xref: /openbmc/linux/drivers/gpu/drm/tegra/dc.c (revision f97769fd)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 Avionic Design GmbH
4  * Copyright (C) 2012 NVIDIA CORPORATION.  All rights reserved.
5  */
6 
7 #include <linux/clk.h>
8 #include <linux/debugfs.h>
9 #include <linux/delay.h>
10 #include <linux/iommu.h>
11 #include <linux/module.h>
12 #include <linux/of_device.h>
13 #include <linux/pm_runtime.h>
14 #include <linux/reset.h>
15 
16 #include <soc/tegra/pmc.h>
17 
18 #include <drm/drm_atomic.h>
19 #include <drm/drm_atomic_helper.h>
20 #include <drm/drm_debugfs.h>
21 #include <drm/drm_fourcc.h>
22 #include <drm/drm_plane_helper.h>
23 #include <drm/drm_vblank.h>
24 
25 #include "dc.h"
26 #include "drm.h"
27 #include "gem.h"
28 #include "hub.h"
29 #include "plane.h"
30 
31 static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc,
32 					    struct drm_crtc_state *state);
33 
34 static void tegra_dc_stats_reset(struct tegra_dc_stats *stats)
35 {
36 	stats->frames = 0;
37 	stats->vblank = 0;
38 	stats->underflow = 0;
39 	stats->overflow = 0;
40 }
41 
42 /* Reads the active copy of a register. */
43 static u32 tegra_dc_readl_active(struct tegra_dc *dc, unsigned long offset)
44 {
45 	u32 value;
46 
47 	tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
48 	value = tegra_dc_readl(dc, offset);
49 	tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS);
50 
51 	return value;
52 }
53 
54 static inline unsigned int tegra_plane_offset(struct tegra_plane *plane,
55 					      unsigned int offset)
56 {
57 	if (offset >= 0x500 && offset <= 0x638) {
58 		offset = 0x000 + (offset - 0x500);
59 		return plane->offset + offset;
60 	}
61 
62 	if (offset >= 0x700 && offset <= 0x719) {
63 		offset = 0x180 + (offset - 0x700);
64 		return plane->offset + offset;
65 	}
66 
67 	if (offset >= 0x800 && offset <= 0x839) {
68 		offset = 0x1c0 + (offset - 0x800);
69 		return plane->offset + offset;
70 	}
71 
72 	dev_WARN(plane->dc->dev, "invalid offset: %x\n", offset);
73 
74 	return plane->offset + offset;
75 }
76 
77 static inline u32 tegra_plane_readl(struct tegra_plane *plane,
78 				    unsigned int offset)
79 {
80 	return tegra_dc_readl(plane->dc, tegra_plane_offset(plane, offset));
81 }
82 
83 static inline void tegra_plane_writel(struct tegra_plane *plane, u32 value,
84 				      unsigned int offset)
85 {
86 	tegra_dc_writel(plane->dc, value, tegra_plane_offset(plane, offset));
87 }
88 
89 bool tegra_dc_has_output(struct tegra_dc *dc, struct device *dev)
90 {
91 	struct device_node *np = dc->dev->of_node;
92 	struct of_phandle_iterator it;
93 	int err;
94 
95 	of_for_each_phandle(&it, err, np, "nvidia,outputs", NULL, 0)
96 		if (it.node == dev->of_node)
97 			return true;
98 
99 	return false;
100 }
101 
102 /*
103  * Double-buffered registers have two copies: ASSEMBLY and ACTIVE. When the
104  * *_ACT_REQ bits are set the ASSEMBLY copy is latched into the ACTIVE copy.
105  * Latching happens mmediately if the display controller is in STOP mode or
106  * on the next frame boundary otherwise.
107  *
108  * Triple-buffered registers have three copies: ASSEMBLY, ARM and ACTIVE. The
109  * ASSEMBLY copy is latched into the ARM copy immediately after *_UPDATE bits
110  * are written. When the *_ACT_REQ bits are written, the ARM copy is latched
111  * into the ACTIVE copy, either immediately if the display controller is in
112  * STOP mode, or at the next frame boundary otherwise.
113  */
114 void tegra_dc_commit(struct tegra_dc *dc)
115 {
116 	tegra_dc_writel(dc, GENERAL_ACT_REQ << 8, DC_CMD_STATE_CONTROL);
117 	tegra_dc_writel(dc, GENERAL_ACT_REQ, DC_CMD_STATE_CONTROL);
118 }
119 
120 static inline u32 compute_dda_inc(unsigned int in, unsigned int out, bool v,
121 				  unsigned int bpp)
122 {
123 	fixed20_12 outf = dfixed_init(out);
124 	fixed20_12 inf = dfixed_init(in);
125 	u32 dda_inc;
126 	int max;
127 
128 	if (v)
129 		max = 15;
130 	else {
131 		switch (bpp) {
132 		case 2:
133 			max = 8;
134 			break;
135 
136 		default:
137 			WARN_ON_ONCE(1);
138 			fallthrough;
139 		case 4:
140 			max = 4;
141 			break;
142 		}
143 	}
144 
145 	outf.full = max_t(u32, outf.full - dfixed_const(1), dfixed_const(1));
146 	inf.full -= dfixed_const(1);
147 
148 	dda_inc = dfixed_div(inf, outf);
149 	dda_inc = min_t(u32, dda_inc, dfixed_const(max));
150 
151 	return dda_inc;
152 }
153 
154 static inline u32 compute_initial_dda(unsigned int in)
155 {
156 	fixed20_12 inf = dfixed_init(in);
157 	return dfixed_frac(inf);
158 }
159 
160 static void tegra_plane_setup_blending_legacy(struct tegra_plane *plane)
161 {
162 	u32 background[3] = {
163 		BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
164 		BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
165 		BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
166 	};
167 	u32 foreground = BLEND_WEIGHT1(255) | BLEND_WEIGHT0(255) |
168 			 BLEND_COLOR_KEY_NONE;
169 	u32 blendnokey = BLEND_WEIGHT1(255) | BLEND_WEIGHT0(255);
170 	struct tegra_plane_state *state;
171 	u32 blending[2];
172 	unsigned int i;
173 
174 	/* disable blending for non-overlapping case */
175 	tegra_plane_writel(plane, blendnokey, DC_WIN_BLEND_NOKEY);
176 	tegra_plane_writel(plane, foreground, DC_WIN_BLEND_1WIN);
177 
178 	state = to_tegra_plane_state(plane->base.state);
179 
180 	if (state->opaque) {
181 		/*
182 		 * Since custom fix-weight blending isn't utilized and weight
183 		 * of top window is set to max, we can enforce dependent
184 		 * blending which in this case results in transparent bottom
185 		 * window if top window is opaque and if top window enables
186 		 * alpha blending, then bottom window is getting alpha value
187 		 * of 1 minus the sum of alpha components of the overlapping
188 		 * plane.
189 		 */
190 		background[0] |= BLEND_CONTROL_DEPENDENT;
191 		background[1] |= BLEND_CONTROL_DEPENDENT;
192 
193 		/*
194 		 * The region where three windows overlap is the intersection
195 		 * of the two regions where two windows overlap. It contributes
196 		 * to the area if all of the windows on top of it have an alpha
197 		 * component.
198 		 */
199 		switch (state->base.normalized_zpos) {
200 		case 0:
201 			if (state->blending[0].alpha &&
202 			    state->blending[1].alpha)
203 				background[2] |= BLEND_CONTROL_DEPENDENT;
204 			break;
205 
206 		case 1:
207 			background[2] |= BLEND_CONTROL_DEPENDENT;
208 			break;
209 		}
210 	} else {
211 		/*
212 		 * Enable alpha blending if pixel format has an alpha
213 		 * component.
214 		 */
215 		foreground |= BLEND_CONTROL_ALPHA;
216 
217 		/*
218 		 * If any of the windows on top of this window is opaque, it
219 		 * will completely conceal this window within that area. If
220 		 * top window has an alpha component, it is blended over the
221 		 * bottom window.
222 		 */
223 		for (i = 0; i < 2; i++) {
224 			if (state->blending[i].alpha &&
225 			    state->blending[i].top)
226 				background[i] |= BLEND_CONTROL_DEPENDENT;
227 		}
228 
229 		switch (state->base.normalized_zpos) {
230 		case 0:
231 			if (state->blending[0].alpha &&
232 			    state->blending[1].alpha)
233 				background[2] |= BLEND_CONTROL_DEPENDENT;
234 			break;
235 
236 		case 1:
237 			/*
238 			 * When both middle and topmost windows have an alpha,
239 			 * these windows a mixed together and then the result
240 			 * is blended over the bottom window.
241 			 */
242 			if (state->blending[0].alpha &&
243 			    state->blending[0].top)
244 				background[2] |= BLEND_CONTROL_ALPHA;
245 
246 			if (state->blending[1].alpha &&
247 			    state->blending[1].top)
248 				background[2] |= BLEND_CONTROL_ALPHA;
249 			break;
250 		}
251 	}
252 
253 	switch (state->base.normalized_zpos) {
254 	case 0:
255 		tegra_plane_writel(plane, background[0], DC_WIN_BLEND_2WIN_X);
256 		tegra_plane_writel(plane, background[1], DC_WIN_BLEND_2WIN_Y);
257 		tegra_plane_writel(plane, background[2], DC_WIN_BLEND_3WIN_XY);
258 		break;
259 
260 	case 1:
261 		/*
262 		 * If window B / C is topmost, then X / Y registers are
263 		 * matching the order of blending[...] state indices,
264 		 * otherwise a swap is required.
265 		 */
266 		if (!state->blending[0].top && state->blending[1].top) {
267 			blending[0] = foreground;
268 			blending[1] = background[1];
269 		} else {
270 			blending[0] = background[0];
271 			blending[1] = foreground;
272 		}
273 
274 		tegra_plane_writel(plane, blending[0], DC_WIN_BLEND_2WIN_X);
275 		tegra_plane_writel(plane, blending[1], DC_WIN_BLEND_2WIN_Y);
276 		tegra_plane_writel(plane, background[2], DC_WIN_BLEND_3WIN_XY);
277 		break;
278 
279 	case 2:
280 		tegra_plane_writel(plane, foreground, DC_WIN_BLEND_2WIN_X);
281 		tegra_plane_writel(plane, foreground, DC_WIN_BLEND_2WIN_Y);
282 		tegra_plane_writel(plane, foreground, DC_WIN_BLEND_3WIN_XY);
283 		break;
284 	}
285 }
286 
287 static void tegra_plane_setup_blending(struct tegra_plane *plane,
288 				       const struct tegra_dc_window *window)
289 {
290 	u32 value;
291 
292 	value = BLEND_FACTOR_DST_ALPHA_ZERO | BLEND_FACTOR_SRC_ALPHA_K2 |
293 		BLEND_FACTOR_DST_COLOR_NEG_K1_TIMES_SRC |
294 		BLEND_FACTOR_SRC_COLOR_K1_TIMES_SRC;
295 	tegra_plane_writel(plane, value, DC_WIN_BLEND_MATCH_SELECT);
296 
297 	value = BLEND_FACTOR_DST_ALPHA_ZERO | BLEND_FACTOR_SRC_ALPHA_K2 |
298 		BLEND_FACTOR_DST_COLOR_NEG_K1_TIMES_SRC |
299 		BLEND_FACTOR_SRC_COLOR_K1_TIMES_SRC;
300 	tegra_plane_writel(plane, value, DC_WIN_BLEND_NOMATCH_SELECT);
301 
302 	value = K2(255) | K1(255) | WINDOW_LAYER_DEPTH(255 - window->zpos);
303 	tegra_plane_writel(plane, value, DC_WIN_BLEND_LAYER_CONTROL);
304 }
305 
306 static bool
307 tegra_plane_use_horizontal_filtering(struct tegra_plane *plane,
308 				     const struct tegra_dc_window *window)
309 {
310 	struct tegra_dc *dc = plane->dc;
311 
312 	if (window->src.w == window->dst.w)
313 		return false;
314 
315 	if (plane->index == 0 && dc->soc->has_win_a_without_filters)
316 		return false;
317 
318 	return true;
319 }
320 
321 static bool
322 tegra_plane_use_vertical_filtering(struct tegra_plane *plane,
323 				   const struct tegra_dc_window *window)
324 {
325 	struct tegra_dc *dc = plane->dc;
326 
327 	if (window->src.h == window->dst.h)
328 		return false;
329 
330 	if (plane->index == 0 && dc->soc->has_win_a_without_filters)
331 		return false;
332 
333 	if (plane->index == 2 && dc->soc->has_win_c_without_vert_filter)
334 		return false;
335 
336 	return true;
337 }
338 
339 static void tegra_dc_setup_window(struct tegra_plane *plane,
340 				  const struct tegra_dc_window *window)
341 {
342 	unsigned h_offset, v_offset, h_size, v_size, h_dda, v_dda, bpp;
343 	struct tegra_dc *dc = plane->dc;
344 	bool yuv, planar;
345 	u32 value;
346 
347 	/*
348 	 * For YUV planar modes, the number of bytes per pixel takes into
349 	 * account only the luma component and therefore is 1.
350 	 */
351 	yuv = tegra_plane_format_is_yuv(window->format, &planar);
352 	if (!yuv)
353 		bpp = window->bits_per_pixel / 8;
354 	else
355 		bpp = planar ? 1 : 2;
356 
357 	tegra_plane_writel(plane, window->format, DC_WIN_COLOR_DEPTH);
358 	tegra_plane_writel(plane, window->swap, DC_WIN_BYTE_SWAP);
359 
360 	value = V_POSITION(window->dst.y) | H_POSITION(window->dst.x);
361 	tegra_plane_writel(plane, value, DC_WIN_POSITION);
362 
363 	value = V_SIZE(window->dst.h) | H_SIZE(window->dst.w);
364 	tegra_plane_writel(plane, value, DC_WIN_SIZE);
365 
366 	h_offset = window->src.x * bpp;
367 	v_offset = window->src.y;
368 	h_size = window->src.w * bpp;
369 	v_size = window->src.h;
370 
371 	if (window->reflect_x)
372 		h_offset += (window->src.w - 1) * bpp;
373 
374 	if (window->reflect_y)
375 		v_offset += window->src.h - 1;
376 
377 	value = V_PRESCALED_SIZE(v_size) | H_PRESCALED_SIZE(h_size);
378 	tegra_plane_writel(plane, value, DC_WIN_PRESCALED_SIZE);
379 
380 	/*
381 	 * For DDA computations the number of bytes per pixel for YUV planar
382 	 * modes needs to take into account all Y, U and V components.
