xref: /openbmc/linux/drivers/gpu/drm/tegra/dc.c (revision b60a5b8d)
1 /*
2  * Copyright (C) 2012 Avionic Design GmbH
3  * Copyright (C) 2012 NVIDIA CORPORATION.  All rights reserved.
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  */
9 
10 #include <linux/clk.h>
11 #include <linux/debugfs.h>
12 #include <linux/iommu.h>
13 #include <linux/of_device.h>
14 #include <linux/pm_runtime.h>
15 #include <linux/reset.h>
16 
17 #include <soc/tegra/pmc.h>
18 
19 #include "dc.h"
20 #include "drm.h"
21 #include "gem.h"
22 #include "hub.h"
23 #include "plane.h"
24 
25 #include <drm/drm_atomic.h>
26 #include <drm/drm_atomic_helper.h>
27 #include <drm/drm_plane_helper.h>
28 
29 static void tegra_dc_stats_reset(struct tegra_dc_stats *stats)
30 {
31 	stats->frames = 0;
32 	stats->vblank = 0;
33 	stats->underflow = 0;
34 	stats->overflow = 0;
35 }
36 
37 /* Reads the active copy of a register. */
38 static u32 tegra_dc_readl_active(struct tegra_dc *dc, unsigned long offset)
39 {
40 	u32 value;
41 
42 	tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
43 	value = tegra_dc_readl(dc, offset);
44 	tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS);
45 
46 	return value;
47 }
48 
49 static inline unsigned int tegra_plane_offset(struct tegra_plane *plane,
50 					      unsigned int offset)
51 {
52 	if (offset >= 0x500 && offset <= 0x638) {
53 		offset = 0x000 + (offset - 0x500);
54 		return plane->offset + offset;
55 	}
56 
57 	if (offset >= 0x700 && offset <= 0x719) {
58 		offset = 0x180 + (offset - 0x700);
59 		return plane->offset + offset;
60 	}
61 
62 	if (offset >= 0x800 && offset <= 0x839) {
63 		offset = 0x1c0 + (offset - 0x800);
64 		return plane->offset + offset;
65 	}
66 
67 	dev_WARN(plane->dc->dev, "invalid offset: %x\n", offset);
68 
69 	return plane->offset + offset;
70 }
71 
72 static inline u32 tegra_plane_readl(struct tegra_plane *plane,
73 				    unsigned int offset)
74 {
75 	return tegra_dc_readl(plane->dc, tegra_plane_offset(plane, offset));
76 }
77 
78 static inline void tegra_plane_writel(struct tegra_plane *plane, u32 value,
79 				      unsigned int offset)
80 {
81 	tegra_dc_writel(plane->dc, value, tegra_plane_offset(plane, offset));
82 }
83 
84 bool tegra_dc_has_output(struct tegra_dc *dc, struct device *dev)
85 {
86 	struct device_node *np = dc->dev->of_node;
87 	struct of_phandle_iterator it;
88 	int err;
89 
90 	of_for_each_phandle(&it, err, np, "nvidia,outputs", NULL, 0)
91 		if (it.node == dev->of_node)
92 			return true;
93 
94 	return false;
95 }
96 
97 /*
98  * Double-buffered registers have two copies: ASSEMBLY and ACTIVE. When the
99  * *_ACT_REQ bits are set the ASSEMBLY copy is latched into the ACTIVE copy.
100  * Latching happens mmediately if the display controller is in STOP mode or
101  * on the next frame boundary otherwise.
102  *
103  * Triple-buffered registers have three copies: ASSEMBLY, ARM and ACTIVE. The
104  * ASSEMBLY copy is latched into the ARM copy immediately after *_UPDATE bits
105  * are written. When the *_ACT_REQ bits are written, the ARM copy is latched
106  * into the ACTIVE copy, either immediately if the display controller is in
107  * STOP mode, or at the next frame boundary otherwise.
