xref: /openbmc/linux/drivers/gpu/drm/tegra/sor.c (revision 248ed9e227e6cf59acb1aaf3aa30d530a0232c1a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2013 NVIDIA Corporation
4  */
5 
6 #include <linux/clk.h>
7 #include <linux/clk-provider.h>
8 #include <linux/debugfs.h>
9 #include <linux/io.h>
10 #include <linux/module.h>
11 #include <linux/of_device.h>
12 #include <linux/platform_device.h>
13 #include <linux/pm_runtime.h>
14 #include <linux/regulator/consumer.h>
15 #include <linux/reset.h>
16 
17 #include <soc/tegra/pmc.h>
18 
19 #include <drm/display/drm_dp_helper.h>
20 #include <drm/display/drm_scdc_helper.h>
21 #include <drm/drm_atomic_helper.h>
22 #include <drm/drm_debugfs.h>
23 #include <drm/drm_file.h>
24 #include <drm/drm_panel.h>
25 #include <drm/drm_simple_kms_helper.h>
26 
27 #include "dc.h"
28 #include "dp.h"
29 #include "drm.h"
30 #include "hda.h"
31 #include "sor.h"
32 #include "trace.h"
33 
34 #define SOR_REKEY 0x38
35 
36 struct tegra_sor_hdmi_settings {
37 	unsigned long frequency;
38 
39 	u8 vcocap;
40 	u8 filter;
41 	u8 ichpmp;
42 	u8 loadadj;
43 	u8 tmds_termadj;
44 	u8 tx_pu_value;
45 	u8 bg_temp_coef;
46 	u8 bg_vref_level;
47 	u8 avdd10_level;
48 	u8 avdd14_level;
49 	u8 sparepll;
50 
51 	u8 drive_current[4];
52 	u8 preemphasis[4];
53 };
54 
55 #if 1
56 static const struct tegra_sor_hdmi_settings tegra210_sor_hdmi_defaults[] = {
57 	{
58 		.frequency = 54000000,
59 		.vcocap = 0x0,
60 		.filter = 0x0,
61 		.ichpmp = 0x1,
62 		.loadadj = 0x3,
63 		.tmds_termadj = 0x9,
64 		.tx_pu_value = 0x10,
65 		.bg_temp_coef = 0x3,
66 		.bg_vref_level = 0x8,
67 		.avdd10_level = 0x4,
68 		.avdd14_level = 0x4,
69 		.sparepll = 0x0,
70 		.drive_current = { 0x33, 0x3a, 0x3a, 0x3a },
71 		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
72 	}, {
73 		.frequency = 75000000,
74 		.vcocap = 0x3,
75 		.filter = 0x0,
76 		.ichpmp = 0x1,
77 		.loadadj = 0x3,
78 		.tmds_termadj = 0x9,
79 		.tx_pu_value = 0x40,
80 		.bg_temp_coef = 0x3,
81 		.bg_vref_level = 0x8,
82 		.avdd10_level = 0x4,
83 		.avdd14_level = 0x4,
84 		.sparepll = 0x0,
85 		.drive_current = { 0x33, 0x3a, 0x3a, 0x3a },
86 		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
87 	}, {
88 		.frequency = 150000000,
89 		.vcocap = 0x3,
90 		.filter = 0x0,
91 		.ichpmp = 0x1,
92 		.loadadj = 0x3,
93 		.tmds_termadj = 0x9,
94 		.tx_pu_value = 0x66,
95 		.bg_temp_coef = 0x3,
96 		.bg_vref_level = 0x8,
97 		.avdd10_level = 0x4,
98 		.avdd14_level = 0x4,
99 		.sparepll = 0x0,
100 		.drive_current = { 0x33, 0x3a, 0x3a, 0x3a },
101 		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
102 	}, {
103 		.frequency = 300000000,
104 		.vcocap = 0x3,
105 		.filter = 0x0,
106 		.ichpmp = 0x1,
107 		.loadadj = 0x3,
108 		.tmds_termadj = 0x9,
109 		.tx_pu_value = 0x66,
110 		.bg_temp_coef = 0x3,
111 		.bg_vref_level = 0xa,
112 		.avdd10_level = 0x4,
113 		.avdd14_level = 0x4,
114 		.sparepll = 0x0,
115 		.drive_current = { 0x33, 0x3f, 0x3f, 0x3f },
116 		.preemphasis = { 0x00, 0x17, 0x17, 0x17 },
117 	}, {
118 		.frequency = 600000000,
119 		.vcocap = 0x3,
120 		.filter = 0x0,
121 		.ichpmp = 0x1,
122 		.loadadj = 0x3,
123 		.tmds_termadj = 0x9,
124 		.tx_pu_value = 0x66,
125 		.bg_temp_coef = 0x3,
126 		.bg_vref_level = 0x8,
127 		.avdd10_level = 0x4,
128 		.avdd14_level = 0x4,
129 		.sparepll = 0x0,
130 		.drive_current = { 0x33, 0x3f, 0x3f, 0x3f },
131 		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
132 	},
133 };
134 #else
135 static const struct tegra_sor_hdmi_settings tegra210_sor_hdmi_defaults[] = {
136 	{
137 		.frequency = 75000000,
138 		.vcocap = 0x3,
139 		.filter = 0x0,
140 		.ichpmp = 0x1,
141 		.loadadj = 0x3,
142 		.tmds_termadj = 0x9,
143 		.tx_pu_value = 0x40,
144 		.bg_temp_coef = 0x3,
145 		.bg_vref_level = 0x8,
146 		.avdd10_level = 0x4,
147 		.avdd14_level = 0x4,
148 		.sparepll = 0x0,
149 		.drive_current = { 0x29, 0x29, 0x29, 0x29 },
150 		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
151 	}, {
152 		.frequency = 150000000,
153 		.vcocap = 0x3,
154 		.filter = 0x0,
155 		.ichpmp = 0x1,
156 		.loadadj = 0x3,
157 		.tmds_termadj = 0x9,
158 		.tx_pu_value = 0x66,
159 		.bg_temp_coef = 0x3,
160 		.bg_vref_level = 0x8,
161 		.avdd10_level = 0x4,
162 		.avdd14_level = 0x4,
163 		.sparepll = 0x0,
164 		.drive_current = { 0x30, 0x37, 0x37, 0x37 },
165 		.preemphasis = { 0x01, 0x02, 0x02, 0x02 },
166 	}, {
167 		.frequency = 300000000,
168 		.vcocap = 0x3,
169 		.filter = 0x0,
170 		.ichpmp = 0x6,
171 		.loadadj = 0x3,
172 		.tmds_termadj = 0x9,
173 		.tx_pu_value = 0x66,
174 		.bg_temp_coef = 0x3,
175 		.bg_vref_level = 0xf,
176 		.avdd10_level = 0x4,
177 		.avdd14_level = 0x4,
178 		.sparepll = 0x0,
179 		.drive_current = { 0x30, 0x37, 0x37, 0x37 },
180 		.preemphasis = { 0x10, 0x3e, 0x3e, 0x3e },
181 	}, {
182 		.frequency = 600000000,
183 		.vcocap = 0x3,
184 		.filter = 0x0,
185 		.ichpmp = 0xa,
186 		.loadadj = 0x3,
187 		.tmds_termadj = 0xb,
188 		.tx_pu_value = 0x66,
189 		.bg_temp_coef = 0x3,
190 		.bg_vref_level = 0xe,
191 		.avdd10_level = 0x4,
192 		.avdd14_level = 0x4,
193 		.sparepll = 0x0,
194 		.drive_current = { 0x35, 0x3e, 0x3e, 0x3e },
195 		.preemphasis = { 0x02, 0x3f, 0x3f, 0x3f },
196 	},
197 };
198 #endif
199 
200 static const struct tegra_sor_hdmi_settings tegra186_sor_hdmi_defaults[] = {
201 	{
202 		.frequency = 54000000,
203 		.vcocap = 0,
204 		.filter = 5,
205 		.ichpmp = 5,
206 		.loadadj = 3,
207 		.tmds_termadj = 0xf,
208 		.tx_pu_value = 0,
209 		.bg_temp_coef = 3,
210 		.bg_vref_level = 8,
211 		.avdd10_level = 4,
212 		.avdd14_level = 4,
213 		.sparepll = 0x54,
214 		.drive_current = { 0x3a, 0x3a, 0x3a, 0x33 },
215 		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
216 	}, {
217 		.frequency = 75000000,
218 		.vcocap = 1,
219 		.filter = 5,
220 		.ichpmp = 5,
221 		.loadadj = 3,
222 		.tmds_termadj = 0xf,
223 		.tx_pu_value = 0,
224 		.bg_temp_coef = 3,
225 		.bg_vref_level = 8,
226 		.avdd10_level = 4,
227 		.avdd14_level = 4,
228 		.sparepll = 0x44,
229 		.drive_current = { 0x3a, 0x3a, 0x3a, 0x33 },
230 		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
231 	}, {
232 		.frequency = 150000000,
233 		.vcocap = 3,
234 		.filter = 5,
235 		.ichpmp = 5,
236 		.loadadj = 3,
237 		.tmds_termadj = 15,
238 		.tx_pu_value = 0x66 /* 0 */,
239 		.bg_temp_coef = 3,
240 		.bg_vref_level = 8,
241 		.avdd10_level = 4,
242 		.avdd14_level = 4,
243 		.sparepll = 0x00, /* 0x34 */
244 		.drive_current = { 0x3a, 0x3a, 0x3a, 0x37 },
245 		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
246 	}, {
247 		.frequency = 300000000,
248 		.vcocap = 3,
249 		.filter = 5,
250 		.ichpmp = 5,
251 		.loadadj = 3,
252 		.tmds_termadj = 15,
253 		.tx_pu_value = 64,
254 		.bg_temp_coef = 3,
255 		.bg_vref_level = 8,
256 		.avdd10_level = 4,
257 		.avdd14_level = 4,
258 		.sparepll = 0x34,
259 		.drive_current = { 0x3d, 0x3d, 0x3d, 0x33 },
260 		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
261 	}, {
262 		.frequency = 600000000,
263 		.vcocap = 3,
264 		.filter = 5,
265 		.ichpmp = 5,
266 		.loadadj = 3,
267 		.tmds_termadj = 12,
268 		.tx_pu_value = 96,
269 		.bg_temp_coef = 3,
270 		.bg_vref_level = 8,
271 		.avdd10_level = 4,
272 		.avdd14_level = 4,
273 		.sparepll = 0x34,
274 		.drive_current = { 0x3d, 0x3d, 0x3d, 0x33 },
275 		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
276 	}
277 };
278 
279 static const struct tegra_sor_hdmi_settings tegra194_sor_hdmi_defaults[] = {
280 	{
281 		.frequency = 54000000,
282 		.vcocap = 0,
283 		.filter = 5,
284 		.ichpmp = 5,
285 		.loadadj = 3,
286 		.tmds_termadj = 0xf,
287 		.tx_pu_value = 0,
288 		.bg_temp_coef = 3,
289 		.bg_vref_level = 8,
290 		.avdd10_level = 4,
291 		.avdd14_level = 4,
292 		.sparepll = 0x54,
293 		.drive_current = { 0x3a, 0x3a, 0x3a, 0x33 },
294 		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
295 	}, {
296 		.frequency = 75000000,
297 		.vcocap = 1,
298 		.filter = 5,
299 		.ichpmp = 5,
300 		.loadadj = 3,
301 		.tmds_termadj = 0xf,
302 		.tx_pu_value = 0,
303 		.bg_temp_coef = 3,
304 		.bg_vref_level = 8,
305 		.avdd10_level = 4,
306 		.avdd14_level = 4,
307 		.sparepll = 0x44,
308 		.drive_current = { 0x3a, 0x3a, 0x3a, 0x33 },
309 		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
310 	}, {
311 		.frequency = 150000000,
312 		.vcocap = 3,
313 		.filter = 5,
314 		.ichpmp = 5,
315 		.loadadj = 3,
316 		.tmds_termadj = 15,
317 		.tx_pu_value = 0x66 /* 0 */,
318 		.bg_temp_coef = 3,
319 		.bg_vref_level = 8,
320 		.avdd10_level = 4,
321 		.avdd14_level = 4,
322 		.sparepll = 0x00, /* 0x34 */
323 		.drive_current = { 0x3a, 0x3a, 0x3a, 0x37 },
324 		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
325 	}, {
326 		.frequency = 300000000,
327 		.vcocap = 3,
328 		.filter = 5,
329 		.ichpmp = 5,
330 		.loadadj = 3,
331 		.tmds_termadj = 15,
332 		.tx_pu_value = 64,
333 		.bg_temp_coef = 3,
334 		.bg_vref_level = 8,
335 		.avdd10_level = 4,
336 		.avdd14_level = 4,
337 		.sparepll = 0x34,
338 		.drive_current = { 0x3d, 0x3d, 0x3d, 0x33 },
339 		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
340 	}, {
341 		.frequency = 600000000,
342 		.vcocap = 3,
343 		.filter = 5,
344 		.ichpmp = 5,
345 		.loadadj = 3,
346 		.tmds_termadj = 12,
347 		.tx_pu_value = 96,
348 		.bg_temp_coef = 3,
349 		.bg_vref_level = 8,
350 		.avdd10_level = 4,
351 		.avdd14_level = 4,
352 		.sparepll = 0x34,
353 		.drive_current = { 0x3d, 0x3d, 0x3d, 0x33 },
354 		.preemphasis = { 0x00, 0x00, 0x00, 0x00 },
355 	}
356 };
357 
358 struct tegra_sor_regs {
359 	unsigned int head_state0;
360 	unsigned int head_state1;
361 	unsigned int head_state2;
362 	unsigned int head_state3;
363 	unsigned int head_state4;
364 	unsigned int head_state5;
365 	unsigned int pll0;
366 	unsigned int pll1;
367 	unsigned int pll2;
368 	unsigned int pll3;
369 	unsigned int dp_padctl0;
370 	unsigned int dp_padctl2;
371 };
372 
373 struct tegra_sor_soc {
374 	bool supports_lvds;
375 	bool supports_hdmi;
376 	bool supports_dp;
377 	bool supports_audio;
378 	bool supports_hdcp;
379 
380 	const struct tegra_sor_regs *regs;
381 	bool has_nvdisplay;
382 
383 	const struct tegra_sor_hdmi_settings *settings;
384 	unsigned int num_settings;
385 
386 	const u8 *xbar_cfg;
387 	const u8 *lane_map;
388 
389 	const u8 (*voltage_swing)[4][4];
390 	const u8 (*pre_emphasis)[4][4];
391 	const u8 (*post_cursor)[4][4];
392 	const u8 (*tx_pu)[4][4];
393 };
394 
395 struct tegra_sor;
396 
397 struct tegra_sor_ops {
398 	const char *name;
399 	int (*probe)(struct tegra_sor *sor);
400 	void (*audio_enable)(struct tegra_sor *sor);
401 	void (*audio_disable)(struct tegra_sor *sor);
402 };
403 
404 struct tegra_sor {
405 	struct host1x_client client;
406 	struct tegra_output output;
407 	struct device *dev;
408 
409 	const struct tegra_sor_soc *soc;
410 	void __iomem *regs;
411 	unsigned int index;
412 	unsigned int irq;
413 
414 	struct reset_control *rst;
415 	struct clk *clk_parent;
416 	struct clk *clk_safe;
417 	struct clk *clk_out;
418 	struct clk *clk_pad;
419 	struct clk *clk_dp;
420 	struct clk *clk;
421 
422 	u8 xbar_cfg[5];
423 
424 	struct drm_dp_link link;
425 	struct drm_dp_aux *aux;
426 
427 	struct drm_info_list *debugfs_files;
428 
429 	const struct tegra_sor_ops *ops;
430 	enum tegra_io_pad pad;
431 
432 	/* for HDMI 2.0 */
433 	struct tegra_sor_hdmi_settings *settings;
434 	unsigned int num_settings;
435 
436 	struct regulator *avdd_io_supply;
437 	struct regulator *vdd_pll_supply;
438 	struct regulator *hdmi_supply;
439 
440 	struct delayed_work scdc;
441 	bool scdc_enabled;
442 
443 	struct tegra_hda_format format;
444 };
445 
446 struct tegra_sor_state {
447 	struct drm_connector_state base;
448 
449 	unsigned int link_speed;
450 	unsigned long pclk;
451 	unsigned int bpc;
452 };
453 
454 static inline struct tegra_sor_state *
455 to_sor_state(struct drm_connector_state *state)
456 {
457 	return container_of(state, struct tegra_sor_state, base);
458 }
459 
460 struct tegra_sor_config {
461 	u32 bits_per_pixel;
462 
463 	u32 active_polarity;
464 	u32 active_count;
465 	u32 tu_size;
466 	u32 active_frac;
467 	u32 watermark;
468 
469 	u32 hblank_symbols;
470 	u32 vblank_symbols;
471 };
472 
473 static inline struct tegra_sor *
474 host1x_client_to_sor(struct host1x_client *client)
475 {
476 	return container_of(client, struct tegra_sor, client);
477 }
478 
479 static inline struct tegra_sor *to_sor(struct tegra_output *output)
480 {
481 	return container_of(output, struct tegra_sor, output);
482 }
483 
484 static inline u32 tegra_sor_readl(struct tegra_sor *sor, unsigned int offset)
485 {
486 	u32 value = readl(sor->regs + (offset << 2));
487 
488 	trace_sor_readl(sor->dev, offset, value);
489 
490 	return value;
491 }
492 
493 static inline void tegra_sor_writel(struct tegra_sor *sor, u32 value,
494 				    unsigned int offset)
495 {
496 	trace_sor_writel(sor->dev, offset, value);
497 	writel(value, sor->regs + (offset << 2));
498 }
499 
500 static int tegra_sor_set_parent_clock(struct tegra_sor *sor, struct clk *parent)
501 {
502 	int err;
503 
504 	clk_disable_unprepare(sor->clk);
505 
506 	err = clk_set_parent(sor->clk_out, parent);
507 	if (err < 0)
508 		return err;
509 
510 	err = clk_prepare_enable(sor->clk);
511 	if (err < 0)
512 		return err;
513 
514 	return 0;
515 }
516 
517 struct tegra_clk_sor_pad {
518 	struct clk_hw hw;
519 	struct tegra_sor *sor;
520 };
521 
522 static inline struct tegra_clk_sor_pad *to_pad(struct clk_hw *hw)
523 {
524 	return container_of(hw, struct tegra_clk_sor_pad, hw);
525 }
526 
527 static const char * const tegra_clk_sor_pad_parents[2][2] = {
528 	{ "pll_d_out0", "pll_dp" },
529 	{ "pll_d2_out0", "pll_dp" },
530 };
531 
532 /*
533  * Implementing ->set_parent() here isn't really required because the parent
534  * will be explicitly selected in the driver code via the DP_CLK_SEL mux in
535  * the SOR_CLK_CNTRL register. This is primarily for compatibility with the
536  * Tegra186 and later SoC generations where the BPMP implements this clock
537  * and doesn't expose the mux via the common clock framework.
538  */
539 
540 static int tegra_clk_sor_pad_set_parent(struct clk_hw *hw, u8 index)
541 {
542 	struct tegra_clk_sor_pad *pad = to_pad(hw);
543 	struct tegra_sor *sor = pad->sor;
544 	u32 value;
545 
546 	value = tegra_sor_readl(sor, SOR_CLK_CNTRL);
547 	value &= ~SOR_CLK_CNTRL_DP_CLK_SEL_MASK;
548 
549 	switch (index) {
550 	case 0:
551 		value |= SOR_CLK_CNTRL_DP_CLK_SEL_SINGLE_PCLK;
552 		break;
553 
554 	case 1:
555 		value |= SOR_CLK_CNTRL_DP_CLK_SEL_SINGLE_DPCLK;
556 		break;
557 	}
558 
559 	tegra_sor_writel(sor, value, SOR_CLK_CNTRL);
560 
561 	return 0;
562 }
563 
564 static u8 tegra_clk_sor_pad_get_parent(struct clk_hw *hw)
565 {
566 	struct tegra_clk_sor_pad *pad = to_pad(hw);
567 	struct tegra_sor *sor = pad->sor;
568 	u8 parent = U8_MAX;
569 	u32 value;
570 
571 	value = tegra_sor_readl(sor, SOR_CLK_CNTRL);
572 
573 	switch (value & SOR_CLK_CNTRL_DP_CLK_SEL_MASK) {
574 	case SOR_CLK_CNTRL_DP_CLK_SEL_SINGLE_PCLK:
575 	case SOR_CLK_CNTRL_DP_CLK_SEL_DIFF_PCLK:
576 		parent = 0;
577 		break;
578 
579 	case SOR_CLK_CNTRL_DP_CLK_SEL_SINGLE_DPCLK:
580 	case SOR_CLK_CNTRL_DP_CLK_SEL_DIFF_DPCLK:
581 		parent = 1;
582 		break;
583 	}
584 
585 	return parent;
586 }
587 
588 static const struct clk_ops tegra_clk_sor_pad_ops = {
589 	.set_parent = tegra_clk_sor_pad_set_parent,
590 	.get_parent = tegra_clk_sor_pad_get_parent,
591 };
592 
593 static struct clk *tegra_clk_sor_pad_register(struct tegra_sor *sor,
594 					      const char *name)
595 {
596 	struct tegra_clk_sor_pad *pad;
597 	struct clk_init_data init;
598 	struct clk *clk;
599 
600 	pad = devm_kzalloc(sor->dev, sizeof(*pad), GFP_KERNEL);
601 	if (!pad)
602 		return ERR_PTR(-ENOMEM);
603 
604 	pad->sor = sor;
605 
606 	init.name = name;
607 	init.flags = 0;
608 	init.parent_names = tegra_clk_sor_pad_parents[sor->index];
609 	init.num_parents = ARRAY_SIZE(tegra_clk_sor_pad_parents[sor->index]);
610 	init.ops = &tegra_clk_sor_pad_ops;
611 
612 	pad->hw.init = &init;
613 
614 	clk = devm_clk_register(sor->dev, &pad->hw);
615 
616 	return clk;
617 }
618 
619 static void tegra_sor_filter_rates(struct tegra_sor *sor)
620 {
621 	struct drm_dp_link *link = &sor->link;
622 	unsigned int i;
623 
624 	/* Tegra only supports RBR, HBR and HBR2 */
625 	for (i = 0; i < link->num_rates; i++) {
626 		switch (link->rates[i]) {
627 		case 1620000:
628 		case 2700000:
629 		case 5400000:
630 			break;
631 
632 		default:
633 			DRM_DEBUG_KMS("link rate %lu kHz not supported\n",
634 				      link->rates[i]);
635 			link->rates[i] = 0;
636 			break;
637 		}
638 	}
639 
640 	drm_dp_link_update_rates(link);
641 }
642 
643 static int tegra_sor_power_up_lanes(struct tegra_sor *sor, unsigned int lanes)
644 {
645 	unsigned long timeout;
646 	u32 value;
647 
648 	/*
649 	 * Clear or set the PD_TXD bit corresponding to each lane, depending
650 	 * on whether it is used or not.
