1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2012 Avionic Design GmbH 4 * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved. 5 */ 6 7 #include <linux/clk.h> 8 #include <linux/debugfs.h> 9 #include <linux/delay.h> 10 #include <linux/dma-mapping.h> 11 #include <linux/iommu.h> 12 #include <linux/interconnect.h> 13 #include <linux/module.h> 14 #include <linux/of_device.h> 15 #include <linux/pm_domain.h> 16 #include <linux/pm_opp.h> 17 #include <linux/pm_runtime.h> 18 #include <linux/reset.h> 19 20 #include <soc/tegra/common.h> 21 #include <soc/tegra/pmc.h> 22 23 #include <drm/drm_atomic.h> 24 #include <drm/drm_atomic_helper.h> 25 #include <drm/drm_blend.h> 26 #include <drm/drm_debugfs.h> 27 #include <drm/drm_fourcc.h> 28 #include <drm/drm_framebuffer.h> 29 #include <drm/drm_plane_helper.h> 30 #include <drm/drm_vblank.h> 31 32 #include "dc.h" 33 #include "drm.h" 34 #include "gem.h" 35 #include "hub.h" 36 #include "plane.h" 37 38 static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc, 39 struct drm_crtc_state *state); 40 41 static void tegra_dc_stats_reset(struct tegra_dc_stats *stats) 42 { 43 stats->frames = 0; 44 stats->vblank = 0; 45 stats->underflow = 0; 46 stats->overflow = 0; 47 } 48 49 /* Reads the active copy of a register. */ 50 static u32 tegra_dc_readl_active(struct tegra_dc *dc, unsigned long offset) 51 { 52 u32 value; 53 54 tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS); 55 value = tegra_dc_readl(dc, offset); 56 tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS); 57 58 return value; 59 } 60 61 static inline unsigned int tegra_plane_offset(struct tegra_plane *plane, 62 unsigned int offset) 63 { 64 if (offset >= 0x500 && offset <= 0x638) { 65 offset = 0x000 + (offset - 0x500); 66 return plane->offset + offset; 67 } 68 69 if (offset >= 0x700 && offset <= 0x719) { 70 offset = 0x180 + (offset - 0x700); 71 return plane->offset + offset; 72 } 73 74 if (offset >= 0x800 && offset <= 0x839) { 75 offset = 0x1c0 + (offset - 0x800); 76 return plane->offset + offset; 77 } 78 79 dev_WARN(plane->dc->dev, "invalid offset: %x\n", offset); 80 81 return plane->offset + offset; 82 } 83 84 static inline u32 tegra_plane_readl(struct tegra_plane *plane, 85 unsigned int offset) 86 { 87 return tegra_dc_readl(plane->dc, tegra_plane_offset(plane, offset)); 88 } 89 90 static inline void tegra_plane_writel(struct tegra_plane *plane, u32 value, 91 unsigned int offset) 92 { 93 tegra_dc_writel(plane->dc, value, tegra_plane_offset(plane, offset)); 94 } 95 96 bool tegra_dc_has_output(struct tegra_dc *dc, struct device *dev) 97 { 98 struct device_node *np = dc->dev->of_node; 99 struct of_phandle_iterator it; 100 int err; 101 102 of_for_each_phandle(&it, err, np, "nvidia,outputs", NULL, 0) 103 if (it.node == dev->of_node) 104 return true; 105 106 return false; 107 } 108 109 /* 110 * Double-buffered registers have two copies: ASSEMBLY and ACTIVE. When the 111 * *_ACT_REQ bits are set the ASSEMBLY copy is latched into the ACTIVE copy. 112 * Latching happens mmediately if the display controller is in STOP mode or 113 * on the next frame boundary otherwise. 114 * 115 * Triple-buffered registers have three copies: ASSEMBLY, ARM and ACTIVE. The 116 * ASSEMBLY copy is latched into the ARM copy immediately after *_UPDATE bits 117 * are written. When the *_ACT_REQ bits are written, the ARM copy is latched 118 * into the ACTIVE copy, either immediately if the display controller is in 119 * STOP mode, or at the next frame boundary otherwise. 120 */ 121 void tegra_dc_commit(struct tegra_dc *dc) 122 { 123 tegra_dc_writel(dc, GENERAL_ACT_REQ << 8, DC_CMD_STATE_CONTROL); 124 tegra_dc_writel(dc, GENERAL_ACT_REQ, DC_CMD_STATE_CONTROL); 125 } 126 127 static inline u32 compute_dda_inc(unsigned int in, unsigned int out, bool v, 128 unsigned int bpp) 129 { 130 fixed20_12 outf = dfixed_init(out); 131 fixed20_12 inf = dfixed_init(in); 132 u32 dda_inc; 133 int max; 134 135 if (v) 136 max = 15; 137 else { 138 switch (bpp) { 139 case 2: 140 max = 8; 141 break; 142 143 default: 144 WARN_ON_ONCE(1); 145 fallthrough; 146 case 4: 147 max = 4; 148 break; 149 } 150 } 151 152 outf.full = max_t(u32, outf.full - dfixed_const(1), dfixed_const(1)); 153 inf.full -= dfixed_const(1); 154 155 dda_inc = dfixed_div(inf, outf); 156 dda_inc = min_t(u32, dda_inc, dfixed_const(max)); 157 158 return dda_inc; 159 } 160 161 static inline u32 compute_initial_dda(unsigned int in) 162 { 163 fixed20_12 inf = dfixed_init(in); 164 return dfixed_frac(inf); 165 } 166 167 static void tegra_plane_setup_blending_legacy(struct tegra_plane *plane) 168 { 169 u32 background[3] = { 170 BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE, 171 BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE, 172 BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE, 173 }; 174 u32 foreground = BLEND_WEIGHT1(255) | BLEND_WEIGHT0(255) | 175 BLEND_COLOR_KEY_NONE; 176 u32 blendnokey = BLEND_WEIGHT1(255) | BLEND_WEIGHT0(255); 177 struct tegra_plane_state *state; 178 u32 blending[2]; 179 unsigned int i; 180 181 /* disable blending for non-overlapping case */ 182 tegra_plane_writel(plane, blendnokey, DC_WIN_BLEND_NOKEY); 183 tegra_plane_writel(plane, foreground, DC_WIN_BLEND_1WIN); 184 185 state = to_tegra_plane_state(plane->base.state); 186 187 if (state->opaque) { 188 /* 189 * Since custom fix-weight blending isn't utilized and weight 190 * of top window is set to max, we can enforce dependent 191 * blending which in this case results in transparent bottom 192 * window if top window is opaque and if top window enables 193 * alpha blending, then bottom window is getting alpha value 194 * of 1 minus the sum of alpha components of the overlapping 195 * plane. 196 */ 197 background[0] |= BLEND_CONTROL_DEPENDENT; 198 background[1] |= BLEND_CONTROL_DEPENDENT; 199 200 /* 201 * The region where three windows overlap is the intersection 202 * of the two regions where two windows overlap. It contributes 203 * to the area if all of the windows on top of it have an alpha 204 * component. 205 */ 206 switch (state->base.normalized_zpos) { 207 case 0: 208 if (state->blending[0].alpha && 209 state->blending[1].alpha) 210 background[2] |= BLEND_CONTROL_DEPENDENT; 211 break; 212 213 case 1: 214 background[2] |= BLEND_CONTROL_DEPENDENT; 215 break; 216 } 217 } else { 218 /* 219 * Enable alpha blending if pixel format has an alpha 220 * component. 221 */ 222 foreground |= BLEND_CONTROL_ALPHA; 223 224 /* 225 * If any of the windows on top of this window is opaque, it 226 * will completely conceal this window within that area. If 227 * top window has an alpha component, it is blended over the 228 * bottom window. 229 */ 230 for (i = 0; i < 2; i++) { 231 if (state->blending[i].alpha && 232 state->blending[i].top) 233 background[i] |= BLEND_CONTROL_DEPENDENT; 234 } 235 236 switch (state->base.normalized_zpos) { 237 case 0: 238 if (state->blending[0].alpha && 239 state->blending[1].alpha) 240 background[2] |= BLEND_CONTROL_DEPENDENT; 241 break; 242 243 case 1: 244 /* 245 * When both middle and topmost windows have an alpha, 246 * these windows a mixed together and then the result 247 * is blended over the bottom window. 248 */ 249 if (state->blending[0].alpha && 250 state->blending[0].top) 251 background[2] |= BLEND_CONTROL_ALPHA; 252 253 if (state->blending[1].alpha && 254 state->blending[1].top) 255 background[2] |= BLEND_CONTROL_ALPHA; 256 break; 257 } 258 } 259 260 switch (state->base.normalized_zpos) { 261 case 0: 262 tegra_plane_writel(plane, background[0], DC_WIN_BLEND_2WIN_X); 263 tegra_plane_writel(plane, background[1], DC_WIN_BLEND_2WIN_Y); 264 tegra_plane_writel(plane, background[2], DC_WIN_BLEND_3WIN_XY); 265 break; 266 267 case 1: 268 /* 269 * If window B / C is topmost, then X / Y registers are 270 * matching the order of blending[...] state indices, 271 * otherwise a swap is required. 272 */ 273 if (!state->blending[0].top && state->blending[1].top) { 274 blending[0] = foreground; 275 blending[1] = background[1]; 276 } else { 277 blending[0] = background[0]; 278 blending[1] = foreground; 279 } 280 281 tegra_plane_writel(plane, blending[0], DC_WIN_BLEND_2WIN_X); 282 tegra_plane_writel(plane, blending[1], DC_WIN_BLEND_2WIN_Y); 283 tegra_plane_writel(plane, background[2], DC_WIN_BLEND_3WIN_XY); 284 break; 285 286 case 2: 287 tegra_plane_writel(plane, foreground, DC_WIN_BLEND_2WIN_X); 288 tegra_plane_writel(plane, foreground, DC_WIN_BLEND_2WIN_Y); 289 tegra_plane_writel(plane, foreground, DC_WIN_BLEND_3WIN_XY); 290 break; 291 } 292 } 293 294 static void tegra_plane_setup_blending(struct tegra_plane *plane, 295 const struct tegra_dc_window *window) 296 { 297 u32 value; 298 299 value = BLEND_FACTOR_DST_ALPHA_ZERO | BLEND_FACTOR_SRC_ALPHA_K2 | 300 BLEND_FACTOR_DST_COLOR_NEG_K1_TIMES_SRC | 301 BLEND_FACTOR_SRC_COLOR_K1_TIMES_SRC; 302 tegra_plane_writel(plane, value, DC_WIN_BLEND_MATCH_SELECT); 303 304 value = BLEND_FACTOR_DST_ALPHA_ZERO | BLEND_FACTOR_SRC_ALPHA_K2 | 305 BLEND_FACTOR_DST_COLOR_NEG_K1_TIMES_SRC | 306 BLEND_FACTOR_SRC_COLOR_K1_TIMES_SRC; 307 tegra_plane_writel(plane, value, DC_WIN_BLEND_NOMATCH_SELECT); 308 309 value = K2(255) | K1(255) | WINDOW_LAYER_DEPTH(255 - window->zpos); 310 tegra_plane_writel(plane, value, DC_WIN_BLEND_LAYER_CONTROL); 311 } 312 313 static bool 314 tegra_plane_use_horizontal_filtering(struct tegra_plane *plane, 315 const struct tegra_dc_window *window) 316 { 317 struct tegra_dc *dc = plane->dc; 318 319 if (window->src.w == window->dst.w) 320 return false; 321 322 if (plane->index == 0 && dc->soc->has_win_a_without_filters) 323 return false; 324 325 return true; 326 } 327 328 static bool 329 tegra_plane_use_vertical_filtering(struct tegra_plane *plane, 330 const struct tegra_dc_window *window) 331 { 332 struct tegra_dc *dc = plane->dc; 333 334 if (window->src.h == window->dst.h) 335 return false; 336 337 if (plane->index == 0 && dc->soc->has_win_a_without_filters) 338 return false; 339 340 if (plane->index == 2 && dc->soc->has_win_c_without_vert_filter) 341 return false; 342 343 return true; 344 } 345 346 static void tegra_dc_setup_window(struct tegra_plane *plane, 347 const struct tegra_dc_window *window) 348 { 349 unsigned h_offset, v_offset, h_size, v_size, h_dda, v_dda, bpp; 350 struct tegra_dc *dc = plane->dc; 351 unsigned int planes; 352 u32 value; 353 bool yuv; 354 355 /* 356 * For YUV planar modes, the number of bytes per pixel takes into 357 * account only the luma component and therefore is 1. 358 */ 359 yuv = tegra_plane_format_is_yuv(window->format, &planes, NULL); 360 if (!yuv) 361 bpp = window->bits_per_pixel / 8; 362 else 363 bpp = (planes > 1) ? 1 : 2; 364 365 tegra_plane_writel(plane, window->format, DC_WIN_COLOR_DEPTH); 366 tegra_plane_writel(plane, window->swap, DC_WIN_BYTE_SWAP); 367 368 value = V_POSITION(window->dst.y) | H_POSITION(window->dst.x); 369 tegra_plane_writel(plane, value, DC_WIN_POSITION); 370 371 value = V_SIZE(window->dst.h) | H_SIZE(window->dst.w); 372 tegra_plane_writel(plane, value, DC_WIN_SIZE); 373 374 h_offset = window->src.x * bpp; 375 v_offset = window->src.y; 376 h_size = window->src.w * bpp; 377 v_size = window->src.h; 378 379 if (window->reflect_x) 380 h_offset += (window->src.w - 1) * bpp; 381 382 if (window->reflect_y) 383 v_offset += window->src.h - 1; 384 385 value = V_PRESCALED_SIZE(v_size) | H_PRESCALED_SIZE(h_size); 386 tegra_plane_writel(plane, value, DC_WIN_PRESCALED_SIZE); 387 388 /* 389 * For DDA computations the number of bytes per pixel for YUV planar 390 * modes needs to take into account all Y, U and V components. 