 
1852 	default:
1853 		DRM_DEBUG_KMS("%u bits-per-color not supported\n", info->bpc);
1854 		state->bpc = 8;
1855 		break;
1856 	}
1857 
1858 	return 0;
1859 }
1860 
1861 static inline u32 tegra_sor_hdmi_subpack(const u8 *ptr, size_t size)
1862 {
1863 	u32 value = 0;
1864 	size_t i;
1865 
1866 	for (i = size; i > 0; i--)
1867 		value = (value << 8) | ptr[i - 1];
1868 
1869 	return value;
1870 }
1871 
1872 static void tegra_sor_hdmi_write_infopack(struct tegra_sor *sor,
1873 					  const void *data, size_t size)
1874 {
1875 	const u8 *ptr = data;
1876 	unsigned long offset;
1877 	size_t i, j;
1878 	u32 value;
1879 
1880 	switch (ptr[0]) {
1881 	case HDMI_INFOFRAME_TYPE_AVI:
1882 		offset = SOR_HDMI_AVI_INFOFRAME_HEADER;
1883 		break;
1884 
1885 	case HDMI_INFOFRAME_TYPE_AUDIO:
1886 		offset = SOR_HDMI_AUDIO_INFOFRAME_HEADER;
1887 		break;
1888 
1889 	case HDMI_INFOFRAME_TYPE_VENDOR:
1890 		offset = SOR_HDMI_VSI_INFOFRAME_HEADER;
1891 		break;
1892 
1893 	default:
1894 		dev_err(sor->dev, "unsupported infoframe type: %02x\n",
1895 			ptr[0]);
1896 		return;
1897 	}
1898 
1899 	value = INFOFRAME_HEADER_TYPE(ptr[0]) |
1900 		INFOFRAME_HEADER_VERSION(ptr[1]) |
1901 		INFOFRAME_HEADER_LEN(ptr[2]);
1902 	tegra_sor_writel(sor, value, offset);
1903 	offset++;
1904 
1905 	/*
1906 	 * Each subpack contains 7 bytes, divided into:
1907 	 * - subpack_low: bytes 0 - 3
1908 	 * - subpack_high: bytes 4 - 6 (with byte 7 padded to 0x00)
1909 	 */
1910 	for (i = 3, j = 0; i < size; i += 7, j += 8) {
1911 		size_t rem = size - i, num = min_t(size_t, rem, 4);
1912 
1913 		value = tegra_sor_hdmi_subpack(&ptr[i], num);
1914 		tegra_sor_writel(sor, value, offset++);
1915 
1916 		num = min_t(size_t, rem - num, 3);
1917 
1918 		value = tegra_sor_hdmi_subpack(&ptr[i + 4], num);
1919 		tegra_sor_writel(sor, value, offset++);
1920 	}
1921 }
1922 
1923 static int
1924 tegra_sor_hdmi_setup_avi_infoframe(struct tegra_sor *sor,
1925 				   const struct drm_display_mode *mode)
1926 {
1927 	u8 buffer[HDMI_INFOFRAME_SIZE(AVI)];
1928 	struct hdmi_avi_infoframe frame;
1929 	u32 value;
1930 	int err;
1931 
1932 	/* disable AVI infoframe */
1933 	value = tegra_sor_readl(sor, SOR_HDMI_AVI_INFOFRAME_CTRL);
1934 	value &= ~INFOFRAME_CTRL_SINGLE;
1935 	value &= ~INFOFRAME_CTRL_OTHER;
1936 	value &= ~INFOFRAME_CTRL_ENABLE;
1937 	tegra_sor_writel(sor, value, SOR_HDMI_AVI_INFOFRAME_CTRL);
1938 
1939 	err = drm_hdmi_avi_infoframe_from_display_mode(&frame,
1940 						       &sor->output.connector, mode);
1941 	if (err < 0) {
1942 		dev_err(sor->dev, "failed to setup AVI infoframe: %d\n", err);
1943 		return err;
1944 	}
1945 
1946 	err = hdmi_avi_infoframe_pack(&frame, buffer, sizeof(buffer));
1947 	if (err < 0) {
1948 		dev_err(sor->dev, "failed to pack AVI infoframe: %d\n", err);
1949 		return err;
1950 	}
1951 
1952 	tegra_sor_hdmi_write_infopack(sor, buffer, err);
1953 
1954 	/* enable AVI infoframe */
1955 	value = tegra_sor_readl(sor, SOR_HDMI_AVI_INFOFRAME_CTRL);
1956 	value |= INFOFRAME_CTRL_CHECKSUM_ENABLE;
1957 	value |= INFOFRAME_CTRL_ENABLE;
1958 	tegra_sor_writel(sor, value, SOR_HDMI_AVI_INFOFRAME_CTRL);
1959 
1960 	return 0;
1961 }
1962 
1963 static void tegra_sor_write_eld(struct tegra_sor *sor)
1964 {
1965 	size_t length = drm_eld_size(sor->output.connector.eld), i;
1966 
1967 	for (i = 0; i < length; i++)
1968 		tegra_sor_writel(sor, i << 8 | sor->output.connector.eld[i],
1969 				 SOR_AUDIO_HDA_ELD_BUFWR);
1970 
1971 	/*
1972 	 * The HDA codec will always report an ELD buffer size of 96 bytes and
1973 	 * the HDA codec driver will check that each byte read from the buffer
1974 	 * is valid. Therefore every byte must be written, even if no 96 bytes
1975 	 * were parsed from EDID.
1976 	 */
1977 	for (i = length; i < 96; i++)
1978 		tegra_sor_writel(sor, i << 8 | 0, SOR_AUDIO_HDA_ELD_BUFWR);
1979 }
1980 
1981 static void tegra_sor_audio_prepare(struct tegra_sor *sor)
1982 {
1983 	u32 value;
1984 
1985 	/*
1986 	 * Enable and unmask the HDA codec SCRATCH0 register interrupt. This
1987 	 * is used for interoperability between the HDA codec driver and the
1988 	 * HDMI/DP driver.
1989 	 */
1990 	value = SOR_INT_CODEC_SCRATCH1 | SOR_INT_CODEC_SCRATCH0;
1991 	tegra_sor_writel(sor, value, SOR_INT_ENABLE);
1992 	tegra_sor_writel(sor, value, SOR_INT_MASK);
1993 
1994 	tegra_sor_write_eld(sor);
1995 
1996 	value = SOR_AUDIO_HDA_PRESENSE_ELDV | SOR_AUDIO_HDA_PRESENSE_PD;
1997 	tegra_sor_writel(sor, value, SOR_AUDIO_HDA_PRESENSE);
1998 }
1999 
2000 static void tegra_sor_audio_unprepare(struct tegra_sor *sor)
2001 {
2002 	tegra_sor_writel(sor, 0, SOR_AUDIO_HDA_PRESENSE);
2003 	tegra_sor_writel(sor, 0, SOR_INT_MASK);
2004 	tegra_sor_writel(sor, 0, SOR_INT_ENABLE);
2005 }
2006 
2007 static void tegra_sor_audio_enable(struct tegra_sor *sor)
2008 {
2009 	u32 value;
2010 
2011 	value = tegra_sor_readl(sor, SOR_AUDIO_CNTRL);
2012 
2013 	/* select HDA audio input */
2014 	value &= ~SOR_AUDIO_CNTRL_SOURCE_SELECT(SOURCE_SELECT_MASK);
2015 	value |= SOR_AUDIO_CNTRL_SOURCE_SELECT(SOURCE_SELECT_HDA);
2016 
2017 	/* inject null samples */
2018 	if (sor->format.channels != 2)
2019 		value &= ~SOR_AUDIO_CNTRL_INJECT_NULLSMPL;
2020 	else
2021 		value |= SOR_AUDIO_CNTRL_INJECT_NULLSMPL;
2022 
2023 	value |= SOR_AUDIO_CNTRL_AFIFO_FLUSH;
2024 
2025 	tegra_sor_writel(sor, value, SOR_AUDIO_CNTRL);
2026 
2027 	/* enable advertising HBR capability */
2028 	tegra_sor_writel(sor, SOR_AUDIO_SPARE_HBR_ENABLE, SOR_AUDIO_SPARE);
2029 }
2030 
2031 static int tegra_sor_hdmi_enable_audio_infoframe(struct tegra_sor *sor)
2032 {
2033 	u8 buffer[HDMI_INFOFRAME_SIZE(AUDIO)];
2034 	struct hdmi_audio_infoframe frame;
2035 	u32 value;
2036 	int err;
2037 
2038 	err = hdmi_audio_infoframe_init(&frame);
2039 	if (err < 0) {
2040 		dev_err(sor->dev, "failed to setup audio infoframe: %d\n", err);
2041 		return err;
2042 	}
2043 
2044 	frame.channels = sor->format.channels;
2045 
2046 	err = hdmi_audio_infoframe_pack(&frame, buffer, sizeof(buffer));
2047 	if (err < 0) {
2048 		dev_err(sor->dev, "failed to pack audio infoframe: %d\n", err);
2049 		return err;
2050 	}
2051 
2052 	tegra_sor_hdmi_write_infopack(sor, buffer, err);
2053 
2054 	value = tegra_sor_readl(sor, SOR_HDMI_AUDIO_INFOFRAME_CTRL);
2055 	value |= INFOFRAME_CTRL_CHECKSUM_ENABLE;
2056 	value |= INFOFRAME_CTRL_ENABLE;
2057 	tegra_sor_writel(sor, value, SOR_HDMI_AUDIO_INFOFRAME_CTRL);
2058 
2059 	return 0;
2060 }
2061 
2062 static void tegra_sor_hdmi_audio_enable(struct tegra_sor *sor)
2063 {
2064 	u32 value;
2065 
2066 	tegra_sor_audio_enable(sor);
2067 
2068 	tegra_sor_writel(sor, 0, SOR_HDMI_ACR_CTRL);
2069 
2070 	value = SOR_HDMI_SPARE_ACR_PRIORITY_HIGH |
2071 		SOR_HDMI_SPARE_CTS_RESET(1) |
2072 		SOR_HDMI_SPARE_HW_CTS_ENABLE;
2073 	tegra_sor_writel(sor, value, SOR_HDMI_SPARE);
2074 
2075 	/* enable HW CTS */
2076 	value = SOR_HDMI_ACR_SUBPACK_LOW_SB1(0);
2077 	tegra_sor_writel(sor, value, SOR_HDMI_ACR_0441_SUBPACK_LOW);
2078 
2079 	/* allow packet to be sent */
2080 	value = SOR_HDMI_ACR_SUBPACK_HIGH_ENABLE;
2081 	tegra_sor_writel(sor, value, SOR_HDMI_ACR_0441_SUBPACK_HIGH);
2082 
2083 	/* reset N counter and enable lookup */
2084 	value = SOR_HDMI_AUDIO_N_RESET | SOR_HDMI_AUDIO_N_LOOKUP;
2085 	tegra_sor_writel(sor, value, SOR_HDMI_AUDIO_N);
2086 
2087 	value = (24000 * 4096) / (128 * sor->format.sample_rate / 1000);
2088 	tegra_sor_writel(sor, value, SOR_AUDIO_AVAL_0320);
2089 	tegra_sor_writel(sor, 4096, SOR_AUDIO_NVAL_0320);
2090 
2091 	tegra_sor_writel(sor, 20000, SOR_AUDIO_AVAL_0441);
2092 	tegra_sor_writel(sor, 4704, SOR_AUDIO_NVAL_0441);
2093 
2094 	tegra_sor_writel(sor, 20000, SOR_AUDIO_AVAL_0882);
2095 	tegra_sor_writel(sor, 9408, SOR_AUDIO_NVAL_0882);
2096 
2097 	tegra_sor_writel(sor, 20000, SOR_AUDIO_AVAL_1764);
2098 	tegra_sor_writel(sor, 18816, SOR_AUDIO_NVAL_1764);
2099 
2100 	value = (24000 * 6144) / (128 * sor->format.sample_rate / 1000);
2101 	tegra_sor_writel(sor, value, SOR_AUDIO_AVAL_0480);
2102 	tegra_sor_writel(sor, 6144, SOR_AUDIO_NVAL_0480);
2103 
2104 	value = (24000 * 12288) / (128 * sor->format.sample_rate / 1000);
2105 	tegra_sor_writel(sor, value, SOR_AUDIO_AVAL_0960);
2106 	tegra_sor_writel(sor, 12288, SOR_AUDIO_NVAL_0960);
2107 
2108 	value = (24000 * 24576) / (128 * sor->format.sample_rate / 1000);
2109 	tegra_sor_writel(sor, value, SOR_AUDIO_AVAL_1920);
2110 	tegra_sor_writel(sor, 24576, SOR_AUDIO_NVAL_1920);
2111 
2112 	value = tegra_sor_readl(sor, SOR_HDMI_AUDIO_N);
2113 	value &= ~SOR_HDMI_AUDIO_N_RESET;
2114 	tegra_sor_writel(sor, value, SOR_HDMI_AUDIO_N);
2115 
2116 	tegra_sor_hdmi_enable_audio_infoframe(sor);
2117 }
2118 
2119 static void tegra_sor_hdmi_disable_audio_infoframe(struct tegra_sor *sor)
2120 {
2121 	u32 value;
2122 
2123 	value = tegra_sor_readl(sor, SOR_HDMI_AUDIO_INFOFRAME_CTRL);
2124 	value &= ~INFOFRAME_CTRL_ENABLE;
2125 	tegra_sor_writel(sor, value, SOR_HDMI_AUDIO_INFOFRAME_CTRL);
2126 }
2127 
2128 static void tegra_sor_hdmi_audio_disable(struct tegra_sor *sor)
2129 {
2130 	tegra_sor_hdmi_disable_audio_infoframe(sor);
2131 }
2132 
2133 static struct tegra_sor_hdmi_settings *
2134 tegra_sor_hdmi_find_settings(struct tegra_sor *sor, unsigned long frequency)
2135 {
