1 /* 2 * Copyright (C) 2012 Avionic Design GmbH 3 * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved. 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License version 2 as 7 * published by the Free Software Foundation. 8 */ 9 10 #include <linux/clk.h> 11 #include <linux/debugfs.h> 12 #include <linux/iommu.h> 13 #include <linux/reset.h> 14 15 #include <soc/tegra/pmc.h> 16 17 #include "dc.h" 18 #include "drm.h" 19 #include "gem.h" 20 21 #include <drm/drm_atomic.h> 22 #include <drm/drm_atomic_helper.h> 23 #include <drm/drm_plane_helper.h> 24 25 struct tegra_dc_soc_info { 26 bool supports_border_color; 27 bool supports_interlacing; 28 bool supports_cursor; 29 bool supports_block_linear; 30 unsigned int pitch_align; 31 bool has_powergate; 32 }; 33 34 struct tegra_plane { 35 struct drm_plane base; 36 unsigned int index; 37 }; 38 39 static inline struct tegra_plane *to_tegra_plane(struct drm_plane *plane) 40 { 41 return container_of(plane, struct tegra_plane, base); 42 } 43 44 struct tegra_dc_state { 45 struct drm_crtc_state base; 46 47 struct clk *clk; 48 unsigned long pclk; 49 unsigned int div; 50 51 u32 planes; 52 }; 53 54 static inline struct tegra_dc_state *to_dc_state(struct drm_crtc_state *state) 55 { 56 if (state) 57 return container_of(state, struct tegra_dc_state, base); 58 59 return NULL; 60 } 61 62 struct tegra_plane_state { 63 struct drm_plane_state base; 64 65 struct tegra_bo_tiling tiling; 66 u32 format; 67 u32 swap; 68 }; 69 70 static inline struct tegra_plane_state * 71 to_tegra_plane_state(struct drm_plane_state *state) 72 { 73 if (state) 74 return container_of(state, struct tegra_plane_state, base); 75 76 return NULL; 77 } 78 79 static void tegra_dc_stats_reset(struct tegra_dc_stats *stats) 80 { 81 stats->frames = 0; 82 stats->vblank = 0; 83 stats->underflow = 0; 84 stats->overflow = 0; 85 } 86 87 /* 88 * Reads the active copy of a register. This takes the dc->lock spinlock to 89 * prevent races with the VBLANK processing which also needs access to the 90 * active copy of some registers. 91 */ 92 static u32 tegra_dc_readl_active(struct tegra_dc *dc, unsigned long offset) 93 { 94 unsigned long flags; 95 u32 value; 96 97 spin_lock_irqsave(&dc->lock, flags); 98 99 tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS); 100 value = tegra_dc_readl(dc, offset); 101 tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS); 102 103 spin_unlock_irqrestore(&dc->lock, flags); 104 return value; 105 } 106 107 /* 108 * Double-buffered registers have two copies: ASSEMBLY and ACTIVE. When the 109 * *_ACT_REQ bits are set the ASSEMBLY copy is latched into the ACTIVE copy. 110 * Latching happens mmediately if the display controller is in STOP mode or 111 * on the next frame boundary otherwise. 112 * 113 * Triple-buffered registers have three copies: ASSEMBLY, ARM and ACTIVE. The 114 * ASSEMBLY copy is latched into the ARM copy immediately after *_UPDATE bits 115 * are written. When the *_ACT_REQ bits are written, the ARM copy is latched 116 * into the ACTIVE copy, either immediately if the display controller is in 117 * STOP mode, or at the next frame boundary otherwise. 118 */ 119 void tegra_dc_commit(struct tegra_dc *dc) 120 { 121 tegra_dc_writel(dc, GENERAL_ACT_REQ << 8, DC_CMD_STATE_CONTROL); 122 tegra_dc_writel(dc, GENERAL_ACT_REQ, DC_CMD_STATE_CONTROL); 123 } 124 125 static int tegra_dc_format(u32 fourcc, u32 *format, u32 *swap) 126 { 127 /* assume no swapping of fetched data */ 128 if (swap) 129 *swap = BYTE_SWAP_NOSWAP; 130 131 switch (fourcc) { 132 case DRM_FORMAT_XBGR8888: 133 *format = WIN_COLOR_DEPTH_R8G8B8A8; 134 break; 135 136 case DRM_FORMAT_XRGB8888: 137 *format = WIN_COLOR_DEPTH_B8G8R8A8; 138 break; 139 140 case DRM_FORMAT_RGB565: 141 *format = WIN_COLOR_DEPTH_B5G6R5; 142 break; 143 144 case DRM_FORMAT_UYVY: 145 *format = WIN_COLOR_DEPTH_YCbCr422; 146 break; 147 148 case DRM_FORMAT_YUYV: 149 if (swap) 150 *swap = BYTE_SWAP_SWAP2; 151 152 *format = WIN_COLOR_DEPTH_YCbCr422; 153 break; 154 155 case DRM_FORMAT_YUV420: 156 *format = WIN_COLOR_DEPTH_YCbCr420P; 157 break; 158 159 case DRM_FORMAT_YUV422: 160 *format = WIN_COLOR_DEPTH_YCbCr422P; 161 break; 162 163 default: 164 return -EINVAL; 165 } 166 167 return 0; 168 } 169 170 static bool tegra_dc_format_is_yuv(unsigned int format, bool *planar) 171 { 172 switch (format) { 173 case WIN_COLOR_DEPTH_YCbCr422: 174 case WIN_COLOR_DEPTH_YUV422: 175 if (planar) 176 *planar = false; 177 178 return true; 179 180 case WIN_COLOR_DEPTH_YCbCr420P: 181 case WIN_COLOR_DEPTH_YUV420P: 182 case WIN_COLOR_DEPTH_YCbCr422P: 183 case WIN_COLOR_DEPTH_YUV422P: 184 case WIN_COLOR_DEPTH_YCbCr422R: 185 case WIN_COLOR_DEPTH_YUV422R: 186 case WIN_COLOR_DEPTH_YCbCr422RA: 187 case WIN_COLOR_DEPTH_YUV422RA: 188 if (planar) 189 *planar = true; 190 191 return true; 192 } 193 194 if (planar) 195 *planar = false; 196 197 return false; 198 } 199 200 static inline u32 compute_dda_inc(unsigned int in, unsigned int out, bool v, 201 unsigned int bpp) 202 { 203 fixed20_12 outf = dfixed_init(out); 204 fixed20_12 inf = dfixed_init(in); 205 u32 dda_inc; 206 int max; 207 208 if (v) 209 max = 15; 210 else { 211 switch (bpp) { 212 case 2: 213 max = 8; 214 break; 215 216 default: 217 WARN_ON_ONCE(1); 218 /* fallthrough */ 219 case 4: 220 max = 4; 221 break; 222 } 223 } 224 225 outf.full = max_t(u32, outf.full - dfixed_const(1), dfixed_const(1)); 226 inf.full -= dfixed_const(1); 227 228 dda_inc = dfixed_div(inf, outf); 229 dda_inc = min_t(u32, dda_inc, dfixed_const(max)); 230 231 return dda_inc; 232 } 233 234 static inline u32 compute_initial_dda(unsigned int in) 235 { 236 fixed20_12 inf = dfixed_init(in); 237 return dfixed_frac(inf); 238 } 239 240 static void tegra_dc_setup_window(struct tegra_dc *dc, unsigned int index, 241 const struct tegra_dc_window *window) 242 { 243 unsigned h_offset, v_offset, h_size, v_size, h_dda, v_dda, bpp; 244 unsigned long value, flags; 245 bool yuv, planar; 246 247 /* 248 * For YUV planar modes, the number of bytes per pixel takes into 249 * account only the luma component and therefore is 1. 250 */ 251 yuv = tegra_dc_format_is_yuv(window->format, &planar); 252 if (!yuv) 253 bpp = window->bits_per_pixel / 8; 254 else 255 bpp = planar ? 1 : 2; 256 257 spin_lock_irqsave(&dc->lock, flags); 258 259 value = WINDOW_A_SELECT << index; 260 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_WINDOW_HEADER); 261 262 tegra_dc_writel(dc, window->format, DC_WIN_COLOR_DEPTH); 263 tegra_dc_writel(dc, window->swap, DC_WIN_BYTE_SWAP); 264 265 value = V_POSITION(window->dst.y) | H_POSITION(window->dst.x); 266 tegra_dc_writel(dc, value, DC_WIN_POSITION); 267 268 value = V_SIZE(window->dst.h) | H_SIZE(window->dst.w); 269 tegra_dc_writel(dc, value, DC_WIN_SIZE); 270 271 h_offset = window->src.x * bpp; 272 v_offset = window->src.y; 273 h_size = window->src.w * bpp; 274 v_size = window->src.h; 275 276 value = V_PRESCALED_SIZE(v_size) | H_PRESCALED_SIZE(h_size); 277 tegra_dc_writel(dc, value, DC_WIN_PRESCALED_SIZE); 278 279 /* 280 * For DDA computations the number of bytes per pixel for YUV planar 281 * modes needs to take into account all Y, U and V components. 