xref: /openbmc/linux/drivers/gpu/drm/tegra/dc.c (revision efe4a1ac)
1 /*
2  * Copyright (C) 2012 Avionic Design GmbH
3  * Copyright (C) 2012 NVIDIA CORPORATION.  All rights reserved.
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  */
9 
10 #include <linux/clk.h>
11 #include <linux/debugfs.h>
12 #include <linux/iommu.h>
13 #include <linux/pm_runtime.h>
14 #include <linux/reset.h>
15 
16 #include <soc/tegra/pmc.h>
17 
18 #include "dc.h"
19 #include "drm.h"
20 #include "gem.h"
21 
22 #include <drm/drm_atomic.h>
23 #include <drm/drm_atomic_helper.h>
24 #include <drm/drm_plane_helper.h>
25 
26 struct tegra_dc_soc_info {
27 	bool supports_border_color;
28 	bool supports_interlacing;
29 	bool supports_cursor;
30 	bool supports_block_linear;
31 	unsigned int pitch_align;
32 	bool has_powergate;
33 };
34 
35 struct tegra_plane {
36 	struct drm_plane base;
37 	unsigned int index;
38 };
39 
40 static inline struct tegra_plane *to_tegra_plane(struct drm_plane *plane)
41 {
42 	return container_of(plane, struct tegra_plane, base);
43 }
44 
45 struct tegra_dc_state {
46 	struct drm_crtc_state base;
47 
48 	struct clk *clk;
49 	unsigned long pclk;
50 	unsigned int div;
51 
52 	u32 planes;
53 };
54 
55 static inline struct tegra_dc_state *to_dc_state(struct drm_crtc_state *state)
56 {
57 	if (state)
58 		return container_of(state, struct tegra_dc_state, base);
59 
60 	return NULL;
61 }
62 
63 struct tegra_plane_state {
64 	struct drm_plane_state base;
65 
66 	struct tegra_bo_tiling tiling;
67 	u32 format;
68 	u32 swap;
69 };
70 
71 static inline struct tegra_plane_state *
72 to_tegra_plane_state(struct drm_plane_state *state)
73 {
74 	if (state)
75 		return container_of(state, struct tegra_plane_state, base);
76 
77 	return NULL;
78 }
79 
80 static void tegra_dc_stats_reset(struct tegra_dc_stats *stats)
81 {
82 	stats->frames = 0;
83 	stats->vblank = 0;
84 	stats->underflow = 0;
85 	stats->overflow = 0;
86 }
87 
88 /*
89  * Reads the active copy of a register. This takes the dc->lock spinlock to
90  * prevent races with the VBLANK processing which also needs access to the
91  * active copy of some registers.
92  */
93 static u32 tegra_dc_readl_active(struct tegra_dc *dc, unsigned long offset)
94 {
95 	unsigned long flags;
96 	u32 value;
97 
98 	spin_lock_irqsave(&dc->lock, flags);
99 
100 	tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
101 	value = tegra_dc_readl(dc, offset);
102 	tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS);
103 
104 	spin_unlock_irqrestore(&dc->lock, flags);
105 	return value;
106 }
107 
108 /*
109  * Double-buffered registers have two copies: ASSEMBLY and ACTIVE. When the
110  * *_ACT_REQ bits are set the ASSEMBLY copy is latched into the ACTIVE copy.
111  * Latching happens mmediately if the display controller is in STOP mode or
112  * on the next frame boundary otherwise.
113  *
114  * Triple-buffered registers have three copies: ASSEMBLY, ARM and ACTIVE. The
115  * ASSEMBLY copy is latched into the ARM copy immediately after *_UPDATE bits
116  * are written. When the *_ACT_REQ bits are written, the ARM copy is latched
117  * into the ACTIVE copy, either immediately if the display controller is in
118  * STOP mode, or at the next frame boundary otherwise.
119  */
120 void tegra_dc_commit(struct tegra_dc *dc)
121 {
122 	tegra_dc_writel(dc, GENERAL_ACT_REQ << 8, DC_CMD_STATE_CONTROL);
123 	tegra_dc_writel(dc, GENERAL_ACT_REQ, DC_CMD_STATE_CONTROL);
124 }
125 
126 static int tegra_dc_format(u32 fourcc, u32 *format, u32 *swap)
127 {
128 	/* assume no swapping of fetched data */
129 	if (swap)
130 		*swap = BYTE_SWAP_NOSWAP;
131 
132 	switch (fourcc) {
133 	case DRM_FORMAT_XBGR8888:
134 		*format = WIN_COLOR_DEPTH_R8G8B8A8;
135 		break;
136 
137 	case DRM_FORMAT_XRGB8888:
138 		*format = WIN_COLOR_DEPTH_B8G8R8A8;
139 		break;
140 
141 	case DRM_FORMAT_RGB565:
142 		*format = WIN_COLOR_DEPTH_B5G6R5;
143 		break;
144 
145 	case DRM_FORMAT_UYVY:
146 		*format = WIN_COLOR_DEPTH_YCbCr422;
147 		break;
148 
149 	case DRM_FORMAT_YUYV:
150 		if (swap)
151 			*swap = BYTE_SWAP_SWAP2;
152 
153 		*format = WIN_COLOR_DEPTH_YCbCr422;
154 		break;
155 
156 	case DRM_FORMAT_YUV420:
157 		*format = WIN_COLOR_DEPTH_YCbCr420P;
158 		break;
159 
160 	case DRM_FORMAT_YUV422:
161 		*format = WIN_COLOR_DEPTH_YCbCr422P;
162 		break;
163 
164 	default:
165 		return -EINVAL;
166 	}
167 
168 	return 0;
169 }
170 
171 static bool tegra_dc_format_is_yuv(unsigned int format, bool *planar)
172 {
173 	switch (format) {
174 	case WIN_COLOR_DEPTH_YCbCr422:
175 	case WIN_COLOR_DEPTH_YUV422:
176 		if (planar)
177 			*planar = false;
178 
179 		return true;
180 
181 	case WIN_COLOR_DEPTH_YCbCr420P:
182 	case WIN_COLOR_DEPTH_YUV420P:
183 	case WIN_COLOR_DEPTH_YCbCr422P:
184 	case WIN_COLOR_DEPTH_YUV422P:
185 	case WIN_COLOR_DEPTH_YCbCr422R:
186 	case WIN_COLOR_DEPTH_YUV422R:
187 	case WIN_COLOR_DEPTH_YCbCr422RA:
188 	case WIN_COLOR_DEPTH_YUV422RA:
189 		if (planar)
190 			*planar = true;
191 
192 		return true;
193 	}
194 
195 	if (planar)
196 		*planar = false;
197 
198 	return false;
199 }
200 
201 static inline u32 compute_dda_inc(unsigned int in, unsigned int out, bool v,
202 				  unsigned int bpp)
203 {
204 	fixed20_12 outf = dfixed_init(out);
205 	fixed20_12 inf = dfixed_init(in);
206 	u32 dda_inc;
207 	int max;
208 
209 	if (v)
210 		max = 15;
211 	else {
212 		switch (bpp) {
213 		case 2:
214 			max = 8;
215 			break;
216 
217 		default:
218 			WARN_ON_ONCE(1);
219 			/* fallthrough */
220 		case 4:
221 			max = 4;
222 			break;
223 		}
224 	}
225 
226 	outf.full = max_t(u32, outf.full - dfixed_const(1), dfixed_const(1));
227 	inf.full -= dfixed_const(1);
228 
229 	dda_inc = dfixed_div(inf, outf);
230 	dda_inc = min_t(u32, dda_inc, dfixed_const(max));
231 
232 	return dda_inc;
233 }
234 
235 static inline u32 compute_initial_dda(unsigned int in)
236 {
237 	fixed20_12 inf = dfixed_init(in);
238 	return dfixed_frac(inf);
239 }
240 
241 static void tegra_dc_setup_window(struct tegra_dc *dc, unsigned int index,
242 				  const struct tegra_dc_window *window)
243 {
244 	unsigned h_offset, v_offset, h_size, v_size, h_dda, v_dda, bpp;
245 	unsigned long value, flags;
246 	bool yuv, planar;
247 
248 	/*
249 	 * For YUV planar modes, the number of bytes per pixel takes into
250 	 * account only the luma component and therefore is 1.
251 	 */
252 	yuv = tegra_dc_format_is_yuv(window->format, &planar);
253 	if (!yuv)
254 		bpp = window->bits_per_pixel / 8;
255 	else
256 		bpp = planar ? 1 : 2;
257 
258 	spin_lock_irqsave(&dc->lock, flags);
259 
260 	value = WINDOW_A_SELECT << index;
261 	tegra_dc_writel(dc, value, DC_CMD_DISPLAY_WINDOW_HEADER);
262 
263 	tegra_dc_writel(dc, window->format, DC_WIN_COLOR_DEPTH);
264 	tegra_dc_writel(dc, window->swap, DC_WIN_BYTE_SWAP);
265 
266 	value = V_POSITION(window->dst.y) | H_POSITION(window->dst.x);
267 	tegra_dc_writel(dc, value, DC_WIN_POSITION);
268 
269 	value = V_SIZE(window->dst.h) | H_SIZE(window->dst.w);
270 	tegra_dc_writel(dc, value, DC_WIN_SIZE);
271 
272 	h_offset = window->src.x * bpp;
273 	v_offset = window->src.y;
274 	h_size = window->src.w * bpp;
275 	v_size = window->src.h;
276 
277 	value = V_PRESCALED_SIZE(v_size) | H_PRESCALED_SIZE(h_size);
278 	tegra_dc_writel(dc, value, DC_WIN_PRESCALED_SIZE);
279 
280 	/*
281 	 * For DDA computations the number of bytes per pixel for YUV planar
282 	 * modes needs to take into account all Y, U and V components.
