xref: /openbmc/linux/drivers/gpu/drm/tegra/dc.c (revision ded1ffea)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 Avionic Design GmbH
4  * Copyright (C) 2012 NVIDIA CORPORATION.  All rights reserved.
5  */
6 
7 #include <linux/clk.h>
8 #include <linux/debugfs.h>
9 #include <linux/delay.h>
10 #include <linux/dma-mapping.h>
11 #include <linux/iommu.h>
12 #include <linux/interconnect.h>
13 #include <linux/module.h>
14 #include <linux/of.h>
15 #include <linux/platform_device.h>
16 #include <linux/pm_domain.h>
17 #include <linux/pm_opp.h>
18 #include <linux/pm_runtime.h>
19 #include <linux/reset.h>
20 
21 #include <soc/tegra/common.h>
22 #include <soc/tegra/pmc.h>
23 
24 #include <drm/drm_atomic.h>
25 #include <drm/drm_atomic_helper.h>
26 #include <drm/drm_blend.h>
27 #include <drm/drm_debugfs.h>
28 #include <drm/drm_fourcc.h>
29 #include <drm/drm_framebuffer.h>
30 #include <drm/drm_vblank.h>
31 
32 #include "dc.h"
33 #include "drm.h"
34 #include "gem.h"
35 #include "hub.h"
36 #include "plane.h"
37 
38 static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc,
39 					    struct drm_crtc_state *state);
40 
41 static void tegra_dc_stats_reset(struct tegra_dc_stats *stats)
42 {
43 	stats->frames = 0;
44 	stats->vblank = 0;
45 	stats->underflow = 0;
46 	stats->overflow = 0;
47 }
48 
49 /* Reads the active copy of a register. */
50 static u32 tegra_dc_readl_active(struct tegra_dc *dc, unsigned long offset)
51 {
52 	u32 value;
53 
54 	tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
55 	value = tegra_dc_readl(dc, offset);
56 	tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS);
57 
58 	return value;
59 }
60 
61 static inline unsigned int tegra_plane_offset(struct tegra_plane *plane,
62 					      unsigned int offset)
63 {
64 	if (offset >= 0x500 && offset <= 0x638) {
65 		offset = 0x000 + (offset - 0x500);
66 		return plane->offset + offset;
67 	}
68 
69 	if (offset >= 0x700 && offset <= 0x719) {
70 		offset = 0x180 + (offset - 0x700);
71 		return plane->offset + offset;
72 	}
73 
74 	if (offset >= 0x800 && offset <= 0x839) {
75 		offset = 0x1c0 + (offset - 0x800);
76 		return plane->offset + offset;
77 	}
78 
79 	dev_WARN(plane->dc->dev, "invalid offset: %x\n", offset);
80 
81 	return plane->offset + offset;
82 }
83 
84 static inline u32 tegra_plane_readl(struct tegra_plane *plane,
85 				    unsigned int offset)
86 {
87 	return tegra_dc_readl(plane->dc, tegra_plane_offset(plane, offset));
88 }
89 
90 static inline void tegra_plane_writel(struct tegra_plane *plane, u32 value,
91 				      unsigned int offset)
92 {
93 	tegra_dc_writel(plane->dc, value, tegra_plane_offset(plane, offset));
94 }
95 
96 bool tegra_dc_has_output(struct tegra_dc *dc, struct device *dev)
97 {
98 	struct device_node *np = dc->dev->of_node;
99 	struct of_phandle_iterator it;
100 	int err;
101 
102 	of_for_each_phandle(&it, err, np, "nvidia,outputs", NULL, 0)
103 		if (it.node == dev->of_node)
104 			return true;
105 
106 	return false;
107 }
108 
109 /*
110  * Double-buffered registers have two copies: ASSEMBLY and ACTIVE. When the
111  * *_ACT_REQ bits are set the ASSEMBLY copy is latched into the ACTIVE copy.
112  * Latching happens mmediately if the display controller is in STOP mode or
113  * on the next frame boundary otherwise.
114  *
115  * Triple-buffered registers have three copies: ASSEMBLY, ARM and ACTIVE. The
116  * ASSEMBLY copy is latched into the ARM copy immediately after *_UPDATE bits
117  * are written. When the *_ACT_REQ bits are written, the ARM copy is latched
118  * into the ACTIVE copy, either immediately if the display controller is in
119  * STOP mode, or at the next frame boundary otherwise.
120  */
121 void tegra_dc_commit(struct tegra_dc *dc)
122 {
123 	tegra_dc_writel(dc, GENERAL_ACT_REQ << 8, DC_CMD_STATE_CONTROL);
124 	tegra_dc_writel(dc, GENERAL_ACT_REQ, DC_CMD_STATE_CONTROL);
125 }
126 
127 static inline u32 compute_dda_inc(unsigned int in, unsigned int out, bool v,
128 				  unsigned int bpp)
129 {
130 	fixed20_12 outf = dfixed_init(out);
131 	fixed20_12 inf = dfixed_init(in);
132 	u32 dda_inc;
133 	int max;
134 
135 	if (v)
136 		max = 15;
137 	else {
138 		switch (bpp) {
139 		case 2:
140 			max = 8;
141 			break;
142 
143 		default:
144 			WARN_ON_ONCE(1);
145 			fallthrough;
146 		case 4:
147 			max = 4;
148 			break;
149 		}
150 	}
151 
152 	outf.full = max_t(u32, outf.full - dfixed_const(1), dfixed_const(1));
153 	inf.full -= dfixed_const(1);
154 
155 	dda_inc = dfixed_div(inf, outf);
156 	dda_inc = min_t(u32, dda_inc, dfixed_const(max));
157 
158 	return dda_inc;
159 }
160 
161 static inline u32 compute_initial_dda(unsigned int in)
162 {
163 	fixed20_12 inf = dfixed_init(in);
164 	return dfixed_frac(inf);
165 }
166 
167 static void tegra_plane_setup_blending_legacy(struct tegra_plane *plane)
168 {
169 	u32 background[3] = {
170 		BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
171 		BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
172 		BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
173 	};
174 	u32 foreground = BLEND_WEIGHT1(255) | BLEND_WEIGHT0(255) |
175 			 BLEND_COLOR_KEY_NONE;
176 	u32 blendnokey = BLEND_WEIGHT1(255) | BLEND_WEIGHT0(255);
177 	struct tegra_plane_state *state;
178 	u32 blending[2];
179 	unsigned int i;
180 
181 	/* disable blending for non-overlapping case */
182 	tegra_plane_writel(plane, blendnokey, DC_WIN_BLEND_NOKEY);
183 	tegra_plane_writel(plane, foreground, DC_WIN_BLEND_1WIN);
184 
185 	state = to_tegra_plane_state(plane->base.state);
186 
187 	if (state->opaque) {
188 		/*
189 		 * Since custom fix-weight blending isn't utilized and weight
190 		 * of top window is set to max, we can enforce dependent
191 		 * blending which in this case results in transparent bottom
192 		 * window if top window is opaque and if top window enables
193 		 * alpha blending, then bottom window is getting alpha value
194 		 * of 1 minus the sum of alpha components of the overlapping
195 		 * plane.
196 		 */
197 		background[0] |= BLEND_CONTROL_DEPENDENT;
198 		background[1] |= BLEND_CONTROL_DEPENDENT;
199 
200 		/*
201 		 * The region where three windows overlap is the intersection
202 		 * of the two regions where two windows overlap. It contributes
203 		 * to the area if all of the windows on top of it have an alpha
204 		 * component.
205 		 */
206 		switch (state->base.normalized_zpos) {
207 		case 0:
208 			if (state->blending[0].alpha &&
209 			    state->blending[1].alpha)
210 				background[2] |= BLEND_CONTROL_DEPENDENT;
211 			break;
212 
213 		case 1:
214 			background[2] |= BLEND_CONTROL_DEPENDENT;
215 			break;
216 		}
217 	} else {
218 		/*
219 		 * Enable alpha blending if pixel format has an alpha
220 		 * component.
221 		 */
222 		foreground |= BLEND_CONTROL_ALPHA;
223 
224 		/*
225 		 * If any of the windows on top of this window is opaque, it
226 		 * will completely conceal this window within that area. If
227 		 * top window has an alpha component, it is blended over the
228 		 * bottom window.
229 		 */
230 		for (i = 0; i < 2; i++) {
231 			if (state->blending[i].alpha &&
232 			    state->blending[i].top)
233 				background[i] |= BLEND_CONTROL_DEPENDENT;
234 		}
235 
236 		switch (state->base.normalized_zpos) {
237 		case 0:
238 			if (state->blending[0].alpha &&
239 			    state->blending[1].alpha)
240 				background[2] |= BLEND_CONTROL_DEPENDENT;
241 			break;
242 
243 		case 1:
244 			/*
245 			 * When both middle and topmost windows have an alpha,
246 			 * these windows a mixed together and then the result
247 			 * is blended over the bottom window.
248 			 */
249 			if (state->blending[0].alpha &&
250 			    state->blending[0].top)
251 				background[2] |= BLEND_CONTROL_ALPHA;
252 
253 			if (state->blending[1].alpha &&
254 			    state->blending[1].top)
255 				background[2] |= BLEND_CONTROL_ALPHA;
256 			break;
257 		}
258 	}
259 
260 	switch (state->base.normalized_zpos) {
261 	case 0:
262 		tegra_plane_writel(plane, background[0], DC_WIN_BLEND_2WIN_X);
263 		tegra_plane_writel(plane, background[1], DC_WIN_BLEND_2WIN_Y);
264 		tegra_plane_writel(plane, background[2], DC_WIN_BLEND_3WIN_XY);
265 		break;
266 
267 	case 1:
268 		/*
269 		 * If window B / C is topmost, then X / Y registers are
270 		 * matching the order of blending[...] state indices,
271 		 * otherwise a swap is required.
272 		 */
273 		if (!state->blending[0].top && state->blending[1].top) {
274 			blending[0] = foreground;
275 			blending[1] = background[1];
276 		} else {
277 			blending[0] = background[0];
278 			blending[1] = foreground;
279 		}
280 
281 		tegra_plane_writel(plane, blending[0], DC_WIN_BLEND_2WIN_X);
282 		tegra_plane_writel(plane, blending[1], DC_WIN_BLEND_2WIN_Y);
283 		tegra_plane_writel(plane, background[2], DC_WIN_BLEND_3WIN_XY);
284 		break;
285 
286 	case 2:
287 		tegra_plane_writel(plane, foreground, DC_WIN_BLEND_2WIN_X);
288 		tegra_plane_writel(plane, foreground, DC_WIN_BLEND_2WIN_Y);
289 		tegra_plane_writel(plane, foreground, DC_WIN_BLEND_3WIN_XY);
290 		break;
291 	}
292 }
293 
294 static void tegra_plane_setup_blending(struct tegra_plane *plane,
295 				       const struct tegra_dc_window *window)
296 {
297 	u32 value;
298 
299 	value = BLEND_FACTOR_DST_ALPHA_ZERO | BLEND_FACTOR_SRC_ALPHA_K2 |
300 		BLEND_FACTOR_DST_COLOR_NEG_K1_TIMES_SRC |
301 		BLEND_FACTOR_SRC_COLOR_K1_TIMES_SRC;
302 	tegra_plane_writel(plane, value, DC_WIN_BLEND_MATCH_SELECT);
303 
304 	value = BLEND_FACTOR_DST_ALPHA_ZERO | BLEND_FACTOR_SRC_ALPHA_K2 |
305 		BLEND_FACTOR_DST_COLOR_NEG_K1_TIMES_SRC |
306 		BLEND_FACTOR_SRC_COLOR_K1_TIMES_SRC;
307 	tegra_plane_writel(plane, value, DC_WIN_BLEND_NOMATCH_SELECT);
308 
309 	value = K2(255) | K1(255) | WINDOW_LAYER_DEPTH(255 - window->zpos);
310 	tegra_plane_writel(plane, value, DC_WIN_BLEND_LAYER_CONTROL);
311 }
312 
313 static bool
314 tegra_plane_use_horizontal_filtering(struct tegra_plane *plane,
315 				     const struct tegra_dc_window *window)
316 {
317 	struct tegra_dc *dc = plane->dc;
318 
319 	if (window->src.w == window->dst.w)
320 		return false;
321 
322 	if (plane->index == 0 && dc->soc->has_win_a_without_filters)
323 		return false;
324 
325 	return true;
326 }
327 
328 static bool
329 tegra_plane_use_vertical_filtering(struct tegra_plane *plane,
330 				   const struct tegra_dc_window *window)
331 {
332 	struct tegra_dc *dc = plane->dc;
333 
334 	if (window->src.h == window->dst.h)
335 		return false;
336 
337 	if (plane->index == 0 && dc->soc->has_win_a_without_filters)
338 		return false;
339 
340 	if (plane->index == 2 && dc->soc->has_win_c_without_vert_filter)
341 		return false;
342 
343 	return true;
344 }
345 
346 static void tegra_dc_setup_window(struct tegra_plane *plane,
347 				  const struct tegra_dc_window *window)
348 {
349 	unsigned h_offset, v_offset, h_size, v_size, h_dda, v_dda, bpp;
350 	struct tegra_dc *dc = plane->dc;
351 	unsigned int planes;
352 	u32 value;
353 	bool yuv;
354 
355 	/*
356 	 * For YUV planar modes, the number of bytes per pixel takes into
357 	 * account only the luma component and therefore is 1.
358 	 */
359 	yuv = tegra_plane_format_is_yuv(window->format, &planes, NULL);
360 	if (!yuv)
361 		bpp = window->bits_per_pixel / 8;
362 	else
363 		bpp = (planes > 1) ? 1 : 2;
364 
365 	tegra_plane_writel(plane, window->format, DC_WIN_COLOR_DEPTH);
366 	tegra_plane_writel(plane, window->swap, DC_WIN_BYTE_SWAP);
367 
368 	value = V_POSITION(window->dst.y) | H_POSITION(window->dst.x);
369 	tegra_plane_writel(plane, value, DC_WIN_POSITION);
370 
371 	value = V_SIZE(window->dst.h) | H_SIZE(window->dst.w);
372 	tegra_plane_writel(plane, value, DC_WIN_SIZE);
373 
374 	h_offset = window->src.x * bpp;
375 	v_offset = window->src.y;
376 	h_size = window->src.w * bpp;
377 	v_size = window->src.h;
378 
379 	if (window->reflect_x)
380 		h_offset += (window->src.w - 1) * bpp;
381 
382 	if (window->reflect_y)
383 		v_offset += window->src.h - 1;
384 
385 	value = V_PRESCALED_SIZE(v_size) | H_PRESCALED_SIZE(h_size);
386 	tegra_plane_writel(plane, value, DC_WIN_PRESCALED_SIZE);
387 
388 	/*
389 	 * For DDA computations the number of bytes per pixel for YUV planar
390 	 * modes needs to take into account all Y, U and V components.
391 	 */
392 	if (yuv && planes > 1)
393 		bpp = 2;
394 
395 	h_dda = compute_dda_inc(window->src.w, window->dst.w, false, bpp);
396 	v_dda = compute_dda_inc(window->src.h, window->dst.h, true, bpp);
397 
398 	value = V_DDA_INC(v_dda) | H_DDA_INC(h_dda);
399 	tegra_plane_writel(plane, value, DC_WIN_DDA_INC);
400 
401 	h_dda = compute_initial_dda(window->src.x);
402 	v_dda = compute_initial_dda(window->src.y);
403 
404 	tegra_plane_writel(plane, h_dda, DC_WIN_H_INITIAL_DDA);
405 	tegra_plane_writel(plane, v_dda, DC_WIN_V_INITIAL_DDA);
406 
407 	tegra_plane_writel(plane, 0, DC_WIN_UV_BUF_STRIDE);
408 	tegra_plane_writel(plane, 0, DC_WIN_BUF_STRIDE);
409 
410 	tegra_plane_writel(plane, window->base[0], DC_WINBUF_START_ADDR);
411 
412 	if (yuv && planes > 1) {
413 		tegra_plane_writel(plane, window->base[1], DC_WINBUF_START_ADDR_U);
414 
415 		if (planes > 2)
416 			tegra_plane_writel(plane, window->base[2], DC_WINBUF_START_ADDR_V);
417 
418 		value = window->stride[1] << 16 | window->stride[0];
419 		tegra_plane_writel(plane, value, DC_WIN_LINE_STRIDE);
420 	} else {
421 		tegra_plane_writel(plane, window->stride[0], DC_WIN_LINE_STRIDE);
422 	}
423 
424 	tegra_plane_writel(plane, h_offset, DC_WINBUF_ADDR_H_OFFSET);
425 	tegra_plane_writel(plane, v_offset, DC_WINBUF_ADDR_V_OFFSET);
426 
427 	if (dc->soc->supports_block_linear) {
428 		unsigned long height = window->tiling.value;
429 
430 		switch (window->tiling.mode) {
431 		case TEGRA_BO_TILING_MODE_PITCH:
432 			value = DC_WINBUF_SURFACE_KIND_PITCH;
433 			break;
434 
435 		case TEGRA_BO_TILING_MODE_TILED:
436 			value = DC_WINBUF_SURFACE_KIND_TILED;
437 			break;
438 
439 		case TEGRA_BO_TILING_MODE_BLOCK:
440 			value = DC_WINBUF_SURFACE_KIND_BLOCK_HEIGHT(height) |
441 				DC_WINBUF_SURFACE_KIND_BLOCK;
442 			break;
443 		}
444 
445 		tegra_plane_writel(plane, value, DC_WINBUF_SURFACE_KIND);
446 	} else {
447 		switch (window->tiling.mode) {
448 		case TEGRA_BO_TILING_MODE_PITCH:
449 			value = DC_WIN_BUFFER_ADDR_MODE_LINEAR_UV |
450 				DC_WIN_BUFFER_ADDR_MODE_LINEAR;
451 			break;
452 
453 		case TEGRA_BO_TILING_MODE_TILED:
454 			value = DC_WIN_BUFFER_ADDR_MODE_TILE_UV |
455 				DC_WIN_BUFFER_ADDR_MODE_TILE;
456 			break;
457 
458 		case TEGRA_BO_TILING_MODE_BLOCK:
459 			/*
460 			 * No need to handle this here because ->atomic_check
461 			 * will already have filtered it out.