282 */ 283 if (yuv && planar) 284 bpp = 2; 285 286 h_dda = compute_dda_inc(window->src.w, window->dst.w, false, bpp); 287 v_dda = compute_dda_inc(window->src.h, window->dst.h, true, bpp); 288 289 value = V_DDA_INC(v_dda) | H_DDA_INC(h_dda); 290 tegra_dc_writel(dc, value, DC_WIN_DDA_INC); 291 292 h_dda = compute_initial_dda(window->src.x); 293 v_dda = compute_initial_dda(window->src.y); 294 295 tegra_dc_writel(dc, h_dda, DC_WIN_H_INITIAL_DDA); 296 tegra_dc_writel(dc, v_dda, DC_WIN_V_INITIAL_DDA); 297 298 tegra_dc_writel(dc, 0, DC_WIN_UV_BUF_STRIDE); 299 tegra_dc_writel(dc, 0, DC_WIN_BUF_STRIDE); 300 301 tegra_dc_writel(dc, window->base[0], DC_WINBUF_START_ADDR); 302 303 if (yuv && planar) { 304 tegra_dc_writel(dc, window->base[1], DC_WINBUF_START_ADDR_U); 305 tegra_dc_writel(dc, window->base[2], DC_WINBUF_START_ADDR_V); 306 value = window->stride[1] << 16 | window->stride[0]; 307 tegra_dc_writel(dc, value, DC_WIN_LINE_STRIDE); 308 } else { 309 tegra_dc_writel(dc, window->stride[0], DC_WIN_LINE_STRIDE); 310 } 311 312 if (window->bottom_up) 313 v_offset += window->src.h - 1; 314 315 tegra_dc_writel(dc, h_offset, DC_WINBUF_ADDR_H_OFFSET); 316 tegra_dc_writel(dc, v_offset, DC_WINBUF_ADDR_V_OFFSET); 317 318 if (dc->soc->supports_block_linear) { 319 unsigned long height = window->tiling.value; 320 321 switch (window->tiling.mode) { 322 case TEGRA_BO_TILING_MODE_PITCH: 323 value = DC_WINBUF_SURFACE_KIND_PITCH; 324 break; 325 326 case TEGRA_BO_TILING_MODE_TILED: 327 value = DC_WINBUF_SURFACE_KIND_TILED; 328 break; 329 330 case TEGRA_BO_TILING_MODE_BLOCK: 331 value = DC_WINBUF_SURFACE_KIND_BLOCK_HEIGHT(height) | 332 DC_WINBUF_SURFACE_KIND_BLOCK; 333 break; 334 } 335 336 tegra_dc_writel(dc, value, DC_WINBUF_SURFACE_KIND); 337 } else { 338 switch (window->tiling.mode) { 339 case TEGRA_BO_TILING_MODE_PITCH: 340 value = DC_WIN_BUFFER_ADDR_MODE_LINEAR_UV | 341 DC_WIN_BUFFER_ADDR_MODE_LINEAR; 342 break; 343 344 case TEGRA_BO_TILING_MODE_TILED: 345 value = DC_WIN_BUFFER_ADDR_MODE_TILE_UV | 346 DC_WIN_BUFFER_ADDR_MODE_TILE; 347 break; 348 349 case TEGRA_BO_TILING_MODE_BLOCK: 350 /* 351 * No need to handle this here because ->atomic_check 352 * will already have filtered it out. 353 */ 354 break; 355 } 356 357 tegra_dc_writel(dc, value, DC_WIN_BUFFER_ADDR_MODE); 358 } 359 360 value = WIN_ENABLE; 361 362 if (yuv) { 363 /* setup default colorspace conversion coefficients */ 364 tegra_dc_writel(dc, 0x00f0, DC_WIN_CSC_YOF); 365 tegra_dc_writel(dc, 0x012a, DC_WIN_CSC_KYRGB); 366 tegra_dc_writel(dc, 0x0000, DC_WIN_CSC_KUR); 367 tegra_dc_writel(dc, 0x0198, DC_WIN_CSC_KVR); 368 tegra_dc_writel(dc, 0x039b, DC_WIN_CSC_KUG); 369 tegra_dc_writel(dc, 0x032f, DC_WIN_CSC_KVG); 370 tegra_dc_writel(dc, 0x0204, DC_WIN_CSC_KUB); 371 tegra_dc_writel(dc, 0x0000, DC_WIN_CSC_KVB); 372 373 value |= CSC_ENABLE; 374 } else if (window->bits_per_pixel < 24) { 375 value |= COLOR_EXPAND; 376 } 377 378 if (window->bottom_up) 379 value |= V_DIRECTION; 380 381 tegra_dc_writel(dc, value, DC_WIN_WIN_OPTIONS); 382 383 /* 384 * Disable blending and assume Window A is the bottom-most window, 385 * Window C is the top-most window and Window B is in the middle. 386 */ 387 tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_NOKEY); 388 tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_1WIN); 389 390 switch (index) { 391 case 0: 392 tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_2WIN_X); 393 tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_2WIN_Y); 394 tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_3WIN_XY); 395 break; 396 397 case 1: 398 tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_2WIN_X); 399 tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_2WIN_Y); 400 tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_3WIN_XY); 401 break; 402 403 case 2: 404 tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_2WIN_X); 405 tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_2WIN_Y); 406 tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_3WIN_XY); 407 break; 408 } 409 410 spin_unlock_irqrestore(&dc->lock, flags); 411 } 412 413 static void tegra_plane_destroy(struct drm_plane *plane) 414 { 415 struct tegra_plane *p = to_tegra_plane(plane); 416 417 drm_plane_cleanup(plane); 418 kfree(p); 419 } 420 421 static const u32 tegra_primary_plane_formats[] = { 422 DRM_FORMAT_XBGR8888, 423 DRM_FORMAT_XRGB8888, 424 DRM_FORMAT_RGB565, 425 }; 426 427 static void tegra_primary_plane_destroy(struct drm_plane *plane) 428 { 429 tegra_plane_destroy(plane); 430 } 431 432 static void tegra_plane_reset(struct drm_plane *plane) 433 { 434 struct tegra_plane_state *state; 435 436 if (plane->state) 437 __drm_atomic_helper_plane_destroy_state(plane, plane->state); 438 439 kfree(plane->state); 440 plane->state = NULL; 441 442 state = kzalloc(sizeof(*state), GFP_KERNEL); 443 if (state) { 444 plane->state = &state->base; 445 plane->state->plane = plane; 446 } 447 } 448 449 static struct drm_plane_state *tegra_plane_atomic_duplicate_state(struct drm_plane *plane) 450 { 451 struct tegra_plane_state *state = to_tegra_plane_state(plane->state); 452 struct tegra_plane_state *copy; 453 454 copy = kmalloc(sizeof(*copy), GFP_KERNEL); 455 if (!copy) 456 return NULL; 457 458 __drm_atomic_helper_plane_duplicate_state(plane, ©->base); 459 copy->tiling = state->tiling; 460 copy->format = state->format; 461 copy->swap = state->swap; 462 463 return ©->base; 464 } 465 466 static void tegra_plane_atomic_destroy_state(struct drm_plane *plane, 467 struct drm_plane_state *state) 468 { 469 __drm_atomic_helper_plane_destroy_state(plane, state); 470 kfree(state); 471 } 472 473 static const struct drm_plane_funcs tegra_primary_plane_funcs = { 474 .update_plane = drm_atomic_helper_update_plane, 475 .disable_plane = drm_atomic_helper_disable_plane, 476 .destroy = tegra_primary_plane_destroy, 477 .reset = tegra_plane_reset, 478 .atomic_duplicate_state = tegra_plane_atomic_duplicate_state, 479 .atomic_destroy_state = tegra_plane_atomic_destroy_state, 480 }; 481 482 static int tegra_plane_prepare_fb(struct drm_plane *plane, 483 const struct drm_plane_state *new_state) 484 { 485 return 0; 486 } 487 488 static void tegra_plane_cleanup_fb(struct drm_plane *plane, 489 const struct drm_plane_state *old_fb) 490 { 491 } 492 493 static int tegra_plane_state_add(struct tegra_plane *plane, 494 struct drm_plane_state *state) 495 { 496 struct drm_crtc_state *crtc_state; 497 struct tegra_dc_state *tegra; 498 499 /* Propagate errors from allocation or locking failures. */ 500 crtc_state = drm_atomic_get_crtc_state(state->state, state->crtc); 501 if (IS_ERR(crtc_state)) 502 return PTR_ERR(crtc_state); 503 504 tegra = to_dc_state(crtc_state); 505 506 tegra->planes |= WIN_A_ACT_REQ << plane->index; 507 508 return 0; 509 } 510 511 static int tegra_plane_atomic_check(struct drm_plane *plane, 512 struct drm_plane_state *state) 513 { 514 struct tegra_plane_state *plane_state = to_tegra_plane_state(state); 515 struct tegra_bo_tiling *tiling = &plane_state->tiling; 516 struct tegra_plane *tegra = to_tegra_plane(plane); 517 struct tegra_dc *dc = to_tegra_dc(state->crtc); 518 int err; 519 520 /* no need for further checks if the plane is being disabled */ 521 if (!state->crtc) 522 return 0; 523 524 err = tegra_dc_format(state->fb->pixel_format, &plane_state->format, 525 &plane_state->swap); 526 if (err < 0) 527 return err; 528 529 err = tegra_fb_get_tiling(state->fb, tiling); 530 if (err < 0) 531 return err; 532 533 if (tiling->mode == TEGRA_BO_TILING_MODE_BLOCK && 534 !dc->soc->supports_block_linear) { 535 DRM_ERROR("hardware doesn't support block linear mode\n"); 536 return -EINVAL; 537 } 538 539 /* 540 * Tegra doesn't support different strides for U and V planes so we 541 * error out if the user tries to display a framebuffer with such a 542 * configuration. 