651 	 */
652 	value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
653 
654 	if (lanes <= 2)
655 		value &= ~(SOR_DP_PADCTL_PD_TXD(sor->soc->lane_map[3]) |
656 			   SOR_DP_PADCTL_PD_TXD(sor->soc->lane_map[2]));
657 	else
658 		value |= SOR_DP_PADCTL_PD_TXD(sor->soc->lane_map[3]) |
659 			 SOR_DP_PADCTL_PD_TXD(sor->soc->lane_map[2]);
660 
661 	if (lanes <= 1)
662 		value &= ~SOR_DP_PADCTL_PD_TXD(sor->soc->lane_map[1]);
663 	else
664 		value |= SOR_DP_PADCTL_PD_TXD(sor->soc->lane_map[1]);
665 
666 	if (lanes == 0)
667 		value &= ~SOR_DP_PADCTL_PD_TXD(sor->soc->lane_map[0]);
668 	else
669 		value |= SOR_DP_PADCTL_PD_TXD(sor->soc->lane_map[0]);
670 
671 	tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
672 
673 	/* start lane sequencer */
674 	value = SOR_LANE_SEQ_CTL_TRIGGER | SOR_LANE_SEQ_CTL_SEQUENCE_DOWN |
675 		SOR_LANE_SEQ_CTL_POWER_STATE_UP;
676 	tegra_sor_writel(sor, value, SOR_LANE_SEQ_CTL);
677 
678 	timeout = jiffies + msecs_to_jiffies(250);
679 
680 	while (time_before(jiffies, timeout)) {
681 		value = tegra_sor_readl(sor, SOR_LANE_SEQ_CTL);
682 		if ((value & SOR_LANE_SEQ_CTL_TRIGGER) == 0)
683 			break;
684 
685 		usleep_range(250, 1000);
686 	}
687 
688 	if ((value & SOR_LANE_SEQ_CTL_TRIGGER) != 0)
689 		return -ETIMEDOUT;
690 
691 	return 0;
692 }
693 
694 static int tegra_sor_power_down_lanes(struct tegra_sor *sor)
695 {
696 	unsigned long timeout;
697 	u32 value;
698 
699 	/* power down all lanes */
700 	value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
701 	value &= ~(SOR_DP_PADCTL_PD_TXD_3 | SOR_DP_PADCTL_PD_TXD_0 |
702 		   SOR_DP_PADCTL_PD_TXD_1 | SOR_DP_PADCTL_PD_TXD_2);
703 	tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
704 
705 	/* start lane sequencer */
706 	value = SOR_LANE_SEQ_CTL_TRIGGER | SOR_LANE_SEQ_CTL_SEQUENCE_UP |
707 		SOR_LANE_SEQ_CTL_POWER_STATE_DOWN;
708 	tegra_sor_writel(sor, value, SOR_LANE_SEQ_CTL);
709 
710 	timeout = jiffies + msecs_to_jiffies(250);
711 
712 	while (time_before(jiffies, timeout)) {
713 		value = tegra_sor_readl(sor, SOR_LANE_SEQ_CTL);
714 		if ((value & SOR_LANE_SEQ_CTL_TRIGGER) == 0)
715 			break;
716 
717 		usleep_range(25, 100);
718 	}
719 
720 	if ((value & SOR_LANE_SEQ_CTL_TRIGGER) != 0)
721 		return -ETIMEDOUT;
722 
723 	return 0;
724 }
725 
726 static void tegra_sor_dp_precharge(struct tegra_sor *sor, unsigned int lanes)
727 {
728 	u32 value;
729 
730 	/* pre-charge all used lanes */
731 	value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
732 
733 	if (lanes <= 2)
734 		value &= ~(SOR_DP_PADCTL_CM_TXD(sor->soc->lane_map[3]) |
735 			   SOR_DP_PADCTL_CM_TXD(sor->soc->lane_map[2]));
736 	else
737 		value |= SOR_DP_PADCTL_CM_TXD(sor->soc->lane_map[3]) |
738 			 SOR_DP_PADCTL_CM_TXD(sor->soc->lane_map[2]);
739 
740 	if (lanes <= 1)
741 		value &= ~SOR_DP_PADCTL_CM_TXD(sor->soc->lane_map[1]);
742 	else
743 		value |= SOR_DP_PADCTL_CM_TXD(sor->soc->lane_map[1]);
744 
745 	if (lanes == 0)
746 		value &= ~SOR_DP_PADCTL_CM_TXD(sor->soc->lane_map[0]);
747 	else
748 		value |= SOR_DP_PADCTL_CM_TXD(sor->soc->lane_map[0]);
749 
750 	tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
751 
752 	usleep_range(15, 100);
753 
754 	value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
755 	value &= ~(SOR_DP_PADCTL_CM_TXD_3 | SOR_DP_PADCTL_CM_TXD_2 |
756 		   SOR_DP_PADCTL_CM_TXD_1 | SOR_DP_PADCTL_CM_TXD_0);
757 	tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
758 }
759 
760 static void tegra_sor_dp_term_calibrate(struct tegra_sor *sor)
761 {
762 	u32 mask = 0x08, adj = 0, value;
763 
764 	/* enable pad calibration logic */
765 	value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
766 	value &= ~SOR_DP_PADCTL_PAD_CAL_PD;
767 	tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
768 
769 	value = tegra_sor_readl(sor, sor->soc->regs->pll1);
770 	value |= SOR_PLL1_TMDS_TERM;
771 	tegra_sor_writel(sor, value, sor->soc->regs->pll1);
772 
773 	while (mask) {
774 		adj |= mask;
775 
776 		value = tegra_sor_readl(sor, sor->soc->regs->pll1);
777 		value &= ~SOR_PLL1_TMDS_TERMADJ_MASK;
778 		value |= SOR_PLL1_TMDS_TERMADJ(adj);
779 		tegra_sor_writel(sor, value, sor->soc->regs->pll1);
780 
781 		usleep_range(100, 200);
782 
783 		value = tegra_sor_readl(sor, sor->soc->regs->pll1);
784 		if (value & SOR_PLL1_TERM_COMPOUT)
785 			adj &= ~mask;
786 
787 		mask >>= 1;
788 	}
789 
790 	value = tegra_sor_readl(sor, sor->soc->regs->pll1);
791 	value &= ~SOR_PLL1_TMDS_TERMADJ_MASK;
792 	value |= SOR_PLL1_TMDS_TERMADJ(adj);
793 	tegra_sor_writel(sor, value, sor->soc->regs->pll1);
794 
795 	/* disable pad calibration logic */
796 	value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
797 	value |= SOR_DP_PADCTL_PAD_CAL_PD;
798 	tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
799 }
800 
801 static int tegra_sor_dp_link_apply_training(struct drm_dp_link *link)
802 {
803 	struct tegra_sor *sor = container_of(link, struct tegra_sor, link);
804 	u32 voltage_swing = 0, pre_emphasis = 0, post_cursor = 0;
805 	const struct tegra_sor_soc *soc = sor->soc;
806 	u32 pattern = 0, tx_pu = 0, value;
807 	unsigned int i;
808 
809 	for (value = 0, i = 0; i < link->lanes; i++) {
810 		u8 vs = link->train.request.voltage_swing[i];
811 		u8 pe = link->train.request.pre_emphasis[i];
812 		u8 pc = link->train.request.post_cursor[i];
813 		u8 shift = sor->soc->lane_map[i] << 3;
814 
815 		voltage_swing |= soc->voltage_swing[pc][vs][pe] << shift;
816 		pre_emphasis |= soc->pre_emphasis[pc][vs][pe] << shift;
817 		post_cursor |= soc->post_cursor[pc][vs][pe] << shift;
818 
819 		if (sor->soc->tx_pu[pc][vs][pe] > tx_pu)
820 			tx_pu = sor->soc->tx_pu[pc][vs][pe];
821 
822 		switch (link->train.pattern) {
823 		case DP_TRAINING_PATTERN_DISABLE:
824 			value = SOR_DP_TPG_SCRAMBLER_GALIOS |
825 				SOR_DP_TPG_PATTERN_NONE;
826 			break;
827 
828 		case DP_TRAINING_PATTERN_1:
829 			value = SOR_DP_TPG_SCRAMBLER_NONE |
830 				SOR_DP_TPG_PATTERN_TRAIN1;
831 			break;
832 
833 		case DP_TRAINING_PATTERN_2:
834 			value = SOR_DP_TPG_SCRAMBLER_NONE |
835 				SOR_DP_TPG_PATTERN_TRAIN2;
836 			break;
837 
838 		case DP_TRAINING_PATTERN_3:
839 			value = SOR_DP_TPG_SCRAMBLER_NONE |
840 				SOR_DP_TPG_PATTERN_TRAIN3;
841 			break;
842 
843 		default:
844 			return -EINVAL;
845 		}
846 
847 		if (link->caps.channel_coding)
848 			value |= SOR_DP_TPG_CHANNEL_CODING;
849 
850 		pattern = pattern << 8 | value;
851 	}
852 
853 	tegra_sor_writel(sor, voltage_swing, SOR_LANE_DRIVE_CURRENT0);
854 	tegra_sor_writel(sor, pre_emphasis, SOR_LANE_PREEMPHASIS0);
855 
856 	if (link->caps.tps3_supported)
857 		tegra_sor_writel(sor, post_cursor, SOR_LANE_POSTCURSOR0);
858 
859 	tegra_sor_writel(sor, pattern, SOR_DP_TPG);
860 
861 	value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
862 	value &= ~SOR_DP_PADCTL_TX_PU_MASK;
863 	value |= SOR_DP_PADCTL_TX_PU_ENABLE;
864 	value |= SOR_DP_PADCTL_TX_PU(tx_pu);
865 	tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
866 
867 	usleep_range(20, 100);
868 
869 	return 0;
870 }
871 
872 static int tegra_sor_dp_link_configure(struct drm_dp_link *link)
873 {
874 	struct tegra_sor *sor = container_of(link, struct tegra_sor, link);
875 	unsigned int rate, lanes;
876 	u32 value;
877 	int err;
878 
879 	rate = drm_dp_link_rate_to_bw_code(link->rate);
880 	lanes = link->lanes;
881 
882 	/* configure link speed and lane count */
883 	value = tegra_sor_readl(sor, SOR_CLK_CNTRL);
884 	value &= ~SOR_CLK_CNTRL_DP_LINK_SPEED_MASK;
885 	value |= SOR_CLK_CNTRL_DP_LINK_SPEED(rate);
886 	tegra_sor_writel(sor, value, SOR_CLK_CNTRL);
887 
888 	value = tegra_sor_readl(sor, SOR_DP_LINKCTL0);
889 	value &= ~SOR_DP_LINKCTL_LANE_COUNT_MASK;
890 	value |= SOR_DP_LINKCTL_LANE_COUNT(lanes);
891 
892 	if (link->caps.enhanced_framing)
893 		value |= SOR_DP_LINKCTL_ENHANCED_FRAME;
894 
895 	tegra_sor_writel(sor, value, SOR_DP_LINKCTL0);
896 
897 	usleep_range(400, 1000);
898 
899 	/* configure load pulse position adjustment */
900 	value = tegra_sor_readl(sor, sor->soc->regs->pll1);
901 	value &= ~SOR_PLL1_LOADADJ_MASK;
902 
903 	switch (rate) {
904 	case DP_LINK_BW_1_62:
905 		value |= SOR_PLL1_LOADADJ(0x3);
906 		break;
907 
908 	case DP_LINK_BW_2_7:
909 		value |= SOR_PLL1_LOADADJ(0x4);
910 		break;
911 
912 	case DP_LINK_BW_5_4:
913 		value |= SOR_PLL1_LOADADJ(0x6);
914 		break;
915 	}
916 
917 	tegra_sor_writel(sor, value, sor->soc->regs->pll1);
918 
919 	/* use alternate scrambler reset for eDP */
920 	value = tegra_sor_readl(sor, SOR_DP_SPARE0);
921 
922 	if (link->edp == 0)
923 		value &= ~SOR_DP_SPARE_PANEL_INTERNAL;
924 	else
925 		value |= SOR_DP_SPARE_PANEL_INTERNAL;
926 
927 	tegra_sor_writel(sor, value, SOR_DP_SPARE0);
928 
929 	err = tegra_sor_power_down_lanes(sor);
930 	if (err < 0) {
931 		dev_err(sor->dev, "failed to power down lanes: %d\n", err);
932 		return err;
933 	}
934 
935 	/* power up and pre-charge lanes */
936 	err = tegra_sor_power_up_lanes(sor, lanes);
937 	if (err < 0) {
938 		dev_err(sor->dev, "failed to power up %u lane%s: %d\n",
939 			lanes, (lanes != 1) ? "s" : "", err);
940 		return err;
941 	}
942 
943 	tegra_sor_dp_precharge(sor, lanes);
944 
945 	return 0;
946 }
947 
948 static const struct drm_dp_link_ops tegra_sor_dp_link_ops = {
949 	.apply_training = tegra_sor_dp_link_apply_training,
950 	.configure = tegra_sor_dp_link_configure,
951 };
952 
953 static void tegra_sor_super_update(struct tegra_sor *sor)
954 {
955 	tegra_sor_writel(sor, 0, SOR_SUPER_STATE0);
956 	tegra_sor_writel(sor, 1, SOR_SUPER_STATE0);
957 	tegra_sor_writel(sor, 0, SOR_SUPER_STATE0);
958 }
959 
960 static void tegra_sor_update(struct tegra_sor *sor)
961 {
962 	tegra_sor_writel(sor, 0, SOR_STATE0);
963 	tegra_sor_writel(sor, 1, SOR_STATE0);
964 	tegra_sor_writel(sor, 0, SOR_STATE0);
965 }
966 
967 static int tegra_sor_setup_pwm(struct tegra_sor *sor, unsigned long timeout)
968 {
969 	u32 value;
970 
971 	value = tegra_sor_readl(sor, SOR_PWM_DIV);
972 	value &= ~SOR_PWM_DIV_MASK;
973 	value |= 0x400; /* period */
974 	tegra_sor_writel(sor, value, SOR_PWM_DIV);
975 
976 	value = tegra_sor_readl(sor, SOR_PWM_CTL);
977 	value &= ~SOR_PWM_CTL_DUTY_CYCLE_MASK;
978 	value |= 0x400; /* duty cycle */
979 	value &= ~SOR_PWM_CTL_CLK_SEL; /* clock source: PCLK */
980 	value |= SOR_PWM_CTL_TRIGGER;
981 	tegra_sor_writel(sor, value, SOR_PWM_CTL);
982 
983 	timeout = jiffies + msecs_to_jiffies(timeout);
984 
985 	while (time_before(jiffies, timeout)) {
986 		value = tegra_sor_readl(sor, SOR_PWM_CTL);
987 		if ((value & SOR_PWM_CTL_TRIGGER) == 0)
988 			return 0;
989 
990 		usleep_range(25, 100);
991 	}
992 
993 	return -ETIMEDOUT;
994 }
995 
996 static int tegra_sor_attach(struct tegra_sor *sor)
997 {
998 	unsigned long value, timeout;
999 
1000 	/* wake up in normal mode */
1001 	value = tegra_sor_readl(sor, SOR_SUPER_STATE1);
1002 	value |= SOR_SUPER_STATE_HEAD_MODE_AWAKE;
1003 	value |= SOR_SUPER_STATE_MODE_NORMAL;
1004 	tegra_sor_writel(sor, value, SOR_SUPER_STATE1);
1005 	tegra_sor_super_update(sor);
1006 
1007 	/* attach */
1008 	value = tegra_sor_readl(sor, SOR_SUPER_STATE1);
1009 	value |= SOR_SUPER_STATE_ATTACHED;
1010 	tegra_sor_writel(sor, value, SOR_SUPER_STATE1);
1011 	tegra_sor_super_update(sor);
1012 
1013 	timeout = jiffies + msecs_to_jiffies(250);
1014 
1015 	while (time_before(jiffies, timeout)) {
1016 		value = tegra_sor_readl(sor, SOR_TEST);
1017 		if ((value & SOR_TEST_ATTACHED) != 0)
1018 			return 0;
1019 
1020 		usleep_range(25, 100);
1021 	}
1022 
1023 	return -ETIMEDOUT;
1024 }
1025 
1026 static int tegra_sor_wakeup(struct tegra_sor *sor)
1027 {
1028 	unsigned long value, timeout;
1029 
1030 	timeout = jiffies + msecs_to_jiffies(250);
1031 
1032 	/* wait for head to wake up */
1033 	while (time_before(jiffies, timeout)) {
1034 		value = tegra_sor_readl(sor, SOR_TEST);
1035 		value &= SOR_TEST_HEAD_MODE_MASK;
1036 
1037 		if (value == SOR_TEST_HEAD_MODE_AWAKE)
1038 			return 0;
1039 
1040 		usleep_range(25, 100);
1041 	}
1042 
1043 	return -ETIMEDOUT;
1044 }
1045 
1046 static int tegra_sor_power_up(struct tegra_sor *sor, unsigned long timeout)
1047 {
1048 	u32 value;
1049 
1050 	value = tegra_sor_readl(sor, SOR_PWR);
1051 	value |= SOR_PWR_TRIGGER | SOR_PWR_NORMAL_STATE_PU;
1052 	tegra_sor_writel(sor, value, SOR_PWR);
1053 
1054 	timeout = jiffies + msecs_to_jiffies(timeout);
1055 
1056 	while (time_before(jiffies, timeout)) {
1057 		value = tegra_sor_readl(sor, SOR_PWR);
1058 		if ((value & SOR_PWR_TRIGGER) == 0)
1059 			return 0;
1060 
1061 		usleep_range(25, 100);
1062 	}
1063 
1064 	return -ETIMEDOUT;
1065 }
1066 
1067 struct tegra_sor_params {
1068 	/* number of link clocks per line */
1069 	unsigned int num_clocks;
1070 	/* ratio between input and output */
1071 	u64 ratio;
1072 	/* precision factor */
1073 	u64 precision;
1074 
1075 	unsigned int active_polarity;
1076 	unsigned int active_count;
1077 	unsigned int active_frac;
1078 	unsigned int tu_size;
1079 	unsigned int error;
1080 };
1081 
1082 static int tegra_sor_compute_params(struct tegra_sor *sor,
1083 				    struct tegra_sor_params *params,
1084 				    unsigned int tu_size)
1085 {
1086 	u64 active_sym, active_count, frac, approx;
1087 	u32 active_polarity, active_frac = 0;
1088 	const u64 f = params->precision;
1089 	s64 error;
1090 
1091 	active_sym = params->ratio * tu_size;
1092 	active_count = div_u64(active_sym, f) * f;
1093 	frac = active_sym - active_count;
1094 
1095 	/* fraction < 0.5 */
1096 	if (frac >= (f / 2)) {
1097 		active_polarity = 1;
1098 		frac = f - frac;
1099 	} else {
1100 		active_polarity = 0;
1101 	}
1102 
1103 	if (frac != 0) {
1104 		frac = div_u64(f * f,  frac); /* 1/fraction */
1105 		if (frac <= (15 * f)) {
1106 			active_frac = div_u64(frac, f);
1107 
1108 			/* round up */
1109 			if (active_polarity)
1110 				active_frac++;
1111 		} else {
1112 			active_frac = active_polarity ? 1 : 15;
1113 		}
1114 	}
1115 