462 			 */
463 			break;
464 		}
465 
466 		tegra_plane_writel(plane, value, DC_WIN_BUFFER_ADDR_MODE);
467 	}
468 
469 	value = WIN_ENABLE;
470 
471 	if (yuv) {
472 		/* setup default colorspace conversion coefficients */
473 		tegra_plane_writel(plane, 0x00f0, DC_WIN_CSC_YOF);
474 		tegra_plane_writel(plane, 0x012a, DC_WIN_CSC_KYRGB);
475 		tegra_plane_writel(plane, 0x0000, DC_WIN_CSC_KUR);
476 		tegra_plane_writel(plane, 0x0198, DC_WIN_CSC_KVR);
477 		tegra_plane_writel(plane, 0x039b, DC_WIN_CSC_KUG);
478 		tegra_plane_writel(plane, 0x032f, DC_WIN_CSC_KVG);
479 		tegra_plane_writel(plane, 0x0204, DC_WIN_CSC_KUB);
480 		tegra_plane_writel(plane, 0x0000, DC_WIN_CSC_KVB);
481 
482 		value |= CSC_ENABLE;
483 	} else if (window->bits_per_pixel < 24) {
484 		value |= COLOR_EXPAND;
485 	}
486 
487 	if (window->reflect_x)
488 		value |= H_DIRECTION;
489 
490 	if (window->reflect_y)
491 		value |= V_DIRECTION;
492 
493 	if (tegra_plane_use_horizontal_filtering(plane, window)) {
494 		/*
495 		 * Enable horizontal 6-tap filter and set filtering
496 		 * coefficients to the default values defined in TRM.
497 		 */
498 		tegra_plane_writel(plane, 0x00008000, DC_WIN_H_FILTER_P(0));
499 		tegra_plane_writel(plane, 0x3e087ce1, DC_WIN_H_FILTER_P(1));
500 		tegra_plane_writel(plane, 0x3b117ac1, DC_WIN_H_FILTER_P(2));
501 		tegra_plane_writel(plane, 0x591b73aa, DC_WIN_H_FILTER_P(3));
502 		tegra_plane_writel(plane, 0x57256d9a, DC_WIN_H_FILTER_P(4));
503 		tegra_plane_writel(plane, 0x552f668b, DC_WIN_H_FILTER_P(5));
504 		tegra_plane_writel(plane, 0x73385e8b, DC_WIN_H_FILTER_P(6));
505 		tegra_plane_writel(plane, 0x72435583, DC_WIN_H_FILTER_P(7));
506 		tegra_plane_writel(plane, 0x714c4c8b, DC_WIN_H_FILTER_P(8));
507 		tegra_plane_writel(plane, 0x70554393, DC_WIN_H_FILTER_P(9));
508 		tegra_plane_writel(plane, 0x715e389b, DC_WIN_H_FILTER_P(10));
509 		tegra_plane_writel(plane, 0x71662faa, DC_WIN_H_FILTER_P(11));
510 		tegra_plane_writel(plane, 0x536d25ba, DC_WIN_H_FILTER_P(12));
511 		tegra_plane_writel(plane, 0x55731bca, DC_WIN_H_FILTER_P(13));
512 		tegra_plane_writel(plane, 0x387a11d9, DC_WIN_H_FILTER_P(14));
513 		tegra_plane_writel(plane, 0x3c7c08f1, DC_WIN_H_FILTER_P(15));
514 
515 		value |= H_FILTER;
516 	}
517 
518 	if (tegra_plane_use_vertical_filtering(plane, window)) {
519 		unsigned int i, k;
520 
521 		/*
522 		 * Enable vertical 2-tap filter and set filtering
523 		 * coefficients to the default values defined in TRM.
524 		 */
525 		for (i = 0, k = 128; i < 16; i++, k -= 8)
526 			tegra_plane_writel(plane, k, DC_WIN_V_FILTER_P(i));
527 
528 		value |= V_FILTER;
529 	}
530 
531 	tegra_plane_writel(plane, value, DC_WIN_WIN_OPTIONS);
532 
533 	if (dc->soc->has_legacy_blending)
534 		tegra_plane_setup_blending_legacy(plane);
535 	else
536 		tegra_plane_setup_blending(plane, window);
537 }
538 
539 static const u32 tegra20_primary_formats[] = {
540 	DRM_FORMAT_ARGB4444,
541 	DRM_FORMAT_ARGB1555,
542 	DRM_FORMAT_RGB565,
543 	DRM_FORMAT_RGBA5551,
544 	DRM_FORMAT_ABGR8888,
545 	DRM_FORMAT_ARGB8888,
546 	/* non-native formats */
547 	DRM_FORMAT_XRGB1555,
548 	DRM_FORMAT_RGBX5551,
549 	DRM_FORMAT_XBGR8888,
550 	DRM_FORMAT_XRGB8888,
551 };
552 
553 static const u64 tegra20_modifiers[] = {
554 	DRM_FORMAT_MOD_LINEAR,
555 	DRM_FORMAT_MOD_NVIDIA_TEGRA_TILED,
556 	DRM_FORMAT_MOD_INVALID
557 };
558 
559 static const u32 tegra114_primary_formats[] = {
560 	DRM_FORMAT_ARGB4444,
561 	DRM_FORMAT_ARGB1555,
562 	DRM_FORMAT_RGB565,
563 	DRM_FORMAT_RGBA5551,
564 	DRM_FORMAT_ABGR8888,
565 	DRM_FORMAT_ARGB8888,
566 	/* new on Tegra114 */
567 	DRM_FORMAT_ABGR4444,
568 	DRM_FORMAT_ABGR1555,
569 	DRM_FORMAT_BGRA5551,
570 	DRM_FORMAT_XRGB1555,
571 	DRM_FORMAT_RGBX5551,
572 	DRM_FORMAT_XBGR1555,
573 	DRM_FORMAT_BGRX5551,
574 	DRM_FORMAT_BGR565,
575 	DRM_FORMAT_BGRA8888,
576 	DRM_FORMAT_RGBA8888,
577 	DRM_FORMAT_XRGB8888,
578 	DRM_FORMAT_XBGR8888,
579 };
580 
581 static const u32 tegra124_primary_formats[] = {
582 	DRM_FORMAT_ARGB4444,
583 	DRM_FORMAT_ARGB1555,
584 	DRM_FORMAT_RGB565,
585 	DRM_FORMAT_RGBA5551,
586 	DRM_FORMAT_ABGR8888,
587 	DRM_FORMAT_ARGB8888,
588 	/* new on Tegra114 */
589 	DRM_FORMAT_ABGR4444,
590 	DRM_FORMAT_ABGR1555,
591 	DRM_FORMAT_BGRA5551,
592 	DRM_FORMAT_XRGB1555,
593 	DRM_FORMAT_RGBX5551,
594 	DRM_FORMAT_XBGR1555,
595 	DRM_FORMAT_BGRX5551,
596 	DRM_FORMAT_BGR565,
597 	DRM_FORMAT_BGRA8888,
598 	DRM_FORMAT_RGBA8888,
599 	DRM_FORMAT_XRGB8888,
600 	DRM_FORMAT_XBGR8888,
601 	/* new on Tegra124 */
602 	DRM_FORMAT_RGBX8888,
603 	DRM_FORMAT_BGRX8888,
604 };
605 
606 static const u64 tegra124_modifiers[] = {
607 	DRM_FORMAT_MOD_LINEAR,
608 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(0),
609 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(1),
610 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(2),
611 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(3),
612 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(4),
613 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(5),
614 	DRM_FORMAT_MOD_INVALID
615 };
616 
617 static int tegra_plane_atomic_check(struct drm_plane *plane,
618 				    struct drm_atomic_state *state)
619 {
620 	struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state,
621 										 plane);
622 	struct tegra_plane_state *plane_state = to_tegra_plane_state(new_plane_state);
623 	unsigned int supported_rotation = DRM_MODE_ROTATE_0 |
624 					  DRM_MODE_REFLECT_X |
625 					  DRM_MODE_REFLECT_Y;
626 	unsigned int rotation = new_plane_state->rotation;
627 	struct tegra_bo_tiling *tiling = &plane_state->tiling;
628 	struct tegra_plane *tegra = to_tegra_plane(plane);
629 	struct tegra_dc *dc = to_tegra_dc(new_plane_state->crtc);
630 	int err;
631 
632 	plane_state->peak_memory_bandwidth = 0;
633 	plane_state->avg_memory_bandwidth = 0;
634 
635 	/* no need for further checks if the plane is being disabled */
636 	if (!new_plane_state->crtc) {
637 		plane_state->total_peak_memory_bandwidth = 0;
638 		return 0;
639 	}
640 
641 	err = tegra_plane_format(new_plane_state->fb->format->format,
642 				 &plane_state->format,
643 				 &plane_state->swap);
644 	if (err < 0)
645 		return err;
646 
647 	/*
648 	 * Tegra20 and Tegra30 are special cases here because they support
649 	 * only variants of specific formats with an alpha component, but not
650 	 * the corresponding opaque formats. However, the opaque formats can
651 	 * be emulated by disabling alpha blending for the plane.
652 	 */
653 	if (dc->soc->has_legacy_blending) {
654 		err = tegra_plane_setup_legacy_state(tegra, plane_state);
655 		if (err < 0)
656 			return err;
657 	}
658 
659 	err = tegra_fb_get_tiling(new_plane_state->fb, tiling);
660 	if (err < 0)
661 		return err;
662 
663 	if (tiling->mode == TEGRA_BO_TILING_MODE_BLOCK &&
664 	    !dc->soc->supports_block_linear) {
665 		DRM_ERROR("hardware doesn't support block linear mode\n");
666 		return -EINVAL;
667 	}
668 
669 	/*
670 	 * Older userspace used custom BO flag in order to specify the Y
671 	 * reflection, while modern userspace uses the generic DRM rotation
672 	 * property in order to achieve the same result.  The legacy BO flag
673 	 * duplicates the DRM rotation property when both are set.
674 	 */
675 	if (tegra_fb_is_bottom_up(new_plane_state->fb))
676 		rotation |= DRM_MODE_REFLECT_Y;
677 
678 	rotation = drm_rotation_simplify(rotation, supported_rotation);
679 
680 	if (rotation & DRM_MODE_REFLECT_X)
681 		plane_state->reflect_x = true;
682 	else
683 		plane_state->reflect_x = false;
684 
685 	if (rotation & DRM_MODE_REFLECT_Y)
686 		plane_state->reflect_y = true;
687 	else
688 		plane_state->reflect_y = false;
689 
690 	/*
691 	 * Tegra doesn't support different strides for U and V planes so we
692 	 * error out if the user tries to display a framebuffer with such a
693 	 * configuration.
694 	 */
695 	if (new_plane_state->fb->format->num_planes > 2) {
696 		if (new_plane_state->fb->pitches[2] != new_plane_state->fb->pitches[1]) {
697 			DRM_ERROR("unsupported UV-plane configuration\n");
698 			return -EINVAL;
699 		}
700 	}
701 
702 	err = tegra_plane_state_add(tegra, new_plane_state);
703 	if (err < 0)
704 		return err;
705 
706 	return 0;
707 }
708 
709 static void tegra_plane_atomic_disable(struct drm_plane *plane,
710 				       struct drm_atomic_state *state)
711 {
712 	struct drm_plane_state *old_state = drm_atomic_get_old_plane_state(state,
713 									   plane);
714 	struct tegra_plane *p = to_tegra_plane(plane);
715 	u32 value;
716 
717 	/* rien ne va plus */
718 	if (!old_state || !old_state->crtc)
719 		return;
720 
721 	value = tegra_plane_readl(p, DC_WIN_WIN_OPTIONS);
722 	value &= ~WIN_ENABLE;
723 	tegra_plane_writel(p, value, DC_WIN_WIN_OPTIONS);
724 }
725 
726 static void tegra_plane_atomic_update(struct drm_plane *plane,
727 				      struct drm_atomic_state *state)
728 {
729 	struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state,
730 									   plane);
731 	struct tegra_plane_state *tegra_plane_state = to_tegra_plane_state(new_state);
732 	struct drm_framebuffer *fb = new_state->fb;
733 	struct tegra_plane *p = to_tegra_plane(plane);
734 	struct tegra_dc_window window;
735 	unsigned int i;
736 
737 	/* rien ne va plus */
738 	if (!new_state->crtc || !new_state->fb)
739 		return;
740 
741 	if (!new_state->visible)
742 		return tegra_plane_atomic_disable(plane, state);
743 
744 	memset(&window, 0, sizeof(window));
745 	window.src.x = new_state->src.x1 >> 16;
746 	window.src.y = new_state->src.y1 >> 16;
747 	window.src.w = drm_rect_width(&new_state->src) >> 16;
748 	window.src.h = drm_rect_height(&new_state->src) >> 16;
749 	window.dst.x = new_state->dst.x1;
750 	window.dst.y = new_state->dst.y1;
751 	window.dst.w = drm_rect_width(&new_state->dst);
752 	window.dst.h = drm_rect_height(&new_state->dst);
753 	window.bits_per_pixel = fb->format->cpp[0] * 8;
754 	window.reflect_x = tegra_plane_state->reflect_x;
755 	window.reflect_y = tegra_plane_state->reflect_y;
756 
757 	/* copy from state */
758 	window.zpos = new_state->normalized_zpos;
759 	window.tiling = tegra_plane_state->tiling;
760 	window.format = tegra_plane_state->format;
761 	window.swap = tegra_plane_state->swap;
762 
763 	for (i = 0; i < fb->format->num_planes; i++) {
764 		window.base[i] = tegra_plane_state->iova[i] + fb->offsets[i];
765 
766 		/*
767 		 * Tegra uses a shared stride for UV planes. Framebuffers are
768 		 * already checked for this in the tegra_plane_atomic_check()
769 		 * function, so it's safe to ignore the V-plane pitch here.
770 		 */
771 		if (i < 2)
772 			window.stride[i] = fb->pitches[i];
773 	}
774 
775 	tegra_dc_setup_window(p, &window);
776 }
777 
778 static const struct drm_plane_helper_funcs tegra_plane_helper_funcs = {
779 	.prepare_fb = tegra_plane_prepare_fb,
780 	.cleanup_fb = tegra_plane_cleanup_fb,
781 	.atomic_check = tegra_plane_atomic_check,
782 	.atomic_disable = tegra_plane_atomic_disable,
783 	.atomic_update = tegra_plane_atomic_update,
784 };
785 
786 static unsigned long tegra_plane_get_possible_crtcs(struct drm_device *drm)
787 {
788 	/*
789 	 * Ideally this would use drm_crtc_mask(), but that would require the
790 	 * CRTC to already be in the mode_config's list of CRTCs. However, it
791 	 * will only be added to that list in the drm_crtc_init_with_planes()
792 	 * (in tegra_dc_init()), which in turn requires registration of these
793 	 * planes. So we have ourselves a nice little chicken and egg problem
794 	 * here.
795 	 *
796 	 * We work around this by manually creating the mask from the number
797 	 * of CRTCs that have been registered, and should therefore always be
798 	 * the same as drm_crtc_index() after registration.