543 */ 544 if (drm_format_num_planes(state->fb->pixel_format) > 2) { 545 if (state->fb->pitches[2] != state->fb->pitches[1]) { 546 DRM_ERROR("unsupported UV-plane configuration\n"); 547 return -EINVAL; 548 } 549 } 550 551 err = tegra_plane_state_add(tegra, state); 552 if (err < 0) 553 return err; 554 555 return 0; 556 } 557 558 static void tegra_plane_atomic_update(struct drm_plane *plane, 559 struct drm_plane_state *old_state) 560 { 561 struct tegra_plane_state *state = to_tegra_plane_state(plane->state); 562 struct tegra_dc *dc = to_tegra_dc(plane->state->crtc); 563 struct drm_framebuffer *fb = plane->state->fb; 564 struct tegra_plane *p = to_tegra_plane(plane); 565 struct tegra_dc_window window; 566 unsigned int i; 567 568 /* rien ne va plus */ 569 if (!plane->state->crtc || !plane->state->fb) 570 return; 571 572 memset(&window, 0, sizeof(window)); 573 window.src.x = plane->state->src_x >> 16; 574 window.src.y = plane->state->src_y >> 16; 575 window.src.w = plane->state->src_w >> 16; 576 window.src.h = plane->state->src_h >> 16; 577 window.dst.x = plane->state->crtc_x; 578 window.dst.y = plane->state->crtc_y; 579 window.dst.w = plane->state->crtc_w; 580 window.dst.h = plane->state->crtc_h; 581 window.bits_per_pixel = fb->bits_per_pixel; 582 window.bottom_up = tegra_fb_is_bottom_up(fb); 583 584 /* copy from state */ 585 window.tiling = state->tiling; 586 window.format = state->format; 587 window.swap = state->swap; 588 589 for (i = 0; i < drm_format_num_planes(fb->pixel_format); i++) { 590 struct tegra_bo *bo = tegra_fb_get_plane(fb, i); 591 592 window.base[i] = bo->paddr + fb->offsets[i]; 593 window.stride[i] = fb->pitches[i]; 594 } 595 596 tegra_dc_setup_window(dc, p->index, &window); 597 } 598 599 static void tegra_plane_atomic_disable(struct drm_plane *plane, 600 struct drm_plane_state *old_state) 601 { 602 struct tegra_plane *p = to_tegra_plane(plane); 603 struct tegra_dc *dc; 604 unsigned long flags; 605 u32 value; 606 607 /* rien ne va plus */ 608 if (!old_state || !old_state->crtc) 609 return; 610 611 dc = to_tegra_dc(old_state->crtc); 612 613 spin_lock_irqsave(&dc->lock, flags); 614 615 value = WINDOW_A_SELECT << p->index; 616 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_WINDOW_HEADER); 617 618 value = tegra_dc_readl(dc, DC_WIN_WIN_OPTIONS); 619 value &= ~WIN_ENABLE; 620 tegra_dc_writel(dc, value, DC_WIN_WIN_OPTIONS); 621 622 spin_unlock_irqrestore(&dc->lock, flags); 623 } 624 625 static const struct drm_plane_helper_funcs tegra_primary_plane_helper_funcs = { 626 .prepare_fb = tegra_plane_prepare_fb, 627 .cleanup_fb = tegra_plane_cleanup_fb, 628 .atomic_check = tegra_plane_atomic_check, 629 .atomic_update = tegra_plane_atomic_update, 630 .atomic_disable = tegra_plane_atomic_disable, 631 }; 632 633 static struct drm_plane *tegra_dc_primary_plane_create(struct drm_device *drm, 634 struct tegra_dc *dc) 635 { 636 /* 637 * Ideally this would use drm_crtc_mask(), but that would require the 638 * CRTC to already be in the mode_config's list of CRTCs. However, it 639 * will only be added to that list in the drm_crtc_init_with_planes() 640 * (in tegra_dc_init()), which in turn requires registration of these 641 * planes. So we have ourselves a nice little chicken and egg problem 642 * here. 643 * 644 * We work around this by manually creating the mask from the number 645 * of CRTCs that have been registered, and should therefore always be 646 * the same as drm_crtc_index() after registration. 647 */ 648 unsigned long possible_crtcs = 1 << drm->mode_config.num_crtc; 649 struct tegra_plane *plane; 650 unsigned int num_formats; 651 const u32 *formats; 652 int err; 653 654 plane = kzalloc(sizeof(*plane), GFP_KERNEL); 655 if (!plane) 656 return ERR_PTR(-ENOMEM); 657 658 num_formats = ARRAY_SIZE(tegra_primary_plane_formats); 659 formats = tegra_primary_plane_formats; 660 661 err = drm_universal_plane_init(drm, &plane->base, possible_crtcs, 662 &tegra_primary_plane_funcs, formats, 663 num_formats, DRM_PLANE_TYPE_PRIMARY, 664 NULL); 665 if (err < 0) { 666 kfree(plane); 667 return ERR_PTR(err); 668 } 669 670 drm_plane_helper_add(&plane->base, &tegra_primary_plane_helper_funcs); 671 672 return &plane->base; 673 } 674 675 static const u32 tegra_cursor_plane_formats[] = { 676 DRM_FORMAT_RGBA8888, 677 }; 678 679 static int tegra_cursor_atomic_check(struct drm_plane *plane, 680 struct drm_plane_state *state) 681 { 682 struct tegra_plane *tegra = to_tegra_plane(plane); 683 int err; 684 685 /* no need for further checks if the plane is being disabled */ 686 if (!state->crtc) 687 return 0; 688 689 /* scaling not supported for cursor */ 690 if ((state->src_w >> 16 != state->crtc_w) || 691 (state->src_h >> 16 != state->crtc_h)) 692 return -EINVAL; 693 694 /* only square cursors supported */ 695 if (state->src_w != state->src_h) 696 return -EINVAL; 697 698 if (state->crtc_w != 32 && state->crtc_w != 64 && 699 state->crtc_w != 128 && state->crtc_w != 256) 700 return -EINVAL; 701 702 err = tegra_plane_state_add(tegra, state); 703 if (err < 0) 704 return err; 705 706 return 0; 707 } 708 709 static void tegra_cursor_atomic_update(struct drm_plane *plane, 710 struct drm_plane_state *old_state) 711 { 712 struct tegra_bo *bo = tegra_fb_get_plane(plane->state->fb, 0); 713 struct tegra_dc *dc = to_tegra_dc(plane->state->crtc); 714 struct drm_plane_state *state = plane->state; 715 u32 value = CURSOR_CLIP_DISPLAY; 716 717 /* rien ne va plus */ 718 if (!plane->state->crtc || !plane->state->fb) 719 return; 720 721 switch (state->crtc_w) { 722 case 32: 723 value |= CURSOR_SIZE_32x32; 724 break; 725 726 case 64: 727 value |= CURSOR_SIZE_64x64; 728 break; 729 730 case 128: 731 value |= CURSOR_SIZE_128x128; 732 break; 733 734 case 256: 735 value |= CURSOR_SIZE_256x256; 736 break; 737 738 default: 739 WARN(1, "cursor size %ux%u not supported\n", state->crtc_w, 740 state->crtc_h); 741 return; 742 } 743 744 value |= (bo->paddr >> 10) & 0x3fffff; 745 tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR); 746 747 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT 748 value = (bo->paddr >> 32) & 0x3; 749 tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR_HI); 750 #endif 751 752 /* enable cursor and set blend mode */ 753 value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS); 754 value |= CURSOR_ENABLE; 755 tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS); 756 757 value = tegra_dc_readl(dc, DC_DISP_BLEND_CURSOR_CONTROL); 758 value &= ~CURSOR_DST_BLEND_MASK; 759 value &= ~CURSOR_SRC_BLEND_MASK; 760 value |= CURSOR_MODE_NORMAL; 761 value |= CURSOR_DST_BLEND_NEG_K1_TIMES_SRC; 762 value |= CURSOR_SRC_BLEND_K1_TIMES_SRC; 763 value |= CURSOR_ALPHA; 764 tegra_dc_writel(dc, value, DC_DISP_BLEND_CURSOR_CONTROL); 765 766 /* position the cursor */ 767 value = (state->crtc_y & 0x3fff) << 16 | (state->crtc_x & 0x3fff); 768 tegra_dc_writel(dc, value, DC_DISP_CURSOR_POSITION); 769 } 770 771 static void tegra_cursor_atomic_disable(struct drm_plane *plane, 772 struct drm_plane_state *old_state) 773 { 774 struct tegra_dc *dc; 775 u32 value; 776 777 /* rien ne va plus */ 778 if (!old_state || !old_state->crtc) 779 return; 780 781 dc = to_tegra_dc(old_state->crtc); 782 783 value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS); 784 value &= ~CURSOR_ENABLE; 785 tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS); 786 } 787 788 static const struct drm_plane_funcs tegra_cursor_plane_funcs = { 789 .update_plane = drm_atomic_helper_update_plane, 790 .disable_plane = drm_atomic_helper_disable_plane, 791 .destroy = tegra_plane_destroy, 792 .reset = tegra_plane_reset, 793 .atomic_duplicate_state = tegra_plane_atomic_duplicate_state, 794 .atomic_destroy_state = tegra_plane_atomic_destroy_state, 795 }; 796 797 static const struct drm_plane_helper_funcs tegra_cursor_plane_helper_funcs = { 798 .prepare_fb = tegra_plane_prepare_fb, 799 .cleanup_fb = tegra_plane_cleanup_fb, 800 .atomic_check = tegra_cursor_atomic_check, 801 .atomic_update = tegra_cursor_atomic_update, 802 .atomic_disable = tegra_cursor_atomic_disable, 803 }; 804 805 static struct drm_plane *tegra_dc_cursor_plane_create(struct drm_device *drm, 806 struct tegra_dc *dc) 807 { 808 struct tegra_plane *plane; 809 unsigned int num_formats; 810 const u32 *formats; 811 int err; 812 813 plane = kzalloc(sizeof(*plane), GFP_KERNEL); 814 if (!plane) 815 return ERR_PTR(-ENOMEM); 816 817 /* 818 * This index is kind of fake. The cursor isn't a regular plane, but 819 * its update and activation request bits in DC_CMD_STATE_CONTROL do 820 * use the same programming. Setting this fake index here allows the 821 * code in tegra_add_plane_state() to do the right thing without the 822 * need to special-casing the cursor plane. 