383 	 */
384 	if (yuv && planar)
385 		bpp = 2;
386 
387 	h_dda = compute_dda_inc(window->src.w, window->dst.w, false, bpp);
388 	v_dda = compute_dda_inc(window->src.h, window->dst.h, true, bpp);
389 
390 	value = V_DDA_INC(v_dda) | H_DDA_INC(h_dda);
391 	tegra_plane_writel(plane, value, DC_WIN_DDA_INC);
392 
393 	h_dda = compute_initial_dda(window->src.x);
394 	v_dda = compute_initial_dda(window->src.y);
395 
396 	tegra_plane_writel(plane, h_dda, DC_WIN_H_INITIAL_DDA);
397 	tegra_plane_writel(plane, v_dda, DC_WIN_V_INITIAL_DDA);
398 
399 	tegra_plane_writel(plane, 0, DC_WIN_UV_BUF_STRIDE);
400 	tegra_plane_writel(plane, 0, DC_WIN_BUF_STRIDE);
401 
402 	tegra_plane_writel(plane, window->base[0], DC_WINBUF_START_ADDR);
403 
404 	if (yuv && planar) {
405 		tegra_plane_writel(plane, window->base[1], DC_WINBUF_START_ADDR_U);
406 		tegra_plane_writel(plane, window->base[2], DC_WINBUF_START_ADDR_V);
407 		value = window->stride[1] << 16 | window->stride[0];
408 		tegra_plane_writel(plane, value, DC_WIN_LINE_STRIDE);
409 	} else {
410 		tegra_plane_writel(plane, window->stride[0], DC_WIN_LINE_STRIDE);
411 	}
412 
413 	tegra_plane_writel(plane, h_offset, DC_WINBUF_ADDR_H_OFFSET);
414 	tegra_plane_writel(plane, v_offset, DC_WINBUF_ADDR_V_OFFSET);
415 
416 	if (dc->soc->supports_block_linear) {
417 		unsigned long height = window->tiling.value;
418 
419 		switch (window->tiling.mode) {
420 		case TEGRA_BO_TILING_MODE_PITCH:
421 			value = DC_WINBUF_SURFACE_KIND_PITCH;
422 			break;
423 
424 		case TEGRA_BO_TILING_MODE_TILED:
425 			value = DC_WINBUF_SURFACE_KIND_TILED;
426 			break;
427 
428 		case TEGRA_BO_TILING_MODE_BLOCK:
429 			value = DC_WINBUF_SURFACE_KIND_BLOCK_HEIGHT(height) |
430 				DC_WINBUF_SURFACE_KIND_BLOCK;
431 			break;
432 		}
433 
434 		tegra_plane_writel(plane, value, DC_WINBUF_SURFACE_KIND);
435 	} else {
436 		switch (window->tiling.mode) {
437 		case TEGRA_BO_TILING_MODE_PITCH:
438 			value = DC_WIN_BUFFER_ADDR_MODE_LINEAR_UV |
439 				DC_WIN_BUFFER_ADDR_MODE_LINEAR;
440 			break;
441 
442 		case TEGRA_BO_TILING_MODE_TILED:
443 			value = DC_WIN_BUFFER_ADDR_MODE_TILE_UV |
444 				DC_WIN_BUFFER_ADDR_MODE_TILE;
445 			break;
446 
447 		case TEGRA_BO_TILING_MODE_BLOCK:
448 			/*
449 			 * No need to handle this here because ->atomic_check
450 			 * will already have filtered it out.
451 			 */
452 			break;
453 		}
454 
455 		tegra_plane_writel(plane, value, DC_WIN_BUFFER_ADDR_MODE);
456 	}
457 
458 	value = WIN_ENABLE;
459 
460 	if (yuv) {
461 		/* setup default colorspace conversion coefficients */
462 		tegra_plane_writel(plane, 0x00f0, DC_WIN_CSC_YOF);
463 		tegra_plane_writel(plane, 0x012a, DC_WIN_CSC_KYRGB);
464 		tegra_plane_writel(plane, 0x0000, DC_WIN_CSC_KUR);
465 		tegra_plane_writel(plane, 0x0198, DC_WIN_CSC_KVR);
466 		tegra_plane_writel(plane, 0x039b, DC_WIN_CSC_KUG);
467 		tegra_plane_writel(plane, 0x032f, DC_WIN_CSC_KVG);
468 		tegra_plane_writel(plane, 0x0204, DC_WIN_CSC_KUB);
469 		tegra_plane_writel(plane, 0x0000, DC_WIN_CSC_KVB);
470 
471 		value |= CSC_ENABLE;
472 	} else if (window->bits_per_pixel < 24) {
473 		value |= COLOR_EXPAND;
474 	}
475 
476 	if (window->reflect_x)
477 		value |= H_DIRECTION;
478 
479 	if (window->reflect_y)
480 		value |= V_DIRECTION;
481 
482 	if (tegra_plane_use_horizontal_filtering(plane, window)) {
483 		/*
484 		 * Enable horizontal 6-tap filter and set filtering
485 		 * coefficients to the default values defined in TRM.
486 		 */
487 		tegra_plane_writel(plane, 0x00008000, DC_WIN_H_FILTER_P(0));
488 		tegra_plane_writel(plane, 0x3e087ce1, DC_WIN_H_FILTER_P(1));
489 		tegra_plane_writel(plane, 0x3b117ac1, DC_WIN_H_FILTER_P(2));
490 		tegra_plane_writel(plane, 0x591b73aa, DC_WIN_H_FILTER_P(3));
491 		tegra_plane_writel(plane, 0x57256d9a, DC_WIN_H_FILTER_P(4));
492 		tegra_plane_writel(plane, 0x552f668b, DC_WIN_H_FILTER_P(5));
493 		tegra_plane_writel(plane, 0x73385e8b, DC_WIN_H_FILTER_P(6));
494 		tegra_plane_writel(plane, 0x72435583, DC_WIN_H_FILTER_P(7));
495 		tegra_plane_writel(plane, 0x714c4c8b, DC_WIN_H_FILTER_P(8));
496 		tegra_plane_writel(plane, 0x70554393, DC_WIN_H_FILTER_P(9));
497 		tegra_plane_writel(plane, 0x715e389b, DC_WIN_H_FILTER_P(10));
498 		tegra_plane_writel(plane, 0x71662faa, DC_WIN_H_FILTER_P(11));
499 		tegra_plane_writel(plane, 0x536d25ba, DC_WIN_H_FILTER_P(12));
500 		tegra_plane_writel(plane, 0x55731bca, DC_WIN_H_FILTER_P(13));
501 		tegra_plane_writel(plane, 0x387a11d9, DC_WIN_H_FILTER_P(14));
502 		tegra_plane_writel(plane, 0x3c7c08f1, DC_WIN_H_FILTER_P(15));
503 
504 		value |= H_FILTER;
505 	}
506 
507 	if (tegra_plane_use_vertical_filtering(plane, window)) {
508 		unsigned int i, k;
509 
510 		/*
511 		 * Enable vertical 2-tap filter and set filtering
512 		 * coefficients to the default values defined in TRM.
513 		 */
514 		for (i = 0, k = 128; i < 16; i++, k -= 8)
515 			tegra_plane_writel(plane, k, DC_WIN_V_FILTER_P(i));
516 
517 		value |= V_FILTER;
518 	}
519 
520 	tegra_plane_writel(plane, value, DC_WIN_WIN_OPTIONS);
521 
522 	if (dc->soc->has_legacy_blending)
523 		tegra_plane_setup_blending_legacy(plane);
524 	else
525 		tegra_plane_setup_blending(plane, window);
526 }
527 
528 static const u32 tegra20_primary_formats[] = {
529 	DRM_FORMAT_ARGB4444,
530 	DRM_FORMAT_ARGB1555,
531 	DRM_FORMAT_RGB565,
532 	DRM_FORMAT_RGBA5551,
533 	DRM_FORMAT_ABGR8888,
534 	DRM_FORMAT_ARGB8888,
535 	/* non-native formats */
536 	DRM_FORMAT_XRGB1555,
537 	DRM_FORMAT_RGBX5551,
538 	DRM_FORMAT_XBGR8888,
539 	DRM_FORMAT_XRGB8888,
540 };
541 
542 static const u64 tegra20_modifiers[] = {
543 	DRM_FORMAT_MOD_LINEAR,
544 	DRM_FORMAT_MOD_NVIDIA_TEGRA_TILED,
545 	DRM_FORMAT_MOD_INVALID
546 };
547 
548 static const u32 tegra114_primary_formats[] = {
549 	DRM_FORMAT_ARGB4444,
550 	DRM_FORMAT_ARGB1555,
551 	DRM_FORMAT_RGB565,
552 	DRM_FORMAT_RGBA5551,
553 	DRM_FORMAT_ABGR8888,
554 	DRM_FORMAT_ARGB8888,
555 	/* new on Tegra114 */
556 	DRM_FORMAT_ABGR4444,
557 	DRM_FORMAT_ABGR1555,
558 	DRM_FORMAT_BGRA5551,
559 	DRM_FORMAT_XRGB1555,
560 	DRM_FORMAT_RGBX5551,
561 	DRM_FORMAT_XBGR1555,
562 	DRM_FORMAT_BGRX5551,
563 	DRM_FORMAT_BGR565,
564 	DRM_FORMAT_BGRA8888,
565 	DRM_FORMAT_RGBA8888,
566 	DRM_FORMAT_XRGB8888,
567 	DRM_FORMAT_XBGR8888,
568 };
569 
570 static const u32 tegra124_primary_formats[] = {
571 	DRM_FORMAT_ARGB4444,
572 	DRM_FORMAT_ARGB1555,
573 	DRM_FORMAT_RGB565,
574 	DRM_FORMAT_RGBA5551,
575 	DRM_FORMAT_ABGR8888,
576 	DRM_FORMAT_ARGB8888,
577 	/* new on Tegra114 */
578 	DRM_FORMAT_ABGR4444,
579 	DRM_FORMAT_ABGR1555,
580 	DRM_FORMAT_BGRA5551,
581 	DRM_FORMAT_XRGB1555,
582 	DRM_FORMAT_RGBX5551,
583 	DRM_FORMAT_XBGR1555,
584 	DRM_FORMAT_BGRX5551,
585 	DRM_FORMAT_BGR565,
586 	DRM_FORMAT_BGRA8888,
587 	DRM_FORMAT_RGBA8888,
588 	DRM_FORMAT_XRGB8888,
589 	DRM_FORMAT_XBGR8888,
590 	/* new on Tegra124 */
591 	DRM_FORMAT_RGBX8888,
592 	DRM_FORMAT_BGRX8888,
593 };
594 
595 static const u64 tegra124_modifiers[] = {
596 	DRM_FORMAT_MOD_LINEAR,
597 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(0),
598 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(1),
599 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(2),
600 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(3),
601 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(4),
602 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(5),
603 	DRM_FORMAT_MOD_INVALID
604 };
605 
606 static int tegra_plane_atomic_check(struct drm_plane *plane,
607 				    struct drm_plane_state *state)
608 {
609 	struct tegra_plane_state *plane_state = to_tegra_plane_state(state);
610 	unsigned int supported_rotation = DRM_MODE_ROTATE_0 |
611 					  DRM_MODE_REFLECT_X |
612 					  DRM_MODE_REFLECT_Y;
613 	unsigned int rotation = state->rotation;
614 	struct tegra_bo_tiling *tiling = &plane_state->tiling;
615 	struct tegra_plane *tegra = to_tegra_plane(plane);
616 	struct tegra_dc *dc = to_tegra_dc(state->crtc);
617 	int err;
618 
619 	/* no need for further checks if the plane is being disabled */
620 	if (!state->crtc)
621 		return 0;
622 
623 	err = tegra_plane_format(state->fb->format->format,
624 				 &plane_state->format,
625 				 &plane_state->swap);
626 	if (err < 0)
627 		return err;
628 
629 	/*
630 	 * Tegra20 and Tegra30 are special cases here because they support
631 	 * only variants of specific formats with an alpha component, but not
632 	 * the corresponding opaque formats. However, the opaque formats can
633 	 * be emulated by disabling alpha blending for the plane.
634 	 */
635 	if (dc->soc->has_legacy_blending) {
636 		err = tegra_plane_setup_legacy_state(tegra, plane_state);
637 		if (err < 0)
638 			return err;
639 	}
640 
641 	err = tegra_fb_get_tiling(state->fb, tiling);
642 	if (err < 0)
643 		return err;
644 
645 	if (tiling->mode == TEGRA_BO_TILING_MODE_BLOCK &&
646 	    !dc->soc->supports_block_linear) {
647 		DRM_ERROR("hardware doesn't support block linear mode\n");
648 		return -EINVAL;
649 	}
650 
651 	/*
652 	 * Older userspace used custom BO flag in order to specify the Y
653 	 * reflection, while modern userspace uses the generic DRM rotation
654 	 * property in order to achieve the same result.  The legacy BO flag
655 	 * duplicates the DRM rotation property when both are set.
