xref: /openbmc/linux/drivers/gpu/drm/tegra/dc.c (revision bc5aa3a0)
1 /*
2  * Copyright (C) 2012 Avionic Design GmbH
3  * Copyright (C) 2012 NVIDIA CORPORATION.  All rights reserved.
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  */
9 
10 #include <linux/clk.h>
11 #include <linux/debugfs.h>
12 #include <linux/iommu.h>
13 #include <linux/pm_runtime.h>
14 #include <linux/reset.h>
15 
16 #include <soc/tegra/pmc.h>
17 
18 #include "dc.h"
19 #include "drm.h"
20 #include "gem.h"
21 
22 #include <drm/drm_atomic.h>
23 #include <drm/drm_atomic_helper.h>
24 #include <drm/drm_plane_helper.h>
25 
26 struct tegra_dc_soc_info {
27 	bool supports_border_color;
28 	bool supports_interlacing;
29 	bool supports_cursor;
30 	bool supports_block_linear;
31 	unsigned int pitch_align;
32 	bool has_powergate;
33 };
34 
35 struct tegra_plane {
36 	struct drm_plane base;
37 	unsigned int index;
38 };
39 
40 static inline struct tegra_plane *to_tegra_plane(struct drm_plane *plane)
41 {
42 	return container_of(plane, struct tegra_plane, base);
43 }
44 
45 struct tegra_dc_state {
46 	struct drm_crtc_state base;
47 
48 	struct clk *clk;
49 	unsigned long pclk;
50 	unsigned int div;
51 
52 	u32 planes;
53 };
54 
55 static inline struct tegra_dc_state *to_dc_state(struct drm_crtc_state *state)
56 {
57 	if (state)
58 		return container_of(state, struct tegra_dc_state, base);
59 
60 	return NULL;
61 }
62 
63 struct tegra_plane_state {
64 	struct drm_plane_state base;
65 
66 	struct tegra_bo_tiling tiling;
67 	u32 format;
68 	u32 swap;
69 };
70 
71 static inline struct tegra_plane_state *
72 to_tegra_plane_state(struct drm_plane_state *state)
73 {
74 	if (state)
75 		return container_of(state, struct tegra_plane_state, base);
76 
77 	return NULL;
78 }
79 
80 static void tegra_dc_stats_reset(struct tegra_dc_stats *stats)
81 {
82 	stats->frames = 0;
83 	stats->vblank = 0;
84 	stats->underflow = 0;
85 	stats->overflow = 0;
86 }
87 
88 /*
89  * Reads the active copy of a register. This takes the dc->lock spinlock to
90  * prevent races with the VBLANK processing which also needs access to the
91  * active copy of some registers.
92  */
93 static u32 tegra_dc_readl_active(struct tegra_dc *dc, unsigned long offset)
94 {
95 	unsigned long flags;
96 	u32 value;
97 
98 	spin_lock_irqsave(&dc->lock, flags);
99 
100 	tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
101 	value = tegra_dc_readl(dc, offset);
102 	tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS);
103 
104 	spin_unlock_irqrestore(&dc->lock, flags);
105 	return value;
106 }
107 
108 /*
109  * Double-buffered registers have two copies: ASSEMBLY and ACTIVE. When the
110  * *_ACT_REQ bits are set the ASSEMBLY copy is latched into the ACTIVE copy.
111  * Latching happens mmediately if the display controller is in STOP mode or
112  * on the next frame boundary otherwise.
113  *
114  * Triple-buffered registers have three copies: ASSEMBLY, ARM and ACTIVE. The
115  * ASSEMBLY copy is latched into the ARM copy immediately after *_UPDATE bits
116  * are written. When the *_ACT_REQ bits are written, the ARM copy is latched
117  * into the ACTIVE copy, either immediately if the display controller is in
118  * STOP mode, or at the next frame boundary otherwise.
119  */
120 void tegra_dc_commit(struct tegra_dc *dc)
121 {
122 	tegra_dc_writel(dc, GENERAL_ACT_REQ << 8, DC_CMD_STATE_CONTROL);
123 	tegra_dc_writel(dc, GENERAL_ACT_REQ, DC_CMD_STATE_CONTROL);
124 }
125 
126 static int tegra_dc_format(u32 fourcc, u32 *format, u32 *swap)
127 {
128 	/* assume no swapping of fetched data */
129 	if (swap)
130 		*swap = BYTE_SWAP_NOSWAP;
131 
132 	switch (fourcc) {
133 	case DRM_FORMAT_XBGR8888:
134 		*format = WIN_COLOR_DEPTH_R8G8B8A8;
135 		break;
136 
137 	case DRM_FORMAT_XRGB8888:
138 		*format = WIN_COLOR_DEPTH_B8G8R8A8;
139 		break;
140 
141 	case DRM_FORMAT_RGB565:
142 		*format = WIN_COLOR_DEPTH_B5G6R5;
143 		break;
144 
145 	case DRM_FORMAT_UYVY:
146 		*format = WIN_COLOR_DEPTH_YCbCr422;
147 		break;
148 
149 	case DRM_FORMAT_YUYV:
150 		if (swap)
151 			*swap = BYTE_SWAP_SWAP2;
152 
153 		*format = WIN_COLOR_DEPTH_YCbCr422;
154 		break;
155 
156 	case DRM_FORMAT_YUV420:
157 		*format = WIN_COLOR_DEPTH_YCbCr420P;
158 		break;
159 
160 	case DRM_FORMAT_YUV422:
161 		*format = WIN_COLOR_DEPTH_YCbCr422P;
162 		break;
163 
164 	default:
165 		return -EINVAL;
166 	}
167 
168 	return 0;
169 }
170 
171 static bool tegra_dc_format_is_yuv(unsigned int format, bool *planar)
172 {
173 	switch (format) {
174 	case WIN_COLOR_DEPTH_YCbCr422:
175 	case WIN_COLOR_DEPTH_YUV422:
176 		if (planar)
177 			*planar = false;
178 
179 		return true;
180 
181 	case WIN_COLOR_DEPTH_YCbCr420P:
182 	case WIN_COLOR_DEPTH_YUV420P:
183 	case WIN_COLOR_DEPTH_YCbCr422P:
184 	case WIN_COLOR_DEPTH_YUV422P:
185 	case WIN_COLOR_DEPTH_YCbCr422R:
186 	case WIN_COLOR_DEPTH_YUV422R:
187 	case WIN_COLOR_DEPTH_YCbCr422RA:
188 	case WIN_COLOR_DEPTH_YUV422RA:
189 		if (planar)
190 			*planar = true;
191 
192 		return true;
193 	}
194 
195 	if (planar)
196 		*planar = false;
197 
198 	return false;
199 }
200 
201 static inline u32 compute_dda_inc(unsigned int in, unsigned int out, bool v,
202 				  unsigned int bpp)
203 {
204 	fixed20_12 outf = dfixed_init(out);
205 	fixed20_12 inf = dfixed_init(in);
206 	u32 dda_inc;
207 	int max;
208 
209 	if (v)
210 		max = 15;
211 	else {
212 		switch (bpp) {
213 		case 2:
214 			max = 8;
215 			break;
216 
217 		default:
218 			WARN_ON_ONCE(1);
219 			/* fallthrough */
220 		case 4:
221 			max = 4;
222 			break;
223 		}
224 	}
225 
226 	outf.full = max_t(u32, outf.full - dfixed_const(1), dfixed_const(1));
227 	inf.full -= dfixed_const(1);
228 
229 	dda_inc = dfixed_div(inf, outf);
230 	dda_inc = min_t(u32, dda_inc, dfixed_const(max));
231 
232 	return dda_inc;
233 }
234 
235 static inline u32 compute_initial_dda(unsigned int in)
236 {
237 	fixed20_12 inf = dfixed_init(in);
238 	return dfixed_frac(inf);
239 }
240 
241 static void tegra_dc_setup_window(struct tegra_dc *dc, unsigned int index,
242 				  const struct tegra_dc_window *window)
243 {
244 	unsigned h_offset, v_offset, h_size, v_size, h_dda, v_dda, bpp;
245 	unsigned long value, flags;
246 	bool yuv, planar;
247 
248 	/*
249 	 * For YUV planar modes, the number of bytes per pixel takes into
250 	 * account only the luma component and therefore is 1.
251 	 */
252 	yuv = tegra_dc_format_is_yuv(window->format, &planar);
253 	if (!yuv)
254 		bpp = window->bits_per_pixel / 8;
255 	else
256 		bpp = planar ? 1 : 2;
257 
258 	spin_lock_irqsave(&dc->lock, flags);
259 
260 	value = WINDOW_A_SELECT << index;
261 	tegra_dc_writel(dc, value, DC_CMD_DISPLAY_WINDOW_HEADER);
262 
263 	tegra_dc_writel(dc, window->format, DC_WIN_COLOR_DEPTH);
264 	tegra_dc_writel(dc, window->swap, DC_WIN_BYTE_SWAP);
265 
266 	value = V_POSITION(window->dst.y) | H_POSITION(window->dst.x);
267 	tegra_dc_writel(dc, value, DC_WIN_POSITION);
268 
269 	value = V_SIZE(window->dst.h) | H_SIZE(window->dst.w);
270 	tegra_dc_writel(dc, value, DC_WIN_SIZE);
271 
272 	h_offset = window->src.x * bpp;
273 	v_offset = window->src.y;
274 	h_size = window->src.w * bpp;
275 	v_size = window->src.h;
276 
277 	value = V_PRESCALED_SIZE(v_size) | H_PRESCALED_SIZE(h_size);
278 	tegra_dc_writel(dc, value, DC_WIN_PRESCALED_SIZE);
279 
280 	/*
281 	 * For DDA computations the number of bytes per pixel for YUV planar
282 	 * modes needs to take into account all Y, U and V components.