283 	 */
284 	if (yuv && planar)
285 		bpp = 2;
286 
287 	h_dda = compute_dda_inc(window->src.w, window->dst.w, false, bpp);
288 	v_dda = compute_dda_inc(window->src.h, window->dst.h, true, bpp);
289 
290 	value = V_DDA_INC(v_dda) | H_DDA_INC(h_dda);
291 	tegra_dc_writel(dc, value, DC_WIN_DDA_INC);
292 
293 	h_dda = compute_initial_dda(window->src.x);
294 	v_dda = compute_initial_dda(window->src.y);
295 
296 	tegra_dc_writel(dc, h_dda, DC_WIN_H_INITIAL_DDA);
297 	tegra_dc_writel(dc, v_dda, DC_WIN_V_INITIAL_DDA);
298 
299 	tegra_dc_writel(dc, 0, DC_WIN_UV_BUF_STRIDE);
300 	tegra_dc_writel(dc, 0, DC_WIN_BUF_STRIDE);
301 
302 	tegra_dc_writel(dc, window->base[0], DC_WINBUF_START_ADDR);
303 
304 	if (yuv && planar) {
305 		tegra_dc_writel(dc, window->base[1], DC_WINBUF_START_ADDR_U);
306 		tegra_dc_writel(dc, window->base[2], DC_WINBUF_START_ADDR_V);
307 		value = window->stride[1] << 16 | window->stride[0];
308 		tegra_dc_writel(dc, value, DC_WIN_LINE_STRIDE);
309 	} else {
310 		tegra_dc_writel(dc, window->stride[0], DC_WIN_LINE_STRIDE);
311 	}
312 
313 	if (window->bottom_up)
314 		v_offset += window->src.h - 1;
315 
316 	tegra_dc_writel(dc, h_offset, DC_WINBUF_ADDR_H_OFFSET);
317 	tegra_dc_writel(dc, v_offset, DC_WINBUF_ADDR_V_OFFSET);
318 
319 	if (dc->soc->supports_block_linear) {
320 		unsigned long height = window->tiling.value;
321 
322 		switch (window->tiling.mode) {
323 		case TEGRA_BO_TILING_MODE_PITCH:
324 			value = DC_WINBUF_SURFACE_KIND_PITCH;
325 			break;
326 
327 		case TEGRA_BO_TILING_MODE_TILED:
328 			value = DC_WINBUF_SURFACE_KIND_TILED;
329 			break;
330 
331 		case TEGRA_BO_TILING_MODE_BLOCK:
332 			value = DC_WINBUF_SURFACE_KIND_BLOCK_HEIGHT(height) |
333 				DC_WINBUF_SURFACE_KIND_BLOCK;
334 			break;
335 		}
336 
337 		tegra_dc_writel(dc, value, DC_WINBUF_SURFACE_KIND);
338 	} else {
339 		switch (window->tiling.mode) {
340 		case TEGRA_BO_TILING_MODE_PITCH:
341 			value = DC_WIN_BUFFER_ADDR_MODE_LINEAR_UV |
342 				DC_WIN_BUFFER_ADDR_MODE_LINEAR;
343 			break;
344 
345 		case TEGRA_BO_TILING_MODE_TILED:
346 			value = DC_WIN_BUFFER_ADDR_MODE_TILE_UV |
347 				DC_WIN_BUFFER_ADDR_MODE_TILE;
348 			break;
349 
350 		case TEGRA_BO_TILING_MODE_BLOCK:
351 			/*
352 			 * No need to handle this here because ->atomic_check
353 			 * will already have filtered it out.
354 			 */
355 			break;
356 		}
357 
358 		tegra_dc_writel(dc, value, DC_WIN_BUFFER_ADDR_MODE);
359 	}
360 
361 	value = WIN_ENABLE;
362 
363 	if (yuv) {
364 		/* setup default colorspace conversion coefficients */
365 		tegra_dc_writel(dc, 0x00f0, DC_WIN_CSC_YOF);
366 		tegra_dc_writel(dc, 0x012a, DC_WIN_CSC_KYRGB);
367 		tegra_dc_writel(dc, 0x0000, DC_WIN_CSC_KUR);
368 		tegra_dc_writel(dc, 0x0198, DC_WIN_CSC_KVR);
369 		tegra_dc_writel(dc, 0x039b, DC_WIN_CSC_KUG);
370 		tegra_dc_writel(dc, 0x032f, DC_WIN_CSC_KVG);
371 		tegra_dc_writel(dc, 0x0204, DC_WIN_CSC_KUB);
372 		tegra_dc_writel(dc, 0x0000, DC_WIN_CSC_KVB);
373 
374 		value |= CSC_ENABLE;
375 	} else if (window->bits_per_pixel < 24) {
376 		value |= COLOR_EXPAND;
377 	}
378 
379 	if (window->bottom_up)
380 		value |= V_DIRECTION;
381 
382 	tegra_dc_writel(dc, value, DC_WIN_WIN_OPTIONS);
383 
384 	/*
385 	 * Disable blending and assume Window A is the bottom-most window,
386 	 * Window C is the top-most window and Window B is in the middle.
387 	 */
388 	tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_NOKEY);
389 	tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_1WIN);
390 
391 	switch (index) {
392 	case 0:
393 		tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_2WIN_X);
394 		tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_2WIN_Y);
395 		tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_3WIN_XY);
396 		break;
397 
398 	case 1:
399 		tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_2WIN_X);
400 		tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_2WIN_Y);
401 		tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_3WIN_XY);
402 		break;
403 
404 	case 2:
405 		tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_2WIN_X);
406 		tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_2WIN_Y);
407 		tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_3WIN_XY);
408 		break;
409 	}
410 
411 	spin_unlock_irqrestore(&dc->lock, flags);
412 }
413 
414 static void tegra_plane_destroy(struct drm_plane *plane)
415 {
416 	struct tegra_plane *p = to_tegra_plane(plane);
417 
418 	drm_plane_cleanup(plane);
419 	kfree(p);
420 }
421 
422 static const u32 tegra_primary_plane_formats[] = {
423 	DRM_FORMAT_XBGR8888,
424 	DRM_FORMAT_XRGB8888,
425 	DRM_FORMAT_RGB565,
426 };
427 
428 static void tegra_primary_plane_destroy(struct drm_plane *plane)
429 {
430 	tegra_plane_destroy(plane);
431 }
432 
433 static void tegra_plane_reset(struct drm_plane *plane)
434 {
435 	struct tegra_plane_state *state;
436 
437 	if (plane->state)
438 		__drm_atomic_helper_plane_destroy_state(plane->state);
439 
440 	kfree(plane->state);
441 	plane->state = NULL;
442 
443 	state = kzalloc(sizeof(*state), GFP_KERNEL);
444 	if (state) {
445 		plane->state = &state->base;
446 		plane->state->plane = plane;
447 	}
448 }
449 
450 static struct drm_plane_state *tegra_plane_atomic_duplicate_state(struct drm_plane *plane)
451 {
452 	struct tegra_plane_state *state = to_tegra_plane_state(plane->state);
453 	struct tegra_plane_state *copy;
454 
455 	copy = kmalloc(sizeof(*copy), GFP_KERNEL);
456 	if (!copy)
457 		return NULL;
458 
459 	__drm_atomic_helper_plane_duplicate_state(plane, &copy->base);
460 	copy->tiling = state->tiling;
461 	copy->format = state->format;
462 	copy->swap = state->swap;
463 
464 	return &copy->base;
465 }
466 
467 static void tegra_plane_atomic_destroy_state(struct drm_plane *plane,
468 					     struct drm_plane_state *state)
469 {
470 	__drm_atomic_helper_plane_destroy_state(state);
471 	kfree(state);
472 }
473 
474 static const struct drm_plane_funcs tegra_primary_plane_funcs = {
475 	.update_plane = drm_atomic_helper_update_plane,
476 	.disable_plane = drm_atomic_helper_disable_plane,
477 	.destroy = tegra_primary_plane_destroy,
478 	.reset = tegra_plane_reset,
479 	.atomic_duplicate_state = tegra_plane_atomic_duplicate_state,
480 	.atomic_destroy_state = tegra_plane_atomic_destroy_state,
481 };
482 
483 static int tegra_plane_state_add(struct tegra_plane *plane,
484 				 struct drm_plane_state *state)
485 {
486 	struct drm_crtc_state *crtc_state;
487 	struct tegra_dc_state *tegra;
488 
489 	/* Propagate errors from allocation or locking failures. */
490 	crtc_state = drm_atomic_get_crtc_state(state->state, state->crtc);
491 	if (IS_ERR(crtc_state))
492 		return PTR_ERR(crtc_state);
493 
494 	tegra = to_dc_state(crtc_state);
495 
496 	tegra->planes |= WIN_A_ACT_REQ << plane->index;
497 
498 	return 0;
499 }
500 
501 static int tegra_plane_atomic_check(struct drm_plane *plane,
502 				    struct drm_plane_state *state)
503 {
504 	struct tegra_plane_state *plane_state = to_tegra_plane_state(state);
505 	struct tegra_bo_tiling *tiling = &plane_state->tiling;
506 	struct tegra_plane *tegra = to_tegra_plane(plane);
507 	struct tegra_dc *dc = to_tegra_dc(state->crtc);
508 	int err;
509 
510 	/* no need for further checks if the plane is being disabled */
511 	if (!state->crtc)
512 		return 0;
513 
514 	err = tegra_dc_format(state->fb->format->format, &plane_state->format,
515 			      &plane_state->swap);
516 	if (err < 0)
517 		return err;
518 
519 	err = tegra_fb_get_tiling(state->fb, tiling);
520 	if (err < 0)
521 		return err;
522 
523 	if (tiling->mode == TEGRA_BO_TILING_MODE_BLOCK &&
524 	    !dc->soc->supports_block_linear) {
525 		DRM_ERROR("hardware doesn't support block linear mode\n");
526 		return -EINVAL;
527 	}
528 
529 	/*
530 	 * Tegra doesn't support different strides for U and V planes so we
531 	 * error out if the user tries to display a framebuffer with such a
532 	 * configuration.
533 	 */
534 	if (state->fb->format->num_planes > 2) {
535 		if (state->fb->pitches[2] != state->fb->pitches[1]) {
536 			DRM_ERROR("unsupported UV-plane configuration\n");
537 			return -EINVAL;
538 		}
539 	}
540 
541 	err = tegra_plane_state_add(tegra, state);
542 	if (err < 0)
543 		return err;
544 
545 	return 0;
546 }
547 
548 static void tegra_plane_atomic_update(struct drm_plane *plane,
549 				      struct drm_plane_state *old_state)
550 {
551 	struct tegra_plane_state *state = to_tegra_plane_state(plane->state);
552 	struct tegra_dc *dc = to_tegra_dc(plane->state->crtc);
553 	struct drm_framebuffer *fb = plane->state->fb;
554 	struct tegra_plane *p = to_tegra_plane(plane);
555 	struct tegra_dc_window window;
556 	unsigned int i;
557 
558 	/* rien ne va plus */
559 	if (!plane->state->crtc || !plane->state->fb)
560 		return;
561 
562 	memset(&window, 0, sizeof(window));
563 	window.src.x = plane->state->src_x >> 16;
564 	window.src.y = plane->state->src_y >> 16;
565 	window.src.w = plane->state->src_w >> 16;
566 	window.src.h = plane->state->src_h >> 16;
567 	window.dst.x = plane->state->crtc_x;
568 	window.dst.y = plane->state->crtc_y;
569 	window.dst.w = plane->state->crtc_w;
570 	window.dst.h = plane->state->crtc_h;
571 	window.bits_per_pixel = fb->format->cpp[0] * 8;
572 	window.bottom_up = tegra_fb_is_bottom_up(fb);
573 
574 	/* copy from state */
575 	window.tiling = state->tiling;
576 	window.format = state->format;
577 	window.swap = state->swap;
578 
579 	for (i = 0; i < fb->format->num_planes; i++) {
580 		struct tegra_bo *bo = tegra_fb_get_plane(fb, i);
581 
582 		window.base[i] = bo->paddr + fb->offsets[i];
583 
584 		/*
585 		 * Tegra uses a shared stride for UV planes. Framebuffers are
586 		 * already checked for this in the tegra_plane_atomic_check()
587 		 * function, so it's safe to ignore the V-plane pitch here.