799 	 */
800 	return 1 << drm->mode_config.num_crtc;
801 }
802 
803 static struct drm_plane *tegra_primary_plane_create(struct drm_device *drm,
804 						    struct tegra_dc *dc)
805 {
806 	unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
807 	enum drm_plane_type type = DRM_PLANE_TYPE_PRIMARY;
808 	struct tegra_plane *plane;
809 	unsigned int num_formats;
810 	const u64 *modifiers;
811 	const u32 *formats;
812 	int err;
813 
814 	plane = kzalloc(sizeof(*plane), GFP_KERNEL);
815 	if (!plane)
816 		return ERR_PTR(-ENOMEM);
817 
818 	/* Always use window A as primary window */
819 	plane->offset = 0xa00;
820 	plane->index = 0;
821 	plane->dc = dc;
822 
823 	num_formats = dc->soc->num_primary_formats;
824 	formats = dc->soc->primary_formats;
825 	modifiers = dc->soc->modifiers;
826 
827 	err = tegra_plane_interconnect_init(plane);
828 	if (err) {
829 		kfree(plane);
830 		return ERR_PTR(err);
831 	}
832 
833 	err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
834 				       &tegra_plane_funcs, formats,
835 				       num_formats, modifiers, type, NULL);
836 	if (err < 0) {
837 		kfree(plane);
838 		return ERR_PTR(err);
839 	}
840 
841 	drm_plane_helper_add(&plane->base, &tegra_plane_helper_funcs);
842 	drm_plane_create_zpos_property(&plane->base, plane->index, 0, 255);
843 
844 	err = drm_plane_create_rotation_property(&plane->base,
845 						 DRM_MODE_ROTATE_0,
846 						 DRM_MODE_ROTATE_0 |
847 						 DRM_MODE_ROTATE_180 |
848 						 DRM_MODE_REFLECT_X |
849 						 DRM_MODE_REFLECT_Y);
850 	if (err < 0)
851 		dev_err(dc->dev, "failed to create rotation property: %d\n",
852 			err);
853 
854 	return &plane->base;
855 }
856 
857 static const u32 tegra_legacy_cursor_plane_formats[] = {
858 	DRM_FORMAT_RGBA8888,
859 };
860 
861 static const u32 tegra_cursor_plane_formats[] = {
862 	DRM_FORMAT_ARGB8888,
863 };
864 
865 static int tegra_cursor_atomic_check(struct drm_plane *plane,
866 				     struct drm_atomic_state *state)
867 {
868 	struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state,
869 										 plane);
870 	struct tegra_plane_state *plane_state = to_tegra_plane_state(new_plane_state);
871 	struct tegra_plane *tegra = to_tegra_plane(plane);
872 	int err;
873 
874 	plane_state->peak_memory_bandwidth = 0;
875 	plane_state->avg_memory_bandwidth = 0;
876 
877 	/* no need for further checks if the plane is being disabled */
878 	if (!new_plane_state->crtc) {
879 		plane_state->total_peak_memory_bandwidth = 0;
880 		return 0;
881 	}
882 
883 	/* scaling not supported for cursor */
884 	if ((new_plane_state->src_w >> 16 != new_plane_state->crtc_w) ||
885 	    (new_plane_state->src_h >> 16 != new_plane_state->crtc_h))
886 		return -EINVAL;
887 
888 	/* only square cursors supported */
889 	if (new_plane_state->src_w != new_plane_state->src_h)
890 		return -EINVAL;
891 
892 	if (new_plane_state->crtc_w != 32 && new_plane_state->crtc_w != 64 &&
893 	    new_plane_state->crtc_w != 128 && new_plane_state->crtc_w != 256)
894 		return -EINVAL;
895 
896 	err = tegra_plane_state_add(tegra, new_plane_state);
897 	if (err < 0)
898 		return err;
899 
900 	return 0;
901 }
902 
903 static void __tegra_cursor_atomic_update(struct drm_plane *plane,
904 					 struct drm_plane_state *new_state)
905 {
906 	struct tegra_plane_state *tegra_plane_state = to_tegra_plane_state(new_state);
907 	struct tegra_dc *dc = to_tegra_dc(new_state->crtc);
908 	struct tegra_drm *tegra = plane->dev->dev_private;
909 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
910 	u64 dma_mask = *dc->dev->dma_mask;
911 #endif
912 	unsigned int x, y;
913 	u32 value = 0;
914 
915 	/* rien ne va plus */
916 	if (!new_state->crtc || !new_state->fb)
917 		return;
918 
919 	/*
920 	 * Legacy display supports hardware clipping of the cursor, but
921 	 * nvdisplay relies on software to clip the cursor to the screen.
922 	 */
923 	if (!dc->soc->has_nvdisplay)
924 		value |= CURSOR_CLIP_DISPLAY;
925 
926 	switch (new_state->crtc_w) {
927 	case 32:
928 		value |= CURSOR_SIZE_32x32;
929 		break;
930 
931 	case 64:
932 		value |= CURSOR_SIZE_64x64;
933 		break;
934 
935 	case 128:
936 		value |= CURSOR_SIZE_128x128;
937 		break;
938 
939 	case 256:
940 		value |= CURSOR_SIZE_256x256;
941 		break;
942 
943 	default:
944 		WARN(1, "cursor size %ux%u not supported\n",
945 		     new_state->crtc_w, new_state->crtc_h);
946 		return;
947 	}
948 
949 	value |= (tegra_plane_state->iova[0] >> 10) & 0x3fffff;
950 	tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR);
951 
952 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
953 	value = (tegra_plane_state->iova[0] >> 32) & (dma_mask >> 32);
954 	tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR_HI);
955 #endif
956 
957 	/* enable cursor and set blend mode */
958 	value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
959 	value |= CURSOR_ENABLE;
960 	tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
961 
962 	value = tegra_dc_readl(dc, DC_DISP_BLEND_CURSOR_CONTROL);
963 	value &= ~CURSOR_DST_BLEND_MASK;
964 	value &= ~CURSOR_SRC_BLEND_MASK;
965 
966 	if (dc->soc->has_nvdisplay)
967 		value &= ~CURSOR_COMPOSITION_MODE_XOR;
968 	else
969 		value |= CURSOR_MODE_NORMAL;
970 
971 	value |= CURSOR_DST_BLEND_NEG_K1_TIMES_SRC;
972 	value |= CURSOR_SRC_BLEND_K1_TIMES_SRC;
973 	value |= CURSOR_ALPHA;
974 	tegra_dc_writel(dc, value, DC_DISP_BLEND_CURSOR_CONTROL);
975 
976 	/* nvdisplay relies on software for clipping */
977 	if (dc->soc->has_nvdisplay) {
978 		struct drm_rect src;
979 
980 		x = new_state->dst.x1;
981 		y = new_state->dst.y1;
982 
983 		drm_rect_fp_to_int(&src, &new_state->src);
984 
985 		value = (src.y1 & tegra->vmask) << 16 | (src.x1 & tegra->hmask);
986 		tegra_dc_writel(dc, value, DC_DISP_PCALC_HEAD_SET_CROPPED_POINT_IN_CURSOR);
987 
988 		value = (drm_rect_height(&src) & tegra->vmask) << 16 |
989 			(drm_rect_width(&src) & tegra->hmask);
990 		tegra_dc_writel(dc, value, DC_DISP_PCALC_HEAD_SET_CROPPED_SIZE_IN_CURSOR);
991 	} else {
992 		x = new_state->crtc_x;
993 		y = new_state->crtc_y;
994 	}
995 
996 	/* position the cursor */
997 	value = ((y & tegra->vmask) << 16) | (x & tegra->hmask);
998 	tegra_dc_writel(dc, value, DC_DISP_CURSOR_POSITION);
999 }
1000 
1001 static void tegra_cursor_atomic_update(struct drm_plane *plane,
1002 				       struct drm_atomic_state *state)
1003 {
1004 	struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state, plane);
1005 
1006 	__tegra_cursor_atomic_update(plane, new_state);
1007 }
1008 
1009 static void tegra_cursor_atomic_disable(struct drm_plane *plane,
1010 					struct drm_atomic_state *state)
1011 {
1012 	struct drm_plane_state *old_state = drm_atomic_get_old_plane_state(state,
1013 									   plane);
1014 	struct tegra_dc *dc;
1015 	u32 value;
1016 
1017 	/* rien ne va plus */
1018 	if (!old_state || !old_state->crtc)
1019 		return;
1020 
1021 	dc = to_tegra_dc(old_state->crtc);
1022 
1023 	value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
1024 	value &= ~CURSOR_ENABLE;
1025 	tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
1026 }
1027 
1028 static int tegra_cursor_atomic_async_check(struct drm_plane *plane, struct drm_atomic_state *state)
1029 {
1030 	struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state, plane);
1031 	struct drm_crtc_state *crtc_state;
1032 	int min_scale, max_scale;
1033 	int err;
1034 
1035 	crtc_state = drm_atomic_get_existing_crtc_state(state, new_state->crtc);
1036 	if (WARN_ON(!crtc_state))
1037 		return -EINVAL;
1038 
1039 	if (!crtc_state->active)
1040 		return -EINVAL;
1041 
1042 	if (plane->state->crtc != new_state->crtc ||
1043 	    plane->state->src_w != new_state->src_w ||
1044 	    plane->state->src_h != new_state->src_h ||
1045 	    plane->state->crtc_w != new_state->crtc_w ||
1046 	    plane->state->crtc_h != new_state->crtc_h ||
1047 	    plane->state->fb != new_state->fb ||
1048 	    plane->state->fb == NULL)
1049 		return -EINVAL;
1050 
1051 	min_scale = (1 << 16) / 8;
1052 	max_scale = (8 << 16) / 1;
1053 
1054 	err = drm_atomic_helper_check_plane_state(new_state, crtc_state, min_scale, max_scale,
1055 						  true, true);
1056 	if (err < 0)
1057 		return err;
1058 
1059 	if (new_state->visible != plane->state->visible)
1060 		return -EINVAL;
1061 
1062 	return 0;
1063 }
1064 
1065 static void tegra_cursor_atomic_async_update(struct drm_plane *plane,
1066 					     struct drm_atomic_state *state)
1067 {
1068 	struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state, plane);
1069 	struct tegra_dc *dc = to_tegra_dc(new_state->crtc);
1070 
1071 	plane->state->src_x = new_state->src_x;
1072 	plane->state->src_y = new_state->src_y;
1073 	plane->state->crtc_x = new_state->crtc_x;
1074 	plane->state->crtc_y = new_state->crtc_y;
1075 
1076 	if (new_state->visible) {
1077 		struct tegra_plane *p = to_tegra_plane(plane);
1078 		u32 value;
1079 
1080 		__tegra_cursor_atomic_update(plane, new_state);
1081 
1082 		value = (WIN_A_ACT_REQ << p->index) << 8 | GENERAL_UPDATE;
1083 		tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
1084 		(void)tegra_dc_readl(dc, DC_CMD_STATE_CONTROL);
1085 
1086 		value = (WIN_A_ACT_REQ << p->index) | GENERAL_ACT_REQ;
1087 		tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
1088 		(void)tegra_dc_readl(dc, DC_CMD_STATE_CONTROL);
1089 	}
1090 }
1091 
1092 static const struct drm_plane_helper_funcs tegra_cursor_plane_helper_funcs = {
1093 	.prepare_fb = tegra_plane_prepare_fb,
1094 	.cleanup_fb = tegra_plane_cleanup_fb,
1095 	.atomic_check = tegra_cursor_atomic_check,
1096 	.atomic_update = tegra_cursor_atomic_update,
1097 	.atomic_disable = tegra_cursor_atomic_disable,
1098 	.atomic_async_check = tegra_cursor_atomic_async_check,
1099 	.atomic_async_update = tegra_cursor_atomic_async_update,
1100 };
1101 
1102 static const uint64_t linear_modifiers[] = {
1103 	DRM_FORMAT_MOD_LINEAR,
1104 	DRM_FORMAT_MOD_INVALID
1105 };
1106 
1107 static struct drm_plane *tegra_dc_cursor_plane_create(struct drm_device *drm,
1108 						      struct tegra_dc *dc)
1109 {
1110 	unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
1111 	struct tegra_plane *plane;
1112 	unsigned int num_formats;
1113 	const u32 *formats;
1114 	int err;
1115 
1116 	plane = kzalloc(sizeof(*plane), GFP_KERNEL);
1117 	if (!plane)
1118 		return ERR_PTR(-ENOMEM);
1119 
1120 	/*
1121 	 * This index is kind of fake. The cursor isn't a regular plane, but
1122 	 * its update and activation request bits in DC_CMD_STATE_CONTROL do
1123 	 * use the same programming. Setting this fake index here allows the
1124 	 * code in tegra_add_plane_state() to do the right thing without the
1125 	 * need to special-casing the cursor plane.
1126 	 */
1127 	plane->index = 6;
1128 	plane->dc = dc;
1129 
1130 	if (!dc->soc->has_nvdisplay) {
1131 		num_formats = ARRAY_SIZE(tegra_legacy_cursor_plane_formats);
1132 		formats = tegra_legacy_cursor_plane_formats;
1133 
1134 		err = tegra_plane_interconnect_init(plane);
1135 		if (err) {
1136 			kfree(plane);
1137 			return ERR_PTR(err);
1138 		}
1139 	} else {
1140 		num_formats = ARRAY_SIZE(tegra_cursor_plane_formats);
1141 		formats = tegra_cursor_plane_formats;
1142 	}
1143 
1144 	err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
1145 				       &tegra_plane_funcs, formats,
1146 				       num_formats, linear_modifiers,
1147 				       DRM_PLANE_TYPE_CURSOR, NULL);
1148 	if (err < 0) {
1149 		kfree(plane);
1150 		return ERR_PTR(err);
1151 	}
1152 
1153 	drm_plane_helper_add(&plane->base, &tegra_cursor_plane_helper_funcs);
1154 	drm_plane_create_zpos_immutable_property(&plane->base, 255);
1155 
1156 	return &plane->base;
1157 }
1158 
1159 static const u32 tegra20_overlay_formats[] = {
1160 	DRM_FORMAT_ARGB4444,
1161 	DRM_FORMAT_ARGB1555,
1162 	DRM_FORMAT_RGB565,
1163 	DRM_FORMAT_RGBA5551,
1164 	DRM_FORMAT_ABGR8888,
1165 	DRM_FORMAT_ARGB8888,
1166 	/* non-native formats */
1167 	DRM_FORMAT_XRGB1555,
1168 	DRM_FORMAT_RGBX5551,
1169 	DRM_FORMAT_XBGR8888,
1170 	DRM_FORMAT_XRGB8888,
1171 	/* planar formats */
1172 	DRM_FORMAT_UYVY,
1173 	DRM_FORMAT_YUYV,
1174 	DRM_FORMAT_YUV420,
1175 	DRM_FORMAT_YUV422,
1176 };
1177 
1178 static const u32 tegra114_overlay_formats[] = {
1179 	DRM_FORMAT_ARGB4444,
1180 	DRM_FORMAT_ARGB1555,
1181 	DRM_FORMAT_RGB565,
1182 	DRM_FORMAT_RGBA5551,
1183 	DRM_FORMAT_ABGR8888,
1184 	DRM_FORMAT_ARGB8888,
1185 	/* new on Tegra114 */
1186 	DRM_FORMAT_ABGR4444,
1187 	DRM_FORMAT_ABGR1555,
1188 	DRM_FORMAT_BGRA5551,
1189 	DRM_FORMAT_XRGB1555,
1190 	DRM_FORMAT_RGBX5551,
1191 	DRM_FORMAT_XBGR1555,
1192 	DRM_FORMAT_BGRX5551,
1193 	DRM_FORMAT_BGR565,
1194 	DRM_FORMAT_BGRA8888,
1195 	DRM_FORMAT_RGBA8888,
1196 	DRM_FORMAT_XRGB8888,
1197 	DRM_FORMAT_XBGR8888,
1198 	/* planar formats */
1199 	DRM_FORMAT_UYVY,
1200 	DRM_FORMAT_YUYV,
1201 	DRM_FORMAT_YUV420,
1202 	DRM_FORMAT_YUV422,
1203 	/* semi-planar formats */
1204 	DRM_FORMAT_NV12,
1205 	DRM_FORMAT_NV21,
1206 	DRM_FORMAT_NV16,
1207 	DRM_FORMAT_NV61,
1208 	DRM_FORMAT_NV24,
1209 	DRM_FORMAT_NV42,
1210 };
1211 
1212 static const u32 tegra124_overlay_formats[] = {
1213 	DRM_FORMAT_ARGB4444,
1214 	DRM_FORMAT_ARGB1555,
1215 	DRM_FORMAT_RGB565,
1216 	DRM_FORMAT_RGBA5551,
1217 	DRM_FORMAT_ABGR8888,
1218 	DRM_FORMAT_ARGB8888,
1219 	/* new on Tegra114 */
1220 	DRM_FORMAT_ABGR4444,
1221 	DRM_FORMAT_ABGR1555,
1222 	DRM_FORMAT_BGRA5551,
1223 	DRM_FORMAT_XRGB1555,
1224 	DRM_FORMAT_RGBX5551,
1225 	DRM_FORMAT_XBGR1555,
1226 	DRM_FORMAT_BGRX5551,
1227 	DRM_FORMAT_BGR565,
1228 	DRM_FORMAT_BGRA8888,
1229 	DRM_FORMAT_RGBA8888,
1230 	DRM_FORMAT_XRGB8888,
1231 	DRM_FORMAT_XBGR8888,
1232 	/* new on Tegra124 */
1233 	DRM_FORMAT_RGBX8888,
1234 	DRM_FORMAT_BGRX8888,
1235 	/* planar formats */
1236 	DRM_FORMAT_UYVY,
1237 	DRM_FORMAT_YUYV,
1238 	DRM_FORMAT_YVYU,
1239 	DRM_FORMAT_VYUY,
1240 	DRM_FORMAT_YUV420, /* YU12 */
1241 	DRM_FORMAT_YUV422, /* YU16 */
1242 	DRM_FORMAT_YUV444, /* YU24 */
1243 	/* semi-planar formats */
1244 	DRM_FORMAT_NV12,
1245 	DRM_FORMAT_NV21,
1246 	DRM_FORMAT_NV16,
1247 	DRM_FORMAT_NV61,
1248 	DRM_FORMAT_NV24,
1249 	DRM_FORMAT_NV42,
1250 };
1251 
1252 static struct drm_plane *tegra_dc_overlay_plane_create(struct drm_device *drm,
1253 						       struct tegra_dc *dc,
1254 						       unsigned int index,
1255 						       bool cursor)
1256 {
1257 	unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
1258 	struct tegra_plane *plane;
1259 	unsigned int num_formats;
1260 	enum drm_plane_type type;
1261 	const u32 *formats;
1262 	int err;
1263 
1264 	plane = kzalloc(sizeof(*plane), GFP_KERNEL);
1265 	if (!plane)
1266 		return ERR_PTR(-ENOMEM);
1267 
1268 	plane->offset = 0xa00 + 0x200 * index;
1269 	plane->index = index;
1270 	plane->dc = dc;
1271 
1272 	num_formats = dc->soc->num_overlay_formats;
1273 	formats = dc->soc->overlay_formats;
1274 
1275 	err = tegra_plane_interconnect_init(plane);
1276 	if (err) {
1277 		kfree(plane);
1278 		return ERR_PTR(err);
1279 	}
1280 
1281 	if (!cursor)
1282 		type = DRM_PLANE_TYPE_OVERLAY;
1283 	else
1284 		type = DRM_PLANE_TYPE_CURSOR;
1285 
1286 	err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
1287 				       &tegra_plane_funcs, formats,
1288 				       num_formats, linear_modifiers,
1289 				       type, NULL);
1290 	if (err < 0) {
1291 		kfree(plane);
1292 		return ERR_PTR(err);
1293 	}
1294 
1295 	drm_plane_helper_add(&plane->base, &tegra_plane_helper_funcs);
1296 	drm_plane_create_zpos_property(&plane->base, plane->index, 0, 255);
1297 
1298 	err = drm_plane_create_rotation_property(&plane->base,
1299 						 DRM_MODE_ROTATE_0,
1300 						 DRM_MODE_ROTATE_0 |
1301 						 DRM_MODE_ROTATE_180 |
1302 						 DRM_MODE_REFLECT_X |
1303 						 DRM_MODE_REFLECT_Y);
1304 	if (err < 0)
1305 		dev_err(dc->dev, "failed to create rotation property: %d\n",
1306 			err);
1307 
1308 	return &plane->base;
1309 }
1310 
1311 static struct drm_plane *tegra_dc_add_shared_planes(struct drm_device *drm,
1312 						    struct tegra_dc *dc)
1313 {
1314 	struct drm_plane *plane, *primary = NULL;
1315 	unsigned int i, j;
1316 
1317 	for (i = 0; i < dc->soc->num_wgrps; i++) {
1318 		const struct tegra_windowgroup_soc *wgrp = &dc->soc->wgrps[i];
1319 
1320 		if (wgrp->dc == dc->pipe) {
1321 			for (j = 0; j < wgrp->num_windows; j++) {
1322 				unsigned int index = wgrp->windows[j];
1323 
1324 				plane = tegra_shared_plane_create(drm, dc,
1325 								  wgrp->index,
1326 								  index);
1327 				if (IS_ERR(plane))
1328 					return plane;
1329 
1330 				/*
1331 				 * Choose the first shared plane owned by this
1332 				 * head as the primary plane.