391 */ 392 if (yuv && planes > 1) 393 bpp = 2; 394 395 h_dda = compute_dda_inc(window->src.w, window->dst.w, false, bpp); 396 v_dda = compute_dda_inc(window->src.h, window->dst.h, true, bpp); 397 398 value = V_DDA_INC(v_dda) | H_DDA_INC(h_dda); 399 tegra_plane_writel(plane, value, DC_WIN_DDA_INC); 400 401 h_dda = compute_initial_dda(window->src.x); 402 v_dda = compute_initial_dda(window->src.y); 403 404 tegra_plane_writel(plane, h_dda, DC_WIN_H_INITIAL_DDA); 405 tegra_plane_writel(plane, v_dda, DC_WIN_V_INITIAL_DDA); 406 407 tegra_plane_writel(plane, 0, DC_WIN_UV_BUF_STRIDE); 408 tegra_plane_writel(plane, 0, DC_WIN_BUF_STRIDE); 409 410 tegra_plane_writel(plane, window->base[0], DC_WINBUF_START_ADDR); 411 412 if (yuv && planes > 1) { 413 tegra_plane_writel(plane, window->base[1], DC_WINBUF_START_ADDR_U); 414 415 if (planes > 2) 416 tegra_plane_writel(plane, window->base[2], DC_WINBUF_START_ADDR_V); 417 418 value = window->stride[1] << 16 | window->stride[0]; 419 tegra_plane_writel(plane, value, DC_WIN_LINE_STRIDE); 420 } else { 421 tegra_plane_writel(plane, window->stride[0], DC_WIN_LINE_STRIDE); 422 } 423 424 tegra_plane_writel(plane, h_offset, DC_WINBUF_ADDR_H_OFFSET); 425 tegra_plane_writel(plane, v_offset, DC_WINBUF_ADDR_V_OFFSET); 426 427 if (dc->soc->supports_block_linear) { 428 unsigned long height = window->tiling.value; 429 430 switch (window->tiling.mode) { 431 case TEGRA_BO_TILING_MODE_PITCH: 432 value = DC_WINBUF_SURFACE_KIND_PITCH; 433 break; 434 435 case TEGRA_BO_TILING_MODE_TILED: 436 value = DC_WINBUF_SURFACE_KIND_TILED; 437 break; 438 439 case TEGRA_BO_TILING_MODE_BLOCK: 440 value = DC_WINBUF_SURFACE_KIND_BLOCK_HEIGHT(height) | 441 DC_WINBUF_SURFACE_KIND_BLOCK; 442 break; 443 } 444 445 tegra_plane_writel(plane, value, DC_WINBUF_SURFACE_KIND); 446 } else { 447 switch (window->tiling.mode) { 448 case TEGRA_BO_TILING_MODE_PITCH: 449 value = DC_WIN_BUFFER_ADDR_MODE_LINEAR_UV | 450 DC_WIN_BUFFER_ADDR_MODE_LINEAR; 451 break; 452 453 case TEGRA_BO_TILING_MODE_TILED: 454 value = DC_WIN_BUFFER_ADDR_MODE_TILE_UV | 455 DC_WIN_BUFFER_ADDR_MODE_TILE; 456 break; 457 458 case TEGRA_BO_TILING_MODE_BLOCK: 459 /* 460 * No need to handle this here because ->atomic_check 461 * will already have filtered it out. 462 */ 463 break; 464 } 465 466 tegra_plane_writel(plane, value, DC_WIN_BUFFER_ADDR_MODE); 467 } 468 469 value = WIN_ENABLE; 470 471 if (yuv) { 472 /* setup default colorspace conversion coefficients */ 473 tegra_plane_writel(plane, 0x00f0, DC_WIN_CSC_YOF); 474 tegra_plane_writel(plane, 0x012a, DC_WIN_CSC_KYRGB); 475 tegra_plane_writel(plane, 0x0000, DC_WIN_CSC_KUR); 476 tegra_plane_writel(plane, 0x0198, DC_WIN_CSC_KVR); 477 tegra_plane_writel(plane, 0x039b, DC_WIN_CSC_KUG); 478 tegra_plane_writel(plane, 0x032f, DC_WIN_CSC_KVG); 479 tegra_plane_writel(plane, 0x0204, DC_WIN_CSC_KUB); 480 tegra_plane_writel(plane, 0x0000, DC_WIN_CSC_KVB); 481 482 value |= CSC_ENABLE; 483 } else if (window->bits_per_pixel < 24) { 484 value |= COLOR_EXPAND; 485 } 486 487 if (window->reflect_x) 488 value |= H_DIRECTION; 489 490 if (window->reflect_y) 491 value |= V_DIRECTION; 492 493 if (tegra_plane_use_horizontal_filtering(plane, window)) { 494 /* 495 * Enable horizontal 6-tap filter and set filtering 496 * coefficients to the default values defined in TRM. 497 */ 498 tegra_plane_writel(plane, 0x00008000, DC_WIN_H_FILTER_P(0)); 499 tegra_plane_writel(plane, 0x3e087ce1, DC_WIN_H_FILTER_P(1)); 500 tegra_plane_writel(plane, 0x3b117ac1, DC_WIN_H_FILTER_P(2)); 501 tegra_plane_writel(plane, 0x591b73aa, DC_WIN_H_FILTER_P(3)); 502 tegra_plane_writel(plane, 0x57256d9a, DC_WIN_H_FILTER_P(4)); 503 tegra_plane_writel(plane, 0x552f668b, DC_WIN_H_FILTER_P(5)); 504 tegra_plane_writel(plane, 0x73385e8b, DC_WIN_H_FILTER_P(6)); 505 tegra_plane_writel(plane, 0x72435583, DC_WIN_H_FILTER_P(7)); 506 tegra_plane_writel(plane, 0x714c4c8b, DC_WIN_H_FILTER_P(8)); 507 tegra_plane_writel(plane, 0x70554393, DC_WIN_H_FILTER_P(9)); 508 tegra_plane_writel(plane, 0x715e389b, DC_WIN_H_FILTER_P(10)); 509 tegra_plane_writel(plane, 0x71662faa, DC_WIN_H_FILTER_P(11)); 510 tegra_plane_writel(plane, 0x536d25ba, DC_WIN_H_FILTER_P(12)); 511 tegra_plane_writel(plane, 0x55731bca, DC_WIN_H_FILTER_P(13)); 512 tegra_plane_writel(plane, 0x387a11d9, DC_WIN_H_FILTER_P(14)); 513 tegra_plane_writel(plane, 0x3c7c08f1, DC_WIN_H_FILTER_P(15)); 514 515 value |= H_FILTER; 516 } 517 518 if (tegra_plane_use_vertical_filtering(plane, window)) { 519 unsigned int i, k; 520 521 /* 522 * Enable vertical 2-tap filter and set filtering 523 * coefficients to the default values defined in TRM. 524 */ 525 for (i = 0, k = 128; i < 16; i++, k -= 8) 526 tegra_plane_writel(plane, k, DC_WIN_V_FILTER_P(i)); 527 528 value |= V_FILTER; 529 } 530 531 tegra_plane_writel(plane, value, DC_WIN_WIN_OPTIONS); 532 533 if (dc->soc->has_legacy_blending) 534 tegra_plane_setup_blending_legacy(plane); 535 else 536 tegra_plane_setup_blending(plane, window); 537 } 538 539 static const u32 tegra20_primary_formats[] = { 540 DRM_FORMAT_ARGB4444, 541 DRM_FORMAT_ARGB1555, 542 DRM_FORMAT_RGB565, 543 DRM_FORMAT_RGBA5551, 544 DRM_FORMAT_ABGR8888, 545 DRM_FORMAT_ARGB8888, 546 /* non-native formats */ 547 DRM_FORMAT_XRGB1555, 548 DRM_FORMAT_RGBX5551, 549 DRM_FORMAT_XBGR8888, 550 DRM_FORMAT_XRGB8888, 551 }; 552 553 static const u64 tegra20_modifiers[] = { 554 DRM_FORMAT_MOD_LINEAR, 555 DRM_FORMAT_MOD_NVIDIA_TEGRA_TILED, 556 DRM_FORMAT_MOD_INVALID 557 }; 558 559 static const u32 tegra114_primary_formats[] = { 560 DRM_FORMAT_ARGB4444, 561 DRM_FORMAT_ARGB1555, 562 DRM_FORMAT_RGB565, 563 DRM_FORMAT_RGBA5551, 564 DRM_FORMAT_ABGR8888, 565 DRM_FORMAT_ARGB8888, 566 /* new on Tegra114 */ 567 DRM_FORMAT_ABGR4444, 568 DRM_FORMAT_ABGR1555, 569 DRM_FORMAT_BGRA5551, 570 DRM_FORMAT_XRGB1555, 571 DRM_FORMAT_RGBX5551, 572 DRM_FORMAT_XBGR1555, 573 DRM_FORMAT_BGRX5551, 574 DRM_FORMAT_BGR565, 575 DRM_FORMAT_BGRA8888, 576 DRM_FORMAT_RGBA8888, 577 DRM_FORMAT_XRGB8888, 578 DRM_FORMAT_XBGR8888, 579 }; 580 581 static const u32 tegra124_primary_formats[] = { 582 DRM_FORMAT_ARGB4444, 583 DRM_FORMAT_ARGB1555, 584 DRM_FORMAT_RGB565, 585 DRM_FORMAT_RGBA5551, 586 DRM_FORMAT_ABGR8888, 587 DRM_FORMAT_ARGB8888, 588 /* new on Tegra114 */ 589 DRM_FORMAT_ABGR4444, 590 DRM_FORMAT_ABGR1555, 591 DRM_FORMAT_BGRA5551, 592 DRM_FORMAT_XRGB1555, 593 DRM_FORMAT_RGBX5551, 594 DRM_FORMAT_XBGR1555, 595 DRM_FORMAT_BGRX5551, 596 DRM_FORMAT_BGR565, 597 DRM_FORMAT_BGRA8888, 598 DRM_FORMAT_RGBA8888, 599 DRM_FORMAT_XRGB8888, 600 DRM_FORMAT_XBGR8888, 601 /* new on Tegra124 */ 602 DRM_FORMAT_RGBX8888, 603 DRM_FORMAT_BGRX8888, 604 }; 605 606 static const u64 tegra124_modifiers[] = { 607 DRM_FORMAT_MOD_LINEAR, 608 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(0), 609 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(1), 610 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(2), 611 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(3), 612 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(4), 613 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(5), 614 DRM_FORMAT_MOD_INVALID 615 }; 616 617 static int tegra_plane_atomic_check(struct drm_plane *plane, 618 struct drm_atomic_state *state) 619 { 620 struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state, 621 plane); 622 struct tegra_plane_state *plane_state = to_tegra_plane_state(new_plane_state); 623 unsigned int supported_rotation = DRM_MODE_ROTATE_0 | 624 DRM_MODE_REFLECT_X | 625 DRM_MODE_REFLECT_Y; 626 unsigned int rotation = new_plane_state->rotation; 627 struct tegra_bo_tiling *tiling = &plane_state->tiling; 628 struct tegra_plane *tegra = to_tegra_plane(plane); 629 struct tegra_dc *dc = to_tegra_dc(new_plane_state->crtc); 630 int err; 631 632 plane_state->peak_memory_bandwidth = 0; 633 plane_state->avg_memory_bandwidth = 0; 634 635 /* no need for further checks if the plane is being disabled */ 636 if (!new_plane_state->crtc) { 637 plane_state->total_peak_memory_bandwidth = 0; 638 return 0; 639 } 640 641 err = tegra_plane_format(new_plane_state->fb->format->format, 642 &plane_state->format, 643 &plane_state->swap); 644 if (err < 0) 645 return err; 646 647 /* 648 * Tegra20 and Tegra30 are special cases here because they support 649 * only variants of specific formats with an alpha component, but not 650 * the corresponding opaque formats. However, the opaque formats can 651 * be emulated by disabling alpha blending for the plane. 652 */ 653 if (dc->soc->has_legacy_blending) { 654 err = tegra_plane_setup_legacy_state(tegra, plane_state); 655 if (err < 0) 656 return err; 657 } 658 659 err = tegra_fb_get_tiling(new_plane_state->fb, tiling); 660 if (err < 0) 661 return err; 662 663 if (tiling->mode == TEGRA_BO_TILING_MODE_BLOCK && 664 !dc->soc->supports_block_linear) { 665 DRM_ERROR("hardware doesn't support block linear mode\n"); 666 return -EINVAL; 667 } 668 669 /* 670 * Older userspace used custom BO flag in order to specify the Y 671 * reflection, while modern userspace uses the generic DRM rotation 672 * property in order to achieve the same result. The legacy BO flag 673 * duplicates the DRM rotation property when both are set. 674 */ 675 if (tegra_fb_is_bottom_up(new_plane_state->fb)) 676 rotation |= DRM_MODE_REFLECT_Y; 677 678 rotation = drm_rotation_simplify(rotation, supported_rotation); 679 680 if (rotation & DRM_MODE_REFLECT_X) 681 plane_state->reflect_x = true; 682 else 683 plane_state->reflect_x = false; 684 685 if (rotation & DRM_MODE_REFLECT_Y) 686 plane_state->reflect_y = true; 687 else 688 plane_state->reflect_y = false; 689 690 /* 691 * Tegra doesn't support different strides for U and V planes so we 692 * error out if the user tries to display a framebuffer with such a 693 * configuration. 694 */ 695 if (new_plane_state->fb->format->num_planes > 2) { 696 if (new_plane_state->fb->pitches[2] != new_plane_state->fb->pitches[1]) { 697 DRM_ERROR("unsupported UV-plane configuration\n"); 698 return -EINVAL; 699 } 700 } 701 702 err = tegra_plane_state_add(tegra, new_plane_state); 703 if (err < 0) 704 return err; 705 706 return 0; 707 } 708 709 static void tegra_plane_atomic_disable(struct drm_plane *plane, 710 struct drm_atomic_state *state) 711 { 712 struct drm_plane_state *old_state = drm_atomic_get_old_plane_state(state, 713 plane); 714 struct tegra_plane *p = to_tegra_plane(plane); 715 u32 value; 716 717 /* rien ne va plus */ 718 if (!old_state || !old_state->crtc) 719 return; 720 721 value = tegra_plane_readl(p, DC_WIN_WIN_OPTIONS); 722 value &= ~WIN_ENABLE; 723 tegra_plane_writel(p, value, DC_WIN_WIN_OPTIONS); 724 } 725 726 static void tegra_plane_atomic_update(struct drm_plane *plane, 727 struct drm_atomic_state *state) 728 { 729 struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state, 730 plane); 731 struct tegra_plane_state *tegra_plane_state = to_tegra_plane_state(new_state); 732 struct drm_framebuffer *fb = new_state->fb; 733 struct tegra_plane *p = to_tegra_plane(plane); 734 struct tegra_dc_window window; 735 unsigned int i; 736 737 /* rien ne va plus */ 738 if (!new_state->crtc || !new_state->fb) 739 return; 740 741 if (!new_state->visible) 742 return tegra_plane_atomic_disable(plane, state); 743 744 memset(&window, 0, sizeof(window)); 745 window.src.x = new_state->src.x1 >> 16; 746 window.src.y = new_state->src.y1 >> 16; 747 window.src.w = drm_rect_width(&new_state->src) >> 16; 748 window.src.h = drm_rect_height(&new_state->src) >> 16; 749 window.dst.x = new_state->dst.x1; 750 window.dst.y = new_state->dst.y1; 751 window.dst.w = drm_rect_width(&new_state->dst); 752 window.dst.h = drm_rect_height(&new_state->dst); 753 window.bits_per_pixel = fb->format->cpp[0] * 8; 754 window.reflect_x = tegra_plane_state->reflect_x; 755 window.reflect_y = tegra_plane_state->reflect_y; 756 757 /* copy from state */ 758 window.zpos = new_state->normalized_zpos; 759 window.tiling = tegra_plane_state->tiling; 760 window.format = tegra_plane_state->format; 761 window.swap = tegra_plane_state->swap; 762 763 for (i = 0; i < fb->format->num_planes; i++) { 764 window.base[i] = tegra_plane_state->iova[i] + fb->offsets[i]; 765 766 /* 767 * Tegra uses a shared stride for UV planes. Framebuffers are 768 * already checked for this in the tegra_plane_atomic_check() 769 * function, so it's safe to ignore the V-plane pitch here. 770 */ 771 if (i < 2) 772 window.stride[i] = fb->pitches[i]; 773 } 774 775 tegra_dc_setup_window(p, &window); 776 } 777 778 static const struct drm_plane_helper_funcs tegra_plane_helper_funcs = { 779 .prepare_fb = tegra_plane_prepare_fb, 780 .cleanup_fb = tegra_plane_cleanup_fb, 781 .atomic_check = tegra_plane_atomic_check, 782 .atomic_disable = tegra_plane_atomic_disable, 783 .atomic_update = tegra_plane_atomic_update, 784 }; 785 786 static unsigned long tegra_plane_get_possible_crtcs(struct drm_device *drm) 787 { 788 /* 789 * Ideally this would use drm_crtc_mask(), but that would require the 790 * CRTC to already be in the mode_config's list of CRTCs. However, it 791 * will only be added to that list in the drm_crtc_init_with_planes() 792 * (in tegra_dc_init()), which in turn requires registration of these 793 * planes. So we have ourselves a nice little chicken and egg problem 794 * here. 795 * 796 * We work around this by manually creating the mask from the number 797 * of CRTCs that have been registered, and should therefore always be 798 * the same as drm_crtc_index() after registration. 