108  */
109 void tegra_dc_commit(struct tegra_dc *dc)
110 {
111 	tegra_dc_writel(dc, GENERAL_ACT_REQ << 8, DC_CMD_STATE_CONTROL);
112 	tegra_dc_writel(dc, GENERAL_ACT_REQ, DC_CMD_STATE_CONTROL);
113 }
114 
115 static inline u32 compute_dda_inc(unsigned int in, unsigned int out, bool v,
116 				  unsigned int bpp)
117 {
118 	fixed20_12 outf = dfixed_init(out);
119 	fixed20_12 inf = dfixed_init(in);
120 	u32 dda_inc;
121 	int max;
122 
123 	if (v)
124 		max = 15;
125 	else {
126 		switch (bpp) {
127 		case 2:
128 			max = 8;
129 			break;
130 
131 		default:
132 			WARN_ON_ONCE(1);
133 			/* fallthrough */
134 		case 4:
135 			max = 4;
136 			break;
137 		}
138 	}
139 
140 	outf.full = max_t(u32, outf.full - dfixed_const(1), dfixed_const(1));
141 	inf.full -= dfixed_const(1);
142 
143 	dda_inc = dfixed_div(inf, outf);
144 	dda_inc = min_t(u32, dda_inc, dfixed_const(max));
145 
146 	return dda_inc;
147 }
148 
149 static inline u32 compute_initial_dda(unsigned int in)
150 {
151 	fixed20_12 inf = dfixed_init(in);
152 	return dfixed_frac(inf);
153 }
154 
155 static void tegra_plane_setup_blending_legacy(struct tegra_plane *plane)
156 {
157 	u32 background[3] = {
158 		BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
159 		BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
160 		BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
161 	};
162 	u32 foreground = BLEND_WEIGHT1(255) | BLEND_WEIGHT0(255) |
163 			 BLEND_COLOR_KEY_NONE;
164 	u32 blendnokey = BLEND_WEIGHT1(255) | BLEND_WEIGHT0(255);
165 	struct tegra_plane_state *state;
166 	u32 blending[2];
167 	unsigned int i;
168 
169 	/* disable blending for non-overlapping case */
170 	tegra_plane_writel(plane, blendnokey, DC_WIN_BLEND_NOKEY);
171 	tegra_plane_writel(plane, foreground, DC_WIN_BLEND_1WIN);
172 
173 	state = to_tegra_plane_state(plane->base.state);
174 
175 	if (state->opaque) {
176 		/*
177 		 * Since custom fix-weight blending isn't utilized and weight
178 		 * of top window is set to max, we can enforce dependent
179 		 * blending which in this case results in transparent bottom
180 		 * window if top window is opaque and if top window enables
181 		 * alpha blending, then bottom window is getting alpha value
182 		 * of 1 minus the sum of alpha components of the overlapping
183 		 * plane.
184 		 */
185 		background[0] |= BLEND_CONTROL_DEPENDENT;
186 		background[1] |= BLEND_CONTROL_DEPENDENT;
187 
188 		/*
189 		 * The region where three windows overlap is the intersection
190 		 * of the two regions where two windows overlap. It contributes
191 		 * to the area if all of the windows on top of it have an alpha
192 		 * component.
193 		 */
194 		switch (state->base.normalized_zpos) {
195 		case 0:
196 			if (state->blending[0].alpha &&
197 			    state->blending[1].alpha)
198 				background[2] |= BLEND_CONTROL_DEPENDENT;
199 			break;
200 
201 		case 1:
202 			background[2] |= BLEND_CONTROL_DEPENDENT;
203 			break;
204 		}
205 	} else {
206 		/*
207 		 * Enable alpha blending if pixel format has an alpha
208 		 * component.
209 		 */
210 		foreground |= BLEND_CONTROL_ALPHA;
211 
212 		/*
213 		 * If any of the windows on top of this window is opaque, it
214 		 * will completely conceal this window within that area. If
215 		 * top window has an alpha component, it is blended over the
216 		 * bottom window.
217 		 */
218 		for (i = 0; i < 2; i++) {
219 			if (state->blending[i].alpha &&
220 			    state->blending[i].top)
221 				background[i] |= BLEND_CONTROL_DEPENDENT;
222 		}
223 
224 		switch (state->base.normalized_zpos) {
225 		case 0:
226 			if (state->blending[0].alpha &&
227 			    state->blending[1].alpha)
228 				background[2] |= BLEND_CONTROL_DEPENDENT;
229 			break;
230 
231 		case 1:
232 			/*
233 			 * When both middle and topmost windows have an alpha,
234 			 * these windows a mixed together and then the result
235 			 * is blended over the bottom window.