1333 				 */
1334 				if (!primary) {
1335 					plane->type = DRM_PLANE_TYPE_PRIMARY;
1336 					primary = plane;
1337 				}
1338 			}
1339 		}
1340 	}
1341 
1342 	return primary;
1343 }
1344 
1345 static struct drm_plane *tegra_dc_add_planes(struct drm_device *drm,
1346 					     struct tegra_dc *dc)
1347 {
1348 	struct drm_plane *planes[2], *primary;
1349 	unsigned int planes_num;
1350 	unsigned int i;
1351 	int err;
1352 
1353 	primary = tegra_primary_plane_create(drm, dc);
1354 	if (IS_ERR(primary))
1355 		return primary;
1356 
1357 	if (dc->soc->supports_cursor)
1358 		planes_num = 2;
1359 	else
1360 		planes_num = 1;
1361 
1362 	for (i = 0; i < planes_num; i++) {
1363 		planes[i] = tegra_dc_overlay_plane_create(drm, dc, 1 + i,
1364 							  false);
1365 		if (IS_ERR(planes[i])) {
1366 			err = PTR_ERR(planes[i]);
1367 
1368 			while (i--)
1369 				planes[i]->funcs->destroy(planes[i]);
1370 
1371 			primary->funcs->destroy(primary);
1372 			return ERR_PTR(err);
1373 		}
1374 	}
1375 
1376 	return primary;
1377 }
1378 
1379 static void tegra_dc_destroy(struct drm_crtc *crtc)
1380 {
1381 	drm_crtc_cleanup(crtc);
1382 }
1383 
1384 static void tegra_crtc_reset(struct drm_crtc *crtc)
1385 {
1386 	struct tegra_dc_state *state = kzalloc(sizeof(*state), GFP_KERNEL);
1387 
1388 	if (crtc->state)
1389 		tegra_crtc_atomic_destroy_state(crtc, crtc->state);
1390 
1391 	__drm_atomic_helper_crtc_reset(crtc, &state->base);
1392 }
1393 
1394 static struct drm_crtc_state *
1395 tegra_crtc_atomic_duplicate_state(struct drm_crtc *crtc)
1396 {
1397 	struct tegra_dc_state *state = to_dc_state(crtc->state);
1398 	struct tegra_dc_state *copy;
1399 
1400 	copy = kmalloc(sizeof(*copy), GFP_KERNEL);
1401 	if (!copy)
1402 		return NULL;
1403 
1404 	__drm_atomic_helper_crtc_duplicate_state(crtc, &copy->base);
1405 	copy->clk = state->clk;
1406 	copy->pclk = state->pclk;
1407 	copy->div = state->div;
1408 	copy->planes = state->planes;
1409 
1410 	return &copy->base;
1411 }
1412 
1413 static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc,
1414 					    struct drm_crtc_state *state)
1415 {
1416 	__drm_atomic_helper_crtc_destroy_state(state);
1417 	kfree(state);
1418 }
1419 
1420 #define DEBUGFS_REG32(_name) { .name = #_name, .offset = _name }
1421 
1422 static const struct debugfs_reg32 tegra_dc_regs[] = {
1423 	DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT),
1424 	DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT_CNTRL),
1425 	DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT_ERROR),
1426 	DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT),
1427 	DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT_CNTRL),
1428 	DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT_ERROR),
1429 	DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT),
1430 	DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT_CNTRL),
1431 	DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT_ERROR),
1432 	DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT),
1433 	DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT_CNTRL),
1434 	DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT_ERROR),
1435 	DEBUGFS_REG32(DC_CMD_CONT_SYNCPT_VSYNC),
1436 	DEBUGFS_REG32(DC_CMD_DISPLAY_COMMAND_OPTION0),
1437 	DEBUGFS_REG32(DC_CMD_DISPLAY_COMMAND),
1438 	DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE),
1439 	DEBUGFS_REG32(DC_CMD_DISPLAY_POWER_CONTROL),
1440 	DEBUGFS_REG32(DC_CMD_INT_STATUS),
1441 	DEBUGFS_REG32(DC_CMD_INT_MASK),
1442 	DEBUGFS_REG32(DC_CMD_INT_ENABLE),
1443 	DEBUGFS_REG32(DC_CMD_INT_TYPE),
1444 	DEBUGFS_REG32(DC_CMD_INT_POLARITY),
1445 	DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE1),
1446 	DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE2),
1447 	DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE3),
1448 	DEBUGFS_REG32(DC_CMD_STATE_ACCESS),
1449 	DEBUGFS_REG32(DC_CMD_STATE_CONTROL),
1450 	DEBUGFS_REG32(DC_CMD_DISPLAY_WINDOW_HEADER),
1451 	DEBUGFS_REG32(DC_CMD_REG_ACT_CONTROL),
1452 	DEBUGFS_REG32(DC_COM_CRC_CONTROL),
1453 	DEBUGFS_REG32(DC_COM_CRC_CHECKSUM),
1454 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(0)),
1455 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(1)),
1456 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(2)),
1457 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(3)),
1458 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(0)),
1459 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(1)),
1460 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(2)),
1461 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(3)),
1462 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(0)),
1463 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(1)),
1464 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(2)),
1465 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(3)),
1466 	DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(0)),
1467 	DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(1)),
1468 	DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(2)),
1469 	DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(3)),
1470 	DEBUGFS_REG32(DC_COM_PIN_INPUT_DATA(0)),
1471 	DEBUGFS_REG32(DC_COM_PIN_INPUT_DATA(1)),
1472 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(0)),
1473 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(1)),
1474 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(2)),
1475 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(3)),
1476 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(4)),
1477 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(5)),
1478 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(6)),
1479 	DEBUGFS_REG32(DC_COM_PIN_MISC_CONTROL),
1480 	DEBUGFS_REG32(DC_COM_PIN_PM0_CONTROL),
1481 	DEBUGFS_REG32(DC_COM_PIN_PM0_DUTY_CYCLE),
1482 	DEBUGFS_REG32(DC_COM_PIN_PM1_CONTROL),
1483 	DEBUGFS_REG32(DC_COM_PIN_PM1_DUTY_CYCLE),
1484 	DEBUGFS_REG32(DC_COM_SPI_CONTROL),
1485 	DEBUGFS_REG32(DC_COM_SPI_START_BYTE),
1486 	DEBUGFS_REG32(DC_COM_HSPI_WRITE_DATA_AB),
1487 	DEBUGFS_REG32(DC_COM_HSPI_WRITE_DATA_CD),
1488 	DEBUGFS_REG32(DC_COM_HSPI_CS_DC),
1489 	DEBUGFS_REG32(DC_COM_SCRATCH_REGISTER_A),
1490 	DEBUGFS_REG32(DC_COM_SCRATCH_REGISTER_B),
1491 	DEBUGFS_REG32(DC_COM_GPIO_CTRL),
1492 	DEBUGFS_REG32(DC_COM_GPIO_DEBOUNCE_COUNTER),
1493 	DEBUGFS_REG32(DC_COM_CRC_CHECKSUM_LATCHED),
1494 	DEBUGFS_REG32(DC_DISP_DISP_SIGNAL_OPTIONS0),
1495 	DEBUGFS_REG32(DC_DISP_DISP_SIGNAL_OPTIONS1),
1496 	DEBUGFS_REG32(DC_DISP_DISP_WIN_OPTIONS),
1497 	DEBUGFS_REG32(DC_DISP_DISP_MEM_HIGH_PRIORITY),
1498 	DEBUGFS_REG32(DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER),
1499 	DEBUGFS_REG32(DC_DISP_DISP_TIMING_OPTIONS),
1500 	DEBUGFS_REG32(DC_DISP_REF_TO_SYNC),
1501 	DEBUGFS_REG32(DC_DISP_SYNC_WIDTH),
1502 	DEBUGFS_REG32(DC_DISP_BACK_PORCH),
1503 	DEBUGFS_REG32(DC_DISP_ACTIVE),
1504 	DEBUGFS_REG32(DC_DISP_FRONT_PORCH),
1505 	DEBUGFS_REG32(DC_DISP_H_PULSE0_CONTROL),
1506 	DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_A),
1507 	DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_B),
1508 	DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_C),
1509 	DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_D),
1510 	DEBUGFS_REG32(DC_DISP_H_PULSE1_CONTROL),
1511 	DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_A),
1512 	DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_B),
1513 	DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_C),
1514 	DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_D),
1515 	DEBUGFS_REG32(DC_DISP_H_PULSE2_CONTROL),
1516 	DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_A),
1517 	DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_B),
1518 	DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_C),
1519 	DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_D),
1520 	DEBUGFS_REG32(DC_DISP_V_PULSE0_CONTROL),
1521 	DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_A),
1522 	DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_B),
1523 	DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_C),
1524 	DEBUGFS_REG32(DC_DISP_V_PULSE1_CONTROL),
1525 	DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_A),
1526 	DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_B),
1527 	DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_C),
1528 	DEBUGFS_REG32(DC_DISP_V_PULSE2_CONTROL),
1529 	DEBUGFS_REG32(DC_DISP_V_PULSE2_POSITION_A),
1530 	DEBUGFS_REG32(DC_DISP_V_PULSE3_CONTROL),
1531 	DEBUGFS_REG32(DC_DISP_V_PULSE3_POSITION_A),
1532 	DEBUGFS_REG32(DC_DISP_M0_CONTROL),
1533 	DEBUGFS_REG32(DC_DISP_M1_CONTROL),
1534 	DEBUGFS_REG32(DC_DISP_DI_CONTROL),
1535 	DEBUGFS_REG32(DC_DISP_PP_CONTROL),
1536 	DEBUGFS_REG32(DC_DISP_PP_SELECT_A),
1537 	DEBUGFS_REG32(DC_DISP_PP_SELECT_B),
1538 	DEBUGFS_REG32(DC_DISP_PP_SELECT_C),
1539 	DEBUGFS_REG32(DC_DISP_PP_SELECT_D),
1540 	DEBUGFS_REG32(DC_DISP_DISP_CLOCK_CONTROL),
1541 	DEBUGFS_REG32(DC_DISP_DISP_INTERFACE_CONTROL),
1542 	DEBUGFS_REG32(DC_DISP_DISP_COLOR_CONTROL),
1543 	DEBUGFS_REG32(DC_DISP_SHIFT_CLOCK_OPTIONS),
1544 	DEBUGFS_REG32(DC_DISP_DATA_ENABLE_OPTIONS),
1545 	DEBUGFS_REG32(DC_DISP_SERIAL_INTERFACE_OPTIONS),
1546 	DEBUGFS_REG32(DC_DISP_LCD_SPI_OPTIONS),
1547 	DEBUGFS_REG32(DC_DISP_BORDER_COLOR),
1548 	DEBUGFS_REG32(DC_DISP_COLOR_KEY0_LOWER),
1549 	DEBUGFS_REG32(DC_DISP_COLOR_KEY0_UPPER),
1550 	DEBUGFS_REG32(DC_DISP_COLOR_KEY1_LOWER),
1551 	DEBUGFS_REG32(DC_DISP_COLOR_KEY1_UPPER),
1552 	DEBUGFS_REG32(DC_DISP_CURSOR_FOREGROUND),
1553 	DEBUGFS_REG32(DC_DISP_CURSOR_BACKGROUND),
1554 	DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR),
1555 	DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR_NS),
1556 	DEBUGFS_REG32(DC_DISP_CURSOR_POSITION),
1557 	DEBUGFS_REG32(DC_DISP_CURSOR_POSITION_NS),
1558 	DEBUGFS_REG32(DC_DISP_INIT_SEQ_CONTROL),
1559 	DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_A),
1560 	DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_B),
1561 	DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_C),
1562 	DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_D),
1563 	DEBUGFS_REG32(DC_DISP_DC_MCCIF_FIFOCTRL),
1564 	DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY0A_HYST),
1565 	DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY0B_HYST),
1566 	DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY1A_HYST),
1567 	DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY1B_HYST),
1568 	DEBUGFS_REG32(DC_DISP_DAC_CRT_CTRL),
1569 	DEBUGFS_REG32(DC_DISP_DISP_MISC_CONTROL),
1570 	DEBUGFS_REG32(DC_DISP_SD_CONTROL),
1571 	DEBUGFS_REG32(DC_DISP_SD_CSC_COEFF),
1572 	DEBUGFS_REG32(DC_DISP_SD_LUT(0)),
1573 	DEBUGFS_REG32(DC_DISP_SD_LUT(1)),
1574 	DEBUGFS_REG32(DC_DISP_SD_LUT(2)),
1575 	DEBUGFS_REG32(DC_DISP_SD_LUT(3)),
1576 	DEBUGFS_REG32(DC_DISP_SD_LUT(4)),
1577 	DEBUGFS_REG32(DC_DISP_SD_LUT(5)),
1578 	DEBUGFS_REG32(DC_DISP_SD_LUT(6)),
1579 	DEBUGFS_REG32(DC_DISP_SD_LUT(7)),
1580 	DEBUGFS_REG32(DC_DISP_SD_LUT(8)),
1581 	DEBUGFS_REG32(DC_DISP_SD_FLICKER_CONTROL),
1582 	DEBUGFS_REG32(DC_DISP_DC_PIXEL_COUNT),
1583 	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(0)),
1584 	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(1)),
1585 	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(2)),
1586 	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(3)),
1587 	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(4)),
1588 	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(5)),
1589 	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(6)),
1590 	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(7)),
1591 	DEBUGFS_REG32(DC_DISP_SD_BL_TF(0)),
1592 	DEBUGFS_REG32(DC_DISP_SD_BL_TF(1)),
1593 	DEBUGFS_REG32(DC_DISP_SD_BL_TF(2)),
1594 	DEBUGFS_REG32(DC_DISP_SD_BL_TF(3)),
1595 	DEBUGFS_REG32(DC_DISP_SD_BL_CONTROL),
1596 	DEBUGFS_REG32(DC_DISP_SD_HW_K_VALUES),
1597 	DEBUGFS_REG32(DC_DISP_SD_MAN_K_VALUES),
1598 	DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR_HI),
1599 	DEBUGFS_REG32(DC_DISP_BLEND_CURSOR_CONTROL),
1600 	DEBUGFS_REG32(DC_WIN_WIN_OPTIONS),
1601 	DEBUGFS_REG32(DC_WIN_BYTE_SWAP),
1602 	DEBUGFS_REG32(DC_WIN_BUFFER_CONTROL),
1603 	DEBUGFS_REG32(DC_WIN_COLOR_DEPTH),
1604 	DEBUGFS_REG32(DC_WIN_POSITION),
1605 	DEBUGFS_REG32(DC_WIN_SIZE),
1606 	DEBUGFS_REG32(DC_WIN_PRESCALED_SIZE),
1607 	DEBUGFS_REG32(DC_WIN_H_INITIAL_DDA),
1608 	DEBUGFS_REG32(DC_WIN_V_INITIAL_DDA),
1609 	DEBUGFS_REG32(DC_WIN_DDA_INC),
1610 	DEBUGFS_REG32(DC_WIN_LINE_STRIDE),
1611 	DEBUGFS_REG32(DC_WIN_BUF_STRIDE),
1612 	DEBUGFS_REG32(DC_WIN_UV_BUF_STRIDE),
1613 	DEBUGFS_REG32(DC_WIN_BUFFER_ADDR_MODE),
1614 	DEBUGFS_REG32(DC_WIN_DV_CONTROL),
1615 	DEBUGFS_REG32(DC_WIN_BLEND_NOKEY),
1616 	DEBUGFS_REG32(DC_WIN_BLEND_1WIN),
1617 	DEBUGFS_REG32(DC_WIN_BLEND_2WIN_X),
1618 	DEBUGFS_REG32(DC_WIN_BLEND_2WIN_Y),
1619 	DEBUGFS_REG32(DC_WIN_BLEND_3WIN_XY),