656 	 */
657 	if (tegra_fb_is_bottom_up(state->fb))
658 		rotation |= DRM_MODE_REFLECT_Y;
659 
660 	rotation = drm_rotation_simplify(rotation, supported_rotation);
661 
662 	if (rotation & DRM_MODE_REFLECT_X)
663 		plane_state->reflect_x = true;
664 	else
665 		plane_state->reflect_x = false;
666 
667 	if (rotation & DRM_MODE_REFLECT_Y)
668 		plane_state->reflect_y = true;
669 	else
670 		plane_state->reflect_y = false;
671 
672 	/*
673 	 * Tegra doesn't support different strides for U and V planes so we
674 	 * error out if the user tries to display a framebuffer with such a
675 	 * configuration.
676 	 */
677 	if (state->fb->format->num_planes > 2) {
678 		if (state->fb->pitches[2] != state->fb->pitches[1]) {
679 			DRM_ERROR("unsupported UV-plane configuration\n");
680 			return -EINVAL;
681 		}
682 	}
683 
684 	err = tegra_plane_state_add(tegra, state);
685 	if (err < 0)
686 		return err;
687 
688 	return 0;
689 }
690 
691 static void tegra_plane_atomic_disable(struct drm_plane *plane,
692 				       struct drm_plane_state *old_state)
693 {
694 	struct tegra_plane *p = to_tegra_plane(plane);
695 	u32 value;
696 
697 	/* rien ne va plus */
698 	if (!old_state || !old_state->crtc)
699 		return;
700 
701 	value = tegra_plane_readl(p, DC_WIN_WIN_OPTIONS);
702 	value &= ~WIN_ENABLE;
703 	tegra_plane_writel(p, value, DC_WIN_WIN_OPTIONS);
704 }
705 
706 static void tegra_plane_atomic_update(struct drm_plane *plane,
707 				      struct drm_plane_state *old_state)
708 {
709 	struct tegra_plane_state *state = to_tegra_plane_state(plane->state);
710 	struct drm_framebuffer *fb = plane->state->fb;
711 	struct tegra_plane *p = to_tegra_plane(plane);
712 	struct tegra_dc_window window;
713 	unsigned int i;
714 
715 	/* rien ne va plus */
716 	if (!plane->state->crtc || !plane->state->fb)
717 		return;
718 
719 	if (!plane->state->visible)
720 		return tegra_plane_atomic_disable(plane, old_state);
721 
722 	memset(&window, 0, sizeof(window));
723 	window.src.x = plane->state->src.x1 >> 16;
724 	window.src.y = plane->state->src.y1 >> 16;
725 	window.src.w = drm_rect_width(&plane->state->src) >> 16;
726 	window.src.h = drm_rect_height(&plane->state->src) >> 16;
727 	window.dst.x = plane->state->dst.x1;
728 	window.dst.y = plane->state->dst.y1;
729 	window.dst.w = drm_rect_width(&plane->state->dst);
730 	window.dst.h = drm_rect_height(&plane->state->dst);
731 	window.bits_per_pixel = fb->format->cpp[0] * 8;
732 	window.reflect_x = state->reflect_x;
733 	window.reflect_y = state->reflect_y;
734 
735 	/* copy from state */
736 	window.zpos = plane->state->normalized_zpos;
737 	window.tiling = state->tiling;
738 	window.format = state->format;
739 	window.swap = state->swap;
740 
741 	for (i = 0; i < fb->format->num_planes; i++) {
742 		window.base[i] = state->iova[i] + fb->offsets[i];
743 
744 		/*
745 		 * Tegra uses a shared stride for UV planes. Framebuffers are
746 		 * already checked for this in the tegra_plane_atomic_check()
747 		 * function, so it's safe to ignore the V-plane pitch here.
748 		 */
749 		if (i < 2)
750 			window.stride[i] = fb->pitches[i];
751 	}
752 
753 	tegra_dc_setup_window(p, &window);
754 }
755 
756 static const struct drm_plane_helper_funcs tegra_plane_helper_funcs = {
757 	.prepare_fb = tegra_plane_prepare_fb,
758 	.cleanup_fb = tegra_plane_cleanup_fb,
759 	.atomic_check = tegra_plane_atomic_check,
760 	.atomic_disable = tegra_plane_atomic_disable,
761 	.atomic_update = tegra_plane_atomic_update,
762 };
763 
764 static unsigned long tegra_plane_get_possible_crtcs(struct drm_device *drm)
765 {
766 	/*
767 	 * Ideally this would use drm_crtc_mask(), but that would require the
768 	 * CRTC to already be in the mode_config's list of CRTCs. However, it
769 	 * will only be added to that list in the drm_crtc_init_with_planes()
770 	 * (in tegra_dc_init()), which in turn requires registration of these
771 	 * planes. So we have ourselves a nice little chicken and egg problem
772 	 * here.
773 	 *
774 	 * We work around this by manually creating the mask from the number
775 	 * of CRTCs that have been registered, and should therefore always be
776 	 * the same as drm_crtc_index() after registration.
777 	 */
778 	return 1 << drm->mode_config.num_crtc;
779 }
780 
781 static struct drm_plane *tegra_primary_plane_create(struct drm_device *drm,
782 						    struct tegra_dc *dc)
783 {
784 	unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
785 	enum drm_plane_type type = DRM_PLANE_TYPE_PRIMARY;
786 	struct tegra_plane *plane;
787 	unsigned int num_formats;
788 	const u64 *modifiers;
789 	const u32 *formats;
790 	int err;
791 
792 	plane = kzalloc(sizeof(*plane), GFP_KERNEL);
793 	if (!plane)
794 		return ERR_PTR(-ENOMEM);
795 
796 	/* Always use window A as primary window */
797 	plane->offset = 0xa00;
798 	plane->index = 0;
799 	plane->dc = dc;
800 
801 	num_formats = dc->soc->num_primary_formats;
802 	formats = dc->soc->primary_formats;
803 	modifiers = dc->soc->modifiers;
804 
805 	err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
806 				       &tegra_plane_funcs, formats,
807 				       num_formats, modifiers, type, NULL);
808 	if (err < 0) {
809 		kfree(plane);
810 		return ERR_PTR(err);
811 	}
812 
813 	drm_plane_helper_add(&plane->base, &tegra_plane_helper_funcs);
814 	drm_plane_create_zpos_property(&plane->base, plane->index, 0, 255);
815 
816 	err = drm_plane_create_rotation_property(&plane->base,
817 						 DRM_MODE_ROTATE_0,
818 						 DRM_MODE_ROTATE_0 |
819 						 DRM_MODE_ROTATE_180 |
820 						 DRM_MODE_REFLECT_X |
821 						 DRM_MODE_REFLECT_Y);
822 	if (err < 0)
823 		dev_err(dc->dev, "failed to create rotation property: %d\n",
824 			err);
825 
826 	return &plane->base;
827 }
828 
829 static const u32 tegra_cursor_plane_formats[] = {
830 	DRM_FORMAT_RGBA8888,
831 };
832 
833 static int tegra_cursor_atomic_check(struct drm_plane *plane,
834 				     struct drm_plane_state *state)
835 {
836 	struct tegra_plane *tegra = to_tegra_plane(plane);
837 	int err;
838 
839 	/* no need for further checks if the plane is being disabled */
840 	if (!state->crtc)
841 		return 0;
842 
843 	/* scaling not supported for cursor */
844 	if ((state->src_w >> 16 != state->crtc_w) ||
845 	    (state->src_h >> 16 != state->crtc_h))
846 		return -EINVAL;
847 
848 	/* only square cursors supported */
849 	if (state->src_w != state->src_h)
850 		return -EINVAL;
851 
852 	if (state->crtc_w != 32 && state->crtc_w != 64 &&
853 	    state->crtc_w != 128 && state->crtc_w != 256)
854 		return -EINVAL;
855 
856 	err = tegra_plane_state_add(tegra, state);
857 	if (err < 0)
858 		return err;
859 
860 	return 0;
861 }
862 
863 static void tegra_cursor_atomic_update(struct drm_plane *plane,
864 				       struct drm_plane_state *old_state)
865 {
866 	struct tegra_plane_state *state = to_tegra_plane_state(plane->state);
867 	struct tegra_dc *dc = to_tegra_dc(plane->state->crtc);
868 	u32 value = CURSOR_CLIP_DISPLAY;
869 
870 	/* rien ne va plus */
871 	if (!plane->state->crtc || !plane->state->fb)
872 		return;
873 
874 	switch (plane->state->crtc_w) {
875 	case 32:
876 		value |= CURSOR_SIZE_32x32;
877 		break;
878 
879 	case 64:
880 		value |= CURSOR_SIZE_64x64;
881 		break;
882 
883 	case 128:
884 		value |= CURSOR_SIZE_128x128;
885 		break;
886 
887 	case 256:
888 		value |= CURSOR_SIZE_256x256;
889 		break;
890 
891 	default:
892 		WARN(1, "cursor size %ux%u not supported\n",
893 		     plane->state->crtc_w, plane->state->crtc_h);
894 		return;
895 	}
896 
897 	value |= (state->iova[0] >> 10) & 0x3fffff;
898 	tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR);
899 
900 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
901 	value = (state->iova[0] >> 32) & 0x3;
902 	tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR_HI);
903 #endif
904 
905 	/* enable cursor and set blend mode */
906 	value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
907 	value |= CURSOR_ENABLE;
908 	tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
909 
910 	value = tegra_dc_readl(dc, DC_DISP_BLEND_CURSOR_CONTROL);
911 	value &= ~CURSOR_DST_BLEND_MASK;
912 	value &= ~CURSOR_SRC_BLEND_MASK;
913 	value |= CURSOR_MODE_NORMAL;
914 	value |= CURSOR_DST_BLEND_NEG_K1_TIMES_SRC;
915 	value |= CURSOR_SRC_BLEND_K1_TIMES_SRC;
916 	value |= CURSOR_ALPHA;
917 	tegra_dc_writel(dc, value, DC_DISP_BLEND_CURSOR_CONTROL);
918 
919 	/* position the cursor */
920 	value = (plane->state->crtc_y & 0x3fff) << 16 |
921 		(plane->state->crtc_x & 0x3fff);
922 	tegra_dc_writel(dc, value, DC_DISP_CURSOR_POSITION);
923 }
924 
925 static void tegra_cursor_atomic_disable(struct drm_plane *plane,
926 					struct drm_plane_state *old_state)
927 {
928 	struct tegra_dc *dc;
929 	u32 value;
930 
931 	/* rien ne va plus */
932 	if (!old_state || !old_state->crtc)
933 		return;
934 
935 	dc = to_tegra_dc(old_state->crtc);
936 
937 	value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
938 	value &= ~CURSOR_ENABLE;
939 	tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
940 }
941 
942 static const struct drm_plane_helper_funcs tegra_cursor_plane_helper_funcs = {
943 	.prepare_fb = tegra_plane_prepare_fb,
944 	.cleanup_fb = tegra_plane_cleanup_fb,
945 	.atomic_check = tegra_cursor_atomic_check,
946 	.atomic_update = tegra_cursor_atomic_update,
947 	.atomic_disable = tegra_cursor_atomic_disable,
948 };
949 
950 static struct drm_plane *tegra_dc_cursor_plane_create(struct drm_device *drm,
951 						      struct tegra_dc *dc)
952 {
953 	unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
954 	struct tegra_plane *plane;
955 	unsigned int num_formats;
956 	const u32 *formats;
957 	int err;
958 
959 	plane = kzalloc(sizeof(*plane), GFP_KERNEL);
960 	if (!plane)
961 		return ERR_PTR(-ENOMEM);
962 
963 	/*
964 	 * This index is kind of fake. The cursor isn't a regular plane, but
965 	 * its update and activation request bits in DC_CMD_STATE_CONTROL do
966 	 * use the same programming. Setting this fake index here allows the
967 	 * code in tegra_add_plane_state() to do the right thing without the
968 	 * need to special-casing the cursor plane.