236 			 */
237 			if (state->blending[0].alpha &&
238 			    state->blending[0].top)
239 				background[2] |= BLEND_CONTROL_ALPHA;
240 
241 			if (state->blending[1].alpha &&
242 			    state->blending[1].top)
243 				background[2] |= BLEND_CONTROL_ALPHA;
244 			break;
245 		}
246 	}
247 
248 	switch (state->base.normalized_zpos) {
249 	case 0:
250 		tegra_plane_writel(plane, background[0], DC_WIN_BLEND_2WIN_X);
251 		tegra_plane_writel(plane, background[1], DC_WIN_BLEND_2WIN_Y);
252 		tegra_plane_writel(plane, background[2], DC_WIN_BLEND_3WIN_XY);
253 		break;
254 
255 	case 1:
256 		/*
257 		 * If window B / C is topmost, then X / Y registers are
258 		 * matching the order of blending[...] state indices,
259 		 * otherwise a swap is required.
260 		 */
261 		if (!state->blending[0].top && state->blending[1].top) {
262 			blending[0] = foreground;
263 			blending[1] = background[1];
264 		} else {
265 			blending[0] = background[0];
266 			blending[1] = foreground;
267 		}
268 
269 		tegra_plane_writel(plane, blending[0], DC_WIN_BLEND_2WIN_X);
270 		tegra_plane_writel(plane, blending[1], DC_WIN_BLEND_2WIN_Y);
271 		tegra_plane_writel(plane, background[2], DC_WIN_BLEND_3WIN_XY);
272 		break;
273 
274 	case 2:
275 		tegra_plane_writel(plane, foreground, DC_WIN_BLEND_2WIN_X);
276 		tegra_plane_writel(plane, foreground, DC_WIN_BLEND_2WIN_Y);
277 		tegra_plane_writel(plane, foreground, DC_WIN_BLEND_3WIN_XY);
278 		break;
279 	}
280 }
281 
282 static void tegra_plane_setup_blending(struct tegra_plane *plane,
283 				       const struct tegra_dc_window *window)
284 {
285 	u32 value;
286 
287 	value = BLEND_FACTOR_DST_ALPHA_ZERO | BLEND_FACTOR_SRC_ALPHA_K2 |
288 		BLEND_FACTOR_DST_COLOR_NEG_K1_TIMES_SRC |
289 		BLEND_FACTOR_SRC_COLOR_K1_TIMES_SRC;
290 	tegra_plane_writel(plane, value, DC_WIN_BLEND_MATCH_SELECT);
291 
292 	value = BLEND_FACTOR_DST_ALPHA_ZERO | BLEND_FACTOR_SRC_ALPHA_K2 |
293 		BLEND_FACTOR_DST_COLOR_NEG_K1_TIMES_SRC |
294 		BLEND_FACTOR_SRC_COLOR_K1_TIMES_SRC;
295 	tegra_plane_writel(plane, value, DC_WIN_BLEND_NOMATCH_SELECT);
296 
297 	value = K2(255) | K1(255) | WINDOW_LAYER_DEPTH(255 - window->zpos);
298 	tegra_plane_writel(plane, value, DC_WIN_BLEND_LAYER_CONTROL);
299 }
300 
301 static bool
302 tegra_plane_use_horizontal_filtering(struct tegra_plane *plane,
303 				     const struct tegra_dc_window *window)
304 {
305 	struct tegra_dc *dc = plane->dc;
306 
307 	if (window->src.w == window->dst.w)
308 		return false;
309 
310 	if (plane->index == 0 && dc->soc->has_win_a_without_filters)
311 		return false;
312 
313 	return true;
314 }
315 
316 static bool
317 tegra_plane_use_vertical_filtering(struct tegra_plane *plane,
318 				   const struct tegra_dc_window *window)
319 {
320 	struct tegra_dc *dc = plane->dc;
321 
322 	if (window->src.h == window->dst.h)
323 		return false;
324 
325 	if (plane->index == 0 && dc->soc->has_win_a_without_filters)
326 		return false;
327 
328 	if (plane->index == 2 && dc->soc->has_win_c_without_vert_filter)
329 		return false;
330 
331 	return true;
332 }
333 
334 static void tegra_dc_setup_window(struct tegra_plane *plane,
335 				  const struct tegra_dc_window *window)
336 {
337 	unsigned h_offset, v_offset, h_size, v_size, h_dda, v_dda, bpp;
338 	struct tegra_dc *dc = plane->dc;
339 	bool yuv, planar;
340 	u32 value;
341 
342 	/*
343 	 * For YUV planar modes, the number of bytes per pixel takes into
344 	 * account only the luma component and therefore is 1.