1116 	if (active_frac == 1)
1117 		active_polarity = 0;
1118 
1119 	if (active_polarity == 1) {
1120 		if (active_frac) {
1121 			approx = active_count + (active_frac * (f - 1)) * f;
1122 			approx = div_u64(approx, active_frac * f);
1123 		} else {
1124 			approx = active_count + f;
1125 		}
1126 	} else {
1127 		if (active_frac)
1128 			approx = active_count + div_u64(f, active_frac);
1129 		else
1130 			approx = active_count;
1131 	}
1132 
1133 	error = div_s64(active_sym - approx, tu_size);
1134 	error *= params->num_clocks;
1135 
1136 	if (error <= 0 && abs(error) < params->error) {
1137 		params->active_count = div_u64(active_count, f);
1138 		params->active_polarity = active_polarity;
1139 		params->active_frac = active_frac;
1140 		params->error = abs(error);
1141 		params->tu_size = tu_size;
1142 
1143 		if (error == 0)
1144 			return true;
1145 	}
1146 
1147 	return false;
1148 }
1149 
1150 static int tegra_sor_compute_config(struct tegra_sor *sor,
1151 				    const struct drm_display_mode *mode,
1152 				    struct tegra_sor_config *config,
1153 				    struct drm_dp_link *link)
1154 {
1155 	const u64 f = 100000, link_rate = link->rate * 1000;
1156 	const u64 pclk = (u64)mode->clock * 1000;
1157 	u64 input, output, watermark, num;
1158 	struct tegra_sor_params params;
1159 	u32 num_syms_per_line;
1160 	unsigned int i;
1161 
1162 	if (!link_rate || !link->lanes || !pclk || !config->bits_per_pixel)
1163 		return -EINVAL;
1164 
1165 	input = pclk * config->bits_per_pixel;
1166 	output = link_rate * 8 * link->lanes;
1167 
1168 	if (input >= output)
1169 		return -ERANGE;
1170 
1171 	memset(&params, 0, sizeof(params));
1172 	params.ratio = div64_u64(input * f, output);
1173 	params.num_clocks = div_u64(link_rate * mode->hdisplay, pclk);
1174 	params.precision = f;
1175 	params.error = 64 * f;
1176 	params.tu_size = 64;
1177 
1178 	for (i = params.tu_size; i >= 32; i--)
1179 		if (tegra_sor_compute_params(sor, &params, i))
1180 			break;
1181 
1182 	if (params.active_frac == 0) {
1183 		config->active_polarity = 0;
1184 		config->active_count = params.active_count;
1185 
1186 		if (!params.active_polarity)
1187 			config->active_count--;
1188 
1189 		config->tu_size = params.tu_size;
1190 		config->active_frac = 1;
1191 	} else {
1192 		config->active_polarity = params.active_polarity;
1193 		config->active_count = params.active_count;
1194 		config->active_frac = params.active_frac;
1195 		config->tu_size = params.tu_size;
1196 	}
1197 
1198 	dev_dbg(sor->dev,
1199 		"polarity: %d active count: %d tu size: %d active frac: %d\n",
1200 		config->active_polarity, config->active_count,
1201 		config->tu_size, config->active_frac);
1202 
1203 	watermark = params.ratio * config->tu_size * (f - params.ratio);
1204 	watermark = div_u64(watermark, f);
1205 
1206 	watermark = div_u64(watermark + params.error, f);
1207 	config->watermark = watermark + (config->bits_per_pixel / 8) + 2;
1208 	num_syms_per_line = (mode->hdisplay * config->bits_per_pixel) *
1209 			    (link->lanes * 8);
1210 
1211 	if (config->watermark > 30) {
1212 		config->watermark = 30;
1213 		dev_err(sor->dev,
1214 			"unable to compute TU size, forcing watermark to %u\n",
1215 			config->watermark);
1216 	} else if (config->watermark > num_syms_per_line) {
1217 		config->watermark = num_syms_per_line;
1218 		dev_err(sor->dev, "watermark too high, forcing to %u\n",
1219 			config->watermark);
1220 	}
1221 
1222 	/* compute the number of symbols per horizontal blanking interval */
1223 	num = ((mode->htotal - mode->hdisplay) - 7) * link_rate;
1224 	config->hblank_symbols = div_u64(num, pclk);
1225 
1226 	if (link->caps.enhanced_framing)
1227 		config->hblank_symbols -= 3;
1228 
1229 	config->hblank_symbols -= 12 / link->lanes;
1230 
1231 	/* compute the number of symbols per vertical blanking interval */
1232 	num = (mode->hdisplay - 25) * link_rate;
1233 	config->vblank_symbols = div_u64(num, pclk);
1234 	config->vblank_symbols -= 36 / link->lanes + 4;
1235 
1236 	dev_dbg(sor->dev, "blank symbols: H:%u V:%u\n", config->hblank_symbols,
1237 		config->vblank_symbols);
1238 
1239 	return 0;
1240 }
1241 
1242 static void tegra_sor_apply_config(struct tegra_sor *sor,
1243 				   const struct tegra_sor_config *config)
1244 {
1245 	u32 value;
1246 
1247 	value = tegra_sor_readl(sor, SOR_DP_LINKCTL0);
1248 	value &= ~SOR_DP_LINKCTL_TU_SIZE_MASK;
1249 	value |= SOR_DP_LINKCTL_TU_SIZE(config->tu_size);
1250 	tegra_sor_writel(sor, value, SOR_DP_LINKCTL0);
1251 
1252 	value = tegra_sor_readl(sor, SOR_DP_CONFIG0);
1253 	value &= ~SOR_DP_CONFIG_WATERMARK_MASK;
1254 	value |= SOR_DP_CONFIG_WATERMARK(config->watermark);
1255 
1256 	value &= ~SOR_DP_CONFIG_ACTIVE_SYM_COUNT_MASK;
1257 	value |= SOR_DP_CONFIG_ACTIVE_SYM_COUNT(config->active_count);
1258 
1259 	value &= ~SOR_DP_CONFIG_ACTIVE_SYM_FRAC_MASK;
1260 	value |= SOR_DP_CONFIG_ACTIVE_SYM_FRAC(config->active_frac);
1261 
1262 	if (config->active_polarity)
1263 		value |= SOR_DP_CONFIG_ACTIVE_SYM_POLARITY;
1264 	else
1265 		value &= ~SOR_DP_CONFIG_ACTIVE_SYM_POLARITY;
1266 
1267 	value |= SOR_DP_CONFIG_ACTIVE_SYM_ENABLE;
1268 	value |= SOR_DP_CONFIG_DISPARITY_NEGATIVE;
1269 	tegra_sor_writel(sor, value, SOR_DP_CONFIG0);
1270 
1271 	value = tegra_sor_readl(sor, SOR_DP_AUDIO_HBLANK_SYMBOLS);
1272 	value &= ~SOR_DP_AUDIO_HBLANK_SYMBOLS_MASK;
1273 	value |= config->hblank_symbols & 0xffff;
1274 	tegra_sor_writel(sor, value, SOR_DP_AUDIO_HBLANK_SYMBOLS);
1275 
1276 	value = tegra_sor_readl(sor, SOR_DP_AUDIO_VBLANK_SYMBOLS);
1277 	value &= ~SOR_DP_AUDIO_VBLANK_SYMBOLS_MASK;
1278 	value |= config->vblank_symbols & 0xffff;
1279 	tegra_sor_writel(sor, value, SOR_DP_AUDIO_VBLANK_SYMBOLS);
1280 }
1281 
1282 static void tegra_sor_mode_set(struct tegra_sor *sor,
1283 			       const struct drm_display_mode *mode,
1284 			       struct tegra_sor_state *state)
1285 {
1286 	struct tegra_dc *dc = to_tegra_dc(sor->output.encoder.crtc);
1287 	unsigned int vbe, vse, hbe, hse, vbs, hbs;
1288 	u32 value;
1289 
1290 	value = tegra_sor_readl(sor, SOR_STATE1);
1291 	value &= ~SOR_STATE_ASY_PIXELDEPTH_MASK;
1292 	value &= ~SOR_STATE_ASY_CRC_MODE_MASK;
1293 	value &= ~SOR_STATE_ASY_OWNER_MASK;
1294 
1295 	value |= SOR_STATE_ASY_CRC_MODE_COMPLETE |
1296 		 SOR_STATE_ASY_OWNER(dc->pipe + 1);
1297 
1298 	if (mode->flags & DRM_MODE_FLAG_PHSYNC)
1299 		value &= ~SOR_STATE_ASY_HSYNCPOL;
1300 
1301 	if (mode->flags & DRM_MODE_FLAG_NHSYNC)
1302 		value |= SOR_STATE_ASY_HSYNCPOL;
1303 
1304 	if (mode->flags & DRM_MODE_FLAG_PVSYNC)
1305 		value &= ~SOR_STATE_ASY_VSYNCPOL;
1306 
1307 	if (mode->flags & DRM_MODE_FLAG_NVSYNC)
1308 		value |= SOR_STATE_ASY_VSYNCPOL;
1309 
1310 	switch (state->bpc) {
1311 	case 16:
1312 		value |= SOR_STATE_ASY_PIXELDEPTH_BPP_48_444;
1313 		break;
1314 
1315 	case 12:
1316 		value |= SOR_STATE_ASY_PIXELDEPTH_BPP_36_444;
1317 		break;
1318 
1319 	case 10:
1320 		value |= SOR_STATE_ASY_PIXELDEPTH_BPP_30_444;
1321 		break;
1322 
1323 	case 8:
1324 		value |= SOR_STATE_ASY_PIXELDEPTH_BPP_24_444;
1325 		break;
1326 
1327 	case 6:
1328 		value |= SOR_STATE_ASY_PIXELDEPTH_BPP_18_444;
1329 		break;
1330 
1331 	default:
1332 		value |= SOR_STATE_ASY_PIXELDEPTH_BPP_24_444;
1333 		break;
1334 	}
1335 
1336 	tegra_sor_writel(sor, value, SOR_STATE1);
1337 
1338 	/*
1339 	 * TODO: The video timing programming below doesn't seem to match the
1340 	 * register definitions.
1341 	 */
1342 
1343 	value = ((mode->vtotal & 0x7fff) << 16) | (mode->htotal & 0x7fff);
1344 	tegra_sor_writel(sor, value, sor->soc->regs->head_state1 + dc->pipe);
1345 
1346 	/* sync end = sync width - 1 */
1347 	vse = mode->vsync_end - mode->vsync_start - 1;
1348 	hse = mode->hsync_end - mode->hsync_start - 1;
1349 
1350 	value = ((vse & 0x7fff) << 16) | (hse & 0x7fff);
1351 	tegra_sor_writel(sor, value, sor->soc->regs->head_state2 + dc->pipe);
1352 
1353 	/* blank end = sync end + back porch */
1354 	vbe = vse + (mode->vtotal - mode->vsync_end);
1355 	hbe = hse + (mode->htotal - mode->hsync_end);
1356 
1357 	value = ((vbe & 0x7fff) << 16) | (hbe & 0x7fff);
1358 	tegra_sor_writel(sor, value, sor->soc->regs->head_state3 + dc->pipe);
1359 
1360 	/* blank start = blank end + active */
1361 	vbs = vbe + mode->vdisplay;
1362 	hbs = hbe + mode->hdisplay;
1363 
1364 	value = ((vbs & 0x7fff) << 16) | (hbs & 0x7fff);
1365 	tegra_sor_writel(sor, value, sor->soc->regs->head_state4 + dc->pipe);
1366 
1367 	/* XXX interlacing support */
1368 	tegra_sor_writel(sor, 0x001, sor->soc->regs->head_state5 + dc->pipe);
1369 }
1370 
1371 static int tegra_sor_detach(struct tegra_sor *sor)
1372 {
1373 	unsigned long value, timeout;
1374 
1375 	/* switch to safe mode */
1376 	value = tegra_sor_readl(sor, SOR_SUPER_STATE1);
1377 	value &= ~SOR_SUPER_STATE_MODE_NORMAL;
1378 	tegra_sor_writel(sor, value, SOR_SUPER_STATE1);
1379 	tegra_sor_super_update(sor);
1380 
1381 	timeout = jiffies + msecs_to_jiffies(250);
1382 
1383 	while (time_before(jiffies, timeout)) {
1384 		value = tegra_sor_readl(sor, SOR_PWR);
1385 		if (value & SOR_PWR_MODE_SAFE)
1386 			break;
1387 	}
1388 
1389 	if ((value & SOR_PWR_MODE_SAFE) == 0)
1390 		return -ETIMEDOUT;
1391 
1392 	/* go to sleep */
1393 	value = tegra_sor_readl(sor, SOR_SUPER_STATE1);
1394 	value &= ~SOR_SUPER_STATE_HEAD_MODE_MASK;
1395 	tegra_sor_writel(sor, value, SOR_SUPER_STATE1);
1396 	tegra_sor_super_update(sor);
1397 
1398 	/* detach */
1399 	value = tegra_sor_readl(sor, SOR_SUPER_STATE1);
1400 	value &= ~SOR_SUPER_STATE_ATTACHED;
1401 	tegra_sor_writel(sor, value, SOR_SUPER_STATE1);
1402 	tegra_sor_super_update(sor);
1403 
1404 	timeout = jiffies + msecs_to_jiffies(250);
1405 
1406 	while (time_before(jiffies, timeout)) {
1407 		value = tegra_sor_readl(sor, SOR_TEST);
1408 		if ((value & SOR_TEST_ATTACHED) == 0)
1409 			break;
1410 
1411 		usleep_range(25, 100);
1412 	}
1413 
1414 	if ((value & SOR_TEST_ATTACHED) != 0)
1415 		return -ETIMEDOUT;
1416 
1417 	return 0;
1418 }
1419 
1420 static int tegra_sor_power_down(struct tegra_sor *sor)
1421 {
1422 	unsigned long value, timeout;
1423 	int err;
1424 
1425 	value = tegra_sor_readl(sor, SOR_PWR);
1426 	value &= ~SOR_PWR_NORMAL_STATE_PU;
1427 	value |= SOR_PWR_TRIGGER;
1428 	tegra_sor_writel(sor, value, SOR_PWR);
1429 
1430 	timeout = jiffies + msecs_to_jiffies(250);
1431 
1432 	while (time_before(jiffies, timeout)) {
1433 		value = tegra_sor_readl(sor, SOR_PWR);
1434 		if ((value & SOR_PWR_TRIGGER) == 0)
1435 			return 0;
1436 
1437 		usleep_range(25, 100);
1438 	}
1439 
1440 	if ((value & SOR_PWR_TRIGGER) != 0)
1441 		return -ETIMEDOUT;
1442 
1443 	/* switch to safe parent clock */
1444 	err = tegra_sor_set_parent_clock(sor, sor->clk_safe);
1445 	if (err < 0) {
1446 		dev_err(sor->dev, "failed to set safe parent clock: %d\n", err);
1447 		return err;
1448 	}
1449 
1450 	value = tegra_sor_readl(sor, sor->soc->regs->pll2);
1451 	value |= SOR_PLL2_PORT_POWERDOWN;
1452 	tegra_sor_writel(sor, value, sor->soc->regs->pll2);
1453 
1454 	usleep_range(20, 100);
1455 
1456 	value = tegra_sor_readl(sor, sor->soc->regs->pll0);
1457 	value |= SOR_PLL0_VCOPD | SOR_PLL0_PWR;
1458 	tegra_sor_writel(sor, value, sor->soc->regs->pll0);
1459 
1460 	value = tegra_sor_readl(sor, sor->soc->regs->pll2);
1461 	value |= SOR_PLL2_SEQ_PLLCAPPD;
1462 	value |= SOR_PLL2_SEQ_PLLCAPPD_ENFORCE;
1463 	tegra_sor_writel(sor, value, sor->soc->regs->pll2);
1464 
1465 	usleep_range(20, 100);
1466 
1467 	return 0;
1468 }
1469 
1470 static int tegra_sor_crc_wait(struct tegra_sor *sor, unsigned long timeout)
1471 {
1472 	u32 value;
1473 
1474 	timeout = jiffies + msecs_to_jiffies(timeout);
1475 
1476 	while (time_before(jiffies, timeout)) {
1477 		value = tegra_sor_readl(sor, SOR_CRCA);
1478 		if (value & SOR_CRCA_VALID)
1479 			return 0;
1480 
1481 		usleep_range(100, 200);
1482 	}
1483 
1484 	return -ETIMEDOUT;
1485 }
1486 
1487 static int tegra_sor_show_crc(struct seq_file *s, void *data)
1488 {
1489 	struct drm_info_node *node = s->private;
1490 	struct tegra_sor *sor = node->info_ent->data;
1491 	struct drm_crtc *crtc = sor->output.encoder.crtc;
1492 	struct drm_device *drm = node->minor->dev;
1493 	int err = 0;
1494 	u32 value;
1495 
1496 	drm_modeset_lock_all(drm);
1497 
1498 	if (!crtc || !crtc->state->active) {
1499 		err = -EBUSY;
1500 		goto unlock;
1501 	}
1502 
1503 	value = tegra_sor_readl(sor, SOR_STATE1);
1504 	value &= ~SOR_STATE_ASY_CRC_MODE_MASK;
1505 	tegra_sor_writel(sor, value, SOR_STATE1);
1506 
1507 	value = tegra_sor_readl(sor, SOR_CRC_CNTRL);
1508 	value |= SOR_CRC_CNTRL_ENABLE;
1509 	tegra_sor_writel(sor, value, SOR_CRC_CNTRL);
1510 
1511 	value = tegra_sor_readl(sor, SOR_TEST);
1512 	value &= ~SOR_TEST_CRC_POST_SERIALIZE;
1513 	tegra_sor_writel(sor, value, SOR_TEST);
1514 
1515 	err = tegra_sor_crc_wait(sor, 100);
1516 	if (err < 0)
1517 		goto unlock;
1518 
1519 	tegra_sor_writel(sor, SOR_CRCA_RESET, SOR_CRCA);
1520 	value = tegra_sor_readl(sor, SOR_CRCB);
1521 
1522 	seq_printf(s, "%08x\n", value);
1523 
1524 unlock:
1525 	drm_modeset_unlock_all(drm);
1526 	return err;
1527 }
1528 
1529 #define DEBUGFS_REG32(_name) { .name = #_name, .offset = _name }
1530 
1531 static const struct debugfs_reg32 tegra_sor_regs[] = {
1532 	DEBUGFS_REG32(SOR_CTXSW),
1533 	DEBUGFS_REG32(SOR_SUPER_STATE0),
1534 	DEBUGFS_REG32(SOR_SUPER_STATE1),
1535 	DEBUGFS_REG32(SOR_STATE0),
1536 	DEBUGFS_REG32(SOR_STATE1),
1537 	DEBUGFS_REG32(SOR_HEAD_STATE0(0)),
1538 	DEBUGFS_REG32(SOR_HEAD_STATE0(1)),
1539 	DEBUGFS_REG32(SOR_HEAD_STATE1(0)),
1540 	DEBUGFS_REG32(SOR_HEAD_STATE1(1)),
1541 	DEBUGFS_REG32(SOR_HEAD_STATE2(0)),
1542 	DEBUGFS_REG32(SOR_HEAD_STATE2(1)),
1543 	DEBUGFS_REG32(SOR_HEAD_STATE3(0)),
1544 	DEBUGFS_REG32(SOR_HEAD_STATE3(1)),
1545 	DEBUGFS_REG32(SOR_HEAD_STATE4(0)),
1546 	DEBUGFS_REG32(SOR_HEAD_STATE4(1)),
1547 	DEBUGFS_REG32(SOR_HEAD_STATE5(0)),
1548 	DEBUGFS_REG32(SOR_HEAD_STATE5(1)),
1549 	DEBUGFS_REG32(SOR_CRC_CNTRL),