969 	 */
970 	plane->index = 6;
971 	plane->dc = dc;
972 
973 	num_formats = ARRAY_SIZE(tegra_cursor_plane_formats);
974 	formats = tegra_cursor_plane_formats;
975 
976 	err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
977 				       &tegra_plane_funcs, formats,
978 				       num_formats, NULL,
979 				       DRM_PLANE_TYPE_CURSOR, NULL);
980 	if (err < 0) {
981 		kfree(plane);
982 		return ERR_PTR(err);
983 	}
984 
985 	drm_plane_helper_add(&plane->base, &tegra_cursor_plane_helper_funcs);
986 	drm_plane_create_zpos_immutable_property(&plane->base, 255);
987 
988 	return &plane->base;
989 }
990 
991 static const u32 tegra20_overlay_formats[] = {
992 	DRM_FORMAT_ARGB4444,
993 	DRM_FORMAT_ARGB1555,
994 	DRM_FORMAT_RGB565,
995 	DRM_FORMAT_RGBA5551,
996 	DRM_FORMAT_ABGR8888,
997 	DRM_FORMAT_ARGB8888,
998 	/* non-native formats */
999 	DRM_FORMAT_XRGB1555,
1000 	DRM_FORMAT_RGBX5551,
1001 	DRM_FORMAT_XBGR8888,
1002 	DRM_FORMAT_XRGB8888,
1003 	/* planar formats */
1004 	DRM_FORMAT_UYVY,
1005 	DRM_FORMAT_YUYV,
1006 	DRM_FORMAT_YUV420,
1007 	DRM_FORMAT_YUV422,
1008 };
1009 
1010 static const u32 tegra114_overlay_formats[] = {
1011 	DRM_FORMAT_ARGB4444,
1012 	DRM_FORMAT_ARGB1555,
1013 	DRM_FORMAT_RGB565,
1014 	DRM_FORMAT_RGBA5551,
1015 	DRM_FORMAT_ABGR8888,
1016 	DRM_FORMAT_ARGB8888,
1017 	/* new on Tegra114 */
1018 	DRM_FORMAT_ABGR4444,
1019 	DRM_FORMAT_ABGR1555,
1020 	DRM_FORMAT_BGRA5551,
1021 	DRM_FORMAT_XRGB1555,
1022 	DRM_FORMAT_RGBX5551,
1023 	DRM_FORMAT_XBGR1555,
1024 	DRM_FORMAT_BGRX5551,
1025 	DRM_FORMAT_BGR565,
1026 	DRM_FORMAT_BGRA8888,
1027 	DRM_FORMAT_RGBA8888,
1028 	DRM_FORMAT_XRGB8888,
1029 	DRM_FORMAT_XBGR8888,
1030 	/* planar formats */
1031 	DRM_FORMAT_UYVY,
1032 	DRM_FORMAT_YUYV,
1033 	DRM_FORMAT_YUV420,
1034 	DRM_FORMAT_YUV422,
1035 };
1036 
1037 static const u32 tegra124_overlay_formats[] = {
1038 	DRM_FORMAT_ARGB4444,
1039 	DRM_FORMAT_ARGB1555,
1040 	DRM_FORMAT_RGB565,
1041 	DRM_FORMAT_RGBA5551,
1042 	DRM_FORMAT_ABGR8888,
1043 	DRM_FORMAT_ARGB8888,
1044 	/* new on Tegra114 */
1045 	DRM_FORMAT_ABGR4444,
1046 	DRM_FORMAT_ABGR1555,
1047 	DRM_FORMAT_BGRA5551,
1048 	DRM_FORMAT_XRGB1555,
1049 	DRM_FORMAT_RGBX5551,
1050 	DRM_FORMAT_XBGR1555,
1051 	DRM_FORMAT_BGRX5551,
1052 	DRM_FORMAT_BGR565,
1053 	DRM_FORMAT_BGRA8888,
1054 	DRM_FORMAT_RGBA8888,
1055 	DRM_FORMAT_XRGB8888,
1056 	DRM_FORMAT_XBGR8888,
1057 	/* new on Tegra124 */
1058 	DRM_FORMAT_RGBX8888,
1059 	DRM_FORMAT_BGRX8888,
1060 	/* planar formats */
1061 	DRM_FORMAT_UYVY,
1062 	DRM_FORMAT_YUYV,
1063 	DRM_FORMAT_YUV420,
1064 	DRM_FORMAT_YUV422,
1065 };
1066 
1067 static struct drm_plane *tegra_dc_overlay_plane_create(struct drm_device *drm,
1068 						       struct tegra_dc *dc,
1069 						       unsigned int index,
1070 						       bool cursor)
1071 {
1072 	unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
1073 	struct tegra_plane *plane;
1074 	unsigned int num_formats;
1075 	enum drm_plane_type type;
1076 	const u32 *formats;
1077 	int err;
1078 
1079 	plane = kzalloc(sizeof(*plane), GFP_KERNEL);
1080 	if (!plane)
1081 		return ERR_PTR(-ENOMEM);
1082 
1083 	plane->offset = 0xa00 + 0x200 * index;
1084 	plane->index = index;
1085 	plane->dc = dc;
1086 
1087 	num_formats = dc->soc->num_overlay_formats;
1088 	formats = dc->soc->overlay_formats;
1089 
1090 	if (!cursor)
1091 		type = DRM_PLANE_TYPE_OVERLAY;
1092 	else
1093 		type = DRM_PLANE_TYPE_CURSOR;
1094 
1095 	err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
1096 				       &tegra_plane_funcs, formats,
1097 				       num_formats, NULL, type, NULL);
1098 	if (err < 0) {
1099 		kfree(plane);
1100 		return ERR_PTR(err);
1101 	}
1102 
1103 	drm_plane_helper_add(&plane->base, &tegra_plane_helper_funcs);
1104 	drm_plane_create_zpos_property(&plane->base, plane->index, 0, 255);
1105 
1106 	err = drm_plane_create_rotation_property(&plane->base,
1107 						 DRM_MODE_ROTATE_0,
1108 						 DRM_MODE_ROTATE_0 |
1109 						 DRM_MODE_ROTATE_180 |
1110 						 DRM_MODE_REFLECT_X |
1111 						 DRM_MODE_REFLECT_Y);
1112 	if (err < 0)
1113 		dev_err(dc->dev, "failed to create rotation property: %d\n",
1114 			err);
1115 
1116 	return &plane->base;
1117 }
1118 
1119 static struct drm_plane *tegra_dc_add_shared_planes(struct drm_device *drm,
1120 						    struct tegra_dc *dc)
1121 {
1122 	struct drm_plane *plane, *primary = NULL;
1123 	unsigned int i, j;
1124 
1125 	for (i = 0; i < dc->soc->num_wgrps; i++) {
1126 		const struct tegra_windowgroup_soc *wgrp = &dc->soc->wgrps[i];
1127 
1128 		if (wgrp->dc == dc->pipe) {
1129 			for (j = 0; j < wgrp->num_windows; j++) {
1130 				unsigned int index = wgrp->windows[j];
1131 
1132 				plane = tegra_shared_plane_create(drm, dc,
1133 								  wgrp->index,
1134 								  index);
1135 				if (IS_ERR(plane))
1136 					return plane;
1137 
1138 				/*
1139 				 * Choose the first shared plane owned by this
1140 				 * head as the primary plane.
1141 				 */
1142 				if (!primary) {
1143 					plane->type = DRM_PLANE_TYPE_PRIMARY;
1144 					primary = plane;
1145 				}
1146 			}
1147 		}
1148 	}
1149 
1150 	return primary;
1151 }
1152 
1153 static struct drm_plane *tegra_dc_add_planes(struct drm_device *drm,
1154 					     struct tegra_dc *dc)
1155 {
1156 	struct drm_plane *planes[2], *primary;
1157 	unsigned int planes_num;
1158 	unsigned int i;
1159 	int err;
1160 
1161 	primary = tegra_primary_plane_create(drm, dc);
1162 	if (IS_ERR(primary))
1163 		return primary;
1164 
1165 	if (dc->soc->supports_cursor)
1166 		planes_num = 2;
1167 	else
1168 		planes_num = 1;
1169 
1170 	for (i = 0; i < planes_num; i++) {
1171 		planes[i] = tegra_dc_overlay_plane_create(drm, dc, 1 + i,
1172 							  false);
1173 		if (IS_ERR(planes[i])) {
1174 			err = PTR_ERR(planes[i]);
1175 
1176 			while (i--)
1177 				tegra_plane_funcs.destroy(planes[i]);
1178 
1179 			tegra_plane_funcs.destroy(primary);
1180 			return ERR_PTR(err);
1181 		}
1182 	}
1183 
1184 	return primary;
1185 }
1186 
1187 static void tegra_dc_destroy(struct drm_crtc *crtc)
1188 {
1189 	drm_crtc_cleanup(crtc);
1190 }
1191 
1192 static void tegra_crtc_reset(struct drm_crtc *crtc)
1193 {
1194 	struct tegra_dc_state *state = kzalloc(sizeof(*state), GFP_KERNEL);
1195 
1196 	if (crtc->state)
1197 		tegra_crtc_atomic_destroy_state(crtc, crtc->state);
1198 
1199 	__drm_atomic_helper_crtc_reset(crtc, &state->base);
1200 }
1201 
1202 static struct drm_crtc_state *
1203 tegra_crtc_atomic_duplicate_state(struct drm_crtc *crtc)
1204 {
1205 	struct tegra_dc_state *state = to_dc_state(crtc->state);
1206 	struct tegra_dc_state *copy;
1207 
1208 	copy = kmalloc(sizeof(*copy), GFP_KERNEL);
1209 	if (!copy)
1210 		return NULL;
1211 
1212 	__drm_atomic_helper_crtc_duplicate_state(crtc, &copy->base);
1213 	copy->clk = state->clk;
1214 	copy->pclk = state->pclk;
1215 	copy->div = state->div;
1216 	copy->planes = state->planes;
1217 
1218 	return &copy->base;
1219 }
1220 
1221 static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc,
1222 					    struct drm_crtc_state *state)
1223 {
1224 	__drm_atomic_helper_crtc_destroy_state(state);
1225 	kfree(state);
1226 }
1227 
1228 #define DEBUGFS_REG32(_name) { .name = #_name, .offset = _name }
1229 
1230 static const struct debugfs_reg32 tegra_dc_regs[] = {
1231 	DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT),
1232 	DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT_CNTRL),
1233 	DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT_ERROR),
1234 	DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT),
1235 	DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT_CNTRL),
1236 	DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT_ERROR),
1237 	DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT),
1238 	DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT_CNTRL),
1239 	DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT_ERROR),
1240 	DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT),
1241 	DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT_CNTRL),
1242 	DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT_ERROR),
1243 	DEBUGFS_REG32(DC_CMD_CONT_SYNCPT_VSYNC),
1244 	DEBUGFS_REG32(DC_CMD_DISPLAY_COMMAND_OPTION0),
1245 	DEBUGFS_REG32(DC_CMD_DISPLAY_COMMAND),
1246 	DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE),
1247 	DEBUGFS_REG32(DC_CMD_DISPLAY_POWER_CONTROL),
1248 	DEBUGFS_REG32(DC_CMD_INT_STATUS),
1249 	DEBUGFS_REG32(DC_CMD_INT_MASK),
1250 	DEBUGFS_REG32(DC_CMD_INT_ENABLE),
1251 	DEBUGFS_REG32(DC_CMD_INT_TYPE),
1252 	DEBUGFS_REG32(DC_CMD_INT_POLARITY),
1253 	DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE1),
1254 	DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE2),
1255 	DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE3),
1256 	DEBUGFS_REG32(DC_CMD_STATE_ACCESS),
1257 	DEBUGFS_REG32(DC_CMD_STATE_CONTROL),
1258 	DEBUGFS_REG32(DC_CMD_DISPLAY_WINDOW_HEADER),
1259 	DEBUGFS_REG32(DC_CMD_REG_ACT_CONTROL),
1260 	DEBUGFS_REG32(DC_COM_CRC_CONTROL),
1261 	DEBUGFS_REG32(DC_COM_CRC_CHECKSUM),
1262 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(0)),
1263 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(1)),
1264 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(2)),
1265 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(3)),
1266 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(0)),
1267 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(1)),
1268 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(2)),
1269 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(3)),
1270 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(0)),
1271 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(1)),
1272 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(2)),
1273 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(3)),
1274 	DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(0)),
1275 	DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(1)),
1276 	DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(2)),
1277 	DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(3)),
1278 	DEBUGFS_REG32(DC_COM_PIN_INPUT_DATA(0)),
1279 	DEBUGFS_REG32(DC_COM_PIN_INPUT_DATA(1)),
1280 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(0)),
1281 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(1)),
1282 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(2)),
1283 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(3)),
1284 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(4)),
1285 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(5)),
1286 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(6)),
1287 	DEBUGFS_REG32(DC_COM_PIN_MISC_CONTROL),
1288 	DEBUGFS_REG32(DC_COM_PIN_PM0_CONTROL),
1289 	DEBUGFS_REG32(DC_COM_PIN_PM0_DUTY_CYCLE),
1290 	DEBUGFS_REG32(DC_COM_PIN_PM1_CONTROL),
1291 	DEBUGFS_REG32(DC_COM_PIN_PM1_DUTY_CYCLE),
1292 	DEBUGFS_REG32(DC_COM_SPI_CONTROL),
1293 	DEBUGFS_REG32(DC_COM_SPI_START_BYTE),
1294 	DEBUGFS_REG32(DC_COM_HSPI_WRITE_DATA_AB),
1295 	DEBUGFS_REG32(DC_COM_HSPI_WRITE_DATA_CD),
1296 	DEBUGFS_REG32(DC_COM_HSPI_CS_DC),
1297 	DEBUGFS_REG32(DC_COM_SCRATCH_REGISTER_A),
1298 	DEBUGFS_REG32(DC_COM_SCRATCH_REGISTER_B),
1299 	DEBUGFS_REG32(DC_COM_GPIO_CTRL),
1300 	DEBUGFS_REG32(DC_COM_GPIO_DEBOUNCE_COUNTER),
1301 	DEBUGFS_REG32(DC_COM_CRC_CHECKSUM_LATCHED),
1302 	DEBUGFS_REG32(DC_DISP_DISP_SIGNAL_OPTIONS0),
1303 	DEBUGFS_REG32(DC_DISP_DISP_SIGNAL_OPTIONS1),
1304 	DEBUGFS_REG32(DC_DISP_DISP_WIN_OPTIONS),
1305 	DEBUGFS_REG32(DC_DISP_DISP_MEM_HIGH_PRIORITY),
1306 	DEBUGFS_REG32(DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER),
1307 	DEBUGFS_REG32(DC_DISP_DISP_TIMING_OPTIONS),
1308 	DEBUGFS_REG32(DC_DISP_REF_TO_SYNC),
1309 	DEBUGFS_REG32(DC_DISP_SYNC_WIDTH),
1310 	DEBUGFS_REG32(DC_DISP_BACK_PORCH),
1311 	DEBUGFS_REG32(DC_DISP_ACTIVE),
1312 	DEBUGFS_REG32(DC_DISP_FRONT_PORCH),
1313 	DEBUGFS_REG32(DC_DISP_H_PULSE0_CONTROL),
1314 	DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_A),
1315 	DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_B),
1316 	DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_C),
1317 	DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_D),
1318 	DEBUGFS_REG32(DC_DISP_H_PULSE1_CONTROL),
1319 	DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_A),
1320 	DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_B),
1321 	DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_C),
1322 	DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_D),