799 */ 800 return 1 << drm->mode_config.num_crtc; 801 } 802 803 static struct drm_plane *tegra_primary_plane_create(struct drm_device *drm, 804 struct tegra_dc *dc) 805 { 806 unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm); 807 enum drm_plane_type type = DRM_PLANE_TYPE_PRIMARY; 808 struct tegra_plane *plane; 809 unsigned int num_formats; 810 const u64 *modifiers; 811 const u32 *formats; 812 int err; 813 814 plane = kzalloc(sizeof(*plane), GFP_KERNEL); 815 if (!plane) 816 return ERR_PTR(-ENOMEM); 817 818 /* Always use window A as primary window */ 819 plane->offset = 0xa00; 820 plane->index = 0; 821 plane->dc = dc; 822 823 num_formats = dc->soc->num_primary_formats; 824 formats = dc->soc->primary_formats; 825 modifiers = dc->soc->modifiers; 826 827 err = tegra_plane_interconnect_init(plane); 828 if (err) { 829 kfree(plane); 830 return ERR_PTR(err); 831 } 832 833 err = drm_universal_plane_init(drm, &plane->base, possible_crtcs, 834 &tegra_plane_funcs, formats, 835 num_formats, modifiers, type, NULL); 836 if (err < 0) { 837 kfree(plane); 838 return ERR_PTR(err); 839 } 840 841 drm_plane_helper_add(&plane->base, &tegra_plane_helper_funcs); 842 drm_plane_create_zpos_property(&plane->base, plane->index, 0, 255); 843 844 err = drm_plane_create_rotation_property(&plane->base, 845 DRM_MODE_ROTATE_0, 846 DRM_MODE_ROTATE_0 | 847 DRM_MODE_ROTATE_180 | 848 DRM_MODE_REFLECT_X | 849 DRM_MODE_REFLECT_Y); 850 if (err < 0) 851 dev_err(dc->dev, "failed to create rotation property: %d\n", 852 err); 853 854 return &plane->base; 855 } 856 857 static const u32 tegra_legacy_cursor_plane_formats[] = { 858 DRM_FORMAT_RGBA8888, 859 }; 860 861 static const u32 tegra_cursor_plane_formats[] = { 862 DRM_FORMAT_ARGB8888, 863 }; 864 865 static int tegra_cursor_atomic_check(struct drm_plane *plane, 866 struct drm_atomic_state *state) 867 { 868 struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state, 869 plane); 870 struct tegra_plane_state *plane_state = to_tegra_plane_state(new_plane_state); 871 struct tegra_plane *tegra = to_tegra_plane(plane); 872 int err; 873 874 plane_state->peak_memory_bandwidth = 0; 875 plane_state->avg_memory_bandwidth = 0; 876 877 /* no need for further checks if the plane is being disabled */ 878 if (!new_plane_state->crtc) { 879 plane_state->total_peak_memory_bandwidth = 0; 880 return 0; 881 } 882 883 /* scaling not supported for cursor */ 884 if ((new_plane_state->src_w >> 16 != new_plane_state->crtc_w) || 885 (new_plane_state->src_h >> 16 != new_plane_state->crtc_h)) 886 return -EINVAL; 887 888 /* only square cursors supported */ 889 if (new_plane_state->src_w != new_plane_state->src_h) 890 return -EINVAL; 891 892 if (new_plane_state->crtc_w != 32 && new_plane_state->crtc_w != 64 && 893 new_plane_state->crtc_w != 128 && new_plane_state->crtc_w != 256) 894 return -EINVAL; 895 896 err = tegra_plane_state_add(tegra, new_plane_state); 897 if (err < 0) 898 return err; 899 900 return 0; 901 } 902 903 static void __tegra_cursor_atomic_update(struct drm_plane *plane, 904 struct drm_plane_state *new_state) 905 { 906 struct tegra_plane_state *tegra_plane_state = to_tegra_plane_state(new_state); 907 struct tegra_dc *dc = to_tegra_dc(new_state->crtc); 908 struct tegra_drm *tegra = plane->dev->dev_private; 909 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT 910 u64 dma_mask = *dc->dev->dma_mask; 911 #endif 912 unsigned int x, y; 913 u32 value = 0; 914 915 /* rien ne va plus */ 916 if (!new_state->crtc || !new_state->fb) 917 return; 918 919 /* 920 * Legacy display supports hardware clipping of the cursor, but 921 * nvdisplay relies on software to clip the cursor to the screen. 922 */ 923 if (!dc->soc->has_nvdisplay) 924 value |= CURSOR_CLIP_DISPLAY; 925 926 switch (new_state->crtc_w) { 927 case 32: 928 value |= CURSOR_SIZE_32x32; 929 break; 930 931 case 64: 932 value |= CURSOR_SIZE_64x64; 933 break; 934 935 case 128: 936 value |= CURSOR_SIZE_128x128; 937 break; 938 939 case 256: 940 value |= CURSOR_SIZE_256x256; 941 break; 942 943 default: 944 WARN(1, "cursor size %ux%u not supported\n", 945 new_state->crtc_w, new_state->crtc_h); 946 return; 947 } 948 949 value |= (tegra_plane_state->iova[0] >> 10) & 0x3fffff; 950 tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR); 951 952 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT 953 value = (tegra_plane_state->iova[0] >> 32) & (dma_mask >> 32); 954 tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR_HI); 955 #endif 956 957 /* enable cursor and set blend mode */ 958 value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS); 959 value |= CURSOR_ENABLE; 960 tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS); 961 962 value = tegra_dc_readl(dc, DC_DISP_BLEND_CURSOR_CONTROL); 963 value &= ~CURSOR_DST_BLEND_MASK; 964 value &= ~CURSOR_SRC_BLEND_MASK; 965 966 if (dc->soc->has_nvdisplay) 967 value &= ~CURSOR_COMPOSITION_MODE_XOR; 968 else 969 value |= CURSOR_MODE_NORMAL; 970 971 value |= CURSOR_DST_BLEND_NEG_K1_TIMES_SRC; 972 value |= CURSOR_SRC_BLEND_K1_TIMES_SRC; 973 value |= CURSOR_ALPHA; 974 tegra_dc_writel(dc, value, DC_DISP_BLEND_CURSOR_CONTROL); 975 976 /* nvdisplay relies on software for clipping */ 977 if (dc->soc->has_nvdisplay) { 978 struct drm_rect src; 979 980 x = new_state->dst.x1; 981 y = new_state->dst.y1; 982 983 drm_rect_fp_to_int(&src, &new_state->src); 984 985 value = (src.y1 & tegra->vmask) << 16 | (src.x1 & tegra->hmask); 986 tegra_dc_writel(dc, value, DC_DISP_PCALC_HEAD_SET_CROPPED_POINT_IN_CURSOR); 987 988 value = (drm_rect_height(&src) & tegra->vmask) << 16 | 989 (drm_rect_width(&src) & tegra->hmask); 990 tegra_dc_writel(dc, value, DC_DISP_PCALC_HEAD_SET_CROPPED_SIZE_IN_CURSOR); 991 } else { 992 x = new_state->crtc_x; 993 y = new_state->crtc_y; 994 } 995 996 /* position the cursor */ 997 value = ((y & tegra->vmask) << 16) | (x & tegra->hmask); 998 tegra_dc_writel(dc, value, DC_DISP_CURSOR_POSITION); 999 } 1000 1001 static void tegra_cursor_atomic_update(struct drm_plane *plane, 1002 struct drm_atomic_state *state) 1003 { 1004 struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state, plane); 1005 1006 __tegra_cursor_atomic_update(plane, new_state); 1007 } 1008 1009 static void tegra_cursor_atomic_disable(struct drm_plane *plane, 1010 struct drm_atomic_state *state) 1011 { 1012 struct drm_plane_state *old_state = drm_atomic_get_old_plane_state(state, 1013 plane); 1014 struct tegra_dc *dc; 1015 u32 value; 1016 1017 /* rien ne va plus */ 1018 if (!old_state || !old_state->crtc) 1019 return; 1020 1021 dc = to_tegra_dc(old_state->crtc); 1022 1023 value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS); 1024 value &= ~CURSOR_ENABLE; 1025 tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS); 1026 } 1027 1028 static int tegra_cursor_atomic_async_check(struct drm_plane *plane, struct drm_atomic_state *state) 1029 { 1030 struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state, plane); 1031 struct drm_crtc_state *crtc_state; 1032 int min_scale, max_scale; 1033 int err; 1034 1035 crtc_state = drm_atomic_get_existing_crtc_state(state, new_state->crtc); 1036 if (WARN_ON(!crtc_state)) 1037 return -EINVAL; 1038 1039 if (!crtc_state->active) 1040 return -EINVAL; 1041 1042 if (plane->state->crtc != new_state->crtc || 1043 plane->state->src_w != new_state->src_w || 1044 plane->state->src_h != new_state->src_h || 1045 plane->state->crtc_w != new_state->crtc_w || 1046 plane->state->crtc_h != new_state->crtc_h || 1047 plane->state->fb != new_state->fb || 1048 plane->state->fb == NULL) 1049 return -EINVAL; 1050 1051 min_scale = (1 << 16) / 8; 1052 max_scale = (8 << 16) / 1; 1053 1054 err = drm_atomic_helper_check_plane_state(new_state, crtc_state, min_scale, max_scale, 1055 true, true); 1056 if (err < 0) 1057 return err; 1058 1059 if (new_state->visible != plane->state->visible) 1060 return -EINVAL; 1061 1062 return 0; 1063 } 1064 1065 static void tegra_cursor_atomic_async_update(struct drm_plane *plane, 1066 struct drm_atomic_state *state) 1067 { 1068 struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state, plane); 1069 struct tegra_dc *dc = to_tegra_dc(new_state->crtc); 1070 1071 plane->state->src_x = new_state->src_x; 1072 plane->state->src_y = new_state->src_y; 1073 plane->state->crtc_x = new_state->crtc_x; 1074 plane->state->crtc_y = new_state->crtc_y; 1075 1076 if (new_state->visible) { 1077 struct tegra_plane *p = to_tegra_plane(plane); 1078 u32 value; 1079 1080 __tegra_cursor_atomic_update(plane, new_state); 1081 1082 value = (WIN_A_ACT_REQ << p->index) << 8 | GENERAL_UPDATE; 1083 tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL); 1084 (void)tegra_dc_readl(dc, DC_CMD_STATE_CONTROL); 1085 1086 value = (WIN_A_ACT_REQ << p->index) | GENERAL_ACT_REQ; 1087 tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL); 1088 (void)tegra_dc_readl(dc, DC_CMD_STATE_CONTROL); 1089 } 1090 } 1091 1092 static const struct drm_plane_helper_funcs tegra_cursor_plane_helper_funcs = { 1093 .prepare_fb = tegra_plane_prepare_fb, 1094 .cleanup_fb = tegra_plane_cleanup_fb, 1095 .atomic_check = tegra_cursor_atomic_check, 1096 .atomic_update = tegra_cursor_atomic_update, 1097 .atomic_disable = tegra_cursor_atomic_disable, 1098 .atomic_async_check = tegra_cursor_atomic_async_check, 1099 .atomic_async_update = tegra_cursor_atomic_async_update, 1100 }; 1101 1102 static const uint64_t linear_modifiers[] = { 1103 DRM_FORMAT_MOD_LINEAR, 1104 DRM_FORMAT_MOD_INVALID 1105 }; 1106 1107 static struct drm_plane *tegra_dc_cursor_plane_create(struct drm_device *drm, 1108 struct tegra_dc *dc) 1109 { 1110 unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm); 1111 struct tegra_plane *plane; 1112 unsigned int num_formats; 1113 const u32 *formats; 1114 int err; 1115 1116 plane = kzalloc(sizeof(*plane), GFP_KERNEL); 1117 if (!plane) 1118 return ERR_PTR(-ENOMEM); 1119 1120 /* 1121 * This index is kind of fake. The cursor isn't a regular plane, but 1122 * its update and activation request bits in DC_CMD_STATE_CONTROL do 1123 * use the same programming. Setting this fake index here allows the 1124 * code in tegra_add_plane_state() to do the right thing without the 1125 * need to special-casing the cursor plane. 1126 */ 1127 plane->index = 6; 1128 plane->dc = dc; 1129 1130 if (!dc->soc->has_nvdisplay) { 1131 num_formats = ARRAY_SIZE(tegra_legacy_cursor_plane_formats); 1132 formats = tegra_legacy_cursor_plane_formats; 1133 1134 err = tegra_plane_interconnect_init(plane); 1135 if (err) { 1136 kfree(plane); 1137 return ERR_PTR(err); 1138 } 1139 } else { 1140 num_formats = ARRAY_SIZE(tegra_cursor_plane_formats); 1141 formats = tegra_cursor_plane_formats; 1142 } 1143 1144 err = drm_universal_plane_init(drm, &plane->base, possible_crtcs, 1145 &tegra_plane_funcs, formats, 1146 num_formats, linear_modifiers, 1147 DRM_PLANE_TYPE_CURSOR, NULL); 1148 if (err < 0) { 1149 kfree(plane); 1150 return ERR_PTR(err); 1151 } 1152 1153 drm_plane_helper_add(&plane->base, &tegra_cursor_plane_helper_funcs); 1154 drm_plane_create_zpos_immutable_property(&plane->base, 255); 1155 1156 return &plane->base; 1157 } 1158 1159 static const u32 tegra20_overlay_formats[] = { 1160 DRM_FORMAT_ARGB4444, 1161 DRM_FORMAT_ARGB1555, 1162 DRM_FORMAT_RGB565, 1163 DRM_FORMAT_RGBA5551, 1164 DRM_FORMAT_ABGR8888, 1165 DRM_FORMAT_ARGB8888, 1166 /* non-native formats */ 1167 DRM_FORMAT_XRGB1555, 1168 DRM_FORMAT_RGBX5551, 1169 DRM_FORMAT_XBGR8888, 1170 DRM_FORMAT_XRGB8888, 1171 /* planar formats */ 1172 DRM_FORMAT_UYVY, 1173 DRM_FORMAT_YUYV, 1174 DRM_FORMAT_YUV420, 1175 DRM_FORMAT_YUV422, 1176 }; 1177 1178 static const u32 tegra114_overlay_formats[] = { 1179 DRM_FORMAT_ARGB4444, 1180 DRM_FORMAT_ARGB1555, 1181 DRM_FORMAT_RGB565, 1182 DRM_FORMAT_RGBA5551, 1183 DRM_FORMAT_ABGR8888, 1184 DRM_FORMAT_ARGB8888, 1185 /* new on Tegra114 */ 1186 DRM_FORMAT_ABGR4444, 1187 DRM_FORMAT_ABGR1555, 1188 DRM_FORMAT_BGRA5551, 1189 DRM_FORMAT_XRGB1555, 1190 DRM_FORMAT_RGBX5551, 1191 DRM_FORMAT_XBGR1555, 1192 DRM_FORMAT_BGRX5551, 1193 DRM_FORMAT_BGR565, 1194 DRM_FORMAT_BGRA8888, 1195 DRM_FORMAT_RGBA8888, 1196 DRM_FORMAT_XRGB8888, 1197 DRM_FORMAT_XBGR8888, 1198 /* planar formats */ 1199 DRM_FORMAT_UYVY, 1200 DRM_FORMAT_YUYV, 1201 DRM_FORMAT_YUV420, 1202 DRM_FORMAT_YUV422, 1203 /* semi-planar formats */ 1204 DRM_FORMAT_NV12, 1205 DRM_FORMAT_NV21, 1206 DRM_FORMAT_NV16, 1207 DRM_FORMAT_NV61, 1208 DRM_FORMAT_NV24, 1209 DRM_FORMAT_NV42, 1210 }; 1211 1212 static const u32 tegra124_overlay_formats[] = { 1213 DRM_FORMAT_ARGB4444, 1214 DRM_FORMAT_ARGB1555, 1215 DRM_FORMAT_RGB565, 1216 DRM_FORMAT_RGBA5551, 1217 DRM_FORMAT_ABGR8888, 1218 DRM_FORMAT_ARGB8888, 1219 /* new on Tegra114 */ 1220 DRM_FORMAT_ABGR4444, 1221 DRM_FORMAT_ABGR1555, 1222 DRM_FORMAT_BGRA5551, 1223 DRM_FORMAT_XRGB1555, 1224 DRM_FORMAT_RGBX5551, 1225 DRM_FORMAT_XBGR1555, 1226 DRM_FORMAT_BGRX5551, 1227 DRM_FORMAT_BGR565, 1228 DRM_FORMAT_BGRA8888, 1229 DRM_FORMAT_RGBA8888, 1230 DRM_FORMAT_XRGB8888, 1231 DRM_FORMAT_XBGR8888, 1232 /* new on Tegra124 */ 1233 DRM_FORMAT_RGBX8888, 1234 DRM_FORMAT_BGRX8888, 1235 /* planar formats */ 1236 DRM_FORMAT_UYVY, 1237 DRM_FORMAT_YUYV, 1238 DRM_FORMAT_YVYU, 1239 DRM_FORMAT_VYUY, 1240 DRM_FORMAT_YUV420, /* YU12 */ 1241 DRM_FORMAT_YUV422, /* YU16 */ 1242 DRM_FORMAT_YUV444, /* YU24 */ 1243 /* semi-planar formats */ 1244 DRM_FORMAT_NV12, 1245 DRM_FORMAT_NV21, 1246 DRM_FORMAT_NV16, 1247 DRM_FORMAT_NV61, 1248 DRM_FORMAT_NV24, 1249 DRM_FORMAT_NV42, 1250 }; 1251 1252 static struct drm_plane *tegra_dc_overlay_plane_create(struct drm_device *drm, 1253 struct tegra_dc *dc, 1254 unsigned int index, 1255 bool cursor) 1256 { 1257 unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm); 1258 struct tegra_plane *plane; 1259 unsigned int num_formats; 1260 enum drm_plane_type type; 1261 const u32 *formats; 1262 int err; 1263 1264 plane = kzalloc(sizeof(*plane), GFP_KERNEL); 1265 if (!plane) 1266 return ERR_PTR(-ENOMEM); 1267 1268 plane->offset = 0xa00 + 0x200 * index; 1269 plane->index = index; 1270 plane->dc = dc; 1271 1272 num_formats = dc->soc->num_overlay_formats; 1273 formats = dc->soc->overlay_formats; 1274 1275 err = tegra_plane_interconnect_init(plane); 1276 if (err) { 1277 kfree(plane); 1278 return ERR_PTR(err); 1279 } 1280 1281 if (!cursor) 1282 type = DRM_PLANE_TYPE_OVERLAY; 1283 else 1284 type = DRM_PLANE_TYPE_CURSOR; 1285 1286 err = drm_universal_plane_init(drm, &plane->base, possible_crtcs, 1287 &tegra_plane_funcs, formats, 1288 num_formats, linear_modifiers, 1289 type, NULL); 1290 if (err < 0) { 1291 kfree(plane); 1292 return ERR_PTR(err); 1293 } 1294 1295 drm_plane_helper_add(&plane->base, &tegra_plane_helper_funcs); 1296 drm_plane_create_zpos_property(&plane->base, plane->index, 0, 255); 1297 1298 err = drm_plane_create_rotation_property(&plane->base, 1299 DRM_MODE_ROTATE_0, 1300 DRM_MODE_ROTATE_0 | 1301 DRM_MODE_ROTATE_180 | 1302 DRM_MODE_REFLECT_X | 1303 DRM_MODE_REFLECT_Y); 1304 if (err < 0) 1305 dev_err(dc->dev, "failed to create rotation property: %d\n", 1306 err); 1307 1308 return &plane->base; 1309 } 1310 1311 static struct drm_plane *tegra_dc_add_shared_planes(struct drm_device *drm, 1312 struct tegra_dc *dc) 1313 { 1314 struct drm_plane *plane, *primary = NULL; 1315 unsigned int i, j; 1316 1317 for (i = 0; i < dc->soc->num_wgrps; i++) { 1318 const struct tegra_windowgroup_soc *wgrp = &dc->soc->wgrps[i]; 1319 1320 if (wgrp->dc == dc->pipe) { 1321 for (j = 0; j < wgrp->num_windows; j++) { 1322 unsigned int index = wgrp->windows[j]; 1323 1324 plane = tegra_shared_plane_create(drm, dc, 1325 wgrp->index, 1326 index); 1327 if (IS_ERR(plane)) 1328 return plane; 1329 1330 /* 1331 * Choose the first shared plane owned by this 1332 * head as the primary plane. 