1550 	DEBUGFS_REG32(SOR_DP_DEBUG_MVID),
1551 	DEBUGFS_REG32(SOR_CLK_CNTRL),
1552 	DEBUGFS_REG32(SOR_CAP),
1553 	DEBUGFS_REG32(SOR_PWR),
1554 	DEBUGFS_REG32(SOR_TEST),
1555 	DEBUGFS_REG32(SOR_PLL0),
1556 	DEBUGFS_REG32(SOR_PLL1),
1557 	DEBUGFS_REG32(SOR_PLL2),
1558 	DEBUGFS_REG32(SOR_PLL3),
1559 	DEBUGFS_REG32(SOR_CSTM),
1560 	DEBUGFS_REG32(SOR_LVDS),
1561 	DEBUGFS_REG32(SOR_CRCA),
1562 	DEBUGFS_REG32(SOR_CRCB),
1563 	DEBUGFS_REG32(SOR_BLANK),
1564 	DEBUGFS_REG32(SOR_SEQ_CTL),
1565 	DEBUGFS_REG32(SOR_LANE_SEQ_CTL),
1566 	DEBUGFS_REG32(SOR_SEQ_INST(0)),
1567 	DEBUGFS_REG32(SOR_SEQ_INST(1)),
1568 	DEBUGFS_REG32(SOR_SEQ_INST(2)),
1569 	DEBUGFS_REG32(SOR_SEQ_INST(3)),
1570 	DEBUGFS_REG32(SOR_SEQ_INST(4)),
1571 	DEBUGFS_REG32(SOR_SEQ_INST(5)),
1572 	DEBUGFS_REG32(SOR_SEQ_INST(6)),
1573 	DEBUGFS_REG32(SOR_SEQ_INST(7)),
1574 	DEBUGFS_REG32(SOR_SEQ_INST(8)),
1575 	DEBUGFS_REG32(SOR_SEQ_INST(9)),
1576 	DEBUGFS_REG32(SOR_SEQ_INST(10)),
1577 	DEBUGFS_REG32(SOR_SEQ_INST(11)),
1578 	DEBUGFS_REG32(SOR_SEQ_INST(12)),
1579 	DEBUGFS_REG32(SOR_SEQ_INST(13)),
1580 	DEBUGFS_REG32(SOR_SEQ_INST(14)),
1581 	DEBUGFS_REG32(SOR_SEQ_INST(15)),
1582 	DEBUGFS_REG32(SOR_PWM_DIV),
1583 	DEBUGFS_REG32(SOR_PWM_CTL),
1584 	DEBUGFS_REG32(SOR_VCRC_A0),
1585 	DEBUGFS_REG32(SOR_VCRC_A1),
1586 	DEBUGFS_REG32(SOR_VCRC_B0),
1587 	DEBUGFS_REG32(SOR_VCRC_B1),
1588 	DEBUGFS_REG32(SOR_CCRC_A0),
1589 	DEBUGFS_REG32(SOR_CCRC_A1),
1590 	DEBUGFS_REG32(SOR_CCRC_B0),
1591 	DEBUGFS_REG32(SOR_CCRC_B1),
1592 	DEBUGFS_REG32(SOR_EDATA_A0),
1593 	DEBUGFS_REG32(SOR_EDATA_A1),
1594 	DEBUGFS_REG32(SOR_EDATA_B0),
1595 	DEBUGFS_REG32(SOR_EDATA_B1),
1596 	DEBUGFS_REG32(SOR_COUNT_A0),
1597 	DEBUGFS_REG32(SOR_COUNT_A1),
1598 	DEBUGFS_REG32(SOR_COUNT_B0),
1599 	DEBUGFS_REG32(SOR_COUNT_B1),
1600 	DEBUGFS_REG32(SOR_DEBUG_A0),
1601 	DEBUGFS_REG32(SOR_DEBUG_A1),
1602 	DEBUGFS_REG32(SOR_DEBUG_B0),
1603 	DEBUGFS_REG32(SOR_DEBUG_B1),
1604 	DEBUGFS_REG32(SOR_TRIG),
1605 	DEBUGFS_REG32(SOR_MSCHECK),
1606 	DEBUGFS_REG32(SOR_XBAR_CTRL),
1607 	DEBUGFS_REG32(SOR_XBAR_POL),
1608 	DEBUGFS_REG32(SOR_DP_LINKCTL0),
1609 	DEBUGFS_REG32(SOR_DP_LINKCTL1),
1610 	DEBUGFS_REG32(SOR_LANE_DRIVE_CURRENT0),
1611 	DEBUGFS_REG32(SOR_LANE_DRIVE_CURRENT1),
1612 	DEBUGFS_REG32(SOR_LANE4_DRIVE_CURRENT0),
1613 	DEBUGFS_REG32(SOR_LANE4_DRIVE_CURRENT1),
1614 	DEBUGFS_REG32(SOR_LANE_PREEMPHASIS0),
1615 	DEBUGFS_REG32(SOR_LANE_PREEMPHASIS1),
1616 	DEBUGFS_REG32(SOR_LANE4_PREEMPHASIS0),
1617 	DEBUGFS_REG32(SOR_LANE4_PREEMPHASIS1),
1618 	DEBUGFS_REG32(SOR_LANE_POSTCURSOR0),
1619 	DEBUGFS_REG32(SOR_LANE_POSTCURSOR1),
1620 	DEBUGFS_REG32(SOR_DP_CONFIG0),
1621 	DEBUGFS_REG32(SOR_DP_CONFIG1),
1622 	DEBUGFS_REG32(SOR_DP_MN0),
1623 	DEBUGFS_REG32(SOR_DP_MN1),
1624 	DEBUGFS_REG32(SOR_DP_PADCTL0),
1625 	DEBUGFS_REG32(SOR_DP_PADCTL1),
1626 	DEBUGFS_REG32(SOR_DP_PADCTL2),
1627 	DEBUGFS_REG32(SOR_DP_DEBUG0),
1628 	DEBUGFS_REG32(SOR_DP_DEBUG1),
1629 	DEBUGFS_REG32(SOR_DP_SPARE0),
1630 	DEBUGFS_REG32(SOR_DP_SPARE1),
1631 	DEBUGFS_REG32(SOR_DP_AUDIO_CTRL),
1632 	DEBUGFS_REG32(SOR_DP_AUDIO_HBLANK_SYMBOLS),
1633 	DEBUGFS_REG32(SOR_DP_AUDIO_VBLANK_SYMBOLS),
1634 	DEBUGFS_REG32(SOR_DP_GENERIC_INFOFRAME_HEADER),
1635 	DEBUGFS_REG32(SOR_DP_GENERIC_INFOFRAME_SUBPACK0),
1636 	DEBUGFS_REG32(SOR_DP_GENERIC_INFOFRAME_SUBPACK1),
1637 	DEBUGFS_REG32(SOR_DP_GENERIC_INFOFRAME_SUBPACK2),
1638 	DEBUGFS_REG32(SOR_DP_GENERIC_INFOFRAME_SUBPACK3),
1639 	DEBUGFS_REG32(SOR_DP_GENERIC_INFOFRAME_SUBPACK4),
1640 	DEBUGFS_REG32(SOR_DP_GENERIC_INFOFRAME_SUBPACK5),
1641 	DEBUGFS_REG32(SOR_DP_GENERIC_INFOFRAME_SUBPACK6),
1642 	DEBUGFS_REG32(SOR_DP_TPG),
1643 	DEBUGFS_REG32(SOR_DP_TPG_CONFIG),
1644 	DEBUGFS_REG32(SOR_DP_LQ_CSTM0),
1645 	DEBUGFS_REG32(SOR_DP_LQ_CSTM1),
1646 	DEBUGFS_REG32(SOR_DP_LQ_CSTM2),
1647 };
1648 
1649 static int tegra_sor_show_regs(struct seq_file *s, void *data)
1650 {
1651 	struct drm_info_node *node = s->private;
1652 	struct tegra_sor *sor = node->info_ent->data;
1653 	struct drm_crtc *crtc = sor->output.encoder.crtc;
1654 	struct drm_device *drm = node->minor->dev;
1655 	unsigned int i;
1656 	int err = 0;
1657 
1658 	drm_modeset_lock_all(drm);
1659 
1660 	if (!crtc || !crtc->state->active) {
1661 		err = -EBUSY;
1662 		goto unlock;
1663 	}
1664 
1665 	for (i = 0; i < ARRAY_SIZE(tegra_sor_regs); i++) {
1666 		unsigned int offset = tegra_sor_regs[i].offset;
1667 
1668 		seq_printf(s, "%-38s %#05x %08x\n", tegra_sor_regs[i].name,
1669 			   offset, tegra_sor_readl(sor, offset));
1670 	}
1671 
1672 unlock:
1673 	drm_modeset_unlock_all(drm);
1674 	return err;
1675 }
1676 
1677 static const struct drm_info_list debugfs_files[] = {
1678 	{ "crc", tegra_sor_show_crc, 0, NULL },
1679 	{ "regs", tegra_sor_show_regs, 0, NULL },
1680 };
1681 
1682 static int tegra_sor_late_register(struct drm_connector *connector)
1683 {
1684 	struct tegra_output *output = connector_to_output(connector);
1685 	unsigned int i, count = ARRAY_SIZE(debugfs_files);
1686 	struct drm_minor *minor = connector->dev->primary;
1687 	struct dentry *root = connector->debugfs_entry;
1688 	struct tegra_sor *sor = to_sor(output);
1689 
1690 	sor->debugfs_files = kmemdup(debugfs_files, sizeof(debugfs_files),
1691 				     GFP_KERNEL);
1692 	if (!sor->debugfs_files)
1693 		return -ENOMEM;
1694 
1695 	for (i = 0; i < count; i++)
1696 		sor->debugfs_files[i].data = sor;
1697 
1698 	drm_debugfs_create_files(sor->debugfs_files, count, root, minor);
1699 
1700 	return 0;
1701 }
1702 
1703 static void tegra_sor_early_unregister(struct drm_connector *connector)
1704 {
1705 	struct tegra_output *output = connector_to_output(connector);
1706 	unsigned int count = ARRAY_SIZE(debugfs_files);
1707 	struct tegra_sor *sor = to_sor(output);
1708 
1709 	drm_debugfs_remove_files(sor->debugfs_files, count,
1710 				 connector->dev->primary);
1711 	kfree(sor->debugfs_files);
1712 	sor->debugfs_files = NULL;
1713 }
1714 
1715 static void tegra_sor_connector_reset(struct drm_connector *connector)
1716 {
1717 	struct tegra_sor_state *state;
1718 
1719 	state = kzalloc(sizeof(*state), GFP_KERNEL);
1720 	if (!state)
1721 		return;
1722 
1723 	if (connector->state) {
1724 		__drm_atomic_helper_connector_destroy_state(connector->state);
1725 		kfree(connector->state);
1726 	}
1727 
1728 	__drm_atomic_helper_connector_reset(connector, &state->base);
1729 }
1730 
1731 static enum drm_connector_status
1732 tegra_sor_connector_detect(struct drm_connector *connector, bool force)
1733 {
1734 	struct tegra_output *output = connector_to_output(connector);
1735 	struct tegra_sor *sor = to_sor(output);
1736 
1737 	if (sor->aux)
1738 		return drm_dp_aux_detect(sor->aux);
1739 
1740 	return tegra_output_connector_detect(connector, force);
1741 }
1742 
1743 static struct drm_connector_state *
1744 tegra_sor_connector_duplicate_state(struct drm_connector *connector)
1745 {
1746 	struct tegra_sor_state *state = to_sor_state(connector->state);
1747 	struct tegra_sor_state *copy;
1748 
1749 	copy = kmemdup(state, sizeof(*state), GFP_KERNEL);
1750 	if (!copy)
1751 		return NULL;
1752 
1753 	__drm_atomic_helper_connector_duplicate_state(connector, &copy->base);
1754 
1755 	return &copy->base;
1756 }
1757 
1758 static const struct drm_connector_funcs tegra_sor_connector_funcs = {
1759 	.reset = tegra_sor_connector_reset,
1760 	.detect = tegra_sor_connector_detect,
1761 	.fill_modes = drm_helper_probe_single_connector_modes,
1762 	.destroy = tegra_output_connector_destroy,
1763 	.atomic_duplicate_state = tegra_sor_connector_duplicate_state,
1764 	.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
1765 	.late_register = tegra_sor_late_register,
1766 	.early_unregister = tegra_sor_early_unregister,
1767 };
1768 
1769 static int tegra_sor_connector_get_modes(struct drm_connector *connector)
1770 {
1771 	struct tegra_output *output = connector_to_output(connector);
1772 	struct tegra_sor *sor = to_sor(output);
1773 	int err;
1774 
1775 	if (sor->aux)
1776 		drm_dp_aux_enable(sor->aux);
1777 
1778 	err = tegra_output_connector_get_modes(connector);
1779 
1780 	if (sor->aux)
1781 		drm_dp_aux_disable(sor->aux);
1782 
1783 	return err;
1784 }
1785 
1786 static enum drm_mode_status
1787 tegra_sor_connector_mode_valid(struct drm_connector *connector,
1788 			       struct drm_display_mode *mode)
1789 {
1790 	return MODE_OK;
1791 }
1792 
1793 static const struct drm_connector_helper_funcs tegra_sor_connector_helper_funcs = {
1794 	.get_modes = tegra_sor_connector_get_modes,
1795 	.mode_valid = tegra_sor_connector_mode_valid,
1796 };
1797 
1798 static int
1799 tegra_sor_encoder_atomic_check(struct drm_encoder *encoder,
1800 			       struct drm_crtc_state *crtc_state,
1801 			       struct drm_connector_state *conn_state)
1802 {
1803 	struct tegra_output *output = encoder_to_output(encoder);
1804 	struct tegra_sor_state *state = to_sor_state(conn_state);
1805 	struct tegra_dc *dc = to_tegra_dc(conn_state->crtc);
1806 	unsigned long pclk = crtc_state->mode.clock * 1000;
1807 	struct tegra_sor *sor = to_sor(output);
1808 	struct drm_display_info *info;
1809 	int err;
1810 
1811 	info = &output->connector.display_info;
1812 
1813 	/*
1814 	 * For HBR2 modes, the SOR brick needs to use the x20 multiplier, so
1815 	 * the pixel clock must be corrected accordingly.
1816 	 */
1817 	if (pclk >= 340000000) {
1818 		state->link_speed = 20;
1819 		state->pclk = pclk / 2;
1820 	} else {
1821 		state->link_speed = 10;
1822 		state->pclk = pclk;
1823 	}
1824 
1825 	err = tegra_dc_state_setup_clock(dc, crtc_state, sor->clk_parent,
1826 					 pclk, 0);
1827 	if (err < 0) {
1828 		dev_err(output->dev, "failed to setup CRTC state: %d\n", err);
1829 		return err;
1830 	}
1831 
1832 	switch (info->bpc) {
1833 	case 8:
1834 	case 6:
1835 		state->bpc = info->bpc;
1836 		break;
1837 
1838 	default:
1839 		DRM_DEBUG_KMS("%u bits-per-color not supported\n", info->bpc);
1840 		state->bpc = 8;
1841 		break;
1842 	}
1843 
1844 	return 0;
1845 }
1846 
1847 static inline u32 tegra_sor_hdmi_subpack(const u8 *ptr, size_t size)
1848 {
1849 	u32 value = 0;
1850 	size_t i;
1851 
1852 	for (i = size; i > 0; i--)
1853 		value = (value << 8) | ptr[i - 1];
1854 
1855 	return value;
1856 }
1857 
1858 static void tegra_sor_hdmi_write_infopack(struct tegra_sor *sor,
1859 					  const void *data, size_t size)
1860 {
1861 	const u8 *ptr = data;
1862 	unsigned long offset;
1863 	size_t i, j;
1864 	u32 value;
1865 
1866 	switch (ptr[0]) {
1867 	case HDMI_INFOFRAME_TYPE_AVI:
1868 		offset = SOR_HDMI_AVI_INFOFRAME_HEADER;
1869 		break;
1870 
1871 	case HDMI_INFOFRAME_TYPE_AUDIO:
1872 		offset = SOR_HDMI_AUDIO_INFOFRAME_HEADER;
1873 		break;
1874 
1875 	case HDMI_INFOFRAME_TYPE_VENDOR:
1876 		offset = SOR_HDMI_VSI_INFOFRAME_HEADER;
1877 		break;
1878 
1879 	default:
1880 		dev_err(sor->dev, "unsupported infoframe type: %02x\n",
1881 			ptr[0]);
1882 		return;
1883 	}
1884 
1885 	value = INFOFRAME_HEADER_TYPE(ptr[0]) |
1886 		INFOFRAME_HEADER_VERSION(ptr[1]) |
1887 		INFOFRAME_HEADER_LEN(ptr[2]);
1888 	tegra_sor_writel(sor, value, offset);
1889 	offset++;
1890 
1891 	/*
1892 	 * Each subpack contains 7 bytes, divided into:
1893 	 * - subpack_low: bytes 0 - 3
1894 	 * - subpack_high: bytes 4 - 6 (with byte 7 padded to 0x00)
1895 	 */
1896 	for (i = 3, j = 0; i < size; i += 7, j += 8) {
1897 		size_t rem = size - i, num = min_t(size_t, rem, 4);
1898 
1899 		value = tegra_sor_hdmi_subpack(&ptr[i], num);
1900 		tegra_sor_writel(sor, value, offset++);
1901 
1902 		num = min_t(size_t, rem - num, 3);
1903 
1904 		value = tegra_sor_hdmi_subpack(&ptr[i + 4], num);
1905 		tegra_sor_writel(sor, value, offset++);
1906 	}
1907 }
1908 
1909 static int
1910 tegra_sor_hdmi_setup_avi_infoframe(struct tegra_sor *sor,
1911 				   const struct drm_display_mode *mode)
1912 {
1913 	u8 buffer[HDMI_INFOFRAME_SIZE(AVI)];
1914 	struct hdmi_avi_infoframe frame;
1915 	u32 value;
1916 	int err;
1917 
1918 	/* disable AVI infoframe */
1919 	value = tegra_sor_readl(sor, SOR_HDMI_AVI_INFOFRAME_CTRL);
1920 	value &= ~INFOFRAME_CTRL_SINGLE;
1921 	value &= ~INFOFRAME_CTRL_OTHER;
1922 	value &= ~INFOFRAME_CTRL_ENABLE;
1923 	tegra_sor_writel(sor, value, SOR_HDMI_AVI_INFOFRAME_CTRL);
1924 
1925 	err = drm_hdmi_avi_infoframe_from_display_mode(&frame,
1926 						       &sor->output.connector, mode);
1927 	if (err < 0) {
1928 		dev_err(sor->dev, "failed to setup AVI infoframe: %d\n", err);
1929 		return err;
1930 	}
1931 
1932 	err = hdmi_avi_infoframe_pack(&frame, buffer, sizeof(buffer));
1933 	if (err < 0) {
1934 		dev_err(sor->dev, "failed to pack AVI infoframe: %d\n", err);
1935 		return err;
1936 	}
1937 
1938 	tegra_sor_hdmi_write_infopack(sor, buffer, err);
1939 
1940 	/* enable AVI infoframe */
1941 	value = tegra_sor_readl(sor, SOR_HDMI_AVI_INFOFRAME_CTRL);
1942 	value |= INFOFRAME_CTRL_CHECKSUM_ENABLE;
1943 	value |= INFOFRAME_CTRL_ENABLE;
1944 	tegra_sor_writel(sor, value, SOR_HDMI_AVI_INFOFRAME_CTRL);
1945 
1946 	return 0;
1947 }
1948 
1949 static void tegra_sor_write_eld(struct tegra_sor *sor)
1950 {
1951 	size_t length = drm_eld_size(sor->output.connector.eld), i;
1952 
1953 	for (i = 0; i < length; i++)
1954 		tegra_sor_writel(sor, i << 8 | sor->output.connector.eld[i],
1955 				 SOR_AUDIO_HDA_ELD_BUFWR);
1956 
1957 	/*
1958 	 * The HDA codec will always report an ELD buffer size of 96 bytes and
1959 	 * the HDA codec driver will check that each byte read from the buffer
1960 	 * is valid. Therefore every byte must be written, even if no 96 bytes
1961 	 * were parsed from EDID.
1962 	 */
1963 	for (i = length; i < 96; i++)
1964 		tegra_sor_writel(sor, i << 8 | 0, SOR_AUDIO_HDA_ELD_BUFWR);
1965 }
1966 
1967 static void tegra_sor_audio_prepare(struct tegra_sor *sor)
1968 {
1969 	u32 value;
1970 
1971 	/*
1972 	 * Enable and unmask the HDA codec SCRATCH0 register interrupt. This
1973 	 * is used for interoperability between the HDA codec driver and the
1974 	 * HDMI/DP driver.