588 		 */
589 		if (i < 2)
590 			window.stride[i] = fb->pitches[i];
591 	}
592 
593 	tegra_dc_setup_window(dc, p->index, &window);
594 }
595 
596 static void tegra_plane_atomic_disable(struct drm_plane *plane,
597 				       struct drm_plane_state *old_state)
598 {
599 	struct tegra_plane *p = to_tegra_plane(plane);
600 	struct tegra_dc *dc;
601 	unsigned long flags;
602 	u32 value;
603 
604 	/* rien ne va plus */
605 	if (!old_state || !old_state->crtc)
606 		return;
607 
608 	dc = to_tegra_dc(old_state->crtc);
609 
610 	spin_lock_irqsave(&dc->lock, flags);
611 
612 	value = WINDOW_A_SELECT << p->index;
613 	tegra_dc_writel(dc, value, DC_CMD_DISPLAY_WINDOW_HEADER);
614 
615 	value = tegra_dc_readl(dc, DC_WIN_WIN_OPTIONS);
616 	value &= ~WIN_ENABLE;
617 	tegra_dc_writel(dc, value, DC_WIN_WIN_OPTIONS);
618 
619 	spin_unlock_irqrestore(&dc->lock, flags);
620 }
621 
622 static const struct drm_plane_helper_funcs tegra_primary_plane_helper_funcs = {
623 	.atomic_check = tegra_plane_atomic_check,
624 	.atomic_update = tegra_plane_atomic_update,
625 	.atomic_disable = tegra_plane_atomic_disable,
626 };
627 
628 static struct drm_plane *tegra_dc_primary_plane_create(struct drm_device *drm,
629 						       struct tegra_dc *dc)
630 {
631 	/*
632 	 * Ideally this would use drm_crtc_mask(), but that would require the
633 	 * CRTC to already be in the mode_config's list of CRTCs. However, it
634 	 * will only be added to that list in the drm_crtc_init_with_planes()
635 	 * (in tegra_dc_init()), which in turn requires registration of these
636 	 * planes. So we have ourselves a nice little chicken and egg problem
637 	 * here.
638 	 *
639 	 * We work around this by manually creating the mask from the number
640 	 * of CRTCs that have been registered, and should therefore always be
641 	 * the same as drm_crtc_index() after registration.
642 	 */
643 	unsigned long possible_crtcs = 1 << drm->mode_config.num_crtc;
644 	struct tegra_plane *plane;
645 	unsigned int num_formats;
646 	const u32 *formats;
647 	int err;
648 
649 	plane = kzalloc(sizeof(*plane), GFP_KERNEL);
650 	if (!plane)
651 		return ERR_PTR(-ENOMEM);
652 
653 	num_formats = ARRAY_SIZE(tegra_primary_plane_formats);
654 	formats = tegra_primary_plane_formats;
655 
656 	err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
657 				       &tegra_primary_plane_funcs, formats,
658 				       num_formats, DRM_PLANE_TYPE_PRIMARY,
659 				       NULL);
660 	if (err < 0) {
661 		kfree(plane);
662 		return ERR_PTR(err);
663 	}
664 
665 	drm_plane_helper_add(&plane->base, &tegra_primary_plane_helper_funcs);
666 
667 	return &plane->base;
668 }
669 
670 static const u32 tegra_cursor_plane_formats[] = {
671 	DRM_FORMAT_RGBA8888,
672 };
673 
674 static int tegra_cursor_atomic_check(struct drm_plane *plane,
675 				     struct drm_plane_state *state)
676 {
677 	struct tegra_plane *tegra = to_tegra_plane(plane);
678 	int err;
679 
680 	/* no need for further checks if the plane is being disabled */
681 	if (!state->crtc)
682 		return 0;
683 
684 	/* scaling not supported for cursor */
685 	if ((state->src_w >> 16 != state->crtc_w) ||
686 	    (state->src_h >> 16 != state->crtc_h))
687 		return -EINVAL;
688 
689 	/* only square cursors supported */
690 	if (state->src_w != state->src_h)
691 		return -EINVAL;
692 
693 	if (state->crtc_w != 32 && state->crtc_w != 64 &&
694 	    state->crtc_w != 128 && state->crtc_w != 256)
695 		return -EINVAL;
696 
697 	err = tegra_plane_state_add(tegra, state);
698 	if (err < 0)
699 		return err;
700 
701 	return 0;
702 }
703 
704 static void tegra_cursor_atomic_update(struct drm_plane *plane,
705 				       struct drm_plane_state *old_state)
706 {
707 	struct tegra_bo *bo = tegra_fb_get_plane(plane->state->fb, 0);
708 	struct tegra_dc *dc = to_tegra_dc(plane->state->crtc);
709 	struct drm_plane_state *state = plane->state;
710 	u32 value = CURSOR_CLIP_DISPLAY;
711 
712 	/* rien ne va plus */
713 	if (!plane->state->crtc || !plane->state->fb)
714 		return;
715 
716 	switch (state->crtc_w) {
717 	case 32:
718 		value |= CURSOR_SIZE_32x32;
719 		break;
720 
721 	case 64:
722 		value |= CURSOR_SIZE_64x64;
723 		break;
724 
725 	case 128:
726 		value |= CURSOR_SIZE_128x128;
727 		break;
728 
729 	case 256:
730 		value |= CURSOR_SIZE_256x256;
731 		break;
732 
733 	default:
734 		WARN(1, "cursor size %ux%u not supported\n", state->crtc_w,
735 		     state->crtc_h);
736 		return;
737 	}
738 
739 	value |= (bo->paddr >> 10) & 0x3fffff;
740 	tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR);
741 
742 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
743 	value = (bo->paddr >> 32) & 0x3;
744 	tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR_HI);
745 #endif
746 
747 	/* enable cursor and set blend mode */
748 	value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
749 	value |= CURSOR_ENABLE;
750 	tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
751 
752 	value = tegra_dc_readl(dc, DC_DISP_BLEND_CURSOR_CONTROL);
753 	value &= ~CURSOR_DST_BLEND_MASK;
754 	value &= ~CURSOR_SRC_BLEND_MASK;
755 	value |= CURSOR_MODE_NORMAL;
756 	value |= CURSOR_DST_BLEND_NEG_K1_TIMES_SRC;
757 	value |= CURSOR_SRC_BLEND_K1_TIMES_SRC;
758 	value |= CURSOR_ALPHA;
759 	tegra_dc_writel(dc, value, DC_DISP_BLEND_CURSOR_CONTROL);
760 
761 	/* position the cursor */
762 	value = (state->crtc_y & 0x3fff) << 16 | (state->crtc_x & 0x3fff);
763 	tegra_dc_writel(dc, value, DC_DISP_CURSOR_POSITION);
764 }
765 
766 static void tegra_cursor_atomic_disable(struct drm_plane *plane,
767 					struct drm_plane_state *old_state)
768 {
769 	struct tegra_dc *dc;
770 	u32 value;
771 
772 	/* rien ne va plus */
773 	if (!old_state || !old_state->crtc)
774 		return;
775 
776 	dc = to_tegra_dc(old_state->crtc);
777 
778 	value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
779 	value &= ~CURSOR_ENABLE;
780 	tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
781 }
782 
783 static const struct drm_plane_funcs tegra_cursor_plane_funcs = {
784 	.update_plane = drm_atomic_helper_update_plane,
785 	.disable_plane = drm_atomic_helper_disable_plane,
786 	.destroy = tegra_plane_destroy,
787 	.reset = tegra_plane_reset,
788 	.atomic_duplicate_state = tegra_plane_atomic_duplicate_state,
789 	.atomic_destroy_state = tegra_plane_atomic_destroy_state,
790 };
791 
792 static const struct drm_plane_helper_funcs tegra_cursor_plane_helper_funcs = {
793 	.atomic_check = tegra_cursor_atomic_check,
794 	.atomic_update = tegra_cursor_atomic_update,
795 	.atomic_disable = tegra_cursor_atomic_disable,
796 };
797 
798 static struct drm_plane *tegra_dc_cursor_plane_create(struct drm_device *drm,
799 						      struct tegra_dc *dc)
800 {
801 	struct tegra_plane *plane;
802 	unsigned int num_formats;
803 	const u32 *formats;
804 	int err;
805 
806 	plane = kzalloc(sizeof(*plane), GFP_KERNEL);
807 	if (!plane)
808 		return ERR_PTR(-ENOMEM);
809 
810 	/*
811 	 * This index is kind of fake. The cursor isn't a regular plane, but
812 	 * its update and activation request bits in DC_CMD_STATE_CONTROL do
813 	 * use the same programming. Setting this fake index here allows the
814 	 * code in tegra_add_plane_state() to do the right thing without the
815 	 * need to special-casing the cursor plane.