2136 	unsigned int i;
2137 
2138 	for (i = 0; i < sor->num_settings; i++)
2139 		if (frequency <= sor->settings[i].frequency)
2140 			return &sor->settings[i];
2141 
2142 	return NULL;
2143 }
2144 
2145 static void tegra_sor_hdmi_disable_scrambling(struct tegra_sor *sor)
2146 {
2147 	u32 value;
2148 
2149 	value = tegra_sor_readl(sor, SOR_HDMI2_CTRL);
2150 	value &= ~SOR_HDMI2_CTRL_CLOCK_MODE_DIV_BY_4;
2151 	value &= ~SOR_HDMI2_CTRL_SCRAMBLE;
2152 	tegra_sor_writel(sor, value, SOR_HDMI2_CTRL);
2153 }
2154 
2155 static void tegra_sor_hdmi_scdc_disable(struct tegra_sor *sor)
2156 {
2157 	struct i2c_adapter *ddc = sor->output.ddc;
2158 
2159 	drm_scdc_set_high_tmds_clock_ratio(ddc, false);
2160 	drm_scdc_set_scrambling(ddc, false);
2161 
2162 	tegra_sor_hdmi_disable_scrambling(sor);
2163 }
2164 
2165 static void tegra_sor_hdmi_scdc_stop(struct tegra_sor *sor)
2166 {
2167 	if (sor->scdc_enabled) {
2168 		cancel_delayed_work_sync(&sor->scdc);
2169 		tegra_sor_hdmi_scdc_disable(sor);
2170 	}
2171 }
2172 
2173 static void tegra_sor_hdmi_enable_scrambling(struct tegra_sor *sor)
2174 {
2175 	u32 value;
2176 
2177 	value = tegra_sor_readl(sor, SOR_HDMI2_CTRL);
2178 	value |= SOR_HDMI2_CTRL_CLOCK_MODE_DIV_BY_4;
2179 	value |= SOR_HDMI2_CTRL_SCRAMBLE;
2180 	tegra_sor_writel(sor, value, SOR_HDMI2_CTRL);
2181 }
2182 
2183 static void tegra_sor_hdmi_scdc_enable(struct tegra_sor *sor)
2184 {
2185 	struct i2c_adapter *ddc = sor->output.ddc;
2186 
2187 	drm_scdc_set_high_tmds_clock_ratio(ddc, true);
2188 	drm_scdc_set_scrambling(ddc, true);
2189 
2190 	tegra_sor_hdmi_enable_scrambling(sor);
2191 }
2192 
2193 static void tegra_sor_hdmi_scdc_work(struct work_struct *work)
2194 {
2195 	struct tegra_sor *sor = container_of(work, struct tegra_sor, scdc.work);
2196 	struct i2c_adapter *ddc = sor->output.ddc;
2197 
2198 	if (!drm_scdc_get_scrambling_status(ddc)) {
2199 		DRM_DEBUG_KMS("SCDC not scrambled\n");
2200 		tegra_sor_hdmi_scdc_enable(sor);
2201 	}
2202 
2203 	schedule_delayed_work(&sor->scdc, msecs_to_jiffies(5000));
2204 }
2205 
2206 static void tegra_sor_hdmi_scdc_start(struct tegra_sor *sor)
2207 {
2208 	struct drm_scdc *scdc = &sor->output.connector.display_info.hdmi.scdc;
2209 	struct drm_display_mode *mode;
2210 
2211 	mode = &sor->output.encoder.crtc->state->adjusted_mode;
2212 
2213 	if (mode->clock >= 340000 && scdc->supported) {
2214 		schedule_delayed_work(&sor->scdc, msecs_to_jiffies(5000));
2215 		tegra_sor_hdmi_scdc_enable(sor);
2216 		sor->scdc_enabled = true;
2217 	}
2218 }
2219 
2220 static void tegra_sor_hdmi_disable(struct drm_encoder *encoder)
2221 {
2222 	struct tegra_output *output = encoder_to_output(encoder);
2223 	struct tegra_dc *dc = to_tegra_dc(encoder->crtc);
2224 	struct tegra_sor *sor = to_sor(output);
2225 	u32 value;
2226 	int err;
2227 
2228 	tegra_sor_audio_unprepare(sor);
2229 	tegra_sor_hdmi_scdc_stop(sor);
2230 
2231 	err = tegra_sor_detach(sor);
2232 	if (err < 0)
2233 		dev_err(sor->dev, "failed to detach SOR: %d\n", err);
2234 
2235 	tegra_sor_writel(sor, 0, SOR_STATE1);
2236 	tegra_sor_update(sor);
2237 
2238 	/* disable display to SOR clock */
2239 	value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
2240 
2241 	if (!sor->soc->has_nvdisplay)
2242 		value &= ~SOR1_TIMING_CYA;
2243 
2244 	value &= ~SOR_ENABLE(sor->index);
2245 
2246 	tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
2247 
2248 	tegra_dc_commit(dc);
2249 
2250 	err = tegra_sor_power_down(sor);
2251 	if (err < 0)
2252 		dev_err(sor->dev, "failed to power down SOR: %d\n", err);
2253 
2254 	err = tegra_io_pad_power_disable(sor->pad);
2255 	if (err < 0)
2256 		dev_err(sor->dev, "failed to power off I/O pad: %d\n", err);
2257 
2258 	host1x_client_suspend(&sor->client);
2259 }
2260 
2261 static void tegra_sor_hdmi_enable(struct drm_encoder *encoder)
2262 {
2263 	struct tegra_output *output = encoder_to_output(encoder);
2264 	unsigned int h_ref_to_sync = 1, pulse_start, max_ac;
2265 	struct tegra_dc *dc = to_tegra_dc(encoder->crtc);
2266 	struct tegra_sor_hdmi_settings *settings;
2267 	struct tegra_sor *sor = to_sor(output);
2268 	struct tegra_sor_state *state;
2269 	struct drm_display_mode *mode;
2270 	unsigned long rate, pclk;
2271 	unsigned int div, i;
2272 	u32 value;
2273 	int err;
2274 
2275 	state = to_sor_state(output->connector.state);
2276 	mode = &encoder->crtc->state->adjusted_mode;
2277 	pclk = mode->clock * 1000;
2278 
2279 	err = host1x_client_resume(&sor->client);
2280 	if (err < 0) {
2281 		dev_err(sor->dev, "failed to resume: %d\n", err);
2282 		return;
2283 	}
2284 
2285 	/* switch to safe parent clock */
2286 	err = tegra_sor_set_parent_clock(sor, sor->clk_safe);
2287 	if (err < 0) {
2288 		dev_err(sor->dev, "failed to set safe parent clock: %d\n", err);
2289 		return;
2290 	}
2291 
2292 	div = clk_get_rate(sor->clk) / 1000000 * 4;
2293 
2294 	err = tegra_io_pad_power_enable(sor->pad);
2295 	if (err < 0)
2296 		dev_err(sor->dev, "failed to power on I/O pad: %d\n", err);
2297 
2298 	usleep_range(20, 100);
2299 
2300 	value = tegra_sor_readl(sor, sor->soc->regs->pll2);
2301 	value &= ~SOR_PLL2_BANDGAP_POWERDOWN;
2302 	tegra_sor_writel(sor, value, sor->soc->regs->pll2);
2303 
2304 	usleep_range(20, 100);
2305 
2306 	value = tegra_sor_readl(sor, sor->soc->regs->pll3);
2307 	value &= ~SOR_PLL3_PLL_VDD_MODE_3V3;
2308 	tegra_sor_writel(sor, value, sor->soc->regs->pll3);
2309 
2310 	value = tegra_sor_readl(sor, sor->soc->regs->pll0);
2311 	value &= ~SOR_PLL0_VCOPD;
2312 	value &= ~SOR_PLL0_PWR;
2313 	tegra_sor_writel(sor, value, sor->soc->regs->pll0);
2314 
2315 	value = tegra_sor_readl(sor, sor->soc->regs->pll2);
2316 	value &= ~SOR_PLL2_SEQ_PLLCAPPD_ENFORCE;
2317 	tegra_sor_writel(sor, value, sor->soc->regs->pll2);
2318 
2319 	usleep_range(200, 400);
2320 
2321 	value = tegra_sor_readl(sor, sor->soc->regs->pll2);
2322 	value &= ~SOR_PLL2_POWERDOWN_OVERRIDE;
2323 	value &= ~SOR_PLL2_PORT_POWERDOWN;
2324 	tegra_sor_writel(sor, value, sor->soc->regs->pll2);
2325 
2326 	usleep_range(20, 100);
2327 
2328 	value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
2329 	value |= SOR_DP_PADCTL_PD_TXD_3 | SOR_DP_PADCTL_PD_TXD_0 |
2330 		 SOR_DP_PADCTL_PD_TXD_1 | SOR_DP_PADCTL_PD_TXD_2;
2331 	tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
2332 
2333 	while (true) {
2334 		value = tegra_sor_readl(sor, SOR_LANE_SEQ_CTL);
2335 		if ((value & SOR_LANE_SEQ_CTL_STATE_BUSY) == 0)
2336 			break;
2337 
2338 		usleep_range(250, 1000);
2339 	}
2340 
2341 	value = SOR_LANE_SEQ_CTL_TRIGGER | SOR_LANE_SEQ_CTL_SEQUENCE_DOWN |
2342 		SOR_LANE_SEQ_CTL_POWER_STATE_UP | SOR_LANE_SEQ_CTL_DELAY(5);
2343 	tegra_sor_writel(sor, value, SOR_LANE_SEQ_CTL);
2344 
2345 	while (true) {
2346 		value = tegra_sor_readl(sor, SOR_LANE_SEQ_CTL);
2347 		if ((value & SOR_LANE_SEQ_CTL_TRIGGER) == 0)
2348 			break;
2349 
2350 		usleep_range(250, 1000);
2351 	}
2352 
2353 	value = tegra_sor_readl(sor, SOR_CLK_CNTRL);
2354 	value &= ~SOR_CLK_CNTRL_DP_LINK_SPEED_MASK;
2355 	value &= ~SOR_CLK_CNTRL_DP_CLK_SEL_MASK;
2356 
2357 	if (mode->clock < 340000) {
2358 		DRM_DEBUG_KMS("setting 2.7 GHz link speed\n");
2359 		value |= SOR_CLK_CNTRL_DP_LINK_SPEED_G2_70;
2360 	} else {
2361 		DRM_DEBUG_KMS("setting 5.4 GHz link speed\n");
2362 		value |= SOR_CLK_CNTRL_DP_LINK_SPEED_G5_40;
2363 	}
2364 
2365 	value |= SOR_CLK_CNTRL_DP_CLK_SEL_SINGLE_PCLK;
2366 	tegra_sor_writel(sor, value, SOR_CLK_CNTRL);
2367 
2368 	/* SOR pad PLL stabilization time */
2369 	usleep_range(250, 1000);
2370 
2371 	value = tegra_sor_readl(sor, SOR_DP_LINKCTL0);
2372 	value &= ~SOR_DP_LINKCTL_LANE_COUNT_MASK;
2373 	value |= SOR_DP_LINKCTL_LANE_COUNT(4);
2374 	tegra_sor_writel(sor, value, SOR_DP_LINKCTL0);
2375 
2376 	value = tegra_sor_readl(sor, SOR_DP_SPARE0);
2377 	value &= ~SOR_DP_SPARE_DISP_VIDEO_PREAMBLE;
2378 	value &= ~SOR_DP_SPARE_PANEL_INTERNAL;
2379 	value &= ~SOR_DP_SPARE_SEQ_ENABLE;
2380 	value &= ~SOR_DP_SPARE_MACRO_SOR_CLK;
2381 	tegra_sor_writel(sor, value, SOR_DP_SPARE0);
2382 
2383 	value = SOR_SEQ_CTL_PU_PC(0) | SOR_SEQ_CTL_PU_PC_ALT(0) |
2384 		SOR_SEQ_CTL_PD_PC(8) | SOR_SEQ_CTL_PD_PC_ALT(8);
2385 	tegra_sor_writel(sor, value, SOR_SEQ_CTL);
2386 
2387 	value = SOR_SEQ_INST_DRIVE_PWM_OUT_LO | SOR_SEQ_INST_HALT |
2388 		SOR_SEQ_INST_WAIT_VSYNC | SOR_SEQ_INST_WAIT(1);
2389 	tegra_sor_writel(sor, value, SOR_SEQ_INST(0));
2390 	tegra_sor_writel(sor, value, SOR_SEQ_INST(8));
2391 
2392 	if (!sor->soc->has_nvdisplay) {
2393 		/* program the reference clock */
2394 		value = SOR_REFCLK_DIV_INT(div) | SOR_REFCLK_DIV_FRAC(div);
2395 		tegra_sor_writel(sor, value, SOR_REFCLK);
2396 	}
2397 
2398 	/* XXX not in TRM */
2399 	for (value = 0, i = 0; i < 5; i++)
2400 		value |= SOR_XBAR_CTRL_LINK0_XSEL(i, sor->xbar_cfg[i]) |
2401 			 SOR_XBAR_CTRL_LINK1_XSEL(i, i);
2402 
2403 	tegra_sor_writel(sor, 0x00000000, SOR_XBAR_POL);
2404 	tegra_sor_writel(sor, value, SOR_XBAR_CTRL);
2405 
2406 	/*
2407 	 * Switch the pad clock to the DP clock. Note that we cannot actually
2408 	 * do this because Tegra186 and later don't support clk_set_parent()
2409 	 * on the sorX_pad_clkout clocks. We already do the equivalent above
2410 	 * using the DP_CLK_SEL mux of the SOR_CLK_CNTRL register.