345 	 */
346 	yuv = tegra_plane_format_is_yuv(window->format, &planar);
347 	if (!yuv)
348 		bpp = window->bits_per_pixel / 8;
349 	else
350 		bpp = planar ? 1 : 2;
351 
352 	tegra_plane_writel(plane, window->format, DC_WIN_COLOR_DEPTH);
353 	tegra_plane_writel(plane, window->swap, DC_WIN_BYTE_SWAP);
354 
355 	value = V_POSITION(window->dst.y) | H_POSITION(window->dst.x);
356 	tegra_plane_writel(plane, value, DC_WIN_POSITION);
357 
358 	value = V_SIZE(window->dst.h) | H_SIZE(window->dst.w);
359 	tegra_plane_writel(plane, value, DC_WIN_SIZE);
360 
361 	h_offset = window->src.x * bpp;
362 	v_offset = window->src.y;
363 	h_size = window->src.w * bpp;
364 	v_size = window->src.h;
365 
366 	value = V_PRESCALED_SIZE(v_size) | H_PRESCALED_SIZE(h_size);
367 	tegra_plane_writel(plane, value, DC_WIN_PRESCALED_SIZE);
368 
369 	/*
370 	 * For DDA computations the number of bytes per pixel for YUV planar
371 	 * modes needs to take into account all Y, U and V components.
372 	 */
373 	if (yuv && planar)
374 		bpp = 2;
375 
376 	h_dda = compute_dda_inc(window->src.w, window->dst.w, false, bpp);
377 	v_dda = compute_dda_inc(window->src.h, window->dst.h, true, bpp);
378 
379 	value = V_DDA_INC(v_dda) | H_DDA_INC(h_dda);
380 	tegra_plane_writel(plane, value, DC_WIN_DDA_INC);
381 
382 	h_dda = compute_initial_dda(window->src.x);
383 	v_dda = compute_initial_dda(window->src.y);
384 
385 	tegra_plane_writel(plane, h_dda, DC_WIN_H_INITIAL_DDA);
386 	tegra_plane_writel(plane, v_dda, DC_WIN_V_INITIAL_DDA);
387 
388 	tegra_plane_writel(plane, 0, DC_WIN_UV_BUF_STRIDE);
389 	tegra_plane_writel(plane, 0, DC_WIN_BUF_STRIDE);
390 
391 	tegra_plane_writel(plane, window->base[0], DC_WINBUF_START_ADDR);
392 
393 	if (yuv && planar) {
394 		tegra_plane_writel(plane, window->base[1], DC_WINBUF_START_ADDR_U);
395 		tegra_plane_writel(plane, window->base[2], DC_WINBUF_START_ADDR_V);
396 		value = window->stride[1] << 16 | window->stride[0];
397 		tegra_plane_writel(plane, value, DC_WIN_LINE_STRIDE);
398 	} else {
399 		tegra_plane_writel(plane, window->stride[0], DC_WIN_LINE_STRIDE);
400 	}
401 
402 	if (window->bottom_up)
403 		v_offset += window->src.h - 1;
404 
405 	tegra_plane_writel(plane, h_offset, DC_WINBUF_ADDR_H_OFFSET);
406 	tegra_plane_writel(plane, v_offset, DC_WINBUF_ADDR_V_OFFSET);
407 
408 	if (dc->soc->supports_block_linear) {
409 		unsigned long height = window->tiling.value;
410 
411 		switch (window->tiling.mode) {
412 		case TEGRA_BO_TILING_MODE_PITCH:
413 			value = DC_WINBUF_SURFACE_KIND_PITCH;
414 			break;
415 
416 		case TEGRA_BO_TILING_MODE_TILED:
417 			value = DC_WINBUF_SURFACE_KIND_TILED;
418 			break;
419 
420 		case TEGRA_BO_TILING_MODE_BLOCK:
421 			value = DC_WINBUF_SURFACE_KIND_BLOCK_HEIGHT(height) |
422 				DC_WINBUF_SURFACE_KIND_BLOCK;
423 			break;
424 		}
425 
426 		tegra_plane_writel(plane, value, DC_WINBUF_SURFACE_KIND);
427 	} else {