1323 	DEBUGFS_REG32(DC_DISP_H_PULSE2_CONTROL),
1324 	DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_A),
1325 	DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_B),
1326 	DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_C),
1327 	DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_D),
1328 	DEBUGFS_REG32(DC_DISP_V_PULSE0_CONTROL),
1329 	DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_A),
1330 	DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_B),
1331 	DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_C),
1332 	DEBUGFS_REG32(DC_DISP_V_PULSE1_CONTROL),
1333 	DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_A),
1334 	DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_B),
1335 	DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_C),
1336 	DEBUGFS_REG32(DC_DISP_V_PULSE2_CONTROL),
1337 	DEBUGFS_REG32(DC_DISP_V_PULSE2_POSITION_A),
1338 	DEBUGFS_REG32(DC_DISP_V_PULSE3_CONTROL),
1339 	DEBUGFS_REG32(DC_DISP_V_PULSE3_POSITION_A),
1340 	DEBUGFS_REG32(DC_DISP_M0_CONTROL),
1341 	DEBUGFS_REG32(DC_DISP_M1_CONTROL),
1342 	DEBUGFS_REG32(DC_DISP_DI_CONTROL),
1343 	DEBUGFS_REG32(DC_DISP_PP_CONTROL),
1344 	DEBUGFS_REG32(DC_DISP_PP_SELECT_A),
1345 	DEBUGFS_REG32(DC_DISP_PP_SELECT_B),
1346 	DEBUGFS_REG32(DC_DISP_PP_SELECT_C),
1347 	DEBUGFS_REG32(DC_DISP_PP_SELECT_D),
1348 	DEBUGFS_REG32(DC_DISP_DISP_CLOCK_CONTROL),
1349 	DEBUGFS_REG32(DC_DISP_DISP_INTERFACE_CONTROL),
1350 	DEBUGFS_REG32(DC_DISP_DISP_COLOR_CONTROL),
1351 	DEBUGFS_REG32(DC_DISP_SHIFT_CLOCK_OPTIONS),
1352 	DEBUGFS_REG32(DC_DISP_DATA_ENABLE_OPTIONS),
1353 	DEBUGFS_REG32(DC_DISP_SERIAL_INTERFACE_OPTIONS),
1354 	DEBUGFS_REG32(DC_DISP_LCD_SPI_OPTIONS),
1355 	DEBUGFS_REG32(DC_DISP_BORDER_COLOR),
1356 	DEBUGFS_REG32(DC_DISP_COLOR_KEY0_LOWER),
1357 	DEBUGFS_REG32(DC_DISP_COLOR_KEY0_UPPER),
1358 	DEBUGFS_REG32(DC_DISP_COLOR_KEY1_LOWER),
1359 	DEBUGFS_REG32(DC_DISP_COLOR_KEY1_UPPER),
1360 	DEBUGFS_REG32(DC_DISP_CURSOR_FOREGROUND),
1361 	DEBUGFS_REG32(DC_DISP_CURSOR_BACKGROUND),
1362 	DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR),
1363 	DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR_NS),
1364 	DEBUGFS_REG32(DC_DISP_CURSOR_POSITION),
1365 	DEBUGFS_REG32(DC_DISP_CURSOR_POSITION_NS),
1366 	DEBUGFS_REG32(DC_DISP_INIT_SEQ_CONTROL),
1367 	DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_A),
1368 	DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_B),
1369 	DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_C),
1370 	DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_D),
1371 	DEBUGFS_REG32(DC_DISP_DC_MCCIF_FIFOCTRL),
1372 	DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY0A_HYST),
1373 	DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY0B_HYST),
1374 	DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY1A_HYST),
1375 	DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY1B_HYST),
1376 	DEBUGFS_REG32(DC_DISP_DAC_CRT_CTRL),
1377 	DEBUGFS_REG32(DC_DISP_DISP_MISC_CONTROL),
1378 	DEBUGFS_REG32(DC_DISP_SD_CONTROL),
1379 	DEBUGFS_REG32(DC_DISP_SD_CSC_COEFF),
1380 	DEBUGFS_REG32(DC_DISP_SD_LUT(0)),
1381 	DEBUGFS_REG32(DC_DISP_SD_LUT(1)),
1382 	DEBUGFS_REG32(DC_DISP_SD_LUT(2)),
1383 	DEBUGFS_REG32(DC_DISP_SD_LUT(3)),
1384 	DEBUGFS_REG32(DC_DISP_SD_LUT(4)),
1385 	DEBUGFS_REG32(DC_DISP_SD_LUT(5)),
1386 	DEBUGFS_REG32(DC_DISP_SD_LUT(6)),
1387 	DEBUGFS_REG32(DC_DISP_SD_LUT(7)),
1388 	DEBUGFS_REG32(DC_DISP_SD_LUT(8)),
1389 	DEBUGFS_REG32(DC_DISP_SD_FLICKER_CONTROL),
1390 	DEBUGFS_REG32(DC_DISP_DC_PIXEL_COUNT),
1391 	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(0)),
1392 	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(1)),
1393 	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(2)),
1394 	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(3)),
1395 	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(4)),
1396 	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(5)),
1397 	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(6)),
1398 	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(7)),
1399 	DEBUGFS_REG32(DC_DISP_SD_BL_TF(0)),
1400 	DEBUGFS_REG32(DC_DISP_SD_BL_TF(1)),
1401 	DEBUGFS_REG32(DC_DISP_SD_BL_TF(2)),
1402 	DEBUGFS_REG32(DC_DISP_SD_BL_TF(3)),
1403 	DEBUGFS_REG32(DC_DISP_SD_BL_CONTROL),
1404 	DEBUGFS_REG32(DC_DISP_SD_HW_K_VALUES),
1405 	DEBUGFS_REG32(DC_DISP_SD_MAN_K_VALUES),
1406 	DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR_HI),
1407 	DEBUGFS_REG32(DC_DISP_BLEND_CURSOR_CONTROL),
1408 	DEBUGFS_REG32(DC_WIN_WIN_OPTIONS),
1409 	DEBUGFS_REG32(DC_WIN_BYTE_SWAP),
1410 	DEBUGFS_REG32(DC_WIN_BUFFER_CONTROL),
1411 	DEBUGFS_REG32(DC_WIN_COLOR_DEPTH),
1412 	DEBUGFS_REG32(DC_WIN_POSITION),
1413 	DEBUGFS_REG32(DC_WIN_SIZE),
1414 	DEBUGFS_REG32(DC_WIN_PRESCALED_SIZE),
1415 	DEBUGFS_REG32(DC_WIN_H_INITIAL_DDA),
1416 	DEBUGFS_REG32(DC_WIN_V_INITIAL_DDA),
1417 	DEBUGFS_REG32(DC_WIN_DDA_INC),
1418 	DEBUGFS_REG32(DC_WIN_LINE_STRIDE),
1419 	DEBUGFS_REG32(DC_WIN_BUF_STRIDE),
1420 	DEBUGFS_REG32(DC_WIN_UV_BUF_STRIDE),
1421 	DEBUGFS_REG32(DC_WIN_BUFFER_ADDR_MODE),
1422 	DEBUGFS_REG32(DC_WIN_DV_CONTROL),
1423 	DEBUGFS_REG32(DC_WIN_BLEND_NOKEY),
1424 	DEBUGFS_REG32(DC_WIN_BLEND_1WIN),
1425 	DEBUGFS_REG32(DC_WIN_BLEND_2WIN_X),
1426 	DEBUGFS_REG32(DC_WIN_BLEND_2WIN_Y),
1427 	DEBUGFS_REG32(DC_WIN_BLEND_3WIN_XY),
1428 	DEBUGFS_REG32(DC_WIN_HP_FETCH_CONTROL),
1429 	DEBUGFS_REG32(DC_WINBUF_START_ADDR),
1430 	DEBUGFS_REG32(DC_WINBUF_START_ADDR_NS),
1431 	DEBUGFS_REG32(DC_WINBUF_START_ADDR_U),
1432 	DEBUGFS_REG32(DC_WINBUF_START_ADDR_U_NS),
1433 	DEBUGFS_REG32(DC_WINBUF_START_ADDR_V),
1434 	DEBUGFS_REG32(DC_WINBUF_START_ADDR_V_NS),
1435 	DEBUGFS_REG32(DC_WINBUF_ADDR_H_OFFSET),
1436 	DEBUGFS_REG32(DC_WINBUF_ADDR_H_OFFSET_NS),
1437 	DEBUGFS_REG32(DC_WINBUF_ADDR_V_OFFSET),
1438 	DEBUGFS_REG32(DC_WINBUF_ADDR_V_OFFSET_NS),
1439 	DEBUGFS_REG32(DC_WINBUF_UFLOW_STATUS),
1440 	DEBUGFS_REG32(DC_WINBUF_AD_UFLOW_STATUS),
1441 	DEBUGFS_REG32(DC_WINBUF_BD_UFLOW_STATUS),
1442 	DEBUGFS_REG32(DC_WINBUF_CD_UFLOW_STATUS),
1443 };
1444 
1445 static int tegra_dc_show_regs(struct seq_file *s, void *data)
1446 {
1447 	struct drm_info_node *node = s->private;
1448 	struct tegra_dc *dc = node->info_ent->data;
1449 	unsigned int i;
1450 	int err = 0;
1451 
1452 	drm_modeset_lock(&dc->base.mutex, NULL);
1453 
1454 	if (!dc->base.state->active) {
1455 		err = -EBUSY;
1456 		goto unlock;
1457 	}
1458 
1459 	for (i = 0; i < ARRAY_SIZE(tegra_dc_regs); i++) {
1460 		unsigned int offset = tegra_dc_regs[i].offset;
1461 
1462 		seq_printf(s, "%-40s %#05x %08x\n", tegra_dc_regs[i].name,
1463 			   offset, tegra_dc_readl(dc, offset));
1464 	}
1465 
1466 unlock:
1467 	drm_modeset_unlock(&dc->base.mutex);
1468 	return err;
1469 }
1470 
1471 static int tegra_dc_show_crc(struct seq_file *s, void *data)
1472 {
1473 	struct drm_info_node *node = s->private;
1474 	struct tegra_dc *dc = node->info_ent->data;
1475 	int err = 0;
1476 	u32 value;
1477 
1478 	drm_modeset_lock(&dc->base.mutex, NULL);
1479 
1480 	if (!dc->base.state->active) {
1481 		err = -EBUSY;
1482 		goto unlock;
1483 	}
1484 
1485 	value = DC_COM_CRC_CONTROL_ACTIVE_DATA | DC_COM_CRC_CONTROL_ENABLE;
1486 	tegra_dc_writel(dc, value, DC_COM_CRC_CONTROL);
1487 	tegra_dc_commit(dc);
1488 
1489 	drm_crtc_wait_one_vblank(&dc->base);
1490 	drm_crtc_wait_one_vblank(&dc->base);
1491 
1492 	value = tegra_dc_readl(dc, DC_COM_CRC_CHECKSUM);
1493 	seq_printf(s, "%08x\n", value);
1494 
1495 	tegra_dc_writel(dc, 0, DC_COM_CRC_CONTROL);
1496 
1497 unlock:
1498 	drm_modeset_unlock(&dc->base.mutex);
1499 	return err;
1500 }
1501 
1502 static int tegra_dc_show_stats(struct seq_file *s, void *data)
1503 {
1504 	struct drm_info_node *node = s->private;
1505 	struct tegra_dc *dc = node->info_ent->data;
1506 
1507 	seq_printf(s, "frames: %lu\n", dc->stats.frames);
1508 	seq_printf(s, "vblank: %lu\n", dc->stats.vblank);
1509 	seq_printf(s, "underflow: %lu\n", dc->stats.underflow);
1510 	seq_printf(s, "overflow: %lu\n", dc->stats.overflow);
1511 
1512 	return 0;
1513 }
1514 
1515 static struct drm_info_list debugfs_files[] = {
1516 	{ "regs", tegra_dc_show_regs, 0, NULL },
1517 	{ "crc", tegra_dc_show_crc, 0, NULL },
1518 	{ "stats", tegra_dc_show_stats, 0, NULL },
1519 };
1520 
1521 static int tegra_dc_late_register(struct drm_crtc *crtc)
1522 {
1523 	unsigned int i, count = ARRAY_SIZE(debugfs_files);
1524 	struct drm_minor *minor = crtc->dev->primary;
1525 	struct dentry *root;
1526 	struct tegra_dc *dc = to_tegra_dc(crtc);
1527 
1528 #ifdef CONFIG_DEBUG_FS
1529 	root = crtc->debugfs_entry;
1530 #else
1531 	root = NULL;
1532 #endif
1533 
1534 	dc->debugfs_files = kmemdup(debugfs_files, sizeof(debugfs_files),
1535 				    GFP_KERNEL);
1536 	if (!dc->debugfs_files)
1537 		return -ENOMEM;
1538 
1539 	for (i = 0; i < count; i++)
1540 		dc->debugfs_files[i].data = dc;
1541 
1542 	drm_debugfs_create_files(dc->debugfs_files, count, root, minor);
1543 
1544 	return 0;
1545 }
1546 
1547 static void tegra_dc_early_unregister(struct drm_crtc *crtc)
1548 {
1549 	unsigned int count = ARRAY_SIZE(debugfs_files);
1550 	struct drm_minor *minor = crtc->dev->primary;
1551 	struct tegra_dc *dc = to_tegra_dc(crtc);
1552 
1553 	drm_debugfs_remove_files(dc->debugfs_files, count, minor);
1554 	kfree(dc->debugfs_files);
1555 	dc->debugfs_files = NULL;
1556 }
1557 
1558 static u32 tegra_dc_get_vblank_counter(struct drm_crtc *crtc)
1559 {
1560 	struct tegra_dc *dc = to_tegra_dc(crtc);
1561 
1562 	/* XXX vblank syncpoints don't work with nvdisplay yet */
1563 	if (dc->syncpt && !dc->soc->has_nvdisplay)
1564 		return host1x_syncpt_read(dc->syncpt);
1565 
1566 	/* fallback to software emulated VBLANK counter */
1567 	return (u32)drm_crtc_vblank_count(&dc->base);
1568 }
1569 
1570 static int tegra_dc_enable_vblank(struct drm_crtc *crtc)
1571 {
1572 	struct tegra_dc *dc = to_tegra_dc(crtc);
1573 	u32 value;
1574 
1575 	value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
1576 	value |= VBLANK_INT;
1577 	tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1578 
1579 	return 0;
1580 }
1581 
1582 static void tegra_dc_disable_vblank(struct drm_crtc *crtc)
1583 {
1584 	struct tegra_dc *dc = to_tegra_dc(crtc);
1585 	u32 value;
1586 
1587 	value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
1588 	value &= ~VBLANK_INT;
1589 	tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1590 }
1591 
1592 static const struct drm_crtc_funcs tegra_crtc_funcs = {
1593 	.page_flip = drm_atomic_helper_page_flip,
1594 	.set_config = drm_atomic_helper_set_config,
1595 	.destroy = tegra_dc_destroy,
1596 	.reset = tegra_crtc_reset,
1597 	.atomic_duplicate_state = tegra_crtc_atomic_duplicate_state,
1598 	.atomic_destroy_state = tegra_crtc_atomic_destroy_state,
1599 	.late_register = tegra_dc_late_register,
1600 	.early_unregister = tegra_dc_early_unregister,
1601 	.get_vblank_counter = tegra_dc_get_vblank_counter,
1602 	.enable_vblank = tegra_dc_enable_vblank,
1603 	.disable_vblank = tegra_dc_disable_vblank,
1604 };
1605 
1606 static int tegra_dc_set_timings(struct tegra_dc *dc,
1607 				struct drm_display_mode *mode)
1608 {
1609 	unsigned int h_ref_to_sync = 1;
1610 	unsigned int v_ref_to_sync = 1;
1611 	unsigned long value;
1612 
1613 	if (!dc->soc->has_nvdisplay) {
1614 		tegra_dc_writel(dc, 0x0, DC_DISP_DISP_TIMING_OPTIONS);
1615 
1616 		value = (v_ref_to_sync << 16) | h_ref_to_sync;
1617 		tegra_dc_writel(dc, value, DC_DISP_REF_TO_SYNC);
1618 	}
1619 
1620 	value = ((mode->vsync_end - mode->vsync_start) << 16) |
1621 		((mode->hsync_end - mode->hsync_start) <<  0);
1622 	tegra_dc_writel(dc, value, DC_DISP_SYNC_WIDTH);
1623 
1624 	value = ((mode->vtotal - mode->vsync_end) << 16) |
1625 		((mode->htotal - mode->hsync_end) <<  0);
1626 	tegra_dc_writel(dc, value, DC_DISP_BACK_PORCH);
1627 
1628 	value = ((mode->vsync_start - mode->vdisplay) << 16) |
1629 		((mode->hsync_start - mode->hdisplay) <<  0);
1630 	tegra_dc_writel(dc, value, DC_DISP_FRONT_PORCH);
1631 
1632 	value = (mode->vdisplay << 16) | mode->hdisplay;
1633 	tegra_dc_writel(dc, value, DC_DISP_ACTIVE);
1634 
1635 	return 0;
1636 }
1637 
1638 /**
1639  * tegra_dc_state_setup_clock - check clock settings and store them in atomic
1640  *     state
1641  * @dc: display controller
1642  * @crtc_state: CRTC atomic state
1643  * @clk: parent clock for display controller
1644  * @pclk: pixel clock
1645  * @div: shift clock divider
1646  *
1647  * Returns:
1648  * 0 on success or a negative error-code on failure.