2411 	 */
2412 #if 0
2413 	err = clk_set_parent(sor->clk_pad, sor->clk_dp);
2414 	if (err < 0) {
2415 		dev_err(sor->dev, "failed to select pad parent clock: %d\n",
2416 			err);
2417 		return;
2418 	}
2419 #endif
2420 
2421 	/* switch the SOR clock to the pad clock */
2422 	err = tegra_sor_set_parent_clock(sor, sor->clk_pad);
2423 	if (err < 0) {
2424 		dev_err(sor->dev, "failed to select SOR parent clock: %d\n",
2425 			err);
2426 		return;
2427 	}
2428 
2429 	/* switch the output clock to the parent pixel clock */
2430 	err = clk_set_parent(sor->clk, sor->clk_parent);
2431 	if (err < 0) {
2432 		dev_err(sor->dev, "failed to select output parent clock: %d\n",
2433 			err);
2434 		return;
2435 	}
2436 
2437 	/* adjust clock rate for HDMI 2.0 modes */
2438 	rate = clk_get_rate(sor->clk_parent);
2439 
2440 	if (mode->clock >= 340000)
2441 		rate /= 2;
2442 
2443 	DRM_DEBUG_KMS("setting clock to %lu Hz, mode: %lu Hz\n", rate, pclk);
2444 
2445 	clk_set_rate(sor->clk, rate);
2446 
2447 	if (!sor->soc->has_nvdisplay) {
2448 		value = SOR_INPUT_CONTROL_HDMI_SRC_SELECT(dc->pipe);
2449 
2450 		/* XXX is this the proper check? */
2451 		if (mode->clock < 75000)
2452 			value |= SOR_INPUT_CONTROL_ARM_VIDEO_RANGE_LIMITED;
2453 
2454 		tegra_sor_writel(sor, value, SOR_INPUT_CONTROL);
2455 	}
2456 
2457 	max_ac = ((mode->htotal - mode->hdisplay) - SOR_REKEY - 18) / 32;
2458 
2459 	value = SOR_HDMI_CTRL_ENABLE | SOR_HDMI_CTRL_MAX_AC_PACKET(max_ac) |
2460 		SOR_HDMI_CTRL_AUDIO_LAYOUT | SOR_HDMI_CTRL_REKEY(SOR_REKEY);
2461 	tegra_sor_writel(sor, value, SOR_HDMI_CTRL);
2462 
2463 	if (!dc->soc->has_nvdisplay) {
2464 		/* H_PULSE2 setup */
2465 		pulse_start = h_ref_to_sync +
2466 			      (mode->hsync_end - mode->hsync_start) +
2467 			      (mode->htotal - mode->hsync_end) - 10;
2468 
2469 		value = PULSE_LAST_END_A | PULSE_QUAL_VACTIVE |
2470 			PULSE_POLARITY_HIGH | PULSE_MODE_NORMAL;
2471 		tegra_dc_writel(dc, value, DC_DISP_H_PULSE2_CONTROL);
2472 
2473 		value = PULSE_END(pulse_start + 8) | PULSE_START(pulse_start);
2474 		tegra_dc_writel(dc, value, DC_DISP_H_PULSE2_POSITION_A);
2475 
2476 		value = tegra_dc_readl(dc, DC_DISP_DISP_SIGNAL_OPTIONS0);
2477 		value |= H_PULSE2_ENABLE;
2478 		tegra_dc_writel(dc, value, DC_DISP_DISP_SIGNAL_OPTIONS0);
2479 	}
2480 
2481 	/* infoframe setup */
2482 	err = tegra_sor_hdmi_setup_avi_infoframe(sor, mode);
2483 	if (err < 0)
2484 		dev_err(sor->dev, "failed to setup AVI infoframe: %d\n", err);
2485 
2486 	/* XXX HDMI audio support not implemented yet */
2487 	tegra_sor_hdmi_disable_audio_infoframe(sor);
2488 
2489 	/* use single TMDS protocol */
2490 	value = tegra_sor_readl(sor, SOR_STATE1);
2491 	value &= ~SOR_STATE_ASY_PROTOCOL_MASK;
2492 	value |= SOR_STATE_ASY_PROTOCOL_SINGLE_TMDS_A;
2493 	tegra_sor_writel(sor, value, SOR_STATE1);
2494 
2495 	/* power up pad calibration */
2496 	value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
2497 	value &= ~SOR_DP_PADCTL_PAD_CAL_PD;
2498 	tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
2499 
2500 	/* production settings */
2501 	settings = tegra_sor_hdmi_find_settings(sor, mode->clock * 1000);
2502 	if (!settings) {
2503 		dev_err(sor->dev, "no settings for pixel clock %d Hz\n",
2504 			mode->clock * 1000);
2505 		return;
2506 	}
2507 
2508 	value = tegra_sor_readl(sor, sor->soc->regs->pll0);
2509 	value &= ~SOR_PLL0_ICHPMP_MASK;
2510 	value &= ~SOR_PLL0_FILTER_MASK;
2511 	value &= ~SOR_PLL0_VCOCAP_MASK;
2512 	value |= SOR_PLL0_ICHPMP(settings->ichpmp);
2513 	value |= SOR_PLL0_FILTER(settings->filter);
2514 	value |= SOR_PLL0_VCOCAP(settings->vcocap);
2515 	tegra_sor_writel(sor, value, sor->soc->regs->pll0);
2516 
2517 	/* XXX not in TRM */
2518 	value = tegra_sor_readl(sor, sor->soc->regs->pll1);
2519 	value &= ~SOR_PLL1_LOADADJ_MASK;
2520 	value &= ~SOR_PLL1_TMDS_TERMADJ_MASK;
2521 	value |= SOR_PLL1_LOADADJ(settings->loadadj);
2522 	value |= SOR_PLL1_TMDS_TERMADJ(settings->tmds_termadj);
2523 	value |= SOR_PLL1_TMDS_TERM;
2524 	tegra_sor_writel(sor, value, sor->soc->regs->pll1);
2525 
2526 	value = tegra_sor_readl(sor, sor->soc->regs->pll3);
2527 	value &= ~SOR_PLL3_BG_TEMP_COEF_MASK;
2528 	value &= ~SOR_PLL3_BG_VREF_LEVEL_MASK;
2529 	value &= ~SOR_PLL3_AVDD10_LEVEL_MASK;
2530 	value &= ~SOR_PLL3_AVDD14_LEVEL_MASK;
2531 	value |= SOR_PLL3_BG_TEMP_COEF(settings->bg_temp_coef);
2532 	value |= SOR_PLL3_BG_VREF_LEVEL(settings->bg_vref_level);
2533 	value |= SOR_PLL3_AVDD10_LEVEL(settings->avdd10_level);
2534 	value |= SOR_PLL3_AVDD14_LEVEL(settings->avdd14_level);
2535 	tegra_sor_writel(sor, value, sor->soc->regs->pll3);
2536 
2537 	value = settings->drive_current[3] << 24 |
2538 		settings->drive_current[2] << 16 |
2539 		settings->drive_current[1] <<  8 |
2540 		settings->drive_current[0] <<  0;
2541 	tegra_sor_writel(sor, value, SOR_LANE_DRIVE_CURRENT0);
2542 
2543 	value = settings->preemphasis[3] << 24 |
2544 		settings->preemphasis[2] << 16 |
2545 		settings->preemphasis[1] <<  8 |
2546 		settings->preemphasis[0] <<  0;
2547 	tegra_sor_writel(sor, value, SOR_LANE_PREEMPHASIS0);
2548 
2549 	value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
2550 	value &= ~SOR_DP_PADCTL_TX_PU_MASK;
2551 	value |= SOR_DP_PADCTL_TX_PU_ENABLE;
2552 	value |= SOR_DP_PADCTL_TX_PU(settings->tx_pu_value);
2553 	tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
2554 
2555 	value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl2);
2556 	value &= ~SOR_DP_PADCTL_SPAREPLL_MASK;
2557 	value |= SOR_DP_PADCTL_SPAREPLL(settings->sparepll);
2558 	tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl2);
2559 
2560 	/* power down pad calibration */
2561 	value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
2562 	value |= SOR_DP_PADCTL_PAD_CAL_PD;
2563 	tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
2564 
2565 	if (!dc->soc->has_nvdisplay) {
2566 		/* miscellaneous display controller settings */
2567 		value = VSYNC_H_POSITION(1);
2568 		tegra_dc_writel(dc, value, DC_DISP_DISP_TIMING_OPTIONS);
2569 	}
2570 
2571 	value = tegra_dc_readl(dc, DC_DISP_DISP_COLOR_CONTROL);
2572 	value &= ~DITHER_CONTROL_MASK;
2573 	value &= ~BASE_COLOR_SIZE_MASK;
2574 
2575 	switch (state->bpc) {
2576 	case 6:
2577 		value |= BASE_COLOR_SIZE_666;
2578 		break;
2579 
2580 	case 8:
2581 		value |= BASE_COLOR_SIZE_888;
2582 		break;
2583 
2584 	case 10:
2585 		value |= BASE_COLOR_SIZE_101010;
2586 		break;
2587 
2588 	case 12:
2589 		value |= BASE_COLOR_SIZE_121212;
2590 		break;
2591 
2592 	default:
2593 		WARN(1, "%u bits-per-color not supported\n", state->bpc);
2594 		value |= BASE_COLOR_SIZE_888;
2595 		break;
2596 	}
2597 
2598 	tegra_dc_writel(dc, value, DC_DISP_DISP_COLOR_CONTROL);
2599 
2600 	/* XXX set display head owner */
2601 	value = tegra_sor_readl(sor, SOR_STATE1);
2602 	value &= ~SOR_STATE_ASY_OWNER_MASK;
2603 	value |= SOR_STATE_ASY_OWNER(1 + dc->pipe);
2604 	tegra_sor_writel(sor, value, SOR_STATE1);
2605 
2606 	err = tegra_sor_power_up(sor, 250);
2607 	if (err < 0)
2608 		dev_err(sor->dev, "failed to power up SOR: %d\n", err);
2609 
2610 	/* configure dynamic range of output */
2611 	value = tegra_sor_readl(sor, sor->soc->regs->head_state0 + dc->pipe);
2612 	value &= ~SOR_HEAD_STATE_RANGECOMPRESS_MASK;
2613 	value &= ~SOR_HEAD_STATE_DYNRANGE_MASK;
2614 	tegra_sor_writel(sor, value, sor->soc->regs->head_state0 + dc->pipe);
2615 
2616 	/* configure colorspace */
2617 	value = tegra_sor_readl(sor, sor->soc->regs->head_state0 + dc->pipe);
2618 	value &= ~SOR_HEAD_STATE_COLORSPACE_MASK;
2619 	value |= SOR_HEAD_STATE_COLORSPACE_RGB;
2620 	tegra_sor_writel(sor, value, sor->soc->regs->head_state0 + dc->pipe);
2621 
2622 	tegra_sor_mode_set(sor, mode, state);
2623 
2624 	tegra_sor_update(sor);
2625 
2626 	/* program preamble timing in SOR (XXX) */