816 	 */
817 	plane->index = 6;
818 
819 	num_formats = ARRAY_SIZE(tegra_cursor_plane_formats);
820 	formats = tegra_cursor_plane_formats;
821 
822 	err = drm_universal_plane_init(drm, &plane->base, 1 << dc->pipe,
823 				       &tegra_cursor_plane_funcs, formats,
824 				       num_formats, DRM_PLANE_TYPE_CURSOR,
825 				       NULL);
826 	if (err < 0) {
827 		kfree(plane);
828 		return ERR_PTR(err);
829 	}
830 
831 	drm_plane_helper_add(&plane->base, &tegra_cursor_plane_helper_funcs);
832 
833 	return &plane->base;
834 }
835 
836 static void tegra_overlay_plane_destroy(struct drm_plane *plane)
837 {
838 	tegra_plane_destroy(plane);
839 }
840 
841 static const struct drm_plane_funcs tegra_overlay_plane_funcs = {
842 	.update_plane = drm_atomic_helper_update_plane,
843 	.disable_plane = drm_atomic_helper_disable_plane,
844 	.destroy = tegra_overlay_plane_destroy,
845 	.reset = tegra_plane_reset,
846 	.atomic_duplicate_state = tegra_plane_atomic_duplicate_state,
847 	.atomic_destroy_state = tegra_plane_atomic_destroy_state,
848 };
849 
850 static const uint32_t tegra_overlay_plane_formats[] = {
851 	DRM_FORMAT_XBGR8888,
852 	DRM_FORMAT_XRGB8888,
853 	DRM_FORMAT_RGB565,
854 	DRM_FORMAT_UYVY,
855 	DRM_FORMAT_YUYV,
856 	DRM_FORMAT_YUV420,
857 	DRM_FORMAT_YUV422,
858 };
859 
860 static const struct drm_plane_helper_funcs tegra_overlay_plane_helper_funcs = {
861 	.atomic_check = tegra_plane_atomic_check,
862 	.atomic_update = tegra_plane_atomic_update,
863 	.atomic_disable = tegra_plane_atomic_disable,
864 };
865 
866 static struct drm_plane *tegra_dc_overlay_plane_create(struct drm_device *drm,
867 						       struct tegra_dc *dc,
868 						       unsigned int index)
869 {
870 	struct tegra_plane *plane;
871 	unsigned int num_formats;
872 	const u32 *formats;
873 	int err;
874 
875 	plane = kzalloc(sizeof(*plane), GFP_KERNEL);
876 	if (!plane)
877 		return ERR_PTR(-ENOMEM);
878 
879 	plane->index = index;
880 
881 	num_formats = ARRAY_SIZE(tegra_overlay_plane_formats);
882 	formats = tegra_overlay_plane_formats;
883 
884 	err = drm_universal_plane_init(drm, &plane->base, 1 << dc->pipe,
885 				       &tegra_overlay_plane_funcs, formats,
886 				       num_formats, DRM_PLANE_TYPE_OVERLAY,
887 				       NULL);
888 	if (err < 0) {
889 		kfree(plane);
890 		return ERR_PTR(err);
891 	}
892 
893 	drm_plane_helper_add(&plane->base, &tegra_overlay_plane_helper_funcs);
894 
895 	return &plane->base;
896 }
897 
898 static int tegra_dc_add_planes(struct drm_device *drm, struct tegra_dc *dc)
899 {
900 	struct drm_plane *plane;
901 	unsigned int i;
902 
903 	for (i = 0; i < 2; i++) {
904 		plane = tegra_dc_overlay_plane_create(drm, dc, 1 + i);
905 		if (IS_ERR(plane))
906 			return PTR_ERR(plane);
907 	}
908 
909 	return 0;
910 }
911 
912 static u32 tegra_dc_get_vblank_counter(struct drm_crtc *crtc)
913 {
914 	struct tegra_dc *dc = to_tegra_dc(crtc);
915 
916 	if (dc->syncpt)
917 		return host1x_syncpt_read(dc->syncpt);
918 
919 	/* fallback to software emulated VBLANK counter */
920 	return drm_crtc_vblank_count(&dc->base);
921 }
922 
923 static int tegra_dc_enable_vblank(struct drm_crtc *crtc)
924 {
925 	struct tegra_dc *dc = to_tegra_dc(crtc);
926 	unsigned long value, flags;
927 
928 	spin_lock_irqsave(&dc->lock, flags);
929 
930 	value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
931 	value |= VBLANK_INT;
932 	tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
933 
934 	spin_unlock_irqrestore(&dc->lock, flags);
935 
936 	return 0;
937 }
938 
939 static void tegra_dc_disable_vblank(struct drm_crtc *crtc)
940 {
941 	struct tegra_dc *dc = to_tegra_dc(crtc);
942 	unsigned long value, flags;
943 
944 	spin_lock_irqsave(&dc->lock, flags);
945 
946 	value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
947 	value &= ~VBLANK_INT;
948 	tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
949 
950 	spin_unlock_irqrestore(&dc->lock, flags);
951 }
952 
953 static void tegra_dc_finish_page_flip(struct tegra_dc *dc)
954 {
955 	struct drm_device *drm = dc->base.dev;
956 	struct drm_crtc *crtc = &dc->base;
957 	unsigned long flags, base;
958 	struct tegra_bo *bo;
959 
960 	spin_lock_irqsave(&drm->event_lock, flags);
961 
962 	if (!dc->event) {
963 		spin_unlock_irqrestore(&drm->event_lock, flags);
964 		return;
965 	}
966 
967 	bo = tegra_fb_get_plane(crtc->primary->fb, 0);
968 
969 	spin_lock(&dc->lock);
970 
971 	/* check if new start address has been latched */
972 	tegra_dc_writel(dc, WINDOW_A_SELECT, DC_CMD_DISPLAY_WINDOW_HEADER);
973 	tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
974 	base = tegra_dc_readl(dc, DC_WINBUF_START_ADDR);
975 	tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS);
976 
977 	spin_unlock(&dc->lock);
978 
979 	if (base == bo->paddr + crtc->primary->fb->offsets[0]) {
980 		drm_crtc_send_vblank_event(crtc, dc->event);
981 		drm_crtc_vblank_put(crtc);
982 		dc->event = NULL;
983 	}
984 
985 	spin_unlock_irqrestore(&drm->event_lock, flags);
986 }
987 
988 static void tegra_dc_destroy(struct drm_crtc *crtc)
989 {
990 	drm_crtc_cleanup(crtc);
991 }
992 
993 static void tegra_crtc_reset(struct drm_crtc *crtc)
994 {
995 	struct tegra_dc_state *state;
996 
997 	if (crtc->state)
998 		__drm_atomic_helper_crtc_destroy_state(crtc->state);
999 
1000 	kfree(crtc->state);
1001 	crtc->state = NULL;
1002 
1003 	state = kzalloc(sizeof(*state), GFP_KERNEL);
1004 	if (state) {
1005 		crtc->state = &state->base;
1006 		crtc->state->crtc = crtc;
1007 	}
1008 
1009 	drm_crtc_vblank_reset(crtc);
1010 }
1011 
1012 static struct drm_crtc_state *
1013 tegra_crtc_atomic_duplicate_state(struct drm_crtc *crtc)
1014 {
1015 	struct tegra_dc_state *state = to_dc_state(crtc->state);
1016 	struct tegra_dc_state *copy;
1017 
1018 	copy = kmalloc(sizeof(*copy), GFP_KERNEL);
1019 	if (!copy)
1020 		return NULL;
1021 
1022 	__drm_atomic_helper_crtc_duplicate_state(crtc, &copy->base);
1023 	copy->clk = state->clk;
1024 	copy->pclk = state->pclk;
1025 	copy->div = state->div;
1026 	copy->planes = state->planes;
1027 
1028 	return &copy->base;
1029 }
1030 
1031 static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc,
1032 					    struct drm_crtc_state *state)
1033 {
1034 	__drm_atomic_helper_crtc_destroy_state(state);
1035 	kfree(state);
1036 }
1037 
1038 static const struct drm_crtc_funcs tegra_crtc_funcs = {
1039 	.page_flip = drm_atomic_helper_page_flip,
1040 	.set_config = drm_atomic_helper_set_config,
1041 	.destroy = tegra_dc_destroy,
1042 	.reset = tegra_crtc_reset,
1043 	.atomic_duplicate_state = tegra_crtc_atomic_duplicate_state,
1044 	.atomic_destroy_state = tegra_crtc_atomic_destroy_state,
1045 	.get_vblank_counter = tegra_dc_get_vblank_counter,
1046 	.enable_vblank = tegra_dc_enable_vblank,
1047 	.disable_vblank = tegra_dc_disable_vblank,
1048 };
1049 
1050 static int tegra_dc_set_timings(struct tegra_dc *dc,
1051 				struct drm_display_mode *mode)
1052 {
1053 	unsigned int h_ref_to_sync = 1;
1054 	unsigned int v_ref_to_sync = 1;
1055 	unsigned long value;
1056 
1057 	tegra_dc_writel(dc, 0x0, DC_DISP_DISP_TIMING_OPTIONS);
1058 
1059 	value = (v_ref_to_sync << 16) | h_ref_to_sync;
1060 	tegra_dc_writel(dc, value, DC_DISP_REF_TO_SYNC);
1061 
1062 	value = ((mode->vsync_end - mode->vsync_start) << 16) |
1063 		((mode->hsync_end - mode->hsync_start) <<  0);
1064 	tegra_dc_writel(dc, value, DC_DISP_SYNC_WIDTH);
1065 
1066 	value = ((mode->vtotal - mode->vsync_end) << 16) |
1067 		((mode->htotal - mode->hsync_end) <<  0);
1068 	tegra_dc_writel(dc, value, DC_DISP_BACK_PORCH);
1069 
1070 	value = ((mode->vsync_start - mode->vdisplay) << 16) |
1071 		((mode->hsync_start - mode->hdisplay) <<  0);
1072 	tegra_dc_writel(dc, value, DC_DISP_FRONT_PORCH);
1073 
1074 	value = (mode->vdisplay << 16) | mode->hdisplay;
1075 	tegra_dc_writel(dc, value, DC_DISP_ACTIVE);
1076 
1077 	return 0;
1078 }
1079 
1080 /**
1081  * tegra_dc_state_setup_clock - check clock settings and store them in atomic
1082  *     state
1083  * @dc: display controller
1084  * @crtc_state: CRTC atomic state
1085  * @clk: parent clock for display controller
1086  * @pclk: pixel clock
1087  * @div: shift clock divider
1088  *
1089  * Returns:
1090  * 0 on success or a negative error-code on failure.
1091  */
1092 int tegra_dc_state_setup_clock(struct tegra_dc *dc,
1093 			       struct drm_crtc_state *crtc_state,
1094 			       struct clk *clk, unsigned long pclk,
1095 			       unsigned int div)
1096 {
1097 	struct tegra_dc_state *state = to_dc_state(crtc_state);
1098 
1099 	if (!clk_has_parent(dc->clk, clk))
1100 		return -EINVAL;
1101 
1102 	state->clk = clk;
1103 	state->pclk = pclk;
1104 	state->div = div;
1105 
1106 	return 0;
1107 }
1108 
1109 static void tegra_dc_commit_state(struct tegra_dc *dc,
1110 				  struct tegra_dc_state *state)
1111 {
1112 	u32 value;
1113 	int err;
1114 
1115 	err = clk_set_parent(dc->clk, state->clk);
1116 	if (err < 0)
1117 		dev_err(dc->dev, "failed to set parent clock: %d\n", err);
1118 
1119 	/*
1120 	 * Outputs may not want to change the parent clock rate. This is only
1121 	 * relevant to Tegra20 where only a single display PLL is available.
1122 	 * Since that PLL would typically be used for HDMI, an internal LVDS
1123 	 * panel would need to be driven by some other clock such as PLL_P
1124 	 * which is shared with other peripherals. Changing the clock rate
1125 	 * should therefore be avoided.
1126 	 */
1127 	if (state->pclk > 0) {
1128 		err = clk_set_rate(state->clk, state->pclk);
1129 		if (err < 0)
1130 			dev_err(dc->dev,
1131 				"failed to set clock rate to %lu Hz\n",
1132 				state->pclk);
1133 	}
1134 
1135 	DRM_DEBUG_KMS("rate: %lu, div: %u\n", clk_get_rate(dc->clk),
1136 		      state->div);
1137 	DRM_DEBUG_KMS("pclk: %lu\n", state->pclk);
1138 
1139 	value = SHIFT_CLK_DIVIDER(state->div) | PIXEL_CLK_DIVIDER_PCD1;
1140 	tegra_dc_writel(dc, value, DC_DISP_DISP_CLOCK_CONTROL);
1141 }
1142 
1143 static void tegra_dc_stop(struct tegra_dc *dc)
1144 {
1145 	u32 value;
1146 
1147 	/* stop the display controller */
1148 	value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1149 	value &= ~DISP_CTRL_MODE_MASK;
1150 	tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1151 
1152 	tegra_dc_commit(dc);
1153 }
1154 
1155 static bool tegra_dc_idle(struct tegra_dc *dc)
1156 {
1157 	u32 value;
1158 
1159 	value = tegra_dc_readl_active(dc, DC_CMD_DISPLAY_COMMAND);
1160 
1161 	return (value & DISP_CTRL_MODE_MASK) == 0;
1162 }
1163 
1164 static int tegra_dc_wait_idle(struct tegra_dc *dc, unsigned long timeout)
1165 {
1166 	timeout = jiffies + msecs_to_jiffies(timeout);
1167 
1168 	while (time_before(jiffies, timeout)) {
1169 		if (tegra_dc_idle(dc))
1170 			return 0;
1171 
1172 		usleep_range(1000, 2000);
1173 	}
1174 
1175 	dev_dbg(dc->dev, "timeout waiting for DC to become idle\n");
1176 	return -ETIMEDOUT;
1177 }
1178 
1179 static void tegra_crtc_disable(struct drm_crtc *crtc)
1180 {
1181 	struct tegra_dc *dc = to_tegra_dc(crtc);
1182 	u32 value;
1183 
1184 	if (!tegra_dc_idle(dc)) {
1185 		tegra_dc_stop(dc);
1186 
1187 		/*
1188 		 * Ignore the return value, there isn't anything useful to do
1189 		 * in case this fails.