1333 */ 1334 if (!primary) { 1335 plane->type = DRM_PLANE_TYPE_PRIMARY; 1336 primary = plane; 1337 } 1338 } 1339 } 1340 } 1341 1342 return primary; 1343 } 1344 1345 static struct drm_plane *tegra_dc_add_planes(struct drm_device *drm, 1346 struct tegra_dc *dc) 1347 { 1348 struct drm_plane *planes[2], *primary; 1349 unsigned int planes_num; 1350 unsigned int i; 1351 int err; 1352 1353 primary = tegra_primary_plane_create(drm, dc); 1354 if (IS_ERR(primary)) 1355 return primary; 1356 1357 if (dc->soc->supports_cursor) 1358 planes_num = 2; 1359 else 1360 planes_num = 1; 1361 1362 for (i = 0; i < planes_num; i++) { 1363 planes[i] = tegra_dc_overlay_plane_create(drm, dc, 1 + i, 1364 false); 1365 if (IS_ERR(planes[i])) { 1366 err = PTR_ERR(planes[i]); 1367 1368 while (i--) 1369 planes[i]->funcs->destroy(planes[i]); 1370 1371 primary->funcs->destroy(primary); 1372 return ERR_PTR(err); 1373 } 1374 } 1375 1376 return primary; 1377 } 1378 1379 static void tegra_dc_destroy(struct drm_crtc *crtc) 1380 { 1381 drm_crtc_cleanup(crtc); 1382 } 1383 1384 static void tegra_crtc_reset(struct drm_crtc *crtc) 1385 { 1386 struct tegra_dc_state *state = kzalloc(sizeof(*state), GFP_KERNEL); 1387 1388 if (crtc->state) 1389 tegra_crtc_atomic_destroy_state(crtc, crtc->state); 1390 1391 __drm_atomic_helper_crtc_reset(crtc, &state->base); 1392 } 1393 1394 static struct drm_crtc_state * 1395 tegra_crtc_atomic_duplicate_state(struct drm_crtc *crtc) 1396 { 1397 struct tegra_dc_state *state = to_dc_state(crtc->state); 1398 struct tegra_dc_state *copy; 1399 1400 copy = kmalloc(sizeof(*copy), GFP_KERNEL); 1401 if (!copy) 1402 return NULL; 1403 1404 __drm_atomic_helper_crtc_duplicate_state(crtc, ©->base); 1405 copy->clk = state->clk; 1406 copy->pclk = state->pclk; 1407 copy->div = state->div; 1408 copy->planes = state->planes; 1409 1410 return ©->base; 1411 } 1412 1413 static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc, 1414 struct drm_crtc_state *state) 1415 { 1416 __drm_atomic_helper_crtc_destroy_state(state); 1417 kfree(state); 1418 } 1419 1420 #define DEBUGFS_REG32(_name) { .name = #_name, .offset = _name } 1421 1422 static const struct debugfs_reg32 tegra_dc_regs[] = { 1423 DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT), 1424 DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT_CNTRL), 1425 DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT_ERROR), 1426 DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT), 1427 DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT_CNTRL), 1428 DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT_ERROR), 1429 DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT), 1430 DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT_CNTRL), 1431 DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT_ERROR), 1432 DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT), 1433 DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT_CNTRL), 1434 DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT_ERROR), 1435 DEBUGFS_REG32(DC_CMD_CONT_SYNCPT_VSYNC), 1436 DEBUGFS_REG32(DC_CMD_DISPLAY_COMMAND_OPTION0), 1437 DEBUGFS_REG32(DC_CMD_DISPLAY_COMMAND), 1438 DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE), 1439 DEBUGFS_REG32(DC_CMD_DISPLAY_POWER_CONTROL), 1440 DEBUGFS_REG32(DC_CMD_INT_STATUS), 1441 DEBUGFS_REG32(DC_CMD_INT_MASK), 1442 DEBUGFS_REG32(DC_CMD_INT_ENABLE), 1443 DEBUGFS_REG32(DC_CMD_INT_TYPE), 1444 DEBUGFS_REG32(DC_CMD_INT_POLARITY), 1445 DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE1), 1446 DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE2), 1447 DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE3), 1448 DEBUGFS_REG32(DC_CMD_STATE_ACCESS), 1449 DEBUGFS_REG32(DC_CMD_STATE_CONTROL), 1450 DEBUGFS_REG32(DC_CMD_DISPLAY_WINDOW_HEADER), 1451 DEBUGFS_REG32(DC_CMD_REG_ACT_CONTROL), 1452 DEBUGFS_REG32(DC_COM_CRC_CONTROL), 1453 DEBUGFS_REG32(DC_COM_CRC_CHECKSUM), 1454 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(0)), 1455 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(1)), 1456 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(2)), 1457 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(3)), 1458 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(0)), 1459 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(1)), 1460 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(2)), 1461 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(3)), 1462 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(0)), 1463 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(1)), 1464 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(2)), 1465 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(3)), 1466 DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(0)), 1467 DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(1)), 1468 DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(2)), 1469 DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(3)), 1470 DEBUGFS_REG32(DC_COM_PIN_INPUT_DATA(0)), 1471 DEBUGFS_REG32(DC_COM_PIN_INPUT_DATA(1)), 1472 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(0)), 1473 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(1)), 1474 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(2)), 1475 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(3)), 1476 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(4)), 1477 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(5)), 1478 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(6)), 1479 DEBUGFS_REG32(DC_COM_PIN_MISC_CONTROL), 1480 DEBUGFS_REG32(DC_COM_PIN_PM0_CONTROL), 1481 DEBUGFS_REG32(DC_COM_PIN_PM0_DUTY_CYCLE), 1482 DEBUGFS_REG32(DC_COM_PIN_PM1_CONTROL), 1483 DEBUGFS_REG32(DC_COM_PIN_PM1_DUTY_CYCLE), 1484 DEBUGFS_REG32(DC_COM_SPI_CONTROL), 1485 DEBUGFS_REG32(DC_COM_SPI_START_BYTE), 1486 DEBUGFS_REG32(DC_COM_HSPI_WRITE_DATA_AB), 1487 DEBUGFS_REG32(DC_COM_HSPI_WRITE_DATA_CD), 1488 DEBUGFS_REG32(DC_COM_HSPI_CS_DC), 1489 DEBUGFS_REG32(DC_COM_SCRATCH_REGISTER_A), 1490 DEBUGFS_REG32(DC_COM_SCRATCH_REGISTER_B), 1491 DEBUGFS_REG32(DC_COM_GPIO_CTRL), 1492 DEBUGFS_REG32(DC_COM_GPIO_DEBOUNCE_COUNTER), 1493 DEBUGFS_REG32(DC_COM_CRC_CHECKSUM_LATCHED), 1494 DEBUGFS_REG32(DC_DISP_DISP_SIGNAL_OPTIONS0), 1495 DEBUGFS_REG32(DC_DISP_DISP_SIGNAL_OPTIONS1), 1496 DEBUGFS_REG32(DC_DISP_DISP_WIN_OPTIONS), 1497 DEBUGFS_REG32(DC_DISP_DISP_MEM_HIGH_PRIORITY), 1498 DEBUGFS_REG32(DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER), 1499 DEBUGFS_REG32(DC_DISP_DISP_TIMING_OPTIONS), 1500 DEBUGFS_REG32(DC_DISP_REF_TO_SYNC), 1501 DEBUGFS_REG32(DC_DISP_SYNC_WIDTH), 1502 DEBUGFS_REG32(DC_DISP_BACK_PORCH), 1503 DEBUGFS_REG32(DC_DISP_ACTIVE), 1504 DEBUGFS_REG32(DC_DISP_FRONT_PORCH), 1505 DEBUGFS_REG32(DC_DISP_H_PULSE0_CONTROL), 1506 DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_A), 1507 DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_B), 1508 DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_C), 1509 DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_D), 1510 DEBUGFS_REG32(DC_DISP_H_PULSE1_CONTROL), 1511 DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_A), 1512 DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_B), 1513 DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_C), 1514 DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_D), 1515 DEBUGFS_REG32(DC_DISP_H_PULSE2_CONTROL), 1516 DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_A), 1517 DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_B), 1518 DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_C), 1519 DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_D), 1520 DEBUGFS_REG32(DC_DISP_V_PULSE0_CONTROL), 1521 DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_A), 1522 DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_B), 1523 DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_C), 1524 DEBUGFS_REG32(DC_DISP_V_PULSE1_CONTROL), 1525 DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_A), 1526 DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_B), 1527 DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_C), 1528 DEBUGFS_REG32(DC_DISP_V_PULSE2_CONTROL), 1529 DEBUGFS_REG32(DC_DISP_V_PULSE2_POSITION_A), 1530 DEBUGFS_REG32(DC_DISP_V_PULSE3_CONTROL), 1531 DEBUGFS_REG32(DC_DISP_V_PULSE3_POSITION_A), 1532 DEBUGFS_REG32(DC_DISP_M0_CONTROL), 1533 DEBUGFS_REG32(DC_DISP_M1_CONTROL), 1534 DEBUGFS_REG32(DC_DISP_DI_CONTROL), 1535 DEBUGFS_REG32(DC_DISP_PP_CONTROL), 1536 DEBUGFS_REG32(DC_DISP_PP_SELECT_A), 1537 DEBUGFS_REG32(DC_DISP_PP_SELECT_B), 1538 DEBUGFS_REG32(DC_DISP_PP_SELECT_C), 1539 DEBUGFS_REG32(DC_DISP_PP_SELECT_D), 1540 DEBUGFS_REG32(DC_DISP_DISP_CLOCK_CONTROL), 1541 DEBUGFS_REG32(DC_DISP_DISP_INTERFACE_CONTROL), 1542 DEBUGFS_REG32(DC_DISP_DISP_COLOR_CONTROL), 1543 DEBUGFS_REG32(DC_DISP_SHIFT_CLOCK_OPTIONS), 1544 DEBUGFS_REG32(DC_DISP_DATA_ENABLE_OPTIONS), 1545 DEBUGFS_REG32(DC_DISP_SERIAL_INTERFACE_OPTIONS), 1546 DEBUGFS_REG32(DC_DISP_LCD_SPI_OPTIONS), 1547 DEBUGFS_REG32(DC_DISP_BORDER_COLOR), 1548 DEBUGFS_REG32(DC_DISP_COLOR_KEY0_LOWER), 1549 DEBUGFS_REG32(DC_DISP_COLOR_KEY0_UPPER), 1550 DEBUGFS_REG32(DC_DISP_COLOR_KEY1_LOWER), 1551 DEBUGFS_REG32(DC_DISP_COLOR_KEY1_UPPER), 1552 DEBUGFS_REG32(DC_DISP_CURSOR_FOREGROUND), 1553 DEBUGFS_REG32(DC_DISP_CURSOR_BACKGROUND), 1554 DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR), 1555 DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR_NS), 1556 DEBUGFS_REG32(DC_DISP_CURSOR_POSITION), 1557 DEBUGFS_REG32(DC_DISP_CURSOR_POSITION_NS), 1558 DEBUGFS_REG32(DC_DISP_INIT_SEQ_CONTROL), 1559 DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_A), 1560 DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_B), 1561 DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_C), 1562 DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_D), 1563 DEBUGFS_REG32(DC_DISP_DC_MCCIF_FIFOCTRL), 1564 DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY0A_HYST), 1565 DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY0B_HYST), 1566 DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY1A_HYST), 1567 DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY1B_HYST), 1568 DEBUGFS_REG32(DC_DISP_DAC_CRT_CTRL), 1569 DEBUGFS_REG32(DC_DISP_DISP_MISC_CONTROL), 1570 DEBUGFS_REG32(DC_DISP_SD_CONTROL), 1571 DEBUGFS_REG32(DC_DISP_SD_CSC_COEFF), 1572 DEBUGFS_REG32(DC_DISP_SD_LUT(0)), 1573 DEBUGFS_REG32(DC_DISP_SD_LUT(1)), 1574 DEBUGFS_REG32(DC_DISP_SD_LUT(2)), 1575 DEBUGFS_REG32(DC_DISP_SD_LUT(3)), 1576 DEBUGFS_REG32(DC_DISP_SD_LUT(4)), 1577 DEBUGFS_REG32(DC_DISP_SD_LUT(5)), 1578 DEBUGFS_REG32(DC_DISP_SD_LUT(6)), 1579 DEBUGFS_REG32(DC_DISP_SD_LUT(7)), 1580 DEBUGFS_REG32(DC_DISP_SD_LUT(8)), 1581 DEBUGFS_REG32(DC_DISP_SD_FLICKER_CONTROL), 1582 DEBUGFS_REG32(DC_DISP_DC_PIXEL_COUNT), 1583 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(0)), 1584 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(1)), 1585 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(2)), 1586 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(3)), 1587 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(4)), 1588 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(5)), 1589 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(6)), 1590 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(7)), 1591 DEBUGFS_REG32(DC_DISP_SD_BL_TF(0)), 1592 DEBUGFS_REG32(DC_DISP_SD_BL_TF(1)), 1593 DEBUGFS_REG32(DC_DISP_SD_BL_TF(2)), 1594 DEBUGFS_REG32(DC_DISP_SD_BL_TF(3)), 1595 DEBUGFS_REG32(DC_DISP_SD_BL_CONTROL), 1596 DEBUGFS_REG32(DC_DISP_SD_HW_K_VALUES), 1597 DEBUGFS_REG32(DC_DISP_SD_MAN_K_VALUES), 1598 DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR_HI), 1599 DEBUGFS_REG32(DC_DISP_BLEND_CURSOR_CONTROL), 1600 DEBUGFS_REG32(DC_WIN_WIN_OPTIONS), 1601 DEBUGFS_REG32(DC_WIN_BYTE_SWAP), 