2627 	value = tegra_sor_readl(sor, SOR_DP_SPARE0);
2628 	value &= ~SOR_DP_SPARE_DISP_VIDEO_PREAMBLE;
2629 	tegra_sor_writel(sor, value, SOR_DP_SPARE0);
2630 
2631 	err = tegra_sor_attach(sor);
2632 	if (err < 0)
2633 		dev_err(sor->dev, "failed to attach SOR: %d\n", err);
2634 
2635 	/* enable display to SOR clock and generate HDMI preamble */
2636 	value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
2637 
2638 	if (!sor->soc->has_nvdisplay)
2639 		value |= SOR1_TIMING_CYA;
2640 
2641 	value |= SOR_ENABLE(sor->index);
2642 
2643 	tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
2644 
2645 	if (dc->soc->has_nvdisplay) {
2646 		value = tegra_dc_readl(dc, DC_DISP_CORE_SOR_SET_CONTROL(sor->index));
2647 		value &= ~PROTOCOL_MASK;
2648 		value |= PROTOCOL_SINGLE_TMDS_A;
2649 		tegra_dc_writel(dc, value, DC_DISP_CORE_SOR_SET_CONTROL(sor->index));
2650 	}
2651 
2652 	tegra_dc_commit(dc);
2653 
2654 	err = tegra_sor_wakeup(sor);
2655 	if (err < 0)
2656 		dev_err(sor->dev, "failed to wakeup SOR: %d\n", err);
2657 
2658 	tegra_sor_hdmi_scdc_start(sor);
2659 	tegra_sor_audio_prepare(sor);
2660 }
2661 
2662 static const struct drm_encoder_helper_funcs tegra_sor_hdmi_helpers = {
2663 	.disable = tegra_sor_hdmi_disable,
2664 	.enable = tegra_sor_hdmi_enable,
2665 	.atomic_check = tegra_sor_encoder_atomic_check,
2666 };
2667 
2668 static void tegra_sor_dp_disable(struct drm_encoder *encoder)
2669 {
2670 	struct tegra_output *output = encoder_to_output(encoder);
2671 	struct tegra_dc *dc = to_tegra_dc(encoder->crtc);
2672 	struct tegra_sor *sor = to_sor(output);
2673 	u32 value;
2674 	int err;
2675 
2676 	if (output->panel)
2677 		drm_panel_disable(output->panel);
2678 
2679 	/*
2680 	 * Do not attempt to power down a DP link if we're not connected since
2681 	 * the AUX transactions would just be timing out.
2682 	 */
2683 	if (output->connector.status != connector_status_disconnected) {
2684 		err = drm_dp_link_power_down(sor->aux, &sor->link);
2685 		if (err < 0)
2686 			dev_err(sor->dev, "failed to power down link: %d\n",
2687 				err);
2688 	}
2689 
2690 	err = tegra_sor_detach(sor);
2691 	if (err < 0)
2692 		dev_err(sor->dev, "failed to detach SOR: %d\n", err);
2693 
2694 	tegra_sor_writel(sor, 0, SOR_STATE1);
2695 	tegra_sor_update(sor);
2696 
2697 	value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
2698 	value &= ~SOR_ENABLE(sor->index);
2699 	tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
2700 	tegra_dc_commit(dc);
2701 
2702 	value = tegra_sor_readl(sor, SOR_STATE1);
2703 	value &= ~SOR_STATE_ASY_PROTOCOL_MASK;
2704 	value &= ~SOR_STATE_ASY_SUBOWNER_MASK;
2705 	value &= ~SOR_STATE_ASY_OWNER_MASK;
2706 	tegra_sor_writel(sor, value, SOR_STATE1);
2707 	tegra_sor_update(sor);
2708 
2709 	/* switch to safe parent clock */
2710 	err = tegra_sor_set_parent_clock(sor, sor->clk_safe);
2711 	if (err < 0)
2712 		dev_err(sor->dev, "failed to set safe clock: %d\n", err);
2713 
2714 	err = tegra_sor_power_down(sor);
2715 	if (err < 0)
2716 		dev_err(sor->dev, "failed to power down SOR: %d\n", err);
2717 
2718 	err = tegra_io_pad_power_disable(sor->pad);
2719 	if (err < 0)
2720 		dev_err(sor->dev, "failed to power off I/O pad: %d\n", err);
2721 
2722 	err = drm_dp_aux_disable(sor->aux);
2723 	if (err < 0)
2724 		dev_err(sor->dev, "failed disable DPAUX: %d\n", err);
2725 
2726 	if (output->panel)
2727 		drm_panel_unprepare(output->panel);
2728 
2729 	host1x_client_suspend(&sor->client);
2730 }
2731 
2732 static void tegra_sor_dp_enable(struct drm_encoder *encoder)
2733 {
2734 	struct tegra_output *output = encoder_to_output(encoder);
2735 	struct tegra_dc *dc = to_tegra_dc(encoder->crtc);
2736 	struct tegra_sor *sor = to_sor(output);
2737 	struct tegra_sor_config config;
2738 	struct tegra_sor_state *state;
2739 	struct drm_display_mode *mode;
2740 	struct drm_display_info *info;
2741 	unsigned int i;
2742 	u32 value;
2743 	int err;
2744 
2745 	state = to_sor_state(output->connector.state);
2746 	mode = &encoder->crtc->state->adjusted_mode;
2747 	info = &output->connector.display_info;
2748 
2749 	err = host1x_client_resume(&sor->client);
2750 	if (err < 0) {
2751 		dev_err(sor->dev, "failed to resume: %d\n", err);
2752 		return;
2753 	}
2754 
2755 	/* switch to safe parent clock */
2756 	err = tegra_sor_set_parent_clock(sor, sor->clk_safe);
2757 	if (err < 0)
2758 		dev_err(sor->dev, "failed to set safe parent clock: %d\n", err);
2759 
2760 	err = tegra_io_pad_power_enable(sor->pad);
2761 	if (err < 0)
2762 		dev_err(sor->dev, "failed to power on LVDS rail: %d\n", err);
2763 
2764 	usleep_range(20, 100);
2765 
2766 	err = drm_dp_aux_enable(sor->aux);
2767 	if (err < 0)
2768 		dev_err(sor->dev, "failed to enable DPAUX: %d\n", err);
2769 
2770 	err = drm_dp_link_probe(sor->aux, &sor->link);
2771 	if (err < 0)
2772 		dev_err(sor->dev, "failed to probe DP link: %d\n", err);
2773 
2774 	tegra_sor_filter_rates(sor);
2775 
2776 	err = drm_dp_link_choose(&sor->link, mode, info);
2777 	if (err < 0)
2778 		dev_err(sor->dev, "failed to choose link: %d\n", err);
2779 
2780 	if (output->panel)
2781 		drm_panel_prepare(output->panel);
2782 
2783 	value = tegra_sor_readl(sor, sor->soc->regs->pll2);
2784 	value &= ~SOR_PLL2_BANDGAP_POWERDOWN;
2785 	tegra_sor_writel(sor, value, sor->soc->regs->pll2);
2786 
2787 	usleep_range(20, 40);
2788 
2789 	value = tegra_sor_readl(sor, sor->soc->regs->pll3);
2790 	value |= SOR_PLL3_PLL_VDD_MODE_3V3;
2791 	tegra_sor_writel(sor, value, sor->soc->regs->pll3);
2792 
2793 	value = tegra_sor_readl(sor, sor->soc->regs->pll0);
2794 	value &= ~(SOR_PLL0_VCOPD | SOR_PLL0_PWR);
2795 	tegra_sor_writel(sor, value, sor->soc->regs->pll0);
2796 
2797 	value = tegra_sor_readl(sor, sor->soc->regs->pll2);
2798 	value &= ~SOR_PLL2_SEQ_PLLCAPPD_ENFORCE;
2799 	value |= SOR_PLL2_SEQ_PLLCAPPD;
2800 	tegra_sor_writel(sor, value, sor->soc->regs->pll2);
2801 
2802 	usleep_range(200, 400);
2803 
2804 	value = tegra_sor_readl(sor, sor->soc->regs->pll2);
2805 	value &= ~SOR_PLL2_POWERDOWN_OVERRIDE;
2806 	value &= ~SOR_PLL2_PORT_POWERDOWN;
2807 	tegra_sor_writel(sor, value, sor->soc->regs->pll2);
2808 
2809 	value = tegra_sor_readl(sor, SOR_CLK_CNTRL);
2810 	value &= ~SOR_CLK_CNTRL_DP_CLK_SEL_MASK;
2811 
2812 	if (output->panel)
2813 		value |= SOR_CLK_CNTRL_DP_CLK_SEL_SINGLE_DPCLK;
2814 	else
2815 		value |= SOR_CLK_CNTRL_DP_CLK_SEL_DIFF_DPCLK;
2816 
2817 	tegra_sor_writel(sor, value, SOR_CLK_CNTRL);
2818 
2819 	usleep_range(200, 400);
2820 
2821 	value = tegra_sor_readl(sor, SOR_DP_SPARE0);
2822 	/* XXX not in TRM */
2823 	if (output->panel)
2824 		value |= SOR_DP_SPARE_PANEL_INTERNAL;
2825 	else
2826 		value &= ~SOR_DP_SPARE_PANEL_INTERNAL;
2827 
2828 	value |= SOR_DP_SPARE_SEQ_ENABLE;
2829 	tegra_sor_writel(sor, value, SOR_DP_SPARE0);
2830 
2831 	/* XXX not in TRM */
2832 	tegra_sor_writel(sor, 0, SOR_LVDS);
2833 
2834 	value = tegra_sor_readl(sor, sor->soc->regs->pll0);
2835 	value &= ~SOR_PLL0_ICHPMP_MASK;
2836 	value &= ~SOR_PLL0_VCOCAP_MASK;
2837 	value |= SOR_PLL0_ICHPMP(0x1);
2838 	value |= SOR_PLL0_VCOCAP(0x3);
2839 	value |= SOR_PLL0_RESISTOR_EXT;
2840 	tegra_sor_writel(sor, value, sor->soc->regs->pll0);
2841 
2842 	/* XXX not in TRM */
2843 	for (value = 0, i = 0; i < 5; i++)
2844 		value |= SOR_XBAR_CTRL_LINK0_XSEL(i, sor->soc->xbar_cfg[i]) |
2845 			 SOR_XBAR_CTRL_LINK1_XSEL(i, i);
2846 
2847 	tegra_sor_writel(sor, 0x00000000, SOR_XBAR_POL);
2848 	tegra_sor_writel(sor, value, SOR_XBAR_CTRL);
2849 
2850 	/*
2851 	 * Switch the pad clock to the DP clock. Note that we cannot actually
2852 	 * do this because Tegra186 and later don't support clk_set_parent()
2853 	 * on the sorX_pad_clkout clocks. We already do the equivalent above
2854 	 * using the DP_CLK_SEL mux of the SOR_CLK_CNTRL register.