283 	 */
284 	if (yuv && planar)
285 		bpp = 2;
286 
287 	h_dda = compute_dda_inc(window->src.w, window->dst.w, false, bpp);
288 	v_dda = compute_dda_inc(window->src.h, window->dst.h, true, bpp);
289 
290 	value = V_DDA_INC(v_dda) | H_DDA_INC(h_dda);
291 	tegra_dc_writel(dc, value, DC_WIN_DDA_INC);
292 
293 	h_dda = compute_initial_dda(window->src.x);
294 	v_dda = compute_initial_dda(window->src.y);
295 
296 	tegra_dc_writel(dc, h_dda, DC_WIN_H_INITIAL_DDA);
297 	tegra_dc_writel(dc, v_dda, DC_WIN_V_INITIAL_DDA);
298 
299 	tegra_dc_writel(dc, 0, DC_WIN_UV_BUF_STRIDE);
300 	tegra_dc_writel(dc, 0, DC_WIN_BUF_STRIDE);
301 
302 	tegra_dc_writel(dc, window->base[0], DC_WINBUF_START_ADDR);
303 
304 	if (yuv && planar) {
305 		tegra_dc_writel(dc, window->base[1], DC_WINBUF_START_ADDR_U);
306 		tegra_dc_writel(dc, window->base[2], DC_WINBUF_START_ADDR_V);
307 		value = window->stride[1] << 16 | window->stride[0];
308 		tegra_dc_writel(dc, value, DC_WIN_LINE_STRIDE);
309 	} else {
310 		tegra_dc_writel(dc, window->stride[0], DC_WIN_LINE_STRIDE);
311 	}
312 
313 	if (window->bottom_up)
314 		v_offset += window->src.h - 1;
315 
316 	tegra_dc_writel(dc, h_offset, DC_WINBUF_ADDR_H_OFFSET);
317 	tegra_dc_writel(dc, v_offset, DC_WINBUF_ADDR_V_OFFSET);
318 
319 	if (dc->soc->supports_block_linear) {
320 		unsigned long height = window->tiling.value;
321 
322 		switch (window->tiling.mode) {
323 		case TEGRA_BO_TILING_MODE_PITCH:
324 			value = DC_WINBUF_SURFACE_KIND_PITCH;
325 			break;
326 
327 		case TEGRA_BO_TILING_MODE_TILED:
328 			value = DC_WINBUF_SURFACE_KIND_TILED;
329 			break;
330 
331 		case TEGRA_BO_TILING_MODE_BLOCK:
332 			value = DC_WINBUF_SURFACE_KIND_BLOCK_HEIGHT(height) |
333 				DC_WINBUF_SURFACE_KIND_BLOCK;
334 			break;
335 		}
336 
337 		tegra_dc_writel(dc, value, DC_WINBUF_SURFACE_KIND);
338 	} else {
339 		switch (window->tiling.mode) {
340 		case TEGRA_BO_TILING_MODE_PITCH:
341 			value = DC_WIN_BUFFER_ADDR_MODE_LINEAR_UV |
342 				DC_WIN_BUFFER_ADDR_MODE_LINEAR;
343 			break;
344 
345 		case TEGRA_BO_TILING_MODE_TILED:
346 			value = DC_WIN_BUFFER_ADDR_MODE_TILE_UV |
347 				DC_WIN_BUFFER_ADDR_MODE_TILE;
348 			break;
349 
350 		case TEGRA_BO_TILING_MODE_BLOCK:
351 			/*
352 			 * No need to handle this here because ->atomic_check
353 			 * will already have filtered it out.
354 			 */
355 			break;
356 		}
357 
358 		tegra_dc_writel(dc, value, DC_WIN_BUFFER_ADDR_MODE);
359 	}
360 
361 	value = WIN_ENABLE;
362 
363 	if (yuv) {
364 		/* setup default colorspace conversion coefficients */
365 		tegra_dc_writel(dc, 0x00f0, DC_WIN_CSC_YOF);
366 		tegra_dc_writel(dc, 0x012a, DC_WIN_CSC_KYRGB);
367 		tegra_dc_writel(dc, 0x0000, DC_WIN_CSC_KUR);
368 		tegra_dc_writel(dc, 0x0198, DC_WIN_CSC_KVR);
369 		tegra_dc_writel(dc, 0x039b, DC_WIN_CSC_KUG);
370 		tegra_dc_writel(dc, 0x032f, DC_WIN_CSC_KVG);
371 		tegra_dc_writel(dc, 0x0204, DC_WIN_CSC_KUB);
372 		tegra_dc_writel(dc, 0x0000, DC_WIN_CSC_KVB);
373 
374 		value |= CSC_ENABLE;
375 	} else if (window->bits_per_pixel < 24) {
376 		value |= COLOR_EXPAND;
377 	}
378 
379 	if (window->bottom_up)
380 		value |= V_DIRECTION;
381 
382 	tegra_dc_writel(dc, value, DC_WIN_WIN_OPTIONS);
383 
384 	/*
385 	 * Disable blending and assume Window A is the bottom-most window,
386 	 * Window C is the top-most window and Window B is in the middle.
387 	 */
388 	tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_NOKEY);
389 	tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_1WIN);
390 
391 	switch (index) {
392 	case 0:
393 		tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_2WIN_X);
394 		tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_2WIN_Y);
395 		tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_3WIN_XY);
396 		break;
397 
398 	case 1:
399 		tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_2WIN_X);
400 		tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_2WIN_Y);
401 		tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_3WIN_XY);
402 		break;
403 
404 	case 2:
405 		tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_2WIN_X);
406 		tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_2WIN_Y);
407 		tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_3WIN_XY);
408 		break;
409 	}
410 
411 	spin_unlock_irqrestore(&dc->lock, flags);
412 }
413 
414 static void tegra_plane_destroy(struct drm_plane *plane)
415 {
416 	struct tegra_plane *p = to_tegra_plane(plane);
417 
418 	drm_plane_cleanup(plane);
419 	kfree(p);
420 }
421 
422 static const u32 tegra_primary_plane_formats[] = {
423 	DRM_FORMAT_XBGR8888,
424 	DRM_FORMAT_XRGB8888,
425 	DRM_FORMAT_RGB565,
426 };
427 
428 static void tegra_primary_plane_destroy(struct drm_plane *plane)
429 {
430 	tegra_plane_destroy(plane);
431 }
432 
433 static void tegra_plane_reset(struct drm_plane *plane)
434 {
435 	struct tegra_plane_state *state;
436 
437 	if (plane->state)
438 		__drm_atomic_helper_plane_destroy_state(plane->state);
439 
440 	kfree(plane->state);
441 	plane->state = NULL;
442 
443 	state = kzalloc(sizeof(*state), GFP_KERNEL);
444 	if (state) {
445 		plane->state = &state->base;
446 		plane->state->plane = plane;
447 	}
448 }
449 
450 static struct drm_plane_state *tegra_plane_atomic_duplicate_state(struct drm_plane *plane)
451 {
452 	struct tegra_plane_state *state = to_tegra_plane_state(plane->state);
453 	struct tegra_plane_state *copy;
454 
455 	copy = kmalloc(sizeof(*copy), GFP_KERNEL);
456 	if (!copy)
457 		return NULL;
458 
459 	__drm_atomic_helper_plane_duplicate_state(plane, &copy->base);
460 	copy->tiling = state->tiling;
461 	copy->format = state->format;
462 	copy->swap = state->swap;
463 
464 	return &copy->base;
465 }
466 
467 static void tegra_plane_atomic_destroy_state(struct drm_plane *plane,
468 					     struct drm_plane_state *state)
469 {
470 	__drm_atomic_helper_plane_destroy_state(state);
471 	kfree(state);
472 }
473 
474 static const struct drm_plane_funcs tegra_primary_plane_funcs = {
475 	.update_plane = drm_atomic_helper_update_plane,
476 	.disable_plane = drm_atomic_helper_disable_plane,
477 	.destroy = tegra_primary_plane_destroy,
478 	.reset = tegra_plane_reset,
479 	.atomic_duplicate_state = tegra_plane_atomic_duplicate_state,
480 	.atomic_destroy_state = tegra_plane_atomic_destroy_state,
481 };
482 
483 static int tegra_plane_prepare_fb(struct drm_plane *plane,
484 				  const struct drm_plane_state *new_state)
485 {
486 	return 0;
487 }
488 
489 static void tegra_plane_cleanup_fb(struct drm_plane *plane,
490 				   const struct drm_plane_state *old_fb)
491 {
492 }
493 
494 static int tegra_plane_state_add(struct tegra_plane *plane,
495 				 struct drm_plane_state *state)
496 {
497 	struct drm_crtc_state *crtc_state;
498 	struct tegra_dc_state *tegra;
499 
500 	/* Propagate errors from allocation or locking failures. */
501 	crtc_state = drm_atomic_get_crtc_state(state->state, state->crtc);
502 	if (IS_ERR(crtc_state))
503 		return PTR_ERR(crtc_state);
504 
505 	tegra = to_dc_state(crtc_state);
506 
507 	tegra->planes |= WIN_A_ACT_REQ << plane->index;
508 
509 	return 0;
510 }
511 
512 static int tegra_plane_atomic_check(struct drm_plane *plane,
513 				    struct drm_plane_state *state)
514 {
515 	struct tegra_plane_state *plane_state = to_tegra_plane_state(state);
516 	struct tegra_bo_tiling *tiling = &plane_state->tiling;
517 	struct tegra_plane *tegra = to_tegra_plane(plane);
518 	struct tegra_dc *dc = to_tegra_dc(state->crtc);
519 	int err;
520 
521 	/* no need for further checks if the plane is being disabled */
522 	if (!state->crtc)
523 		return 0;
524 
525 	err = tegra_dc_format(state->fb->pixel_format, &plane_state->format,
526 			      &plane_state->swap);
527 	if (err < 0)
528 		return err;
529 
530 	err = tegra_fb_get_tiling(state->fb, tiling);
531 	if (err < 0)
532 		return err;
533 
534 	if (tiling->mode == TEGRA_BO_TILING_MODE_BLOCK &&
535 	    !dc->soc->supports_block_linear) {
536 		DRM_ERROR("hardware doesn't support block linear mode\n");
537 		return -EINVAL;
538 	}
539 
540 	/*
541 	 * Tegra doesn't support different strides for U and V planes so we
542 	 * error out if the user tries to display a framebuffer with such a
543 	 * configuration.