1649  */
1650 int tegra_dc_state_setup_clock(struct tegra_dc *dc,
1651 			       struct drm_crtc_state *crtc_state,
1652 			       struct clk *clk, unsigned long pclk,
1653 			       unsigned int div)
1654 {
1655 	struct tegra_dc_state *state = to_dc_state(crtc_state);
1656 
1657 	if (!clk_has_parent(dc->clk, clk))
1658 		return -EINVAL;
1659 
1660 	state->clk = clk;
1661 	state->pclk = pclk;
1662 	state->div = div;
1663 
1664 	return 0;
1665 }
1666 
1667 static void tegra_dc_commit_state(struct tegra_dc *dc,
1668 				  struct tegra_dc_state *state)
1669 {
1670 	u32 value;
1671 	int err;
1672 
1673 	err = clk_set_parent(dc->clk, state->clk);
1674 	if (err < 0)
1675 		dev_err(dc->dev, "failed to set parent clock: %d\n", err);
1676 
1677 	/*
1678 	 * Outputs may not want to change the parent clock rate. This is only
1679 	 * relevant to Tegra20 where only a single display PLL is available.
1680 	 * Since that PLL would typically be used for HDMI, an internal LVDS
1681 	 * panel would need to be driven by some other clock such as PLL_P
1682 	 * which is shared with other peripherals. Changing the clock rate
1683 	 * should therefore be avoided.
1684 	 */
1685 	if (state->pclk > 0) {
1686 		err = clk_set_rate(state->clk, state->pclk);
1687 		if (err < 0)
1688 			dev_err(dc->dev,
1689 				"failed to set clock rate to %lu Hz\n",
1690 				state->pclk);
1691 	}
1692 
1693 	DRM_DEBUG_KMS("rate: %lu, div: %u\n", clk_get_rate(dc->clk),
1694 		      state->div);
1695 	DRM_DEBUG_KMS("pclk: %lu\n", state->pclk);
1696 
1697 	if (!dc->soc->has_nvdisplay) {
1698 		value = SHIFT_CLK_DIVIDER(state->div) | PIXEL_CLK_DIVIDER_PCD1;
1699 		tegra_dc_writel(dc, value, DC_DISP_DISP_CLOCK_CONTROL);
1700 	}
1701 
1702 	err = clk_set_rate(dc->clk, state->pclk);
1703 	if (err < 0)
1704 		dev_err(dc->dev, "failed to set clock %pC to %lu Hz: %d\n",
1705 			dc->clk, state->pclk, err);
1706 }
1707 
1708 static void tegra_dc_stop(struct tegra_dc *dc)
1709 {
1710 	u32 value;
1711 
1712 	/* stop the display controller */
1713 	value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1714 	value &= ~DISP_CTRL_MODE_MASK;
1715 	tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1716 
1717 	tegra_dc_commit(dc);
1718 }
1719 
1720 static bool tegra_dc_idle(struct tegra_dc *dc)
1721 {
1722 	u32 value;
1723 
1724 	value = tegra_dc_readl_active(dc, DC_CMD_DISPLAY_COMMAND);
1725 
1726 	return (value & DISP_CTRL_MODE_MASK) == 0;
1727 }
1728 
1729 static int tegra_dc_wait_idle(struct tegra_dc *dc, unsigned long timeout)
1730 {
1731 	timeout = jiffies + msecs_to_jiffies(timeout);
1732 
1733 	while (time_before(jiffies, timeout)) {
1734 		if (tegra_dc_idle(dc))
1735 			return 0;
1736 
1737 		usleep_range(1000, 2000);
1738 	}
1739 
1740 	dev_dbg(dc->dev, "timeout waiting for DC to become idle\n");
1741 	return -ETIMEDOUT;
1742 }
1743 
1744 static void tegra_crtc_atomic_disable(struct drm_crtc *crtc,
1745 				      struct drm_crtc_state *old_state)
1746 {
1747 	struct tegra_dc *dc = to_tegra_dc(crtc);
1748 	u32 value;
1749 	int err;
1750 
1751 	if (!tegra_dc_idle(dc)) {
1752 		tegra_dc_stop(dc);
1753 
1754 		/*
1755 		 * Ignore the return value, there isn't anything useful to do
1756 		 * in case this fails.
1757 		 */
1758 		tegra_dc_wait_idle(dc, 100);
1759 	}
1760 
1761 	/*
1762 	 * This should really be part of the RGB encoder driver, but clearing
1763 	 * these bits has the side-effect of stopping the display controller.
1764 	 * When that happens no VBLANK interrupts will be raised. At the same
1765 	 * time the encoder is disabled before the display controller, so the
1766 	 * above code is always going to timeout waiting for the controller
1767 	 * to go idle.
1768 	 *
1769 	 * Given the close coupling between the RGB encoder and the display
1770 	 * controller doing it here is still kind of okay. None of the other
1771 	 * encoder drivers require these bits to be cleared.
1772 	 *
1773 	 * XXX: Perhaps given that the display controller is switched off at
1774 	 * this point anyway maybe clearing these bits isn't even useful for
1775 	 * the RGB encoder?
1776 	 */
1777 	if (dc->rgb) {
1778 		value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
1779 		value &= ~(PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
1780 			   PW4_ENABLE | PM0_ENABLE | PM1_ENABLE);
1781 		tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
1782 	}
1783 
1784 	tegra_dc_stats_reset(&dc->stats);
1785 	drm_crtc_vblank_off(crtc);
1786 
1787 	spin_lock_irq(&crtc->dev->event_lock);
1788 
1789 	if (crtc->state->event) {
1790 		drm_crtc_send_vblank_event(crtc, crtc->state->event);
1791 		crtc->state->event = NULL;
1792 	}
1793 
1794 	spin_unlock_irq(&crtc->dev->event_lock);
1795 
1796 	err = host1x_client_suspend(&dc->client);
1797 	if (err < 0)
1798 		dev_err(dc->dev, "failed to suspend: %d\n", err);
1799 }
1800 
1801 static void tegra_crtc_atomic_enable(struct drm_crtc *crtc,
1802 				     struct drm_crtc_state *old_state)
1803 {
1804 	struct drm_display_mode *mode = &crtc->state->adjusted_mode;
1805 	struct tegra_dc_state *state = to_dc_state(crtc->state);
1806 	struct tegra_dc *dc = to_tegra_dc(crtc);
1807 	u32 value;
1808 	int err;
1809 
1810 	err = host1x_client_resume(&dc->client);
1811 	if (err < 0) {
1812 		dev_err(dc->dev, "failed to resume: %d\n", err);
1813 		return;
1814 	}
1815 
1816 	/* initialize display controller */
1817 	if (dc->syncpt) {
1818 		u32 syncpt = host1x_syncpt_id(dc->syncpt), enable;
1819 
1820 		if (dc->soc->has_nvdisplay)
1821 			enable = 1 << 31;
1822 		else
1823 			enable = 1 << 8;
1824 
1825 		value = SYNCPT_CNTRL_NO_STALL;
1826 		tegra_dc_writel(dc, value, DC_CMD_GENERAL_INCR_SYNCPT_CNTRL);
1827 
1828 		value = enable | syncpt;
1829 		tegra_dc_writel(dc, value, DC_CMD_CONT_SYNCPT_VSYNC);
1830 	}
1831 
1832 	if (dc->soc->has_nvdisplay) {
1833 		value = DSC_TO_UF_INT | DSC_BBUF_UF_INT | DSC_RBUF_UF_INT |
1834 			DSC_OBUF_UF_INT;
1835 		tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
1836 
1837 		value = DSC_TO_UF_INT | DSC_BBUF_UF_INT | DSC_RBUF_UF_INT |
1838 			DSC_OBUF_UF_INT | SD3_BUCKET_WALK_DONE_INT |
1839 			HEAD_UF_INT | MSF_INT | REG_TMOUT_INT |
1840 			REGION_CRC_INT | V_PULSE2_INT | V_PULSE3_INT |
1841 			VBLANK_INT | FRAME_END_INT;
1842 		tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
1843 
1844 		value = SD3_BUCKET_WALK_DONE_INT | HEAD_UF_INT | VBLANK_INT |
1845 			FRAME_END_INT;
1846 		tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
1847 
1848 		value = HEAD_UF_INT | REG_TMOUT_INT | FRAME_END_INT;
1849 		tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1850 
1851 		tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
1852 	} else {
1853 		value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1854 			WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1855 		tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
1856 
1857 		value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1858 			WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1859 		tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
1860 
1861 		/* initialize timer */
1862 		value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(0x20) |
1863 			WINDOW_B_THRESHOLD(0x20) | WINDOW_C_THRESHOLD(0x20);
1864 		tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY);
1865 
1866 		value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(1) |
1867 			WINDOW_B_THRESHOLD(1) | WINDOW_C_THRESHOLD(1);
1868 		tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER);
1869 
1870 		value = VBLANK_INT | WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1871 			WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1872 		tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
1873 
1874 		value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1875 			WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1876 		tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1877 	}
1878 
1879 	if (dc->soc->supports_background_color)
1880 		tegra_dc_writel(dc, 0, DC_DISP_BLEND_BACKGROUND_COLOR);
1881 	else
1882 		tegra_dc_writel(dc, 0, DC_DISP_BORDER_COLOR);
1883 
1884 	/* apply PLL and pixel clock changes */
1885 	tegra_dc_commit_state(dc, state);
1886 
1887 	/* program display mode */
1888 	tegra_dc_set_timings(dc, mode);
1889 
1890 	/* interlacing isn't supported yet, so disable it */
1891 	if (dc->soc->supports_interlacing) {
1892 		value = tegra_dc_readl(dc, DC_DISP_INTERLACE_CONTROL);
1893 		value &= ~INTERLACE_ENABLE;
1894 		tegra_dc_writel(dc, value, DC_DISP_INTERLACE_CONTROL);
1895 	}
1896 
1897 	value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1898 	value &= ~DISP_CTRL_MODE_MASK;
1899 	value |= DISP_CTRL_MODE_C_DISPLAY;
1900 	tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1901 
1902 	if (!dc->soc->has_nvdisplay) {
1903 		value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
1904 		value |= PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
1905 			 PW4_ENABLE | PM0_ENABLE | PM1_ENABLE;
1906 		tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
1907 	}
1908 
1909 	/* enable underflow reporting and display red for missing pixels */
1910 	if (dc->soc->has_nvdisplay) {
1911 		value = UNDERFLOW_MODE_RED | UNDERFLOW_REPORT_ENABLE;
1912 		tegra_dc_writel(dc, value, DC_COM_RG_UNDERFLOW);
1913 	}
1914 
1915 	tegra_dc_commit(dc);
1916 
1917 	drm_crtc_vblank_on(crtc);
1918 }
1919 
1920 static void tegra_crtc_atomic_begin(struct drm_crtc *crtc,
1921 				    struct drm_crtc_state *old_crtc_state)
1922 {
1923 	unsigned long flags;
1924 
1925 	if (crtc->state->event) {
1926 		spin_lock_irqsave(&crtc->dev->event_lock, flags);
1927 
1928 		if (drm_crtc_vblank_get(crtc) != 0)
1929 			drm_crtc_send_vblank_event(crtc, crtc->state->event);
1930 		else
1931 			drm_crtc_arm_vblank_event(crtc, crtc->state->event);
1932 
1933 		spin_unlock_irqrestore(&crtc->dev->event_lock, flags);
1934 
1935 		crtc->state->event = NULL;
1936 	}
1937 }
1938 
1939 static void tegra_crtc_atomic_flush(struct drm_crtc *crtc,
1940 				    struct drm_crtc_state *old_crtc_state)
1941 {
1942 	struct tegra_dc_state *state = to_dc_state(crtc->state);
1943 	struct tegra_dc *dc = to_tegra_dc(crtc);
1944 	u32 value;
1945 
1946 	value = state->planes << 8 | GENERAL_UPDATE;
1947 	tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