2855 	 */
2856 #if 0
2857 	err = clk_set_parent(sor->clk_pad, sor->clk_parent);
2858 	if (err < 0) {
2859 		dev_err(sor->dev, "failed to select pad parent clock: %d\n",
2860 			err);
2861 		return;
2862 	}
2863 #endif
2864 
2865 	/* switch the SOR clock to the pad clock */
2866 	err = tegra_sor_set_parent_clock(sor, sor->clk_pad);
2867 	if (err < 0) {
2868 		dev_err(sor->dev, "failed to select SOR parent clock: %d\n",
2869 			err);
2870 		return;
2871 	}
2872 
2873 	/* switch the output clock to the parent pixel clock */
2874 	err = clk_set_parent(sor->clk, sor->clk_parent);
2875 	if (err < 0) {
2876 		dev_err(sor->dev, "failed to select output parent clock: %d\n",
2877 			err);
2878 		return;
2879 	}
2880 
2881 	/* use DP-A protocol */
2882 	value = tegra_sor_readl(sor, SOR_STATE1);
2883 	value &= ~SOR_STATE_ASY_PROTOCOL_MASK;
2884 	value |= SOR_STATE_ASY_PROTOCOL_DP_A;
2885 	tegra_sor_writel(sor, value, SOR_STATE1);
2886 
2887 	/* enable port */
2888 	value = tegra_sor_readl(sor, SOR_DP_LINKCTL0);
2889 	value |= SOR_DP_LINKCTL_ENABLE;
2890 	tegra_sor_writel(sor, value, SOR_DP_LINKCTL0);
2891 
2892 	tegra_sor_dp_term_calibrate(sor);
2893 
2894 	err = drm_dp_link_train(&sor->link);
2895 	if (err < 0)
2896 		dev_err(sor->dev, "link training failed: %d\n", err);
2897 	else
2898 		dev_dbg(sor->dev, "link training succeeded\n");
2899 
2900 	err = drm_dp_link_power_up(sor->aux, &sor->link);
2901 	if (err < 0)
2902 		dev_err(sor->dev, "failed to power up DP link: %d\n", err);
2903 
2904 	/* compute configuration */
2905 	memset(&config, 0, sizeof(config));
2906 	config.bits_per_pixel = state->bpc * 3;
2907 
2908 	err = tegra_sor_compute_config(sor, mode, &config, &sor->link);
2909 	if (err < 0)
2910 		dev_err(sor->dev, "failed to compute configuration: %d\n", err);
2911 
2912 	tegra_sor_apply_config(sor, &config);
2913 	tegra_sor_mode_set(sor, mode, state);
2914 
2915 	if (output->panel) {
2916 		/* CSTM (LVDS, link A/B, upper) */
2917 		value = SOR_CSTM_LVDS | SOR_CSTM_LINK_ACT_A | SOR_CSTM_LINK_ACT_B |
2918 			SOR_CSTM_UPPER;
2919 		tegra_sor_writel(sor, value, SOR_CSTM);
2920 
2921 		/* PWM setup */
2922 		err = tegra_sor_setup_pwm(sor, 250);
2923 		if (err < 0)
2924 			dev_err(sor->dev, "failed to setup PWM: %d\n", err);
2925 	}
2926 
2927 	tegra_sor_update(sor);
2928 
2929 	err = tegra_sor_power_up(sor, 250);
2930 	if (err < 0)
2931 		dev_err(sor->dev, "failed to power up SOR: %d\n", err);
2932 
2933 	/* attach and wake up */
2934 	err = tegra_sor_attach(sor);
2935 	if (err < 0)
2936 		dev_err(sor->dev, "failed to attach SOR: %d\n", err);
2937 
2938 	value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
2939 	value |= SOR_ENABLE(sor->index);
2940 	tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
2941 
2942 	tegra_dc_commit(dc);
2943 
2944 	err = tegra_sor_wakeup(sor);
2945 	if (err < 0)
2946 		dev_err(sor->dev, "failed to wakeup SOR: %d\n", err);
2947 
2948 	if (output->panel)
2949 		drm_panel_enable(output->panel);
2950 }
2951 
2952 static const struct drm_encoder_helper_funcs tegra_sor_dp_helpers = {
2953 	.disable = tegra_sor_dp_disable,
2954 	.enable = tegra_sor_dp_enable,
2955 	.atomic_check = tegra_sor_encoder_atomic_check,
2956 };
2957 
2958 static int tegra_sor_hdmi_probe(struct tegra_sor *sor)
2959 {
2960 	int err;
2961 
2962 	sor->avdd_io_supply = devm_regulator_get(sor->dev, "avdd-io");
2963 	if (IS_ERR(sor->avdd_io_supply)) {
2964 		dev_err(sor->dev, "cannot get AVDD I/O supply: %ld\n",
2965 			PTR_ERR(sor->avdd_io_supply));
2966 		return PTR_ERR(sor->avdd_io_supply);
2967 	}
2968 
2969 	err = regulator_enable(sor->avdd_io_supply);
2970 	if (err < 0) {
2971 		dev_err(sor->dev, "failed to enable AVDD I/O supply: %d\n",
2972 			err);
2973 		return err;
2974 	}
2975 
2976 	sor->vdd_pll_supply = devm_regulator_get(sor->dev, "vdd-pll");
2977 	if (IS_ERR(sor->vdd_pll_supply)) {
2978 		dev_err(sor->dev, "cannot get VDD PLL supply: %ld\n",
2979 			PTR_ERR(sor->vdd_pll_supply));
2980 		return PTR_ERR(sor->vdd_pll_supply);
2981 	}
2982 
2983 	err = regulator_enable(sor->vdd_pll_supply);
2984 	if (err < 0) {
2985 		dev_err(sor->dev, "failed to enable VDD PLL supply: %d\n",
2986 			err);
2987 		return err;
2988 	}
2989 
2990 	sor->hdmi_supply = devm_regulator_get(sor->dev, "hdmi");
2991 	if (IS_ERR(sor->hdmi_supply)) {
2992 		dev_err(sor->dev, "cannot get HDMI supply: %ld\n",
2993 			PTR_ERR(sor->hdmi_supply));
2994 		return PTR_ERR(sor->hdmi_supply);
2995 	}
2996 
2997 	err = regulator_enable(sor->hdmi_supply);
2998 	if (err < 0) {
2999 		dev_err(sor->dev, "failed to enable HDMI supply: %d\n", err);
3000 		return err;
3001 	}
3002 
3003 	INIT_DELAYED_WORK(&sor->scdc, tegra_sor_hdmi_scdc_work);
3004 
3005 	return 0;
3006 }
3007 
3008 static int tegra_sor_hdmi_remove(struct tegra_sor *sor)
3009 {
3010 	regulator_disable(sor->hdmi_supply);
3011 	regulator_disable(sor->vdd_pll_supply);
3012 	regulator_disable(sor->avdd_io_supply);
3013 
3014 	return 0;
3015 }
3016 
3017 static const struct tegra_sor_ops tegra_sor_hdmi_ops = {
3018 	.name = "HDMI",
3019 	.probe = tegra_sor_hdmi_probe,
3020 	.remove = tegra_sor_hdmi_remove,
3021 	.audio_enable = tegra_sor_hdmi_audio_enable,
3022 	.audio_disable = tegra_sor_hdmi_audio_disable,
3023 };
3024 
3025 static int tegra_sor_dp_probe(struct tegra_sor *sor)
3026 {
3027 	int err;
3028 
3029 	sor->avdd_io_supply = devm_regulator_get(sor->dev, "avdd-io-hdmi-dp");
3030 	if (IS_ERR(sor->avdd_io_supply))
3031 		return PTR_ERR(sor->avdd_io_supply);
3032 
3033 	err = regulator_enable(sor->avdd_io_supply);
3034 	if (err < 0)
3035 		return err;
3036 
3037 	sor->vdd_pll_supply = devm_regulator_get(sor->dev, "vdd-hdmi-dp-pll");
3038 	if (IS_ERR(sor->vdd_pll_supply))
3039 		return PTR_ERR(sor->vdd_pll_supply);
3040 
3041 	err = regulator_enable(sor->vdd_pll_supply);
3042 	if (err < 0)
3043 		return err;
3044 
3045 	return 0;
3046 }
3047 
3048 static int tegra_sor_dp_remove(struct tegra_sor *sor)
3049 {
3050 	regulator_disable(sor->vdd_pll_supply);
3051 	regulator_disable(sor->avdd_io_supply);
3052 
3053 	return 0;
3054 }
3055 
3056 static const struct tegra_sor_ops tegra_sor_dp_ops = {
3057 	.name = "DP",
3058 	.probe = tegra_sor_dp_probe,
3059 	.remove = tegra_sor_dp_remove,
3060 };
3061 
3062 static int tegra_sor_init(struct host1x_client *client)
3063 {
3064 	struct drm_device *drm = dev_get_drvdata(client->host);
3065 	const struct drm_encoder_helper_funcs *helpers = NULL;
3066 	struct tegra_sor *sor = host1x_client_to_sor(client);
3067 	int connector = DRM_MODE_CONNECTOR_Unknown;
3068 	int encoder = DRM_MODE_ENCODER_NONE;
3069 	int err;
3070 
3071 	if (!sor->aux) {
3072 		if (sor->ops == &tegra_sor_hdmi_ops) {
3073 			connector = DRM_MODE_CONNECTOR_HDMIA;
3074 			encoder = DRM_MODE_ENCODER_TMDS;
3075 			helpers = &tegra_sor_hdmi_helpers;
3076 		} else if (sor->soc->supports_lvds) {
3077 			connector = DRM_MODE_CONNECTOR_LVDS;
3078 			encoder = DRM_MODE_ENCODER_LVDS;
3079 		}
3080 	} else {
3081 		if (sor->output.panel) {
3082 			connector = DRM_MODE_CONNECTOR_eDP;
3083 			encoder = DRM_MODE_ENCODER_TMDS;
3084 			helpers = &tegra_sor_dp_helpers;
3085 		} else {
3086 			connector = DRM_MODE_CONNECTOR_DisplayPort;
3087 			encoder = DRM_MODE_ENCODER_TMDS;
3088 			helpers = &tegra_sor_dp_helpers;
3089 		}
3090 
3091 		sor->link.ops = &tegra_sor_dp_link_ops;
3092 		sor->link.aux = sor->aux;
3093 	}
3094 
3095 	sor->output.dev = sor->dev;
3096 
3097 	drm_connector_init_with_ddc(drm, &sor->output.connector,
3098 				    &tegra_sor_connector_funcs,
3099 				    connector,
3100 				    sor->output.ddc);
3101 	drm_connector_helper_add(&sor->output.connector,
3102 				 &tegra_sor_connector_helper_funcs);
3103 	sor->output.connector.dpms = DRM_MODE_DPMS_OFF;
3104 
3105 	drm_encoder_init(drm, &sor->output.encoder, &tegra_sor_encoder_funcs,
3106 			 encoder, NULL);
3107 	drm_encoder_helper_add(&sor->output.encoder, helpers);
3108 
3109 	drm_connector_attach_encoder(&sor->output.connector,
3110 					  &sor->output.encoder);
3111 	drm_connector_register(&sor->output.connector);
3112 
3113 	err = tegra_output_init(drm, &sor->output);
3114 	if (err < 0) {
3115 		dev_err(client->dev, "failed to initialize output: %d\n", err);
3116 		return err;
3117 	}
3118 
3119 	tegra_output_find_possible_crtcs(&sor->output, drm);
3120 
3121 	if (sor->aux) {
3122 		err = drm_dp_aux_attach(sor->aux, &sor->output);
3123 		if (err < 0) {
3124 			dev_err(sor->dev, "failed to attach DP: %d\n", err);
3125 			return err;
3126 		}
3127 	}
3128 
3129 	/*
3130 	 * XXX: Remove this reset once proper hand-over from firmware to
3131 	 * kernel is possible.