823 */ 824 plane->index = 6; 825 826 num_formats = ARRAY_SIZE(tegra_cursor_plane_formats); 827 formats = tegra_cursor_plane_formats; 828 829 err = drm_universal_plane_init(drm, &plane->base, 1 << dc->pipe, 830 &tegra_cursor_plane_funcs, formats, 831 num_formats, DRM_PLANE_TYPE_CURSOR, 832 NULL); 833 if (err < 0) { 834 kfree(plane); 835 return ERR_PTR(err); 836 } 837 838 drm_plane_helper_add(&plane->base, &tegra_cursor_plane_helper_funcs); 839 840 return &plane->base; 841 } 842 843 static void tegra_overlay_plane_destroy(struct drm_plane *plane) 844 { 845 tegra_plane_destroy(plane); 846 } 847 848 static const struct drm_plane_funcs tegra_overlay_plane_funcs = { 849 .update_plane = drm_atomic_helper_update_plane, 850 .disable_plane = drm_atomic_helper_disable_plane, 851 .destroy = tegra_overlay_plane_destroy, 852 .reset = tegra_plane_reset, 853 .atomic_duplicate_state = tegra_plane_atomic_duplicate_state, 854 .atomic_destroy_state = tegra_plane_atomic_destroy_state, 855 }; 856 857 static const uint32_t tegra_overlay_plane_formats[] = { 858 DRM_FORMAT_XBGR8888, 859 DRM_FORMAT_XRGB8888, 860 DRM_FORMAT_RGB565, 861 DRM_FORMAT_UYVY, 862 DRM_FORMAT_YUYV, 863 DRM_FORMAT_YUV420, 864 DRM_FORMAT_YUV422, 865 }; 866 867 static const struct drm_plane_helper_funcs tegra_overlay_plane_helper_funcs = { 868 .prepare_fb = tegra_plane_prepare_fb, 869 .cleanup_fb = tegra_plane_cleanup_fb, 870 .atomic_check = tegra_plane_atomic_check, 871 .atomic_update = tegra_plane_atomic_update, 872 .atomic_disable = tegra_plane_atomic_disable, 873 }; 874 875 static struct drm_plane *tegra_dc_overlay_plane_create(struct drm_device *drm, 876 struct tegra_dc *dc, 877 unsigned int index) 878 { 879 struct tegra_plane *plane; 880 unsigned int num_formats; 881 const u32 *formats; 882 int err; 883 884 plane = kzalloc(sizeof(*plane), GFP_KERNEL); 885 if (!plane) 886 return ERR_PTR(-ENOMEM); 887 888 plane->index = index; 889 890 num_formats = ARRAY_SIZE(tegra_overlay_plane_formats); 891 formats = tegra_overlay_plane_formats; 892 893 err = drm_universal_plane_init(drm, &plane->base, 1 << dc->pipe, 894 &tegra_overlay_plane_funcs, formats, 895 num_formats, DRM_PLANE_TYPE_OVERLAY, 896 NULL); 897 if (err < 0) { 898 kfree(plane); 899 return ERR_PTR(err); 900 } 901 902 drm_plane_helper_add(&plane->base, &tegra_overlay_plane_helper_funcs); 903 904 return &plane->base; 905 } 906 907 static int tegra_dc_add_planes(struct drm_device *drm, struct tegra_dc *dc) 908 { 909 struct drm_plane *plane; 910 unsigned int i; 911 912 for (i = 0; i < 2; i++) { 913 plane = tegra_dc_overlay_plane_create(drm, dc, 1 + i); 914 if (IS_ERR(plane)) 915 return PTR_ERR(plane); 916 } 917 918 return 0; 919 } 920 921 u32 tegra_dc_get_vblank_counter(struct tegra_dc *dc) 922 { 923 if (dc->syncpt) 924 return host1x_syncpt_read(dc->syncpt); 925 926 /* fallback to software emulated VBLANK counter */ 927 return drm_crtc_vblank_count(&dc->base); 928 } 929 930 void tegra_dc_enable_vblank(struct tegra_dc *dc) 931 { 932 unsigned long value, flags; 933 934 spin_lock_irqsave(&dc->lock, flags); 935 936 value = tegra_dc_readl(dc, DC_CMD_INT_MASK); 937 value |= VBLANK_INT; 938 tegra_dc_writel(dc, value, DC_CMD_INT_MASK); 939 940 spin_unlock_irqrestore(&dc->lock, flags); 941 } 942 943 void tegra_dc_disable_vblank(struct tegra_dc *dc) 944 { 945 unsigned long value, flags; 946 947 spin_lock_irqsave(&dc->lock, flags); 948 949 value = tegra_dc_readl(dc, DC_CMD_INT_MASK); 950 value &= ~VBLANK_INT; 951 tegra_dc_writel(dc, value, DC_CMD_INT_MASK); 952 953 spin_unlock_irqrestore(&dc->lock, flags); 954 } 955 956 static void tegra_dc_finish_page_flip(struct tegra_dc *dc) 957 { 958 struct drm_device *drm = dc->base.dev; 959 struct drm_crtc *crtc = &dc->base; 960 unsigned long flags, base; 961 struct tegra_bo *bo; 962 963 spin_lock_irqsave(&drm->event_lock, flags); 964 965 if (!dc->event) { 966 spin_unlock_irqrestore(&drm->event_lock, flags); 967 return; 968 } 969 970 bo = tegra_fb_get_plane(crtc->primary->fb, 0); 971 972 spin_lock(&dc->lock); 973 974 /* check if new start address has been latched */ 975 tegra_dc_writel(dc, WINDOW_A_SELECT, DC_CMD_DISPLAY_WINDOW_HEADER); 976 tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS); 977 base = tegra_dc_readl(dc, DC_WINBUF_START_ADDR); 978 tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS); 979 980 spin_unlock(&dc->lock); 981 982 if (base == bo->paddr + crtc->primary->fb->offsets[0]) { 983 drm_crtc_send_vblank_event(crtc, dc->event); 984 drm_crtc_vblank_put(crtc); 985 dc->event = NULL; 986 } 987 988 spin_unlock_irqrestore(&drm->event_lock, flags); 989 } 990 991 void tegra_dc_cancel_page_flip(struct drm_crtc *crtc, struct drm_file *file) 992 { 993 struct tegra_dc *dc = to_tegra_dc(crtc); 994 struct drm_device *drm = crtc->dev; 995 unsigned long flags; 996 997 spin_lock_irqsave(&drm->event_lock, flags); 998 999 if (dc->event && dc->event->base.file_priv == file) { 1000 dc->event->base.destroy(&dc->event->base); 1001 drm_crtc_vblank_put(crtc); 1002 dc->event = NULL; 1003 } 1004 1005 spin_unlock_irqrestore(&drm->event_lock, flags); 1006 } 1007 1008 static void tegra_dc_destroy(struct drm_crtc *crtc) 1009 { 1010 drm_crtc_cleanup(crtc); 1011 } 1012 1013 static void tegra_crtc_reset(struct drm_crtc *crtc) 1014 { 1015 struct tegra_dc_state *state; 1016 1017 if (crtc->state) 1018 __drm_atomic_helper_crtc_destroy_state(crtc, crtc->state); 1019 1020 kfree(crtc->state); 1021 crtc->state = NULL; 1022 1023 state = kzalloc(sizeof(*state), GFP_KERNEL); 1024 if (state) { 1025 crtc->state = &state->base; 1026 crtc->state->crtc = crtc; 1027 } 1028 1029 drm_crtc_vblank_reset(crtc); 1030 } 1031 1032 static struct drm_crtc_state * 1033 tegra_crtc_atomic_duplicate_state(struct drm_crtc *crtc) 1034 { 1035 struct tegra_dc_state *state = to_dc_state(crtc->state); 1036 struct tegra_dc_state *copy; 1037 1038 copy = kmalloc(sizeof(*copy), GFP_KERNEL); 1039 if (!copy) 1040 return NULL; 1041 1042 __drm_atomic_helper_crtc_duplicate_state(crtc, ©->base); 1043 copy->clk = state->clk; 1044 copy->pclk = state->pclk; 1045 copy->div = state->div; 1046 copy->planes = state->planes; 1047 1048 return ©->base; 1049 } 1050 1051 static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc, 1052 struct drm_crtc_state *state) 1053 { 1054 __drm_atomic_helper_crtc_destroy_state(crtc, state); 1055 kfree(state); 1056 } 1057 1058 static const struct drm_crtc_funcs tegra_crtc_funcs = { 1059 .page_flip = drm_atomic_helper_page_flip, 1060 .set_config = drm_atomic_helper_set_config, 1061 .destroy = tegra_dc_destroy, 1062 .reset = tegra_crtc_reset, 1063 .atomic_duplicate_state = tegra_crtc_atomic_duplicate_state, 1064 .atomic_destroy_state = tegra_crtc_atomic_destroy_state, 1065 }; 1066 1067 static int tegra_dc_set_timings(struct tegra_dc *dc, 1068 struct drm_display_mode *mode) 1069 { 1070 unsigned int h_ref_to_sync = 1; 1071 unsigned int v_ref_to_sync = 1; 1072 unsigned long value; 1073 1074 tegra_dc_writel(dc, 0x0, DC_DISP_DISP_TIMING_OPTIONS); 1075 1076 value = (v_ref_to_sync << 16) | h_ref_to_sync; 1077 tegra_dc_writel(dc, value, DC_DISP_REF_TO_SYNC); 1078 1079 value = ((mode->vsync_end - mode->vsync_start) << 16) | 1080 ((mode->hsync_end - mode->hsync_start) << 0); 1081 tegra_dc_writel(dc, value, DC_DISP_SYNC_WIDTH); 1082 1083 value = ((mode->vtotal - mode->vsync_end) << 16) | 1084 ((mode->htotal - mode->hsync_end) << 0); 1085 tegra_dc_writel(dc, value, DC_DISP_BACK_PORCH); 1086 1087 value = ((mode->vsync_start - mode->vdisplay) << 16) | 1088 ((mode->hsync_start - mode->hdisplay) << 0); 1089 tegra_dc_writel(dc, value, DC_DISP_FRONT_PORCH); 1090 1091 value = (mode->vdisplay << 16) | mode->hdisplay; 1092 tegra_dc_writel(dc, value, DC_DISP_ACTIVE); 1093 1094 return 0; 1095 } 1096 1097 /** 1098 * tegra_dc_state_setup_clock - check clock settings and store them in atomic 1099 * state 1100 * @dc: display controller 1101 * @crtc_state: CRTC atomic state 1102 * @clk: parent clock for display controller 1103 * @pclk: pixel clock 1104 * @div: shift clock divider 1105 * 1106 * Returns: 1107 * 0 on success or a negative error-code on failure. 