1975 	 */
1976 	value = SOR_INT_CODEC_SCRATCH1 | SOR_INT_CODEC_SCRATCH0;
1977 	tegra_sor_writel(sor, value, SOR_INT_ENABLE);
1978 	tegra_sor_writel(sor, value, SOR_INT_MASK);
1979 
1980 	tegra_sor_write_eld(sor);
1981 
1982 	value = SOR_AUDIO_HDA_PRESENSE_ELDV | SOR_AUDIO_HDA_PRESENSE_PD;
1983 	tegra_sor_writel(sor, value, SOR_AUDIO_HDA_PRESENSE);
1984 }
1985 
1986 static void tegra_sor_audio_unprepare(struct tegra_sor *sor)
1987 {
1988 	tegra_sor_writel(sor, 0, SOR_AUDIO_HDA_PRESENSE);
1989 	tegra_sor_writel(sor, 0, SOR_INT_MASK);
1990 	tegra_sor_writel(sor, 0, SOR_INT_ENABLE);
1991 }
1992 
1993 static void tegra_sor_audio_enable(struct tegra_sor *sor)
1994 {
1995 	u32 value;
1996 
1997 	value = tegra_sor_readl(sor, SOR_AUDIO_CNTRL);
1998 
1999 	/* select HDA audio input */
2000 	value &= ~SOR_AUDIO_CNTRL_SOURCE_SELECT(SOURCE_SELECT_MASK);
2001 	value |= SOR_AUDIO_CNTRL_SOURCE_SELECT(SOURCE_SELECT_HDA);
2002 
2003 	/* inject null samples */
2004 	if (sor->format.channels != 2)
2005 		value &= ~SOR_AUDIO_CNTRL_INJECT_NULLSMPL;
2006 	else
2007 		value |= SOR_AUDIO_CNTRL_INJECT_NULLSMPL;
2008 
2009 	value |= SOR_AUDIO_CNTRL_AFIFO_FLUSH;
2010 
2011 	tegra_sor_writel(sor, value, SOR_AUDIO_CNTRL);
2012 
2013 	/* enable advertising HBR capability */
2014 	tegra_sor_writel(sor, SOR_AUDIO_SPARE_HBR_ENABLE, SOR_AUDIO_SPARE);
2015 }
2016 
2017 static int tegra_sor_hdmi_enable_audio_infoframe(struct tegra_sor *sor)
2018 {
2019 	u8 buffer[HDMI_INFOFRAME_SIZE(AUDIO)];
2020 	struct hdmi_audio_infoframe frame;
2021 	u32 value;
2022 	int err;
2023 
2024 	err = hdmi_audio_infoframe_init(&frame);
2025 	if (err < 0) {
2026 		dev_err(sor->dev, "failed to setup audio infoframe: %d\n", err);
2027 		return err;
2028 	}
2029 
2030 	frame.channels = sor->format.channels;
2031 
2032 	err = hdmi_audio_infoframe_pack(&frame, buffer, sizeof(buffer));
2033 	if (err < 0) {
2034 		dev_err(sor->dev, "failed to pack audio infoframe: %d\n", err);
2035 		return err;
2036 	}
2037 
2038 	tegra_sor_hdmi_write_infopack(sor, buffer, err);
2039 
2040 	value = tegra_sor_readl(sor, SOR_HDMI_AUDIO_INFOFRAME_CTRL);
2041 	value |= INFOFRAME_CTRL_CHECKSUM_ENABLE;
2042 	value |= INFOFRAME_CTRL_ENABLE;
2043 	tegra_sor_writel(sor, value, SOR_HDMI_AUDIO_INFOFRAME_CTRL);
2044 
2045 	return 0;
2046 }
2047 
2048 static void tegra_sor_hdmi_audio_enable(struct tegra_sor *sor)
2049 {
2050 	u32 value;
2051 
2052 	tegra_sor_audio_enable(sor);
2053 
2054 	tegra_sor_writel(sor, 0, SOR_HDMI_ACR_CTRL);
2055 
2056 	value = SOR_HDMI_SPARE_ACR_PRIORITY_HIGH |
2057 		SOR_HDMI_SPARE_CTS_RESET(1) |
2058 		SOR_HDMI_SPARE_HW_CTS_ENABLE;
2059 	tegra_sor_writel(sor, value, SOR_HDMI_SPARE);
2060 
2061 	/* enable HW CTS */
2062 	value = SOR_HDMI_ACR_SUBPACK_LOW_SB1(0);
2063 	tegra_sor_writel(sor, value, SOR_HDMI_ACR_0441_SUBPACK_LOW);
2064 
2065 	/* allow packet to be sent */
2066 	value = SOR_HDMI_ACR_SUBPACK_HIGH_ENABLE;
2067 	tegra_sor_writel(sor, value, SOR_HDMI_ACR_0441_SUBPACK_HIGH);
2068 
2069 	/* reset N counter and enable lookup */
2070 	value = SOR_HDMI_AUDIO_N_RESET | SOR_HDMI_AUDIO_N_LOOKUP;
2071 	tegra_sor_writel(sor, value, SOR_HDMI_AUDIO_N);
2072 
2073 	value = (24000 * 4096) / (128 * sor->format.sample_rate / 1000);
2074 	tegra_sor_writel(sor, value, SOR_AUDIO_AVAL_0320);
2075 	tegra_sor_writel(sor, 4096, SOR_AUDIO_NVAL_0320);
2076 
2077 	tegra_sor_writel(sor, 20000, SOR_AUDIO_AVAL_0441);
2078 	tegra_sor_writel(sor, 4704, SOR_AUDIO_NVAL_0441);
2079 
2080 	tegra_sor_writel(sor, 20000, SOR_AUDIO_AVAL_0882);
2081 	tegra_sor_writel(sor, 9408, SOR_AUDIO_NVAL_0882);
2082 
2083 	tegra_sor_writel(sor, 20000, SOR_AUDIO_AVAL_1764);
2084 	tegra_sor_writel(sor, 18816, SOR_AUDIO_NVAL_1764);
2085 
2086 	value = (24000 * 6144) / (128 * sor->format.sample_rate / 1000);
2087 	tegra_sor_writel(sor, value, SOR_AUDIO_AVAL_0480);
2088 	tegra_sor_writel(sor, 6144, SOR_AUDIO_NVAL_0480);
2089 
2090 	value = (24000 * 12288) / (128 * sor->format.sample_rate / 1000);
2091 	tegra_sor_writel(sor, value, SOR_AUDIO_AVAL_0960);
2092 	tegra_sor_writel(sor, 12288, SOR_AUDIO_NVAL_0960);
2093 
2094 	value = (24000 * 24576) / (128 * sor->format.sample_rate / 1000);
2095 	tegra_sor_writel(sor, value, SOR_AUDIO_AVAL_1920);
2096 	tegra_sor_writel(sor, 24576, SOR_AUDIO_NVAL_1920);
2097 
2098 	value = tegra_sor_readl(sor, SOR_HDMI_AUDIO_N);
2099 	value &= ~SOR_HDMI_AUDIO_N_RESET;
2100 	tegra_sor_writel(sor, value, SOR_HDMI_AUDIO_N);
2101 
2102 	tegra_sor_hdmi_enable_audio_infoframe(sor);
2103 }
2104 
2105 static void tegra_sor_hdmi_disable_audio_infoframe(struct tegra_sor *sor)
2106 {
2107 	u32 value;
2108 
2109 	value = tegra_sor_readl(sor, SOR_HDMI_AUDIO_INFOFRAME_CTRL);
2110 	value &= ~INFOFRAME_CTRL_ENABLE;
2111 	tegra_sor_writel(sor, value, SOR_HDMI_AUDIO_INFOFRAME_CTRL);
2112 }
2113 
2114 static void tegra_sor_hdmi_audio_disable(struct tegra_sor *sor)
2115 {
2116 	tegra_sor_hdmi_disable_audio_infoframe(sor);
2117 }
2118 
2119 static struct tegra_sor_hdmi_settings *
2120 tegra_sor_hdmi_find_settings(struct tegra_sor *sor, unsigned long frequency)
2121 {
2122 	unsigned int i;
2123 
2124 	for (i = 0; i < sor->num_settings; i++)
2125 		if (frequency <= sor->settings[i].frequency)
2126 			return &sor->settings[i];
2127 
2128 	return NULL;
2129 }
2130 
2131 static void tegra_sor_hdmi_disable_scrambling(struct tegra_sor *sor)
2132 {
2133 	u32 value;
2134 
2135 	value = tegra_sor_readl(sor, SOR_HDMI2_CTRL);
2136 	value &= ~SOR_HDMI2_CTRL_CLOCK_MODE_DIV_BY_4;
2137 	value &= ~SOR_HDMI2_CTRL_SCRAMBLE;
2138 	tegra_sor_writel(sor, value, SOR_HDMI2_CTRL);
2139 }
2140 
2141 static void tegra_sor_hdmi_scdc_disable(struct tegra_sor *sor)
2142 {
2143 	drm_scdc_set_high_tmds_clock_ratio(&sor->output.connector, false);
2144 	drm_scdc_set_scrambling(&sor->output.connector, false);
2145 
2146 	tegra_sor_hdmi_disable_scrambling(sor);
2147 }
2148 
2149 static void tegra_sor_hdmi_scdc_stop(struct tegra_sor *sor)
2150 {
2151 	if (sor->scdc_enabled) {
2152 		cancel_delayed_work_sync(&sor->scdc);
2153 		tegra_sor_hdmi_scdc_disable(sor);
2154 	}
2155 }
2156 
2157 static void tegra_sor_hdmi_enable_scrambling(struct tegra_sor *sor)
2158 {
2159 	u32 value;
2160 
2161 	value = tegra_sor_readl(sor, SOR_HDMI2_CTRL);
2162 	value |= SOR_HDMI2_CTRL_CLOCK_MODE_DIV_BY_4;
2163 	value |= SOR_HDMI2_CTRL_SCRAMBLE;
2164 	tegra_sor_writel(sor, value, SOR_HDMI2_CTRL);
2165 }
2166 
2167 static void tegra_sor_hdmi_scdc_enable(struct tegra_sor *sor)
2168 {
2169 	drm_scdc_set_high_tmds_clock_ratio(&sor->output.connector, true);
2170 	drm_scdc_set_scrambling(&sor->output.connector, true);
2171 
2172 	tegra_sor_hdmi_enable_scrambling(sor);
2173 }
2174 
2175 static void tegra_sor_hdmi_scdc_work(struct work_struct *work)
2176 {
2177 	struct tegra_sor *sor = container_of(work, struct tegra_sor, scdc.work);
2178 
2179 	if (!drm_scdc_get_scrambling_status(&sor->output.connector)) {
2180 		DRM_DEBUG_KMS("SCDC not scrambled\n");
2181 		tegra_sor_hdmi_scdc_enable(sor);
2182 	}
2183 
2184 	schedule_delayed_work(&sor->scdc, msecs_to_jiffies(5000));
2185 }
2186 
2187 static void tegra_sor_hdmi_scdc_start(struct tegra_sor *sor)
2188 {
2189 	struct drm_scdc *scdc = &sor->output.connector.display_info.hdmi.scdc;
2190 	struct drm_display_mode *mode;
2191 
2192 	mode = &sor->output.encoder.crtc->state->adjusted_mode;
2193 
2194 	if (mode->clock >= 340000 && scdc->supported) {
2195 		schedule_delayed_work(&sor->scdc, msecs_to_jiffies(5000));
2196 		tegra_sor_hdmi_scdc_enable(sor);
2197 		sor->scdc_enabled = true;
2198 	}
2199 }
2200 
2201 static void tegra_sor_hdmi_disable(struct drm_encoder *encoder)
2202 {
2203 	struct tegra_output *output = encoder_to_output(encoder);
2204 	struct tegra_dc *dc = to_tegra_dc(encoder->crtc);
2205 	struct tegra_sor *sor = to_sor(output);
2206 	u32 value;
2207 	int err;
2208 
2209 	tegra_sor_audio_unprepare(sor);
2210 	tegra_sor_hdmi_scdc_stop(sor);
2211 
2212 	err = tegra_sor_detach(sor);
2213 	if (err < 0)
2214 		dev_err(sor->dev, "failed to detach SOR: %d\n", err);
2215 
2216 	tegra_sor_writel(sor, 0, SOR_STATE1);
2217 	tegra_sor_update(sor);
2218 
2219 	/* disable display to SOR clock */
2220 	value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
2221 
2222 	if (!sor->soc->has_nvdisplay)
2223 		value &= ~SOR1_TIMING_CYA;
2224 
2225 	value &= ~SOR_ENABLE(sor->index);
2226 
2227 	tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
2228 
2229 	tegra_dc_commit(dc);
2230 
2231 	err = tegra_sor_power_down(sor);
2232 	if (err < 0)
2233 		dev_err(sor->dev, "failed to power down SOR: %d\n", err);
2234 
2235 	err = tegra_io_pad_power_disable(sor->pad);
2236 	if (err < 0)
2237 		dev_err(sor->dev, "failed to power off I/O pad: %d\n", err);
2238 
2239 	host1x_client_suspend(&sor->client);
2240 }
2241 
2242 static void tegra_sor_hdmi_enable(struct drm_encoder *encoder)
2243 {
2244 	struct tegra_output *output = encoder_to_output(encoder);
2245 	unsigned int h_ref_to_sync = 1, pulse_start, max_ac;
2246 	struct tegra_dc *dc = to_tegra_dc(encoder->crtc);
2247 	struct tegra_sor_hdmi_settings *settings;
2248 	struct tegra_sor *sor = to_sor(output);
2249 	struct tegra_sor_state *state;
2250 	struct drm_display_mode *mode;
2251 	unsigned long rate, pclk;
2252 	unsigned int div, i;
2253 	u32 value;
2254 	int err;
2255 
2256 	state = to_sor_state(output->connector.state);
2257 	mode = &encoder->crtc->state->adjusted_mode;
2258 	pclk = mode->clock * 1000;
2259 
2260 	err = host1x_client_resume(&sor->client);
2261 	if (err < 0) {
2262 		dev_err(sor->dev, "failed to resume: %d\n", err);
2263 		return;
2264 	}
2265 
2266 	/* switch to safe parent clock */
2267 	err = tegra_sor_set_parent_clock(sor, sor->clk_safe);
2268 	if (err < 0) {
2269 		dev_err(sor->dev, "failed to set safe parent clock: %d\n", err);
2270 		return;
2271 	}
2272 
2273 	div = clk_get_rate(sor->clk) / 1000000 * 4;
2274 
2275 	err = tegra_io_pad_power_enable(sor->pad);
2276 	if (err < 0)
2277 		dev_err(sor->dev, "failed to power on I/O pad: %d\n", err);
2278 
2279 	usleep_range(20, 100);
2280 
2281 	value = tegra_sor_readl(sor, sor->soc->regs->pll2);
2282 	value &= ~SOR_PLL2_BANDGAP_POWERDOWN;
2283 	tegra_sor_writel(sor, value, sor->soc->regs->pll2);
2284 
2285 	usleep_range(20, 100);
2286 
2287 	value = tegra_sor_readl(sor, sor->soc->regs->pll3);
2288 	value &= ~SOR_PLL3_PLL_VDD_MODE_3V3;
2289 	tegra_sor_writel(sor, value, sor->soc->regs->pll3);
2290 
2291 	value = tegra_sor_readl(sor, sor->soc->regs->pll0);
2292 	value &= ~SOR_PLL0_VCOPD;
2293 	value &= ~SOR_PLL0_PWR;
2294 	tegra_sor_writel(sor, value, sor->soc->regs->pll0);
2295 
2296 	value = tegra_sor_readl(sor, sor->soc->regs->pll2);
2297 	value &= ~SOR_PLL2_SEQ_PLLCAPPD_ENFORCE;
2298 	tegra_sor_writel(sor, value, sor->soc->regs->pll2);
2299 
2300 	usleep_range(200, 400);
2301 
2302 	value = tegra_sor_readl(sor, sor->soc->regs->pll2);
2303 	value &= ~SOR_PLL2_POWERDOWN_OVERRIDE;
2304 	value &= ~SOR_PLL2_PORT_POWERDOWN;
2305 	tegra_sor_writel(sor, value, sor->soc->regs->pll2);
2306 
2307 	usleep_range(20, 100);
2308 
2309 	value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
2310 	value |= SOR_DP_PADCTL_PD_TXD_3 | SOR_DP_PADCTL_PD_TXD_0 |
2311 		 SOR_DP_PADCTL_PD_TXD_1 | SOR_DP_PADCTL_PD_TXD_2;
2312 	tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
2313 
2314 	while (true) {
2315 		value = tegra_sor_readl(sor, SOR_LANE_SEQ_CTL);
2316 		if ((value & SOR_LANE_SEQ_CTL_STATE_BUSY) == 0)
2317 			break;
2318 
2319 		usleep_range(250, 1000);
2320 	}
2321 
2322 	value = SOR_LANE_SEQ_CTL_TRIGGER | SOR_LANE_SEQ_CTL_SEQUENCE_DOWN |
2323 		SOR_LANE_SEQ_CTL_POWER_STATE_UP | SOR_LANE_SEQ_CTL_DELAY(5);
2324 	tegra_sor_writel(sor, value, SOR_LANE_SEQ_CTL);
2325 
2326 	while (true) {
2327 		value = tegra_sor_readl(sor, SOR_LANE_SEQ_CTL);
2328 		if ((value & SOR_LANE_SEQ_CTL_TRIGGER) == 0)
2329 			break;
2330 
2331 		usleep_range(250, 1000);
2332 	}
2333 
2334 	value = tegra_sor_readl(sor, SOR_CLK_CNTRL);
2335 	value &= ~SOR_CLK_CNTRL_DP_LINK_SPEED_MASK;
2336 	value &= ~SOR_CLK_CNTRL_DP_CLK_SEL_MASK;
2337 
2338 	if (mode->clock < 340000) {
2339 		DRM_DEBUG_KMS("setting 2.7 GHz link speed\n");
2340 		value |= SOR_CLK_CNTRL_DP_LINK_SPEED_G2_70;
2341 	} else {
2342 		DRM_DEBUG_KMS("setting 5.4 GHz link speed\n");
2343 		value |= SOR_CLK_CNTRL_DP_LINK_SPEED_G5_40;
2344 	}
2345 
2346 	value |= SOR_CLK_CNTRL_DP_CLK_SEL_SINGLE_PCLK;
2347 	tegra_sor_writel(sor, value, SOR_CLK_CNTRL);
2348 
2349 	/* SOR pad PLL stabilization time */
2350 	usleep_range(250, 1000);
2351 
2352 	value = tegra_sor_readl(sor, SOR_DP_LINKCTL0);
2353 	value &= ~SOR_DP_LINKCTL_LANE_COUNT_MASK;
2354 	value |= SOR_DP_LINKCTL_LANE_COUNT(4);
2355 	tegra_sor_writel(sor, value, SOR_DP_LINKCTL0);
2356 
2357 	value = tegra_sor_readl(sor, SOR_DP_SPARE0);
2358 	value &= ~SOR_DP_SPARE_DISP_VIDEO_PREAMBLE;
2359 	value &= ~SOR_DP_SPARE_PANEL_INTERNAL;
2360 	value &= ~SOR_DP_SPARE_SEQ_ENABLE;
2361 	value &= ~SOR_DP_SPARE_MACRO_SOR_CLK;
2362 	tegra_sor_writel(sor, value, SOR_DP_SPARE0);
2363 
2364 	value = SOR_SEQ_CTL_PU_PC(0) | SOR_SEQ_CTL_PU_PC_ALT(0) |
2365 		SOR_SEQ_CTL_PD_PC(8) | SOR_SEQ_CTL_PD_PC_ALT(8);
2366 	tegra_sor_writel(sor, value, SOR_SEQ_CTL);
2367 
2368 	value = SOR_SEQ_INST_DRIVE_PWM_OUT_LO | SOR_SEQ_INST_HALT |
2369 		SOR_SEQ_INST_WAIT_VSYNC | SOR_SEQ_INST_WAIT(1);
2370 	tegra_sor_writel(sor, value, SOR_SEQ_INST(0));
2371 	tegra_sor_writel(sor, value, SOR_SEQ_INST(8));
2372 
2373 	if (!sor->soc->has_nvdisplay) {
2374 		/* program the reference clock */
2375 		value = SOR_REFCLK_DIV_INT(div) | SOR_REFCLK_DIV_FRAC(div);
2376 		tegra_sor_writel(sor, value, SOR_REFCLK);
2377 	}
2378 
2379 	/* XXX not in TRM */
2380 	for (value = 0, i = 0; i < 5; i++)
2381 		value |= SOR_XBAR_CTRL_LINK0_XSEL(i, sor->xbar_cfg[i]) |
2382 			 SOR_XBAR_CTRL_LINK1_XSEL(i, i);
2383 
2384 	tegra_sor_writel(sor, 0x00000000, SOR_XBAR_POL);
2385 	tegra_sor_writel(sor, value, SOR_XBAR_CTRL);
2386 
2387 	/*
2388 	 * Switch the pad clock to the DP clock. Note that we cannot actually
2389 	 * do this because Tegra186 and later don't support clk_set_parent()
2390 	 * on the sorX_pad_clkout clocks. We already do the equivalent above
2391 	 * using the DP_CLK_SEL mux of the SOR_CLK_CNTRL register.