3132 	 */
3133 	if (sor->rst) {
3134 		err = reset_control_acquire(sor->rst);
3135 		if (err < 0) {
3136 			dev_err(sor->dev, "failed to acquire SOR reset: %d\n",
3137 				err);
3138 			return err;
3139 		}
3140 
3141 		err = reset_control_assert(sor->rst);
3142 		if (err < 0) {
3143 			dev_err(sor->dev, "failed to assert SOR reset: %d\n",
3144 				err);
3145 			return err;
3146 		}
3147 	}
3148 
3149 	err = clk_prepare_enable(sor->clk);
3150 	if (err < 0) {
3151 		dev_err(sor->dev, "failed to enable clock: %d\n", err);
3152 		return err;
3153 	}
3154 
3155 	usleep_range(1000, 3000);
3156 
3157 	if (sor->rst) {
3158 		err = reset_control_deassert(sor->rst);
3159 		if (err < 0) {
3160 			dev_err(sor->dev, "failed to deassert SOR reset: %d\n",
3161 				err);
3162 			return err;
3163 		}
3164 
3165 		reset_control_release(sor->rst);
3166 	}
3167 
3168 	err = clk_prepare_enable(sor->clk_safe);
3169 	if (err < 0)
3170 		return err;
3171 
3172 	err = clk_prepare_enable(sor->clk_dp);
3173 	if (err < 0)
3174 		return err;
3175 
3176 	return 0;
3177 }
3178 
3179 static int tegra_sor_exit(struct host1x_client *client)
3180 {
3181 	struct tegra_sor *sor = host1x_client_to_sor(client);
3182 	int err;
3183 
3184 	tegra_output_exit(&sor->output);
3185 
3186 	if (sor->aux) {
3187 		err = drm_dp_aux_detach(sor->aux);
3188 		if (err < 0) {
3189 			dev_err(sor->dev, "failed to detach DP: %d\n", err);
3190 			return err;
3191 		}
3192 	}
3193 
3194 	clk_disable_unprepare(sor->clk_safe);
3195 	clk_disable_unprepare(sor->clk_dp);
3196 	clk_disable_unprepare(sor->clk);
3197 
3198 	return 0;
3199 }
3200 
3201 static int tegra_sor_runtime_suspend(struct host1x_client *client)
3202 {
3203 	struct tegra_sor *sor = host1x_client_to_sor(client);
3204 	struct device *dev = client->dev;
3205 	int err;
3206 
3207 	if (sor->rst) {
3208 		err = reset_control_assert(sor->rst);
3209 		if (err < 0) {
3210 			dev_err(dev, "failed to assert reset: %d\n", err);
3211 			return err;
3212 		}
3213 
3214 		reset_control_release(sor->rst);
3215 	}
3216 
3217 	usleep_range(1000, 2000);
3218 
3219 	clk_disable_unprepare(sor->clk);
3220 	pm_runtime_put_sync(dev);
3221 
3222 	return 0;
3223 }
3224 
3225 static int tegra_sor_runtime_resume(struct host1x_client *client)
3226 {
3227 	struct tegra_sor *sor = host1x_client_to_sor(client);
3228 	struct device *dev = client->dev;
3229 	int err;
3230 
3231 	err = pm_runtime_get_sync(dev);
3232 	if (err < 0) {
3233 		dev_err(dev, "failed to get runtime PM: %d\n", err);
3234 		return err;
3235 	}
3236 
3237 	err = clk_prepare_enable(sor->clk);
3238 	if (err < 0) {
3239 		dev_err(dev, "failed to enable clock: %d\n", err);
3240 		goto put_rpm;
3241 	}
3242 
3243 	usleep_range(1000, 2000);
3244 
3245 	if (sor->rst) {
3246 		err = reset_control_acquire(sor->rst);
3247 		if (err < 0) {
3248 			dev_err(dev, "failed to acquire reset: %d\n", err);
3249 			goto disable_clk;
3250 		}
3251 
3252 		err = reset_control_deassert(sor->rst);
3253 		if (err < 0) {
3254 			dev_err(dev, "failed to deassert reset: %d\n", err);
3255 			goto release_reset;
3256 		}
3257 	}
3258 
3259 	return 0;
3260 
3261 release_reset:
3262 	reset_control_release(sor->rst);
3263 disable_clk:
3264 	clk_disable_unprepare(sor->clk);
3265 put_rpm:
3266 	pm_runtime_put_sync(dev);
3267 	return err;
3268 }
3269 
3270 static const struct host1x_client_ops sor_client_ops = {
3271 	.init = tegra_sor_init,
3272 	.exit = tegra_sor_exit,
3273 	.suspend = tegra_sor_runtime_suspend,
3274 	.resume = tegra_sor_runtime_resume,
3275 };
3276 
3277 static const u8 tegra124_sor_xbar_cfg[5] = {
3278 	0, 1, 2, 3, 4
3279 };
3280 
3281 static const struct tegra_sor_regs tegra124_sor_regs = {
3282 	.head_state0 = 0x05,
3283 	.head_state1 = 0x07,
3284 	.head_state2 = 0x09,
3285 	.head_state3 = 0x0b,
3286 	.head_state4 = 0x0d,
3287 	.head_state5 = 0x0f,
3288 	.pll0 = 0x17,
3289 	.pll1 = 0x18,
3290 	.pll2 = 0x19,
3291 	.pll3 = 0x1a,
3292 	.dp_padctl0 = 0x5c,
3293 	.dp_padctl2 = 0x73,
3294 };
3295 
3296 /* Tegra124 and Tegra132 have lanes 0 and 2 swapped. */
3297 static const u8 tegra124_sor_lane_map[4] = {
3298 	2, 1, 0, 3,
3299 };
3300 
3301 static const u8 tegra124_sor_voltage_swing[4][4][4] = {
3302 	{
3303 		{ 0x13, 0x19, 0x1e, 0x28 },
3304 		{ 0x1e, 0x25, 0x2d, },
3305 		{ 0x28, 0x32, },
3306 		{ 0x3c, },
3307 	}, {
3308 		{ 0x12, 0x17, 0x1b, 0x25 },
3309 		{ 0x1c, 0x23, 0x2a, },
3310 		{ 0x25, 0x2f, },
3311 		{ 0x39, }
3312 	}, {
3313 		{ 0x12, 0x16, 0x1a, 0x22 },
3314 		{ 0x1b, 0x20, 0x27, },
3315 		{ 0x24, 0x2d, },
3316 		{ 0x36, },
3317 	}, {
3318 		{ 0x11, 0x14, 0x17, 0x1f },
3319 		{ 0x19, 0x1e, 0x24, },
3320 		{ 0x22, 0x2a, },
3321 		{ 0x32, },
3322 	},
3323 };
3324 
3325 static const u8 tegra124_sor_pre_emphasis[4][4][4] = {
3326 	{
3327 		{ 0x00, 0x09, 0x13, 0x25 },
3328 		{ 0x00, 0x0f, 0x1e, },
3329 		{ 0x00, 0x14, },
3330 		{ 0x00, },
3331 	}, {
3332 		{ 0x00, 0x0a, 0x14, 0x28 },
3333 		{ 0x00, 0x0f, 0x1e, },
3334 		{ 0x00, 0x14, },
3335 		{ 0x00 },
3336 	}, {
3337 		{ 0x00, 0x0a, 0x14, 0x28 },
3338 		{ 0x00, 0x0f, 0x1e, },
3339 		{ 0x00, 0x14, },
3340 		{ 0x00, },
3341 	}, {
3342 		{ 0x00, 0x0a, 0x14, 0x28 },
3343 		{ 0x00, 0x0f, 0x1e, },
3344 		{ 0x00, 0x14, },
3345 		{ 0x00, },
3346 	},
3347 };
3348 
3349 static const u8 tegra124_sor_post_cursor[4][4][4] = {
3350 	{
3351 		{ 0x00, 0x00, 0x00, 0x00 },
3352 		{ 0x00, 0x00, 0x00, },
3353 		{ 0x00, 0x00, },
3354 		{ 0x00, },
3355 	}, {
3356 		{ 0x02, 0x02, 0x04, 0x05 },
3357 		{ 0x02, 0x04, 0x05, },
3358 		{ 0x04, 0x05, },
3359 		{ 0x05, },
3360 	}, {
3361 		{ 0x04, 0x05, 0x08, 0x0b },
3362 		{ 0x05, 0x09, 0x0b, },
3363 		{ 0x08, 0x0a, },
3364 		{ 0x0b, },
3365 	}, {
3366 		{ 0x05, 0x09, 0x0b, 0x12 },
3367 		{ 0x09, 0x0d, 0x12, },
3368 		{ 0x0b, 0x0f, },
3369 		{ 0x12, },
3370 	},
3371 };
3372 
3373 static const u8 tegra124_sor_tx_pu[4][4][4] = {
3374 	{
3375 		{ 0x20, 0x30, 0x40, 0x60 },
3376 		{ 0x30, 0x40, 0x60, },
3377 		{ 0x40, 0x60, },
3378 		{ 0x60, },
3379 	}, {
3380 		{ 0x20, 0x20, 0x30, 0x50 },
3381 		{ 0x30, 0x40, 0x50, },
3382 		{ 0x40, 0x50, },
3383 		{ 0x60, },
3384 	}, {
3385 		{ 0x20, 0x20, 0x30, 0x40, },
3386 		{ 0x30, 0x30, 0x40, },
3387 		{ 0x40, 0x50, },
3388 		{ 0x60, },
3389 	}, {
3390 		{ 0x20, 0x20, 0x20, 0x40, },
3391 		{ 0x30, 0x30, 0x40, },
3392 		{ 0x40, 0x40, },
3393 		{ 0x60, },
3394 	},
3395 };
3396 
3397 static const struct tegra_sor_soc tegra124_sor = {
3398 	.supports_lvds = true,
3399 	.supports_hdmi = false,
3400 	.supports_dp = true,
3401 	.supports_audio = false,
3402 	.supports_hdcp = false,
3403 	.regs = &tegra124_sor_regs,
3404 	.has_nvdisplay = false,
3405 	.xbar_cfg = tegra124_sor_xbar_cfg,
3406 	.lane_map = tegra124_sor_lane_map,
3407 	.voltage_swing = tegra124_sor_voltage_swing,
3408 	.pre_emphasis = tegra124_sor_pre_emphasis,
3409 	.post_cursor = tegra124_sor_post_cursor,
3410 	.tx_pu = tegra124_sor_tx_pu,
3411 };
3412 
3413 static const u8 tegra132_sor_pre_emphasis[4][4][4] = {
3414 	{
3415 		{ 0x00, 0x08, 0x12, 0x24 },
3416 		{ 0x01, 0x0e, 0x1d, },
3417 		{ 0x01, 0x13, },
3418 		{ 0x00, },
3419 	}, {
3420 		{ 0x00, 0x08, 0x12, 0x24 },
3421 		{ 0x00, 0x0e, 0x1d, },
3422 		{ 0x00, 0x13, },
3423 		{ 0x00 },
3424 	}, {
3425 		{ 0x00, 0x08, 0x12, 0x24 },
3426 		{ 0x00, 0x0e, 0x1d, },
3427 		{ 0x00, 0x13, },
3428 		{ 0x00, },
3429 	}, {
3430 		{ 0x00, 0x08, 0x12, 0x24 },
3431 		{ 0x00, 0x0e, 0x1d, },
3432 		{ 0x00, 0x13, },
3433 		{ 0x00, },
3434 	},
3435 };
3436 
3437 static const struct tegra_sor_soc tegra132_sor = {
3438 	.supports_lvds = true,
3439 	.supports_hdmi = false,
3440 	.supports_dp = true,
3441 	.supports_audio = false,
3442 	.supports_hdcp = false,
3443 	.regs = &tegra124_sor_regs,
3444 	.has_nvdisplay = false,
3445 	.xbar_cfg = tegra124_sor_xbar_cfg,
3446 	.lane_map = tegra124_sor_lane_map,
3447 	.voltage_swing = tegra124_sor_voltage_swing,
3448 	.pre_emphasis = tegra132_sor_pre_emphasis,
3449 	.post_cursor = tegra124_sor_post_cursor,
3450 	.tx_pu = tegra124_sor_tx_pu,
3451 };
3452 
3453 static const struct tegra_sor_regs tegra210_sor_regs = {
3454 	.head_state0 = 0x05,
3455 	.head_state1 = 0x07,
3456 	.head_state2 = 0x09,
3457 	.head_state3 = 0x0b,
3458 	.head_state4 = 0x0d,
3459 	.head_state5 = 0x0f,
3460 	.pll0 = 0x17,
3461 	.pll1 = 0x18,
3462 	.pll2 = 0x19,
3463 	.pll3 = 0x1a,
3464 	.dp_padctl0 = 0x5c,
3465 	.dp_padctl2 = 0x73,
3466 };
3467 
3468 static const u8 tegra210_sor_xbar_cfg[5] = {
3469 	2, 1, 0, 3, 4
3470 };
3471 
3472 static const u8 tegra210_sor_lane_map[4] = {