1108 */ 1109 int tegra_dc_state_setup_clock(struct tegra_dc *dc, 1110 struct drm_crtc_state *crtc_state, 1111 struct clk *clk, unsigned long pclk, 1112 unsigned int div) 1113 { 1114 struct tegra_dc_state *state = to_dc_state(crtc_state); 1115 1116 if (!clk_has_parent(dc->clk, clk)) 1117 return -EINVAL; 1118 1119 state->clk = clk; 1120 state->pclk = pclk; 1121 state->div = div; 1122 1123 return 0; 1124 } 1125 1126 static void tegra_dc_commit_state(struct tegra_dc *dc, 1127 struct tegra_dc_state *state) 1128 { 1129 u32 value; 1130 int err; 1131 1132 err = clk_set_parent(dc->clk, state->clk); 1133 if (err < 0) 1134 dev_err(dc->dev, "failed to set parent clock: %d\n", err); 1135 1136 /* 1137 * Outputs may not want to change the parent clock rate. This is only 1138 * relevant to Tegra20 where only a single display PLL is available. 1139 * Since that PLL would typically be used for HDMI, an internal LVDS 1140 * panel would need to be driven by some other clock such as PLL_P 1141 * which is shared with other peripherals. Changing the clock rate 1142 * should therefore be avoided. 1143 */ 1144 if (state->pclk > 0) { 1145 err = clk_set_rate(state->clk, state->pclk); 1146 if (err < 0) 1147 dev_err(dc->dev, 1148 "failed to set clock rate to %lu Hz\n", 1149 state->pclk); 1150 } 1151 1152 DRM_DEBUG_KMS("rate: %lu, div: %u\n", clk_get_rate(dc->clk), 1153 state->div); 1154 DRM_DEBUG_KMS("pclk: %lu\n", state->pclk); 1155 1156 value = SHIFT_CLK_DIVIDER(state->div) | PIXEL_CLK_DIVIDER_PCD1; 1157 tegra_dc_writel(dc, value, DC_DISP_DISP_CLOCK_CONTROL); 1158 } 1159 1160 static void tegra_dc_stop(struct tegra_dc *dc) 1161 { 1162 u32 value; 1163 1164 /* stop the display controller */ 1165 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND); 1166 value &= ~DISP_CTRL_MODE_MASK; 1167 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND); 1168 1169 tegra_dc_commit(dc); 1170 } 1171 1172 static bool tegra_dc_idle(struct tegra_dc *dc) 1173 { 1174 u32 value; 1175 1176 value = tegra_dc_readl_active(dc, DC_CMD_DISPLAY_COMMAND); 1177 1178 return (value & DISP_CTRL_MODE_MASK) == 0; 1179 } 1180 1181 static int tegra_dc_wait_idle(struct tegra_dc *dc, unsigned long timeout) 1182 { 1183 timeout = jiffies + msecs_to_jiffies(timeout); 1184 1185 while (time_before(jiffies, timeout)) { 1186 if (tegra_dc_idle(dc)) 1187 return 0; 1188 1189 usleep_range(1000, 2000); 1190 } 1191 1192 dev_dbg(dc->dev, "timeout waiting for DC to become idle\n"); 1193 return -ETIMEDOUT; 1194 } 1195 1196 static void tegra_crtc_disable(struct drm_crtc *crtc) 1197 { 1198 struct tegra_dc *dc = to_tegra_dc(crtc); 1199 u32 value; 1200 1201 if (!tegra_dc_idle(dc)) { 1202 tegra_dc_stop(dc); 1203 1204 /* 1205 * Ignore the return value, there isn't anything useful to do 1206 * in case this fails. 1207 */ 1208 tegra_dc_wait_idle(dc, 100); 1209 } 1210 1211 /* 1212 * This should really be part of the RGB encoder driver, but clearing 1213 * these bits has the side-effect of stopping the display controller. 1214 * When that happens no VBLANK interrupts will be raised. At the same 1215 * time the encoder is disabled before the display controller, so the 1216 * above code is always going to timeout waiting for the controller 1217 * to go idle. 1218 * 1219 * Given the close coupling between the RGB encoder and the display 1220 * controller doing it here is still kind of okay. None of the other 1221 * encoder drivers require these bits to be cleared. 1222 * 1223 * XXX: Perhaps given that the display controller is switched off at 1224 * this point anyway maybe clearing these bits isn't even useful for 1225 * the RGB encoder? 1226 */ 1227 if (dc->rgb) { 1228 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL); 1229 value &= ~(PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE | 1230 PW4_ENABLE | PM0_ENABLE | PM1_ENABLE); 1231 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL); 1232 } 1233 1234 tegra_dc_stats_reset(&dc->stats); 1235 drm_crtc_vblank_off(crtc); 1236 } 1237 1238 static void tegra_crtc_enable(struct drm_crtc *crtc) 1239 { 1240 struct drm_display_mode *mode = &crtc->state->adjusted_mode; 1241 struct tegra_dc_state *state = to_dc_state(crtc->state); 1242 struct tegra_dc *dc = to_tegra_dc(crtc); 1243 u32 value; 1244 1245 tegra_dc_commit_state(dc, state); 1246 1247 /* program display mode */ 1248 tegra_dc_set_timings(dc, mode); 1249 1250 /* interlacing isn't supported yet, so disable it */ 1251 if (dc->soc->supports_interlacing) { 1252 value = tegra_dc_readl(dc, DC_DISP_INTERLACE_CONTROL); 1253 value &= ~INTERLACE_ENABLE; 1254 tegra_dc_writel(dc, value, DC_DISP_INTERLACE_CONTROL); 1255 } 1256 1257 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND); 1258 value &= ~DISP_CTRL_MODE_MASK; 1259 value |= DISP_CTRL_MODE_C_DISPLAY; 1260 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND); 1261 1262 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL); 1263 value |= PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE | 1264 PW4_ENABLE | PM0_ENABLE | PM1_ENABLE; 1265 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL); 1266 1267 tegra_dc_commit(dc); 1268 1269 drm_crtc_vblank_on(crtc); 1270 } 1271 1272 static int tegra_crtc_atomic_check(struct drm_crtc *crtc, 1273 struct drm_crtc_state *state) 1274 { 1275 return 0; 1276 } 1277 1278 static void tegra_crtc_atomic_begin(struct drm_crtc *crtc, 1279 struct drm_crtc_state *old_crtc_state) 1280 { 1281 struct tegra_dc *dc = to_tegra_dc(crtc); 1282 1283 if (crtc->state->event) { 1284 crtc->state->event->pipe = drm_crtc_index(crtc); 1285 1286 WARN_ON(drm_crtc_vblank_get(crtc) != 0); 1287 1288 dc->event = crtc->state->event; 1289 crtc->state->event = NULL; 1290 } 1291 } 1292 1293 static void tegra_crtc_atomic_flush(struct drm_crtc *crtc, 1294 struct drm_crtc_state *old_crtc_state) 1295 { 1296 struct tegra_dc_state *state = to_dc_state(crtc->state); 1297 struct tegra_dc *dc = to_tegra_dc(crtc); 1298 1299 tegra_dc_writel(dc, state->planes << 8, DC_CMD_STATE_CONTROL); 1300 tegra_dc_writel(dc, state->planes, DC_CMD_STATE_CONTROL); 1301 } 1302 1303 static const struct drm_crtc_helper_funcs tegra_crtc_helper_funcs = { 1304 .disable = tegra_crtc_disable, 1305 .enable = tegra_crtc_enable, 1306 .atomic_check = tegra_crtc_atomic_check, 1307 .atomic_begin = tegra_crtc_atomic_begin, 1308 .atomic_flush = tegra_crtc_atomic_flush, 1309 }; 1310 1311 static irqreturn_t tegra_dc_irq(int irq, void *data) 1312 { 1313 struct tegra_dc *dc = data; 1314 unsigned long status; 1315 1316 status = tegra_dc_readl(dc, DC_CMD_INT_STATUS); 1317 tegra_dc_writel(dc, status, DC_CMD_INT_STATUS); 1318 1319 if (status & FRAME_END_INT) { 1320 /* 1321 dev_dbg(dc->dev, "%s(): frame end\n", __func__); 1322 */ 1323 dc->stats.frames++; 1324 } 1325 1326 if (status & VBLANK_INT) { 1327 /* 1328 dev_dbg(dc->dev, "%s(): vertical blank\n", __func__); 1329 */ 1330 drm_crtc_handle_vblank(&dc->base); 1331 tegra_dc_finish_page_flip(dc); 1332 dc->stats.vblank++; 1333 } 1334 1335 if (status & (WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT)) { 1336 /* 1337 dev_dbg(dc->dev, "%s(): underflow\n", __func__); 1338 */ 1339 dc->stats.underflow++; 1340 } 1341 1342 if (status & (WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT)) { 1343 /* 1344 dev_dbg(dc->dev, "%s(): overflow\n", __func__); 1345 */ 1346 dc->stats.overflow++; 1347 } 1348 1349 return IRQ_HANDLED; 1350 } 1351 1352 static int tegra_dc_show_regs(struct seq_file *s, void *data) 1353 { 1354 struct drm_info_node *node = s->private; 1355 struct tegra_dc *dc = node->info_ent->data; 1356 