544 	 */
545 	if (drm_format_num_planes(state->fb->pixel_format) > 2) {
546 		if (state->fb->pitches[2] != state->fb->pitches[1]) {
547 			DRM_ERROR("unsupported UV-plane configuration\n");
548 			return -EINVAL;
549 		}
550 	}
551 
552 	err = tegra_plane_state_add(tegra, state);
553 	if (err < 0)
554 		return err;
555 
556 	return 0;
557 }
558 
559 static void tegra_plane_atomic_update(struct drm_plane *plane,
560 				      struct drm_plane_state *old_state)
561 {
562 	struct tegra_plane_state *state = to_tegra_plane_state(plane->state);
563 	struct tegra_dc *dc = to_tegra_dc(plane->state->crtc);
564 	struct drm_framebuffer *fb = plane->state->fb;
565 	struct tegra_plane *p = to_tegra_plane(plane);
566 	struct tegra_dc_window window;
567 	unsigned int i;
568 
569 	/* rien ne va plus */
570 	if (!plane->state->crtc || !plane->state->fb)
571 		return;
572 
573 	memset(&window, 0, sizeof(window));
574 	window.src.x = plane->state->src_x >> 16;
575 	window.src.y = plane->state->src_y >> 16;
576 	window.src.w = plane->state->src_w >> 16;
577 	window.src.h = plane->state->src_h >> 16;
578 	window.dst.x = plane->state->crtc_x;
579 	window.dst.y = plane->state->crtc_y;
580 	window.dst.w = plane->state->crtc_w;
581 	window.dst.h = plane->state->crtc_h;
582 	window.bits_per_pixel = fb->bits_per_pixel;
583 	window.bottom_up = tegra_fb_is_bottom_up(fb);
584 
585 	/* copy from state */
586 	window.tiling = state->tiling;
587 	window.format = state->format;
588 	window.swap = state->swap;
589 
590 	for (i = 0; i < drm_format_num_planes(fb->pixel_format); i++) {
591 		struct tegra_bo *bo = tegra_fb_get_plane(fb, i);
592 
593 		window.base[i] = bo->paddr + fb->offsets[i];
594 		window.stride[i] = fb->pitches[i];
595 	}
596 
597 	tegra_dc_setup_window(dc, p->index, &window);
598 }
599 
600 static void tegra_plane_atomic_disable(struct drm_plane *plane,
601 				       struct drm_plane_state *old_state)
602 {
603 	struct tegra_plane *p = to_tegra_plane(plane);
604 	struct tegra_dc *dc;
605 	unsigned long flags;
606 	u32 value;
607 
608 	/* rien ne va plus */
609 	if (!old_state || !old_state->crtc)
610 		return;
611 
612 	dc = to_tegra_dc(old_state->crtc);
613 
614 	spin_lock_irqsave(&dc->lock, flags);
615 
616 	value = WINDOW_A_SELECT << p->index;
617 	tegra_dc_writel(dc, value, DC_CMD_DISPLAY_WINDOW_HEADER);
618 
619 	value = tegra_dc_readl(dc, DC_WIN_WIN_OPTIONS);
620 	value &= ~WIN_ENABLE;
621 	tegra_dc_writel(dc, value, DC_WIN_WIN_OPTIONS);
622 
623 	spin_unlock_irqrestore(&dc->lock, flags);
624 }
625 
626 static const struct drm_plane_helper_funcs tegra_primary_plane_helper_funcs = {
627 	.prepare_fb = tegra_plane_prepare_fb,
628 	.cleanup_fb = tegra_plane_cleanup_fb,
629 	.atomic_check = tegra_plane_atomic_check,
630 	.atomic_update = tegra_plane_atomic_update,
631 	.atomic_disable = tegra_plane_atomic_disable,
632 };
633 
634 static struct drm_plane *tegra_dc_primary_plane_create(struct drm_device *drm,
635 						       struct tegra_dc *dc)
636 {
637 	/*
638 	 * Ideally this would use drm_crtc_mask(), but that would require the
639 	 * CRTC to already be in the mode_config's list of CRTCs. However, it
640 	 * will only be added to that list in the drm_crtc_init_with_planes()
641 	 * (in tegra_dc_init()), which in turn requires registration of these
642 	 * planes. So we have ourselves a nice little chicken and egg problem
643 	 * here.
644 	 *
645 	 * We work around this by manually creating the mask from the number
646 	 * of CRTCs that have been registered, and should therefore always be
647 	 * the same as drm_crtc_index() after registration.
648 	 */
649 	unsigned long possible_crtcs = 1 << drm->mode_config.num_crtc;
650 	struct tegra_plane *plane;
651 	unsigned int num_formats;
652 	const u32 *formats;
653 	int err;
654 
655 	plane = kzalloc(sizeof(*plane), GFP_KERNEL);
656 	if (!plane)
657 		return ERR_PTR(-ENOMEM);
658 
659 	num_formats = ARRAY_SIZE(tegra_primary_plane_formats);
660 	formats = tegra_primary_plane_formats;
661 
662 	err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
663 				       &tegra_primary_plane_funcs, formats,
664 				       num_formats, DRM_PLANE_TYPE_PRIMARY,
665 				       NULL);
666 	if (err < 0) {
667 		kfree(plane);
668 		return ERR_PTR(err);
669 	}
670 
671 	drm_plane_helper_add(&plane->base, &tegra_primary_plane_helper_funcs);
672 
673 	return &plane->base;
674 }
675 
676 static const u32 tegra_cursor_plane_formats[] = {
677 	DRM_FORMAT_RGBA8888,
678 };
679 
680 static int tegra_cursor_atomic_check(struct drm_plane *plane,
681 				     struct drm_plane_state *state)
682 {
683 	struct tegra_plane *tegra = to_tegra_plane(plane);
684 	int err;
685 
686 	/* no need for further checks if the plane is being disabled */
687 	if (!state->crtc)
688 		return 0;
689 
690 	/* scaling not supported for cursor */
691 	if ((state->src_w >> 16 != state->crtc_w) ||
692 	    (state->src_h >> 16 != state->crtc_h))
693 		return -EINVAL;
694 
695 	/* only square cursors supported */
696 	if (state->src_w != state->src_h)
697 		return -EINVAL;
698 
699 	if (state->crtc_w != 32 && state->crtc_w != 64 &&
700 	    state->crtc_w != 128 && state->crtc_w != 256)
701 		return -EINVAL;
702 
703 	err = tegra_plane_state_add(tegra, state);
704 	if (err < 0)
705 		return err;
706 
707 	return 0;
708 }
709 
710 static void tegra_cursor_atomic_update(struct drm_plane *plane,
711 				       struct drm_plane_state *old_state)
712 {
713 	struct tegra_bo *bo = tegra_fb_get_plane(plane->state->fb, 0);
714 	struct tegra_dc *dc = to_tegra_dc(plane->state->crtc);
715 	struct drm_plane_state *state = plane->state;
716 	u32 value = CURSOR_CLIP_DISPLAY;
717 
718 	/* rien ne va plus */
719 	if (!plane->state->crtc || !plane->state->fb)
720 		return;
721 
722 	switch (state->crtc_w) {
723 	case 32:
724 		value |= CURSOR_SIZE_32x32;
725 		break;
726 
727 	case 64:
728 		value |= CURSOR_SIZE_64x64;
729 		break;
730 
731 	case 128:
732 		value |= CURSOR_SIZE_128x128;
733 		break;
734 
735 	case 256:
736 		value |= CURSOR_SIZE_256x256;
737 		break;
738 
739 	default:
740 		WARN(1, "cursor size %ux%u not supported\n", state->crtc_w,
741 		     state->crtc_h);
742 		return;
743 	}
744 
745 	value |= (bo->paddr >> 10) & 0x3fffff;
746 	tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR);
747 
748 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
749 	value = (bo->paddr >> 32) & 0x3;
750 	tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR_HI);
751 #endif
752 
753 	/* enable cursor and set blend mode */
754 	value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
755 	value |= CURSOR_ENABLE;
756 	tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
757 
758 	value = tegra_dc_readl(dc, DC_DISP_BLEND_CURSOR_CONTROL);
759 	value &= ~CURSOR_DST_BLEND_MASK;
760 	value &= ~CURSOR_SRC_BLEND_MASK;
761 	value |= CURSOR_MODE_NORMAL;
762 	value |= CURSOR_DST_BLEND_NEG_K1_TIMES_SRC;
763 	value |= CURSOR_SRC_BLEND_K1_TIMES_SRC;
764 	value |= CURSOR_ALPHA;
765 	tegra_dc_writel(dc, value, DC_DISP_BLEND_CURSOR_CONTROL);
766 
767 	/* position the cursor */
768 	value = (state->crtc_y & 0x3fff) << 16 | (state->crtc_x & 0x3fff);
769 	tegra_dc_writel(dc, value, DC_DISP_CURSOR_POSITION);
770 }
771 
772 static void tegra_cursor_atomic_disable(struct drm_plane *plane,
773 					struct drm_plane_state *old_state)
774 {
775 	struct tegra_dc *dc;
776 	u32 value;
777 
778 	/* rien ne va plus */
779 	if (!old_state || !old_state->crtc)
780 		return;
781 
782 	dc = to_tegra_dc(old_state->crtc);
783 
784 	value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
785 	value &= ~CURSOR_ENABLE;
786 	tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
787 }
788 
789 static const struct drm_plane_funcs tegra_cursor_plane_funcs = {
790 	.update_plane = drm_atomic_helper_update_plane,
791 	.disable_plane = drm_atomic_helper_disable_plane,
792 	.destroy = tegra_plane_destroy,
793 	.reset = tegra_plane_reset,
794 	.atomic_duplicate_state = tegra_plane_atomic_duplicate_state,
795 	.atomic_destroy_state = tegra_plane_atomic_destroy_state,
796 };
797 
798 static const struct drm_plane_helper_funcs tegra_cursor_plane_helper_funcs = {
799 	.prepare_fb = tegra_plane_prepare_fb,
800 	.cleanup_fb = tegra_plane_cleanup_fb,
801 	.atomic_check = tegra_cursor_atomic_check,
802 	.atomic_update = tegra_cursor_atomic_update,
803 	.atomic_disable = tegra_cursor_atomic_disable,
804 };
805 
806 static struct drm_plane *tegra_dc_cursor_plane_create(struct drm_device *drm,
807 						      struct tegra_dc *dc)
808 {
809 	struct tegra_plane *plane;
810 	unsigned int num_formats;
811 	const u32 *formats;
812 	int err;
813 
814 	plane = kzalloc(sizeof(*plane), GFP_KERNEL);
815 	if (!plane)
816 		return ERR_PTR(-ENOMEM);
817 
818 	/*
819 	 * This index is kind of fake. The cursor isn't a regular plane, but
820 	 * its update and activation request bits in DC_CMD_STATE_CONTROL do
821 	 * use the same programming. Setting this fake index here allows the
822 	 * code in tegra_add_plane_state() to do the right thing without the
823 	 * need to special-casing the cursor plane.