1602 DEBUGFS_REG32(DC_WIN_BUFFER_CONTROL), 1603 DEBUGFS_REG32(DC_WIN_COLOR_DEPTH), 1604 DEBUGFS_REG32(DC_WIN_POSITION), 1605 DEBUGFS_REG32(DC_WIN_SIZE), 1606 DEBUGFS_REG32(DC_WIN_PRESCALED_SIZE), 1607 DEBUGFS_REG32(DC_WIN_H_INITIAL_DDA), 1608 DEBUGFS_REG32(DC_WIN_V_INITIAL_DDA), 1609 DEBUGFS_REG32(DC_WIN_DDA_INC), 1610 DEBUGFS_REG32(DC_WIN_LINE_STRIDE), 1611 DEBUGFS_REG32(DC_WIN_BUF_STRIDE), 1612 DEBUGFS_REG32(DC_WIN_UV_BUF_STRIDE), 1613 DEBUGFS_REG32(DC_WIN_BUFFER_ADDR_MODE), 1614 DEBUGFS_REG32(DC_WIN_DV_CONTROL), 1615 DEBUGFS_REG32(DC_WIN_BLEND_NOKEY), 1616 DEBUGFS_REG32(DC_WIN_BLEND_1WIN), 1617 DEBUGFS_REG32(DC_WIN_BLEND_2WIN_X), 1618 DEBUGFS_REG32(DC_WIN_BLEND_2WIN_Y), 1619 DEBUGFS_REG32(DC_WIN_BLEND_3WIN_XY), 1620 DEBUGFS_REG32(DC_WIN_HP_FETCH_CONTROL), 1621 DEBUGFS_REG32(DC_WINBUF_START_ADDR), 1622 DEBUGFS_REG32(DC_WINBUF_START_ADDR_NS), 1623 DEBUGFS_REG32(DC_WINBUF_START_ADDR_U), 1624 DEBUGFS_REG32(DC_WINBUF_START_ADDR_U_NS), 1625 DEBUGFS_REG32(DC_WINBUF_START_ADDR_V), 1626 DEBUGFS_REG32(DC_WINBUF_START_ADDR_V_NS), 1627 DEBUGFS_REG32(DC_WINBUF_ADDR_H_OFFSET), 1628 DEBUGFS_REG32(DC_WINBUF_ADDR_H_OFFSET_NS), 1629 DEBUGFS_REG32(DC_WINBUF_ADDR_V_OFFSET), 1630 DEBUGFS_REG32(DC_WINBUF_ADDR_V_OFFSET_NS), 1631 DEBUGFS_REG32(DC_WINBUF_UFLOW_STATUS), 1632 DEBUGFS_REG32(DC_WINBUF_AD_UFLOW_STATUS), 1633 DEBUGFS_REG32(DC_WINBUF_BD_UFLOW_STATUS), 1634 DEBUGFS_REG32(DC_WINBUF_CD_UFLOW_STATUS), 1635 }; 1636 1637 static int tegra_dc_show_regs(struct seq_file *s, void *data) 1638 { 1639 struct drm_info_node *node = s->private; 1640 struct tegra_dc *dc = node->info_ent->data; 1641 unsigned int i; 1642 int err = 0; 1643 1644 drm_modeset_lock(&dc->base.mutex, NULL); 1645 1646 if (!dc->base.state->active) { 1647 err = -EBUSY; 1648 goto unlock; 1649 } 1650 1651 for (i = 0; i < ARRAY_SIZE(tegra_dc_regs); i++) { 1652 unsigned int offset = tegra_dc_regs[i].offset; 1653 1654 seq_printf(s, "%-40s %#05x %08x\n", tegra_dc_regs[i].name, 1655 offset, tegra_dc_readl(dc, offset)); 1656 } 1657 1658 unlock: 1659 drm_modeset_unlock(&dc->base.mutex); 1660 return err; 1661 } 1662 1663 static int tegra_dc_show_crc(struct seq_file *s, void *data) 1664 { 1665 struct drm_info_node *node = s->private; 1666 struct tegra_dc *dc = node->info_ent->data; 1667 int err = 0; 1668 u32 value; 1669 1670 drm_modeset_lock(&dc->base.mutex, NULL); 1671 1672 if (!dc->base.state->active) { 1673 err = -EBUSY; 1674 goto unlock; 1675 } 1676 1677 value = DC_COM_CRC_CONTROL_ACTIVE_DATA | DC_COM_CRC_CONTROL_ENABLE; 1678 tegra_dc_writel(dc, value, DC_COM_CRC_CONTROL); 1679 tegra_dc_commit(dc); 1680 1681 drm_crtc_wait_one_vblank(&dc->base); 1682 drm_crtc_wait_one_vblank(&dc->base); 1683 1684 value = tegra_dc_readl(dc, DC_COM_CRC_CHECKSUM); 1685 seq_printf(s, "%08x\n", value); 1686 1687 tegra_dc_writel(dc, 0, DC_COM_CRC_CONTROL); 1688 1689 unlock: 1690 drm_modeset_unlock(&dc->base.mutex); 1691 return err; 1692 } 1693 1694 static int tegra_dc_show_stats(struct seq_file *s, void *data) 1695 { 1696 struct drm_info_node *node = s->private; 1697 struct tegra_dc *dc = node->info_ent->data; 1698 1699 seq_printf(s, "frames: %lu\n", dc->stats.frames); 1700 seq_printf(s, "vblank: %lu\n", dc->stats.vblank); 1701 seq_printf(s, "underflow: %lu\n", dc->stats.underflow); 1702 seq_printf(s, "overflow: %lu\n", dc->stats.overflow); 1703 1704 seq_printf(s, "frames total: %lu\n", dc->stats.frames_total); 1705 seq_printf(s, "vblank total: %lu\n", dc->stats.vblank_total); 1706 seq_printf(s, "underflow total: %lu\n", dc->stats.underflow_total); 1707 seq_printf(s, "overflow total: %lu\n", dc->stats.overflow_total); 1708 1709 return 0; 1710 } 1711 1712 static struct drm_info_list debugfs_files[] = { 1713 { "regs", tegra_dc_show_regs, 0, NULL }, 1714 { "crc", tegra_dc_show_crc, 0, NULL }, 1715 { "stats", tegra_dc_show_stats, 0, NULL }, 1716 }; 1717 1718 static int tegra_dc_late_register(struct drm_crtc *crtc) 1719 { 1720 unsigned int i, count = ARRAY_SIZE(debugfs_files); 1721 struct drm_minor *minor = crtc->dev->primary; 1722 struct dentry *root; 1723 struct tegra_dc *dc = to_tegra_dc(crtc); 1724 1725 #ifdef CONFIG_DEBUG_FS 1726 root = crtc->debugfs_entry; 1727 #else 1728 root = NULL; 1729 #endif 1730 1731 dc->debugfs_files = kmemdup(debugfs_files, sizeof(debugfs_files), 1732 GFP_KERNEL); 1733 if (!dc->debugfs_files) 1734 return -ENOMEM; 1735 1736 for (i = 0; i < count; i++) 1737 dc->debugfs_files[i].data = dc; 1738 1739 drm_debugfs_create_files(dc->debugfs_files, count, root, minor); 1740 1741 return 0; 1742 } 1743 1744 static void tegra_dc_early_unregister(struct drm_crtc *crtc) 1745 { 1746 unsigned int count = ARRAY_SIZE(debugfs_files); 1747 struct drm_minor *minor = crtc->dev->primary; 1748 struct tegra_dc *dc = to_tegra_dc(crtc); 1749 1750 drm_debugfs_remove_files(dc->debugfs_files, count, minor); 1751 kfree(dc->debugfs_files); 1752 dc->debugfs_files = NULL; 1753 } 1754 1755 static u32 tegra_dc_get_vblank_counter(struct drm_crtc *crtc) 1756 { 1757 struct tegra_dc *dc = to_tegra_dc(crtc); 1758 1759 /* XXX vblank syncpoints don't work with nvdisplay yet */ 1760 if (dc->syncpt && !dc->soc->has_nvdisplay) 1761 return host1x_syncpt_read(dc->syncpt); 1762 1763 /* fallback to software emulated VBLANK counter */ 1764 return (u32)drm_crtc_vblank_count(&dc->base); 1765 } 1766 1767 static int tegra_dc_enable_vblank(struct drm_crtc *crtc) 1768 { 1769 struct tegra_dc *dc = to_tegra_dc(crtc); 1770 u32 value; 1771 1772 value = tegra_dc_readl(dc, DC_CMD_INT_MASK); 1773 value |= VBLANK_INT; 1774 tegra_dc_writel(dc, value, DC_CMD_INT_MASK); 1775 1776 return 0; 1777 } 1778 1779 static void tegra_dc_disable_vblank(struct drm_crtc *crtc) 1780 { 1781 struct tegra_dc *dc = to_tegra_dc(crtc); 1782 u32 value; 1783 1784 value = tegra_dc_readl(dc, DC_CMD_INT_MASK); 1785 value &= ~VBLANK_INT; 1786 tegra_dc_writel(dc, value, DC_CMD_INT_MASK); 1787 } 1788 1789 static const struct drm_crtc_funcs tegra_crtc_funcs = { 1790 .page_flip = drm_atomic_helper_page_flip, 1791 .set_config = drm_atomic_helper_set_config, 1792 .destroy = tegra_dc_destroy, 1793 .reset = tegra_crtc_reset, 1794 .atomic_duplicate_state = tegra_crtc_atomic_duplicate_state, 1795 .atomic_destroy_state = tegra_crtc_atomic_destroy_state, 1796 .late_register = tegra_dc_late_register, 1797 .early_unregister = tegra_dc_early_unregister, 1798 .get_vblank_counter = tegra_dc_get_vblank_counter, 1799 .enable_vblank = tegra_dc_enable_vblank, 1800 .disable_vblank = tegra_dc_disable_vblank, 1801 }; 1802 1803 static int tegra_dc_set_timings(struct tegra_dc *dc, 1804 struct drm_display_mode *mode) 1805 { 1806 unsigned int h_ref_to_sync = 1; 1807 unsigned int v_ref_to_sync = 1; 1808 unsigned long value; 1809 1810 if (!dc->soc->has_nvdisplay) { 1811 tegra_dc_writel(dc, 0x0, DC_DISP_DISP_TIMING_OPTIONS); 1812 1813 value = (v_ref_to_sync << 16) | h_ref_to_sync; 1814 tegra_dc_writel(dc, value, DC_DISP_REF_TO_SYNC); 1815 } 1816 1817 value = ((mode->vsync_end - mode->vsync_start) << 16) | 1818 ((mode->hsync_end - mode->hsync_start) << 0); 1819 tegra_dc_writel(dc, value, DC_DISP_SYNC_WIDTH); 1820 1821 value = ((mode->vtotal - mode->vsync_end) << 16) | 1822 ((mode->htotal - mode->hsync_end) << 0); 1823 tegra_dc_writel(dc, value, DC_DISP_BACK_PORCH); 1824 1825 value = ((mode->vsync_start - mode->vdisplay) << 16) | 1826 ((mode->hsync_start - mode->hdisplay) << 0); 1827 tegra_dc_writel(dc, value, DC_DISP_FRONT_PORCH); 1828 1829 value = (mode->vdisplay << 16) | mode->hdisplay; 1830 tegra_dc_writel(dc, value, DC_DISP_ACTIVE); 1831 1832 return 0; 1833 } 1834 1835 /** 1836 * tegra_dc_state_setup_clock - check clock settings and store them in atomic 1837 * state 1838 * @dc: display controller 1839 * @crtc_state: CRTC atomic state 1840 * @clk: parent clock for display controller 1841 * @pclk: pixel clock 1842 * @div: shift clock divider 1843 * 1844 * Returns: 1845 * 0 on success or a negative error-code on failure. 1846 */ 1847 int tegra_dc_state_setup_clock(struct tegra_dc *dc, 1848 struct drm_crtc_state *crtc_state, 1849 struct clk *clk, unsigned long pclk, 1850 unsigned int div) 1851 { 1852 struct tegra_dc_state *state = to_dc_state(crtc_state); 1853 1854 if (!clk_has_parent(dc->clk, clk)) 1855 return -EINVAL; 1856 1857 state->clk = clk; 1858 state->pclk = pclk; 1859 state->div = div; 1860 1861 return 0; 1862 } 1863 1864 static void tegra_dc_update_voltage_state(struct tegra_dc *dc, 1865 struct tegra_dc_state *state) 1866 { 1867 unsigned long rate, pstate; 1868 struct dev_pm_opp *opp; 1869 int err; 1870 1871 if (!dc->has_opp_table) 1872 return; 1873 1874 /* calculate actual pixel clock rate which depends on internal divider */ 1875 rate = DIV_ROUND_UP(clk_get_rate(dc->clk) * 2, state->div + 2); 1876 1877 /* find suitable OPP for the rate */ 1878 opp = dev_pm_opp_find_freq_ceil(dc->dev, &rate); 1879 1880 /* 1881 * Very high resolution modes may results in a clock rate that is 1882 * above the characterized maximum. In this case it's okay to fall 1883 * back to the characterized maximum. 1884 */ 1885 if (opp == ERR_PTR(-ERANGE)) 1886 opp = dev_pm_opp_find_freq_floor(dc->dev, &rate); 1887 1888 if (IS_ERR(opp)) { 1889 dev_err(dc->dev, "failed to find OPP for %luHz: %pe\n", 1890 rate, opp); 1891 return; 1892 } 1893 1894 pstate = dev_pm_opp_get_required_pstate(opp, 0); 1895 dev_pm_opp_put(opp); 1896 1897 /* 1898 * The minimum core voltage depends on the pixel clock rate (which 1899 * depends on internal clock divider of the CRTC) and not on the 1900 * rate of the display controller clock. This is why we're not using 1901 * dev_pm_opp_set_rate() API and instead controlling the power domain 1902 * directly. 1903 */ 1904 err = dev_pm_genpd_set_performance_state(dc->dev, pstate); 1905 if (err) 1906 dev_err(dc->dev, "failed to set power domain state to %lu: %d\n", 1907 pstate, err); 1908 } 1909 1910 static void tegra_dc_set_clock_rate(struct tegra_dc *dc, 1911 struct tegra_dc_state *state) 1912 { 1913 int err; 1914 1915 err = clk_set_parent(dc->clk, state->clk); 1916 if (err < 0) 1917 dev_err(dc->dev, "failed to set parent clock: %d\n", err); 1918 1919 /* 1920 * Outputs may not want to change the parent clock rate. This is only 1921 * relevant to Tegra20 where only a single display PLL is available. 1922 * Since that PLL would typically be used for HDMI, an internal LVDS 1923 * panel would need to be driven by some other clock such as PLL_P 1924 * which is shared with other peripherals. Changing the clock rate 1925 * should therefore be avoided. 1926 */ 1927 if (state->pclk > 0) { 1928 err = clk_set_rate(state->clk, state->pclk); 1929 if (err < 0) 1930 dev_err(dc->dev, 1931 "failed to set clock rate to %lu Hz\n", 1932 state->pclk); 1933 1934 err = clk_set_rate(dc->clk, state->pclk); 1935 if (err < 0) 1936 dev_err(dc->dev, "failed to set clock %pC to %lu Hz: %d\n", 1937 dc->clk, state->pclk, err); 1938 } 1939 1940 DRM_DEBUG_KMS("rate: %lu, div: %u\n", clk_get_rate(dc->clk), 1941 state->div); 1942 DRM_DEBUG_KMS("pclk: %lu\n", state->pclk); 1943 1944 tegra_dc_update_voltage_state(dc, state); 1945 } 1946 1947 static void tegra_dc_stop(struct tegra_dc *dc) 1948 { 1949 u32 value; 1950 1951 /* stop the display controller */ 1952 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND); 1953 value &= ~DISP_CTRL_MODE_MASK; 1954 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND); 1955 1956 tegra_dc_commit(dc); 1957 } 1958 1959 static bool tegra_dc_idle(struct tegra_dc *dc) 1960 { 1961 u32 value; 1962 1963 value = tegra_dc_readl_active(dc, DC_CMD_DISPLAY_COMMAND); 1964 1965 return (value & DISP_CTRL_MODE_MASK) == 0; 1966 } 1967 1968 static int tegra_dc_wait_idle(struct tegra_dc *dc, unsigned long timeout) 1969 { 1970 timeout = jiffies + msecs_to_jiffies(timeout); 1971 1972 while (time_before(jiffies, timeout)) { 1973 if (tegra_dc_idle(dc)) 1974 return 0; 1975 1976 usleep_range(1000, 2000); 1977 } 1978 1979 dev_dbg(dc->dev, "timeout waiting for DC to become idle\n"); 1980 return -ETIMEDOUT; 1981 } 1982 1983 static void 1984 tegra_crtc_update_memory_bandwidth(struct drm_crtc *crtc, 1985 struct drm_atomic_state *state, 1986 bool prepare_bandwidth_transition) 1987 { 1988 const struct tegra_plane_state *old_tegra_state, *new_tegra_state; 1989 u32 i, new_avg_bw, old_avg_bw, new_peak_bw, old_peak_bw; 1990 const struct drm_plane_state *old_plane_state; 1991 const struct drm_crtc_state *old_crtc_state; 1992 struct tegra_dc_window window, old_window; 1993 struct tegra_dc *dc = to_tegra_dc(crtc); 1994 struct tegra_plane *tegra; 1995 struct drm_plane *plane; 1996 1997 if (dc->soc->has_nvdisplay) 1998 return; 1999 2000 old_crtc_state = drm_atomic_get_old_crtc_state(state, crtc); 2001 2002 if (!crtc->state->active) { 2003 if (!old_crtc_state->active) 2004 return; 2005 2006 /* 2007 * When CRTC is disabled on DPMS, the state of attached planes 2008 * is kept unchanged. Hence we need to enforce removal of the 2009 * bandwidths from the ICC paths. 