int err = 0; 1357 1358 drm_modeset_lock_crtc(&dc->base, NULL); 1359 1360 if (!dc->base.state->active) { 1361 err = -EBUSY; 1362 goto unlock; 1363 } 1364 1365 #define DUMP_REG(name) \ 1366 seq_printf(s, "%-40s %#05x %08x\n", #name, name, \ 1367 tegra_dc_readl(dc, name)) 1368 1369 DUMP_REG(DC_CMD_GENERAL_INCR_SYNCPT); 1370 DUMP_REG(DC_CMD_GENERAL_INCR_SYNCPT_CNTRL); 1371 DUMP_REG(DC_CMD_GENERAL_INCR_SYNCPT_ERROR); 1372 DUMP_REG(DC_CMD_WIN_A_INCR_SYNCPT); 1373 DUMP_REG(DC_CMD_WIN_A_INCR_SYNCPT_CNTRL); 1374 DUMP_REG(DC_CMD_WIN_A_INCR_SYNCPT_ERROR); 1375 DUMP_REG(DC_CMD_WIN_B_INCR_SYNCPT); 1376 DUMP_REG(DC_CMD_WIN_B_INCR_SYNCPT_CNTRL); 1377 DUMP_REG(DC_CMD_WIN_B_INCR_SYNCPT_ERROR); 1378 DUMP_REG(DC_CMD_WIN_C_INCR_SYNCPT); 1379 DUMP_REG(DC_CMD_WIN_C_INCR_SYNCPT_CNTRL); 1380 DUMP_REG(DC_CMD_WIN_C_INCR_SYNCPT_ERROR); 1381 DUMP_REG(DC_CMD_CONT_SYNCPT_VSYNC); 1382 DUMP_REG(DC_CMD_DISPLAY_COMMAND_OPTION0); 1383 DUMP_REG(DC_CMD_DISPLAY_COMMAND); 1384 DUMP_REG(DC_CMD_SIGNAL_RAISE); 1385 DUMP_REG(DC_CMD_DISPLAY_POWER_CONTROL); 1386 DUMP_REG(DC_CMD_INT_STATUS); 1387 DUMP_REG(DC_CMD_INT_MASK); 1388 DUMP_REG(DC_CMD_INT_ENABLE); 1389 DUMP_REG(DC_CMD_INT_TYPE); 1390 DUMP_REG(DC_CMD_INT_POLARITY); 1391 DUMP_REG(DC_CMD_SIGNAL_RAISE1); 1392 DUMP_REG(DC_CMD_SIGNAL_RAISE2); 1393 DUMP_REG(DC_CMD_SIGNAL_RAISE3); 1394 DUMP_REG(DC_CMD_STATE_ACCESS); 1395 DUMP_REG(DC_CMD_STATE_CONTROL); 1396 DUMP_REG(DC_CMD_DISPLAY_WINDOW_HEADER); 1397 DUMP_REG(DC_CMD_REG_ACT_CONTROL); 1398 DUMP_REG(DC_COM_CRC_CONTROL); 1399 DUMP_REG(DC_COM_CRC_CHECKSUM); 1400 DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(0)); 1401 DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(1)); 1402 DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(2)); 1403 DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(3)); 1404 DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(0)); 1405 DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(1)); 1406 DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(2)); 1407 DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(3)); 1408 DUMP_REG(DC_COM_PIN_OUTPUT_DATA(0)); 1409 DUMP_REG(DC_COM_PIN_OUTPUT_DATA(1)); 1410 DUMP_REG(DC_COM_PIN_OUTPUT_DATA(2)); 1411 DUMP_REG(DC_COM_PIN_OUTPUT_DATA(3)); 1412 DUMP_REG(DC_COM_PIN_INPUT_ENABLE(0)); 1413 DUMP_REG(DC_COM_PIN_INPUT_ENABLE(1)); 1414 DUMP_REG(DC_COM_PIN_INPUT_ENABLE(2)); 1415 DUMP_REG(DC_COM_PIN_INPUT_ENABLE(3)); 1416 DUMP_REG(DC_COM_PIN_INPUT_DATA(0)); 1417 DUMP_REG(DC_COM_PIN_INPUT_DATA(1)); 1418 DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(0)); 1419 DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(1)); 1420 DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(2)); 1421 DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(3)); 1422 DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(4)); 1423 DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(5)); 1424 DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(6)); 1425 DUMP_REG(DC_COM_PIN_MISC_CONTROL); 1426 DUMP_REG(DC_COM_PIN_PM0_CONTROL); 1427 DUMP_REG(DC_COM_PIN_PM0_DUTY_CYCLE); 1428 DUMP_REG(DC_COM_PIN_PM1_CONTROL); 1429 DUMP_REG(DC_COM_PIN_PM1_DUTY_CYCLE); 1430 DUMP_REG(DC_COM_SPI_CONTROL); 1431 DUMP_REG(DC_COM_SPI_START_BYTE); 1432 DUMP_REG(DC_COM_HSPI_WRITE_DATA_AB); 1433 DUMP_REG(DC_COM_HSPI_WRITE_DATA_CD); 1434 DUMP_REG(DC_COM_HSPI_CS_DC); 1435 DUMP_REG(DC_COM_SCRATCH_REGISTER_A); 1436 DUMP_REG(DC_COM_SCRATCH_REGISTER_B); 1437 DUMP_REG(DC_COM_GPIO_CTRL); 1438 DUMP_REG(DC_COM_GPIO_DEBOUNCE_COUNTER); 1439 DUMP_REG(DC_COM_CRC_CHECKSUM_LATCHED); 1440 DUMP_REG(DC_DISP_DISP_SIGNAL_OPTIONS0); 1441 DUMP_REG(DC_DISP_DISP_SIGNAL_OPTIONS1); 1442 DUMP_REG(DC_DISP_DISP_WIN_OPTIONS); 1443 DUMP_REG(DC_DISP_DISP_MEM_HIGH_PRIORITY); 1444 DUMP_REG(DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER); 1445 DUMP_REG(DC_DISP_DISP_TIMING_OPTIONS); 1446 DUMP_REG(DC_DISP_REF_TO_SYNC); 1447 DUMP_REG(DC_DISP_SYNC_WIDTH); 1448 DUMP_REG(DC_DISP_BACK_PORCH); 1449 DUMP_REG(DC_DISP_ACTIVE); 1450 DUMP_REG(DC_DISP_FRONT_PORCH); 1451 DUMP_REG(DC_DISP_H_PULSE0_CONTROL); 1452 DUMP_REG(DC_DISP_H_PULSE0_POSITION_A); 1453 DUMP_REG(DC_DISP_H_PULSE0_POSITION_B); 1454 DUMP_REG(DC_DISP_H_PULSE0_POSITION_C); 1455 DUMP_REG(DC_DISP_H_PULSE0_POSITION_D); 1456 DUMP_REG(DC_DISP_H_PULSE1_CONTROL); 1457 DUMP_REG(DC_DISP_H_PULSE1_POSITION_A); 1458 DUMP_REG(DC_DISP_H_PULSE1_POSITION_B); 1459 DUMP_REG(DC_DISP_H_PULSE1_POSITION_C); 1460 DUMP_REG(DC_DISP_H_PULSE1_POSITION_D); 1461 DUMP_REG(DC_DISP_H_PULSE2_CONTROL); 1462 DUMP_REG(DC_DISP_H_PULSE2_POSITION_A); 1463 DUMP_REG(DC_DISP_H_PULSE2_POSITION_B); 1464 DUMP_REG(DC_DISP_H_PULSE2_POSITION_C); 1465 DUMP_REG(DC_DISP_H_PULSE2_POSITION_D); 1466 DUMP_REG(DC_DISP_V_PULSE0_CONTROL); 1467 DUMP_REG(DC_DISP_V_PULSE0_POSITION_A); 1468 DUMP_REG(DC_DISP_V_PULSE0_POSITION_B); 1469 DUMP_REG(DC_DISP_V_PULSE0_POSITION_C); 1470 DUMP_REG(DC_DISP_V_PULSE1_CONTROL); 1471 DUMP_REG(DC_DISP_V_PULSE1_POSITION_A); 1472 DUMP_REG(DC_DISP_V_PULSE1_POSITION_B); 1473 DUMP_REG(DC_DISP_V_PULSE1_POSITION_C); 1474 DUMP_REG(DC_DISP_V_PULSE2_CONTROL); 1475 DUMP_REG(DC_DISP_V_PULSE2_POSITION_A); 1476 DUMP_REG(DC_DISP_V_PULSE3_CONTROL); 1477 DUMP_REG(DC_DISP_V_PULSE3_POSITION_A); 1478 DUMP_REG(DC_DISP_M0_CONTROL); 1479 DUMP_REG(DC_DISP_M1_CONTROL); 1480 DUMP_REG(DC_DISP_DI_CONTROL); 1481 DUMP_REG(DC_DISP_PP_CONTROL); 1482 DUMP_REG(DC_DISP_PP_SELECT_A); 1483 DUMP_REG(DC_DISP_PP_SELECT_B); 1484 DUMP_REG(DC_DISP_PP_SELECT_C); 1485 DUMP_REG(DC_DISP_PP_SELECT_D); 1486 DUMP_REG(DC_DISP_DISP_CLOCK_CONTROL); 1487 DUMP_REG(DC_DISP_DISP_INTERFACE_CONTROL); 1488 DUMP_REG(DC_DISP_DISP_COLOR_CONTROL); 1489 DUMP_REG(DC_DISP_SHIFT_CLOCK_OPTIONS); 1490 DUMP_REG(DC_DISP_DATA_ENABLE_OPTIONS); 1491 DUMP_REG(DC_DISP_SERIAL_INTERFACE_OPTIONS); 1492 DUMP_REG(DC_DISP_LCD_SPI_OPTIONS); 1493 DUMP_REG(DC_DISP_BORDER_COLOR); 1494 DUMP_REG(DC_DISP_COLOR_KEY0_LOWER); 1495 DUMP_REG(DC_DISP_COLOR_KEY0_UPPER); 1496 DUMP_REG(DC_DISP_COLOR_KEY1_LOWER); 1497 DUMP_REG(DC_DISP_COLOR_KEY1_UPPER); 1498 DUMP_REG(DC_DISP_CURSOR_FOREGROUND); 1499 DUMP_REG(DC_DISP_CURSOR_BACKGROUND); 1500 DUMP_REG(DC_DISP_CURSOR_START_ADDR); 1501 DUMP_REG(DC_DISP_CURSOR_START_ADDR_NS); 1502 DUMP_REG(DC_DISP_CURSOR_POSITION); 1503 DUMP_REG(DC_DISP_CURSOR_POSITION_NS); 1504 DUMP_REG(DC_DISP_INIT_SEQ_CONTROL); 1505 DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_A); 1506 DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_B); 1507 DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_C); 1508 DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_D); 1509 DUMP_REG(DC_DISP_DC_MCCIF_FIFOCTRL); 1510 DUMP_REG(DC_DISP_MCCIF_DISPLAY0A_HYST); 1511 DUMP_REG(DC_DISP_MCCIF_DISPLAY0B_HYST); 1512 DUMP_REG(DC_DISP_MCCIF_DISPLAY1A_HYST); 1513 DUMP_REG(DC_DISP_MCCIF_DISPLAY1B_HYST); 1514 DUMP_REG(DC_DISP_DAC_CRT_CTRL); 1515 DUMP_REG(DC_DISP_DISP_MISC_CONTROL); 1516 DUMP_REG(DC_DISP_SD_CONTROL); 1517 DUMP_REG(DC_DISP_SD_CSC_COEFF); 1518 DUMP_REG(DC_DISP_SD_LUT(0)); 1519 DUMP_REG(DC_DISP_SD_LUT(1)); 1520 DUMP_REG(DC_DISP_SD_LUT(2)); 1521 DUMP_REG(DC_DISP_SD_LUT(3)); 1522 DUMP_REG(DC_DISP_SD_LUT(4)); 1523 DUMP_REG(DC_DISP_SD_LUT(5)); 1524 DUMP_REG(DC_DISP_SD_LUT(6)); 1525 DUMP_REG(DC_DISP_SD_LUT(7)); 1526 DUMP_REG(DC_DISP_SD_LUT(8)); 1527 DUMP_REG(DC_DISP_SD_FLICKER_CONTROL); 1528 DUMP_REG(DC_DISP_DC_PIXEL_COUNT); 1529 DUMP_REG(DC_DISP_SD_HISTOGRAM(0)); 1530 DUMP_REG(DC_DISP_SD_HISTOGRAM(1)); 1531 DUMP_REG(DC_DISP_SD_HISTOGRAM(2)); 1532 DUMP_REG(DC_DISP_SD_HISTOGRAM(3)); 1533 DUMP_REG(DC_DISP_SD_HISTOGRAM(4)); 1534 DUMP_REG(DC_DISP_SD_HISTOGRAM(5)); 1535 DUMP_REG(DC_DISP_SD_HISTOGRAM(6)); 1536 DUMP_REG(DC_DISP_SD_HISTOGRAM(7)); 1537 DUMP_REG(DC_DISP_SD_BL_TF(0)); 1538 DUMP_REG(DC_DISP_SD_BL_TF(1)); 1539 DUMP_REG(DC_DISP_SD_BL_TF(2)); 1540 DUMP_REG(DC_DISP_SD_BL_TF(3)); 1541 DUMP_REG(DC_DISP_SD_BL_CONTROL); 1542 DUMP_REG(DC_DISP_SD_HW_K_VALUES); 1543 DUMP_REG(DC_DISP_SD_MAN_K_VALUES); 