428 		switch (window->tiling.mode) {
429 		case TEGRA_BO_TILING_MODE_PITCH:
430 			value = DC_WIN_BUFFER_ADDR_MODE_LINEAR_UV |
431 				DC_WIN_BUFFER_ADDR_MODE_LINEAR;
432 			break;
433 
434 		case TEGRA_BO_TILING_MODE_TILED:
435 			value = DC_WIN_BUFFER_ADDR_MODE_TILE_UV |
436 				DC_WIN_BUFFER_ADDR_MODE_TILE;
437 			break;
438 
439 		case TEGRA_BO_TILING_MODE_BLOCK:
440 			/*
441 			 * No need to handle this here because ->atomic_check
442 			 * will already have filtered it out.
443 			 */
444 			break;
445 		}
446 
447 		tegra_plane_writel(plane, value, DC_WIN_BUFFER_ADDR_MODE);
448 	}
449 
450 	value = WIN_ENABLE;
451 
452 	if (yuv) {
453 		/* setup default colorspace conversion coefficients */
454 		tegra_plane_writel(plane, 0x00f0, DC_WIN_CSC_YOF);
455 		tegra_plane_writel(plane, 0x012a, DC_WIN_CSC_KYRGB);
456 		tegra_plane_writel(plane, 0x0000, DC_WIN_CSC_KUR);
457 		tegra_plane_writel(plane, 0x0198, DC_WIN_CSC_KVR);
458 		tegra_plane_writel(plane, 0x039b, DC_WIN_CSC_KUG);
459 		tegra_plane_writel(plane, 0x032f, DC_WIN_CSC_KVG);
460 		tegra_plane_writel(plane, 0x0204, DC_WIN_CSC_KUB);
461 		tegra_plane_writel(plane, 0x0000, DC_WIN_CSC_KVB);
462 
463 		value |= CSC_ENABLE;
464 	} else if (window->bits_per_pixel < 24) {
465 		value |= COLOR_EXPAND;
466 	}
467 
468 	if (window->bottom_up)
469 		value |= V_DIRECTION;
470 
471 	if (tegra_plane_use_horizontal_filtering(plane, window)) {
472 		/*
473 		 * Enable horizontal 6-tap filter and set filtering
474 		 * coefficients to the default values defined in TRM.
475 		 */
476 		tegra_plane_writel(plane, 0x00008000, DC_WIN_H_FILTER_P(0));
477 		tegra_plane_writel(plane, 0x3e087ce1, DC_WIN_H_FILTER_P(1));
478 		tegra_plane_writel(plane, 0x3b117ac1, DC_WIN_H_FILTER_P(2));
479 		tegra_plane_writel(plane, 0x591b73aa, DC_WIN_H_FILTER_P(3));
480 		tegra_plane_writel(plane, 0x57256d9a, DC_WIN_H_FILTER_P(4));
481 		tegra_plane_writel(plane, 0x552f668b, DC_WIN_H_FILTER_P(5));
482 		tegra_plane_writel(plane, 0x73385e8b, DC_WIN_H_FILTER_P(6));
483 		tegra_plane_writel(plane, 0x72435583, DC_WIN_H_FILTER_P(7));
484 		tegra_plane_writel(plane, 0x714c4c8b, DC_WIN_H_FILTER_P(8));
485 		tegra_plane_writel(plane, 0x70554393, DC_WIN_H_FILTER_P(9));
486 		tegra_plane_writel(plane, 0x715e389b, DC_WIN_H_FILTER_P(10));
487 		tegra_plane_writel(plane, 0x71662faa, DC_WIN_H_FILTER_P(11));
488 		tegra_plane_writel(plane, 0x536d25ba, DC_WIN_H_FILTER_P(12));
489 		tegra_plane_writel(plane, 0x55731bca, DC_WIN_H_FILTER_P(13));
490 		tegra_plane_writel(plane, 0x387a11d9, DC_WIN_H_FILTER_P(14));
491 		tegra_plane_writel(plane, 0x3c7c08f1, DC_WIN_H_FILTER_P(15));
492 
493 		value |= H_FILTER;
494 	}
495 
496 	if (tegra_plane_use_vertical_filtering(plane, window)) {
497 		unsigned int i, k;
498 
499 		/*
500 		 * Enable vertical 2-tap filter and set filtering
501 		 * coefficients to the default values defined in TRM.