824 	 */
825 	plane->index = 6;
826 
827 	num_formats = ARRAY_SIZE(tegra_cursor_plane_formats);
828 	formats = tegra_cursor_plane_formats;
829 
830 	err = drm_universal_plane_init(drm, &plane->base, 1 << dc->pipe,
831 				       &tegra_cursor_plane_funcs, formats,
832 				       num_formats, DRM_PLANE_TYPE_CURSOR,
833 				       NULL);
834 	if (err < 0) {
835 		kfree(plane);
836 		return ERR_PTR(err);
837 	}
838 
839 	drm_plane_helper_add(&plane->base, &tegra_cursor_plane_helper_funcs);
840 
841 	return &plane->base;
842 }
843 
844 static void tegra_overlay_plane_destroy(struct drm_plane *plane)
845 {
846 	tegra_plane_destroy(plane);
847 }
848 
849 static const struct drm_plane_funcs tegra_overlay_plane_funcs = {
850 	.update_plane = drm_atomic_helper_update_plane,
851 	.disable_plane = drm_atomic_helper_disable_plane,
852 	.destroy = tegra_overlay_plane_destroy,
853 	.reset = tegra_plane_reset,
854 	.atomic_duplicate_state = tegra_plane_atomic_duplicate_state,
855 	.atomic_destroy_state = tegra_plane_atomic_destroy_state,
856 };
857 
858 static const uint32_t tegra_overlay_plane_formats[] = {
859 	DRM_FORMAT_XBGR8888,
860 	DRM_FORMAT_XRGB8888,
861 	DRM_FORMAT_RGB565,
862 	DRM_FORMAT_UYVY,
863 	DRM_FORMAT_YUYV,
864 	DRM_FORMAT_YUV420,
865 	DRM_FORMAT_YUV422,
866 };
867 
868 static const struct drm_plane_helper_funcs tegra_overlay_plane_helper_funcs = {
869 	.prepare_fb = tegra_plane_prepare_fb,
870 	.cleanup_fb = tegra_plane_cleanup_fb,
871 	.atomic_check = tegra_plane_atomic_check,
872 	.atomic_update = tegra_plane_atomic_update,
873 	.atomic_disable = tegra_plane_atomic_disable,
874 };
875 
876 static struct drm_plane *tegra_dc_overlay_plane_create(struct drm_device *drm,
877 						       struct tegra_dc *dc,
878 						       unsigned int index)
879 {
880 	struct tegra_plane *plane;
881 	unsigned int num_formats;
882 	const u32 *formats;
883 	int err;
884 
885 	plane = kzalloc(sizeof(*plane), GFP_KERNEL);
886 	if (!plane)
887 		return ERR_PTR(-ENOMEM);
888 
889 	plane->index = index;
890 
891 	num_formats = ARRAY_SIZE(tegra_overlay_plane_formats);
892 	formats = tegra_overlay_plane_formats;
893 
894 	err = drm_universal_plane_init(drm, &plane->base, 1 << dc->pipe,
895 				       &tegra_overlay_plane_funcs, formats,
896 				       num_formats, DRM_PLANE_TYPE_OVERLAY,
897 				       NULL);
898 	if (err < 0) {
899 		kfree(plane);
900 		return ERR_PTR(err);
901 	}
902 
903 	drm_plane_helper_add(&plane->base, &tegra_overlay_plane_helper_funcs);
904 
905 	return &plane->base;
906 }
907 
908 static int tegra_dc_add_planes(struct drm_device *drm, struct tegra_dc *dc)
909 {
910 	struct drm_plane *plane;
911 	unsigned int i;
912 
913 	for (i = 0; i < 2; i++) {
914 		plane = tegra_dc_overlay_plane_create(drm, dc, 1 + i);
915 		if (IS_ERR(plane))
916 			return PTR_ERR(plane);
917 	}
918 
919 	return 0;
920 }
921 
922 u32 tegra_dc_get_vblank_counter(struct tegra_dc *dc)
923 {
924 	if (dc->syncpt)
925 		return host1x_syncpt_read(dc->syncpt);
926 
927 	/* fallback to software emulated VBLANK counter */
928 	return drm_crtc_vblank_count(&dc->base);
929 }
930 
931 void tegra_dc_enable_vblank(struct tegra_dc *dc)
932 {
933 	unsigned long value, flags;
934 
935 	spin_lock_irqsave(&dc->lock, flags);
936 
937 	value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
938 	value |= VBLANK_INT;
939 	tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
940 
941 	spin_unlock_irqrestore(&dc->lock, flags);
942 }
943 
944 void tegra_dc_disable_vblank(struct tegra_dc *dc)
945 {
946 	unsigned long value, flags;
947 
948 	spin_lock_irqsave(&dc->lock, flags);
949 
950 	value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
951 	value &= ~VBLANK_INT;
952 	tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
953 
954 	spin_unlock_irqrestore(&dc->lock, flags);
955 }
956 
957 static void tegra_dc_finish_page_flip(struct tegra_dc *dc)
958 {
959 	struct drm_device *drm = dc->base.dev;
960 	struct drm_crtc *crtc = &dc->base;
961 	unsigned long flags, base;
962 	struct tegra_bo *bo;
963 
964 	spin_lock_irqsave(&drm->event_lock, flags);
965 
966 	if (!dc->event) {
967 		spin_unlock_irqrestore(&drm->event_lock, flags);
968 		return;
969 	}
970 
971 	bo = tegra_fb_get_plane(crtc->primary->fb, 0);
972 
973 	spin_lock(&dc->lock);
974 
975 	/* check if new start address has been latched */
976 	tegra_dc_writel(dc, WINDOW_A_SELECT, DC_CMD_DISPLAY_WINDOW_HEADER);
977 	tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
978 	base = tegra_dc_readl(dc, DC_WINBUF_START_ADDR);
979 	tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS);
980 
981 	spin_unlock(&dc->lock);
982 
983 	if (base == bo->paddr + crtc->primary->fb->offsets[0]) {
984 		drm_crtc_send_vblank_event(crtc, dc->event);
985 		drm_crtc_vblank_put(crtc);
986 		dc->event = NULL;
987 	}
988 
989 	spin_unlock_irqrestore(&drm->event_lock, flags);
990 }
991 
992 static void tegra_dc_destroy(struct drm_crtc *crtc)
993 {
994 	drm_crtc_cleanup(crtc);
995 }
996 
997 static void tegra_crtc_reset(struct drm_crtc *crtc)
998 {
999 	struct tegra_dc_state *state;
1000 
1001 	if (crtc->state)
1002 		__drm_atomic_helper_crtc_destroy_state(crtc->state);
1003 
1004 	kfree(crtc->state);
1005 	crtc->state = NULL;
1006 
1007 	state = kzalloc(sizeof(*state), GFP_KERNEL);
1008 	if (state) {
1009 		crtc->state = &state->base;
1010 		crtc->state->crtc = crtc;
1011 	}
1012 
1013 	drm_crtc_vblank_reset(crtc);
1014 }
1015 
1016 static struct drm_crtc_state *
1017 tegra_crtc_atomic_duplicate_state(struct drm_crtc *crtc)
1018 {
1019 	struct tegra_dc_state *state = to_dc_state(crtc->state);
1020 	struct tegra_dc_state *copy;
1021 
1022 	copy = kmalloc(sizeof(*copy), GFP_KERNEL);
1023 	if (!copy)
1024 		return NULL;
1025 
1026 	__drm_atomic_helper_crtc_duplicate_state(crtc, &copy->base);
1027 	copy->clk = state->clk;
1028 	copy->pclk = state->pclk;
1029 	copy->div = state->div;
1030 	copy->planes = state->planes;
1031 
1032 	return &copy->base;
1033 }
1034 
1035 static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc,
1036 					    struct drm_crtc_state *state)
1037 {
1038 	__drm_atomic_helper_crtc_destroy_state(state);
1039 	kfree(state);
1040 }
1041 
1042 static const struct drm_crtc_funcs tegra_crtc_funcs = {
1043 	.page_flip = drm_atomic_helper_page_flip,
1044 	.set_config = drm_atomic_helper_set_config,
1045 	.destroy = tegra_dc_destroy,
1046 	.reset = tegra_crtc_reset,
1047 	.atomic_duplicate_state = tegra_crtc_atomic_duplicate_state,
1048 	.atomic_destroy_state = tegra_crtc_atomic_destroy_state,
1049 };
1050 
1051 static int tegra_dc_set_timings(struct tegra_dc *dc,
1052 				struct drm_display_mode *mode)
1053 {
1054 	unsigned int h_ref_to_sync = 1;
1055 	unsigned int v_ref_to_sync = 1;
1056 	unsigned long value;
1057 
1058 	tegra_dc_writel(dc, 0x0, DC_DISP_DISP_TIMING_OPTIONS);
1059 
1060 	value = (v_ref_to_sync << 16) | h_ref_to_sync;
1061 	tegra_dc_writel(dc, value, DC_DISP_REF_TO_SYNC);
1062 
1063 	value = ((mode->vsync_end - mode->vsync_start) << 16) |
1064 		((mode->hsync_end - mode->hsync_start) <<  0);
1065 	tegra_dc_writel(dc, value, DC_DISP_SYNC_WIDTH);
1066 
1067 	value = ((mode->vtotal - mode->vsync_end) << 16) |
1068 		((mode->htotal - mode->hsync_end) <<  0);
1069 	tegra_dc_writel(dc, value, DC_DISP_BACK_PORCH);
1070 
1071 	value = ((mode->vsync_start - mode->vdisplay) << 16) |
1072 		((mode->hsync_start - mode->hdisplay) <<  0);
1073 	tegra_dc_writel(dc, value, DC_DISP_FRONT_PORCH);
1074 
1075 	value = (mode->vdisplay << 16) | mode->hdisplay;
1076 	tegra_dc_writel(dc, value, DC_DISP_ACTIVE);
1077 
1078 	return 0;
1079 }
1080 
1081 /**
1082  * tegra_dc_state_setup_clock - check clock settings and store them in atomic
1083  *     state
1084  * @dc: display controller
1085  * @crtc_state: CRTC atomic state
1086  * @clk: parent clock for display controller
1087  * @pclk: pixel clock
1088  * @div: shift clock divider
1089  *
1090  * Returns:
1091  * 0 on success or a negative error-code on failure.
1092  */
1093 int tegra_dc_state_setup_clock(struct tegra_dc *dc,
1094 			       struct drm_crtc_state *crtc_state,
1095 			       struct clk *clk, unsigned long pclk,
1096 			       unsigned int div)
1097 {
1098 	struct tegra_dc_state *state = to_dc_state(crtc_state);
1099 
1100 	if (!clk_has_parent(dc->clk, clk))
1101 		return -EINVAL;
1102 
1103 	state->clk = clk;
1104 	state->pclk = pclk;
1105 	state->div = div;
1106 
1107 	return 0;
1108 }
1109 
1110 static void tegra_dc_commit_state(struct tegra_dc *dc,
1111 				  struct tegra_dc_state *state)
1112 {
1113 	u32 value;
1114 	int err;
1115 
1116 	err = clk_set_parent(dc->clk, state->clk);
1117 	if (err < 0)
1118 		dev_err(dc->dev, "failed to set parent clock: %d\n", err);
1119 
1120 	/*
1121 	 * Outputs may not want to change the parent clock rate. This is only
1122 	 * relevant to Tegra20 where only a single display PLL is available.
1123 	 * Since that PLL would typically be used for HDMI, an internal LVDS
1124 	 * panel would need to be driven by some other clock such as PLL_P
1125 	 * which is shared with other peripherals. Changing the clock rate
1126 	 * should therefore be avoided.
1127 	 */
1128 	if (state->pclk > 0) {
1129 		err = clk_set_rate(state->clk, state->pclk);
1130 		if (err < 0)
1131 			dev_err(dc->dev,
1132 				"failed to set clock rate to %lu Hz\n",
1133 				state->pclk);
1134 	}
1135 
1136 	DRM_DEBUG_KMS("rate: %lu, div: %u\n", clk_get_rate(dc->clk),
1137 		      state->div);
1138 	DRM_DEBUG_KMS("pclk: %lu\n", state->pclk);
1139 
1140 	value = SHIFT_CLK_DIVIDER(state->div) | PIXEL_CLK_DIVIDER_PCD1;
1141 	tegra_dc_writel(dc, value, DC_DISP_DISP_CLOCK_CONTROL);
1142 }
1143 
1144 static void tegra_dc_stop(struct tegra_dc *dc)
1145 {
1146 	u32 value;
1147 
1148 	/* stop the display controller */
1149 	value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1150 	value &= ~DISP_CTRL_MODE_MASK;
1151 	tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1152 
1153 	tegra_dc_commit(dc);
1154 }
1155 
1156 static bool tegra_dc_idle(struct tegra_dc *dc)
1157 {
1158 	u32 value;
1159 
1160 	value = tegra_dc_readl_active(dc, DC_CMD_DISPLAY_COMMAND);
1161 
1162 	return (value & DISP_CTRL_MODE_MASK) == 0;
1163 }
1164 
1165 static int tegra_dc_wait_idle(struct tegra_dc *dc, unsigned long timeout)
1166 {
1167 	timeout = jiffies + msecs_to_jiffies(timeout);
1168 
1169 	while (time_before(jiffies, timeout)) {
1170 		if (tegra_dc_idle(dc))
1171 			return 0;
1172 
1173 		usleep_range(1000, 2000);
1174 	}
1175 
1176 	dev_dbg(dc->dev, "timeout waiting for DC to become idle\n");
1177 	return -ETIMEDOUT;
1178 }
1179 
1180 static void tegra_crtc_disable(struct drm_crtc *crtc)
1181 {
1182 	struct tegra_dc *dc = to_tegra_dc(crtc);
1183 	u32 value;
1184 
1185 	if (!tegra_dc_idle(dc)) {
1186 		tegra_dc_stop(dc);
1187 
1188 		/*
1189 		 * Ignore the return value, there isn't anything useful to do
1190 		 * in case this fails.