3473 	0, 1, 2, 3,
3474 };
3475 
3476 static const struct tegra_sor_soc tegra210_sor = {
3477 	.supports_lvds = false,
3478 	.supports_hdmi = false,
3479 	.supports_dp = true,
3480 	.supports_audio = false,
3481 	.supports_hdcp = false,
3482 
3483 	.regs = &tegra210_sor_regs,
3484 	.has_nvdisplay = false,
3485 
3486 	.xbar_cfg = tegra210_sor_xbar_cfg,
3487 	.lane_map = tegra210_sor_lane_map,
3488 	.voltage_swing = tegra124_sor_voltage_swing,
3489 	.pre_emphasis = tegra124_sor_pre_emphasis,
3490 	.post_cursor = tegra124_sor_post_cursor,
3491 	.tx_pu = tegra124_sor_tx_pu,
3492 };
3493 
3494 static const struct tegra_sor_soc tegra210_sor1 = {
3495 	.supports_lvds = false,
3496 	.supports_hdmi = true,
3497 	.supports_dp = true,
3498 	.supports_audio = true,
3499 	.supports_hdcp = true,
3500 
3501 	.regs = &tegra210_sor_regs,
3502 	.has_nvdisplay = false,
3503 
3504 	.num_settings = ARRAY_SIZE(tegra210_sor_hdmi_defaults),
3505 	.settings = tegra210_sor_hdmi_defaults,
3506 	.xbar_cfg = tegra210_sor_xbar_cfg,
3507 	.lane_map = tegra210_sor_lane_map,
3508 	.voltage_swing = tegra124_sor_voltage_swing,
3509 	.pre_emphasis = tegra124_sor_pre_emphasis,
3510 	.post_cursor = tegra124_sor_post_cursor,
3511 	.tx_pu = tegra124_sor_tx_pu,
3512 };
3513 
3514 static const struct tegra_sor_regs tegra186_sor_regs = {
3515 	.head_state0 = 0x151,
3516 	.head_state1 = 0x154,
3517 	.head_state2 = 0x157,
3518 	.head_state3 = 0x15a,
3519 	.head_state4 = 0x15d,
3520 	.head_state5 = 0x160,
3521 	.pll0 = 0x163,
3522 	.pll1 = 0x164,
3523 	.pll2 = 0x165,
3524 	.pll3 = 0x166,
3525 	.dp_padctl0 = 0x168,
3526 	.dp_padctl2 = 0x16a,
3527 };
3528 
3529 static const u8 tegra186_sor_voltage_swing[4][4][4] = {
3530 	{
3531 		{ 0x13, 0x19, 0x1e, 0x28 },
3532 		{ 0x1e, 0x25, 0x2d, },
3533 		{ 0x28, 0x32, },
3534 		{ 0x39, },
3535 	}, {
3536 		{ 0x12, 0x16, 0x1b, 0x25 },
3537 		{ 0x1c, 0x23, 0x2a, },
3538 		{ 0x25, 0x2f, },
3539 		{ 0x37, }
3540 	}, {
3541 		{ 0x12, 0x16, 0x1a, 0x22 },
3542 		{ 0x1b, 0x20, 0x27, },
3543 		{ 0x24, 0x2d, },
3544 		{ 0x35, },
3545 	}, {
3546 		{ 0x11, 0x14, 0x17, 0x1f },
3547 		{ 0x19, 0x1e, 0x24, },
3548 		{ 0x22, 0x2a, },
3549 		{ 0x32, },
3550 	},
3551 };
3552 
3553 static const u8 tegra186_sor_pre_emphasis[4][4][4] = {
3554 	{
3555 		{ 0x00, 0x08, 0x12, 0x24 },
3556 		{ 0x01, 0x0e, 0x1d, },
3557 		{ 0x01, 0x13, },
3558 		{ 0x00, },
3559 	}, {
3560 		{ 0x00, 0x08, 0x12, 0x24 },
3561 		{ 0x00, 0x0e, 0x1d, },
3562 		{ 0x00, 0x13, },
3563 		{ 0x00 },
3564 	}, {
3565 		{ 0x00, 0x08, 0x14, 0x24 },
3566 		{ 0x00, 0x0e, 0x1d, },
3567 		{ 0x00, 0x13, },
3568 		{ 0x00, },
3569 	}, {
3570 		{ 0x00, 0x08, 0x12, 0x24 },
3571 		{ 0x00, 0x0e, 0x1d, },
3572 		{ 0x00, 0x13, },
3573 		{ 0x00, },
3574 	},
3575 };
3576 
3577 static const struct tegra_sor_soc tegra186_sor = {
3578 	.supports_lvds = false,
3579 	.supports_hdmi = true,
3580 	.supports_dp = true,
3581 	.supports_audio = true,
3582 	.supports_hdcp = true,
3583 
3584 	.regs = &tegra186_sor_regs,
3585 	.has_nvdisplay = true,
3586 
3587 	.num_settings = ARRAY_SIZE(tegra186_sor_hdmi_defaults),
3588 	.settings = tegra186_sor_hdmi_defaults,
3589 	.xbar_cfg = tegra124_sor_xbar_cfg,
3590 	.lane_map = tegra124_sor_lane_map,
3591 	.voltage_swing = tegra186_sor_voltage_swing,
3592 	.pre_emphasis = tegra186_sor_pre_emphasis,
3593 	.post_cursor = tegra124_sor_post_cursor,
3594 	.tx_pu = tegra124_sor_tx_pu,
3595 };
3596 
3597 static const struct tegra_sor_regs tegra194_sor_regs = {
3598 	.head_state0 = 0x151,
3599 	.head_state1 = 0x155,
3600 	.head_state2 = 0x159,
3601 	.head_state3 = 0x15d,
3602 	.head_state4 = 0x161,
3603 	.head_state5 = 0x165,
3604 	.pll0 = 0x169,
3605 	.pll1 = 0x16a,
3606 	.pll2 = 0x16b,
3607 	.pll3 = 0x16c,
3608 	.dp_padctl0 = 0x16e,
3609 	.dp_padctl2 = 0x16f,
3610 };
3611 
3612 static const struct tegra_sor_soc tegra194_sor = {
3613 	.supports_lvds = false,
3614 	.supports_hdmi = true,
3615 	.supports_dp = true,
3616 	.supports_audio = true,
3617 	.supports_hdcp = true,
3618 
3619 	.regs = &tegra194_sor_regs,
3620 	.has_nvdisplay = true,
3621 
3622 	.num_settings = ARRAY_SIZE(tegra194_sor_hdmi_defaults),
3623 	.settings = tegra194_sor_hdmi_defaults,
3624 
3625 	.xbar_cfg = tegra210_sor_xbar_cfg,
3626 	.lane_map = tegra124_sor_lane_map,
3627 	.voltage_swing = tegra186_sor_voltage_swing,
3628 	.pre_emphasis = tegra186_sor_pre_emphasis,
3629 	.post_cursor = tegra124_sor_post_cursor,
3630 	.tx_pu = tegra124_sor_tx_pu,
3631 };
3632 
3633 static const struct of_device_id tegra_sor_of_match[] = {
3634 	{ .compatible = "nvidia,tegra194-sor", .data = &tegra194_sor },
3635 	{ .compatible = "nvidia,tegra186-sor", .data = &tegra186_sor },
3636 	{ .compatible = "nvidia,tegra210-sor1", .data = &tegra210_sor1 },
3637 	{ .compatible = "nvidia,tegra210-sor", .data = &tegra210_sor },
3638 	{ .compatible = "nvidia,tegra132-sor", .data = &tegra132_sor },
3639 	{ .compatible = "nvidia,tegra124-sor", .data = &tegra124_sor },
3640 	{ },
3641 };
3642 MODULE_DEVICE_TABLE(of, tegra_sor_of_match);
3643 
3644 static int tegra_sor_parse_dt(struct tegra_sor *sor)
3645 {
3646 	struct device_node *np = sor->dev->of_node;
3647 	u32 xbar_cfg[5];
3648 	unsigned int i;
3649 	u32 value;
3650 	int err;
3651 
3652 	if (sor->soc->has_nvdisplay) {
3653 		err = of_property_read_u32(np, "nvidia,interface", &value);
3654 		if (err < 0)
3655 			return err;
3656 
3657 		sor->index = value;
3658 
3659 		/*
3660 		 * override the default that we already set for Tegra210 and
3661 		 * earlier
3662 		 */
3663 		sor->pad = TEGRA_IO_PAD_HDMI_DP0 + sor->index;
3664 	} else {
3665 		if (!sor->soc->supports_audio)
3666 			sor->index = 0;
3667 		else
3668 			sor->index = 1;
3669 	}
3670 
3671 	err = of_property_read_u32_array(np, "nvidia,xbar-cfg", xbar_cfg, 5);
3672 	if (err < 0) {
3673 		/* fall back to default per-SoC XBAR configuration */
3674 		for (i = 0; i < 5; i++)
3675 			sor->xbar_cfg[i] = sor->soc->xbar_cfg[i];
3676 	} else {
3677 		/* copy cells to SOR XBAR configuration */
3678 		for (i = 0; i < 5; i++)
3679 			sor->xbar_cfg[i] = xbar_cfg[i];
3680 	}
3681 
3682 	return 0;
3683 }
3684 
3685 static irqreturn_t tegra_sor_irq(int irq, void *data)
3686 {
3687 	struct tegra_sor *sor = data;
3688 	u32 value;
3689 
3690 	value = tegra_sor_readl(sor, SOR_INT_STATUS);
3691 	tegra_sor_writel(sor, value, SOR_INT_STATUS);
3692 
3693 	if (value & SOR_INT_CODEC_SCRATCH0) {
3694 		value = tegra_sor_readl(sor, SOR_AUDIO_HDA_CODEC_SCRATCH0);
3695 
3696 		if (value & SOR_AUDIO_HDA_CODEC_SCRATCH0_VALID) {
3697 			unsigned int format;
3698 
3699 			format = value & SOR_AUDIO_HDA_CODEC_SCRATCH0_FMT_MASK;
3700 
3701 			tegra_hda_parse_format(format, &sor->format);
3702 
3703 			if (sor->ops->audio_enable)
3704 				sor->ops->audio_enable(sor);
3705 		} else {
3706 			if (sor->ops->audio_disable)
3707 				sor->ops->audio_disable(sor);
3708 		}
3709 	}
3710 
3711 	return IRQ_HANDLED;
3712 }
3713 
3714 static int tegra_sor_probe(struct platform_device *pdev)
3715 {
3716 	struct device_node *np;
3717 	struct tegra_sor *sor;
3718 	struct resource *regs;
3719 	int err;
3720 
3721 	sor = devm_kzalloc(&pdev->dev, sizeof(*sor), GFP_KERNEL);
3722 	if (!sor)
3723 		return -ENOMEM;
3724 
3725 	sor->soc = of_device_get_match_data(&pdev->dev);
3726 	sor->output.dev = sor->dev = &pdev->dev;
3727 
3728 	sor->settings = devm_kmemdup(&pdev->dev, sor->soc->settings,
3729 				     sor->soc->num_settings *
3730 					sizeof(*sor->settings),
3731 				     GFP_KERNEL);
3732 	if (!sor->settings)
3733 		return -ENOMEM;
3734 
3735 	sor->num_settings = sor->soc->num_settings;
3736 
3737 	np = of_parse_phandle(pdev->dev.of_node, "nvidia,dpaux", 0);
3738 	if (np) {
3739 		sor->aux = drm_dp_aux_find_by_of_node(np);
3740 		of_node_put(np);
3741 
3742 		if (!sor->aux)
3743 			return -EPROBE_DEFER;
3744 
3745 		sor->output.ddc = &sor->aux->ddc;
3746 	}
3747 
3748 	if (!sor->aux) {
3749 		if (sor->soc->supports_hdmi) {
3750 			sor->ops = &tegra_sor_hdmi_ops;
3751 			sor->pad = TEGRA_IO_PAD_HDMI;
3752 		} else if (sor->soc->supports_lvds) {
3753 			dev_err(&pdev->dev, "LVDS not supported yet\n");
3754 			return -ENODEV;
3755 		} else {
3756 			dev_err(&pdev->dev, "unknown (non-DP) support\n");
3757 			return -ENODEV;
3758 		}
3759 	} else {
3760 		np = of_parse_phandle(pdev->dev.of_node, "nvidia,panel", 0);
3761 		/*
3762 		 * No need to keep this around since we only use it as a check
3763 		 * to see if a panel is connected (eDP) or not (DP).