502 		 */
503 		for (i = 0, k = 128; i < 16; i++, k -= 8)
504 			tegra_plane_writel(plane, k, DC_WIN_V_FILTER_P(i));
505 
506 		value |= V_FILTER;
507 	}
508 
509 	tegra_plane_writel(plane, value, DC_WIN_WIN_OPTIONS);
510 
511 	if (dc->soc->has_legacy_blending)
512 		tegra_plane_setup_blending_legacy(plane);
513 	else
514 		tegra_plane_setup_blending(plane, window);
515 }
516 
517 static const u32 tegra20_primary_formats[] = {
518 	DRM_FORMAT_ARGB4444,
519 	DRM_FORMAT_ARGB1555,
520 	DRM_FORMAT_RGB565,
521 	DRM_FORMAT_RGBA5551,
522 	DRM_FORMAT_ABGR8888,
523 	DRM_FORMAT_ARGB8888,
524 	/* non-native formats */
525 	DRM_FORMAT_XRGB1555,
526 	DRM_FORMAT_RGBX5551,
527 	DRM_FORMAT_XBGR8888,
528 	DRM_FORMAT_XRGB8888,
529 };
530 
531 static const u64 tegra20_modifiers[] = {
532 	DRM_FORMAT_MOD_LINEAR,
533 	DRM_FORMAT_MOD_NVIDIA_TEGRA_TILED,
534 	DRM_FORMAT_MOD_INVALID
535 };
536 
537 static const u32 tegra114_primary_formats[] = {
538 	DRM_FORMAT_ARGB4444,
539 	DRM_FORMAT_ARGB1555,
540 	DRM_FORMAT_RGB565,
541 	DRM_FORMAT_RGBA5551,
542 	DRM_FORMAT_ABGR8888,
543 	DRM_FORMAT_ARGB8888,
544 	/* new on Tegra114 */
545 	DRM_FORMAT_ABGR4444,
546 	DRM_FORMAT_ABGR1555,
547 	DRM_FORMAT_BGRA5551,
548 	DRM_FORMAT_XRGB1555,
549 	DRM_FORMAT_RGBX5551,
550 	DRM_FORMAT_XBGR1555,
551 	DRM_FORMAT_BGRX5551,
552 	DRM_FORMAT_BGR565,
553 	DRM_FORMAT_BGRA8888,
554 	DRM_FORMAT_RGBA8888,
555 	DRM_FORMAT_XRGB8888,
556 	DRM_FORMAT_XBGR8888,
557 };
558 
559 static const u32 tegra124_primary_formats[] = {
560 	DRM_FORMAT_ARGB4444,
561 	DRM_FORMAT_ARGB1555,
562 	DRM_FORMAT_RGB565,
563 	DRM_FORMAT_RGBA5551,
564 	DRM_FORMAT_ABGR8888,
565 	DRM_FORMAT_ARGB8888,
566 	/* new on Tegra114 */
567 	DRM_FORMAT_ABGR4444,
568 	DRM_FORMAT_ABGR1555,
569 	DRM_FORMAT_BGRA5551,
570 	DRM_FORMAT_XRGB1555,
571 	DRM_FORMAT_RGBX5551,
572 	DRM_FORMAT_XBGR1555,
573 	DRM_FORMAT_BGRX5551,
574 	DRM_FORMAT_BGR565,
575 	DRM_FORMAT_BGRA8888,
576 	DRM_FORMAT_RGBA8888,
577 	DRM_FORMAT_XRGB8888,
578 	DRM_FORMAT_XBGR8888,
579 	/* new on Tegra124 */
580 	DRM_FORMAT_RGBX8888,
581 	DRM_FORMAT_BGRX8888,
582 };
583 
584 static const u64 tegra124_modifiers[] = {
585 	DRM_FORMAT_MOD_LINEAR,
586 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(0),
587 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(1),
588 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(2),
589 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(3),
590 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(4),
591 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(5),
592 	DRM_FORMAT_MOD_INVALID
593 };
594 
595 static int tegra_plane_atomic_check(struct drm_plane *plane,
596 				    struct drm_plane_state *state)
597 {
598 	struct tegra_plane_state *plane_state = to_tegra_plane_state(state);