1191 		 */
1192 		tegra_dc_wait_idle(dc, 100);
1193 	}
1194 
1195 	/*
1196 	 * This should really be part of the RGB encoder driver, but clearing
1197 	 * these bits has the side-effect of stopping the display controller.
1198 	 * When that happens no VBLANK interrupts will be raised. At the same
1199 	 * time the encoder is disabled before the display controller, so the
1200 	 * above code is always going to timeout waiting for the controller
1201 	 * to go idle.
1202 	 *
1203 	 * Given the close coupling between the RGB encoder and the display
1204 	 * controller doing it here is still kind of okay. None of the other
1205 	 * encoder drivers require these bits to be cleared.
1206 	 *
1207 	 * XXX: Perhaps given that the display controller is switched off at
1208 	 * this point anyway maybe clearing these bits isn't even useful for
1209 	 * the RGB encoder?
1210 	 */
1211 	if (dc->rgb) {
1212 		value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
1213 		value &= ~(PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
1214 			   PW4_ENABLE | PM0_ENABLE | PM1_ENABLE);
1215 		tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
1216 	}
1217 
1218 	tegra_dc_stats_reset(&dc->stats);
1219 	drm_crtc_vblank_off(crtc);
1220 
1221 	pm_runtime_put_sync(dc->dev);
1222 }
1223 
1224 static void tegra_crtc_enable(struct drm_crtc *crtc)
1225 {
1226 	struct drm_display_mode *mode = &crtc->state->adjusted_mode;
1227 	struct tegra_dc_state *state = to_dc_state(crtc->state);
1228 	struct tegra_dc *dc = to_tegra_dc(crtc);
1229 	u32 value;
1230 
1231 	pm_runtime_get_sync(dc->dev);
1232 
1233 	/* initialize display controller */
1234 	if (dc->syncpt) {
1235 		u32 syncpt = host1x_syncpt_id(dc->syncpt);
1236 
1237 		value = SYNCPT_CNTRL_NO_STALL;
1238 		tegra_dc_writel(dc, value, DC_CMD_GENERAL_INCR_SYNCPT_CNTRL);
1239 
1240 		value = SYNCPT_VSYNC_ENABLE | syncpt;
1241 		tegra_dc_writel(dc, value, DC_CMD_CONT_SYNCPT_VSYNC);
1242 	}
1243 
1244 	value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1245 		WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1246 	tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
1247 
1248 	value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1249 		WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1250 	tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
1251 
1252 	/* initialize timer */
1253 	value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(0x20) |
1254 		WINDOW_B_THRESHOLD(0x20) | WINDOW_C_THRESHOLD(0x20);
1255 	tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY);
1256 
1257 	value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(1) |
1258 		WINDOW_B_THRESHOLD(1) | WINDOW_C_THRESHOLD(1);
1259 	tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER);
1260 
1261 	value = VBLANK_INT | WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1262 		WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1263 	tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
1264 
1265 	value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1266 		WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1267 	tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1268 
1269 	if (dc->soc->supports_border_color)
1270 		tegra_dc_writel(dc, 0, DC_DISP_BORDER_COLOR);
1271 
1272 	/* apply PLL and pixel clock changes */
1273 	tegra_dc_commit_state(dc, state);
1274 
1275 	/* program display mode */
1276 	tegra_dc_set_timings(dc, mode);
1277 
1278 	/* interlacing isn't supported yet, so disable it */
1279 	if (dc->soc->supports_interlacing) {
1280 		value = tegra_dc_readl(dc, DC_DISP_INTERLACE_CONTROL);
1281 		value &= ~INTERLACE_ENABLE;
1282 		tegra_dc_writel(dc, value, DC_DISP_INTERLACE_CONTROL);
1283 	}
1284 
1285 	value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1286 	value &= ~DISP_CTRL_MODE_MASK;
1287 	value |= DISP_CTRL_MODE_C_DISPLAY;
1288 	tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1289 
1290 	value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
1291 	value |= PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
1292 		 PW4_ENABLE | PM0_ENABLE | PM1_ENABLE;
1293 	tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
1294 
1295 	tegra_dc_commit(dc);
1296 
1297 	drm_crtc_vblank_on(crtc);
1298 }
1299 
1300 static int tegra_crtc_atomic_check(struct drm_crtc *crtc,
1301 				   struct drm_crtc_state *state)
1302 {
1303 	return 0;
1304 }
1305 
1306 static void tegra_crtc_atomic_begin(struct drm_crtc *crtc,
1307 				    struct drm_crtc_state *old_crtc_state)
1308 {
1309 	struct tegra_dc *dc = to_tegra_dc(crtc);
1310 
1311 	if (crtc->state->event) {
1312 		crtc->state->event->pipe = drm_crtc_index(crtc);
1313 
1314 		WARN_ON(drm_crtc_vblank_get(crtc) != 0);
1315 
1316 		dc->event = crtc->state->event;
1317 		crtc->state->event = NULL;
1318 	}
1319 }
1320 
1321 static void tegra_crtc_atomic_flush(struct drm_crtc *crtc,
1322 				    struct drm_crtc_state *old_crtc_state)
1323 {
1324 	struct tegra_dc_state *state = to_dc_state(crtc->state);
1325 	struct tegra_dc *dc = to_tegra_dc(crtc);
1326 
1327 	tegra_dc_writel(dc, state->planes << 8, DC_CMD_STATE_CONTROL);
1328 	tegra_dc_writel(dc, state->planes, DC_CMD_STATE_CONTROL);
1329 }
1330 
1331 static const struct drm_crtc_helper_funcs tegra_crtc_helper_funcs = {
1332 	.disable = tegra_crtc_disable,
1333 	.enable = tegra_crtc_enable,
1334 	.atomic_check = tegra_crtc_atomic_check,
1335 	.atomic_begin = tegra_crtc_atomic_begin,
1336 	.atomic_flush = tegra_crtc_atomic_flush,
1337 };
1338 
1339 static irqreturn_t tegra_dc_irq(int irq, void *data)
1340 {
1341 	struct tegra_dc *dc = data;
1342 	unsigned long status;
1343 
1344 	status = tegra_dc_readl(dc, DC_CMD_INT_STATUS);
1345 	tegra_dc_writel(dc, status, DC_CMD_INT_STATUS);
1346 
1347 	if (status & FRAME_END_INT) {
1348 		/*
1349 		dev_dbg(dc->dev, "%s(): frame end\n", __func__);
1350 		*/
1351 		dc->stats.frames++;
1352 	}
1353 
1354 	if (status & VBLANK_INT) {
1355 		/*
1356 		dev_dbg(dc->dev, "%s(): vertical blank\n", __func__);
1357 		*/
1358 		drm_crtc_handle_vblank(&dc->base);
1359 		tegra_dc_finish_page_flip(dc);
1360 		dc->stats.vblank++;
1361 	}
1362 
1363 	if (status & (WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT)) {
1364 		/*
1365 		dev_dbg(dc->dev, "%s(): underflow\n", __func__);
1366 		*/
1367 		dc->stats.underflow++;
1368 	}
1369 
1370 	if (status & (WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT)) {
1371 		/*
1372 		dev_dbg(dc->dev, "%s(): overflow\n", __func__);
1373 		*/
1374 		dc->stats.overflow++;
1375 	}
1376 
1377 	return IRQ_HANDLED;
1378 }
1379 
1380 static int tegra_dc_show_regs(struct seq_file *s, void *data)
1381 {
1382 	struct drm_info_node *node = s->private;
1383 	struct tegra_dc *dc = node->info_ent->data;
1384 	int err = 0;
1385 
1386 	drm_modeset_lock_crtc(&dc->base, NULL);
1387 
1388 	if (!dc->base.state->active) {
1389 		err = -EBUSY;
1390 		goto unlock;
1391 	}
1392 