1948 	value = tegra_dc_readl(dc, DC_CMD_STATE_CONTROL);
1949 
1950 	value = state->planes | GENERAL_ACT_REQ;
1951 	tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
1952 	value = tegra_dc_readl(dc, DC_CMD_STATE_CONTROL);
1953 }
1954 
1955 static const struct drm_crtc_helper_funcs tegra_crtc_helper_funcs = {
1956 	.atomic_begin = tegra_crtc_atomic_begin,
1957 	.atomic_flush = tegra_crtc_atomic_flush,
1958 	.atomic_enable = tegra_crtc_atomic_enable,
1959 	.atomic_disable = tegra_crtc_atomic_disable,
1960 };
1961 
1962 static irqreturn_t tegra_dc_irq(int irq, void *data)
1963 {
1964 	struct tegra_dc *dc = data;
1965 	unsigned long status;
1966 
1967 	status = tegra_dc_readl(dc, DC_CMD_INT_STATUS);
1968 	tegra_dc_writel(dc, status, DC_CMD_INT_STATUS);
1969 
1970 	if (status & FRAME_END_INT) {
1971 		/*
1972 		dev_dbg(dc->dev, "%s(): frame end\n", __func__);
1973 		*/
1974 		dc->stats.frames++;
1975 	}
1976 
1977 	if (status & VBLANK_INT) {
1978 		/*
1979 		dev_dbg(dc->dev, "%s(): vertical blank\n", __func__);
1980 		*/
1981 		drm_crtc_handle_vblank(&dc->base);
1982 		dc->stats.vblank++;
1983 	}
1984 
1985 	if (status & (WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT)) {
1986 		/*
1987 		dev_dbg(dc->dev, "%s(): underflow\n", __func__);
1988 		*/
1989 		dc->stats.underflow++;
1990 	}
1991 
1992 	if (status & (WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT)) {
1993 		/*
1994 		dev_dbg(dc->dev, "%s(): overflow\n", __func__);
1995 		*/
1996 		dc->stats.overflow++;
1997 	}
1998 
1999 	if (status & HEAD_UF_INT) {
2000 		dev_dbg_ratelimited(dc->dev, "%s(): head underflow\n", __func__);
2001 		dc->stats.underflow++;
2002 	}
2003 
2004 	return IRQ_HANDLED;
2005 }
2006 
2007 static bool tegra_dc_has_window_groups(struct tegra_dc *dc)
2008 {
2009 	unsigned int i;
2010 
2011 	if (!dc->soc->wgrps)
2012 		return true;
2013 
2014 	for (i = 0; i < dc->soc->num_wgrps; i++) {
2015 		const struct tegra_windowgroup_soc *wgrp = &dc->soc->wgrps[i];
2016 
2017 		if (wgrp->dc == dc->pipe && wgrp->num_windows > 0)
2018 			return true;
2019 	}
2020 
2021 	return false;
2022 }
2023 
2024 static int tegra_dc_init(struct host1x_client *client)
2025 {
2026 	struct drm_device *drm = dev_get_drvdata(client->host);
2027 	unsigned long flags = HOST1X_SYNCPT_CLIENT_MANAGED;
2028 	struct tegra_dc *dc = host1x_client_to_dc(client);
2029 	struct tegra_drm *tegra = drm->dev_private;
2030 	struct drm_plane *primary = NULL;
2031 	struct drm_plane *cursor = NULL;
2032 	int err;
2033 
2034 	/*
2035 	 * XXX do not register DCs with no window groups because we cannot
2036 	 * assign a primary plane to them, which in turn will cause KMS to
2037 	 * crash.
2038 	 */
2039 	if (!tegra_dc_has_window_groups(dc))
2040 		return 0;
2041 
2042 	/*
2043 	 * Set the display hub as the host1x client parent for the display
2044 	 * controller. This is needed for the runtime reference counting that
2045 	 * ensures the display hub is always powered when any of the display
2046 	 * controllers are.
2047 	 */
2048 	if (dc->soc->has_nvdisplay)
2049 		client->parent = &tegra->hub->client;
2050 
2051 	dc->syncpt = host1x_syncpt_request(client, flags);
2052 	if (!dc->syncpt)
2053 		dev_warn(dc->dev, "failed to allocate syncpoint\n");
2054 
2055 	err = host1x_client_iommu_attach(client);
2056 	if (err < 0 && err != -ENODEV) {
2057 		dev_err(client->dev, "failed to attach to domain: %d\n", err);
2058 		return err;
2059 	}
2060 
2061 	if (dc->soc->wgrps)
2062 		primary = tegra_dc_add_shared_planes(drm, dc);
2063 	else
2064 		primary = tegra_dc_add_planes(drm, dc);
2065 
2066 	if (IS_ERR(primary)) {
2067 		err = PTR_ERR(primary);
2068 		goto cleanup;
2069 	}
2070 
2071 	if (dc->soc->supports_cursor) {
2072 		cursor = tegra_dc_cursor_plane_create(drm, dc);
2073 		if (IS_ERR(cursor)) {
2074 			err = PTR_ERR(cursor);
2075 			goto cleanup;
2076 		}
2077 	} else {
2078 		/* dedicate one overlay to mouse cursor */
2079 		cursor = tegra_dc_overlay_plane_create(drm, dc, 2, true);
2080 		if (IS_ERR(cursor)) {
2081 			err = PTR_ERR(cursor);
2082 			goto cleanup;
2083 		}
2084 	}
2085 
2086 	err = drm_crtc_init_with_planes(drm, &dc->base, primary, cursor,
2087 					&tegra_crtc_funcs, NULL);
2088 	if (err < 0)
2089 		goto cleanup;
2090 
2091 	drm_crtc_helper_add(&dc->base, &tegra_crtc_helper_funcs);
2092 
2093 	/*
2094 	 * Keep track of the minimum pitch alignment across all display
2095 	 * controllers.
2096 	 */
2097 	if (dc->soc->pitch_align > tegra->pitch_align)
2098 		tegra->pitch_align = dc->soc->pitch_align;
2099 
2100 	err = tegra_dc_rgb_init(drm, dc);
2101 	if (err < 0 && err != -ENODEV) {
2102 		dev_err(dc->dev, "failed to initialize RGB output: %d\n", err);
2103 		goto cleanup;
2104 	}
2105 
2106 	err = devm_request_irq(dc->dev, dc->irq, tegra_dc_irq, 0,
2107 			       dev_name(dc->dev), dc);
2108 	if (err < 0) {
2109 		dev_err(dc->dev, "failed to request IRQ#%u: %d\n", dc->irq,
2110 			err);
2111 		goto cleanup;
2112 	}
2113 
2114 	/*
2115 	 * Inherit the DMA parameters (such as maximum segment size) from the
2116 	 * parent host1x device.
2117 	 */
2118 	client->dev->dma_parms = client->host->dma_parms;
2119 
2120 	return 0;
2121 
2122 cleanup:
2123 	if (!IS_ERR_OR_NULL(cursor))
2124 		drm_plane_cleanup(cursor);
2125 
2126 	if (!IS_ERR(primary))
2127 		drm_plane_cleanup(primary);
2128 
2129 	host1x_client_iommu_detach(client);
2130 	host1x_syncpt_free(dc->syncpt);
2131 
2132 	return err;
2133 }
2134 
2135 static int tegra_dc_exit(struct host1x_client *client)
2136 {
2137 	struct tegra_dc *dc = host1x_client_to_dc(client);
2138 	int err;
2139 
2140 	if (!tegra_dc_has_window_groups(dc))
2141 		return 0;
2142 
2143 	/* avoid a dangling pointer just in case this disappears */
2144 	client->dev->dma_parms = NULL;
2145 
2146 	devm_free_irq(dc->dev, dc->irq, dc);
2147 
2148 	err = tegra_dc_rgb_exit(dc);
2149 	if (err) {
2150 		dev_err(dc->dev, "failed to shutdown RGB output: %d\n", err);
2151 		return err;
2152 	}
2153 
2154 	host1x_client_iommu_detach(client);
2155 	host1x_syncpt_free(dc->syncpt);
2156 
2157 	return 0;
2158 }
2159 
2160 static int tegra_dc_runtime_suspend(struct host1x_client *client)
2161 {
2162 	struct tegra_dc *dc = host1x_client_to_dc(client);
2163 	struct device *dev = client->dev;
2164 	int err;
2165 
2166 	err = reset_control_assert(dc->rst);
2167 	if (err < 0) {
2168 		dev_err(dev, "failed to assert reset: %d\n", err);
2169 		return err;
2170 	}
2171 
2172 	if (dc->soc->has_powergate)
2173 		tegra_powergate_power_off(dc->powergate);
2174 
2175 	clk_disable_unprepare(dc->clk);
2176 	pm_runtime_put_sync(dev);
2177 
2178 	return 0;
2179 }
2180 
2181 static int tegra_dc_runtime_resume(struct host1x_client *client)
2182 {
2183 	struct tegra_dc *dc = host1x_client_to_dc(client);
2184 	struct device *dev = client->dev;
2185 	int err;
2186 
2187 	err = pm_runtime_get_sync(dev);
2188 	if (err < 0) {
2189 		dev_err(dev, "failed to get runtime PM: %d\n", err);
2190 		return err;
2191 	}
2192 
2193 	if (dc->soc->has_powergate) {
2194 		err = tegra_powergate_sequence_power_up(dc->powergate, dc->clk,
2195 							dc->rst);
2196 		if (err < 0) {
2197 			dev_err(dev, "failed to power partition: %d\n", err);
2198 			goto put_rpm;
2199 		}
2200 	} else {
2201 		err = clk_prepare_enable(dc->clk);
2202 		if (err < 0) {
2203 			dev_err(dev, "failed to enable clock: %d\n", err);
2204 			goto put_rpm;
2205 		}
2206 
2207 		err = reset_control_deassert(dc->rst);
2208 		if (err < 0) {
2209 			dev_err(dev, "failed to deassert reset: %d\n", err);
2210 			goto disable_clk;
2211 		}
2212 	}
2213 
2214 	return 0;
2215 
2216 disable_clk:
2217 	clk_disable_unprepare(dc->clk);
2218 put_rpm:
2219 	pm_runtime_put_sync(dev);
2220 	return err;
2221 }
2222 
2223 static const struct host1x_client_ops dc_client_ops = {
2224 	.init = tegra_dc_init,
2225 	.exit = tegra_dc_exit,
2226 	.suspend = tegra_dc_runtime_suspend,
2227 	.resume = tegra_dc_runtime_resume,
2228 };
2229 
2230 static const struct tegra_dc_soc_info tegra20_dc_soc_info = {
2231 	.supports_background_color = false,
2232 	.supports_interlacing = false,
2233 	.supports_cursor = false,
2234 	.supports_block_linear = false,
2235 	.has_legacy_blending = true,
2236 	.pitch_align = 8,
2237 	.has_powergate = false,
2238 	.coupled_pm = true,
2239 	.has_nvdisplay = false,
2240 	.num_primary_formats = ARRAY_SIZE(tegra20_primary_formats),
2241 	.primary_formats = tegra20_primary_formats,
2242 	.num_overlay_formats = ARRAY_SIZE(tegra20_overlay_formats),
2243 	.overlay_formats = tegra20_overlay_formats,
2244 	.modifiers = tegra20_modifiers,
2245 	.has_win_a_without_filters = true,
2246 	.has_win_c_without_vert_filter = true,
2247 };
2248 
2249 static const struct tegra_dc_soc_info tegra30_dc_soc_info = {
2250 	.supports_background_color = false,
2251 	.supports_interlacing = false,
2252 	.supports_cursor = false,
2253 	.supports_block_linear = false,
2254 	.has_legacy_blending = true,
2255 	.pitch_align = 8,
2256 	.has_powergate = false,
2257 	.coupled_pm = false,
2258 	.has_nvdisplay = false,
2259 	.num_primary_formats = ARRAY_SIZE(tegra20_primary_formats),
2260 	.primary_formats = tegra20_primary_formats,
2261 	.num_overlay_formats = ARRAY_SIZE(tegra20_overlay_formats),
2262 	.overlay_formats = tegra20_overlay_formats,
2263 	.modifiers = tegra20_modifiers,
2264 	.has_win_a_without_filters = false,
2265 	.has_win_c_without_vert_filter = false,
2266 };
2267 
2268 static const struct tegra_dc_soc_info tegra114_dc_soc_info = {
2269 	.supports_background_color = false,
2270 	.supports_interlacing = false,
2271 	.supports_cursor = false,
2272 	.supports_block_linear = false,
2273 	.has_legacy_blending = true,
2274 	.pitch_align = 64,
2275 	.has_powergate = true,
2276 	.coupled_pm = false,
2277 	.has_nvdisplay = false,
2278 	.num_primary_formats = ARRAY_SIZE(tegra114_primary_formats),
2279 	.primary_formats = tegra114_primary_formats,
2280 	.num_overlay_formats = ARRAY_SIZE(tegra114_overlay_formats),
2281 	.overlay_formats = tegra114_overlay_formats,
2282 	.modifiers = tegra20_modifiers,
2283 	.has_win_a_without_filters = false,
2284 	.has_win_c_without_vert_filter = false,
2285 };
2286 
2287 static const struct tegra_dc_soc_info tegra124_dc_soc_info = {
2288 	.supports_background_color = true,