1620 	DEBUGFS_REG32(DC_WIN_HP_FETCH_CONTROL),
1621 	DEBUGFS_REG32(DC_WINBUF_START_ADDR),
1622 	DEBUGFS_REG32(DC_WINBUF_START_ADDR_NS),
1623 	DEBUGFS_REG32(DC_WINBUF_START_ADDR_U),
1624 	DEBUGFS_REG32(DC_WINBUF_START_ADDR_U_NS),
1625 	DEBUGFS_REG32(DC_WINBUF_START_ADDR_V),
1626 	DEBUGFS_REG32(DC_WINBUF_START_ADDR_V_NS),
1627 	DEBUGFS_REG32(DC_WINBUF_ADDR_H_OFFSET),
1628 	DEBUGFS_REG32(DC_WINBUF_ADDR_H_OFFSET_NS),
1629 	DEBUGFS_REG32(DC_WINBUF_ADDR_V_OFFSET),
1630 	DEBUGFS_REG32(DC_WINBUF_ADDR_V_OFFSET_NS),
1631 	DEBUGFS_REG32(DC_WINBUF_UFLOW_STATUS),
1632 	DEBUGFS_REG32(DC_WINBUF_AD_UFLOW_STATUS),
1633 	DEBUGFS_REG32(DC_WINBUF_BD_UFLOW_STATUS),
1634 	DEBUGFS_REG32(DC_WINBUF_CD_UFLOW_STATUS),
1635 };
1636 
1637 static int tegra_dc_show_regs(struct seq_file *s, void *data)
1638 {
1639 	struct drm_info_node *node = s->private;
1640 	struct tegra_dc *dc = node->info_ent->data;
1641 	unsigned int i;
1642 	int err = 0;
1643 
1644 	drm_modeset_lock(&dc->base.mutex, NULL);
1645 
1646 	if (!dc->base.state->active) {
1647 		err = -EBUSY;
1648 		goto unlock;
1649 	}
1650 
1651 	for (i = 0; i < ARRAY_SIZE(tegra_dc_regs); i++) {
1652 		unsigned int offset = tegra_dc_regs[i].offset;
1653 
1654 		seq_printf(s, "%-40s %#05x %08x\n", tegra_dc_regs[i].name,
1655 			   offset, tegra_dc_readl(dc, offset));
1656 	}
1657 
1658 unlock:
1659 	drm_modeset_unlock(&dc->base.mutex);
1660 	return err;
1661 }
1662 
1663 static int tegra_dc_show_crc(struct seq_file *s, void *data)
1664 {
1665 	struct drm_info_node *node = s->private;
1666 	struct tegra_dc *dc = node->info_ent->data;
1667 	int err = 0;
1668 	u32 value;
1669 
1670 	drm_modeset_lock(&dc->base.mutex, NULL);
1671 
1672 	if (!dc->base.state->active) {
1673 		err = -EBUSY;
1674 		goto unlock;
1675 	}
1676 
1677 	value = DC_COM_CRC_CONTROL_ACTIVE_DATA | DC_COM_CRC_CONTROL_ENABLE;
1678 	tegra_dc_writel(dc, value, DC_COM_CRC_CONTROL);
1679 	tegra_dc_commit(dc);
1680 
1681 	drm_crtc_wait_one_vblank(&dc->base);
1682 	drm_crtc_wait_one_vblank(&dc->base);
1683 
1684 	value = tegra_dc_readl(dc, DC_COM_CRC_CHECKSUM);
1685 	seq_printf(s, "%08x\n", value);
1686 
1687 	tegra_dc_writel(dc, 0, DC_COM_CRC_CONTROL);
1688 
1689 unlock:
1690 	drm_modeset_unlock(&dc->base.mutex);
1691 	return err;
1692 }
1693 
1694 static int tegra_dc_show_stats(struct seq_file *s, void *data)
1695 {
1696 	struct drm_info_node *node = s->private;
1697 	struct tegra_dc *dc = node->info_ent->data;
1698 
1699 	seq_printf(s, "frames: %lu\n", dc->stats.frames);
1700 	seq_printf(s, "vblank: %lu\n", dc->stats.vblank);
1701 	seq_printf(s, "underflow: %lu\n", dc->stats.underflow);
1702 	seq_printf(s, "overflow: %lu\n", dc->stats.overflow);
1703 
1704 	seq_printf(s, "frames total: %lu\n", dc->stats.frames_total);
1705 	seq_printf(s, "vblank total: %lu\n", dc->stats.vblank_total);
1706 	seq_printf(s, "underflow total: %lu\n", dc->stats.underflow_total);
1707 	seq_printf(s, "overflow total: %lu\n", dc->stats.overflow_total);
1708 
1709 	return 0;
1710 }
1711 
1712 static struct drm_info_list debugfs_files[] = {
1713 	{ "regs", tegra_dc_show_regs, 0, NULL },
1714 	{ "crc", tegra_dc_show_crc, 0, NULL },
1715 	{ "stats", tegra_dc_show_stats, 0, NULL },
1716 };
1717 
1718 static int tegra_dc_late_register(struct drm_crtc *crtc)
1719 {
1720 	unsigned int i, count = ARRAY_SIZE(debugfs_files);
1721 	struct drm_minor *minor = crtc->dev->primary;
1722 	struct dentry *root;
1723 	struct tegra_dc *dc = to_tegra_dc(crtc);
1724 
1725 #ifdef CONFIG_DEBUG_FS
1726 	root = crtc->debugfs_entry;
1727 #else
1728 	root = NULL;
1729 #endif
1730 
1731 	dc->debugfs_files = kmemdup(debugfs_files, sizeof(debugfs_files),
1732 				    GFP_KERNEL);
1733 	if (!dc->debugfs_files)
1734 		return -ENOMEM;
1735 
1736 	for (i = 0; i < count; i++)
1737 		dc->debugfs_files[i].data = dc;
1738 
1739 	drm_debugfs_create_files(dc->debugfs_files, count, root, minor);
1740 
1741 	return 0;
1742 }
1743 
1744 static void tegra_dc_early_unregister(struct drm_crtc *crtc)
1745 {
1746 	unsigned int count = ARRAY_SIZE(debugfs_files);
1747 	struct drm_minor *minor = crtc->dev->primary;
1748 	struct tegra_dc *dc = to_tegra_dc(crtc);
1749 
1750 	drm_debugfs_remove_files(dc->debugfs_files, count, minor);
1751 	kfree(dc->debugfs_files);
1752 	dc->debugfs_files = NULL;
1753 }
1754 
1755 static u32 tegra_dc_get_vblank_counter(struct drm_crtc *crtc)
1756 {
1757 	struct tegra_dc *dc = to_tegra_dc(crtc);
1758 
1759 	/* XXX vblank syncpoints don't work with nvdisplay yet */
1760 	if (dc->syncpt && !dc->soc->has_nvdisplay)
1761 		return host1x_syncpt_read(dc->syncpt);
1762 
1763 	/* fallback to software emulated VBLANK counter */
1764 	return (u32)drm_crtc_vblank_count(&dc->base);
1765 }
1766 
1767 static int tegra_dc_enable_vblank(struct drm_crtc *crtc)
1768 {
1769 	struct tegra_dc *dc = to_tegra_dc(crtc);
1770 	u32 value;
1771 
1772 	value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
1773 	value |= VBLANK_INT;
1774 	tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1775 
1776 	return 0;
1777 }
1778 
1779 static void tegra_dc_disable_vblank(struct drm_crtc *crtc)
1780 {
1781 	struct tegra_dc *dc = to_tegra_dc(crtc);
1782 	u32 value;
1783 
1784 	value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
1785 	value &= ~VBLANK_INT;
1786 	tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1787 }
1788 
1789 static const struct drm_crtc_funcs tegra_crtc_funcs = {
1790 	.page_flip = drm_atomic_helper_page_flip,
1791 	.set_config = drm_atomic_helper_set_config,
1792 	.destroy = tegra_dc_destroy,
1793 	.reset = tegra_crtc_reset,
1794 	.atomic_duplicate_state = tegra_crtc_atomic_duplicate_state,
1795 	.atomic_destroy_state = tegra_crtc_atomic_destroy_state,
1796 	.late_register = tegra_dc_late_register,
1797 	.early_unregister = tegra_dc_early_unregister,
1798 	.get_vblank_counter = tegra_dc_get_vblank_counter,
1799 	.enable_vblank = tegra_dc_enable_vblank,
1800 	.disable_vblank = tegra_dc_disable_vblank,
1801 };
1802 
1803 static int tegra_dc_set_timings(struct tegra_dc *dc,
1804 				struct drm_display_mode *mode)
1805 {
1806 	unsigned int h_ref_to_sync = 1;
1807 	unsigned int v_ref_to_sync = 1;
1808 	unsigned long value;
1809 
1810 	if (!dc->soc->has_nvdisplay) {
1811 		tegra_dc_writel(dc, 0x0, DC_DISP_DISP_TIMING_OPTIONS);
1812 
1813 		value = (v_ref_to_sync << 16) | h_ref_to_sync;
1814 		tegra_dc_writel(dc, value, DC_DISP_REF_TO_SYNC);
1815 	}
1816 
1817 	value = ((mode->vsync_end - mode->vsync_start) << 16) |
1818 		((mode->hsync_end - mode->hsync_start) <<  0);
1819 	tegra_dc_writel(dc, value, DC_DISP_SYNC_WIDTH);
1820 
1821 	value = ((mode->vtotal - mode->vsync_end) << 16) |
1822 		((mode->htotal - mode->hsync_end) <<  0);
1823 	tegra_dc_writel(dc, value, DC_DISP_BACK_PORCH);
1824 
1825 	value = ((mode->vsync_start - mode->vdisplay) << 16) |
1826 		((mode->hsync_start - mode->hdisplay) <<  0);
1827 	tegra_dc_writel(dc, value, DC_DISP_FRONT_PORCH);
1828 
1829 	value = (mode->vdisplay << 16) | mode->hdisplay;
1830 	tegra_dc_writel(dc, value, DC_DISP_ACTIVE);
1831 
1832 	return 0;
1833 }
1834 
1835 /**
1836  * tegra_dc_state_setup_clock - check clock settings and store them in atomic
1837  *     state
1838  * @dc: display controller
1839  * @crtc_state: CRTC atomic state
1840  * @clk: parent clock for display controller
1841  * @pclk: pixel clock
1842  * @div: shift clock divider
1843  *
1844  * Returns:
1845  * 0 on success or a negative error-code on failure.
1846  */
1847 int tegra_dc_state_setup_clock(struct tegra_dc *dc,
1848 			       struct drm_crtc_state *crtc_state,
1849 			       struct clk *clk, unsigned long pclk,
1850 			       unsigned int div)
1851 {
1852 	struct tegra_dc_state *state = to_dc_state(crtc_state);
1853 
1854 	if (!clk_has_parent(dc->clk, clk))
1855 		return -EINVAL;
1856 
1857 	state->clk = clk;
1858 	state->pclk = pclk;
1859 	state->div = div;
1860 
1861 	return 0;
1862 }
1863 
1864 static void tegra_dc_update_voltage_state(struct tegra_dc *dc,
1865 					  struct tegra_dc_state *state)
1866 {
1867 	unsigned long rate, pstate;
1868 	struct dev_pm_opp *opp;
1869 	int err;
1870 
1871 	if (!dc->has_opp_table)
1872 		return;
1873 
1874 	/* calculate actual pixel clock rate which depends on internal divider */
1875 	rate = DIV_ROUND_UP(clk_get_rate(dc->clk) * 2, state->div + 2);
1876 
1877 	/* find suitable OPP for the rate */
1878 	opp = dev_pm_opp_find_freq_ceil(dc->dev, &rate);
1879 
1880 	/*
1881 	 * Very high resolution modes may results in a clock rate that is
1882 	 * above the characterized maximum. In this case it's okay to fall
1883 	 * back to the characterized maximum.
1884 	 */
1885 	if (opp == ERR_PTR(-ERANGE))
1886 		opp = dev_pm_opp_find_freq_floor(dc->dev, &rate);
1887 
1888 	if (IS_ERR(opp)) {
1889 		dev_err(dc->dev, "failed to find OPP for %luHz: %pe\n",
1890 			rate, opp);
1891 		return;
1892 	}
1893 
1894 	pstate = dev_pm_opp_get_required_pstate(opp, 0);
1895 	dev_pm_opp_put(opp);
1896 
1897 	/*
1898 	 * The minimum core voltage depends on the pixel clock rate (which
1899 	 * depends on internal clock divider of the CRTC) and not on the
1900 	 * rate of the display controller clock. This is why we're not using
1901 	 * dev_pm_opp_set_rate() API and instead controlling the power domain
1902 	 * directly.
1903 	 */
1904 	err = dev_pm_genpd_set_performance_state(dc->dev, pstate);
1905 	if (err)
1906 		dev_err(dc->dev, "failed to set power domain state to %lu: %d\n",
1907 			pstate, err);
1908 }
1909 
1910 static void tegra_dc_set_clock_rate(struct tegra_dc *dc,
1911 				    struct tegra_dc_state *state)
1912 {
1913 	int err;
1914 
1915 	err = clk_set_parent(dc->clk, state->clk);
1916 	if (err < 0)
1917 		dev_err(dc->dev, "failed to set parent clock: %d\n", err);
1918 
1919 	/*
1920 	 * Outputs may not want to change the parent clock rate. This is only
1921 	 * relevant to Tegra20 where only a single display PLL is available.
1922 	 * Since that PLL would typically be used for HDMI, an internal LVDS
1923 	 * panel would need to be driven by some other clock such as PLL_P
1924 	 * which is shared with other peripherals. Changing the clock rate
1925 	 * should therefore be avoided.
1926 	 */
1927 	if (state->pclk > 0) {
1928 		err = clk_set_rate(state->clk, state->pclk);
1929 		if (err < 0)
1930 			dev_err(dc->dev,
1931 				"failed to set clock rate to %lu Hz\n",
1932 				state->pclk);
1933 
1934 		err = clk_set_rate(dc->clk, state->pclk);
1935 		if (err < 0)
1936 			dev_err(dc->dev, "failed to set clock %pC to %lu Hz: %d\n",
1937 				dc->clk, state->pclk, err);
1938 	}
1939 
1940 	DRM_DEBUG_KMS("rate: %lu, div: %u\n", clk_get_rate(dc->clk),
1941 		      state->div);
1942 	DRM_DEBUG_KMS("pclk: %lu\n", state->pclk);
1943 
1944 	tegra_dc_update_voltage_state(dc, state);
1945 }
1946 
1947 static void tegra_dc_stop(struct tegra_dc *dc)
1948 {
1949 	u32 value;
1950 
1951 	/* stop the display controller */
1952 	value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1953 	value &= ~DISP_CTRL_MODE_MASK;
1954 	tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1955 
1956 	tegra_dc_commit(dc);
1957 }
1958 
1959 static bool tegra_dc_idle(struct tegra_dc *dc)
1960 {
1961 	u32 value;
1962 
1963 	value = tegra_dc_readl_active(dc, DC_CMD_DISPLAY_COMMAND);
1964 
1965 	return (value & DISP_CTRL_MODE_MASK) == 0;
1966 }
1967 
1968 static int tegra_dc_wait_idle(struct tegra_dc *dc, unsigned long timeout)
1969 {
1970 	timeout = jiffies + msecs_to_jiffies(timeout);
1971 
1972 	while (time_before(jiffies, timeout)) {
1973 		if (tegra_dc_idle(dc))
1974 			return 0;
1975 
1976 		usleep_range(1000, 2000);
1977 	}
1978 
1979 	dev_dbg(dc->dev, "timeout waiting for DC to become idle\n");
1980 	return -ETIMEDOUT;
1981 }
1982 
1983 static void
1984 tegra_crtc_update_memory_bandwidth(struct drm_crtc *crtc,
1985 				   struct drm_atomic_state *state,
1986 				   bool prepare_bandwidth_transition)
1987 {
1988 	const struct tegra_plane_state *old_tegra_state, *new_tegra_state;
1989 	u32 i, new_avg_bw, old_avg_bw, new_peak_bw, old_peak_bw;
1990 	const struct drm_plane_state *old_plane_state;
1991 	const struct drm_crtc_state *old_crtc_state;
1992 	struct tegra_dc_window window, old_window;
1993 	struct tegra_dc *dc = to_tegra_dc(crtc);
1994 	struct tegra_plane *tegra;
1995 	struct drm_plane *plane;
1996 
1997 	if (dc->soc->has_nvdisplay)
1998 		return;
1999 
2000 	old_crtc_state = drm_atomic_get_old_crtc_state(state, crtc);
2001 
2002 	if (!crtc->state->active) {
2003 		if (!old_crtc_state->active)
2004 			return;
2005 
2006 		/*
2007 		 * When CRTC is disabled on DPMS, the state of attached planes
2008 		 * is kept unchanged. Hence we need to enforce removal of the
2009 		 * bandwidths from the ICC paths.