1393 #define DUMP_REG(name)						\
1394 	seq_printf(s, "%-40s %#05x %08x\n", #name, name,	\
1395 		   tegra_dc_readl(dc, name))
1396 
1397 	DUMP_REG(DC_CMD_GENERAL_INCR_SYNCPT);
1398 	DUMP_REG(DC_CMD_GENERAL_INCR_SYNCPT_CNTRL);
1399 	DUMP_REG(DC_CMD_GENERAL_INCR_SYNCPT_ERROR);
1400 	DUMP_REG(DC_CMD_WIN_A_INCR_SYNCPT);
1401 	DUMP_REG(DC_CMD_WIN_A_INCR_SYNCPT_CNTRL);
1402 	DUMP_REG(DC_CMD_WIN_A_INCR_SYNCPT_ERROR);
1403 	DUMP_REG(DC_CMD_WIN_B_INCR_SYNCPT);
1404 	DUMP_REG(DC_CMD_WIN_B_INCR_SYNCPT_CNTRL);
1405 	DUMP_REG(DC_CMD_WIN_B_INCR_SYNCPT_ERROR);
1406 	DUMP_REG(DC_CMD_WIN_C_INCR_SYNCPT);
1407 	DUMP_REG(DC_CMD_WIN_C_INCR_SYNCPT_CNTRL);
1408 	DUMP_REG(DC_CMD_WIN_C_INCR_SYNCPT_ERROR);
1409 	DUMP_REG(DC_CMD_CONT_SYNCPT_VSYNC);
1410 	DUMP_REG(DC_CMD_DISPLAY_COMMAND_OPTION0);
1411 	DUMP_REG(DC_CMD_DISPLAY_COMMAND);
1412 	DUMP_REG(DC_CMD_SIGNAL_RAISE);
1413 	DUMP_REG(DC_CMD_DISPLAY_POWER_CONTROL);
1414 	DUMP_REG(DC_CMD_INT_STATUS);
1415 	DUMP_REG(DC_CMD_INT_MASK);
1416 	DUMP_REG(DC_CMD_INT_ENABLE);
1417 	DUMP_REG(DC_CMD_INT_TYPE);
1418 	DUMP_REG(DC_CMD_INT_POLARITY);
1419 	DUMP_REG(DC_CMD_SIGNAL_RAISE1);
1420 	DUMP_REG(DC_CMD_SIGNAL_RAISE2);
1421 	DUMP_REG(DC_CMD_SIGNAL_RAISE3);
1422 	DUMP_REG(DC_CMD_STATE_ACCESS);
1423 	DUMP_REG(DC_CMD_STATE_CONTROL);
1424 	DUMP_REG(DC_CMD_DISPLAY_WINDOW_HEADER);
1425 	DUMP_REG(DC_CMD_REG_ACT_CONTROL);
1426 	DUMP_REG(DC_COM_CRC_CONTROL);
1427 	DUMP_REG(DC_COM_CRC_CHECKSUM);
1428 	DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(0));
1429 	DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(1));
1430 	DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(2));
1431 	DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(3));
1432 	DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(0));
1433 	DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(1));
1434 	DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(2));
1435 	DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(3));
1436 	DUMP_REG(DC_COM_PIN_OUTPUT_DATA(0));
1437 	DUMP_REG(DC_COM_PIN_OUTPUT_DATA(1));
1438 	DUMP_REG(DC_COM_PIN_OUTPUT_DATA(2));
1439 	DUMP_REG(DC_COM_PIN_OUTPUT_DATA(3));
1440 	DUMP_REG(DC_COM_PIN_INPUT_ENABLE(0));
1441 	DUMP_REG(DC_COM_PIN_INPUT_ENABLE(1));
1442 	DUMP_REG(DC_COM_PIN_INPUT_ENABLE(2));
1443 	DUMP_REG(DC_COM_PIN_INPUT_ENABLE(3));
1444 	DUMP_REG(DC_COM_PIN_INPUT_DATA(0));
1445 	DUMP_REG(DC_COM_PIN_INPUT_DATA(1));
1446 	DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(0));
1447 	DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(1));
1448 	DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(2));
1449 	DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(3));
1450 	DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(4));
1451 	DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(5));
1452 	DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(6));
1453 	DUMP_REG(DC_COM_PIN_MISC_CONTROL);
1454 	DUMP_REG(DC_COM_PIN_PM0_CONTROL);
1455 	DUMP_REG(DC_COM_PIN_PM0_DUTY_CYCLE);
1456 	DUMP_REG(DC_COM_PIN_PM1_CONTROL);
1457 	DUMP_REG(DC_COM_PIN_PM1_DUTY_CYCLE);
1458 	DUMP_REG(DC_COM_SPI_CONTROL);
1459 	DUMP_REG(DC_COM_SPI_START_BYTE);
1460 	DUMP_REG(DC_COM_HSPI_WRITE_DATA_AB);
1461 	DUMP_REG(DC_COM_HSPI_WRITE_DATA_CD);
1462 	DUMP_REG(DC_COM_HSPI_CS_DC);
1463 	DUMP_REG(DC_COM_SCRATCH_REGISTER_A);
1464 	DUMP_REG(DC_COM_SCRATCH_REGISTER_B);
1465 	DUMP_REG(DC_COM_GPIO_CTRL);
1466 	DUMP_REG(DC_COM_GPIO_DEBOUNCE_COUNTER);
1467 	DUMP_REG(DC_COM_CRC_CHECKSUM_LATCHED);
1468 	DUMP_REG(DC_DISP_DISP_SIGNAL_OPTIONS0);
1469 	DUMP_REG(DC_DISP_DISP_SIGNAL_OPTIONS1);
1470 	DUMP_REG(DC_DISP_DISP_WIN_OPTIONS);
1471 	DUMP_REG(DC_DISP_DISP_MEM_HIGH_PRIORITY);
1472 	DUMP_REG(DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER);
1473 	DUMP_REG(DC_DISP_DISP_TIMING_OPTIONS);
1474 	DUMP_REG(DC_DISP_REF_TO_SYNC);
1475 	DUMP_REG(DC_DISP_SYNC_WIDTH);
1476 	DUMP_REG(DC_DISP_BACK_PORCH);
1477 	DUMP_REG(DC_DISP_ACTIVE);
1478 	DUMP_REG(DC_DISP_FRONT_PORCH);
1479 	DUMP_REG(DC_DISP_H_PULSE0_CONTROL);
1480 	DUMP_REG(DC_DISP_H_PULSE0_POSITION_A);
1481 	DUMP_REG(DC_DISP_H_PULSE0_POSITION_B);
1482 	DUMP_REG(DC_DISP_H_PULSE0_POSITION_C);
1483 	DUMP_REG(DC_DISP_H_PULSE0_POSITION_D);
1484 	DUMP_REG(DC_DISP_H_PULSE1_CONTROL);
1485 	DUMP_REG(DC_DISP_H_PULSE1_POSITION_A);
1486 	DUMP_REG(DC_DISP_H_PULSE1_POSITION_B);
1487 	DUMP_REG(DC_DISP_H_PULSE1_POSITION_C);
1488 	DUMP_REG(DC_DISP_H_PULSE1_POSITION_D);
1489 	DUMP_REG(DC_DISP_H_PULSE2_CONTROL);
1490 	DUMP_REG(DC_DISP_H_PULSE2_POSITION_A);
1491 	DUMP_REG(DC_DISP_H_PULSE2_POSITION_B);
1492 	DUMP_REG(DC_DISP_H_PULSE2_POSITION_C);
1493 	DUMP_REG(DC_DISP_H_PULSE2_POSITION_D);
1494 	DUMP_REG(DC_DISP_V_PULSE0_CONTROL);
1495 	DUMP_REG(DC_DISP_V_PULSE0_POSITION_A);
1496 	DUMP_REG(DC_DISP_V_PULSE0_POSITION_B);
1497 	DUMP_REG(DC_DISP_V_PULSE0_POSITION_C);
1498 	DUMP_REG(DC_DISP_V_PULSE1_CONTROL);
1499 	DUMP_REG(DC_DISP_V_PULSE1_POSITION_A);
1500 	DUMP_REG(DC_DISP_V_PULSE1_POSITION_B);
1501 	DUMP_REG(DC_DISP_V_PULSE1_POSITION_C);
1502 	DUMP_REG(DC_DISP_V_PULSE2_CONTROL);
1503 	DUMP_REG(DC_DISP_V_PULSE2_POSITION_A);
1504 	DUMP_REG(DC_DISP_V_PULSE3_CONTROL);
1505 	DUMP_REG(DC_DISP_V_PULSE3_POSITION_A);
1506 	DUMP_REG(DC_DISP_M0_CONTROL);
1507 	DUMP_REG(DC_DISP_M1_CONTROL);
1508 	DUMP_REG(DC_DISP_DI_CONTROL);
1509 	DUMP_REG(DC_DISP_PP_CONTROL);
1510 	DUMP_REG(DC_DISP_PP_SELECT_A);
1511 	DUMP_REG(DC_DISP_PP_SELECT_B);
1512 	DUMP_REG(DC_DISP_PP_SELECT_C);
1513 	DUMP_REG(DC_DISP_PP_SELECT_D);
1514 	DUMP_REG(DC_DISP_DISP_CLOCK_CONTROL);
1515 	DUMP_REG(DC_DISP_DISP_INTERFACE_CONTROL);
1516 	DUMP_REG(DC_DISP_DISP_COLOR_CONTROL);
1517 	DUMP_REG(DC_DISP_SHIFT_CLOCK_OPTIONS);
1518 	DUMP_REG(DC_DISP_DATA_ENABLE_OPTIONS);
1519 	DUMP_REG(DC_DISP_SERIAL_INTERFACE_OPTIONS);
1520 	DUMP_REG(DC_DISP_LCD_SPI_OPTIONS);
1521 	DUMP_REG(DC_DISP_BORDER_COLOR);
1522 	DUMP_REG(DC_DISP_COLOR_KEY0_LOWER);
1523 	DUMP_REG(DC_DISP_COLOR_KEY0_UPPER);
1524 	DUMP_REG(DC_DISP_COLOR_KEY1_LOWER);
1525 	DUMP_REG(DC_DISP_COLOR_KEY1_UPPER);
1526 	DUMP_REG(DC_DISP_CURSOR_FOREGROUND);
1527 	DUMP_REG(DC_DISP_CURSOR_BACKGROUND);
1528 	DUMP_REG(DC_DISP_CURSOR_START_ADDR);
1529 	DUMP_REG(DC_DISP_CURSOR_START_ADDR_NS);
1530 	DUMP_REG(DC_DISP_CURSOR_POSITION);
1531 	DUMP_REG(DC_DISP_CURSOR_POSITION_NS);
1532 	DUMP_REG(DC_DISP_INIT_SEQ_CONTROL);
1533 	DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_A);
1534 	DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_B);
1535 	DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_C);
1536 	DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_D);
1537 	DUMP_REG(DC_DISP_DC_MCCIF_FIFOCTRL);
1538 	DUMP_REG(DC_DISP_MCCIF_DISPLAY0A_HYST);
1539 	DUMP_REG(DC_DISP_MCCIF_DISPLAY0B_HYST);
1540 	DUMP_REG(DC_DISP_MCCIF_DISPLAY1A_HYST);
1541 	DUMP_REG(DC_DISP_MCCIF_DISPLAY1B_HYST);
1542 	DUMP_REG(DC_DISP_DAC_CRT_CTRL);
1543 	DUMP_REG(DC_DISP_DISP_MISC_CONTROL);
1544 	DUMP_REG(DC_DISP_SD_CONTROL);
1545 	DUMP_REG(DC_DISP_SD_CSC_COEFF);
1546 	DUMP_REG(DC_DISP_SD_LUT(0));