1190 		 */
1191 		tegra_dc_wait_idle(dc, 100);
1192 	}
1193 
1194 	/*
1195 	 * This should really be part of the RGB encoder driver, but clearing
1196 	 * these bits has the side-effect of stopping the display controller.
1197 	 * When that happens no VBLANK interrupts will be raised. At the same
1198 	 * time the encoder is disabled before the display controller, so the
1199 	 * above code is always going to timeout waiting for the controller
1200 	 * to go idle.
1201 	 *
1202 	 * Given the close coupling between the RGB encoder and the display
1203 	 * controller doing it here is still kind of okay. None of the other
1204 	 * encoder drivers require these bits to be cleared.
1205 	 *
1206 	 * XXX: Perhaps given that the display controller is switched off at
1207 	 * this point anyway maybe clearing these bits isn't even useful for
1208 	 * the RGB encoder?
1209 	 */
1210 	if (dc->rgb) {
1211 		value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
1212 		value &= ~(PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
1213 			   PW4_ENABLE | PM0_ENABLE | PM1_ENABLE);
1214 		tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
1215 	}
1216 
1217 	tegra_dc_stats_reset(&dc->stats);
1218 	drm_crtc_vblank_off(crtc);
1219 
1220 	pm_runtime_put_sync(dc->dev);
1221 }
1222 
1223 static void tegra_crtc_enable(struct drm_crtc *crtc)
1224 {
1225 	struct drm_display_mode *mode = &crtc->state->adjusted_mode;
1226 	struct tegra_dc_state *state = to_dc_state(crtc->state);
1227 	struct tegra_dc *dc = to_tegra_dc(crtc);
1228 	u32 value;
1229 
1230 	pm_runtime_get_sync(dc->dev);
1231 
1232 	/* initialize display controller */
1233 	if (dc->syncpt) {
1234 		u32 syncpt = host1x_syncpt_id(dc->syncpt);
1235 
1236 		value = SYNCPT_CNTRL_NO_STALL;
1237 		tegra_dc_writel(dc, value, DC_CMD_GENERAL_INCR_SYNCPT_CNTRL);
1238 
1239 		value = SYNCPT_VSYNC_ENABLE | syncpt;
1240 		tegra_dc_writel(dc, value, DC_CMD_CONT_SYNCPT_VSYNC);
1241 	}
1242 
1243 	value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1244 		WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1245 	tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
1246 
1247 	value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1248 		WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1249 	tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
1250 
1251 	/* initialize timer */
1252 	value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(0x20) |
1253 		WINDOW_B_THRESHOLD(0x20) | WINDOW_C_THRESHOLD(0x20);
1254 	tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY);
1255 
1256 	value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(1) |
1257 		WINDOW_B_THRESHOLD(1) | WINDOW_C_THRESHOLD(1);
1258 	tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER);
1259 
1260 	value = VBLANK_INT | WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1261 		WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1262 	tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
1263 
1264 	value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1265 		WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1266 	tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1267 
1268 	if (dc->soc->supports_border_color)
1269 		tegra_dc_writel(dc, 0, DC_DISP_BORDER_COLOR);
1270 
1271 	/* apply PLL and pixel clock changes */
1272 	tegra_dc_commit_state(dc, state);
1273 
1274 	/* program display mode */
1275 	tegra_dc_set_timings(dc, mode);
1276 
1277 	/* interlacing isn't supported yet, so disable it */
1278 	if (dc->soc->supports_interlacing) {
1279 		value = tegra_dc_readl(dc, DC_DISP_INTERLACE_CONTROL);
1280 		value &= ~INTERLACE_ENABLE;
1281 		tegra_dc_writel(dc, value, DC_DISP_INTERLACE_CONTROL);
1282 	}
1283 
1284 	value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1285 	value &= ~DISP_CTRL_MODE_MASK;
1286 	value |= DISP_CTRL_MODE_C_DISPLAY;
1287 	tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1288 
1289 	value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
1290 	value |= PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
1291 		 PW4_ENABLE | PM0_ENABLE | PM1_ENABLE;
1292 	tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
1293 
1294 	tegra_dc_commit(dc);
1295 
1296 	drm_crtc_vblank_on(crtc);
1297 }
1298 
1299 static int tegra_crtc_atomic_check(struct drm_crtc *crtc,
1300 				   struct drm_crtc_state *state)
1301 {
1302 	return 0;
1303 }
1304 
1305 static void tegra_crtc_atomic_begin(struct drm_crtc *crtc,
1306 				    struct drm_crtc_state *old_crtc_state)
1307 {
1308 	struct tegra_dc *dc = to_tegra_dc(crtc);
1309 
1310 	if (crtc->state->event) {
1311 		crtc->state->event->pipe = drm_crtc_index(crtc);
1312 
1313 		WARN_ON(drm_crtc_vblank_get(crtc) != 0);
1314 
1315 		dc->event = crtc->state->event;
1316 		crtc->state->event = NULL;
1317 	}
1318 }
1319 
1320 static void tegra_crtc_atomic_flush(struct drm_crtc *crtc,
1321 				    struct drm_crtc_state *old_crtc_state)
1322 {
1323 	struct tegra_dc_state *state = to_dc_state(crtc->state);
1324 	struct tegra_dc *dc = to_tegra_dc(crtc);
1325 
1326 	tegra_dc_writel(dc, state->planes << 8, DC_CMD_STATE_CONTROL);
1327 	tegra_dc_writel(dc, state->planes, DC_CMD_STATE_CONTROL);
1328 }
1329 
1330 static const struct drm_crtc_helper_funcs tegra_crtc_helper_funcs = {
1331 	.disable = tegra_crtc_disable,
1332 	.enable = tegra_crtc_enable,
1333 	.atomic_check = tegra_crtc_atomic_check,
1334 	.atomic_begin = tegra_crtc_atomic_begin,
1335 	.atomic_flush = tegra_crtc_atomic_flush,
1336 };
1337 
1338 static irqreturn_t tegra_dc_irq(int irq, void *data)
1339 {
1340 	struct tegra_dc *dc = data;
1341 	unsigned long status;
1342 
1343 	status = tegra_dc_readl(dc, DC_CMD_INT_STATUS);
1344 	tegra_dc_writel(dc, status, DC_CMD_INT_STATUS);
1345 
1346 	if (status & FRAME_END_INT) {
1347 		/*
1348 		dev_dbg(dc->dev, "%s(): frame end\n", __func__);
1349 		*/
1350 		dc->stats.frames++;
1351 	}
1352 
1353 	if (status & VBLANK_INT) {
1354 		/*
1355 		dev_dbg(dc->dev, "%s(): vertical blank\n", __func__);
1356 		*/
1357 		drm_crtc_handle_vblank(&dc->base);
1358 		tegra_dc_finish_page_flip(dc);
1359 		dc->stats.vblank++;
1360 	}
1361 
1362 	if (status & (WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT)) {
1363 		/*
1364 		dev_dbg(dc->dev, "%s(): underflow\n", __func__);
1365 		*/
1366 		dc->stats.underflow++;
1367 	}
1368 
1369 	if (status & (WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT)) {
1370 		/*
1371 		dev_dbg(dc->dev, "%s(): overflow\n", __func__);
1372 		*/
1373 		dc->stats.overflow++;
1374 	}
1375 
1376 	return IRQ_HANDLED;
1377 }
1378 
1379 static int tegra_dc_show_regs(struct seq_file *s, void *data)
1380 {
1381 	struct drm_info_node *node = s->private;
1382 	struct tegra_dc *dc = node->info_ent->data;
1383 	int err = 0;
1384 
1385 	drm_modeset_lock(&dc->base.mutex, NULL);
1386 
1387 	if (!dc->base.state->active) {
1388 		err = -EBUSY;
1389 		goto unlock;
1390 	}
1391 