2010 		 */
2011 		drm_atomic_crtc_for_each_plane(plane, crtc) {
2012 			tegra = to_tegra_plane(plane);
2013 
2014 			icc_set_bw(tegra->icc_mem, 0, 0);
2015 			icc_set_bw(tegra->icc_mem_vfilter, 0, 0);
2016 		}
2017 
2018 		return;
2019 	}
2020 
2021 	for_each_old_plane_in_state(old_crtc_state->state, plane,
2022 				    old_plane_state, i) {
2023 		old_tegra_state = to_const_tegra_plane_state(old_plane_state);
2024 		new_tegra_state = to_const_tegra_plane_state(plane->state);
2025 		tegra = to_tegra_plane(plane);
2026 
2027 		/*
2028 		 * We're iterating over the global atomic state and it contains
2029 		 * planes from another CRTC, hence we need to filter out the
2030 		 * planes unrelated to this CRTC.
2031 		 */
2032 		if (tegra->dc != dc)
2033 			continue;
2034 
2035 		new_avg_bw = new_tegra_state->avg_memory_bandwidth;
2036 		old_avg_bw = old_tegra_state->avg_memory_bandwidth;
2037 
2038 		new_peak_bw = new_tegra_state->total_peak_memory_bandwidth;
2039 		old_peak_bw = old_tegra_state->total_peak_memory_bandwidth;
2040 
2041 		/*
2042 		 * See the comment related to !crtc->state->active above,
2043 		 * which explains why bandwidths need to be updated when
2044 		 * CRTC is turning ON.
2045 		 */
2046 		if (new_avg_bw == old_avg_bw && new_peak_bw == old_peak_bw &&
2047 		    old_crtc_state->active)
2048 			continue;
2049 
2050 		window.src.h = drm_rect_height(&plane->state->src) >> 16;
2051 		window.dst.h = drm_rect_height(&plane->state->dst);
2052 
2053 		old_window.src.h = drm_rect_height(&old_plane_state->src) >> 16;
2054 		old_window.dst.h = drm_rect_height(&old_plane_state->dst);
2055 
2056 		/*
2057 		 * During the preparation phase (atomic_begin), the memory
2058 		 * freq should go high before the DC changes are committed
2059 		 * if bandwidth requirement goes up, otherwise memory freq
2060 		 * should to stay high if BW requirement goes down.  The
2061 		 * opposite applies to the completion phase (post_commit).
2062 		 */
2063 		if (prepare_bandwidth_transition) {
2064 			new_avg_bw = max(old_avg_bw, new_avg_bw);
2065 			new_peak_bw = max(old_peak_bw, new_peak_bw);
2066 
2067 			if (tegra_plane_use_vertical_filtering(tegra, &old_window))
2068 				window = old_window;
2069 		}
2070 
2071 		icc_set_bw(tegra->icc_mem, new_avg_bw, new_peak_bw);
2072 
2073 		if (tegra_plane_use_vertical_filtering(tegra, &window))
2074 			icc_set_bw(tegra->icc_mem_vfilter, new_avg_bw, new_peak_bw);
2075 		else
2076 			icc_set_bw(tegra->icc_mem_vfilter, 0, 0);
2077 	}
2078 }
2079 
2080 static void tegra_crtc_atomic_disable(struct drm_crtc *crtc,
2081 				      struct drm_atomic_state *state)
2082 {
2083 	struct tegra_dc *dc = to_tegra_dc(crtc);
2084 	u32 value;
2085 	int err;
2086 
2087 	if (!tegra_dc_idle(dc)) {
2088 		tegra_dc_stop(dc);
2089 
2090 		/*
2091 		 * Ignore the return value, there isn't anything useful to do
2092 		 * in case this fails.
2093 		 */
2094 		tegra_dc_wait_idle(dc, 100);
2095 	}
2096 
2097 	/*
2098 	 * This should really be part of the RGB encoder driver, but clearing
2099 	 * these bits has the side-effect of stopping the display controller.
2100 	 * When that happens no VBLANK interrupts will be raised. At the same
2101 	 * time the encoder is disabled before the display controller, so the
2102 	 * above code is always going to timeout waiting for the controller
2103 	 * to go idle.
2104 	 *
2105 	 * Given the close coupling between the RGB encoder and the display
2106 	 * controller doing it here is still kind of okay. None of the other
2107 	 * encoder drivers require these bits to be cleared.
2108 	 *
2109 	 * XXX: Perhaps given that the display controller is switched off at
2110 	 * this point anyway maybe clearing these bits isn't even useful for
2111 	 * the RGB encoder?
2112 	 */
2113 	if (dc->rgb) {
2114 		value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
2115 		value &= ~(PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
2116 			   PW4_ENABLE | PM0_ENABLE | PM1_ENABLE);
2117 		tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
2118 	}
2119 
2120 	tegra_dc_stats_reset(&dc->stats);
2121 	drm_crtc_vblank_off(crtc);
2122 
2123 	spin_lock_irq(&crtc->dev->event_lock);
2124 
2125 	if (crtc->state->event) {
2126 		drm_crtc_send_vblank_event(crtc, crtc->state->event);
2127 		crtc->state->event = NULL;
2128 	}
2129 
2130 	spin_unlock_irq(&crtc->dev->event_lock);
2131 
2132 	err = host1x_client_suspend(&dc->client);
2133 	if (err < 0)
2134 		dev_err(dc->dev, "failed to suspend: %d\n", err);
2135 
2136 	if (dc->has_opp_table) {
2137 		err = dev_pm_genpd_set_performance_state(dc->dev, 0);
2138 		if (err)
2139 			dev_err(dc->dev,
2140 				"failed to clear power domain state: %d\n", err);
2141 	}
2142 }
2143 
2144 static void tegra_crtc_atomic_enable(struct drm_crtc *crtc,
2145 				     struct drm_atomic_state *state)
2146 {
2147 	struct drm_display_mode *mode = &crtc->state->adjusted_mode;
2148 	struct tegra_dc_state *crtc_state = to_dc_state(crtc->state);
2149 	struct tegra_dc *dc = to_tegra_dc(crtc);
2150 	u32 value;
2151 	int err;
2152 
2153 	/* apply PLL changes */
2154 	tegra_dc_set_clock_rate(dc, crtc_state);
2155 
2156 	err = host1x_client_resume(&dc->client);
2157 	if (err < 0) {
2158 		dev_err(dc->dev, "failed to resume: %d\n", err);
2159 		return;
2160 	}
2161 
2162 	/* initialize display controller */
2163 	if (dc->syncpt) {
2164 		u32 syncpt = host1x_syncpt_id(dc->syncpt), enable;
2165 
2166 		if (dc->soc->has_nvdisplay)
2167 			enable = 1 << 31;
2168 		else
2169 			enable = 1 << 8;
2170 
2171 		value = SYNCPT_CNTRL_NO_STALL;
2172 		tegra_dc_writel(dc, value, DC_CMD_GENERAL_INCR_SYNCPT_CNTRL);
2173 
2174 		value = enable | syncpt;
2175 		tegra_dc_writel(dc, value, DC_CMD_CONT_SYNCPT_VSYNC);
2176 	}
2177 
2178 	if (dc->soc->has_nvdisplay) {
2179 		value = DSC_TO_UF_INT | DSC_BBUF_UF_INT | DSC_RBUF_UF_INT |
2180 			DSC_OBUF_UF_INT;
2181 		tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
2182 
2183 		value = DSC_TO_UF_INT | DSC_BBUF_UF_INT | DSC_RBUF_UF_INT |
2184 			DSC_OBUF_UF_INT | SD3_BUCKET_WALK_DONE_INT |
2185 			HEAD_UF_INT | MSF_INT | REG_TMOUT_INT |
2186 			REGION_CRC_INT | V_PULSE2_INT | V_PULSE3_INT |
2187 			VBLANK_INT | FRAME_END_INT;
2188 		tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
2189 
2190 		value = SD3_BUCKET_WALK_DONE_INT | HEAD_UF_INT | VBLANK_INT |
2191 			FRAME_END_INT;
2192 		tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
2193 
2194 		value = HEAD_UF_INT | REG_TMOUT_INT | FRAME_END_INT;
2195 		tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
2196 
2197 		tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
2198 	} else {
2199 		value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
2200 			WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
2201 		tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
2202 
2203 		value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
2204 			WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
2205 		tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
2206 
2207 		/* initialize timer */
2208 		value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(0x20) |
2209 			WINDOW_B_THRESHOLD(0x20) | WINDOW_C_THRESHOLD(0x20);
2210 		tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY);
2211 
2212 		value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(1) |
2213 			WINDOW_B_THRESHOLD(1) | WINDOW_C_THRESHOLD(1);
2214 		tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER);
2215 
2216 		value = VBLANK_INT | WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
2217 			WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
2218 		tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
2219 
2220 		value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
2221 			WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
2222 		tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
2223 	}
2224 
2225 	if (dc->soc->supports_background_color)
2226 		tegra_dc_writel(dc, 0, DC_DISP_BLEND_BACKGROUND_COLOR);
2227 	else
2228 		tegra_dc_writel(dc, 0, DC_DISP_BORDER_COLOR);
2229 
2230 	/* apply pixel clock changes */
2231 	if (!dc->soc->has_nvdisplay) {
2232 		value = SHIFT_CLK_DIVIDER(crtc_state->div) | PIXEL_CLK_DIVIDER_PCD1;
2233 		tegra_dc_writel(dc, value, DC_DISP_DISP_CLOCK_CONTROL);
2234 	}
2235 
2236 	/* program display mode */
2237 	tegra_dc_set_timings(dc, mode);
2238 
2239 	/* interlacing isn't supported yet, so disable it */
2240 	if (dc->soc->supports_interlacing) {
2241 		value = tegra_dc_readl(dc, DC_DISP_INTERLACE_CONTROL);
2242 		value &= ~INTERLACE_ENABLE;
2243 		tegra_dc_writel(dc, value, DC_DISP_INTERLACE_CONTROL);
2244 	}
2245 
2246 	value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
2247 	value &= ~DISP_CTRL_MODE_MASK;
2248 	value |= DISP_CTRL_MODE_C_DISPLAY;
2249 	tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
2250 
2251 	if (!dc->soc->has_nvdisplay) {
2252 		value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
2253 		value |= PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
2254 			 PW4_ENABLE | PM0_ENABLE | PM1_ENABLE;
2255 		tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
2256 	}
2257 
2258 	/* enable underflow reporting and display red for missing pixels */
2259 	if (dc->soc->has_nvdisplay) {
2260 		value = UNDERFLOW_MODE_RED | UNDERFLOW_REPORT_ENABLE;
2261 		tegra_dc_writel(dc, value, DC_COM_RG_UNDERFLOW);
2262 	}
2263 
2264 	if (dc->rgb) {
2265 		/* XXX: parameterize? */
2266 		value = SC0_H_QUALIFIER_NONE | SC1_H_QUALIFIER_NONE;
2267 		tegra_dc_writel(dc, value, DC_DISP_SHIFT_CLOCK_OPTIONS);
2268 	}
2269 
2270 	tegra_dc_commit(dc);
2271 
2272 	drm_crtc_vblank_on(crtc);
2273 }
2274 
2275 static void tegra_crtc_atomic_begin(struct drm_crtc *crtc,
2276 				    struct drm_atomic_state *state)
2277 {
2278 	unsigned long flags;
2279 
2280 	tegra_crtc_update_memory_bandwidth(crtc, state, true);
2281 
2282 	if (crtc->state->event) {
2283 		spin_lock_irqsave(&crtc->dev->event_lock, flags);
2284 
2285 		if (drm_crtc_vblank_get(crtc) != 0)
2286 			drm_crtc_send_vblank_event(crtc, crtc->state->event);
2287 		else
2288 			drm_crtc_arm_vblank_event(crtc, crtc->state->event);
2289 
2290 		spin_unlock_irqrestore(&crtc->dev->event_lock, flags);
2291 
2292 		crtc->state->event = NULL;
2293 	}
2294 }
2295 
2296 static void tegra_crtc_atomic_flush(struct drm_crtc *crtc,
2297 				    struct drm_atomic_state *state)
2298 {
2299 	struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
2300 									  crtc);
2301 	struct tegra_dc_state *dc_state = to_dc_state(crtc_state);
2302 	struct tegra_dc *dc = to_tegra_dc(crtc);
2303 	u32 value;
2304 
2305 	value = dc_state->planes << 8 | GENERAL_UPDATE;
2306 	tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
2307 	value = tegra_dc_readl(dc, DC_CMD_STATE_CONTROL);
2308 
2309 	value = dc_state->planes | GENERAL_ACT_REQ;
2310 	tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
2311 	value = tegra_dc_readl(dc, DC_CMD_STATE_CONTROL);
2312 }
2313 
2314 static bool tegra_plane_is_cursor(const struct drm_plane_state *state)
2315 {
2316 	const struct tegra_dc_soc_info *soc = to_tegra_dc(state->crtc)->soc;
2317 	const struct drm_format_info *fmt = state->fb->format;
2318 	unsigned int src_w = drm_rect_width(&state->src) >> 16;
2319 	unsigned int dst_w = drm_rect_width(&state->dst);
2320 
2321 	if (state->plane->type != DRM_PLANE_TYPE_CURSOR)
2322 		return false;
2323 
2324 	if (soc->supports_cursor)
2325 		return true;
2326 
2327 	if (src_w != dst_w || fmt->num_planes != 1 || src_w * fmt->cpp[0] > 256)
2328 		return false;
2329 
2330 	return true;
2331 }
2332 
2333 static unsigned long
2334 tegra_plane_overlap_mask(struct drm_crtc_state *state,
2335 			 const struct drm_plane_state *plane_state)
2336 {
2337 	const struct drm_plane_state *other_state;
2338 	const struct tegra_plane *tegra;
2339 	unsigned long overlap_mask = 0;
2340 	struct drm_plane *plane;
2341 	struct drm_rect rect;
2342 
2343 	if (!plane_state->visible || !plane_state->fb)
2344 		return 0;
2345 
2346 	/*
2347 	 * Data-prefetch FIFO will easily help to overcome temporal memory
2348 	 * pressure if other plane overlaps with the cursor plane.
2349 	 */
2350 	if (tegra_plane_is_cursor(plane_state))
2351 		return 0;
2352 
2353 	drm_atomic_crtc_state_for_each_plane_state(plane, other_state, state) {
2354 		rect = plane_state->dst;
2355 
2356 		tegra = to_tegra_plane(other_state->plane);
2357 
2358 		if (!other_state->visible || !other_state->fb)
2359 			continue;
2360 
2361 		/*
2362 		 * Ignore cursor plane overlaps because it's not practical to
2363 		 * assume that it contributes to the bandwidth in overlapping
2364 		 * area if window width is small.
2365 		 */
2366 		if (tegra_plane_is_cursor(other_state))
2367 			continue;
2368 
2369 		if (drm_rect_intersect(&rect, &other_state->dst))
2370 			overlap_mask |= BIT(tegra->index);
2371 	}
2372 
2373 	return overlap_mask;
2374 }
2375 
2376 static int tegra_crtc_calculate_memory_bandwidth(struct drm_crtc *crtc,
2377 						 struct drm_atomic_state *state)
2378 {
2379 	ulong overlap_mask[TEGRA_DC_LEGACY_PLANES_NUM] = {}, mask;
2380 	u32 plane_peak_bw[TEGRA_DC_LEGACY_PLANES_NUM] = {};
2381 	bool all_planes_overlap_simultaneously = true;
2382 	const struct tegra_plane_state *tegra_state;
2383 	const struct drm_plane_state *plane_state;
2384 	struct tegra_dc *dc = to_tegra_dc(crtc);
2385 	struct drm_crtc_state *new_state;
2386 	struct tegra_plane *tegra;
2387 	struct drm_plane *plane;
2388 
2389 	/*
2390 	 * The nv-display uses shared planes.  The algorithm below assumes
2391 	 * maximum 3 planes per-CRTC, this assumption isn't applicable to
2392 	 * the nv-display.  Note that T124 support has additional windows,
2393 	 * but currently they aren't supported by the driver.