2392 	 */
2393 #if 0
2394 	err = clk_set_parent(sor->clk_pad, sor->clk_dp);
2395 	if (err < 0) {
2396 		dev_err(sor->dev, "failed to select pad parent clock: %d\n",
2397 			err);
2398 		return;
2399 	}
2400 #endif
2401 
2402 	/* switch the SOR clock to the pad clock */
2403 	err = tegra_sor_set_parent_clock(sor, sor->clk_pad);
2404 	if (err < 0) {
2405 		dev_err(sor->dev, "failed to select SOR parent clock: %d\n",
2406 			err);
2407 		return;
2408 	}
2409 
2410 	/* switch the output clock to the parent pixel clock */
2411 	err = clk_set_parent(sor->clk, sor->clk_parent);
2412 	if (err < 0) {
2413 		dev_err(sor->dev, "failed to select output parent clock: %d\n",
2414 			err);
2415 		return;
2416 	}
2417 
2418 	/* adjust clock rate for HDMI 2.0 modes */
2419 	rate = clk_get_rate(sor->clk_parent);
2420 
2421 	if (mode->clock >= 340000)
2422 		rate /= 2;
2423 
2424 	DRM_DEBUG_KMS("setting clock to %lu Hz, mode: %lu Hz\n", rate, pclk);
2425 
2426 	clk_set_rate(sor->clk, rate);
2427 
2428 	if (!sor->soc->has_nvdisplay) {
2429 		value = SOR_INPUT_CONTROL_HDMI_SRC_SELECT(dc->pipe);
2430 
2431 		/* XXX is this the proper check? */
2432 		if (mode->clock < 75000)
2433 			value |= SOR_INPUT_CONTROL_ARM_VIDEO_RANGE_LIMITED;
2434 
2435 		tegra_sor_writel(sor, value, SOR_INPUT_CONTROL);
2436 	}
2437 
2438 	max_ac = ((mode->htotal - mode->hdisplay) - SOR_REKEY - 18) / 32;
2439 
2440 	value = SOR_HDMI_CTRL_ENABLE | SOR_HDMI_CTRL_MAX_AC_PACKET(max_ac) |
2441 		SOR_HDMI_CTRL_AUDIO_LAYOUT | SOR_HDMI_CTRL_REKEY(SOR_REKEY);
2442 	tegra_sor_writel(sor, value, SOR_HDMI_CTRL);
2443 
2444 	if (!dc->soc->has_nvdisplay) {
2445 		/* H_PULSE2 setup */
2446 		pulse_start = h_ref_to_sync +
2447 			      (mode->hsync_end - mode->hsync_start) +
2448 			      (mode->htotal - mode->hsync_end) - 10;
2449 
2450 		value = PULSE_LAST_END_A | PULSE_QUAL_VACTIVE |
2451 			PULSE_POLARITY_HIGH | PULSE_MODE_NORMAL;
2452 		tegra_dc_writel(dc, value, DC_DISP_H_PULSE2_CONTROL);
2453 
2454 		value = PULSE_END(pulse_start + 8) | PULSE_START(pulse_start);
2455 		tegra_dc_writel(dc, value, DC_DISP_H_PULSE2_POSITION_A);
2456 
2457 		value = tegra_dc_readl(dc, DC_DISP_DISP_SIGNAL_OPTIONS0);
2458 		value |= H_PULSE2_ENABLE;
2459 		tegra_dc_writel(dc, value, DC_DISP_DISP_SIGNAL_OPTIONS0);
2460 	}
2461 
2462 	/* infoframe setup */
2463 	err = tegra_sor_hdmi_setup_avi_infoframe(sor, mode);
2464 	if (err < 0)
2465 		dev_err(sor->dev, "failed to setup AVI infoframe: %d\n", err);
2466 
2467 	/* XXX HDMI audio support not implemented yet */
2468 	tegra_sor_hdmi_disable_audio_infoframe(sor);
2469 
2470 	/* use single TMDS protocol */
2471 	value = tegra_sor_readl(sor, SOR_STATE1);
2472 	value &= ~SOR_STATE_ASY_PROTOCOL_MASK;
2473 	value |= SOR_STATE_ASY_PROTOCOL_SINGLE_TMDS_A;
2474 	tegra_sor_writel(sor, value, SOR_STATE1);
2475 
2476 	/* power up pad calibration */
2477 	value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
2478 	value &= ~SOR_DP_PADCTL_PAD_CAL_PD;
2479 	tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
2480 
2481 	/* production settings */
2482 	settings = tegra_sor_hdmi_find_settings(sor, mode->clock * 1000);
2483 	if (!settings) {
2484 		dev_err(sor->dev, "no settings for pixel clock %d Hz\n",
2485 			mode->clock * 1000);
2486 		return;
2487 	}
2488 
2489 	value = tegra_sor_readl(sor, sor->soc->regs->pll0);
2490 	value &= ~SOR_PLL0_ICHPMP_MASK;
2491 	value &= ~SOR_PLL0_FILTER_MASK;
2492 	value &= ~SOR_PLL0_VCOCAP_MASK;
2493 	value |= SOR_PLL0_ICHPMP(settings->ichpmp);
2494 	value |= SOR_PLL0_FILTER(settings->filter);
2495 	value |= SOR_PLL0_VCOCAP(settings->vcocap);
2496 	tegra_sor_writel(sor, value, sor->soc->regs->pll0);
2497 
2498 	/* XXX not in TRM */
2499 	value = tegra_sor_readl(sor, sor->soc->regs->pll1);
2500 	value &= ~SOR_PLL1_LOADADJ_MASK;
2501 	value &= ~SOR_PLL1_TMDS_TERMADJ_MASK;
2502 	value |= SOR_PLL1_LOADADJ(settings->loadadj);
2503 	value |= SOR_PLL1_TMDS_TERMADJ(settings->tmds_termadj);
2504 	value |= SOR_PLL1_TMDS_TERM;
2505 	tegra_sor_writel(sor, value, sor->soc->regs->pll1);
2506 
2507 	value = tegra_sor_readl(sor, sor->soc->regs->pll3);
2508 	value &= ~SOR_PLL3_BG_TEMP_COEF_MASK;
2509 	value &= ~SOR_PLL3_BG_VREF_LEVEL_MASK;
2510 	value &= ~SOR_PLL3_AVDD10_LEVEL_MASK;
2511 	value &= ~SOR_PLL3_AVDD14_LEVEL_MASK;
2512 	value |= SOR_PLL3_BG_TEMP_COEF(settings->bg_temp_coef);
2513 	value |= SOR_PLL3_BG_VREF_LEVEL(settings->bg_vref_level);
2514 	value |= SOR_PLL3_AVDD10_LEVEL(settings->avdd10_level);
2515 	value |= SOR_PLL3_AVDD14_LEVEL(settings->avdd14_level);
2516 	tegra_sor_writel(sor, value, sor->soc->regs->pll3);
2517 
2518 	value = settings->drive_current[3] << 24 |
2519 		settings->drive_current[2] << 16 |
2520 		settings->drive_current[1] <<  8 |
2521 		settings->drive_current[0] <<  0;
2522 	tegra_sor_writel(sor, value, SOR_LANE_DRIVE_CURRENT0);
2523 
2524 	value = settings->preemphasis[3] << 24 |
2525 		settings->preemphasis[2] << 16 |
2526 		settings->preemphasis[1] <<  8 |
2527 		settings->preemphasis[0] <<  0;
2528 	tegra_sor_writel(sor, value, SOR_LANE_PREEMPHASIS0);
2529 
2530 	value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
2531 	value &= ~SOR_DP_PADCTL_TX_PU_MASK;
2532 	value |= SOR_DP_PADCTL_TX_PU_ENABLE;
2533 	value |= SOR_DP_PADCTL_TX_PU(settings->tx_pu_value);
2534 	tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
2535 
2536 	value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl2);
2537 	value &= ~SOR_DP_PADCTL_SPAREPLL_MASK;
2538 	value |= SOR_DP_PADCTL_SPAREPLL(settings->sparepll);
2539 	tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl2);
2540 
2541 	/* power down pad calibration */
2542 	value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0);
2543 	value |= SOR_DP_PADCTL_PAD_CAL_PD;
2544 	tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0);
2545 
2546 	if (!dc->soc->has_nvdisplay) {
2547 		/* miscellaneous display controller settings */
2548 		value = VSYNC_H_POSITION(1);
2549 		tegra_dc_writel(dc, value, DC_DISP_DISP_TIMING_OPTIONS);
2550 	}
2551 
2552 	value = tegra_dc_readl(dc, DC_DISP_DISP_COLOR_CONTROL);
2553 	value &= ~DITHER_CONTROL_MASK;
2554 	value &= ~BASE_COLOR_SIZE_MASK;
2555 
2556 	switch (state->bpc) {
2557 	case 6:
2558 		value |= BASE_COLOR_SIZE_666;
2559 		break;
2560 
2561 	case 8:
2562 		value |= BASE_COLOR_SIZE_888;
2563 		break;
2564 
2565 	case 10:
2566 		value |= BASE_COLOR_SIZE_101010;
2567 		break;
2568 
2569 	case 12:
2570 		value |= BASE_COLOR_SIZE_121212;
2571 		break;
2572 
2573 	default:
2574 		WARN(1, "%u bits-per-color not supported\n", state->bpc);
2575 		value |= BASE_COLOR_SIZE_888;
2576 		break;
2577 	}
2578 
2579 	tegra_dc_writel(dc, value, DC_DISP_DISP_COLOR_CONTROL);
2580 
2581 	/* XXX set display head owner */
2582 	value = tegra_sor_readl(sor, SOR_STATE1);
2583 	value &= ~SOR_STATE_ASY_OWNER_MASK;
2584 	value |= SOR_STATE_ASY_OWNER(1 + dc->pipe);
2585 	tegra_sor_writel(sor, value, SOR_STATE1);
2586 
2587 	err = tegra_sor_power_up(sor, 250);
2588 	if (err < 0)
2589 		dev_err(sor->dev, "failed to power up SOR: %d\n", err);
2590 
2591 	/* configure dynamic range of output */
2592 	value = tegra_sor_readl(sor, sor->soc->regs->head_state0 + dc->pipe);
2593 	value &= ~SOR_HEAD_STATE_RANGECOMPRESS_MASK;
2594 	value &= ~SOR_HEAD_STATE_DYNRANGE_MASK;
2595 	tegra_sor_writel(sor, value, sor->soc->regs->head_state0 + dc->pipe);
2596 
2597 	/* configure colorspace */
2598 	value = tegra_sor_readl(sor, sor->soc->regs->head_state0 + dc->pipe);
2599 	value &= ~SOR_HEAD_STATE_COLORSPACE_MASK;
2600 	value |= SOR_HEAD_STATE_COLORSPACE_RGB;
2601 	tegra_sor_writel(sor, value, sor->soc->regs->head_state0 + dc->pipe);
2602 
2603 	tegra_sor_mode_set(sor, mode, state);
2604 
2605 	tegra_sor_update(sor);
2606 
2607 	/* program preamble timing in SOR (XXX) */
2608 	value = tegra_sor_readl(sor, SOR_DP_SPARE0);
2609 	value &= ~SOR_DP_SPARE_DISP_VIDEO_PREAMBLE;
2610 	tegra_sor_writel(sor, value, SOR_DP_SPARE0);
2611 
2612 	err = tegra_sor_attach(sor);
2613 	if (err < 0)
2614 		dev_err(sor->dev, "failed to attach SOR: %d\n", err);
2615 
2616 	/* enable display to SOR clock and generate HDMI preamble */
2617 	value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
2618 
2619 	if (!sor->soc->has_nvdisplay)
2620 		value |= SOR1_TIMING_CYA;
2621 
2622 	value |= SOR_ENABLE(sor->index);
2623 
2624 	tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
2625 
2626 	if (dc->soc->has_nvdisplay) {
2627 		value = tegra_dc_readl(dc, DC_DISP_CORE_SOR_SET_CONTROL(sor->index));
2628 		value &= ~PROTOCOL_MASK;
2629 		value |= PROTOCOL_SINGLE_TMDS_A;
2630 		tegra_dc_writel(dc, value, DC_DISP_CORE_SOR_SET_CONTROL(sor->index));
2631 	}
2632 
2633 	tegra_dc_commit(dc);
2634 
2635 	err = tegra_sor_wakeup(sor);
2636 	if (err < 0)
2637 		dev_err(sor->dev, "failed to wakeup SOR: %d\n", err);
2638 
2639 	tegra_sor_hdmi_scdc_start(sor);
2640 	tegra_sor_audio_prepare(sor);
2641 }
2642 
2643 static const struct drm_encoder_helper_funcs tegra_sor_hdmi_helpers = {
2644 	.disable = tegra_sor_hdmi_disable,
2645 	.enable = tegra_sor_hdmi_enable,
2646 	.atomic_check = tegra_sor_encoder_atomic_check,
2647 };
2648 
2649 static void tegra_sor_dp_disable(struct drm_encoder *encoder)
2650 {
2651 	struct tegra_output *output = encoder_to_output(encoder);
2652 	struct tegra_dc *dc = to_tegra_dc(encoder->crtc);
2653 	struct tegra_sor *sor = to_sor(output);
2654 	u32 value;
2655 	int err;
2656 
2657 	if (output->panel)
2658 		drm_panel_disable(output->panel);
2659 
2660 	/*
2661 	 * Do not attempt to power down a DP link if we're not connected since
2662 	 * the AUX transactions would just be timing out.
2663 	 */
2664 	if (output->connector.status != connector_status_disconnected) {
2665 		err = drm_dp_link_power_down(sor->aux, &sor->link);
2666 		if (err < 0)
2667 			dev_err(sor->dev, "failed to power down link: %d\n",
2668 				err);
2669 	}
2670 
2671 	err = tegra_sor_detach(sor);
2672 	if (err < 0)
2673 		dev_err(sor->dev, "failed to detach SOR: %d\n", err);
2674 
2675 	tegra_sor_writel(sor, 0, SOR_STATE1);
2676 	tegra_sor_update(sor);
2677 
2678 	value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
2679 	value &= ~SOR_ENABLE(sor->index);
2680 	tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
2681 	tegra_dc_commit(dc);
2682 
2683 	value = tegra_sor_readl(sor, SOR_STATE1);
2684 	value &= ~SOR_STATE_ASY_PROTOCOL_MASK;
2685 	value &= ~SOR_STATE_ASY_SUBOWNER_MASK;
2686 	value &= ~SOR_STATE_ASY_OWNER_MASK;
2687 	tegra_sor_writel(sor, value, SOR_STATE1);
2688 	tegra_sor_update(sor);
2689 
2690 	/* switch to safe parent clock */
2691 	err = tegra_sor_set_parent_clock(sor, sor->clk_safe);
2692 	if (err < 0)
2693 		dev_err(sor->dev, "failed to set safe clock: %d\n", err);
2694 
2695 	err = tegra_sor_power_down(sor);
2696 	if (err < 0)
2697 		dev_err(sor->dev, "failed to power down SOR: %d\n", err);
2698 
2699 	err = tegra_io_pad_power_disable(sor->pad);
2700 	if (err < 0)
2701 		dev_err(sor->dev, "failed to power off I/O pad: %d\n", err);
2702 
2703 	err = drm_dp_aux_disable(sor->aux);
2704 	if (err < 0)
2705 		dev_err(sor->dev, "failed disable DPAUX: %d\n", err);
2706 
2707 	if (output->panel)
2708 		drm_panel_unprepare(output->panel);
2709 
2710 	host1x_client_suspend(&sor->client);
2711 }
2712 
2713 static void tegra_sor_dp_enable(struct drm_encoder *encoder)
2714 {
2715 	struct tegra_output *output = encoder_to_output(encoder);
2716 	struct tegra_dc *dc = to_tegra_dc(encoder->crtc);
2717 	struct tegra_sor *sor = to_sor(output);
2718 	struct tegra_sor_config config;
2719 	struct tegra_sor_state *state;
2720 	struct drm_display_mode *mode;
2721 	struct drm_display_info *info;
2722 	unsigned int i;
2723 	u32 value;
2724 	int err;
2725 
2726 	state = to_sor_state(output->connector.state);
2727 	mode = &encoder->crtc->state->adjusted_mode;
2728 	info = &output->connector.display_info;
2729 
2730 	err = host1x_client_resume(&sor->client);
2731 	if (err < 0) {
2732 		dev_err(sor->dev, "failed to resume: %d\n", err);
2733 		return;
2734 	}
2735 
2736 	/* switch to safe parent clock */
2737 	err = tegra_sor_set_parent_clock(sor, sor->clk_safe);
2738 	if (err < 0)
2739 		dev_err(sor->dev, "failed to set safe parent clock: %d\n", err);
2740 
2741 	err = tegra_io_pad_power_enable(sor->pad);
2742 	if (err < 0)
2743 		dev_err(sor->dev, "failed to power on LVDS rail: %d\n", err);
2744 
2745 	usleep_range(20, 100);
2746 
2747 	err = drm_dp_aux_enable(sor->aux);
2748 	if (err < 0)
2749 		dev_err(sor->dev, "failed to enable DPAUX: %d\n", err);
2750 
2751 	err = drm_dp_link_probe(sor->aux, &sor->link);
2752 	if (err < 0)
2753 		dev_err(sor->dev, "failed to probe DP link: %d\n", err);
2754 
2755 	tegra_sor_filter_rates(sor);
2756 
2757 	err = drm_dp_link_choose(&sor->link, mode, info);
2758 	if (err < 0)
2759 		dev_err(sor->dev, "failed to choose link: %d\n", err);
2760 
2761 	if (output->panel)
2762 		drm_panel_prepare(output->panel);
2763 
2764 	value = tegra_sor_readl(sor, sor->soc->regs->pll2);
2765 	value &= ~SOR_PLL2_BANDGAP_POWERDOWN;
2766 	tegra_sor_writel(sor, value, sor->soc->regs->pll2);
2767 
2768 	usleep_range(20, 40);
2769 
2770 	value = tegra_sor_readl(sor, sor->soc->regs->pll3);
2771 	value |= SOR_PLL3_PLL_VDD_MODE_3V3;
2772 	tegra_sor_writel(sor, value, sor->soc->regs->pll3);
2773 
2774 	value = tegra_sor_readl(sor, sor->soc->regs->pll0);
2775 	value &= ~(SOR_PLL0_VCOPD | SOR_PLL0_PWR);
2776 	tegra_sor_writel(sor, value, sor->soc->regs->pll0);
2777 
2778 	value = tegra_sor_readl(sor, sor->soc->regs->pll2);
2779 	value &= ~SOR_PLL2_SEQ_PLLCAPPD_ENFORCE;
2780 	value |= SOR_PLL2_SEQ_PLLCAPPD;
2781 	tegra_sor_writel(sor, value, sor->soc->regs->pll2);
2782 
2783 	usleep_range(200, 400);
2784 
2785 	value = tegra_sor_readl(sor, sor->soc->regs->pll2);
2786 	value &= ~SOR_PLL2_POWERDOWN_OVERRIDE;
2787 	value &= ~SOR_PLL2_PORT_POWERDOWN;
2788 	tegra_sor_writel(sor, value, sor->soc->regs->pll2);
2789 
2790 	value = tegra_sor_readl(sor, SOR_CLK_CNTRL);
2791 	value &= ~SOR_CLK_CNTRL_DP_CLK_SEL_MASK;
2792 
2793 	if (output->panel)
2794 		value |= SOR_CLK_CNTRL_DP_CLK_SEL_SINGLE_DPCLK;
2795 	else
2796 		value |= SOR_CLK_CNTRL_DP_CLK_SEL_DIFF_DPCLK;
2797 
2798 	tegra_sor_writel(sor, value, SOR_CLK_CNTRL);
2799 
2800 	usleep_range(200, 400);
2801 
2802 	value = tegra_sor_readl(sor, SOR_DP_SPARE0);
2803 	/* XXX not in TRM */
2804 	if (output->panel)
2805 		value |= SOR_DP_SPARE_PANEL_INTERNAL;
2806 	else
2807 		value &= ~SOR_DP_SPARE_PANEL_INTERNAL;
2808 
2809 	value |= SOR_DP_SPARE_SEQ_ENABLE;
2810 	tegra_sor_writel(sor, value, SOR_DP_SPARE0);
2811 
2812 	/* XXX not in TRM */
2813 	tegra_sor_writel(sor, 0, SOR_LVDS);
2814 
2815 	value = tegra_sor_readl(sor, sor->soc->regs->pll0);
2816 	value &= ~SOR_PLL0_ICHPMP_MASK;
2817 	value &= ~SOR_PLL0_VCOCAP_MASK;
2818 	value |= SOR_PLL0_ICHPMP(0x1);
2819 	value |= SOR_PLL0_VCOCAP(0x3);
2820 	value |= SOR_PLL0_RESISTOR_EXT;
2821 	tegra_sor_writel(sor, value, sor->soc->regs->pll0);
2822 
2823 	/* XXX not in TRM */
2824 	for (value = 0, i = 0; i < 5; i++)
2825 		value |= SOR_XBAR_CTRL_LINK0_XSEL(i, sor->soc->xbar_cfg[i]) |
2826 			 SOR_XBAR_CTRL_LINK1_XSEL(i, i);
2827 
2828 	tegra_sor_writel(sor, 0x00000000, SOR_XBAR_POL);
2829 	tegra_sor_writel(sor, value, SOR_XBAR_CTRL);
2830 
2831 	/*
2832 	 * Switch the pad clock to the DP clock. Note that we cannot actually
2833 	 * do this because Tegra186 and later don't support clk_set_parent()
2834 	 * on the sorX_pad_clkout clocks. We already do the equivalent above
2835 	 * using the DP_CLK_SEL mux of the SOR_CLK_CNTRL register.