1392 #define DUMP_REG(name)						\
1393 	seq_printf(s, "%-40s %#05x %08x\n", #name, name,	\
1394 		   tegra_dc_readl(dc, name))
1395 
1396 	DUMP_REG(DC_CMD_GENERAL_INCR_SYNCPT);
1397 	DUMP_REG(DC_CMD_GENERAL_INCR_SYNCPT_CNTRL);
1398 	DUMP_REG(DC_CMD_GENERAL_INCR_SYNCPT_ERROR);
1399 	DUMP_REG(DC_CMD_WIN_A_INCR_SYNCPT);
1400 	DUMP_REG(DC_CMD_WIN_A_INCR_SYNCPT_CNTRL);
1401 	DUMP_REG(DC_CMD_WIN_A_INCR_SYNCPT_ERROR);
1402 	DUMP_REG(DC_CMD_WIN_B_INCR_SYNCPT);
1403 	DUMP_REG(DC_CMD_WIN_B_INCR_SYNCPT_CNTRL);
1404 	DUMP_REG(DC_CMD_WIN_B_INCR_SYNCPT_ERROR);
1405 	DUMP_REG(DC_CMD_WIN_C_INCR_SYNCPT);
1406 	DUMP_REG(DC_CMD_WIN_C_INCR_SYNCPT_CNTRL);
1407 	DUMP_REG(DC_CMD_WIN_C_INCR_SYNCPT_ERROR);
1408 	DUMP_REG(DC_CMD_CONT_SYNCPT_VSYNC);
1409 	DUMP_REG(DC_CMD_DISPLAY_COMMAND_OPTION0);
1410 	DUMP_REG(DC_CMD_DISPLAY_COMMAND);
1411 	DUMP_REG(DC_CMD_SIGNAL_RAISE);
1412 	DUMP_REG(DC_CMD_DISPLAY_POWER_CONTROL);
1413 	DUMP_REG(DC_CMD_INT_STATUS);
1414 	DUMP_REG(DC_CMD_INT_MASK);
1415 	DUMP_REG(DC_CMD_INT_ENABLE);
1416 	DUMP_REG(DC_CMD_INT_TYPE);
1417 	DUMP_REG(DC_CMD_INT_POLARITY);
1418 	DUMP_REG(DC_CMD_SIGNAL_RAISE1);
1419 	DUMP_REG(DC_CMD_SIGNAL_RAISE2);
1420 	DUMP_REG(DC_CMD_SIGNAL_RAISE3);
1421 	DUMP_REG(DC_CMD_STATE_ACCESS);
1422 	DUMP_REG(DC_CMD_STATE_CONTROL);
1423 	DUMP_REG(DC_CMD_DISPLAY_WINDOW_HEADER);
1424 	DUMP_REG(DC_CMD_REG_ACT_CONTROL);
1425 	DUMP_REG(DC_COM_CRC_CONTROL);
1426 	DUMP_REG(DC_COM_CRC_CHECKSUM);
1427 	DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(0));
1428 	DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(1));
1429 	DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(2));
1430 	DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(3));
1431 	DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(0));
1432 	DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(1));
1433 	DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(2));
1434 	DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(3));
1435 	DUMP_REG(DC_COM_PIN_OUTPUT_DATA(0));
1436 	DUMP_REG(DC_COM_PIN_OUTPUT_DATA(1));
1437 	DUMP_REG(DC_COM_PIN_OUTPUT_DATA(2));
1438 	DUMP_REG(DC_COM_PIN_OUTPUT_DATA(3));
1439 	DUMP_REG(DC_COM_PIN_INPUT_ENABLE(0));
1440 	DUMP_REG(DC_COM_PIN_INPUT_ENABLE(1));
1441 	DUMP_REG(DC_COM_PIN_INPUT_ENABLE(2));
1442 	DUMP_REG(DC_COM_PIN_INPUT_ENABLE(3));
1443 	DUMP_REG(DC_COM_PIN_INPUT_DATA(0));
1444 	DUMP_REG(DC_COM_PIN_INPUT_DATA(1));
1445 	DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(0));
1446 	DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(1));
1447 	DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(2));
1448 	DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(3));
1449 	DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(4));
1450 	DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(5));
1451 	DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(6));
1452 	DUMP_REG(DC_COM_PIN_MISC_CONTROL);
1453 	DUMP_REG(DC_COM_PIN_PM0_CONTROL);
1454 	DUMP_REG(DC_COM_PIN_PM0_DUTY_CYCLE);
1455 	DUMP_REG(DC_COM_PIN_PM1_CONTROL);
1456 	DUMP_REG(DC_COM_PIN_PM1_DUTY_CYCLE);
1457 	DUMP_REG(DC_COM_SPI_CONTROL);
1458 	DUMP_REG(DC_COM_SPI_START_BYTE);
1459 	DUMP_REG(DC_COM_HSPI_WRITE_DATA_AB);
1460 	DUMP_REG(DC_COM_HSPI_WRITE_DATA_CD);
1461 	DUMP_REG(DC_COM_HSPI_CS_DC);
1462 	DUMP_REG(DC_COM_SCRATCH_REGISTER_A);
1463 	DUMP_REG(DC_COM_SCRATCH_REGISTER_B);
1464 	DUMP_REG(DC_COM_GPIO_CTRL);
1465 	DUMP_REG(DC_COM_GPIO_DEBOUNCE_COUNTER);
1466 	DUMP_REG(DC_COM_CRC_CHECKSUM_LATCHED);
1467 	DUMP_REG(DC_DISP_DISP_SIGNAL_OPTIONS0);
1468 	DUMP_REG(DC_DISP_DISP_SIGNAL_OPTIONS1);
1469 	DUMP_REG(DC_DISP_DISP_WIN_OPTIONS);
1470 	DUMP_REG(DC_DISP_DISP_MEM_HIGH_PRIORITY);
1471 	DUMP_REG(DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER);
1472 	DUMP_REG(DC_DISP_DISP_TIMING_OPTIONS);
1473 	DUMP_REG(DC_DISP_REF_TO_SYNC);
1474 	DUMP_REG(DC_DISP_SYNC_WIDTH);
1475 	DUMP_REG(DC_DISP_BACK_PORCH);
1476 	DUMP_REG(DC_DISP_ACTIVE);
1477 	DUMP_REG(DC_DISP_FRONT_PORCH);
1478 	DUMP_REG(DC_DISP_H_PULSE0_CONTROL);
1479 	DUMP_REG(DC_DISP_H_PULSE0_POSITION_A);
1480 	DUMP_REG(DC_DISP_H_PULSE0_POSITION_B);
1481 	DUMP_REG(DC_DISP_H_PULSE0_POSITION_C);
1482 	DUMP_REG(DC_DISP_H_PULSE0_POSITION_D);
1483 	DUMP_REG(DC_DISP_H_PULSE1_CONTROL);
1484 	DUMP_REG(DC_DISP_H_PULSE1_POSITION_A);
1485 	DUMP_REG(DC_DISP_H_PULSE1_POSITION_B);
1486 	DUMP_REG(DC_DISP_H_PULSE1_POSITION_C);
1487 	DUMP_REG(DC_DISP_H_PULSE1_POSITION_D);
1488 	DUMP_REG(DC_DISP_H_PULSE2_CONTROL);
1489 	DUMP_REG(DC_DISP_H_PULSE2_POSITION_A);
1490 	DUMP_REG(DC_DISP_H_PULSE2_POSITION_B);
1491 	DUMP_REG(DC_DISP_H_PULSE2_POSITION_C);
1492 	DUMP_REG(DC_DISP_H_PULSE2_POSITION_D);
1493 	DUMP_REG(DC_DISP_V_PULSE0_CONTROL);
1494 	DUMP_REG(DC_DISP_V_PULSE0_POSITION_A);
1495 	DUMP_REG(DC_DISP_V_PULSE0_POSITION_B);
1496 	DUMP_REG(DC_DISP_V_PULSE0_POSITION_C);
1497 	DUMP_REG(DC_DISP_V_PULSE1_CONTROL);
1498 	DUMP_REG(DC_DISP_V_PULSE1_POSITION_A);
1499 	DUMP_REG(DC_DISP_V_PULSE1_POSITION_B);
1500 	DUMP_REG(DC_DISP_V_PULSE1_POSITION_C);
1501 	DUMP_REG(DC_DISP_V_PULSE2_CONTROL);
1502 	DUMP_REG(DC_DISP_V_PULSE2_POSITION_A);
1503 	DUMP_REG(DC_DISP_V_PULSE3_CONTROL);
1504 	DUMP_REG(DC_DISP_V_PULSE3_POSITION_A);
1505 	DUMP_REG(DC_DISP_M0_CONTROL);
1506 	DUMP_REG(DC_DISP_M1_CONTROL);
1507 	DUMP_REG(DC_DISP_DI_CONTROL);
1508 	DUMP_REG(DC_DISP_PP_CONTROL);
1509 	DUMP_REG(DC_DISP_PP_SELECT_A);
1510 	DUMP_REG(DC_DISP_PP_SELECT_B);
1511 	DUMP_REG(DC_DISP_PP_SELECT_C);
1512 	DUMP_REG(DC_DISP_PP_SELECT_D);
1513 	DUMP_REG(DC_DISP_DISP_CLOCK_CONTROL);
1514 	DUMP_REG(DC_DISP_DISP_INTERFACE_CONTROL);
1515 	DUMP_REG(DC_DISP_DISP_COLOR_CONTROL);
1516 	DUMP_REG(DC_DISP_SHIFT_CLOCK_OPTIONS);
1517 	DUMP_REG(DC_DISP_DATA_ENABLE_OPTIONS);
1518 	DUMP_REG(DC_DISP_SERIAL_INTERFACE_OPTIONS);
1519 	DUMP_REG(DC_DISP_LCD_SPI_OPTIONS);
1520 	DUMP_REG(DC_DISP_BORDER_COLOR);
1521 	DUMP_REG(DC_DISP_COLOR_KEY0_LOWER);
1522 	DUMP_REG(DC_DISP_COLOR_KEY0_UPPER);
1523 	DUMP_REG(DC_DISP_COLOR_KEY1_LOWER);
1524 	DUMP_REG(DC_DISP_COLOR_KEY1_UPPER);
1525 	DUMP_REG(DC_DISP_CURSOR_FOREGROUND);
1526 	DUMP_REG(DC_DISP_CURSOR_BACKGROUND);
1527 	DUMP_REG(DC_DISP_CURSOR_START_ADDR);
1528 	DUMP_REG(DC_DISP_CURSOR_START_ADDR_NS);
1529 	DUMP_REG(DC_DISP_CURSOR_POSITION);
1530 	DUMP_REG(DC_DISP_CURSOR_POSITION_NS);
1531 	DUMP_REG(DC_DISP_INIT_SEQ_CONTROL);
1532 	DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_A);
1533 	DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_B);
1534 	DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_C);
1535 	DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_D);
1536 	DUMP_REG(DC_DISP_DC_MCCIF_FIFOCTRL);
1537 	DUMP_REG(DC_DISP_MCCIF_DISPLAY0A_HYST);
1538 	DUMP_REG(DC_DISP_MCCIF_DISPLAY0B_HYST);
1539 	DUMP_REG(DC_DISP_MCCIF_DISPLAY1A_HYST);
1540 	DUMP_REG(DC_DISP_MCCIF_DISPLAY1B_HYST);
1541 	DUMP_REG(DC_DISP_DAC_CRT_CTRL);
1542 	DUMP_REG(DC_DISP_DISP_MISC_CONTROL);
1543 	DUMP_REG(DC_DISP_SD_CONTROL);
1544 	DUMP_REG(DC_DISP_SD_CSC_COEFF);
1545 	DUMP_REG(DC_DISP_SD_LUT(0));