2010 */ 2011 drm_atomic_crtc_for_each_plane(plane, crtc) { 2012 tegra = to_tegra_plane(plane); 2013 2014 icc_set_bw(tegra->icc_mem, 0, 0); 2015 icc_set_bw(tegra->icc_mem_vfilter, 0, 0); 2016 } 2017 2018 return; 2019 } 2020 2021 for_each_old_plane_in_state(old_crtc_state->state, plane, 2022 old_plane_state, i) { 2023 old_tegra_state = to_const_tegra_plane_state(old_plane_state); 2024 new_tegra_state = to_const_tegra_plane_state(plane->state); 2025 tegra = to_tegra_plane(plane); 2026 2027 /* 2028 * We're iterating over the global atomic state and it contains 2029 * planes from another CRTC, hence we need to filter out the 2030 * planes unrelated to this CRTC. 2031 */ 2032 if (tegra->dc != dc) 2033 continue; 2034 2035 new_avg_bw = new_tegra_state->avg_memory_bandwidth; 2036 old_avg_bw = old_tegra_state->avg_memory_bandwidth; 2037 2038 new_peak_bw = new_tegra_state->total_peak_memory_bandwidth; 2039 old_peak_bw = old_tegra_state->total_peak_memory_bandwidth; 2040 2041 /* 2042 * See the comment related to !crtc->state->active above, 2043 * which explains why bandwidths need to be updated when 2044 * CRTC is turning ON. 2045 */ 2046 if (new_avg_bw == old_avg_bw && new_peak_bw == old_peak_bw && 2047 old_crtc_state->active) 2048 continue; 2049 2050 window.src.h = drm_rect_height(&plane->state->src) >> 16; 2051 window.dst.h = drm_rect_height(&plane->state->dst); 2052 2053 old_window.src.h = drm_rect_height(&old_plane_state->src) >> 16; 2054 old_window.dst.h = drm_rect_height(&old_plane_state->dst); 2055 2056 /* 2057 * During the preparation phase (atomic_begin), the memory 2058 * freq should go high before the DC changes are committed 2059 * if bandwidth requirement goes up, otherwise memory freq 2060 * should to stay high if BW requirement goes down. The 2061 * opposite applies to the completion phase (post_commit). 2062 */ 2063 if (prepare_bandwidth_transition) { 2064 new_avg_bw = max(old_avg_bw, new_avg_bw); 2065 new_peak_bw = max(old_peak_bw, new_peak_bw); 2066 2067 if (tegra_plane_use_vertical_filtering(tegra, &old_window)) 2068 window = old_window; 2069 } 2070 2071 icc_set_bw(tegra->icc_mem, new_avg_bw, new_peak_bw); 2072 2073 if (tegra_plane_use_vertical_filtering(tegra, &window)) 2074 icc_set_bw(tegra->icc_mem_vfilter, new_avg_bw, new_peak_bw); 2075 else 2076 icc_set_bw(tegra->icc_mem_vfilter, 0, 0); 2077 } 2078 } 2079 2080 static void tegra_crtc_atomic_disable(struct drm_crtc *crtc, 2081 struct drm_atomic_state *state) 2082 { 2083 struct tegra_dc *dc = to_tegra_dc(crtc); 2084 u32 value; 2085 int err; 2086 2087 if (!tegra_dc_idle(dc)) { 2088 tegra_dc_stop(dc); 2089 2090 /* 2091 * Ignore the return value, there isn't anything useful to do 2092 * in case this fails. 2093 */ 2094 tegra_dc_wait_idle(dc, 100); 2095 } 2096 2097 /* 2098 * This should really be part of the RGB encoder driver, but clearing 2099 * these bits has the side-effect of stopping the display controller. 2100 * When that happens no VBLANK interrupts will be raised. At the same 2101 * time the encoder is disabled before the display controller, so the 2102 * above code is always going to timeout waiting for the controller 2103 * to go idle. 2104 * 2105 * Given the close coupling between the RGB encoder and the display 2106 * controller doing it here is still kind of okay. None of the other 2107 * encoder drivers require these bits to be cleared. 2108 * 2109 * XXX: Perhaps given that the display controller is switched off at 2110 * this point anyway maybe clearing these bits isn't even useful for 2111 * the RGB encoder? 2112 */ 2113 if (dc->rgb) { 2114 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL); 2115 value &= ~(PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE | 2116 PW4_ENABLE | PM0_ENABLE | PM1_ENABLE); 2117 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL); 2118 } 2119 2120 tegra_dc_stats_reset(&dc->stats); 2121 drm_crtc_vblank_off(crtc); 2122 2123 spin_lock_irq(&crtc->dev->event_lock); 2124 2125 if (crtc->state->event) { 2126 drm_crtc_send_vblank_event(crtc, crtc->state->event); 2127 crtc->state->event = NULL; 2128 } 2129 2130 spin_unlock_irq(&crtc->dev->event_lock); 2131 2132 err = host1x_client_suspend(&dc->client); 2133 if (err < 0) 2134 dev_err(dc->dev, "failed to suspend: %d\n", err); 2135 2136 if (dc->has_opp_table) { 2137 err = dev_pm_genpd_set_performance_state(dc->dev, 0); 2138 if (err) 2139 dev_err(dc->dev, 2140 "failed to clear power domain state: %d\n", err); 2141 } 2142 } 2143 2144 static void tegra_crtc_atomic_enable(struct drm_crtc *crtc, 2145 struct drm_atomic_state *state) 2146 { 2147 struct drm_display_mode *mode = &crtc->state->adjusted_mode; 2148 struct tegra_dc_state *crtc_state = to_dc_state(crtc->state); 2149 struct tegra_dc *dc = to_tegra_dc(crtc); 2150 u32 value; 2151 int err; 2152 2153 /* apply PLL changes */ 2154 tegra_dc_set_clock_rate(dc, crtc_state); 2155 2156 err = host1x_client_resume(&dc->client); 2157 if (err < 0) { 2158 dev_err(dc->dev, "failed to resume: %d\n", err); 2159 return; 2160 } 2161 2162 /* initialize display controller */ 2163 if (dc->syncpt) { 2164 u32 syncpt = host1x_syncpt_id(dc->syncpt), enable; 2165 2166 if (dc->soc->has_nvdisplay) 2167 enable = 1 << 31; 2168 else 2169 enable = 1 << 8; 2170 2171 value = SYNCPT_CNTRL_NO_STALL; 2172 tegra_dc_writel(dc, value, DC_CMD_GENERAL_INCR_SYNCPT_CNTRL); 2173 2174 value = enable | syncpt; 2175 tegra_dc_writel(dc, value, DC_CMD_CONT_SYNCPT_VSYNC); 2176 } 2177 2178 if (dc->soc->has_nvdisplay) { 2179 value = DSC_TO_UF_INT | DSC_BBUF_UF_INT | DSC_RBUF_UF_INT | 2180 DSC_OBUF_UF_INT; 2181 tegra_dc_writel(dc, value, DC_CMD_INT_TYPE); 2182 2183 value = DSC_TO_UF_INT | DSC_BBUF_UF_INT | DSC_RBUF_UF_INT | 2184 DSC_OBUF_UF_INT | SD3_BUCKET_WALK_DONE_INT | 2185 HEAD_UF_INT | MSF_INT | REG_TMOUT_INT | 2186 REGION_CRC_INT | V_PULSE2_INT | V_PULSE3_INT | 2187 VBLANK_INT | FRAME_END_INT; 2188 tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY); 2189 2190 value = SD3_BUCKET_WALK_DONE_INT | HEAD_UF_INT | VBLANK_INT | 2191 FRAME_END_INT; 2192 tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE); 2193 2194 value = HEAD_UF_INT | REG_TMOUT_INT | FRAME_END_INT; 2195 tegra_dc_writel(dc, value, DC_CMD_INT_MASK); 2196 2197 tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS); 2198 } else { 2199 value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT | 2200 WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT; 2201 tegra_dc_writel(dc, value, DC_CMD_INT_TYPE); 2202 2203 value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT | 2204 WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT; 2205 tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY); 2206 2207 /* initialize timer */ 2208 value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(0x20) | 2209 WINDOW_B_THRESHOLD(0x20) | WINDOW_C_THRESHOLD(0x20); 2210 tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY); 2211 2212 value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(1) | 2213 WINDOW_B_THRESHOLD(1) | WINDOW_C_THRESHOLD(1); 2214 tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER); 2215 2216 value = VBLANK_INT | WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT | 2217 WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT; 2218 tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE); 2219 2220 value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT | 2221 WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT; 2222 tegra_dc_writel(dc, value, DC_CMD_INT_MASK); 2223 } 2224 2225 if (dc->soc->supports_background_color) 2226 tegra_dc_writel(dc, 0, DC_DISP_BLEND_BACKGROUND_COLOR); 2227 else 2228 tegra_dc_writel(dc, 0, DC_DISP_BORDER_COLOR); 2229 2230 /* apply pixel clock changes */ 2231 if (!dc->soc->has_nvdisplay) { 2232 value = SHIFT_CLK_DIVIDER(crtc_state->div) | PIXEL_CLK_DIVIDER_PCD1; 2233 tegra_dc_writel(dc, value, DC_DISP_DISP_CLOCK_CONTROL); 2234 } 2235 2236 /* program display mode */ 2237 tegra_dc_set_timings(dc, mode); 2238 2239 /* interlacing isn't supported yet, so disable it */ 2240 if (dc->soc->supports_interlacing) { 2241 value = tegra_dc_readl(dc, DC_DISP_INTERLACE_CONTROL); 2242 value &= ~INTERLACE_ENABLE; 2243 tegra_dc_writel(dc, value, DC_DISP_INTERLACE_CONTROL); 2244 } 2245 2246 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND); 2247 value &= ~DISP_CTRL_MODE_MASK; 2248 value |= DISP_CTRL_MODE_C_DISPLAY; 2249 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND); 2250 2251 if (!dc->soc->has_nvdisplay) { 2252 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL); 2253 value |= PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE | 2254 PW4_ENABLE | PM0_ENABLE | PM1_ENABLE; 2255 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL); 2256 } 2257 2258 /* enable underflow reporting and display red for missing pixels */ 2259 if (dc->soc->has_nvdisplay) { 2260 value = UNDERFLOW_MODE_RED | UNDERFLOW_REPORT_ENABLE; 2261 tegra_dc_writel(dc, value, DC_COM_RG_UNDERFLOW); 2262 } 2263 2264 if (dc->rgb) { 2265 /* XXX: parameterize? */ 2266 value = SC0_H_QUALIFIER_NONE | SC1_H_QUALIFIER_NONE; 2267 tegra_dc_writel(dc, value, DC_DISP_SHIFT_CLOCK_OPTIONS); 2268 } 2269 2270 tegra_dc_commit(dc); 2271 2272 drm_crtc_vblank_on(crtc); 2273 } 2274 2275 static void tegra_crtc_atomic_begin(struct drm_crtc *crtc, 2276 struct drm_atomic_state *state) 2277 { 2278 unsigned long flags; 2279 2280 tegra_crtc_update_memory_bandwidth(crtc, state, true); 2281 2282 if (crtc->state->event) { 2283 spin_lock_irqsave(&crtc->dev->event_lock, flags); 2284 2285 if (drm_crtc_vblank_get(crtc) != 0) 2286 drm_crtc_send_vblank_event(crtc, crtc->state->event); 2287 else 2288 drm_crtc_arm_vblank_event(crtc, crtc->state->event); 2289 2290 spin_unlock_irqrestore(&crtc->dev->event_lock, flags); 2291 2292 crtc->state->event = NULL; 2293 } 2294 } 2295 2296 static void tegra_crtc_atomic_flush(struct drm_crtc *crtc, 2297 struct drm_atomic_state *state) 2298 { 2299 struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state, 2300 crtc); 2301 struct tegra_dc_state *dc_state = to_dc_state(crtc_state); 2302 struct tegra_dc *dc = to_tegra_dc(crtc); 2303 u32 value; 2304 2305 value = dc_state->planes << 8 | GENERAL_UPDATE; 2306 tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL); 2307 value = tegra_dc_readl(dc, DC_CMD_STATE_CONTROL); 2308 2309 value = dc_state->planes | GENERAL_ACT_REQ; 2310 tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL); 2311 value = tegra_dc_readl(dc, DC_CMD_STATE_CONTROL); 2312 } 2313 2314 static bool tegra_plane_is_cursor(const struct drm_plane_state *state) 2315 { 2316 const struct tegra_dc_soc_info *soc = to_tegra_dc(state->crtc)->soc; 2317 const struct drm_format_info *fmt = state->fb->format; 2318 unsigned int src_w = drm_rect_width(&state->src) >> 16; 2319 unsigned int dst_w = drm_rect_width(&state->dst); 2320 2321 if (state->plane->type != DRM_PLANE_TYPE_CURSOR) 2322 return false; 2323 2324 if (soc->supports_cursor) 2325 return true; 2326 2327 if (src_w != dst_w || fmt->num_planes != 1 || src_w * fmt->cpp[0] > 256) 2328 return false; 2329 2330 return true; 2331 } 2332 2333 static unsigned long 2334 tegra_plane_overlap_mask(struct drm_crtc_state *state, 2335 const struct drm_plane_state *plane_state) 2336 { 2337 const struct drm_plane_state *other_state; 2338 const struct tegra_plane *tegra; 2339 unsigned long overlap_mask = 0; 2340 struct drm_plane *plane; 2341 struct drm_rect rect; 2342 2343 if (!plane_state->visible || !plane_state->fb) 2344 return 0; 2345 2346 /* 2347 * Data-prefetch FIFO will easily help to overcome temporal memory 2348 * pressure if other plane overlaps with the cursor plane. 2349 */ 2350 if (tegra_plane_is_cursor(plane_state)) 2351 return 0; 2352 2353 drm_atomic_crtc_state_for_each_plane_state(plane, other_state, state) { 2354 rect = plane_state->dst; 2355 2356 tegra = to_tegra_plane(other_state->plane); 2357 2358 if (!other_state->visible || !other_state->fb) 2359 continue; 2360 2361 /* 2362 * Ignore cursor plane overlaps because it's not practical to 2363 * assume that it contributes to the bandwidth in overlapping 2364 * area if window width is small. 2365 */ 2366 if (tegra_plane_is_cursor(other_state)) 2367 continue; 2368 2369 if (drm_rect_intersect(&rect, &other_state->dst)) 2370 overlap_mask |= BIT(tegra->index); 2371 } 2372 2373 return overlap_mask; 2374 } 2375 2376 static int tegra_crtc_calculate_memory_bandwidth(struct drm_crtc *crtc, 2377 struct drm_atomic_state *state) 2378 { 2379 ulong overlap_mask[TEGRA_DC_LEGACY_PLANES_NUM] = {}, mask; 2380 u32 plane_peak_bw[TEGRA_DC_LEGACY_PLANES_NUM] = {}; 2381 bool all_planes_overlap_simultaneously = true; 2382 const struct tegra_plane_state *tegra_state; 2383 const struct drm_plane_state *plane_state; 2384 struct tegra_dc *dc = to_tegra_dc(crtc); 2385 const struct drm_crtc_state *old_state; 2386 struct drm_crtc_state *new_state; 2387 struct tegra_plane *tegra; 2388 struct drm_plane *plane; 2389 2390 /* 2391 * The nv-display uses shared planes. The algorithm below assumes 2392 * maximum 3 planes per-CRTC, this assumption isn't applicable to 2393 * the nv-display. Note that T124 support has additional windows, 2394 * but currently they aren't supported by the driver. 