2289 	.supports_interlacing = true,
2290 	.supports_cursor = true,
2291 	.supports_block_linear = true,
2292 	.has_legacy_blending = false,
2293 	.pitch_align = 64,
2294 	.has_powergate = true,
2295 	.coupled_pm = false,
2296 	.has_nvdisplay = false,
2297 	.num_primary_formats = ARRAY_SIZE(tegra124_primary_formats),
2298 	.primary_formats = tegra124_primary_formats,
2299 	.num_overlay_formats = ARRAY_SIZE(tegra124_overlay_formats),
2300 	.overlay_formats = tegra124_overlay_formats,
2301 	.modifiers = tegra124_modifiers,
2302 	.has_win_a_without_filters = false,
2303 	.has_win_c_without_vert_filter = false,
2304 };
2305 
2306 static const struct tegra_dc_soc_info tegra210_dc_soc_info = {
2307 	.supports_background_color = true,
2308 	.supports_interlacing = true,
2309 	.supports_cursor = true,
2310 	.supports_block_linear = true,
2311 	.has_legacy_blending = false,
2312 	.pitch_align = 64,
2313 	.has_powergate = true,
2314 	.coupled_pm = false,
2315 	.has_nvdisplay = false,
2316 	.num_primary_formats = ARRAY_SIZE(tegra114_primary_formats),
2317 	.primary_formats = tegra114_primary_formats,
2318 	.num_overlay_formats = ARRAY_SIZE(tegra114_overlay_formats),
2319 	.overlay_formats = tegra114_overlay_formats,
2320 	.modifiers = tegra124_modifiers,
2321 	.has_win_a_without_filters = false,
2322 	.has_win_c_without_vert_filter = false,
2323 };
2324 
2325 static const struct tegra_windowgroup_soc tegra186_dc_wgrps[] = {
2326 	{
2327 		.index = 0,
2328 		.dc = 0,
2329 		.windows = (const unsigned int[]) { 0 },
2330 		.num_windows = 1,
2331 	}, {
2332 		.index = 1,
2333 		.dc = 1,
2334 		.windows = (const unsigned int[]) { 1 },
2335 		.num_windows = 1,
2336 	}, {
2337 		.index = 2,
2338 		.dc = 1,
2339 		.windows = (const unsigned int[]) { 2 },
2340 		.num_windows = 1,
2341 	}, {
2342 		.index = 3,
2343 		.dc = 2,
2344 		.windows = (const unsigned int[]) { 3 },
2345 		.num_windows = 1,
2346 	}, {
2347 		.index = 4,
2348 		.dc = 2,
2349 		.windows = (const unsigned int[]) { 4 },
2350 		.num_windows = 1,
2351 	}, {
2352 		.index = 5,
2353 		.dc = 2,
2354 		.windows = (const unsigned int[]) { 5 },
2355 		.num_windows = 1,
2356 	},
2357 };
2358 
2359 static const struct tegra_dc_soc_info tegra186_dc_soc_info = {
2360 	.supports_background_color = true,
2361 	.supports_interlacing = true,
2362 	.supports_cursor = true,
2363 	.supports_block_linear = true,
2364 	.has_legacy_blending = false,
2365 	.pitch_align = 64,
2366 	.has_powergate = false,
2367 	.coupled_pm = false,
2368 	.has_nvdisplay = true,
2369 	.wgrps = tegra186_dc_wgrps,
2370 	.num_wgrps = ARRAY_SIZE(tegra186_dc_wgrps),
2371 };
2372 
2373 static const struct tegra_windowgroup_soc tegra194_dc_wgrps[] = {
2374 	{
2375 		.index = 0,
2376 		.dc = 0,
2377 		.windows = (const unsigned int[]) { 0 },
2378 		.num_windows = 1,
2379 	}, {
2380 		.index = 1,
2381 		.dc = 1,
2382 		.windows = (const unsigned int[]) { 1 },
2383 		.num_windows = 1,
2384 	}, {
2385 		.index = 2,
2386 		.dc = 1,
2387 		.windows = (const unsigned int[]) { 2 },
2388 		.num_windows = 1,
2389 	}, {
2390 		.index = 3,
2391 		.dc = 2,
2392 		.windows = (const unsigned int[]) { 3 },
2393 		.num_windows = 1,
2394 	}, {
2395 		.index = 4,
2396 		.dc = 2,
2397 		.windows = (const unsigned int[]) { 4 },
2398 		.num_windows = 1,
2399 	}, {
2400 		.index = 5,
2401 		.dc = 2,
2402 		.windows = (const unsigned int[]) { 5 },
2403 		.num_windows = 1,
2404 	},
2405 };
2406 
2407 static const struct tegra_dc_soc_info tegra194_dc_soc_info = {
2408 	.supports_background_color = true,
2409 	.supports_interlacing = true,
2410 	.supports_cursor = true,
2411 	.supports_block_linear = true,
2412 	.has_legacy_blending = false,
2413 	.pitch_align = 64,
2414 	.has_powergate = false,
2415 	.coupled_pm = false,
2416 	.has_nvdisplay = true,
2417 	.wgrps = tegra194_dc_wgrps,
2418 	.num_wgrps = ARRAY_SIZE(tegra194_dc_wgrps),
2419 };
2420 
2421 static const struct of_device_id tegra_dc_of_match[] = {
2422 	{
2423 		.compatible = "nvidia,tegra194-dc",
2424 		.data = &tegra194_dc_soc_info,
2425 	}, {
2426 		.compatible = "nvidia,tegra186-dc",
2427 		.data = &tegra186_dc_soc_info,
2428 	}, {
2429 		.compatible = "nvidia,tegra210-dc",
2430 		.data = &tegra210_dc_soc_info,
2431 	}, {
2432 		.compatible = "nvidia,tegra124-dc",
2433 		.data = &tegra124_dc_soc_info,
2434 	}, {
2435 		.compatible = "nvidia,tegra114-dc",
2436 		.data = &tegra114_dc_soc_info,
2437 	}, {
2438 		.compatible = "nvidia,tegra30-dc",
2439 		.data = &tegra30_dc_soc_info,
2440 	}, {
2441 		.compatible = "nvidia,tegra20-dc",
2442 		.data = &tegra20_dc_soc_info,
2443 	}, {
2444 		/* sentinel */
2445 	}
2446 };
2447 MODULE_DEVICE_TABLE(of, tegra_dc_of_match);
2448 
2449 static int tegra_dc_parse_dt(struct tegra_dc *dc)
2450 {
2451 	struct device_node *np;
2452 	u32 value = 0;
2453 	int err;
2454 
2455 	err = of_property_read_u32(dc->dev->of_node, "nvidia,head", &value);
2456 	if (err < 0) {
2457 		dev_err(dc->dev, "missing \"nvidia,head\" property\n");
2458 
2459 		/*
2460 		 * If the nvidia,head property isn't present, try to find the
2461 		 * correct head number by looking up the position of this
2462 		 * display controller's node within the device tree. Assuming
2463 		 * that the nodes are ordered properly in the DTS file and
2464 		 * that the translation into a flattened device tree blob
2465 		 * preserves that ordering this will actually yield the right
2466 		 * head number.
2467 		 *
2468 		 * If those assumptions don't hold, this will still work for
2469 		 * cases where only a single display controller is used.
2470 		 */
2471 		for_each_matching_node(np, tegra_dc_of_match) {
2472 			if (np == dc->dev->of_node) {
2473 				of_node_put(np);
2474 				break;
2475 			}
2476 
2477 			value++;
2478 		}
2479 	}
2480 
2481 	dc->pipe = value;
2482 
2483 	return 0;
2484 }
2485 
2486 static int tegra_dc_match_by_pipe(struct device *dev, const void *data)
2487 {
2488 	struct tegra_dc *dc = dev_get_drvdata(dev);
2489 	unsigned int pipe = (unsigned long)(void *)data;
2490 
2491 	return dc->pipe == pipe;
2492 }
2493 
2494 static int tegra_dc_couple(struct tegra_dc *dc)
2495 {
2496 	/*
2497 	 * On Tegra20, DC1 requires DC0 to be taken out of reset in order to
2498 	 * be enabled, otherwise CPU hangs on writing to CMD_DISPLAY_COMMAND /
2499 	 * POWER_CONTROL registers during CRTC enabling.
2500 	 */
2501 	if (dc->soc->coupled_pm && dc->pipe == 1) {
2502 		u32 flags = DL_FLAG_PM_RUNTIME | DL_FLAG_AUTOREMOVE_CONSUMER;
2503 		struct device_link *link;
2504 		struct device *partner;
2505 
2506 		partner = driver_find_device(dc->dev->driver, NULL, NULL,
2507 					     tegra_dc_match_by_pipe);
2508 		if (!partner)
2509 			return -EPROBE_DEFER;
2510 
2511 		link = device_link_add(dc->dev, partner, flags);
2512 		if (!link) {
2513 			dev_err(dc->dev, "failed to link controllers\n");
2514 			return -EINVAL;
2515 		}
2516 
2517 		dev_dbg(dc->dev, "coupled to %s\n", dev_name(partner));
2518 	}
2519 
2520 	return 0;
2521 }
2522 
2523 static int tegra_dc_probe(struct platform_device *pdev)
2524 {
2525 	struct tegra_dc *dc;
2526 	int err;
2527 
2528 	dc = devm_kzalloc(&pdev->dev, sizeof(*dc), GFP_KERNEL);
2529 	if (!dc)
2530 		return -ENOMEM;
2531 
2532 	dc->soc = of_device_get_match_data(&pdev->dev);
2533 
2534 	INIT_LIST_HEAD(&dc->list);
2535 	dc->dev = &pdev->dev;
2536 
2537 	err = tegra_dc_parse_dt(dc);
2538 	if (err < 0)
2539 		return err;
2540 
2541 	err = tegra_dc_couple(dc);
2542 	if (err < 0)
2543 		return err;
2544 
2545 	dc->clk = devm_clk_get(&pdev->dev, NULL);
2546 	if (IS_ERR(dc->clk)) {
2547 		dev_err(&pdev->dev, "failed to get clock\n");
2548 		return PTR_ERR(dc->clk);
2549 	}
2550 
2551 	dc->rst = devm_reset_control_get(&pdev->dev, "dc");
2552 	if (IS_ERR(dc->rst)) {
2553 		dev_err(&pdev->dev, "failed to get reset\n");
2554 		return PTR_ERR(dc->rst);
2555 	}
2556 
2557 	/* assert reset and disable clock */
2558 	err = clk_prepare_enable(dc->clk);
2559 	if (err < 0)
2560 		return err;
2561 
2562 	usleep_range(2000, 4000);
2563 
2564 	err = reset_control_assert(dc->rst);
2565 	if (err < 0)
2566 		return err;
2567 
2568 	usleep_range(2000, 4000);
2569 
2570 	clk_disable_unprepare(dc->clk);
2571 
2572 	if (dc->soc->has_powergate) {
2573 		if (dc->pipe == 0)
2574 			dc->powergate = TEGRA_POWERGATE_DIS;
2575 		else
2576 			dc->powergate = TEGRA_POWERGATE_DISB;
2577 
2578 		tegra_powergate_power_off(dc->powergate);
2579 	}
2580 
2581 	dc->regs = devm_platform_ioremap_resource(pdev, 0);
2582 	if (IS_ERR(dc->regs))
2583 		return PTR_ERR(dc->regs);
2584 
2585 	dc->irq = platform_get_irq(pdev, 0);
2586 	if (dc->irq < 0)
2587 		return -ENXIO;
2588 
2589 	err = tegra_dc_rgb_probe(dc);
2590 	if (err < 0 && err != -ENODEV) {
2591 		const char *level = KERN_ERR;
2592 
2593 		if (err == -EPROBE_DEFER)
2594 			level = KERN_DEBUG;
2595 
2596 		dev_printk(level, dc->dev, "failed to probe RGB output: %d\n",
2597 			   err);
2598 		return err;
2599 	}
2600 
2601 	platform_set_drvdata(pdev, dc);
2602 	pm_runtime_enable(&pdev->dev);
2603 
2604 	INIT_LIST_HEAD(&dc->client.list);
2605 	dc->client.ops = &dc_client_ops;
2606 	dc->client.dev = &pdev->dev;
2607 
2608 	err = host1x_client_register(&dc->client);
2609 	if (err < 0) {
2610 		dev_err(&pdev->dev, "failed to register host1x client: %d\n",
2611 			err);
2612 		goto disable_pm;
2613 	}
2614 
2615 	return 0;
2616 
2617 disable_pm:
2618 	pm_runtime_disable(&pdev->dev);
2619 	tegra_dc_rgb_remove(dc);
2620 
2621 	return err;
2622 }
2623 
2624 static int tegra_dc_remove(struct platform_device *pdev)
2625 {
2626 	struct tegra_dc *dc = platform_get_drvdata(pdev);
2627 	int err;
2628 
2629 	err = host1x_client_unregister(&dc->client);
2630 	if (err < 0) {
2631 		dev_err(&pdev->dev, "failed to unregister host1x client: %d\n",
2632 			err);
2633 		return err;
2634 	}
2635 
2636 	err = tegra_dc_rgb_remove(dc);
2637 	if (err < 0) {
2638 		dev_err(&pdev->dev, "failed to remove RGB output: %d\n", err);
2639 		return err;
2640 	}
2641 
2642 	pm_runtime_disable(&pdev->dev);
2643 
2644 	return 0;
2645 }
2646 
2647 struct platform_driver tegra_dc_driver = {
2648 	.driver = {
2649 		.name = "tegra-dc",
2650 		.of_match_table = tegra_dc_of_match,
2651 	},
2652 	.probe = tegra_dc_probe,
2653 	.remove = tegra_dc_remove,
2654 };
2655