1546 	DUMP_REG(DC_DISP_SD_LUT(1));
1547 	DUMP_REG(DC_DISP_SD_LUT(2));
1548 	DUMP_REG(DC_DISP_SD_LUT(3));
1549 	DUMP_REG(DC_DISP_SD_LUT(4));
1550 	DUMP_REG(DC_DISP_SD_LUT(5));
1551 	DUMP_REG(DC_DISP_SD_LUT(6));
1552 	DUMP_REG(DC_DISP_SD_LUT(7));
1553 	DUMP_REG(DC_DISP_SD_LUT(8));
1554 	DUMP_REG(DC_DISP_SD_FLICKER_CONTROL);
1555 	DUMP_REG(DC_DISP_DC_PIXEL_COUNT);
1556 	DUMP_REG(DC_DISP_SD_HISTOGRAM(0));
1557 	DUMP_REG(DC_DISP_SD_HISTOGRAM(1));
1558 	DUMP_REG(DC_DISP_SD_HISTOGRAM(2));
1559 	DUMP_REG(DC_DISP_SD_HISTOGRAM(3));
1560 	DUMP_REG(DC_DISP_SD_HISTOGRAM(4));
1561 	DUMP_REG(DC_DISP_SD_HISTOGRAM(5));
1562 	DUMP_REG(DC_DISP_SD_HISTOGRAM(6));
1563 	DUMP_REG(DC_DISP_SD_HISTOGRAM(7));
1564 	DUMP_REG(DC_DISP_SD_BL_TF(0));
1565 	DUMP_REG(DC_DISP_SD_BL_TF(1));
1566 	DUMP_REG(DC_DISP_SD_BL_TF(2));
1567 	DUMP_REG(DC_DISP_SD_BL_TF(3));
1568 	DUMP_REG(DC_DISP_SD_BL_CONTROL);
1569 	DUMP_REG(DC_DISP_SD_HW_K_VALUES);
1570 	DUMP_REG(DC_DISP_SD_MAN_K_VALUES);
1571 	DUMP_REG(DC_DISP_CURSOR_START_ADDR_HI);
1572 	DUMP_REG(DC_DISP_BLEND_CURSOR_CONTROL);
1573 	DUMP_REG(DC_WIN_WIN_OPTIONS);
1574 	DUMP_REG(DC_WIN_BYTE_SWAP);
1575 	DUMP_REG(DC_WIN_BUFFER_CONTROL);
1576 	DUMP_REG(DC_WIN_COLOR_DEPTH);
1577 	DUMP_REG(DC_WIN_POSITION);
1578 	DUMP_REG(DC_WIN_SIZE);
1579 	DUMP_REG(DC_WIN_PRESCALED_SIZE);
1580 	DUMP_REG(DC_WIN_H_INITIAL_DDA);
1581 	DUMP_REG(DC_WIN_V_INITIAL_DDA);
1582 	DUMP_REG(DC_WIN_DDA_INC);
1583 	DUMP_REG(DC_WIN_LINE_STRIDE);
1584 	DUMP_REG(DC_WIN_BUF_STRIDE);
1585 	DUMP_REG(DC_WIN_UV_BUF_STRIDE);
1586 	DUMP_REG(DC_WIN_BUFFER_ADDR_MODE);
1587 	DUMP_REG(DC_WIN_DV_CONTROL);
1588 	DUMP_REG(DC_WIN_BLEND_NOKEY);
1589 	DUMP_REG(DC_WIN_BLEND_1WIN);
1590 	DUMP_REG(DC_WIN_BLEND_2WIN_X);
1591 	DUMP_REG(DC_WIN_BLEND_2WIN_Y);
1592 	DUMP_REG(DC_WIN_BLEND_3WIN_XY);
1593 	DUMP_REG(DC_WIN_HP_FETCH_CONTROL);
1594 	DUMP_REG(DC_WINBUF_START_ADDR);
1595 	DUMP_REG(DC_WINBUF_START_ADDR_NS);
1596 	DUMP_REG(DC_WINBUF_START_ADDR_U);
1597 	DUMP_REG(DC_WINBUF_START_ADDR_U_NS);
1598 	DUMP_REG(DC_WINBUF_START_ADDR_V);
1599 	DUMP_REG(DC_WINBUF_START_ADDR_V_NS);
1600 	DUMP_REG(DC_WINBUF_ADDR_H_OFFSET);
1601 	DUMP_REG(DC_WINBUF_ADDR_H_OFFSET_NS);
1602 	DUMP_REG(DC_WINBUF_ADDR_V_OFFSET);
1603 	DUMP_REG(DC_WINBUF_ADDR_V_OFFSET_NS);
1604 	DUMP_REG(DC_WINBUF_UFLOW_STATUS);
1605 	DUMP_REG(DC_WINBUF_AD_UFLOW_STATUS);
1606 	DUMP_REG(DC_WINBUF_BD_UFLOW_STATUS);
1607 	DUMP_REG(DC_WINBUF_CD_UFLOW_STATUS);
1608 
1609 #undef DUMP_REG
1610 
1611 unlock:
1612 	drm_modeset_unlock(&dc->base.mutex);
1613 	return err;
1614 }
1615 
1616 static int tegra_dc_show_crc(struct seq_file *s, void *data)
1617 {
1618 	struct drm_info_node *node = s->private;
1619 	struct tegra_dc *dc = node->info_ent->data;
1620 	int err = 0;
1621 	u32 value;
1622 
1623 	drm_modeset_lock(&dc->base.mutex, NULL);
1624 
1625 	if (!dc->base.state->active) {
1626 		err = -EBUSY;
1627 		goto unlock;
1628 	}
1629 
1630 	value = DC_COM_CRC_CONTROL_ACTIVE_DATA | DC_COM_CRC_CONTROL_ENABLE;
1631 	tegra_dc_writel(dc, value, DC_COM_CRC_CONTROL);
1632 	tegra_dc_commit(dc);
1633 
1634 	drm_crtc_wait_one_vblank(&dc->base);
1635 	drm_crtc_wait_one_vblank(&dc->base);
1636 
1637 	value = tegra_dc_readl(dc, DC_COM_CRC_CHECKSUM);
1638 	seq_printf(s, "%08x\n", value);
1639 
1640 	tegra_dc_writel(dc, 0, DC_COM_CRC_CONTROL);
1641 
1642 unlock:
1643 	drm_modeset_unlock(&dc->base.mutex);
1644 	return err;
1645 }
1646 
1647 static int tegra_dc_show_stats(struct seq_file *s, void *data)
1648 {
1649 	struct drm_info_node *node = s->private;
1650 	struct tegra_dc *dc = node->info_ent->data;
1651 
1652 	seq_printf(s, "frames: %lu\n", dc->stats.frames);
1653 	seq_printf(s, "vblank: %lu\n", dc->stats.vblank);
1654 	seq_printf(s, "underflow: %lu\n", dc->stats.underflow);
1655 	seq_printf(s, "overflow: %lu\n", dc->stats.overflow);
1656 
1657 	return 0;
1658 }
1659 
1660 static struct drm_info_list debugfs_files[] = {
1661 	{ "regs", tegra_dc_show_regs, 0, NULL },
1662 	{ "crc", tegra_dc_show_crc, 0, NULL },
1663 	{ "stats", tegra_dc_show_stats, 0, NULL },
1664 };
1665 
1666 static int tegra_dc_debugfs_init(struct tegra_dc *dc, struct drm_minor *minor)
1667 {
1668 	unsigned int i;
1669 	char *name;
1670 	int err;
1671 
1672 	name = kasprintf(GFP_KERNEL, "dc.%d", dc->pipe);
1673 	dc->debugfs = debugfs_create_dir(name, minor->debugfs_root);
1674 	kfree(name);
1675 
1676 	if (!dc->debugfs)
1677 		return -ENOMEM;
1678 
1679 	dc->debugfs_files = kmemdup(debugfs_files, sizeof(debugfs_files),
1680 				    GFP_KERNEL);
1681 	if (!dc->debugfs_files) {
1682 		err = -ENOMEM;
1683 		goto remove;
1684 	}
1685 
1686 	for (i = 0; i < ARRAY_SIZE(debugfs_files); i++)
1687 		dc->debugfs_files[i].data = dc;
1688 
1689 	err = drm_debugfs_create_files(dc->debugfs_files,
1690 				       ARRAY_SIZE(debugfs_files),
1691 				       dc->debugfs, minor);
1692 	if (err < 0)
1693 		goto free;
1694 
1695 	dc->minor = minor;
1696 
1697 	return 0;
1698 
1699 free:
1700 	kfree(dc->debugfs_files);
1701 	dc->debugfs_files = NULL;
1702 remove:
1703 	debugfs_remove(dc->debugfs);
1704 	dc->debugfs = NULL;
1705 
1706 	return err;
1707 }
1708 
1709 static int tegra_dc_debugfs_exit(struct tegra_dc *dc)
1710 {
1711 	drm_debugfs_remove_files(dc->debugfs_files, ARRAY_SIZE(debugfs_files),
1712 				 dc->minor);
1713 	dc->minor = NULL;
1714 
1715 	kfree(dc->debugfs_files);
1716 	dc->debugfs_files = NULL;
1717 
1718 	debugfs_remove(dc->debugfs);
1719 	dc->debugfs = NULL;
1720 
1721 	return 0;
1722 }
1723 
1724 static int tegra_dc_init(struct host1x_client *client)
1725 {
1726 	struct drm_device *drm = dev_get_drvdata(client->parent);
1727 	unsigned long flags = HOST1X_SYNCPT_CLIENT_MANAGED;
1728 	struct tegra_dc *dc = host1x_client_to_dc(client);
1729 	struct tegra_drm *tegra = drm->dev_private;
1730 	struct drm_plane *primary = NULL;
1731 	struct drm_plane *cursor = NULL;
1732 	int err;
1733 
1734 	dc->syncpt = host1x_syncpt_request(dc->dev, flags);
1735 	if (!dc->syncpt)
1736 		dev_warn(dc->dev, "failed to allocate syncpoint\n");
1737 
1738 	if (tegra->domain) {
1739 		err = iommu_attach_device(tegra->domain, dc->dev);
1740 		if (err < 0) {
1741 			dev_err(dc->dev, "failed to attach to domain: %d\n",
1742 				err);
1743 			return err;
1744 		}
1745 
1746 		dc->domain = tegra->domain;
1747 	}
1748 
1749 	primary = tegra_dc_primary_plane_create(drm, dc);
1750 	if (IS_ERR(primary)) {
1751 		err = PTR_ERR(primary);
1752 		goto cleanup;
1753 	}
1754 
1755 	if (dc->soc->supports_cursor) {
1756 		cursor = tegra_dc_cursor_plane_create(drm, dc);
1757 		if (IS_ERR(cursor)) {
1758 			err = PTR_ERR(cursor);
1759 			goto cleanup;
1760 		}
1761 	}
1762 
1763 	err = drm_crtc_init_with_planes(drm, &dc->base, primary, cursor,
1764 					&tegra_crtc_funcs, NULL);
1765 	if (err < 0)
1766 		goto cleanup;
1767 
1768 	drm_crtc_helper_add(&dc->base, &tegra_crtc_helper_funcs);
1769 
1770 	/*
1771 	 * Keep track of the minimum pitch alignment across all display
1772 	 * controllers.