2836 	 */
2837 #if 0
2838 	err = clk_set_parent(sor->clk_pad, sor->clk_parent);
2839 	if (err < 0) {
2840 		dev_err(sor->dev, "failed to select pad parent clock: %d\n",
2841 			err);
2842 		return;
2843 	}
2844 #endif
2845 
2846 	/* switch the SOR clock to the pad clock */
2847 	err = tegra_sor_set_parent_clock(sor, sor->clk_pad);
2848 	if (err < 0) {
2849 		dev_err(sor->dev, "failed to select SOR parent clock: %d\n",
2850 			err);
2851 		return;
2852 	}
2853 
2854 	/* switch the output clock to the parent pixel clock */
2855 	err = clk_set_parent(sor->clk, sor->clk_parent);
2856 	if (err < 0) {
2857 		dev_err(sor->dev, "failed to select output parent clock: %d\n",
2858 			err);
2859 		return;
2860 	}
2861 
2862 	/* use DP-A protocol */
2863 	value = tegra_sor_readl(sor, SOR_STATE1);
2864 	value &= ~SOR_STATE_ASY_PROTOCOL_MASK;
2865 	value |= SOR_STATE_ASY_PROTOCOL_DP_A;
2866 	tegra_sor_writel(sor, value, SOR_STATE1);
2867 
2868 	/* enable port */
2869 	value = tegra_sor_readl(sor, SOR_DP_LINKCTL0);
2870 	value |= SOR_DP_LINKCTL_ENABLE;
2871 	tegra_sor_writel(sor, value, SOR_DP_LINKCTL0);
2872 
2873 	tegra_sor_dp_term_calibrate(sor);
2874 
2875 	err = drm_dp_link_train(&sor->link);
2876 	if (err < 0)
2877 		dev_err(sor->dev, "link training failed: %d\n", err);
2878 	else
2879 		dev_dbg(sor->dev, "link training succeeded\n");
2880 
2881 	err = drm_dp_link_power_up(sor->aux, &sor->link);
2882 	if (err < 0)
2883 		dev_err(sor->dev, "failed to power up DP link: %d\n", err);
2884 
2885 	/* compute configuration */
2886 	memset(&config, 0, sizeof(config));
2887 	config.bits_per_pixel = state->bpc * 3;
2888 
2889 	err = tegra_sor_compute_config(sor, mode, &config, &sor->link);
2890 	if (err < 0)
2891 		dev_err(sor->dev, "failed to compute configuration: %d\n", err);
2892 
2893 	tegra_sor_apply_config(sor, &config);
2894 	tegra_sor_mode_set(sor, mode, state);
2895 
2896 	if (output->panel) {
2897 		/* CSTM (LVDS, link A/B, upper) */
2898 		value = SOR_CSTM_LVDS | SOR_CSTM_LINK_ACT_A | SOR_CSTM_LINK_ACT_B |
2899 			SOR_CSTM_UPPER;
2900 		tegra_sor_writel(sor, value, SOR_CSTM);
2901 
2902 		/* PWM setup */
2903 		err = tegra_sor_setup_pwm(sor, 250);
2904 		if (err < 0)
2905 			dev_err(sor->dev, "failed to setup PWM: %d\n", err);
2906 	}
2907 
2908 	tegra_sor_update(sor);
2909 
2910 	err = tegra_sor_power_up(sor, 250);
2911 	if (err < 0)
2912 		dev_err(sor->dev, "failed to power up SOR: %d\n", err);
2913 
2914 	/* attach and wake up */
2915 	err = tegra_sor_attach(sor);
2916 	if (err < 0)
2917 		dev_err(sor->dev, "failed to attach SOR: %d\n", err);
2918 
2919 	value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
2920 	value |= SOR_ENABLE(sor->index);
2921 	tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
2922 
2923 	tegra_dc_commit(dc);
2924 
2925 	err = tegra_sor_wakeup(sor);
2926 	if (err < 0)
2927 		dev_err(sor->dev, "failed to wakeup SOR: %d\n", err);
2928 
2929 	if (output->panel)
2930 		drm_panel_enable(output->panel);
2931 }
2932 
2933 static const struct drm_encoder_helper_funcs tegra_sor_dp_helpers = {
2934 	.disable = tegra_sor_dp_disable,
2935 	.enable = tegra_sor_dp_enable,
2936 	.atomic_check = tegra_sor_encoder_atomic_check,
2937 };
2938 
2939 static void tegra_sor_disable_regulator(void *data)
2940 {
2941 	struct regulator *reg = data;
2942 
2943 	regulator_disable(reg);
2944 }
2945 
2946 static int tegra_sor_enable_regulator(struct tegra_sor *sor, struct regulator *reg)
2947 {
2948 	int err;
2949 
2950 	err = regulator_enable(reg);
2951 	if (err)
2952 		return err;
2953 
2954 	return devm_add_action_or_reset(sor->dev, tegra_sor_disable_regulator, reg);
2955 }
2956 
2957 static int tegra_sor_hdmi_probe(struct tegra_sor *sor)
2958 {
2959 	int err;
2960 
2961 	sor->avdd_io_supply = devm_regulator_get(sor->dev, "avdd-io-hdmi-dp");
2962 	if (IS_ERR(sor->avdd_io_supply))
2963 		return dev_err_probe(sor->dev, PTR_ERR(sor->avdd_io_supply),
2964 				     "cannot get AVDD I/O supply\n");
2965 
2966 	err = tegra_sor_enable_regulator(sor, sor->avdd_io_supply);
2967 	if (err < 0) {
2968 		dev_err(sor->dev, "failed to enable AVDD I/O supply: %d\n",
2969 			err);
2970 		return err;
2971 	}
2972 
2973 	sor->vdd_pll_supply = devm_regulator_get(sor->dev, "vdd-hdmi-dp-pll");
2974 	if (IS_ERR(sor->vdd_pll_supply))
2975 		return dev_err_probe(sor->dev, PTR_ERR(sor->vdd_pll_supply),
2976 				     "cannot get VDD PLL supply\n");
2977 
2978 	err = tegra_sor_enable_regulator(sor, sor->vdd_pll_supply);
2979 	if (err < 0) {
2980 		dev_err(sor->dev, "failed to enable VDD PLL supply: %d\n",
2981 			err);
2982 		return err;
2983 	}
2984 
2985 	sor->hdmi_supply = devm_regulator_get(sor->dev, "hdmi");
2986 	if (IS_ERR(sor->hdmi_supply))
2987 		return dev_err_probe(sor->dev, PTR_ERR(sor->hdmi_supply),
2988 				     "cannot get HDMI supply\n");
2989 
2990 	err = tegra_sor_enable_regulator(sor, sor->hdmi_supply);
2991 	if (err < 0) {
2992 		dev_err(sor->dev, "failed to enable HDMI supply: %d\n", err);
2993 		return err;
2994 	}
2995 
2996 	INIT_DELAYED_WORK(&sor->scdc, tegra_sor_hdmi_scdc_work);
2997 
2998 	return 0;
2999 }
3000 
3001 static const struct tegra_sor_ops tegra_sor_hdmi_ops = {
3002 	.name = "HDMI",
3003 	.probe = tegra_sor_hdmi_probe,
3004 	.audio_enable = tegra_sor_hdmi_audio_enable,
3005 	.audio_disable = tegra_sor_hdmi_audio_disable,
3006 };
3007 
3008 static int tegra_sor_dp_probe(struct tegra_sor *sor)
3009 {
3010 	int err;
3011 
3012 	sor->avdd_io_supply = devm_regulator_get(sor->dev, "avdd-io-hdmi-dp");
3013 	if (IS_ERR(sor->avdd_io_supply))
3014 		return PTR_ERR(sor->avdd_io_supply);
3015 
3016 	err = tegra_sor_enable_regulator(sor, sor->avdd_io_supply);
3017 	if (err < 0)
3018 		return err;
3019 
3020 	sor->vdd_pll_supply = devm_regulator_get(sor->dev, "vdd-hdmi-dp-pll");
3021 	if (IS_ERR(sor->vdd_pll_supply))
3022 		return PTR_ERR(sor->vdd_pll_supply);
3023 
3024 	err = tegra_sor_enable_regulator(sor, sor->vdd_pll_supply);
3025 	if (err < 0)
3026 		return err;
3027 
3028 	return 0;
3029 }
3030 
3031 static const struct tegra_sor_ops tegra_sor_dp_ops = {
3032 	.name = "DP",
3033 	.probe = tegra_sor_dp_probe,
3034 };
3035 
3036 static int tegra_sor_init(struct host1x_client *client)
3037 {
3038 	struct drm_device *drm = dev_get_drvdata(client->host);
3039 	const struct drm_encoder_helper_funcs *helpers = NULL;
3040 	struct tegra_sor *sor = host1x_client_to_sor(client);
3041 	int connector = DRM_MODE_CONNECTOR_Unknown;
3042 	int encoder = DRM_MODE_ENCODER_NONE;
3043 	int err;
3044 
3045 	if (!sor->aux) {
3046 		if (sor->ops == &tegra_sor_hdmi_ops) {
3047 			connector = DRM_MODE_CONNECTOR_HDMIA;
3048 			encoder = DRM_MODE_ENCODER_TMDS;
3049 			helpers = &tegra_sor_hdmi_helpers;
3050 		} else if (sor->soc->supports_lvds) {
3051 			connector = DRM_MODE_CONNECTOR_LVDS;
3052 			encoder = DRM_MODE_ENCODER_LVDS;
3053 		}
3054 	} else {
3055 		if (sor->output.panel) {
3056 			connector = DRM_MODE_CONNECTOR_eDP;
3057 			encoder = DRM_MODE_ENCODER_TMDS;
3058 			helpers = &tegra_sor_dp_helpers;
3059 		} else {
3060 			connector = DRM_MODE_CONNECTOR_DisplayPort;
3061 			encoder = DRM_MODE_ENCODER_TMDS;
3062 			helpers = &tegra_sor_dp_helpers;
3063 		}
3064 
3065 		sor->link.ops = &tegra_sor_dp_link_ops;
3066 		sor->link.aux = sor->aux;
3067 	}
3068 
3069 	sor->output.dev = sor->dev;
3070 
3071 	drm_connector_init_with_ddc(drm, &sor->output.connector,
3072 				    &tegra_sor_connector_funcs,
3073 				    connector,
3074 				    sor->output.ddc);
3075 	drm_connector_helper_add(&sor->output.connector,
3076 				 &tegra_sor_connector_helper_funcs);
3077 	sor->output.connector.dpms = DRM_MODE_DPMS_OFF;
3078 
3079 	drm_simple_encoder_init(drm, &sor->output.encoder, encoder);
3080 	drm_encoder_helper_add(&sor->output.encoder, helpers);
3081 
3082 	drm_connector_attach_encoder(&sor->output.connector,
3083 					  &sor->output.encoder);
3084 	drm_connector_register(&sor->output.connector);
3085 
3086 	err = tegra_output_init(drm, &sor->output);
3087 	if (err < 0) {
3088 		dev_err(client->dev, "failed to initialize output: %d\n", err);
3089 		return err;
3090 	}
3091 
3092 	tegra_output_find_possible_crtcs(&sor->output, drm);
3093 
3094 	if (sor->aux) {
3095 		err = drm_dp_aux_attach(sor->aux, &sor->output);
3096 		if (err < 0) {
3097 			dev_err(sor->dev, "failed to attach DP: %d\n", err);
3098 			return err;
3099 		}
3100 	}
3101 
3102 	/*
3103 	 * XXX: Remove this reset once proper hand-over from firmware to
3104 	 * kernel is possible.
3105 	 */
3106 	if (sor->rst) {
3107 		err = pm_runtime_resume_and_get(sor->dev);
3108 		if (err < 0) {
3109 			dev_err(sor->dev, "failed to get runtime PM: %d\n", err);
3110 			return err;
3111 		}
3112 
3113 		err = reset_control_acquire(sor->rst);
3114 		if (err < 0) {
3115 			dev_err(sor->dev, "failed to acquire SOR reset: %d\n",
3116 				err);
3117 			goto rpm_put;
3118 		}
3119 
3120 		err = reset_control_assert(sor->rst);
3121 		if (err < 0) {
3122 			dev_err(sor->dev, "failed to assert SOR reset: %d\n",
3123 				err);
3124 			goto rpm_put;
3125 		}
3126 	}
3127 
3128 	err = clk_prepare_enable(sor->clk);
3129 	if (err < 0) {
3130 		dev_err(sor->dev, "failed to enable clock: %d\n", err);
3131 		goto rpm_put;
3132 	}
3133 
3134 	usleep_range(1000, 3000);
3135 
3136 	if (sor->rst) {
3137 		err = reset_control_deassert(sor->rst);
3138 		if (err < 0) {
3139 			dev_err(sor->dev, "failed to deassert SOR reset: %d\n",
3140 				err);
3141 			clk_disable_unprepare(sor->clk);
3142 			goto rpm_put;
3143 		}
3144 
3145 		reset_control_release(sor->rst);
3146 		pm_runtime_put(sor->dev);
3147 	}
3148 
3149 	err = clk_prepare_enable(sor->clk_safe);
3150 	if (err < 0) {
3151 		clk_disable_unprepare(sor->clk);
3152 		return err;
3153 	}
3154 
3155 	err = clk_prepare_enable(sor->clk_dp);
3156 	if (err < 0) {
3157 		clk_disable_unprepare(sor->clk_safe);
3158 		clk_disable_unprepare(sor->clk);
3159 		return err;
3160 	}
3161 
3162 	return 0;
3163 
3164 rpm_put:
3165 	if (sor->rst)
3166 		pm_runtime_put(sor->dev);
3167 
3168 	return err;
3169 }
3170 
3171 static int tegra_sor_exit(struct host1x_client *client)
3172 {
3173 	struct tegra_sor *sor = host1x_client_to_sor(client);
3174 	int err;
3175 
3176 	tegra_output_exit(&sor->output);
3177 
3178 	if (sor->aux) {
3179 		err = drm_dp_aux_detach(sor->aux);
3180 		if (err < 0) {
3181 			dev_err(sor->dev, "failed to detach DP: %d\n", err);
3182 			return err;
3183 		}
3184 	}
3185 
3186 	clk_disable_unprepare(sor->clk_safe);
3187 	clk_disable_unprepare(sor->clk_dp);
3188 	clk_disable_unprepare(sor->clk);
3189 
3190 	return 0;
3191 }
3192 
3193 static int tegra_sor_runtime_suspend(struct host1x_client *client)
3194 {
3195 	struct tegra_sor *sor = host1x_client_to_sor(client);
3196 	struct device *dev = client->dev;
3197 	int err;
3198 
3199 	if (sor->rst) {
3200 		err = reset_control_assert(sor->rst);
3201 		if (err < 0) {
3202 			dev_err(dev, "failed to assert reset: %d\n", err);
3203 			return err;
3204 		}
3205 
3206 		reset_control_release(sor->rst);
3207 	}
3208 
3209 	usleep_range(1000, 2000);
3210 
3211 	clk_disable_unprepare(sor->clk);
3212 	pm_runtime_put_sync(dev);
3213 
3214 	return 0;
3215 }
3216 
3217 static int tegra_sor_runtime_resume(struct host1x_client *client)
3218 {
3219 	struct tegra_sor *sor = host1x_client_to_sor(client);
3220 	struct device *dev = client->dev;
3221 	int err;
3222 
3223 	err = pm_runtime_resume_and_get(dev);
3224 	if (err < 0) {
3225 		dev_err(dev, "failed to get runtime PM: %d\n", err);
3226 		return err;
3227 	}
3228 
3229 	err = clk_prepare_enable(sor->clk);
3230 	if (err < 0) {
3231 		dev_err(dev, "failed to enable clock: %d\n", err);
3232 		goto put_rpm;
3233 	}
3234 
3235 	usleep_range(1000, 2000);
3236 
3237 	if (sor->rst) {
3238 		err = reset_control_acquire(sor->rst);
3239 		if (err < 0) {
3240 			dev_err(dev, "failed to acquire reset: %d\n", err);
3241 			goto disable_clk;
3242 		}
3243 
3244 		err = reset_control_deassert(sor->rst);
3245 		if (err < 0) {
3246 			dev_err(dev, "failed to deassert reset: %d\n", err);
3247 			goto release_reset;
3248 		}
3249 	}
3250 
3251 	return 0;
3252 
3253 release_reset:
3254 	reset_control_release(sor->rst);
3255 disable_clk:
3256 	clk_disable_unprepare(sor->clk);
3257 put_rpm:
3258 	pm_runtime_put_sync(dev);
3259 	return err;
3260 }
3261 
3262 static const struct host1x_client_ops sor_client_ops = {
3263 	.init = tegra_sor_init,
3264 	.exit = tegra_sor_exit,
3265 	.suspend = tegra_sor_runtime_suspend,
3266 	.resume = tegra_sor_runtime_resume,
3267 };
3268 
3269 static const u8 tegra124_sor_xbar_cfg[5] = {
3270 	0, 1, 2, 3, 4
3271 };
3272 
3273 static const struct tegra_sor_regs tegra124_sor_regs = {
3274 	.head_state0 = 0x05,
3275 	.head_state1 = 0x07,
3276 	.head_state2 = 0x09,
3277 	.head_state3 = 0x0b,
3278 	.head_state4 = 0x0d,
3279 	.head_state5 = 0x0f,
3280 	.pll0 = 0x17,
3281 	.pll1 = 0x18,
3282 	.pll2 = 0x19,
3283 	.pll3 = 0x1a,
3284 	.dp_padctl0 = 0x5c,
3285 	.dp_padctl2 = 0x73,
3286 };
3287 
3288 /* Tegra124 and Tegra132 have lanes 0 and 2 swapped. */
3289 static const u8 tegra124_sor_lane_map[4] = {
3290 	2, 1, 0, 3,
3291 };
3292 
3293 static const u8 tegra124_sor_voltage_swing[4][4][4] = {
3294 	{
3295 		{ 0x13, 0x19, 0x1e, 0x28 },
3296 		{ 0x1e, 0x25, 0x2d, },
3297 		{ 0x28, 0x32, },
3298 		{ 0x3c, },
3299 	}, {
3300 		{ 0x12, 0x17, 0x1b, 0x25 },
3301 		{ 0x1c, 0x23, 0x2a, },
3302 		{ 0x25, 0x2f, },
3303 		{ 0x39, }
3304 	}, {
3305 		{ 0x12, 0x16, 0x1a, 0x22 },
3306 		{ 0x1b, 0x20, 0x27, },
3307 		{ 0x24, 0x2d, },
3308 		{ 0x36, },
3309 	}, {
3310 		{ 0x11, 0x14, 0x17, 0x1f },
3311 		{ 0x19, 0x1e, 0x24, },
3312 		{ 0x22, 0x2a, },
3313 		{ 0x32, },
3314 	},
3315 };
3316 
3317 static const u8 tegra124_sor_pre_emphasis[4][4][4] = {
3318 	{
3319 		{ 0x00, 0x09, 0x13, 0x25 },
3320 		{ 0x00, 0x0f, 0x1e, },
3321 		{ 0x00, 0x14, },
3322 		{ 0x00, },
3323 	}, {
3324 		{ 0x00, 0x0a, 0x14, 0x28 },
3325 		{ 0x00, 0x0f, 0x1e, },
3326 		{ 0x00, 0x14, },
3327 		{ 0x00 },
3328 	}, {
3329 		{ 0x00, 0x0a, 0x14, 0x28 },
3330 		{ 0x00, 0x0f, 0x1e, },
3331 		{ 0x00, 0x14, },
3332 		{ 0x00, },
3333 	}, {
3334 		{ 0x00, 0x0a, 0x14, 0x28 },
3335 		{ 0x00, 0x0f, 0x1e, },
3336 		{ 0x00, 0x14, },
3337 		{ 0x00, },
3338 	},
3339 };
3340 
3341 static const u8 tegra124_sor_post_cursor[4][4][4] = {
3342 	{
3343 		{ 0x00, 0x00, 0x00, 0x00 },
3344 		{ 0x00, 0x00, 0x00, },
3345 		{ 0x00, 0x00, },
3346 		{ 0x00, },
3347 	}, {
3348 		{ 0x02, 0x02, 0x04, 0x05 },
3349 		{ 0x02, 0x04, 0x05, },
3350 		{ 0x04, 0x05, },
3351 		{ 0x05, },
3352 	}, {
3353 		{ 0x04, 0x05, 0x08, 0x0b },
3354 		{ 0x05, 0x09, 0x0b, },
3355 		{ 0x08, 0x0a, },
3356 		{ 0x0b, },
3357 	}, {
3358 		{ 0x05, 0x09, 0x0b, 0x12 },
3359 		{ 0x09, 0x0d, 0x12, },
3360 		{ 0x0b, 0x0f, },
3361 		{ 0x12, },
3362 	},
3363 };
3364 
3365 static const u8 tegra124_sor_tx_pu[4][4][4] = {
3366 	{
3367 		{ 0x20, 0x30, 0x40, 0x60 },
3368 		{ 0x30, 0x40, 0x60, },
3369 		{ 0x40, 0x60, },
3370 		{ 0x60, },
3371 	}, {
3372 		{ 0x20, 0x20, 0x30, 0x50 },
3373 		{ 0x30, 0x40, 0x50, },
3374 		{ 0x40, 0x50, },
3375 		{ 0x60, },
3376 	}, {
3377 		{ 0x20, 0x20, 0x30, 0x40, },
3378 		{ 0x30, 0x30, 0x40, },
3379 		{ 0x40, 0x50, },
3380 		{ 0x60, },
3381 	}, {
3382 		{ 0x20, 0x20, 0x20, 0x40, },
3383 		{ 0x30, 0x30, 0x40, },
3384 		{ 0x40, 0x40, },
3385 		{ 0x60, },
3386 	},
3387 };
3388 
3389 static const struct tegra_sor_soc tegra124_sor = {
3390 	.supports_lvds = true,
3391 	.supports_hdmi = false,
3392 	.supports_dp = true,
3393 	.supports_audio = false,
3394 	.supports_hdcp = false,
3395 	.regs = &tegra124_sor_regs,
3396 	.has_nvdisplay = false,
3397 	.xbar_cfg = tegra124_sor_xbar_cfg,
3398 	.lane_map = tegra124_sor_lane_map,
3399 	.voltage_swing = tegra124_sor_voltage_swing,
3400 	.pre_emphasis = tegra124_sor_pre_emphasis,
3401 	.post_cursor = tegra124_sor_post_cursor,
3402 	.tx_pu = tegra124_sor_tx_pu,
3403 };
3404 
3405 static const u8 tegra132_sor_pre_emphasis[4][4][4] = {
3406 	{
3407 		{ 0x00, 0x08, 0x12, 0x24 },
3408 		{ 0x01, 0x0e, 0x1d, },
3409 		{ 0x01, 0x13, },
3410 		{ 0x00, },
3411 	}, {
3412 		{ 0x00, 0x08, 0x12, 0x24 },
3413 		{ 0x00, 0x0e, 0x1d, },
3414 		{ 0x00, 0x13, },
3415 		{ 0x00 },
3416 	}, {
3417 		{ 0x00, 0x08, 0x12, 0x24 },
3418 		{ 0x00, 0x0e, 0x1d, },
3419 		{ 0x00, 0x13, },
3420 		{ 0x00, },
3421 	}, {
3422 		{ 0x00, 0x08, 0x12, 0x24 },
3423 		{ 0x00, 0x0e, 0x1d, },
3424 		{ 0x00, 0x13, },
3425 		{ 0x00, },
3426 	},
3427 };
3428 
3429 static const struct tegra_sor_soc tegra132_sor = {
3430 	.supports_lvds = true,
3431 	.supports_hdmi = false,
3432 	.supports_dp = true,
3433 	.supports_audio = false,
3434 	.supports_hdcp = false,
3435 	.regs = &tegra124_sor_regs,
3436 	.has_nvdisplay = false,
3437 	.xbar_cfg = tegra124_sor_xbar_cfg,
3438 	.lane_map = tegra124_sor_lane_map,
3439 	.voltage_swing = tegra124_sor_voltage_swing,
3440 	.pre_emphasis = tegra132_sor_pre_emphasis,
3441 	.post_cursor = tegra124_sor_post_cursor,
3442 	.tx_pu = tegra124_sor_tx_pu,