1547 	DUMP_REG(DC_DISP_SD_LUT(1));
1548 	DUMP_REG(DC_DISP_SD_LUT(2));
1549 	DUMP_REG(DC_DISP_SD_LUT(3));
1550 	DUMP_REG(DC_DISP_SD_LUT(4));
1551 	DUMP_REG(DC_DISP_SD_LUT(5));
1552 	DUMP_REG(DC_DISP_SD_LUT(6));
1553 	DUMP_REG(DC_DISP_SD_LUT(7));
1554 	DUMP_REG(DC_DISP_SD_LUT(8));
1555 	DUMP_REG(DC_DISP_SD_FLICKER_CONTROL);
1556 	DUMP_REG(DC_DISP_DC_PIXEL_COUNT);
1557 	DUMP_REG(DC_DISP_SD_HISTOGRAM(0));
1558 	DUMP_REG(DC_DISP_SD_HISTOGRAM(1));
1559 	DUMP_REG(DC_DISP_SD_HISTOGRAM(2));
1560 	DUMP_REG(DC_DISP_SD_HISTOGRAM(3));
1561 	DUMP_REG(DC_DISP_SD_HISTOGRAM(4));
1562 	DUMP_REG(DC_DISP_SD_HISTOGRAM(5));
1563 	DUMP_REG(DC_DISP_SD_HISTOGRAM(6));
1564 	DUMP_REG(DC_DISP_SD_HISTOGRAM(7));
1565 	DUMP_REG(DC_DISP_SD_BL_TF(0));
1566 	DUMP_REG(DC_DISP_SD_BL_TF(1));
1567 	DUMP_REG(DC_DISP_SD_BL_TF(2));
1568 	DUMP_REG(DC_DISP_SD_BL_TF(3));
1569 	DUMP_REG(DC_DISP_SD_BL_CONTROL);
1570 	DUMP_REG(DC_DISP_SD_HW_K_VALUES);
1571 	DUMP_REG(DC_DISP_SD_MAN_K_VALUES);
1572 	DUMP_REG(DC_DISP_CURSOR_START_ADDR_HI);
1573 	DUMP_REG(DC_DISP_BLEND_CURSOR_CONTROL);
1574 	DUMP_REG(DC_WIN_WIN_OPTIONS);
1575 	DUMP_REG(DC_WIN_BYTE_SWAP);
1576 	DUMP_REG(DC_WIN_BUFFER_CONTROL);
1577 	DUMP_REG(DC_WIN_COLOR_DEPTH);
1578 	DUMP_REG(DC_WIN_POSITION);
1579 	DUMP_REG(DC_WIN_SIZE);
1580 	DUMP_REG(DC_WIN_PRESCALED_SIZE);
1581 	DUMP_REG(DC_WIN_H_INITIAL_DDA);
1582 	DUMP_REG(DC_WIN_V_INITIAL_DDA);
1583 	DUMP_REG(DC_WIN_DDA_INC);
1584 	DUMP_REG(DC_WIN_LINE_STRIDE);
1585 	DUMP_REG(DC_WIN_BUF_STRIDE);
1586 	DUMP_REG(DC_WIN_UV_BUF_STRIDE);
1587 	DUMP_REG(DC_WIN_BUFFER_ADDR_MODE);
1588 	DUMP_REG(DC_WIN_DV_CONTROL);
1589 	DUMP_REG(DC_WIN_BLEND_NOKEY);
1590 	DUMP_REG(DC_WIN_BLEND_1WIN);
1591 	DUMP_REG(DC_WIN_BLEND_2WIN_X);
1592 	DUMP_REG(DC_WIN_BLEND_2WIN_Y);
1593 	DUMP_REG(DC_WIN_BLEND_3WIN_XY);
1594 	DUMP_REG(DC_WIN_HP_FETCH_CONTROL);
1595 	DUMP_REG(DC_WINBUF_START_ADDR);
1596 	DUMP_REG(DC_WINBUF_START_ADDR_NS);
1597 	DUMP_REG(DC_WINBUF_START_ADDR_U);
1598 	DUMP_REG(DC_WINBUF_START_ADDR_U_NS);
1599 	DUMP_REG(DC_WINBUF_START_ADDR_V);
1600 	DUMP_REG(DC_WINBUF_START_ADDR_V_NS);
1601 	DUMP_REG(DC_WINBUF_ADDR_H_OFFSET);
1602 	DUMP_REG(DC_WINBUF_ADDR_H_OFFSET_NS);
1603 	DUMP_REG(DC_WINBUF_ADDR_V_OFFSET);
1604 	DUMP_REG(DC_WINBUF_ADDR_V_OFFSET_NS);
1605 	DUMP_REG(DC_WINBUF_UFLOW_STATUS);
1606 	DUMP_REG(DC_WINBUF_AD_UFLOW_STATUS);
1607 	DUMP_REG(DC_WINBUF_BD_UFLOW_STATUS);
1608 	DUMP_REG(DC_WINBUF_CD_UFLOW_STATUS);
1609 
1610 #undef DUMP_REG
1611 
1612 unlock:
1613 	drm_modeset_unlock_crtc(&dc->base);
1614 	return err;
1615 }
1616 
1617 static int tegra_dc_show_crc(struct seq_file *s, void *data)
1618 {
1619 	struct drm_info_node *node = s->private;
1620 	struct tegra_dc *dc = node->info_ent->data;
1621 	int err = 0;
1622 	u32 value;
1623 
1624 	drm_modeset_lock_crtc(&dc->base, NULL);
1625 
1626 	if (!dc->base.state->active) {
1627 		err = -EBUSY;
1628 		goto unlock;
1629 	}
1630 
1631 	value = DC_COM_CRC_CONTROL_ACTIVE_DATA | DC_COM_CRC_CONTROL_ENABLE;
1632 	tegra_dc_writel(dc, value, DC_COM_CRC_CONTROL);
1633 	tegra_dc_commit(dc);
1634 
1635 	drm_crtc_wait_one_vblank(&dc->base);
1636 	drm_crtc_wait_one_vblank(&dc->base);
1637 
1638 	value = tegra_dc_readl(dc, DC_COM_CRC_CHECKSUM);
1639 	seq_printf(s, "%08x\n", value);
1640 
1641 	tegra_dc_writel(dc, 0, DC_COM_CRC_CONTROL);
1642 
1643 unlock:
1644 	drm_modeset_unlock_crtc(&dc->base);
1645 	return err;
1646 }
1647 
1648 static int tegra_dc_show_stats(struct seq_file *s, void *data)
1649 {
1650 	struct drm_info_node *node = s->private;
1651 	struct tegra_dc *dc = node->info_ent->data;
1652 
1653 	seq_printf(s, "frames: %lu\n", dc->stats.frames);
1654 	seq_printf(s, "vblank: %lu\n", dc->stats.vblank);
1655 	seq_printf(s, "underflow: %lu\n", dc->stats.underflow);
1656 	seq_printf(s, "overflow: %lu\n", dc->stats.overflow);
1657 
1658 	return 0;
1659 }
1660 
1661 static struct drm_info_list debugfs_files[] = {
1662 	{ "regs", tegra_dc_show_regs, 0, NULL },
1663 	{ "crc", tegra_dc_show_crc, 0, NULL },
1664 	{ "stats", tegra_dc_show_stats, 0, NULL },
1665 };
1666 
1667 static int tegra_dc_debugfs_init(struct tegra_dc *dc, struct drm_minor *minor)
1668 {
1669 	unsigned int i;
1670 	char *name;
1671 	int err;
1672 
1673 	name = kasprintf(GFP_KERNEL, "dc.%d", dc->pipe);
1674 	dc->debugfs = debugfs_create_dir(name, minor->debugfs_root);
1675 	kfree(name);
1676 
1677 	if (!dc->debugfs)
1678 		return -ENOMEM;
1679 
1680 	dc->debugfs_files = kmemdup(debugfs_files, sizeof(debugfs_files),
1681 				    GFP_KERNEL);
1682 	if (!dc->debugfs_files) {
1683 		err = -ENOMEM;
1684 		goto remove;
1685 	}
1686 
1687 	for (i = 0; i < ARRAY_SIZE(debugfs_files); i++)
1688 		dc->debugfs_files[i].data = dc;
1689 
1690 	err = drm_debugfs_create_files(dc->debugfs_files,
1691 				       ARRAY_SIZE(debugfs_files),
1692 				       dc->debugfs, minor);
1693 	if (err < 0)
1694 		goto free;
1695 
1696 	dc->minor = minor;
1697 
1698 	return 0;
1699 
1700 free:
1701 	kfree(dc->debugfs_files);
1702 	dc->debugfs_files = NULL;
1703 remove:
1704 	debugfs_remove(dc->debugfs);
1705 	dc->debugfs = NULL;
1706 
1707 	return err;
1708 }
1709 
1710 static int tegra_dc_debugfs_exit(struct tegra_dc *dc)
1711 {
1712 	drm_debugfs_remove_files(dc->debugfs_files, ARRAY_SIZE(debugfs_files),
1713 				 dc->minor);
1714 	dc->minor = NULL;
1715 
1716 	kfree(dc->debugfs_files);
1717 	dc->debugfs_files = NULL;
1718 
1719 	debugfs_remove(dc->debugfs);
1720 	dc->debugfs = NULL;
1721 
1722 	return 0;
1723 }
1724 
1725 static int tegra_dc_init(struct host1x_client *client)
1726 {
1727 	struct drm_device *drm = dev_get_drvdata(client->parent);
1728 	unsigned long flags = HOST1X_SYNCPT_CLIENT_MANAGED;
1729 	struct tegra_dc *dc = host1x_client_to_dc(client);
1730 	struct tegra_drm *tegra = drm->dev_private;
1731 	struct drm_plane *primary = NULL;
1732 	struct drm_plane *cursor = NULL;
1733 	int err;
1734 
1735 	dc->syncpt = host1x_syncpt_request(dc->dev, flags);
1736 	if (!dc->syncpt)
1737 		dev_warn(dc->dev, "failed to allocate syncpoint\n");
1738 
1739 	if (tegra->domain) {
1740 		err = iommu_attach_device(tegra->domain, dc->dev);
1741 		if (err < 0) {
1742 			dev_err(dc->dev, "failed to attach to domain: %d\n",
1743 				err);
1744 			return err;
1745 		}
1746 
1747 		dc->domain = tegra->domain;
1748 	}
1749 
1750 	primary = tegra_dc_primary_plane_create(drm, dc);
1751 	if (IS_ERR(primary)) {
1752 		err = PTR_ERR(primary);
1753 		goto cleanup;
1754 	}
1755 
1756 	if (dc->soc->supports_cursor) {
1757 		cursor = tegra_dc_cursor_plane_create(drm, dc);
1758 		if (IS_ERR(cursor)) {
1759 			err = PTR_ERR(cursor);
1760 			goto cleanup;
1761 		}
1762 	}
1763 
1764 	err = drm_crtc_init_with_planes(drm, &dc->base, primary, cursor,
1765 					&tegra_crtc_funcs, NULL);
1766 	if (err < 0)
1767 		goto cleanup;
1768 
1769 	drm_crtc_helper_add(&dc->base, &tegra_crtc_helper_funcs);
1770 
1771 	/*
1772 	 * Keep track of the minimum pitch alignment across all display
1773 	 * controllers.