2394 	 */
2395 	if (dc->soc->has_nvdisplay)
2396 		return 0;
2397 
2398 	new_state = drm_atomic_get_new_crtc_state(state, crtc);
2399 
2400 	/*
2401 	 * For overlapping planes pixel's data is fetched for each plane at
2402 	 * the same time, hence bandwidths are accumulated in this case.
2403 	 * This needs to be taken into account for calculating total bandwidth
2404 	 * consumed by all planes.
2405 	 *
2406 	 * Here we get the overlapping state of each plane, which is a
2407 	 * bitmask of plane indices telling with what planes there is an
2408 	 * overlap. Note that bitmask[plane] includes BIT(plane) in order
2409 	 * to make further code nicer and simpler.
2410 	 */
2411 	drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, new_state) {
2412 		tegra_state = to_const_tegra_plane_state(plane_state);
2413 		tegra = to_tegra_plane(plane);
2414 
2415 		if (WARN_ON_ONCE(tegra->index >= TEGRA_DC_LEGACY_PLANES_NUM))
2416 			return -EINVAL;
2417 
2418 		plane_peak_bw[tegra->index] = tegra_state->peak_memory_bandwidth;
2419 		mask = tegra_plane_overlap_mask(new_state, plane_state);
2420 		overlap_mask[tegra->index] = mask;
2421 
2422 		if (hweight_long(mask) != 3)
2423 			all_planes_overlap_simultaneously = false;
2424 	}
2425 
2426 	/*
2427 	 * Then we calculate maximum bandwidth of each plane state.
2428 	 * The bandwidth includes the plane BW + BW of the "simultaneously"
2429 	 * overlapping planes, where "simultaneously" means areas where DC
2430 	 * fetches from the planes simultaneously during of scan-out process.
2431 	 *
2432 	 * For example, if plane A overlaps with planes B and C, but B and C
2433 	 * don't overlap, then the peak bandwidth will be either in area where
2434 	 * A-and-B or A-and-C planes overlap.
2435 	 *
2436 	 * The plane_peak_bw[] contains peak memory bandwidth values of
2437 	 * each plane, this information is needed by interconnect provider
2438 	 * in order to set up latency allowance based on the peak BW, see
2439 	 * tegra_crtc_update_memory_bandwidth().
2440 	 */
2441 	drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, new_state) {
2442 		u32 i, old_peak_bw, new_peak_bw, overlap_bw = 0;
2443 
2444 		/*
2445 		 * Note that plane's atomic check doesn't touch the
2446 		 * total_peak_memory_bandwidth of enabled plane, hence the
2447 		 * current state contains the old bandwidth state from the
2448 		 * previous CRTC commit.
2449 		 */
2450 		tegra_state = to_const_tegra_plane_state(plane_state);
2451 		tegra = to_tegra_plane(plane);
2452 
2453 		for_each_set_bit(i, &overlap_mask[tegra->index], 3) {
2454 			if (i == tegra->index)
2455 				continue;
2456 
2457 			if (all_planes_overlap_simultaneously)
2458 				overlap_bw += plane_peak_bw[i];
2459 			else
2460 				overlap_bw = max(overlap_bw, plane_peak_bw[i]);
2461 		}
2462 
2463 		new_peak_bw = plane_peak_bw[tegra->index] + overlap_bw;
2464 		old_peak_bw = tegra_state->total_peak_memory_bandwidth;
2465 
2466 		/*
2467 		 * If plane's peak bandwidth changed (for example plane isn't
2468 		 * overlapped anymore) and plane isn't in the atomic state,
2469 		 * then add plane to the state in order to have the bandwidth
2470 		 * updated.
2471 		 */
2472 		if (old_peak_bw != new_peak_bw) {
2473 			struct tegra_plane_state *new_tegra_state;
2474 			struct drm_plane_state *new_plane_state;
2475 
2476 			new_plane_state = drm_atomic_get_plane_state(state, plane);
2477 			if (IS_ERR(new_plane_state))
2478 				return PTR_ERR(new_plane_state);
2479 
2480 			new_tegra_state = to_tegra_plane_state(new_plane_state);
2481 			new_tegra_state->total_peak_memory_bandwidth = new_peak_bw;
2482 		}
2483 	}
2484 
2485 	return 0;
2486 }
2487 
2488 static int tegra_crtc_atomic_check(struct drm_crtc *crtc,
2489 				   struct drm_atomic_state *state)
2490 {
2491 	int err;
2492 
2493 	err = tegra_crtc_calculate_memory_bandwidth(crtc, state);
2494 	if (err)
2495 		return err;
2496 
2497 	return 0;
2498 }
2499 
2500 void tegra_crtc_atomic_post_commit(struct drm_crtc *crtc,
2501 				   struct drm_atomic_state *state)
2502 {
2503 	/*
2504 	 * Display bandwidth is allowed to go down only once hardware state
2505 	 * is known to be armed, i.e. state was committed and VBLANK event
2506 	 * received.
2507 	 */
2508 	tegra_crtc_update_memory_bandwidth(crtc, state, false);
2509 }
2510 
2511 static const struct drm_crtc_helper_funcs tegra_crtc_helper_funcs = {
2512 	.atomic_check = tegra_crtc_atomic_check,
2513 	.atomic_begin = tegra_crtc_atomic_begin,
2514 	.atomic_flush = tegra_crtc_atomic_flush,
2515 	.atomic_enable = tegra_crtc_atomic_enable,
2516 	.atomic_disable = tegra_crtc_atomic_disable,
2517 };
2518 
2519 static irqreturn_t tegra_dc_irq(int irq, void *data)
2520 {
2521 	struct tegra_dc *dc = data;
2522 	unsigned long status;
2523 
2524 	status = tegra_dc_readl(dc, DC_CMD_INT_STATUS);
2525 	tegra_dc_writel(dc, status, DC_CMD_INT_STATUS);
2526 
2527 	if (status & FRAME_END_INT) {
2528 		/*
2529 		dev_dbg(dc->dev, "%s(): frame end\n", __func__);
2530 		*/
2531 		dc->stats.frames_total++;
2532 		dc->stats.frames++;
2533 	}
2534 
2535 	if (status & VBLANK_INT) {
2536 		/*
2537 		dev_dbg(dc->dev, "%s(): vertical blank\n", __func__);
2538 		*/
2539 		drm_crtc_handle_vblank(&dc->base);
2540 		dc->stats.vblank_total++;
2541 		dc->stats.vblank++;
2542 	}
2543 
2544 	if (status & (WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT)) {
2545 		/*
2546 		dev_dbg(dc->dev, "%s(): underflow\n", __func__);
2547 		*/
2548 		dc->stats.underflow_total++;
2549 		dc->stats.underflow++;
2550 	}
2551 
2552 	if (status & (WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT)) {
2553 		/*
2554 		dev_dbg(dc->dev, "%s(): overflow\n", __func__);
2555 		*/
2556 		dc->stats.overflow_total++;
2557 		dc->stats.overflow++;
2558 	}
2559 
2560 	if (status & HEAD_UF_INT) {
2561 		dev_dbg_ratelimited(dc->dev, "%s(): head underflow\n", __func__);
2562 		dc->stats.underflow_total++;
2563 		dc->stats.underflow++;
2564 	}
2565 
2566 	return IRQ_HANDLED;
2567 }
2568 
2569 static bool tegra_dc_has_window_groups(struct tegra_dc *dc)
2570 {
2571 	unsigned int i;
2572 
2573 	if (!dc->soc->wgrps)
2574 		return true;
2575 
2576 	for (i = 0; i < dc->soc->num_wgrps; i++) {
2577 		const struct tegra_windowgroup_soc *wgrp = &dc->soc->wgrps[i];
2578 
2579 		if (wgrp->dc == dc->pipe && wgrp->num_windows > 0)
2580 			return true;
2581 	}
2582 
2583 	return false;
2584 }
2585 
2586 static int tegra_dc_early_init(struct host1x_client *client)
2587 {
2588 	struct drm_device *drm = dev_get_drvdata(client->host);
2589 	struct tegra_drm *tegra = drm->dev_private;
2590 
2591 	tegra->num_crtcs++;
2592 
2593 	return 0;
2594 }
2595 
2596 static int tegra_dc_init(struct host1x_client *client)
2597 {
2598 	struct drm_device *drm = dev_get_drvdata(client->host);
2599 	unsigned long flags = HOST1X_SYNCPT_CLIENT_MANAGED;
2600 	struct tegra_dc *dc = host1x_client_to_dc(client);
2601 	struct tegra_drm *tegra = drm->dev_private;
2602 	struct drm_plane *primary = NULL;
2603 	struct drm_plane *cursor = NULL;
2604 	int err;
2605 
2606 	/*
2607 	 * DC has been reset by now, so VBLANK syncpoint can be released
2608 	 * for general use.
2609 	 */
2610 	host1x_syncpt_release_vblank_reservation(client, 26 + dc->pipe);
2611 
2612 	/*
2613 	 * XXX do not register DCs with no window groups because we cannot
2614 	 * assign a primary plane to them, which in turn will cause KMS to
2615 	 * crash.
2616 	 */
2617 	if (!tegra_dc_has_window_groups(dc))
2618 		return 0;
2619 
2620 	/*
2621 	 * Set the display hub as the host1x client parent for the display
2622 	 * controller. This is needed for the runtime reference counting that
2623 	 * ensures the display hub is always powered when any of the display
2624 	 * controllers are.
2625 	 */
2626 	if (dc->soc->has_nvdisplay)
2627 		client->parent = &tegra->hub->client;
2628 
2629 	dc->syncpt = host1x_syncpt_request(client, flags);
2630 	if (!dc->syncpt)
2631 		dev_warn(dc->dev, "failed to allocate syncpoint\n");
2632 
2633 	err = host1x_client_iommu_attach(client);
2634 	if (err < 0 && err != -ENODEV) {
2635 		dev_err(client->dev, "failed to attach to domain: %d\n", err);
2636 		return err;
2637 	}
2638 
2639 	if (dc->soc->wgrps)
2640 		primary = tegra_dc_add_shared_planes(drm, dc);
2641 	else
2642 		primary = tegra_dc_add_planes(drm, dc);
2643 
2644 	if (IS_ERR(primary)) {
2645 		err = PTR_ERR(primary);
2646 		goto cleanup;
2647 	}
2648 
2649 	if (dc->soc->supports_cursor) {
2650 		cursor = tegra_dc_cursor_plane_create(drm, dc);
2651 		if (IS_ERR(cursor)) {
2652 			err = PTR_ERR(cursor);
2653 			goto cleanup;
2654 		}
2655 	} else {
2656 		/* dedicate one overlay to mouse cursor */
2657 		cursor = tegra_dc_overlay_plane_create(drm, dc, 2, true);
2658 		if (IS_ERR(cursor)) {
2659 			err = PTR_ERR(cursor);
2660 			goto cleanup;
2661 		}
2662 	}
2663 
2664 	err = drm_crtc_init_with_planes(drm, &dc->base, primary, cursor,
2665 					&tegra_crtc_funcs, NULL);
2666 	if (err < 0)
2667 		goto cleanup;
2668 
2669 	drm_crtc_helper_add(&dc->base, &tegra_crtc_helper_funcs);
2670 
2671 	/*
2672 	 * Keep track of the minimum pitch alignment across all display
2673 	 * controllers.
2674 	 */
2675 	if (dc->soc->pitch_align > tegra->pitch_align)
2676 		tegra->pitch_align = dc->soc->pitch_align;
2677 
2678 	/* track maximum resolution */
2679 	if (dc->soc->has_nvdisplay)
2680 		drm->mode_config.max_width = drm->mode_config.max_height = 16384;
2681 	else
2682 		drm->mode_config.max_width = drm->mode_config.max_height = 4096;
2683 
2684 	err = tegra_dc_rgb_init(drm, dc);
2685 	if (err < 0 && err != -ENODEV) {
2686 		dev_err(dc->dev, "failed to initialize RGB output: %d\n", err);
2687 		goto cleanup;
2688 	}
2689 
2690 	err = devm_request_irq(dc->dev, dc->irq, tegra_dc_irq, 0,
2691 			       dev_name(dc->dev), dc);
2692 	if (err < 0) {
2693 		dev_err(dc->dev, "failed to request IRQ#%u: %d\n", dc->irq,
2694 			err);
2695 		goto cleanup;
2696 	}
2697 
2698 	/*
2699 	 * Inherit the DMA parameters (such as maximum segment size) from the
2700 	 * parent host1x device.