2395 */ 2396 if (dc->soc->has_nvdisplay) 2397 return 0; 2398 2399 new_state = drm_atomic_get_new_crtc_state(state, crtc); 2400 old_state = drm_atomic_get_old_crtc_state(state, crtc); 2401 2402 /* 2403 * For overlapping planes pixel's data is fetched for each plane at 2404 * the same time, hence bandwidths are accumulated in this case. 2405 * This needs to be taken into account for calculating total bandwidth 2406 * consumed by all planes. 2407 * 2408 * Here we get the overlapping state of each plane, which is a 2409 * bitmask of plane indices telling with what planes there is an 2410 * overlap. Note that bitmask[plane] includes BIT(plane) in order 2411 * to make further code nicer and simpler. 2412 */ 2413 drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, new_state) { 2414 tegra_state = to_const_tegra_plane_state(plane_state); 2415 tegra = to_tegra_plane(plane); 2416 2417 if (WARN_ON_ONCE(tegra->index >= TEGRA_DC_LEGACY_PLANES_NUM)) 2418 return -EINVAL; 2419 2420 plane_peak_bw[tegra->index] = tegra_state->peak_memory_bandwidth; 2421 mask = tegra_plane_overlap_mask(new_state, plane_state); 2422 overlap_mask[tegra->index] = mask; 2423 2424 if (hweight_long(mask) != 3) 2425 all_planes_overlap_simultaneously = false; 2426 } 2427 2428 /* 2429 * Then we calculate maximum bandwidth of each plane state. 2430 * The bandwidth includes the plane BW + BW of the "simultaneously" 2431 * overlapping planes, where "simultaneously" means areas where DC 2432 * fetches from the planes simultaneously during of scan-out process. 2433 * 2434 * For example, if plane A overlaps with planes B and C, but B and C 2435 * don't overlap, then the peak bandwidth will be either in area where 2436 * A-and-B or A-and-C planes overlap. 2437 * 2438 * The plane_peak_bw[] contains peak memory bandwidth values of 2439 * each plane, this information is needed by interconnect provider 2440 * in order to set up latency allowance based on the peak BW, see 2441 * tegra_crtc_update_memory_bandwidth(). 2442 */ 2443 drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, new_state) { 2444 u32 i, old_peak_bw, new_peak_bw, overlap_bw = 0; 2445 2446 /* 2447 * Note that plane's atomic check doesn't touch the 2448 * total_peak_memory_bandwidth of enabled plane, hence the 2449 * current state contains the old bandwidth state from the 2450 * previous CRTC commit. 2451 */ 2452 tegra_state = to_const_tegra_plane_state(plane_state); 2453 tegra = to_tegra_plane(plane); 2454 2455 for_each_set_bit(i, &overlap_mask[tegra->index], 3) { 2456 if (i == tegra->index) 2457 continue; 2458 2459 if (all_planes_overlap_simultaneously) 2460 overlap_bw += plane_peak_bw[i]; 2461 else 2462 overlap_bw = max(overlap_bw, plane_peak_bw[i]); 2463 } 2464 2465 new_peak_bw = plane_peak_bw[tegra->index] + overlap_bw; 2466 old_peak_bw = tegra_state->total_peak_memory_bandwidth; 2467 2468 /* 2469 * If plane's peak bandwidth changed (for example plane isn't 2470 * overlapped anymore) and plane isn't in the atomic state, 2471 * then add plane to the state in order to have the bandwidth 2472 * updated. 2473 */ 2474 if (old_peak_bw != new_peak_bw) { 2475 struct tegra_plane_state *new_tegra_state; 2476 struct drm_plane_state *new_plane_state; 2477 2478 new_plane_state = drm_atomic_get_plane_state(state, plane); 2479 if (IS_ERR(new_plane_state)) 2480 return PTR_ERR(new_plane_state); 2481 2482 new_tegra_state = to_tegra_plane_state(new_plane_state); 2483 new_tegra_state->total_peak_memory_bandwidth = new_peak_bw; 2484 } 2485 } 2486 2487 return 0; 2488 } 2489 2490 static int tegra_crtc_atomic_check(struct drm_crtc *crtc, 2491 struct drm_atomic_state *state) 2492 { 2493 int err; 2494 2495 err = tegra_crtc_calculate_memory_bandwidth(crtc, state); 2496 if (err) 2497 return err; 2498 2499 return 0; 2500 } 2501 2502 void tegra_crtc_atomic_post_commit(struct drm_crtc *crtc, 2503 struct drm_atomic_state *state) 2504 { 2505 /* 2506 * Display bandwidth is allowed to go down only once hardware state 2507 * is known to be armed, i.e. state was committed and VBLANK event 2508 * received. 2509 */ 2510 tegra_crtc_update_memory_bandwidth(crtc, state, false); 2511 } 2512 2513 static const struct drm_crtc_helper_funcs tegra_crtc_helper_funcs = { 2514 .atomic_check = tegra_crtc_atomic_check, 2515 .atomic_begin = tegra_crtc_atomic_begin, 2516 .atomic_flush = tegra_crtc_atomic_flush, 2517 .atomic_enable = tegra_crtc_atomic_enable, 2518 .atomic_disable = tegra_crtc_atomic_disable, 2519 }; 2520 2521 static irqreturn_t tegra_dc_irq(int irq, void *data) 2522 { 2523 struct tegra_dc *dc = data; 2524 unsigned long status; 2525 2526 status = tegra_dc_readl(dc, DC_CMD_INT_STATUS); 2527 tegra_dc_writel(dc, status, DC_CMD_INT_STATUS); 2528 2529 if (status & FRAME_END_INT) { 2530 /* 2531 dev_dbg(dc->dev, "%s(): frame end\n", __func__); 2532 */ 2533 dc->stats.frames_total++; 2534 dc->stats.frames++; 2535 } 2536 2537 if (status & VBLANK_INT) { 2538 /* 2539 dev_dbg(dc->dev, "%s(): vertical blank\n", __func__); 2540 */ 2541 drm_crtc_handle_vblank(&dc->base); 2542 dc->stats.vblank_total++; 2543 dc->stats.vblank++; 2544 } 2545 2546 if (status & (WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT)) { 2547 /* 2548 dev_dbg(dc->dev, "%s(): underflow\n", __func__); 2549 */ 2550 dc->stats.underflow_total++; 2551 dc->stats.underflow++; 2552 } 2553 2554 if (status & (WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT)) { 2555 /* 2556 dev_dbg(dc->dev, "%s(): overflow\n", __func__); 2557 */ 2558 dc->stats.overflow_total++; 2559 dc->stats.overflow++; 2560 } 2561 2562 if (status & HEAD_UF_INT) { 2563 dev_dbg_ratelimited(dc->dev, "%s(): head underflow\n", __func__); 2564 dc->stats.underflow_total++; 2565 dc->stats.underflow++; 2566 } 2567 2568 return IRQ_HANDLED; 2569 } 2570 2571 static bool tegra_dc_has_window_groups(struct tegra_dc *dc) 2572 { 2573 unsigned int i; 2574 2575 if (!dc->soc->wgrps) 2576 return true; 2577 2578 for (i = 0; i < dc->soc->num_wgrps; i++) { 2579 const struct tegra_windowgroup_soc *wgrp = &dc->soc->wgrps[i]; 2580 2581 if (wgrp->dc == dc->pipe && wgrp->num_windows > 0) 2582 return true; 2583 } 2584 2585 return false; 2586 } 2587 2588 static int tegra_dc_early_init(struct host1x_client *client) 2589 { 2590 struct drm_device *drm = dev_get_drvdata(client->host); 2591 struct tegra_drm *tegra = drm->dev_private; 2592 2593 tegra->num_crtcs++; 2594 2595 return 0; 2596 } 2597 2598 static int tegra_dc_init(struct host1x_client *client) 2599 { 2600 struct drm_device *drm = dev_get_drvdata(client->host); 2601 unsigned long flags = HOST1X_SYNCPT_CLIENT_MANAGED; 2602 struct tegra_dc *dc = host1x_client_to_dc(client); 2603 struct tegra_drm *tegra = drm->dev_private; 2604 struct drm_plane *primary = NULL; 2605 struct drm_plane *cursor = NULL; 2606 int err; 2607 2608 /* 2609 * DC has been reset by now, so VBLANK syncpoint can be released 2610 * for general use. 2611 */ 2612 host1x_syncpt_release_vblank_reservation(client, 26 + dc->pipe); 2613 2614 /* 2615 * XXX do not register DCs with no window groups because we cannot 2616 * assign a primary plane to them, which in turn will cause KMS to 2617 * crash. 2618 */ 2619 if (!tegra_dc_has_window_groups(dc)) 2620 return 0; 2621 2622 /* 2623 * Set the display hub as the host1x client parent for the display 2624 * controller. This is needed for the runtime reference counting that 2625 * ensures the display hub is always powered when any of the display 2626 * controllers are. 2627 */ 2628 if (dc->soc->has_nvdisplay) 2629 client->parent = &tegra->hub->client; 2630 2631 dc->syncpt = host1x_syncpt_request(client, flags); 2632 if (!dc->syncpt) 2633 dev_warn(dc->dev, "failed to allocate syncpoint\n"); 2634 2635 err = host1x_client_iommu_attach(client); 2636 if (err < 0 && err != -ENODEV) { 2637 dev_err(client->dev, "failed to attach to domain: %d\n", err); 2638 return err; 2639 } 2640 2641 if (dc->soc->wgrps) 2642 primary = tegra_dc_add_shared_planes(drm, dc); 2643 else 2644 primary = tegra_dc_add_planes(drm, dc); 2645 2646 if (IS_ERR(primary)) { 2647 err = PTR_ERR(primary); 2648 goto cleanup; 2649 } 2650 2651 if (dc->soc->supports_cursor) { 2652 cursor = tegra_dc_cursor_plane_create(drm, dc); 2653 if (IS_ERR(cursor)) { 2654 err = PTR_ERR(cursor); 2655 goto cleanup; 2656 } 2657 } else { 2658 /* dedicate one overlay to mouse cursor */ 2659 cursor = tegra_dc_overlay_plane_create(drm, dc, 2, true); 2660 if (IS_ERR(cursor)) { 2661 err = PTR_ERR(cursor); 2662 goto cleanup; 2663 } 2664 } 2665 2666 err = drm_crtc_init_with_planes(drm, &dc->base, primary, cursor, 2667 &tegra_crtc_funcs, NULL); 2668 if (err < 0) 2669 goto cleanup; 2670 2671 drm_crtc_helper_add(&dc->base, &tegra_crtc_helper_funcs); 2672 2673 /* 2674 * Keep track of the minimum pitch alignment across all display 2675 * controllers. 2676 */ 2677 if (dc->soc->pitch_align > tegra->pitch_align) 2678 tegra->pitch_align = dc->soc->pitch_align; 2679 2680 /* track maximum resolution */ 2681 if (dc->soc->has_nvdisplay) 2682 drm->mode_config.max_width = drm->mode_config.max_height = 16384; 2683 else 2684 drm->mode_config.max_width = drm->mode_config.max_height = 4096; 2685 2686 err = tegra_dc_rgb_init(drm, dc); 2687 if (err < 0 && err != -ENODEV) { 2688 dev_err(dc->dev, "failed to initialize RGB output: %d\n", err); 2689 goto cleanup; 2690 } 2691 2692 err = devm_request_irq(dc->dev, dc->irq, tegra_dc_irq, 0, 2693 dev_name(dc->dev), dc); 2694 if (err < 0) { 2695 dev_err(dc->dev, "failed to request IRQ#%u: %d\n", dc->irq, 2696 err); 2697 goto cleanup; 2698 } 2699 2700 /* 2701 * Inherit the DMA parameters (such as maximum segment size) from the 2702 * parent host1x device. 2703 */ 2704 client->dev->dma_parms = client->host->dma_parms; 2705 2706 return 0; 2707 2708 cleanup: 2709 if (!IS_ERR_OR_NULL(cursor)) 2710 drm_plane_cleanup(cursor); 2711 2712 if (!IS_ERR(primary)) 2713 drm_plane_cleanup(primary); 2714 2715 host1x_client_iommu_detach(client); 2716 host1x_syncpt_put(dc->syncpt); 2717 2718 return err; 2719 } 2720 2721 static int tegra_dc_exit(struct host1x_client *client) 2722 { 2723 struct tegra_dc *dc = host1x_client_to_dc(client); 2724 int err; 2725 2726 if (!tegra_dc_has_window_groups(dc)) 2727 return 0; 2728 2729 /* avoid a dangling pointer just in case this disappears */ 2730 client->dev->dma_parms = NULL; 2731 2732 devm_free_irq(dc->dev, dc->irq, dc); 2733 2734 err = tegra_dc_rgb_exit(dc); 2735 if (err) { 2736 dev_err(dc->dev, "failed to shutdown RGB output: %d\n", err); 2737 return err; 2738 } 2739 2740 host1x_client_iommu_detach(client); 2741 host1x_syncpt_put(dc->syncpt); 2742 2743 return 0; 2744 } 2745 2746 static int tegra_dc_late_exit(struct host1x_client *client) 2747 { 2748 struct drm_device *drm = dev_get_drvdata(client->host); 2749 struct tegra_drm *tegra = drm->dev_private; 2750 2751 tegra->num_crtcs--; 2752 2753 return 0; 2754 } 2755 2756 static int tegra_dc_runtime_suspend(struct host1x_client *client) 2757 { 2758 struct tegra_dc *dc = host1x_client_to_dc(client); 2759 struct device *dev = client->dev; 2760 int err; 2761 2762 err = reset_control_assert(dc->rst); 2763 if (err < 0) { 2764 dev_err(dev, "failed to assert reset: %d\n", err); 2765 return err; 2766 } 2767 2768 if (dc->soc->has_powergate) 2769 tegra_powergate_power_off(dc->powergate); 2770 2771 clk_disable_unprepare(dc->clk); 2772 pm_runtime_put_sync(dev); 2773 2774 return 0; 2775 } 2776 2777 static int tegra_dc_runtime_resume(struct host1x_client *client) 2778 { 2779 struct tegra_dc *dc = host1x_client_to_dc(client); 2780 struct device *dev = client->dev; 2781 int err; 2782 2783 err = pm_runtime_resume_and_get(dev); 2784 if (err < 0) { 2785 dev_err(dev, "failed to get runtime PM: %d\n", err); 2786 return err; 2787 } 2788 2789 if (dc->soc->has_powergate) { 2790 err = tegra_powergate_sequence_power_up(dc->powergate, dc->clk, 2791 dc->rst); 2792 if (err < 0) { 2793 dev_err(dev, "failed to power partition: %d\n", err); 2794 goto put_rpm; 2795 } 2796 } else { 2797 err = clk_prepare_enable(dc->clk); 2798 if (err < 0) { 2799 dev_err(dev, "failed to enable clock: %d\n", err); 2800 goto put_rpm; 2801 } 2802 2803 err = reset_control_deassert(dc->rst); 2804 if (err < 0) { 2805 dev_err(dev, "failed to deassert reset: %d\n", err); 2806 goto disable_clk; 2807 } 2808 } 2809 2810 return 0; 2811 2812 disable_clk: 2813 clk_disable_unprepare(dc->clk); 2814 put_rpm: 2815 pm_runtime_put_sync(dev); 2816 return err; 2817 } 2818 2819 static const struct host1x_client_ops dc_client_ops = { 2820 .early_init = tegra_dc_early_init, 2821 .init = tegra_dc_init, 2822 .exit = tegra_dc_exit, 2823 .late_exit = tegra_dc_late_exit, 2824 .suspend = tegra_dc_runtime_suspend, 2825 .resume = tegra_dc_runtime_resume, 2826 }; 2827 2828 static const struct tegra_dc_soc_info tegra20_dc_soc_info = { 2829 .supports_background_color = false, 2830 .supports_interlacing = false, 2831 .supports_cursor = false, 2832 .supports_block_linear = false, 2833 .supports_sector_layout = false, 2834 .has_legacy_blending = true, 2835 .pitch_align = 8, 2836 .has_powergate = false, 2837 .coupled_pm = true, 2838 .has_nvdisplay = false, 2839 .num_primary_formats = ARRAY_SIZE(tegra20_primary_formats), 