3764 		 */
3765 		of_node_put(np);
3766 
3767 		sor->ops = &tegra_sor_dp_ops;
3768 		sor->pad = TEGRA_IO_PAD_LVDS;
3769 	}
3770 
3771 	err = tegra_sor_parse_dt(sor);
3772 	if (err < 0)
3773 		return err;
3774 
3775 	err = tegra_output_probe(&sor->output);
3776 	if (err < 0) {
3777 		dev_err(&pdev->dev, "failed to probe output: %d\n", err);
3778 		return err;
3779 	}
3780 
3781 	if (sor->ops && sor->ops->probe) {
3782 		err = sor->ops->probe(sor);
3783 		if (err < 0) {
3784 			dev_err(&pdev->dev, "failed to probe %s: %d\n",
3785 				sor->ops->name, err);
3786 			goto output;
3787 		}
3788 	}
3789 
3790 	regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3791 	sor->regs = devm_ioremap_resource(&pdev->dev, regs);
3792 	if (IS_ERR(sor->regs)) {
3793 		err = PTR_ERR(sor->regs);
3794 		goto remove;
3795 	}
3796 
3797 	err = platform_get_irq(pdev, 0);
3798 	if (err < 0) {
3799 		dev_err(&pdev->dev, "failed to get IRQ: %d\n", err);
3800 		goto remove;
3801 	}
3802 
3803 	sor->irq = err;
3804 
3805 	err = devm_request_irq(sor->dev, sor->irq, tegra_sor_irq, 0,
3806 			       dev_name(sor->dev), sor);
3807 	if (err < 0) {
3808 		dev_err(&pdev->dev, "failed to request IRQ: %d\n", err);
3809 		goto remove;
3810 	}
3811 
3812 	sor->rst = devm_reset_control_get_exclusive_released(&pdev->dev, "sor");
3813 	if (IS_ERR(sor->rst)) {
3814 		err = PTR_ERR(sor->rst);
3815 
3816 		if (err != -EBUSY || WARN_ON(!pdev->dev.pm_domain)) {
3817 			dev_err(&pdev->dev, "failed to get reset control: %d\n",
3818 				err);
3819 			goto remove;
3820 		}
3821 
3822 		/*
3823 		 * At this point, the reset control is most likely being used
3824 		 * by the generic power domain implementation. With any luck
3825 		 * the power domain will have taken care of resetting the SOR
3826 		 * and we don't have to do anything.
3827 		 */
3828 		sor->rst = NULL;
3829 	}
3830 
3831 	sor->clk = devm_clk_get(&pdev->dev, NULL);
3832 	if (IS_ERR(sor->clk)) {
3833 		err = PTR_ERR(sor->clk);
3834 		dev_err(&pdev->dev, "failed to get module clock: %d\n", err);
3835 		goto remove;
3836 	}
3837 
3838 	if (sor->soc->supports_hdmi || sor->soc->supports_dp) {
3839 		struct device_node *np = pdev->dev.of_node;
3840 		const char *name;
3841 
3842 		/*
3843 		 * For backwards compatibility with Tegra210 device trees,
3844 		 * fall back to the old clock name "source" if the new "out"
3845 		 * clock is not available.
3846 		 */
3847 		if (of_property_match_string(np, "clock-names", "out") < 0)
3848 			name = "source";
3849 		else
3850 			name = "out";
3851 
3852 		sor->clk_out = devm_clk_get(&pdev->dev, name);
3853 		if (IS_ERR(sor->clk_out)) {
3854 			err = PTR_ERR(sor->clk_out);
3855 			dev_err(sor->dev, "failed to get %s clock: %d\n",
3856 				name, err);
3857 			goto remove;
3858 		}
3859 	} else {
3860 		/* fall back to the module clock on SOR0 (eDP/LVDS only) */
3861 		sor->clk_out = sor->clk;
3862 	}
3863 
3864 	sor->clk_parent = devm_clk_get(&pdev->dev, "parent");
3865 	if (IS_ERR(sor->clk_parent)) {
3866 		err = PTR_ERR(sor->clk_parent);
3867 		dev_err(&pdev->dev, "failed to get parent clock: %d\n", err);
3868 		goto remove;
3869 	}
3870 
3871 	sor->clk_safe = devm_clk_get(&pdev->dev, "safe");
3872 	if (IS_ERR(sor->clk_safe)) {
3873 		err = PTR_ERR(sor->clk_safe);
3874 		dev_err(&pdev->dev, "failed to get safe clock: %d\n", err);
3875 		goto remove;
3876 	}
3877 
3878 	sor->clk_dp = devm_clk_get(&pdev->dev, "dp");
3879 	if (IS_ERR(sor->clk_dp)) {
3880 		err = PTR_ERR(sor->clk_dp);
3881 		dev_err(&pdev->dev, "failed to get DP clock: %d\n", err);
3882 		goto remove;
3883 	}
3884 
3885 	/*
3886 	 * Starting with Tegra186, the BPMP provides an implementation for
3887 	 * the pad output clock, so we have to look it up from device tree.
3888 	 */
3889 	sor->clk_pad = devm_clk_get(&pdev->dev, "pad");
3890 	if (IS_ERR(sor->clk_pad)) {
3891 		if (sor->clk_pad != ERR_PTR(-ENOENT)) {
3892 			err = PTR_ERR(sor->clk_pad);
3893 			goto remove;
3894 		}
3895 
3896 		/*
3897 		 * If the pad output clock is not available, then we assume
3898 		 * we're on Tegra210 or earlier and have to provide our own
3899 		 * implementation.
3900 		 */
3901 		sor->clk_pad = NULL;
3902 	}
3903 
3904 	/*
3905 	 * The bootloader may have set up the SOR such that it's module clock
3906 	 * is sourced by one of the display PLLs. However, that doesn't work
3907 	 * without properly having set up other bits of the SOR.
3908 	 */
3909 	err = clk_set_parent(sor->clk_out, sor->clk_safe);
3910 	if (err < 0) {
3911 		dev_err(&pdev->dev, "failed to use safe clock: %d\n", err);
3912 		goto remove;
3913 	}
3914 
3915 	platform_set_drvdata(pdev, sor);
3916 	pm_runtime_enable(&pdev->dev);
3917 
3918 	INIT_LIST_HEAD(&sor->client.list);
3919 	sor->client.ops = &sor_client_ops;
3920 	sor->client.dev = &pdev->dev;
3921 
3922 	err = host1x_client_register(&sor->client);
3923 	if (err < 0) {
3924 		dev_err(&pdev->dev, "failed to register host1x client: %d\n",
3925 			err);
3926 		goto rpm_disable;
3927 	}
3928 
3929 	/*
3930 	 * On Tegra210 and earlier, provide our own implementation for the
3931 	 * pad output clock.
3932 	 */
3933 	if (!sor->clk_pad) {
3934 		char *name;
3935 
3936 		name = devm_kasprintf(sor->dev, GFP_KERNEL, "sor%u_pad_clkout",
3937 				      sor->index);
3938 		if (!name) {
3939 			err = -ENOMEM;
3940 			goto unregister;
3941 		}
3942 
3943 		err = host1x_client_resume(&sor->client);
3944 		if (err < 0) {
3945 			dev_err(sor->dev, "failed to resume: %d\n", err);
3946 			goto unregister;
3947 		}
3948 
3949 		sor->clk_pad = tegra_clk_sor_pad_register(sor, name);
3950 		host1x_client_suspend(&sor->client);
3951 	}
3952 
3953 	if (IS_ERR(sor->clk_pad)) {
3954 		err = PTR_ERR(sor->clk_pad);
3955 		dev_err(sor->dev, "failed to register SOR pad clock: %d\n",
3956 			err);
3957 		goto unregister;
3958 	}
3959 
3960 	return 0;
3961 
3962 unregister:
3963 	host1x_client_unregister(&sor->client);
3964 rpm_disable:
3965 	pm_runtime_disable(&pdev->dev);
3966 remove:
3967 	if (sor->ops && sor->ops->remove)
3968 		sor->ops->remove(sor);
3969 output:
3970 	tegra_output_remove(&sor->output);
3971 	return err;
3972 }
3973 
3974 static int tegra_sor_remove(struct platform_device *pdev)
3975 {
3976 	struct tegra_sor *sor = platform_get_drvdata(pdev);
3977 	int err;
3978 
3979 	err = host1x_client_unregister(&sor->client);
3980 	if (err < 0) {
3981 		dev_err(&pdev->dev, "failed to unregister host1x client: %d\n",
3982 			err);
3983 		return err;
3984 	}
3985 
3986 	pm_runtime_disable(&pdev->dev);
3987 
3988 	if (sor->ops && sor->ops->remove) {
3989 		err = sor->ops->remove(sor);
3990 		if (err < 0)
3991 			dev_err(&pdev->dev, "failed to remove SOR: %d\n", err);
3992 	}
3993 
3994 	tegra_output_remove(&sor->output);
3995 
3996 	return 0;
3997 }
3998 
3999 static int __maybe_unused tegra_sor_suspend(struct device *dev)
4000 {
4001 	struct tegra_sor *sor = dev_get_drvdata(dev);
4002 	int err;
4003 
4004 	err = tegra_output_suspend(&sor->output);
4005 	if (err < 0) {
4006 		dev_err(dev, "failed to suspend output: %d\n", err);
4007 		return err;
4008 	}
4009 
4010 	if (sor->hdmi_supply) {
4011 		err = regulator_disable(sor->hdmi_supply);
4012 		if (err < 0) {
4013 			tegra_output_resume(&sor->output);
4014 			return err;
4015 		}
4016 	}
4017 
4018 	return 0;
4019 }
4020 
4021 static int __maybe_unused tegra_sor_resume(struct device *dev)
4022 {
4023 	struct tegra_sor *sor = dev_get_drvdata(dev);
4024 	int err;
4025 
4026 	if (sor->hdmi_supply) {
4027 		err = regulator_enable(sor->hdmi_supply);
4028 		if (err < 0)
4029 			return err;
4030 	}
4031 
4032 	err = tegra_output_resume(&sor->output);
4033 	if (err < 0) {
4034 		dev_err(dev, "failed to resume output: %d\n", err);
4035 
4036 		if (sor->hdmi_supply)
4037 			regulator_disable(sor->hdmi_supply);
4038 
4039 		return err;
4040 	}
4041 
4042 	return 0;
4043 }
4044 
4045 static const struct dev_pm_ops tegra_sor_pm_ops = {
4046 	SET_SYSTEM_SLEEP_PM_OPS(tegra_sor_suspend, tegra_sor_resume)
4047 };
4048 
4049 struct platform_driver tegra_sor_driver = {
4050 	.driver = {
4051 		.name = "tegra-sor",
4052 		.of_match_table = tegra_sor_of_match,
4053 		.pm = &tegra_sor_pm_ops,
4054 	},
4055 	.probe = tegra_sor_probe,
4056 	.remove = tegra_sor_remove,
4057 };
4058