3443 };
3444 
3445 static const struct tegra_sor_regs tegra210_sor_regs = {
3446 	.head_state0 = 0x05,
3447 	.head_state1 = 0x07,
3448 	.head_state2 = 0x09,
3449 	.head_state3 = 0x0b,
3450 	.head_state4 = 0x0d,
3451 	.head_state5 = 0x0f,
3452 	.pll0 = 0x17,
3453 	.pll1 = 0x18,
3454 	.pll2 = 0x19,
3455 	.pll3 = 0x1a,
3456 	.dp_padctl0 = 0x5c,
3457 	.dp_padctl2 = 0x73,
3458 };
3459 
3460 static const u8 tegra210_sor_xbar_cfg[5] = {
3461 	2, 1, 0, 3, 4
3462 };
3463 
3464 static const u8 tegra210_sor_lane_map[4] = {
3465 	0, 1, 2, 3,
3466 };
3467 
3468 static const struct tegra_sor_soc tegra210_sor = {
3469 	.supports_lvds = false,
3470 	.supports_hdmi = false,
3471 	.supports_dp = true,
3472 	.supports_audio = false,
3473 	.supports_hdcp = false,
3474 
3475 	.regs = &tegra210_sor_regs,
3476 	.has_nvdisplay = false,
3477 
3478 	.xbar_cfg = tegra210_sor_xbar_cfg,
3479 	.lane_map = tegra210_sor_lane_map,
3480 	.voltage_swing = tegra124_sor_voltage_swing,
3481 	.pre_emphasis = tegra124_sor_pre_emphasis,
3482 	.post_cursor = tegra124_sor_post_cursor,
3483 	.tx_pu = tegra124_sor_tx_pu,
3484 };
3485 
3486 static const struct tegra_sor_soc tegra210_sor1 = {
3487 	.supports_lvds = false,
3488 	.supports_hdmi = true,
3489 	.supports_dp = true,
3490 	.supports_audio = true,
3491 	.supports_hdcp = true,
3492 
3493 	.regs = &tegra210_sor_regs,
3494 	.has_nvdisplay = false,
3495 
3496 	.num_settings = ARRAY_SIZE(tegra210_sor_hdmi_defaults),
3497 	.settings = tegra210_sor_hdmi_defaults,
3498 	.xbar_cfg = tegra210_sor_xbar_cfg,
3499 	.lane_map = tegra210_sor_lane_map,
3500 	.voltage_swing = tegra124_sor_voltage_swing,
3501 	.pre_emphasis = tegra124_sor_pre_emphasis,
3502 	.post_cursor = tegra124_sor_post_cursor,
3503 	.tx_pu = tegra124_sor_tx_pu,
3504 };
3505 
3506 static const struct tegra_sor_regs tegra186_sor_regs = {
3507 	.head_state0 = 0x151,
3508 	.head_state1 = 0x154,
3509 	.head_state2 = 0x157,
3510 	.head_state3 = 0x15a,
3511 	.head_state4 = 0x15d,
3512 	.head_state5 = 0x160,
3513 	.pll0 = 0x163,
3514 	.pll1 = 0x164,
3515 	.pll2 = 0x165,
3516 	.pll3 = 0x166,
3517 	.dp_padctl0 = 0x168,
3518 	.dp_padctl2 = 0x16a,
3519 };
3520 
3521 static const u8 tegra186_sor_voltage_swing[4][4][4] = {
3522 	{
3523 		{ 0x13, 0x19, 0x1e, 0x28 },
3524 		{ 0x1e, 0x25, 0x2d, },
3525 		{ 0x28, 0x32, },
3526 		{ 0x39, },
3527 	}, {
3528 		{ 0x12, 0x16, 0x1b, 0x25 },
3529 		{ 0x1c, 0x23, 0x2a, },
3530 		{ 0x25, 0x2f, },
3531 		{ 0x37, }
3532 	}, {
3533 		{ 0x12, 0x16, 0x1a, 0x22 },
3534 		{ 0x1b, 0x20, 0x27, },
3535 		{ 0x24, 0x2d, },
3536 		{ 0x35, },
3537 	}, {
3538 		{ 0x11, 0x14, 0x17, 0x1f },
3539 		{ 0x19, 0x1e, 0x24, },
3540 		{ 0x22, 0x2a, },
3541 		{ 0x32, },
3542 	},
3543 };
3544 
3545 static const u8 tegra186_sor_pre_emphasis[4][4][4] = {
3546 	{
3547 		{ 0x00, 0x08, 0x12, 0x24 },
3548 		{ 0x01, 0x0e, 0x1d, },
3549 		{ 0x01, 0x13, },
3550 		{ 0x00, },
3551 	}, {
3552 		{ 0x00, 0x08, 0x12, 0x24 },
3553 		{ 0x00, 0x0e, 0x1d, },
3554 		{ 0x00, 0x13, },
3555 		{ 0x00 },
3556 	}, {
3557 		{ 0x00, 0x08, 0x14, 0x24 },
3558 		{ 0x00, 0x0e, 0x1d, },
3559 		{ 0x00, 0x13, },
3560 		{ 0x00, },
3561 	}, {
3562 		{ 0x00, 0x08, 0x12, 0x24 },
3563 		{ 0x00, 0x0e, 0x1d, },
3564 		{ 0x00, 0x13, },
3565 		{ 0x00, },
3566 	},
3567 };
3568 
3569 static const struct tegra_sor_soc tegra186_sor = {
3570 	.supports_lvds = false,
3571 	.supports_hdmi = true,
3572 	.supports_dp = true,
3573 	.supports_audio = true,
3574 	.supports_hdcp = true,
3575 
3576 	.regs = &tegra186_sor_regs,
3577 	.has_nvdisplay = true,
3578 
3579 	.num_settings = ARRAY_SIZE(tegra186_sor_hdmi_defaults),
3580 	.settings = tegra186_sor_hdmi_defaults,
3581 	.xbar_cfg = tegra124_sor_xbar_cfg,
3582 	.lane_map = tegra124_sor_lane_map,
3583 	.voltage_swing = tegra186_sor_voltage_swing,
3584 	.pre_emphasis = tegra186_sor_pre_emphasis,
3585 	.post_cursor = tegra124_sor_post_cursor,
3586 	.tx_pu = tegra124_sor_tx_pu,
3587 };
3588 
3589 static const struct tegra_sor_regs tegra194_sor_regs = {
3590 	.head_state0 = 0x151,
3591 	.head_state1 = 0x155,
3592 	.head_state2 = 0x159,
3593 	.head_state3 = 0x15d,
3594 	.head_state4 = 0x161,
3595 	.head_state5 = 0x165,
3596 	.pll0 = 0x169,
3597 	.pll1 = 0x16a,
3598 	.pll2 = 0x16b,
3599 	.pll3 = 0x16c,
3600 	.dp_padctl0 = 0x16e,
3601 	.dp_padctl2 = 0x16f,
3602 };
3603 
3604 static const struct tegra_sor_soc tegra194_sor = {
3605 	.supports_lvds = false,
3606 	.supports_hdmi = true,
3607 	.supports_dp = true,
3608 	.supports_audio = true,
3609 	.supports_hdcp = true,
3610 
3611 	.regs = &tegra194_sor_regs,
3612 	.has_nvdisplay = true,
3613 
3614 	.num_settings = ARRAY_SIZE(tegra194_sor_hdmi_defaults),
3615 	.settings = tegra194_sor_hdmi_defaults,
3616 
3617 	.xbar_cfg = tegra210_sor_xbar_cfg,
3618 	.lane_map = tegra124_sor_lane_map,
3619 	.voltage_swing = tegra186_sor_voltage_swing,
3620 	.pre_emphasis = tegra186_sor_pre_emphasis,
3621 	.post_cursor = tegra124_sor_post_cursor,
3622 	.tx_pu = tegra124_sor_tx_pu,
3623 };
3624 
3625 static const struct of_device_id tegra_sor_of_match[] = {
3626 	{ .compatible = "nvidia,tegra194-sor", .data = &tegra194_sor },
3627 	{ .compatible = "nvidia,tegra186-sor", .data = &tegra186_sor },
3628 	{ .compatible = "nvidia,tegra210-sor1", .data = &tegra210_sor1 },
3629 	{ .compatible = "nvidia,tegra210-sor", .data = &tegra210_sor },
3630 	{ .compatible = "nvidia,tegra132-sor", .data = &tegra132_sor },
3631 	{ .compatible = "nvidia,tegra124-sor", .data = &tegra124_sor },
3632 	{ },
3633 };
3634 MODULE_DEVICE_TABLE(of, tegra_sor_of_match);
3635 
3636 static int tegra_sor_parse_dt(struct tegra_sor *sor)
3637 {
3638 	struct device_node *np = sor->dev->of_node;
3639 	u32 xbar_cfg[5];
3640 	unsigned int i;
3641 	u32 value;
3642 	int err;
3643 
3644 	if (sor->soc->has_nvdisplay) {
3645 		err = of_property_read_u32(np, "nvidia,interface", &value);
3646 		if (err < 0)
3647 			return err;
3648 
3649 		sor->index = value;
3650 
3651 		/*
3652 		 * override the default that we already set for Tegra210 and
3653 		 * earlier
3654 		 */
3655 		sor->pad = TEGRA_IO_PAD_HDMI_DP0 + sor->index;
3656 	} else {
3657 		if (!sor->soc->supports_audio)
3658 			sor->index = 0;
3659 		else
3660 			sor->index = 1;
3661 	}
3662 
3663 	err = of_property_read_u32_array(np, "nvidia,xbar-cfg", xbar_cfg, 5);
3664 	if (err < 0) {
3665 		/* fall back to default per-SoC XBAR configuration */
3666 		for (i = 0; i < 5; i++)
3667 			sor->xbar_cfg[i] = sor->soc->xbar_cfg[i];
3668 	} else {
3669 		/* copy cells to SOR XBAR configuration */
3670 		for (i = 0; i < 5; i++)
3671 			sor->xbar_cfg[i] = xbar_cfg[i];
3672 	}
3673 
3674 	return 0;
3675 }
3676 
3677 static irqreturn_t tegra_sor_irq(int irq, void *data)
3678 {
3679 	struct tegra_sor *sor = data;
3680 	u32 value;
3681 
3682 	value = tegra_sor_readl(sor, SOR_INT_STATUS);
3683 	tegra_sor_writel(sor, value, SOR_INT_STATUS);
3684 
3685 	if (value & SOR_INT_CODEC_SCRATCH0) {
3686 		value = tegra_sor_readl(sor, SOR_AUDIO_HDA_CODEC_SCRATCH0);
3687 
3688 		if (value & SOR_AUDIO_HDA_CODEC_SCRATCH0_VALID) {
3689 			unsigned int format;
3690 
3691 			format = value & SOR_AUDIO_HDA_CODEC_SCRATCH0_FMT_MASK;
3692 
3693 			tegra_hda_parse_format(format, &sor->format);
3694 
3695 			if (sor->ops->audio_enable)
3696 				sor->ops->audio_enable(sor);
3697 		} else {
3698 			if (sor->ops->audio_disable)
3699 				sor->ops->audio_disable(sor);
3700 		}
3701 	}
3702 
3703 	return IRQ_HANDLED;
3704 }
3705 
3706 static int tegra_sor_probe(struct platform_device *pdev)
3707 {
3708 	struct device_node *np;
3709 	struct tegra_sor *sor;
3710 	struct resource *regs;
3711 	int err;
3712 
3713 	sor = devm_kzalloc(&pdev->dev, sizeof(*sor), GFP_KERNEL);
3714 	if (!sor)
3715 		return -ENOMEM;
3716 
3717 	sor->soc = of_device_get_match_data(&pdev->dev);
3718 	sor->output.dev = sor->dev = &pdev->dev;
3719 
3720 	sor->settings = devm_kmemdup(&pdev->dev, sor->soc->settings,
3721 				     sor->soc->num_settings *
3722 					sizeof(*sor->settings),
3723 				     GFP_KERNEL);
3724 	if (!sor->settings)
3725 		return -ENOMEM;
3726 
3727 	sor->num_settings = sor->soc->num_settings;
3728 
3729 	np = of_parse_phandle(pdev->dev.of_node, "nvidia,dpaux", 0);
3730 	if (np) {
3731 		sor->aux = drm_dp_aux_find_by_of_node(np);
3732 		of_node_put(np);
3733 
3734 		if (!sor->aux)
3735 			return -EPROBE_DEFER;
3736 
3737 		if (get_device(sor->aux->dev))
3738 			sor->output.ddc = &sor->aux->ddc;
3739 	}
3740 
3741 	if (!sor->aux) {
3742 		if (sor->soc->supports_hdmi) {
3743 			sor->ops = &tegra_sor_hdmi_ops;
3744 			sor->pad = TEGRA_IO_PAD_HDMI;
3745 		} else if (sor->soc->supports_lvds) {
3746 			dev_err(&pdev->dev, "LVDS not supported yet\n");
3747 			return -ENODEV;
3748 		} else {
3749 			dev_err(&pdev->dev, "unknown (non-DP) support\n");
3750 			return -ENODEV;
3751 		}
3752 	} else {
3753 		np = of_parse_phandle(pdev->dev.of_node, "nvidia,panel", 0);
3754 		/*
3755 		 * No need to keep this around since we only use it as a check
3756 		 * to see if a panel is connected (eDP) or not (DP).
3757 		 */
3758 		of_node_put(np);
3759 
3760 		sor->ops = &tegra_sor_dp_ops;
3761 		sor->pad = TEGRA_IO_PAD_LVDS;
3762 	}
3763 
3764 	err = tegra_sor_parse_dt(sor);
3765 	if (err < 0)
3766 		goto put_aux;
3767 
3768 	err = tegra_output_probe(&sor->output);
3769 	if (err < 0) {
3770 		dev_err_probe(&pdev->dev, err, "failed to probe output\n");
3771 		goto put_aux;
3772 	}
3773 
3774 	if (sor->ops && sor->ops->probe) {
3775 		err = sor->ops->probe(sor);
3776 		if (err < 0) {
3777 			dev_err(&pdev->dev, "failed to probe %s: %d\n",
3778 				sor->ops->name, err);
3779 			goto remove;
3780 		}
3781 	}
3782 
3783 	regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3784 	sor->regs = devm_ioremap_resource(&pdev->dev, regs);
3785 	if (IS_ERR(sor->regs)) {
3786 		err = PTR_ERR(sor->regs);
3787 		goto remove;
3788 	}
3789 
3790 	err = platform_get_irq(pdev, 0);
3791 	if (err < 0)
3792 		goto remove;
3793 
3794 	sor->irq = err;
3795 
3796 	err = devm_request_irq(sor->dev, sor->irq, tegra_sor_irq, 0,
3797 			       dev_name(sor->dev), sor);
3798 	if (err < 0) {
3799 		dev_err(&pdev->dev, "failed to request IRQ: %d\n", err);
3800 		goto remove;
3801 	}
3802 
3803 	sor->rst = devm_reset_control_get_exclusive_released(&pdev->dev, "sor");
3804 	if (IS_ERR(sor->rst)) {
3805 		err = PTR_ERR(sor->rst);
3806 
3807 		if (err != -EBUSY || WARN_ON(!pdev->dev.pm_domain)) {
3808 			dev_err(&pdev->dev, "failed to get reset control: %d\n",
3809 				err);
3810 			goto remove;
3811 		}
3812 
3813 		/*
3814 		 * At this point, the reset control is most likely being used
3815 		 * by the generic power domain implementation. With any luck
3816 		 * the power domain will have taken care of resetting the SOR
3817 		 * and we don't have to do anything.
3818 		 */
3819 		sor->rst = NULL;
3820 	}
3821 
3822 	sor->clk = devm_clk_get(&pdev->dev, NULL);
3823 	if (IS_ERR(sor->clk)) {
3824 		err = PTR_ERR(sor->clk);
3825 		dev_err(&pdev->dev, "failed to get module clock: %d\n", err);
3826 		goto remove;
3827 	}
3828 
3829 	if (sor->soc->supports_hdmi || sor->soc->supports_dp) {
3830 		struct device_node *np = pdev->dev.of_node;
3831 		const char *name;
3832 
3833 		/*
3834 		 * For backwards compatibility with Tegra210 device trees,
3835 		 * fall back to the old clock name "source" if the new "out"
3836 		 * clock is not available.
3837 		 */
3838 		if (of_property_match_string(np, "clock-names", "out") < 0)
3839 			name = "source";
3840 		else
3841 			name = "out";
3842 
3843 		sor->clk_out = devm_clk_get(&pdev->dev, name);
3844 		if (IS_ERR(sor->clk_out)) {
3845 			err = PTR_ERR(sor->clk_out);
3846 			dev_err(sor->dev, "failed to get %s clock: %d\n",
3847 				name, err);
3848 			goto remove;
3849 		}
3850 	} else {
3851 		/* fall back to the module clock on SOR0 (eDP/LVDS only) */
3852 		sor->clk_out = sor->clk;
3853 	}
3854 
3855 	sor->clk_parent = devm_clk_get(&pdev->dev, "parent");
3856 	if (IS_ERR(sor->clk_parent)) {
3857 		err = PTR_ERR(sor->clk_parent);
3858 		dev_err(&pdev->dev, "failed to get parent clock: %d\n", err);
3859 		goto remove;
3860 	}
3861 
3862 	sor->clk_safe = devm_clk_get(&pdev->dev, "safe");
3863 	if (IS_ERR(sor->clk_safe)) {
3864 		err = PTR_ERR(sor->clk_safe);
3865 		dev_err(&pdev->dev, "failed to get safe clock: %d\n", err);
3866 		goto remove;
3867 	}
3868 
3869 	sor->clk_dp = devm_clk_get(&pdev->dev, "dp");
3870 	if (IS_ERR(sor->clk_dp)) {
3871 		err = PTR_ERR(sor->clk_dp);
3872 		dev_err(&pdev->dev, "failed to get DP clock: %d\n", err);
3873 		goto remove;
3874 	}
3875 
3876 	/*
3877 	 * Starting with Tegra186, the BPMP provides an implementation for
3878 	 * the pad output clock, so we have to look it up from device tree.
3879 	 */
3880 	sor->clk_pad = devm_clk_get(&pdev->dev, "pad");
3881 	if (IS_ERR(sor->clk_pad)) {
3882 		if (sor->clk_pad != ERR_PTR(-ENOENT)) {
3883 			err = PTR_ERR(sor->clk_pad);
3884 			goto remove;
3885 		}
3886 
3887 		/*
3888 		 * If the pad output clock is not available, then we assume
3889 		 * we're on Tegra210 or earlier and have to provide our own
3890 		 * implementation.
3891 		 */
3892 		sor->clk_pad = NULL;
3893 	}
3894 
3895 	/*
3896 	 * The bootloader may have set up the SOR such that it's module clock
3897 	 * is sourced by one of the display PLLs. However, that doesn't work
3898 	 * without properly having set up other bits of the SOR.
3899 	 */
3900 	err = clk_set_parent(sor->clk_out, sor->clk_safe);
3901 	if (err < 0) {
3902 		dev_err(&pdev->dev, "failed to use safe clock: %d\n", err);
3903 		goto remove;
3904 	}
3905 
3906 	platform_set_drvdata(pdev, sor);
3907 	pm_runtime_enable(&pdev->dev);
3908 
3909 	host1x_client_init(&sor->client);
3910 	sor->client.ops = &sor_client_ops;
3911 	sor->client.dev = &pdev->dev;
3912 
3913 	/*
3914 	 * On Tegra210 and earlier, provide our own implementation for the
3915 	 * pad output clock.
3916 	 */
3917 	if (!sor->clk_pad) {
3918 		char *name;
3919 
3920 		name = devm_kasprintf(sor->dev, GFP_KERNEL, "sor%u_pad_clkout",
3921 				      sor->index);
3922 		if (!name) {
3923 			err = -ENOMEM;
3924 			goto uninit;
3925 		}
3926 
3927 		err = host1x_client_resume(&sor->client);
3928 		if (err < 0) {
3929 			dev_err(sor->dev, "failed to resume: %d\n", err);
3930 			goto uninit;
3931 		}
3932 
3933 		sor->clk_pad = tegra_clk_sor_pad_register(sor, name);
3934 		host1x_client_suspend(&sor->client);
3935 	}
3936 
3937 	if (IS_ERR(sor->clk_pad)) {
3938 		err = PTR_ERR(sor->clk_pad);
3939 		dev_err(sor->dev, "failed to register SOR pad clock: %d\n",
3940 			err);
3941 		goto uninit;
3942 	}
3943 
3944 	err = __host1x_client_register(&sor->client);
3945 	if (err < 0) {
3946 		dev_err(&pdev->dev, "failed to register host1x client: %d\n",
3947 			err);
3948 		goto uninit;
3949 	}
3950 
3951 	return 0;
3952 
3953 uninit:
3954 	host1x_client_exit(&sor->client);
3955 	pm_runtime_disable(&pdev->dev);
3956 remove:
3957 	if (sor->aux)
3958 		sor->output.ddc = NULL;
3959 
3960 	tegra_output_remove(&sor->output);
3961 put_aux:
3962 	if (sor->aux)
3963 		put_device(sor->aux->dev);
3964 
3965 	return err;
3966 }
3967 
3968 static void tegra_sor_remove(struct platform_device *pdev)
3969 {
3970 	struct tegra_sor *sor = platform_get_drvdata(pdev);
3971 
3972 	host1x_client_unregister(&sor->client);
3973 
3974 	pm_runtime_disable(&pdev->dev);
3975 
3976 	if (sor->aux) {
3977 		put_device(sor->aux->dev);
3978 		sor->output.ddc = NULL;
3979 	}
3980 
3981 	tegra_output_remove(&sor->output);
3982 }
3983 
3984 static int __maybe_unused tegra_sor_suspend(struct device *dev)
3985 {
3986 	struct tegra_sor *sor = dev_get_drvdata(dev);
3987 	int err;
3988 
3989 	err = tegra_output_suspend(&sor->output);
3990 	if (err < 0) {
3991 		dev_err(dev, "failed to suspend output: %d\n", err);
3992 		return err;
3993 	}
3994 
3995 	if (sor->hdmi_supply) {
3996 		err = regulator_disable(sor->hdmi_supply);
3997 		if (err < 0) {
3998 			tegra_output_resume(&sor->output);
3999 			return err;
4000 		}
4001 	}
4002 
4003 	return 0;
4004 }
4005 
4006 static int __maybe_unused tegra_sor_resume(struct device *dev)
4007 {
4008 	struct tegra_sor *sor = dev_get_drvdata(dev);
4009 	int err;
4010 
4011 	if (sor->hdmi_supply) {
4012 		err = regulator_enable(sor->hdmi_supply);
4013 		if (err < 0)
4014 			return err;
4015 	}
4016 
4017 	err = tegra_output_resume(&sor->output);
4018 	if (err < 0) {
4019 		dev_err(dev, "failed to resume output: %d\n", err);
4020 
4021 		if (sor->hdmi_supply)
4022 			regulator_disable(sor->hdmi_supply);
4023 
4024 		return err;
4025 	}
4026 
4027 	return 0;
4028 }
4029 
4030 static const struct dev_pm_ops tegra_sor_pm_ops = {
4031 	SET_SYSTEM_SLEEP_PM_OPS(tegra_sor_suspend, tegra_sor_resume)
4032 };
4033 
4034 struct platform_driver tegra_sor_driver = {
4035 	.driver = {
4036 		.name = "tegra-sor",
4037 		.of_match_table = tegra_sor_of_match,
4038 		.pm = &tegra_sor_pm_ops,
4039 	},
4040 	.probe = tegra_sor_probe,
4041 	.remove_new = tegra_sor_remove,
4042 };
4043