2701 	 */
2702 	client->dev->dma_parms = client->host->dma_parms;
2703 
2704 	return 0;
2705 
2706 cleanup:
2707 	if (!IS_ERR_OR_NULL(cursor))
2708 		drm_plane_cleanup(cursor);
2709 
2710 	if (!IS_ERR(primary))
2711 		drm_plane_cleanup(primary);
2712 
2713 	host1x_client_iommu_detach(client);
2714 	host1x_syncpt_put(dc->syncpt);
2715 
2716 	return err;
2717 }
2718 
2719 static int tegra_dc_exit(struct host1x_client *client)
2720 {
2721 	struct tegra_dc *dc = host1x_client_to_dc(client);
2722 	int err;
2723 
2724 	if (!tegra_dc_has_window_groups(dc))
2725 		return 0;
2726 
2727 	/* avoid a dangling pointer just in case this disappears */
2728 	client->dev->dma_parms = NULL;
2729 
2730 	devm_free_irq(dc->dev, dc->irq, dc);
2731 
2732 	err = tegra_dc_rgb_exit(dc);
2733 	if (err) {
2734 		dev_err(dc->dev, "failed to shutdown RGB output: %d\n", err);
2735 		return err;
2736 	}
2737 
2738 	host1x_client_iommu_detach(client);
2739 	host1x_syncpt_put(dc->syncpt);
2740 
2741 	return 0;
2742 }
2743 
2744 static int tegra_dc_late_exit(struct host1x_client *client)
2745 {
2746 	struct drm_device *drm = dev_get_drvdata(client->host);
2747 	struct tegra_drm *tegra = drm->dev_private;
2748 
2749 	tegra->num_crtcs--;
2750 
2751 	return 0;
2752 }
2753 
2754 static int tegra_dc_runtime_suspend(struct host1x_client *client)
2755 {
2756 	struct tegra_dc *dc = host1x_client_to_dc(client);
2757 	struct device *dev = client->dev;
2758 	int err;
2759 
2760 	err = reset_control_assert(dc->rst);
2761 	if (err < 0) {
2762 		dev_err(dev, "failed to assert reset: %d\n", err);
2763 		return err;
2764 	}
2765 
2766 	if (dc->soc->has_powergate)
2767 		tegra_powergate_power_off(dc->powergate);
2768 
2769 	clk_disable_unprepare(dc->clk);
2770 	pm_runtime_put_sync(dev);
2771 
2772 	return 0;
2773 }
2774 
2775 static int tegra_dc_runtime_resume(struct host1x_client *client)
2776 {
2777 	struct tegra_dc *dc = host1x_client_to_dc(client);
2778 	struct device *dev = client->dev;
2779 	int err;
2780 
2781 	err = pm_runtime_resume_and_get(dev);
2782 	if (err < 0) {
2783 		dev_err(dev, "failed to get runtime PM: %d\n", err);
2784 		return err;
2785 	}
2786 
2787 	if (dc->soc->has_powergate) {
2788 		err = tegra_powergate_sequence_power_up(dc->powergate, dc->clk,
2789 							dc->rst);
2790 		if (err < 0) {
2791 			dev_err(dev, "failed to power partition: %d\n", err);
2792 			goto put_rpm;
2793 		}
2794 	} else {
2795 		err = clk_prepare_enable(dc->clk);
2796 		if (err < 0) {
2797 			dev_err(dev, "failed to enable clock: %d\n", err);
2798 			goto put_rpm;
2799 		}
2800 
2801 		err = reset_control_deassert(dc->rst);
2802 		if (err < 0) {
2803 			dev_err(dev, "failed to deassert reset: %d\n", err);
2804 			goto disable_clk;
2805 		}
2806 	}
2807 
2808 	return 0;
2809 
2810 disable_clk:
2811 	clk_disable_unprepare(dc->clk);
2812 put_rpm:
2813 	pm_runtime_put_sync(dev);
2814 	return err;
2815 }
2816 
2817 static const struct host1x_client_ops dc_client_ops = {
2818 	.early_init = tegra_dc_early_init,
2819 	.init = tegra_dc_init,
2820 	.exit = tegra_dc_exit,
2821 	.late_exit = tegra_dc_late_exit,
2822 	.suspend = tegra_dc_runtime_suspend,
2823 	.resume = tegra_dc_runtime_resume,
2824 };
2825 
2826 static const struct tegra_dc_soc_info tegra20_dc_soc_info = {
2827 	.supports_background_color = false,
2828 	.supports_interlacing = false,
2829 	.supports_cursor = false,
2830 	.supports_block_linear = false,
2831 	.supports_sector_layout = false,
2832 	.has_legacy_blending = true,
2833 	.pitch_align = 8,
2834 	.has_powergate = false,
2835 	.coupled_pm = true,
2836 	.has_nvdisplay = false,
2837 	.num_primary_formats = ARRAY_SIZE(tegra20_primary_formats),
2838 	.primary_formats = tegra20_primary_formats,
2839 	.num_overlay_formats = ARRAY_SIZE(tegra20_overlay_formats),
2840 	.overlay_formats = tegra20_overlay_formats,
2841 	.modifiers = tegra20_modifiers,
2842 	.has_win_a_without_filters = true,
2843 	.has_win_b_vfilter_mem_client = true,
2844 	.has_win_c_without_vert_filter = true,
2845 	.plane_tiled_memory_bandwidth_x2 = false,
2846 	.has_pll_d2_out0 = false,
2847 };
2848 
2849 static const struct tegra_dc_soc_info tegra30_dc_soc_info = {
2850 	.supports_background_color = false,
2851 	.supports_interlacing = false,
2852 	.supports_cursor = false,
2853 	.supports_block_linear = false,
2854 	.supports_sector_layout = false,
2855 	.has_legacy_blending = true,
2856 	.pitch_align = 8,
2857 	.has_powergate = false,
2858 	.coupled_pm = false,
2859 	.has_nvdisplay = false,
2860 	.num_primary_formats = ARRAY_SIZE(tegra20_primary_formats),
2861 	.primary_formats = tegra20_primary_formats,
2862 	.num_overlay_formats = ARRAY_SIZE(tegra20_overlay_formats),
2863 	.overlay_formats = tegra20_overlay_formats,
2864 	.modifiers = tegra20_modifiers,
2865 	.has_win_a_without_filters = false,
2866 	.has_win_b_vfilter_mem_client = true,
2867 	.has_win_c_without_vert_filter = false,
2868 	.plane_tiled_memory_bandwidth_x2 = true,
2869 	.has_pll_d2_out0 = true,
2870 };
2871 
2872 static const struct tegra_dc_soc_info tegra114_dc_soc_info = {
2873 	.supports_background_color = false,
2874 	.supports_interlacing = false,
2875 	.supports_cursor = false,
2876 	.supports_block_linear = false,
2877 	.supports_sector_layout = false,
2878 	.has_legacy_blending = true,
2879 	.pitch_align = 64,
2880 	.has_powergate = true,
2881 	.coupled_pm = false,
2882 	.has_nvdisplay = false,
2883 	.num_primary_formats = ARRAY_SIZE(tegra114_primary_formats),
2884 	.primary_formats = tegra114_primary_formats,
2885 	.num_overlay_formats = ARRAY_SIZE(tegra114_overlay_formats),
2886 	.overlay_formats = tegra114_overlay_formats,
2887 	.modifiers = tegra20_modifiers,
2888 	.has_win_a_without_filters = false,
2889 	.has_win_b_vfilter_mem_client = false,
2890 	.has_win_c_without_vert_filter = false,
2891 	.plane_tiled_memory_bandwidth_x2 = true,
2892 	.has_pll_d2_out0 = true,
2893 };
2894 
2895 static const struct tegra_dc_soc_info tegra124_dc_soc_info = {
2896 	.supports_background_color = true,
2897 	.supports_interlacing = true,
2898 	.supports_cursor = true,
2899 	.supports_block_linear = true,
2900 	.supports_sector_layout = false,
2901 	.has_legacy_blending = false,
2902 	.pitch_align = 64,
2903 	.has_powergate = true,
2904 	.coupled_pm = false,
2905 	.has_nvdisplay = false,
2906 	.num_primary_formats = ARRAY_SIZE(tegra124_primary_formats),
2907 	.primary_formats = tegra124_primary_formats,
2908 	.num_overlay_formats = ARRAY_SIZE(tegra124_overlay_formats),
2909 	.overlay_formats = tegra124_overlay_formats,
2910 	.modifiers = tegra124_modifiers,
2911 	.has_win_a_without_filters = false,
2912 	.has_win_b_vfilter_mem_client = false,
2913 	.has_win_c_without_vert_filter = false,
2914 	.plane_tiled_memory_bandwidth_x2 = false,
2915 	.has_pll_d2_out0 = true,
2916 };
2917 
2918 static const struct tegra_dc_soc_info tegra210_dc_soc_info = {
2919 	.supports_background_color = true,
2920 	.supports_interlacing = true,
2921 	.supports_cursor = true,
2922 	.supports_block_linear = true,
2923 	.supports_sector_layout = false,
2924 	.has_legacy_blending = false,
2925 	.pitch_align = 64,
2926 	.has_powergate = true,
2927 	.coupled_pm = false,
2928 	.has_nvdisplay = false,
2929 	.num_primary_formats = ARRAY_SIZE(tegra114_primary_formats),
2930 	.primary_formats = tegra114_primary_formats,
2931 	.num_overlay_formats = ARRAY_SIZE(tegra114_overlay_formats),
2932 	.overlay_formats = tegra114_overlay_formats,
2933 	.modifiers = tegra124_modifiers,
2934 	.has_win_a_without_filters = false,
2935 	.has_win_b_vfilter_mem_client = false,
2936 	.has_win_c_without_vert_filter = false,
2937 	.plane_tiled_memory_bandwidth_x2 = false,
2938 	.has_pll_d2_out0 = true,
2939 };
2940 
2941 static const struct tegra_windowgroup_soc tegra186_dc_wgrps[] = {
2942 	{
2943 		.index = 0,
2944 		.dc = 0,
2945 		.windows = (const unsigned int[]) { 0 },
2946 		.num_windows = 1,
2947 	}, {
2948 		.index = 1,
2949 		.dc = 1,
2950 		.windows = (const unsigned int[]) { 1 },
2951 		.num_windows = 1,
2952 	}, {
2953 		.index = 2,
2954 		.dc = 1,
2955 		.windows = (const unsigned int[]) { 2 },
2956 		.num_windows = 1,
2957 	}, {
2958 		.index = 3,
2959 		.dc = 2,
2960 		.windows = (const unsigned int[]) { 3 },
2961 		.num_windows = 1,
2962 	}, {
2963 		.index = 4,
2964 		.dc = 2,
2965 		.windows = (const unsigned int[]) { 4 },
2966 		.num_windows = 1,
2967 	}, {
2968 		.index = 5,
2969 		.dc = 2,
2970 		.windows = (const unsigned int[]) { 5 },
2971 		.num_windows = 1,
2972 	},
2973 };
2974 
2975 static const struct tegra_dc_soc_info tegra186_dc_soc_info = {
2976 	.supports_background_color = true,
2977 	.supports_interlacing = true,
2978 	.supports_cursor = true,
2979 	.supports_block_linear = true,
2980 	.supports_sector_layout = false,
2981 	.has_legacy_blending = false,
2982 	.pitch_align = 64,
2983 	.has_powergate = false,
2984 	.coupled_pm = false,
2985 	.has_nvdisplay = true,
2986 	.wgrps = tegra186_dc_wgrps,
2987 	.num_wgrps = ARRAY_SIZE(tegra186_dc_wgrps),
2988 	.plane_tiled_memory_bandwidth_x2 = false,
2989 	.has_pll_d2_out0 = false,
2990 };
2991 
2992 static const struct tegra_windowgroup_soc tegra194_dc_wgrps[] = {
2993 	{
2994 		.index = 0,
2995 		.dc = 0,
2996 		.windows = (const unsigned int[]) { 0 },
2997 		.num_windows = 1,
2998 	}, {
2999 		.index = 1,
3000 		.dc = 1,
3001 		.windows = (const unsigned int[]) { 1 },
3002 		.num_windows = 1,
3003 	}, {
3004 		.index = 2,
3005 		.dc = 1,
3006 		.windows = (const unsigned int[]) { 2 },
3007 		.num_windows = 1,
3008 	}, {
3009 		.index = 3,
3010 		.dc = 2,
3011 		.windows = (const unsigned int[]) { 3 },
3012 		.num_windows = 1,
3013 	}, {
3014 		.index = 4,
3015 		.dc = 2,
3016 		.windows = (const unsigned int[]) { 4 },
3017 		.num_windows = 1,
3018 	}, {
3019 		.index = 5,
3020 		.dc = 2,
3021 		.windows = (const unsigned int[]) { 5 },
3022 		.num_windows = 1,
3023 	},
3024 };
3025 
3026 static const struct tegra_dc_soc_info tegra194_dc_soc_info = {
3027 	.supports_background_color = true,
3028 	.supports_interlacing = true,
3029 	.supports_cursor = true,
3030 	.supports_block_linear = true,
3031 	.supports_sector_layout = true,
3032 	.has_legacy_blending = false,
3033 	.pitch_align = 64,
3034 	.has_powergate = false,
3035 	.coupled_pm = false,
3036 	.has_nvdisplay = true,
3037 	.wgrps = tegra194_dc_wgrps,
3038 	.num_wgrps = ARRAY_SIZE(tegra194_dc_wgrps),
3039 	.plane_tiled_memory_bandwidth_x2 = false,
3040 	.has_pll_d2_out0 = false,
3041 };
3042 
3043 static const struct of_device_id tegra_dc_of_match[] = {
3044 	{
3045 		.compatible = "nvidia,tegra194-dc",
3046 		.data = &tegra194_dc_soc_info,
3047 	}, {
3048 		.compatible = "nvidia,tegra186-dc",
3049 		.data = &tegra186_dc_soc_info,
3050 	}, {
3051 		.compatible = "nvidia,tegra210-dc",
3052 		.data = &tegra210_dc_soc_info,
3053 	}, {
3054 		.compatible = "nvidia,tegra124-dc",
3055 		.data = &tegra124_dc_soc_info,
3056 	}, {
3057 		.compatible = "nvidia,tegra114-dc",
3058 		.data = &tegra114_dc_soc_info,
3059 	}, {
3060 		.compatible = "nvidia,tegra30-dc",
3061 		.data = &tegra30_dc_soc_info,
3062 	}, {
3063 		.compatible = "nvidia,tegra20-dc",
3064 		.data = &tegra20_dc_soc_info,
3065 	}, {
3066 		/* sentinel */
3067 	}
3068 };
3069 MODULE_DEVICE_TABLE(of, tegra_dc_of_match);
3070 
3071 static int tegra_dc_parse_dt(struct tegra_dc *dc)
3072 {
3073 	struct device_node *np;
3074 	u32 value = 0;
3075 	int err;
3076 
3077 	err = of_property_read_u32(dc->dev->of_node, "nvidia,head", &value);
3078 	if (err < 0) {
3079 		dev_err(dc->dev, "missing \"nvidia,head\" property\n");
3080 
3081 		/*
3082 		 * If the nvidia,head property isn't present, try to find the
3083 		 * correct head number by looking up the position of this
3084 		 * display controller's node within the device tree. Assuming
3085 		 * that the nodes are ordered properly in the DTS file and
3086 		 * that the translation into a flattened device tree blob
3087 		 * preserves that ordering this will actually yield the right
3088 		 * head number.
3089 		 *
3090 		 * If those assumptions don't hold, this will still work for
3091 		 * cases where only a single display controller is used.
3092 		 */
3093 		for_each_matching_node(np, tegra_dc_of_match) {
3094 			if (np == dc->dev->of_node) {
3095 				of_node_put(np);
3096 				break;
3097 			}
3098 
3099 			value++;
3100 		}
3101 	}
3102 
3103 	dc->pipe = value;
3104 
3105 	return 0;
3106 }
3107 
3108 static int tegra_dc_match_by_pipe(struct device *dev, const void *data)
3109 {
3110 	struct tegra_dc *dc = dev_get_drvdata(dev);
3111 	unsigned int pipe = (unsigned long)(void *)data;
3112 
3113 	return dc->pipe == pipe;
3114 }
3115 
3116 static int tegra_dc_couple(struct tegra_dc *dc)
3117 {
3118 	/*
3119 	 * On Tegra20, DC1 requires DC0 to be taken out of reset in order to
3120 	 * be enabled, otherwise CPU hangs on writing to CMD_DISPLAY_COMMAND /
3121 	 * POWER_CONTROL registers during CRTC enabling.
3122 	 */
3123 	if (dc->soc->coupled_pm && dc->pipe == 1) {
3124 		struct device *companion;
3125 		struct tegra_dc *parent;
3126 
3127 		companion = driver_find_device(dc->dev->driver, NULL, (const void *)0,
3128 					       tegra_dc_match_by_pipe);
3129 		if (!companion)
3130 			return -EPROBE_DEFER;
3131 
3132 		parent = dev_get_drvdata(companion);
3133 		dc->client.parent = &parent->client;
3134 
3135 		dev_dbg(dc->dev, "coupled to %s\n", dev_name(companion));
3136 	}
3137 
3138 	return 0;
3139 }
3140 
3141 static int tegra_dc_init_opp_table(struct tegra_dc *dc)
3142 {
3143 	struct tegra_core_opp_params opp_params = {};
3144 	int err;
3145 
3146 	err = devm_tegra_core_dev_init_opp_table(dc->dev, &opp_params);
3147 	if (err && err != -ENODEV)
3148 		return err;
3149 
3150 	if (err)
3151 		dc->has_opp_table = false;
3152 	else
3153 		dc->has_opp_table = true;
3154 
3155 	return 0;
3156 }
3157 
3158 static int tegra_dc_probe(struct platform_device *pdev)
3159 {
3160 	u64 dma_mask = dma_get_mask(pdev->dev.parent);
3161 	struct tegra_dc *dc;
3162 	int err;
3163 
3164 	err = dma_coerce_mask_and_coherent(&pdev->dev, dma_mask);
3165 	if (err < 0) {
3166 		dev_err(&pdev->dev, "failed to set DMA mask: %d\n", err);
3167 		return err;
3168 	}
3169 
3170 	dc = devm_kzalloc(&pdev->dev, sizeof(*dc), GFP_KERNEL);
3171 	if (!dc)
3172 		return -ENOMEM;
3173 
3174 	dc->soc = of_device_get_match_data(&pdev->dev);
3175 
3176 	INIT_LIST_HEAD(&dc->list);
3177 	dc->dev = &pdev->dev;
3178 
3179 	err = tegra_dc_parse_dt(dc);
3180 	if (err < 0)
3181 		return err;
3182 
3183 	err = tegra_dc_couple(dc);
3184 	if (err < 0)
3185 		return err;
3186 
3187 	dc->clk = devm_clk_get(&pdev->dev, NULL);
3188 	if (IS_ERR(dc->clk)) {
3189 		dev_err(&pdev->dev, "failed to get clock\n");
3190 		return PTR_ERR(dc->clk);
3191 	}
3192 
3193 	dc->rst = devm_reset_control_get(&pdev->dev, "dc");
3194 	if (IS_ERR(dc->rst)) {
3195 		dev_err(&pdev->dev, "failed to get reset\n");
3196 		return PTR_ERR(dc->rst);
3197 	}
3198 
3199 	/* assert reset and disable clock */
3200 	err = clk_prepare_enable(dc->clk);
3201 	if (err < 0)
3202 		return err;
3203 
3204 	usleep_range(2000, 4000);
3205 
3206 	err = reset_control_assert(dc->rst);
3207 	if (err < 0) {
3208 		clk_disable_unprepare(dc->clk);
3209 		return err;
3210 	}
3211 
3212 	usleep_range(2000, 4000);
3213 
3214 	clk_disable_unprepare(dc->clk);
3215 
3216 	if (dc->soc->has_powergate) {
3217 		if (dc->pipe == 0)
3218 			dc->powergate = TEGRA_POWERGATE_DIS;
3219 		else
3220 			dc->powergate = TEGRA_POWERGATE_DISB;
3221 
3222 		tegra_powergate_power_off(dc->powergate);
3223 	}
3224 
3225 	err = tegra_dc_init_opp_table(dc);
3226 	if (err < 0)
3227 		return err;
3228 
3229 	dc->regs = devm_platform_ioremap_resource(pdev, 0);
3230 	if (IS_ERR(dc->regs))
3231 		return PTR_ERR(dc->regs);
3232 
3233 	dc->irq = platform_get_irq(pdev, 0);
3234 	if (dc->irq < 0)
3235 		return -ENXIO;
3236 
3237 	err = tegra_dc_rgb_probe(dc);
3238 	if (err < 0 && err != -ENODEV)
3239 		return dev_err_probe(&pdev->dev, err,
3240 				     "failed to probe RGB output\n");
3241 
3242 	platform_set_drvdata(pdev, dc);
3243 	pm_runtime_enable(&pdev->dev);
3244 
3245 	INIT_LIST_HEAD(&dc->client.list);
3246 	dc->client.ops = &dc_client_ops;
3247 	dc->client.dev = &pdev->dev;
3248 
3249 	err = host1x_client_register(&dc->client);
3250 	if (err < 0) {
3251 		dev_err(&pdev->dev, "failed to register host1x client: %d\n",
3252 			err);
3253 		goto disable_pm;
3254 	}
3255 
3256 	return 0;
3257 
3258 disable_pm:
3259 	pm_runtime_disable(&pdev->dev);
3260 	tegra_dc_rgb_remove(dc);
3261 
3262 	return err;
3263 }
3264 
3265 static void tegra_dc_remove(struct platform_device *pdev)
3266 {
3267 	struct tegra_dc *dc = platform_get_drvdata(pdev);
3268 
3269 	host1x_client_unregister(&dc->client);
3270 
3271 	tegra_dc_rgb_remove(dc);
3272 
3273 	pm_runtime_disable(&pdev->dev);
3274 }
3275 
3276 struct platform_driver tegra_dc_driver = {
3277 	.driver = {
3278 		.name = "tegra-dc",
3279 		.of_match_table = tegra_dc_of_match,
3280 	},
3281 	.probe = tegra_dc_probe,
3282 	.remove_new = tegra_dc_remove,
3283 };
3284