1774 	 */
1775 	if (dc->soc->pitch_align > tegra->pitch_align)
1776 		tegra->pitch_align = dc->soc->pitch_align;
1777 
1778 	err = tegra_dc_rgb_init(drm, dc);
1779 	if (err < 0 && err != -ENODEV) {
1780 		dev_err(dc->dev, "failed to initialize RGB output: %d\n", err);
1781 		goto cleanup;
1782 	}
1783 
1784 	err = tegra_dc_add_planes(drm, dc);
1785 	if (err < 0)
1786 		goto cleanup;
1787 
1788 	if (IS_ENABLED(CONFIG_DEBUG_FS)) {
1789 		err = tegra_dc_debugfs_init(dc, drm->primary);
1790 		if (err < 0)
1791 			dev_err(dc->dev, "debugfs setup failed: %d\n", err);
1792 	}
1793 
1794 	err = devm_request_irq(dc->dev, dc->irq, tegra_dc_irq, 0,
1795 			       dev_name(dc->dev), dc);
1796 	if (err < 0) {
1797 		dev_err(dc->dev, "failed to request IRQ#%u: %d\n", dc->irq,
1798 			err);
1799 		goto cleanup;
1800 	}
1801 
1802 	return 0;
1803 
1804 cleanup:
1805 	if (cursor)
1806 		drm_plane_cleanup(cursor);
1807 
1808 	if (primary)
1809 		drm_plane_cleanup(primary);
1810 
1811 	if (tegra->domain) {
1812 		iommu_detach_device(tegra->domain, dc->dev);
1813 		dc->domain = NULL;
1814 	}
1815 
1816 	return err;
1817 }
1818 
1819 static int tegra_dc_exit(struct host1x_client *client)
1820 {
1821 	struct tegra_dc *dc = host1x_client_to_dc(client);
1822 	int err;
1823 
1824 	devm_free_irq(dc->dev, dc->irq, dc);
1825 
1826 	if (IS_ENABLED(CONFIG_DEBUG_FS)) {
1827 		err = tegra_dc_debugfs_exit(dc);
1828 		if (err < 0)
1829 			dev_err(dc->dev, "debugfs cleanup failed: %d\n", err);
1830 	}
1831 
1832 	err = tegra_dc_rgb_exit(dc);
1833 	if (err) {
1834 		dev_err(dc->dev, "failed to shutdown RGB output: %d\n", err);
1835 		return err;
1836 	}
1837 
1838 	if (dc->domain) {
1839 		iommu_detach_device(dc->domain, dc->dev);
1840 		dc->domain = NULL;
1841 	}
1842 
1843 	host1x_syncpt_free(dc->syncpt);
1844 
1845 	return 0;
1846 }
1847 
1848 static const struct host1x_client_ops dc_client_ops = {
1849 	.init = tegra_dc_init,
1850 	.exit = tegra_dc_exit,
1851 };
1852 
1853 static const struct tegra_dc_soc_info tegra20_dc_soc_info = {
1854 	.supports_border_color = true,
1855 	.supports_interlacing = false,
1856 	.supports_cursor = false,
1857 	.supports_block_linear = false,
1858 	.pitch_align = 8,
1859 	.has_powergate = false,
1860 };
1861 
1862 static const struct tegra_dc_soc_info tegra30_dc_soc_info = {
1863 	.supports_border_color = true,
1864 	.supports_interlacing = false,
1865 	.supports_cursor = false,
1866 	.supports_block_linear = false,
1867 	.pitch_align = 8,
1868 	.has_powergate = false,
1869 };
1870 
1871 static const struct tegra_dc_soc_info tegra114_dc_soc_info = {
1872 	.supports_border_color = true,
1873 	.supports_interlacing = false,
1874 	.supports_cursor = false,
1875 	.supports_block_linear = false,
1876 	.pitch_align = 64,
1877 	.has_powergate = true,
1878 };
1879 
1880 static const struct tegra_dc_soc_info tegra124_dc_soc_info = {
1881 	.supports_border_color = false,
1882 	.supports_interlacing = true,
1883 	.supports_cursor = true,
1884 	.supports_block_linear = true,
1885 	.pitch_align = 64,
1886 	.has_powergate = true,
1887 };
1888 
1889 static const struct tegra_dc_soc_info tegra210_dc_soc_info = {
1890 	.supports_border_color = false,
1891 	.supports_interlacing = true,
1892 	.supports_cursor = true,
1893 	.supports_block_linear = true,
1894 	.pitch_align = 64,
1895 	.has_powergate = true,
1896 };
1897 
1898 static const struct of_device_id tegra_dc_of_match[] = {
1899 	{
1900 		.compatible = "nvidia,tegra210-dc",
1901 		.data = &tegra210_dc_soc_info,
1902 	}, {
1903 		.compatible = "nvidia,tegra124-dc",
1904 		.data = &tegra124_dc_soc_info,
1905 	}, {
1906 		.compatible = "nvidia,tegra114-dc",
1907 		.data = &tegra114_dc_soc_info,
1908 	}, {
1909 		.compatible = "nvidia,tegra30-dc",
1910 		.data = &tegra30_dc_soc_info,
1911 	}, {
1912 		.compatible = "nvidia,tegra20-dc",
1913 		.data = &tegra20_dc_soc_info,
1914 	}, {
1915 		/* sentinel */
1916 	}
1917 };
1918 MODULE_DEVICE_TABLE(of, tegra_dc_of_match);
1919 
1920 static int tegra_dc_parse_dt(struct tegra_dc *dc)
1921 {
1922 	struct device_node *np;
1923 	u32 value = 0;
1924 	int err;
1925 
1926 	err = of_property_read_u32(dc->dev->of_node, "nvidia,head", &value);
1927 	if (err < 0) {
1928 		dev_err(dc->dev, "missing \"nvidia,head\" property\n");
1929 
1930 		/*
1931 		 * If the nvidia,head property isn't present, try to find the
1932 		 * correct head number by looking up the position of this
1933 		 * display controller's node within the device tree. Assuming
1934 		 * that the nodes are ordered properly in the DTS file and
1935 		 * that the translation into a flattened device tree blob
1936 		 * preserves that ordering this will actually yield the right
1937 		 * head number.
1938 		 *
1939 		 * If those assumptions don't hold, this will still work for
1940 		 * cases where only a single display controller is used.
1941 		 */
1942 		for_each_matching_node(np, tegra_dc_of_match) {
1943 			if (np == dc->dev->of_node) {
1944 				of_node_put(np);
1945 				break;
1946 			}
1947 
1948 			value++;
1949 		}
1950 	}
1951 
1952 	dc->pipe = value;
1953 
1954 	return 0;
1955 }
1956 
1957 static int tegra_dc_probe(struct platform_device *pdev)
1958 {
1959 	const struct of_device_id *id;
1960 	struct resource *regs;
1961 	struct tegra_dc *dc;
1962 	int err;
1963 
1964 	dc = devm_kzalloc(&pdev->dev, sizeof(*dc), GFP_KERNEL);
1965 	if (!dc)
1966 		return -ENOMEM;
1967 
1968 	id = of_match_node(tegra_dc_of_match, pdev->dev.of_node);
1969 	if (!id)
1970 		return -ENODEV;
1971 
1972 	spin_lock_init(&dc->lock);
1973 	INIT_LIST_HEAD(&dc->list);
1974 	dc->dev = &pdev->dev;
1975 	dc->soc = id->data;
1976 
1977 	err = tegra_dc_parse_dt(dc);
1978 	if (err < 0)
1979 		return err;
1980 
1981 	dc->clk = devm_clk_get(&pdev->dev, NULL);
1982 	if (IS_ERR(dc->clk)) {
1983 		dev_err(&pdev->dev, "failed to get clock\n");
1984 		return PTR_ERR(dc->clk);
1985 	}
1986 
1987 	dc->rst = devm_reset_control_get(&pdev->dev, "dc");
1988 	if (IS_ERR(dc->rst)) {
1989 		dev_err(&pdev->dev, "failed to get reset\n");
1990 		return PTR_ERR(dc->rst);
1991 	}
1992 
1993 	reset_control_assert(dc->rst);
1994 
1995 	if (dc->soc->has_powergate) {
1996 		if (dc->pipe == 0)
1997 			dc->powergate = TEGRA_POWERGATE_DIS;
1998 		else
1999 			dc->powergate = TEGRA_POWERGATE_DISB;
2000 
2001 		tegra_powergate_power_off(dc->powergate);
2002 	}
2003 
2004 	regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2005 	dc->regs = devm_ioremap_resource(&pdev->dev, regs);
2006 	if (IS_ERR(dc->regs))
2007 		return PTR_ERR(dc->regs);
2008 
2009 	dc->irq = platform_get_irq(pdev, 0);
2010 	if (dc->irq < 0) {
2011 		dev_err(&pdev->dev, "failed to get IRQ\n");
2012 		return -ENXIO;
2013 	}
2014 
2015 	err = tegra_dc_rgb_probe(dc);
2016 	if (err < 0 && err != -ENODEV) {
2017 		dev_err(&pdev->dev, "failed to probe RGB output: %d\n", err);
2018 		return err;
2019 	}
2020 
2021 	platform_set_drvdata(pdev, dc);
2022 	pm_runtime_enable(&pdev->dev);
2023 
2024 	INIT_LIST_HEAD(&dc->client.list);
2025 	dc->client.ops = &dc_client_ops;
2026 	dc->client.dev = &pdev->dev;
2027 
2028 	err = host1x_client_register(&dc->client);
2029 	if (err < 0) {
2030 		dev_err(&pdev->dev, "failed to register host1x client: %d\n",
2031 			err);
2032 		return err;
2033 	}
2034 
2035 	return 0;
2036 }
2037 
2038 static int tegra_dc_remove(struct platform_device *pdev)
2039 {
2040 	struct tegra_dc *dc = platform_get_drvdata(pdev);
2041 	int err;
2042 
2043 	err = host1x_client_unregister(&dc->client);
2044 	if (err < 0) {
2045 		dev_err(&pdev->dev, "failed to unregister host1x client: %d\n",
2046 			err);
2047 		return err;
2048 	}
2049 
2050 	err = tegra_dc_rgb_remove(dc);
2051 	if (err < 0) {
2052 		dev_err(&pdev->dev, "failed to remove RGB output: %d\n", err);
2053 		return err;
2054 	}
2055 
2056 	pm_runtime_disable(&pdev->dev);
2057 
2058 	return 0;
2059 }
2060 
2061 #ifdef CONFIG_PM
2062 static int tegra_dc_suspend(struct device *dev)
2063 {
2064 	struct tegra_dc *dc = dev_get_drvdata(dev);
2065 	int err;
2066 
2067 	err = reset_control_assert(dc->rst);
2068 	if (err < 0) {
2069 		dev_err(dev, "failed to assert reset: %d\n", err);
2070 		return err;
2071 	}
2072 
2073 	if (dc->soc->has_powergate)
2074 		tegra_powergate_power_off(dc->powergate);
2075 
2076 	clk_disable_unprepare(dc->clk);
2077 
2078 	return 0;
2079 }
2080 
2081 static int tegra_dc_resume(struct device *dev)
2082 {
2083 	struct tegra_dc *dc = dev_get_drvdata(dev);
2084 	int err;
2085 
2086 	if (dc->soc->has_powergate) {
2087 		err = tegra_powergate_sequence_power_up(dc->powergate, dc->clk,
2088 							dc->rst);
2089 		if (err < 0) {
2090 			dev_err(dev, "failed to power partition: %d\n", err);
2091 			return err;
2092 		}
2093 	} else {
2094 		err = clk_prepare_enable(dc->clk);
2095 		if (err < 0) {
2096 			dev_err(dev, "failed to enable clock: %d\n", err);
2097 			return err;
2098 		}
2099 
2100 		err = reset_control_deassert(dc->rst);
2101 		if (err < 0) {
2102 			dev_err(dev, "failed to deassert reset: %d\n", err);
2103 			return err;
2104 		}
2105 	}
2106 
2107 	return 0;
2108 }
2109 #endif
2110 
2111 static const struct dev_pm_ops tegra_dc_pm_ops = {
2112 	SET_RUNTIME_PM_OPS(tegra_dc_suspend, tegra_dc_resume, NULL)
2113 };
2114 
2115 struct platform_driver tegra_dc_driver = {
2116 	.driver = {
2117 		.name = "tegra-dc",
2118 		.of_match_table = tegra_dc_of_match,
2119 		.pm = &tegra_dc_pm_ops,
2120 	},
2121 	.probe = tegra_dc_probe,
2122 	.remove = tegra_dc_remove,
2123 };
2124