2840 .primary_formats = tegra20_primary_formats, 2841 .num_overlay_formats = ARRAY_SIZE(tegra20_overlay_formats), 2842 .overlay_formats = tegra20_overlay_formats, 2843 .modifiers = tegra20_modifiers, 2844 .has_win_a_without_filters = true, 2845 .has_win_b_vfilter_mem_client = true, 2846 .has_win_c_without_vert_filter = true, 2847 .plane_tiled_memory_bandwidth_x2 = false, 2848 .has_pll_d2_out0 = false, 2849 }; 2850 2851 static const struct tegra_dc_soc_info tegra30_dc_soc_info = { 2852 .supports_background_color = false, 2853 .supports_interlacing = false, 2854 .supports_cursor = false, 2855 .supports_block_linear = false, 2856 .supports_sector_layout = false, 2857 .has_legacy_blending = true, 2858 .pitch_align = 8, 2859 .has_powergate = false, 2860 .coupled_pm = false, 2861 .has_nvdisplay = false, 2862 .num_primary_formats = ARRAY_SIZE(tegra20_primary_formats), 2863 .primary_formats = tegra20_primary_formats, 2864 .num_overlay_formats = ARRAY_SIZE(tegra20_overlay_formats), 2865 .overlay_formats = tegra20_overlay_formats, 2866 .modifiers = tegra20_modifiers, 2867 .has_win_a_without_filters = false, 2868 .has_win_b_vfilter_mem_client = true, 2869 .has_win_c_without_vert_filter = false, 2870 .plane_tiled_memory_bandwidth_x2 = true, 2871 .has_pll_d2_out0 = true, 2872 }; 2873 2874 static const struct tegra_dc_soc_info tegra114_dc_soc_info = { 2875 .supports_background_color = false, 2876 .supports_interlacing = false, 2877 .supports_cursor = false, 2878 .supports_block_linear = false, 2879 .supports_sector_layout = false, 2880 .has_legacy_blending = true, 2881 .pitch_align = 64, 2882 .has_powergate = true, 2883 .coupled_pm = false, 2884 .has_nvdisplay = false, 2885 .num_primary_formats = ARRAY_SIZE(tegra114_primary_formats), 2886 .primary_formats = tegra114_primary_formats, 2887 .num_overlay_formats = ARRAY_SIZE(tegra114_overlay_formats), 2888 .overlay_formats = tegra114_overlay_formats, 2889 .modifiers = tegra20_modifiers, 2890 .has_win_a_without_filters = false, 2891 .has_win_b_vfilter_mem_client = false, 2892 .has_win_c_without_vert_filter = false, 2893 .plane_tiled_memory_bandwidth_x2 = true, 2894 .has_pll_d2_out0 = true, 2895 }; 2896 2897 static const struct tegra_dc_soc_info tegra124_dc_soc_info = { 2898 .supports_background_color = true, 2899 .supports_interlacing = true, 2900 .supports_cursor = true, 2901 .supports_block_linear = true, 2902 .supports_sector_layout = false, 2903 .has_legacy_blending = false, 2904 .pitch_align = 64, 2905 .has_powergate = true, 2906 .coupled_pm = false, 2907 .has_nvdisplay = false, 2908 .num_primary_formats = ARRAY_SIZE(tegra124_primary_formats), 2909 .primary_formats = tegra124_primary_formats, 2910 .num_overlay_formats = ARRAY_SIZE(tegra124_overlay_formats), 2911 .overlay_formats = tegra124_overlay_formats, 2912 .modifiers = tegra124_modifiers, 2913 .has_win_a_without_filters = false, 2914 .has_win_b_vfilter_mem_client = false, 2915 .has_win_c_without_vert_filter = false, 2916 .plane_tiled_memory_bandwidth_x2 = false, 2917 .has_pll_d2_out0 = true, 2918 }; 2919 2920 static const struct tegra_dc_soc_info tegra210_dc_soc_info = { 2921 .supports_background_color = true, 2922 .supports_interlacing = true, 2923 .supports_cursor = true, 2924 .supports_block_linear = true, 2925 .supports_sector_layout = false, 2926 .has_legacy_blending = false, 2927 .pitch_align = 64, 2928 .has_powergate = true, 2929 .coupled_pm = false, 2930 .has_nvdisplay = false, 2931 .num_primary_formats = ARRAY_SIZE(tegra114_primary_formats), 2932 .primary_formats = tegra114_primary_formats, 2933 .num_overlay_formats = ARRAY_SIZE(tegra114_overlay_formats), 2934 .overlay_formats = tegra114_overlay_formats, 2935 .modifiers = tegra124_modifiers, 2936 .has_win_a_without_filters = false, 2937 .has_win_b_vfilter_mem_client = false, 2938 .has_win_c_without_vert_filter = false, 2939 .plane_tiled_memory_bandwidth_x2 = false, 2940 .has_pll_d2_out0 = true, 2941 }; 2942 2943 static const struct tegra_windowgroup_soc tegra186_dc_wgrps[] = { 2944 { 2945 .index = 0, 2946 .dc = 0, 2947 .windows = (const unsigned int[]) { 0 }, 2948 .num_windows = 1, 2949 }, { 2950 .index = 1, 2951 .dc = 1, 2952 .windows = (const unsigned int[]) { 1 }, 2953 .num_windows = 1, 2954 }, { 2955 .index = 2, 2956 .dc = 1, 2957 .windows = (const unsigned int[]) { 2 }, 2958 .num_windows = 1, 2959 }, { 2960 .index = 3, 2961 .dc = 2, 2962 .windows = (const unsigned int[]) { 3 }, 2963 .num_windows = 1, 2964 }, { 2965 .index = 4, 2966 .dc = 2, 2967 .windows = (const unsigned int[]) { 4 }, 2968 .num_windows = 1, 2969 }, { 2970 .index = 5, 2971 .dc = 2, 2972 .windows = (const unsigned int[]) { 5 }, 2973 .num_windows = 1, 2974 }, 2975 }; 2976 2977 static const struct tegra_dc_soc_info tegra186_dc_soc_info = { 2978 .supports_background_color = true, 2979 .supports_interlacing = true, 2980 .supports_cursor = true, 2981 .supports_block_linear = true, 2982 .supports_sector_layout = false, 2983 .has_legacy_blending = false, 2984 .pitch_align = 64, 2985 .has_powergate = false, 2986 .coupled_pm = false, 2987 .has_nvdisplay = true, 2988 .wgrps = tegra186_dc_wgrps, 2989 .num_wgrps = ARRAY_SIZE(tegra186_dc_wgrps), 2990 .plane_tiled_memory_bandwidth_x2 = false, 2991 .has_pll_d2_out0 = false, 2992 }; 2993 2994 static const struct tegra_windowgroup_soc tegra194_dc_wgrps[] = { 2995 { 2996 .index = 0, 2997 .dc = 0, 2998 .windows = (const unsigned int[]) { 0 }, 2999 .num_windows = 1, 3000 }, { 3001 .index = 1, 3002 .dc = 1, 3003 .windows = (const unsigned int[]) { 1 }, 3004 .num_windows = 1, 3005 }, { 3006 .index = 2, 3007 .dc = 1, 3008 .windows = (const unsigned int[]) { 2 }, 3009 .num_windows = 1, 3010 }, { 3011 .index = 3, 3012 .dc = 2, 3013 .windows = (const unsigned int[]) { 3 }, 3014 .num_windows = 1, 3015 }, { 3016 .index = 4, 3017 .dc = 2, 3018 .windows = (const unsigned int[]) { 4 }, 3019 .num_windows = 1, 3020 }, { 3021 .index = 5, 3022 .dc = 2, 3023 .windows = (const unsigned int[]) { 5 }, 3024 .num_windows = 1, 3025 }, 3026 }; 3027 3028 static const struct tegra_dc_soc_info tegra194_dc_soc_info = { 3029 .supports_background_color = true, 3030 .supports_interlacing = true, 3031 .supports_cursor = true, 3032 .supports_block_linear = true, 3033 .supports_sector_layout = true, 3034 .has_legacy_blending = false, 3035 .pitch_align = 64, 3036 .has_powergate = false, 3037 .coupled_pm = false, 3038 .has_nvdisplay = true, 3039 .wgrps = tegra194_dc_wgrps, 3040 .num_wgrps = ARRAY_SIZE(tegra194_dc_wgrps), 3041 .plane_tiled_memory_bandwidth_x2 = false, 3042 .has_pll_d2_out0 = false, 3043 }; 3044 3045 static const struct of_device_id tegra_dc_of_match[] = { 3046 { 3047 .compatible = "nvidia,tegra194-dc", 3048 .data = &tegra194_dc_soc_info, 3049 }, { 3050 .compatible = "nvidia,tegra186-dc", 3051 .data = &tegra186_dc_soc_info, 3052 }, { 3053 .compatible = "nvidia,tegra210-dc", 3054 .data = &tegra210_dc_soc_info, 3055 }, { 3056 .compatible = "nvidia,tegra124-dc", 3057 .data = &tegra124_dc_soc_info, 3058 }, { 3059 .compatible = "nvidia,tegra114-dc", 3060 .data = &tegra114_dc_soc_info, 3061 }, { 3062 .compatible = "nvidia,tegra30-dc", 3063 .data = &tegra30_dc_soc_info, 3064 }, { 3065 .compatible = "nvidia,tegra20-dc", 3066 .data = &tegra20_dc_soc_info, 3067 }, { 3068 /* sentinel */ 3069 } 3070 }; 3071 MODULE_DEVICE_TABLE(of, tegra_dc_of_match); 3072 3073 static int tegra_dc_parse_dt(struct tegra_dc *dc) 3074 { 3075 struct device_node *np; 3076 u32 value = 0; 3077 int err; 3078 3079 err = of_property_read_u32(dc->dev->of_node, "nvidia,head", &value); 3080 if (err < 0) { 3081 dev_err(dc->dev, "missing \"nvidia,head\" property\n"); 3082 3083 /* 3084 * If the nvidia,head property isn't present, try to find the 3085 * correct head number by looking up the position of this 3086 * display controller's node within the device tree. Assuming 3087 * that the nodes are ordered properly in the DTS file and 3088 * that the translation into a flattened device tree blob 3089 * preserves that ordering this will actually yield the right 3090 * head number. 3091 * 3092 * If those assumptions don't hold, this will still work for 3093 * cases where only a single display controller is used. 3094 */ 3095 for_each_matching_node(np, tegra_dc_of_match) { 3096 if (np == dc->dev->of_node) { 3097 of_node_put(np); 3098 break; 3099 } 3100 3101 value++; 3102 } 3103 } 3104 3105 dc->pipe = value; 3106 3107 return 0; 3108 } 3109 3110 static int tegra_dc_match_by_pipe(struct device *dev, const void *data) 3111 { 3112 struct tegra_dc *dc = dev_get_drvdata(dev); 3113 unsigned int pipe = (unsigned long)(void *)data; 3114 3115 return dc->pipe == pipe; 3116 } 3117 3118 static int tegra_dc_couple(struct tegra_dc *dc) 3119 { 3120 /* 3121 * On Tegra20, DC1 requires DC0 to be taken out of reset in order to 3122 * be enabled, otherwise CPU hangs on writing to CMD_DISPLAY_COMMAND / 3123 * POWER_CONTROL registers during CRTC enabling. 3124 */ 3125 if (dc->soc->coupled_pm && dc->pipe == 1) { 3126 struct device *companion; 3127 struct tegra_dc *parent; 3128 3129 companion = driver_find_device(dc->dev->driver, NULL, (const void *)0, 3130 tegra_dc_match_by_pipe); 3131 if (!companion) 3132 return -EPROBE_DEFER; 3133 3134 parent = dev_get_drvdata(companion); 3135 dc->client.parent = &parent->client; 3136 3137 dev_dbg(dc->dev, "coupled to %s\n", dev_name(companion)); 3138 } 3139 3140 return 0; 3141 } 3142 3143 static int tegra_dc_init_opp_table(struct tegra_dc *dc) 3144 { 3145 struct tegra_core_opp_params opp_params = {}; 3146 int err; 3147 3148 err = devm_tegra_core_dev_init_opp_table(dc->dev, &opp_params); 3149 if (err && err != -ENODEV) 3150 return err; 3151 3152 if (err) 3153 dc->has_opp_table = false; 3154 else 3155 dc->has_opp_table = true; 3156 3157 return 0; 3158 } 3159 3160 static int tegra_dc_probe(struct platform_device *pdev) 3161 { 3162 u64 dma_mask = dma_get_mask(pdev->dev.parent); 3163 struct tegra_dc *dc; 3164 int err; 3165 3166 err = dma_coerce_mask_and_coherent(&pdev->dev, dma_mask); 3167 if (err < 0) { 3168 dev_err(&pdev->dev, "failed to set DMA mask: %d\n", err); 3169 return err; 3170 } 3171 3172 dc = devm_kzalloc(&pdev->dev, sizeof(*dc), GFP_KERNEL); 3173 if (!dc) 3174 return -ENOMEM; 3175 3176 dc->soc = of_device_get_match_data(&pdev->dev); 3177 3178 INIT_LIST_HEAD(&dc->list); 3179 dc->dev = &pdev->dev; 3180 3181 err = tegra_dc_parse_dt(dc); 3182 if (err < 0) 3183 return err; 3184 3185 err = tegra_dc_couple(dc); 3186 if (err < 0) 3187 return err; 3188 3189 dc->clk = devm_clk_get(&pdev->dev, NULL); 3190 if (IS_ERR(dc->clk)) { 3191 dev_err(&pdev->dev, "failed to get clock\n"); 3192 return PTR_ERR(dc->clk); 3193 } 3194 3195 dc->rst = devm_reset_control_get(&pdev->dev, "dc"); 3196 if (IS_ERR(dc->rst)) { 3197 dev_err(&pdev->dev, "failed to get reset\n"); 3198 return PTR_ERR(dc->rst); 3199 } 3200 3201 /* assert reset and disable clock */ 3202 err = clk_prepare_enable(dc->clk); 3203 if (err < 0) 3204 return err; 3205 3206 usleep_range(2000, 4000); 3207 3208 err = reset_control_assert(dc->rst); 3209 if (err < 0) 3210 return err; 3211 3212 usleep_range(2000, 4000); 3213 3214 clk_disable_unprepare(dc->clk); 3215 3216 if (dc->soc->has_powergate) { 3217 if (dc->pipe == 0) 3218 dc->powergate = TEGRA_POWERGATE_DIS; 3219 else 3220 dc->powergate = TEGRA_POWERGATE_DISB; 3221 3222 tegra_powergate_power_off(dc->powergate); 3223 } 3224 3225 err = tegra_dc_init_opp_table(dc); 3226 if (err < 0) 3227 return err; 3228 3229 dc->regs = devm_platform_ioremap_resource(pdev, 0); 3230 if (IS_ERR(dc->regs)) 3231 return PTR_ERR(dc->regs); 3232 3233 dc->irq = platform_get_irq(pdev, 0); 3234 if (dc->irq < 0) 3235 return -ENXIO; 3236 3237 err = tegra_dc_rgb_probe(dc); 3238 if (err < 0 && err != -ENODEV) 3239 return dev_err_probe(&pdev->dev, err, 3240 "failed to probe RGB output\n"); 3241 3242 platform_set_drvdata(pdev, dc); 3243 pm_runtime_enable(&pdev->dev); 3244 3245 INIT_LIST_HEAD(&dc->client.list); 3246 dc->client.ops = &dc_client_ops; 3247 dc->client.dev = &pdev->dev; 3248 3249 err = host1x_client_register(&dc->client); 3250 if (err < 0) { 3251 dev_err(&pdev->dev, "failed to register host1x client: %d\n", 3252 err); 3253 goto disable_pm; 3254 } 3255 3256 return 0; 3257 3258 disable_pm: 3259 pm_runtime_disable(&pdev->dev); 3260 tegra_dc_rgb_remove(dc); 3261 3262 return err; 3263 } 3264 3265 static int tegra_dc_remove(struct platform_device *pdev) 3266 { 3267 struct tegra_dc *dc = platform_get_drvdata(pdev); 3268 int err; 3269 3270 err = host1x_client_unregister(&dc->client); 3271 if (err < 0) { 3272 dev_err(&pdev->dev, "failed to unregister host1x client: %d\n", 3273 err); 3274 return err; 3275 } 3276 3277 err = tegra_dc_rgb_remove(dc); 3278 if (err < 0) { 3279 dev_err(&pdev->dev, "failed to remove RGB output: %d\n", err); 3280 return err; 3281 } 3282 3283 pm_runtime_disable(&pdev->dev); 3284 3285 return 0; 3286 } 3287 3288 struct platform_driver tegra_dc_driver = { 3289 .driver = { 3290 .name = "tegra-dc", 3291 .of_match_table = tegra_dc_of_match, 3292 }, 3293 .probe = tegra_dc_probe, 3294 .remove = tegra_dc_remove, 3295 }; 3296