1773 	 */
1774 	if (dc->soc->pitch_align > tegra->pitch_align)
1775 		tegra->pitch_align = dc->soc->pitch_align;
1776 
1777 	err = tegra_dc_rgb_init(drm, dc);
1778 	if (err < 0 && err != -ENODEV) {
1779 		dev_err(dc->dev, "failed to initialize RGB output: %d\n", err);
1780 		goto cleanup;
1781 	}
1782 
1783 	err = tegra_dc_add_planes(drm, dc);
1784 	if (err < 0)
1785 		goto cleanup;
1786 
1787 	if (IS_ENABLED(CONFIG_DEBUG_FS)) {
1788 		err = tegra_dc_debugfs_init(dc, drm->primary);
1789 		if (err < 0)
1790 			dev_err(dc->dev, "debugfs setup failed: %d\n", err);
1791 	}
1792 
1793 	err = devm_request_irq(dc->dev, dc->irq, tegra_dc_irq, 0,
1794 			       dev_name(dc->dev), dc);
1795 	if (err < 0) {
1796 		dev_err(dc->dev, "failed to request IRQ#%u: %d\n", dc->irq,
1797 			err);
1798 		goto cleanup;
1799 	}
1800 
1801 	return 0;
1802 
1803 cleanup:
1804 	if (cursor)
1805 		drm_plane_cleanup(cursor);
1806 
1807 	if (primary)
1808 		drm_plane_cleanup(primary);
1809 
1810 	if (tegra->domain) {
1811 		iommu_detach_device(tegra->domain, dc->dev);
1812 		dc->domain = NULL;
1813 	}
1814 
1815 	return err;
1816 }
1817 
1818 static int tegra_dc_exit(struct host1x_client *client)
1819 {
1820 	struct tegra_dc *dc = host1x_client_to_dc(client);
1821 	int err;
1822 
1823 	devm_free_irq(dc->dev, dc->irq, dc);
1824 
1825 	if (IS_ENABLED(CONFIG_DEBUG_FS)) {
1826 		err = tegra_dc_debugfs_exit(dc);
1827 		if (err < 0)
1828 			dev_err(dc->dev, "debugfs cleanup failed: %d\n", err);
1829 	}
1830 
1831 	err = tegra_dc_rgb_exit(dc);
1832 	if (err) {
1833 		dev_err(dc->dev, "failed to shutdown RGB output: %d\n", err);
1834 		return err;
1835 	}
1836 
1837 	if (dc->domain) {
1838 		iommu_detach_device(dc->domain, dc->dev);
1839 		dc->domain = NULL;
1840 	}
1841 
1842 	host1x_syncpt_free(dc->syncpt);
1843 
1844 	return 0;
1845 }
1846 
1847 static const struct host1x_client_ops dc_client_ops = {
1848 	.init = tegra_dc_init,
1849 	.exit = tegra_dc_exit,
1850 };
1851 
1852 static const struct tegra_dc_soc_info tegra20_dc_soc_info = {
1853 	.supports_border_color = true,
1854 	.supports_interlacing = false,
1855 	.supports_cursor = false,
1856 	.supports_block_linear = false,
1857 	.pitch_align = 8,
1858 	.has_powergate = false,
1859 };
1860 
1861 static const struct tegra_dc_soc_info tegra30_dc_soc_info = {
1862 	.supports_border_color = true,
1863 	.supports_interlacing = false,
1864 	.supports_cursor = false,
1865 	.supports_block_linear = false,
1866 	.pitch_align = 8,
1867 	.has_powergate = false,
1868 };
1869 
1870 static const struct tegra_dc_soc_info tegra114_dc_soc_info = {
1871 	.supports_border_color = true,
1872 	.supports_interlacing = false,
1873 	.supports_cursor = false,
1874 	.supports_block_linear = false,
1875 	.pitch_align = 64,
1876 	.has_powergate = true,
1877 };
1878 
1879 static const struct tegra_dc_soc_info tegra124_dc_soc_info = {
1880 	.supports_border_color = false,
1881 	.supports_interlacing = true,
1882 	.supports_cursor = true,
1883 	.supports_block_linear = true,
1884 	.pitch_align = 64,
1885 	.has_powergate = true,
1886 };
1887 
1888 static const struct tegra_dc_soc_info tegra210_dc_soc_info = {
1889 	.supports_border_color = false,
1890 	.supports_interlacing = true,
1891 	.supports_cursor = true,
1892 	.supports_block_linear = true,
1893 	.pitch_align = 64,
1894 	.has_powergate = true,
1895 };
1896 
1897 static const struct of_device_id tegra_dc_of_match[] = {
1898 	{
1899 		.compatible = "nvidia,tegra210-dc",
1900 		.data = &tegra210_dc_soc_info,
1901 	}, {
1902 		.compatible = "nvidia,tegra124-dc",
1903 		.data = &tegra124_dc_soc_info,
1904 	}, {
1905 		.compatible = "nvidia,tegra114-dc",
1906 		.data = &tegra114_dc_soc_info,
1907 	}, {
1908 		.compatible = "nvidia,tegra30-dc",
1909 		.data = &tegra30_dc_soc_info,
1910 	}, {
1911 		.compatible = "nvidia,tegra20-dc",
1912 		.data = &tegra20_dc_soc_info,
1913 	}, {
1914 		/* sentinel */
1915 	}
1916 };
1917 MODULE_DEVICE_TABLE(of, tegra_dc_of_match);
1918 
1919 static int tegra_dc_parse_dt(struct tegra_dc *dc)
1920 {
1921 	struct device_node *np;
1922 	u32 value = 0;
1923 	int err;
1924 
1925 	err = of_property_read_u32(dc->dev->of_node, "nvidia,head", &value);
1926 	if (err < 0) {
1927 		dev_err(dc->dev, "missing \"nvidia,head\" property\n");
1928 
1929 		/*
1930 		 * If the nvidia,head property isn't present, try to find the
1931 		 * correct head number by looking up the position of this
1932 		 * display controller's node within the device tree. Assuming
1933 		 * that the nodes are ordered properly in the DTS file and
1934 		 * that the translation into a flattened device tree blob
1935 		 * preserves that ordering this will actually yield the right
1936 		 * head number.
1937 		 *
1938 		 * If those assumptions don't hold, this will still work for
1939 		 * cases where only a single display controller is used.
1940 		 */
1941 		for_each_matching_node(np, tegra_dc_of_match) {
1942 			if (np == dc->dev->of_node) {
1943 				of_node_put(np);
1944 				break;
1945 			}
1946 
1947 			value++;
1948 		}
1949 	}
1950 
1951 	dc->pipe = value;
1952 
1953 	return 0;
1954 }
1955 
1956 static int tegra_dc_probe(struct platform_device *pdev)
1957 {
1958 	const struct of_device_id *id;
1959 	struct resource *regs;
1960 	struct tegra_dc *dc;
1961 	int err;
1962 
1963 	dc = devm_kzalloc(&pdev->dev, sizeof(*dc), GFP_KERNEL);
1964 	if (!dc)
1965 		return -ENOMEM;
1966 
1967 	id = of_match_node(tegra_dc_of_match, pdev->dev.of_node);
1968 	if (!id)
1969 		return -ENODEV;
1970 
1971 	spin_lock_init(&dc->lock);
1972 	INIT_LIST_HEAD(&dc->list);
1973 	dc->dev = &pdev->dev;
1974 	dc->soc = id->data;
1975 
1976 	err = tegra_dc_parse_dt(dc);
1977 	if (err < 0)
1978 		return err;
1979 
1980 	dc->clk = devm_clk_get(&pdev->dev, NULL);
1981 	if (IS_ERR(dc->clk)) {
1982 		dev_err(&pdev->dev, "failed to get clock\n");
1983 		return PTR_ERR(dc->clk);
1984 	}
1985 
1986 	dc->rst = devm_reset_control_get(&pdev->dev, "dc");
1987 	if (IS_ERR(dc->rst)) {
1988 		dev_err(&pdev->dev, "failed to get reset\n");
1989 		return PTR_ERR(dc->rst);
1990 	}
1991 
1992 	reset_control_assert(dc->rst);
1993 
1994 	if (dc->soc->has_powergate) {
1995 		if (dc->pipe == 0)
1996 			dc->powergate = TEGRA_POWERGATE_DIS;
1997 		else
1998 			dc->powergate = TEGRA_POWERGATE_DISB;
1999 
2000 		tegra_powergate_power_off(dc->powergate);
2001 	}
2002 
2003 	regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2004 	dc->regs = devm_ioremap_resource(&pdev->dev, regs);
2005 	if (IS_ERR(dc->regs))
2006 		return PTR_ERR(dc->regs);
2007 
2008 	dc->irq = platform_get_irq(pdev, 0);
2009 	if (dc->irq < 0) {
2010 		dev_err(&pdev->dev, "failed to get IRQ\n");
2011 		return -ENXIO;
2012 	}
2013 
2014 	err = tegra_dc_rgb_probe(dc);
2015 	if (err < 0 && err != -ENODEV) {
2016 		dev_err(&pdev->dev, "failed to probe RGB output: %d\n", err);
2017 		return err;
2018 	}
2019 
2020 	platform_set_drvdata(pdev, dc);
2021 	pm_runtime_enable(&pdev->dev);
2022 
2023 	INIT_LIST_HEAD(&dc->client.list);
2024 	dc->client.ops = &dc_client_ops;
2025 	dc->client.dev = &pdev->dev;
2026 
2027 	err = host1x_client_register(&dc->client);
2028 	if (err < 0) {
2029 		dev_err(&pdev->dev, "failed to register host1x client: %d\n",
2030 			err);
2031 		return err;
2032 	}
2033 
2034 	return 0;
2035 }
2036 
2037 static int tegra_dc_remove(struct platform_device *pdev)
2038 {
2039 	struct tegra_dc *dc = platform_get_drvdata(pdev);
2040 	int err;
2041 
2042 	err = host1x_client_unregister(&dc->client);
2043 	if (err < 0) {
2044 		dev_err(&pdev->dev, "failed to unregister host1x client: %d\n",
2045 			err);
2046 		return err;
2047 	}
2048 
2049 	err = tegra_dc_rgb_remove(dc);
2050 	if (err < 0) {
2051 		dev_err(&pdev->dev, "failed to remove RGB output: %d\n", err);
2052 		return err;
2053 	}
2054 
2055 	pm_runtime_disable(&pdev->dev);
2056 
2057 	return 0;
2058 }
2059 
2060 #ifdef CONFIG_PM
2061 static int tegra_dc_suspend(struct device *dev)
2062 {
2063 	struct tegra_dc *dc = dev_get_drvdata(dev);
2064 	int err;
2065 
2066 	err = reset_control_assert(dc->rst);
2067 	if (err < 0) {
2068 		dev_err(dev, "failed to assert reset: %d\n", err);
2069 		return err;
2070 	}
2071 
2072 	if (dc->soc->has_powergate)
2073 		tegra_powergate_power_off(dc->powergate);
2074 
2075 	clk_disable_unprepare(dc->clk);
2076 
2077 	return 0;
2078 }
2079 
2080 static int tegra_dc_resume(struct device *dev)
2081 {
2082 	struct tegra_dc *dc = dev_get_drvdata(dev);
2083 	int err;
2084 
2085 	if (dc->soc->has_powergate) {
2086 		err = tegra_powergate_sequence_power_up(dc->powergate, dc->clk,
2087 							dc->rst);
2088 		if (err < 0) {
2089 			dev_err(dev, "failed to power partition: %d\n", err);
2090 			return err;
2091 		}
2092 	} else {
2093 		err = clk_prepare_enable(dc->clk);
2094 		if (err < 0) {
2095 			dev_err(dev, "failed to enable clock: %d\n", err);
2096 			return err;
2097 		}
2098 
2099 		err = reset_control_deassert(dc->rst);
2100 		if (err < 0) {
2101 			dev_err(dev, "failed to deassert reset: %d\n", err);
2102 			return err;
2103 		}
2104 	}
2105 
2106 	return 0;
2107 }
2108 #endif
2109 
2110 static const struct dev_pm_ops tegra_dc_pm_ops = {
2111 	SET_RUNTIME_PM_OPS(tegra_dc_suspend, tegra_dc_resume, NULL)
2112 };
2113 
2114 struct platform_driver tegra_dc_driver = {
2115 	.driver = {
2116 		.name = "tegra-dc",
2117 		.of_match_table = tegra_dc_of_match,
2118 		.pm = &tegra_dc_pm_ops,
2119 	},
2120 	.probe = tegra_dc_probe,
2121 	.remove = tegra_dc_remove,
2122 };
2123