1544 DUMP_REG(DC_DISP_CURSOR_START_ADDR_HI); 1545 DUMP_REG(DC_DISP_BLEND_CURSOR_CONTROL); 1546 DUMP_REG(DC_WIN_WIN_OPTIONS); 1547 DUMP_REG(DC_WIN_BYTE_SWAP); 1548 DUMP_REG(DC_WIN_BUFFER_CONTROL); 1549 DUMP_REG(DC_WIN_COLOR_DEPTH); 1550 DUMP_REG(DC_WIN_POSITION); 1551 DUMP_REG(DC_WIN_SIZE); 1552 DUMP_REG(DC_WIN_PRESCALED_SIZE); 1553 DUMP_REG(DC_WIN_H_INITIAL_DDA); 1554 DUMP_REG(DC_WIN_V_INITIAL_DDA); 1555 DUMP_REG(DC_WIN_DDA_INC); 1556 DUMP_REG(DC_WIN_LINE_STRIDE); 1557 DUMP_REG(DC_WIN_BUF_STRIDE); 1558 DUMP_REG(DC_WIN_UV_BUF_STRIDE); 1559 DUMP_REG(DC_WIN_BUFFER_ADDR_MODE); 1560 DUMP_REG(DC_WIN_DV_CONTROL); 1561 DUMP_REG(DC_WIN_BLEND_NOKEY); 1562 DUMP_REG(DC_WIN_BLEND_1WIN); 1563 DUMP_REG(DC_WIN_BLEND_2WIN_X); 1564 DUMP_REG(DC_WIN_BLEND_2WIN_Y); 1565 DUMP_REG(DC_WIN_BLEND_3WIN_XY); 1566 DUMP_REG(DC_WIN_HP_FETCH_CONTROL); 1567 DUMP_REG(DC_WINBUF_START_ADDR); 1568 DUMP_REG(DC_WINBUF_START_ADDR_NS); 1569 DUMP_REG(DC_WINBUF_START_ADDR_U); 1570 DUMP_REG(DC_WINBUF_START_ADDR_U_NS); 1571 DUMP_REG(DC_WINBUF_START_ADDR_V); 1572 DUMP_REG(DC_WINBUF_START_ADDR_V_NS); 1573 DUMP_REG(DC_WINBUF_ADDR_H_OFFSET); 1574 DUMP_REG(DC_WINBUF_ADDR_H_OFFSET_NS); 1575 DUMP_REG(DC_WINBUF_ADDR_V_OFFSET); 1576 DUMP_REG(DC_WINBUF_ADDR_V_OFFSET_NS); 1577 DUMP_REG(DC_WINBUF_UFLOW_STATUS); 1578 DUMP_REG(DC_WINBUF_AD_UFLOW_STATUS); 1579 DUMP_REG(DC_WINBUF_BD_UFLOW_STATUS); 1580 DUMP_REG(DC_WINBUF_CD_UFLOW_STATUS); 1581 1582 #undef DUMP_REG 1583 1584 unlock: 1585 drm_modeset_unlock_crtc(&dc->base); 1586 return err; 1587 } 1588 1589 static int tegra_dc_show_crc(struct seq_file *s, void *data) 1590 { 1591 struct drm_info_node *node = s->private; 1592 struct tegra_dc *dc = node->info_ent->data; 1593 int err = 0; 1594 u32 value; 1595 1596 drm_modeset_lock_crtc(&dc->base, NULL); 1597 1598 if (!dc->base.state->active) { 1599 err = -EBUSY; 1600 goto unlock; 1601 } 1602 1603 value = DC_COM_CRC_CONTROL_ACTIVE_DATA | DC_COM_CRC_CONTROL_ENABLE; 1604 tegra_dc_writel(dc, value, DC_COM_CRC_CONTROL); 1605 tegra_dc_commit(dc); 1606 1607 drm_crtc_wait_one_vblank(&dc->base); 1608 drm_crtc_wait_one_vblank(&dc->base); 1609 1610 value = tegra_dc_readl(dc, DC_COM_CRC_CHECKSUM); 1611 seq_printf(s, "%08x\n", value); 1612 1613 tegra_dc_writel(dc, 0, DC_COM_CRC_CONTROL); 1614 1615 unlock: 1616 drm_modeset_unlock_crtc(&dc->base); 1617 return err; 1618 } 1619 1620 static int tegra_dc_show_stats(struct seq_file *s, void *data) 1621 { 1622 struct drm_info_node *node = s->private; 1623 struct tegra_dc *dc = node->info_ent->data; 1624 1625 seq_printf(s, "frames: %lu\n", dc->stats.frames); 1626 seq_printf(s, "vblank: %lu\n", dc->stats.vblank); 1627 seq_printf(s, "underflow: %lu\n", dc->stats.underflow); 1628 seq_printf(s, "overflow: %lu\n", dc->stats.overflow); 1629 1630 return 0; 1631 } 1632 1633 static struct drm_info_list debugfs_files[] = { 1634 { "regs", tegra_dc_show_regs, 0, NULL }, 1635 { "crc", tegra_dc_show_crc, 0, NULL }, 1636 { "stats", tegra_dc_show_stats, 0, NULL }, 1637 }; 1638 1639 static int tegra_dc_debugfs_init(struct tegra_dc *dc, struct drm_minor *minor) 1640 { 1641 unsigned int i; 1642 char *name; 1643 int err; 1644 1645 name = kasprintf(GFP_KERNEL, "dc.%d", dc->pipe); 1646 dc->debugfs = debugfs_create_dir(name, minor->debugfs_root); 1647 kfree(name); 1648 1649 if (!dc->debugfs) 1650 return -ENOMEM; 1651 1652 dc->debugfs_files = kmemdup(debugfs_files, sizeof(debugfs_files), 1653 GFP_KERNEL); 1654 if (!dc->debugfs_files) { 1655 err = -ENOMEM; 1656 goto remove; 1657 } 1658 1659 for (i = 0; i < ARRAY_SIZE(debugfs_files); i++) 1660 dc->debugfs_files[i].data = dc; 1661 1662 err = drm_debugfs_create_files(dc->debugfs_files, 1663 ARRAY_SIZE(debugfs_files), 1664 dc->debugfs, minor); 1665 if (err < 0) 1666 goto free; 1667 1668 dc->minor = minor; 1669 1670 return 0; 1671 1672 free: 1673 kfree(dc->debugfs_files); 1674 dc->debugfs_files = NULL; 1675 remove: 1676 debugfs_remove(dc->debugfs); 1677 dc->debugfs = NULL; 1678 1679 return err; 1680 } 1681 1682 static int tegra_dc_debugfs_exit(struct tegra_dc *dc) 1683 { 1684 drm_debugfs_remove_files(dc->debugfs_files, ARRAY_SIZE(debugfs_files), 1685 dc->minor); 1686 dc->minor = NULL; 1687 1688 kfree(dc->debugfs_files); 1689 dc->debugfs_files = NULL; 1690 1691 debugfs_remove(dc->debugfs); 1692 dc->debugfs = NULL; 1693 1694 return 0; 1695 } 1696 1697 static int tegra_dc_init(struct host1x_client *client) 1698 { 1699 struct drm_device *drm = dev_get_drvdata(client->parent); 1700 unsigned long flags = HOST1X_SYNCPT_CLIENT_MANAGED; 1701 struct tegra_dc *dc = host1x_client_to_dc(client); 1702 struct tegra_drm *tegra = drm->dev_private; 1703 struct drm_plane *primary = NULL; 1704 struct drm_plane *cursor = NULL; 1705 u32 value; 1706 int err; 1707 1708 dc->syncpt = host1x_syncpt_request(dc->dev, flags); 1709 if (!dc->syncpt) 1710 dev_warn(dc->dev, "failed to allocate syncpoint\n"); 1711 1712 if (tegra->domain) { 1713 err = iommu_attach_device(tegra->domain, dc->dev); 1714 if (err < 0) { 1715 dev_err(dc->dev, "failed to attach to domain: %d\n", 1716 err); 1717 return err; 1718 } 1719 1720 dc->domain = tegra->domain; 1721 } 1722 1723 primary = tegra_dc_primary_plane_create(drm, dc); 1724 if (IS_ERR(primary)) { 1725 err = PTR_ERR(primary); 1726 goto cleanup; 1727 } 1728 1729 if (dc->soc->supports_cursor) { 1730 cursor = tegra_dc_cursor_plane_create(drm, dc); 1731 if (IS_ERR(cursor)) { 1732 err = PTR_ERR(cursor); 1733 goto cleanup; 1734 } 1735 } 1736 1737 err = drm_crtc_init_with_planes(drm, &dc->base, primary, cursor, 1738 &tegra_crtc_funcs, NULL); 1739 if (err < 0) 1740 goto cleanup; 1741 1742 drm_mode_crtc_set_gamma_size(&dc->base, 256); 1743 drm_crtc_helper_add(&dc->base, &tegra_crtc_helper_funcs); 1744 1745 /* 1746 * Keep track of the minimum pitch alignment across all display 1747 * controllers. 1748 */ 1749 if (dc->soc->pitch_align > tegra->pitch_align) 1750 tegra->pitch_align = dc->soc->pitch_align; 1751 1752 err = tegra_dc_rgb_init(drm, dc); 1753 if (err < 0 && err != -ENODEV) { 1754 dev_err(dc->dev, "failed to initialize RGB output: %d\n", err); 1755 goto cleanup; 1756 } 1757 1758 err = tegra_dc_add_planes(drm, dc); 1759 if (err < 0) 1760 goto cleanup; 1761 1762 if (IS_ENABLED(CONFIG_DEBUG_FS)) { 1763 err = tegra_dc_debugfs_init(dc, drm->primary); 1764 if (err < 0) 1765 dev_err(dc->dev, "debugfs setup failed: %d\n", err); 1766 } 1767 1768 err = devm_request_irq(dc->dev, dc->irq, tegra_dc_irq, 0, 1769 dev_name(dc->dev), dc); 1770 if (err < 0) { 1771 dev_err(dc->dev, "failed to request IRQ#%u: %d\n", dc->irq, 1772 err); 1773 goto cleanup; 1774 } 1775 1776 /* initialize display controller */ 1777 if (dc->syncpt) { 1778 u32 syncpt = host1x_syncpt_id(dc->syncpt); 1779 1780 value = SYNCPT_CNTRL_NO_STALL; 1781 tegra_dc_writel(dc, value, DC_CMD_GENERAL_INCR_SYNCPT_CNTRL); 1782 1783 value = SYNCPT_VSYNC_ENABLE | syncpt; 1784 tegra_dc_writel(dc, value, DC_CMD_CONT_SYNCPT_VSYNC); 1785 } 1786 1787 value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT | 1788 WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT; 1789 tegra_dc_writel(dc, value, DC_CMD_INT_TYPE); 1790 1791 value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT | 1792 WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT; 1793 tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY); 1794 1795 /* initialize timer */ 1796 value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(0x20) | 1797 WINDOW_B_THRESHOLD(0x20) | WINDOW_C_THRESHOLD(0x20); 1798 tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY); 1799 1800 value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(1) | 1801 WINDOW_B_THRESHOLD(1) | WINDOW_C_THRESHOLD(1); 1802 tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER); 1803 1804 value = VBLANK_INT | WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT | 1805 WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT; 1806 tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE); 1807 1808 value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT | 1809 WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT; 1810 tegra_dc_writel(dc, value, DC_CMD_INT_MASK); 1811 1812 if (dc->soc->supports_border_color) 1813 tegra_dc_writel(dc, 0, DC_DISP_BORDER_COLOR); 1814 1815 tegra_dc_stats_reset(&dc->stats); 1816 1817 return 0; 1818 1819 cleanup: 1820 if (cursor) 1821 drm_plane_cleanup(cursor); 1822 1823 if (primary) 1824 drm_plane_cleanup(primary); 1825 1826 if (tegra->domain) { 1827 iommu_detach_device(tegra->domain, dc->dev); 1828 dc->domain = NULL; 1829 } 1830 1831 return err; 1832 } 1833 1834 static int tegra_dc_exit(struct host1x_client *client) 1835 { 1836 struct tegra_dc *dc = host1x_client_to_dc(client); 1837 int err; 1838 1839 devm_free_irq(dc->dev, dc->irq, dc); 1840 1841 if (IS_ENABLED(CONFIG_DEBUG_FS)) { 1842 err = tegra_dc_debugfs_exit(dc); 1843 if (err < 0) 1844 dev_err(dc->dev, "debugfs cleanup failed: %d\n", err); 1845 } 1846 1847 err = tegra_dc_rgb_exit(dc); 1848 if (err) { 1849 dev_err(dc->dev, "failed to shutdown RGB output: %d\n", err); 1850 return err; 1851 } 1852 1853 if (dc->domain) { 1854 iommu_detach_device(dc->domain, dc->dev); 1855 dc->domain = NULL; 1856 } 1857 1858 host1x_syncpt_free(dc->syncpt); 1859 1860 return 0; 1861 } 1862 1863 static const struct host1x_client_ops dc_client_ops = { 1864 .init = tegra_dc_init, 1865 .exit = tegra_dc_exit, 1866 }; 1867 1868 static const struct tegra_dc_soc_info tegra20_dc_soc_info = { 1869 .supports_border_color = true, 1870 .supports_interlacing = false, 1871 .supports_cursor = false, 1872 .supports_block_linear = false, 1873 .pitch_align = 8, 1874 .has_powergate = false, 1875 }; 1876 1877 static const struct tegra_dc_soc_info tegra30_dc_soc_info = { 1878 .supports_border_color = true, 1879 .supports_interlacing = false, 1880 .supports_cursor = false, 1881 .supports_block_linear = false, 1882 .pitch_align = 8, 1883 .has_powergate = false, 1884 }; 1885 1886 static const struct tegra_dc_soc_info tegra114_dc_soc_info = { 1887 .supports_border_color = true, 1888 .supports_interlacing = false, 1889 .supports_cursor = false, 1890 .supports_block_linear = false, 1891 .pitch_align = 64, 1892 .has_powergate = true, 1893 }; 1894 1895 static const struct tegra_dc_soc_info tegra124_dc_soc_info = { 1896 .supports_border_color = false, 1897 .supports_interlacing = true, 1898 .supports_cursor = true, 1899 .supports_block_linear = true, 1900 .pitch_align = 64, 1901 .has_powergate = true, 1902 }; 1903 1904 static const struct tegra_dc_soc_info tegra210_dc_soc_info = { 1905 .supports_border_color = false, 1906 .supports_interlacing = true, 1907 .supports_cursor = true, 1908 .supports_block_linear = true, 1909 .pitch_align = 64, 1910 .has_powergate = true, 1911 }; 1912 1913 static const struct of_device_id tegra_dc_of_match[] = { 1914 { 1915 .compatible = "nvidia,tegra210-dc", 1916 .data = &tegra210_dc_soc_info, 1917 }, { 1918 .compatible = "nvidia,tegra124-dc", 1919 .data = &tegra124_dc_soc_info, 1920 }, { 1921 .compatible = "nvidia,tegra114-dc", 1922 .data = &tegra114_dc_soc_info, 1923 }, { 1924 .compatible = "nvidia,tegra30-dc", 1925 .data = &tegra30_dc_soc_info, 1926 }, { 1927 .compatible = "nvidia,tegra20-dc", 1928 .data = &tegra20_dc_soc_info, 1929 }, { 1930 /* sentinel */ 1931 } 1932 }; 1933 MODULE_DEVICE_TABLE(of, tegra_dc_of_match); 1934 1935 static int tegra_dc_parse_dt(struct tegra_dc *dc) 1936 { 1937 struct device_node *np; 1938 u32 value = 0; 1939 int err; 1940 1941 err = of_property_read_u32(dc->dev->of_node, "nvidia,head", &value); 1942 if (err < 0) { 1943 dev_err(dc->dev, "missing \"nvidia,head\" property\n"); 1944 1945 /* 1946 * If the nvidia,head property isn't present, try to find the 1947 * correct head number by looking up the position of this 1948 * display controller's node within the device tree. Assuming 1949 * that the nodes are ordered properly in the DTS file and 1950 * that the translation into a flattened device tree blob 1951 * preserves that ordering this will actually yield the right 1952 * head number. 1953 * 1954 * If those assumptions don't hold, this will still work for 1955 * cases where only a single display controller is used. 1956 */ 1957 for_each_matching_node(np, tegra_dc_of_match) { 1958 if (np == dc->dev->of_node) { 1959 of_node_put(np); 1960 break; 1961 } 1962 1963 value++; 1964 } 1965 } 1966 1967 dc->pipe = value; 1968 1969 return 0; 1970 } 1971 1972 static int tegra_dc_probe(struct platform_device *pdev) 1973 { 1974 const struct of_device_id *id; 1975 struct resource *regs; 1976 struct tegra_dc *dc; 1977 int err; 1978 1979 dc = devm_kzalloc(&pdev->dev, sizeof(*dc), GFP_KERNEL); 1980 if (!dc) 1981 return -ENOMEM; 1982 1983 id = of_match_node(tegra_dc_of_match, pdev->dev.of_node); 1984 if (!id) 1985 return -ENODEV; 1986 1987 spin_lock_init(&dc->lock); 1988 INIT_LIST_HEAD(&dc->list); 1989 dc->dev = &pdev->dev; 1990 dc->soc = id->data; 1991 1992 err = tegra_dc_parse_dt(dc); 1993 if (err < 0) 1994 return err; 1995 1996 dc->clk = devm_clk_get(&pdev->dev, NULL); 1997 if (IS_ERR(dc->clk)) { 1998 dev_err(&pdev->dev, "failed to get clock\n"); 1999 return PTR_ERR(dc->clk); 2000 } 2001 2002 dc->rst = devm_reset_control_get(&pdev->dev, "dc"); 2003 if (IS_ERR(dc->rst)) { 2004 dev_err(&pdev->dev, "failed to get reset\n"); 2005 return PTR_ERR(dc->rst); 2006 } 2007 2008 if (dc->soc->has_powergate) { 2009 if (dc->pipe == 0) 2010 dc->powergate = TEGRA_POWERGATE_DIS; 2011 else 2012 dc->powergate = TEGRA_POWERGATE_DISB; 2013 2014 err = tegra_powergate_sequence_power_up(dc->powergate, dc->clk, 2015 dc->rst); 2016 if (err < 0) { 2017 dev_err(&pdev->dev, "failed to power partition: %d\n", 2018 err); 2019 return err; 2020 } 2021 } else { 2022 err = clk_prepare_enable(dc->clk); 2023 if (err < 0) { 2024 dev_err(&pdev->dev, "failed to enable clock: %d\n", 2025 err); 2026 return err; 2027 } 2028 2029 err = reset_control_deassert(dc->rst); 2030 if (err < 0) { 2031 dev_err(&pdev->dev, "failed to deassert reset: %d\n", 2032 err); 2033 return err; 2034 } 2035 } 2036 2037 regs = platform_get_resource(pdev, IORESOURCE_MEM, 0); 2038 dc->regs = devm_ioremap_resource(&pdev->dev, regs); 2039 if (IS_ERR(dc->regs)) 2040 return PTR_ERR(dc->regs); 2041 2042 dc->irq = platform_get_irq(pdev, 0); 2043 if (dc->irq < 0) { 2044 dev_err(&pdev->dev, "failed to get IRQ\n"); 2045 return -ENXIO; 2046 } 2047 2048 INIT_LIST_HEAD(&dc->client.list); 2049 dc->client.ops = &dc_client_ops; 2050 dc->client.dev = &pdev->dev; 2051 2052 err = tegra_dc_rgb_probe(dc); 2053 if (err < 0 && err != -ENODEV) { 2054 dev_err(&pdev->dev, "failed to probe RGB output: %d\n", err); 2055 return err; 2056 } 2057 2058 err = host1x_client_register(&dc->client); 2059 if (err < 0) { 2060 dev_err(&pdev->dev, "failed to register host1x client: %d\n", 2061 err); 2062 return err; 2063 } 2064 2065 platform_set_drvdata(pdev, dc); 2066 2067 return 0; 2068 } 2069 2070 static int tegra_dc_remove(struct platform_device *pdev) 2071 { 2072 struct tegra_dc *dc = platform_get_drvdata(pdev); 2073 int err; 2074 2075 err = host1x_client_unregister(&dc->client); 2076 if (err < 0) { 2077 dev_err(&pdev->dev, "failed to unregister host1x client: %d\n", 2078 err); 2079 return err; 2080 } 2081 2082 err = tegra_dc_rgb_remove(dc); 2083 if (err < 0) { 2084 dev_err(&pdev->dev, "failed to remove RGB output: %d\n", err); 2085 return err; 2086 } 2087 2088 reset_control_assert(dc->rst); 2089 2090 if (dc->soc->has_powergate) 2091 tegra_powergate_power_off(dc->powergate); 2092 2093 clk_disable_unprepare(dc->clk); 2094 2095 return 0; 2096 } 2097 2098 struct platform_driver tegra_dc_driver = { 2099 .driver = { 2100 .name = "tegra-dc", 2101 .of_match_table = tegra_dc_of_match, 2102 }, 2103 .probe = tegra_dc_probe, 2104 .remove = tegra_dc_remove, 2105 }; 2106