599 	unsigned int rotation = DRM_MODE_ROTATE_0 | DRM_MODE_REFLECT_Y;
600 	struct tegra_bo_tiling *tiling = &plane_state->tiling;
601 	struct tegra_plane *tegra = to_tegra_plane(plane);
602 	struct tegra_dc *dc = to_tegra_dc(state->crtc);
603 	int err;
604 
605 	/* no need for further checks if the plane is being disabled */
606 	if (!state->crtc)
607 		return 0;
608 
609 	err = tegra_plane_format(state->fb->format->format,
610 				 &plane_state->format,
611 				 &plane_state->swap);
612 	if (err < 0)
613 		return err;
614 
615 	/*
616 	 * Tegra20 and Tegra30 are special cases here because they support
617 	 * only variants of specific formats with an alpha component, but not
618 	 * the corresponding opaque formats. However, the opaque formats can
619 	 * be emulated by disabling alpha blending for the plane.
620 	 */
621 	if (dc->soc->has_legacy_blending) {
622 		err = tegra_plane_setup_legacy_state(tegra, plane_state);
623 		if (err < 0)
624 			return err;
625 	}
626 
627 	err = tegra_fb_get_tiling(state->fb, tiling);
628 	if (err < 0)
629 		return err;
630 
631 	if (tiling->mode == TEGRA_BO_TILING_MODE_BLOCK &&
632 	    !dc->soc->supports_block_linear) {
633 		DRM_ERROR("hardware doesn't support block linear mode\n");
634 		return -EINVAL;
635 	}
636 
637 	rotation = drm_rotation_simplify(state->rotation, rotation);
638 
639 	if (rotation & DRM_MODE_REFLECT_Y)
640 		plane_state->bottom_up = true;
641 	else
642 		plane_state->bottom_up = false;
643 
644 	/*
645 	 * Tegra doesn't support different strides for U and V planes so we
646 	 * error out if the user tries to display a framebuffer with such a
647 	 * configuration.
648 	 */
649 	if (state->fb->format->num_planes > 2) {
650 		if (state->fb->pitches[2] != state->fb->pitches[1]) {
651 			DRM_ERROR("unsupported UV-plane configuration\n");
652 			return -EINVAL;
653 		}
654 	}
655 
656 	err = tegra_plane_state_add(tegra, state);
657 	if (err < 0)
658 		return err;
659 
660 	return 0;
661 }
662 
663 static void tegra_plane_atomic_disable(struct drm_plane *plane,
664 				       struct drm_plane_state *old_state)
665 {
666 	struct tegra_plane *p = to_tegra_plane(plane);
667 	u32 value;
668 
669 	/* rien ne va plus */
670 	if (!old_state || !old_state->crtc)
671 		return;
672 
673 	value = tegra_plane_readl(p, DC_WIN_WIN_OPTIONS);
674 	value &= ~WIN_ENABLE;
675 	tegra_plane_writel(p, value, DC_WIN_WIN_OPTIONS);
676 }
677 
678 static void tegra_plane_atomic_update(struct drm_plane *plane,
679 				      struct drm_plane_state *old_state)
680 {
681 	struct tegra_plane_state *state = to_tegra_plane_state(plane->state);
682 	struct drm_framebuffer *fb = plane->state->fb;
683 	struct tegra_plane *p = to_tegra_plane(plane);
684 	struct tegra_dc_window window;
685 	unsigned int i;
686 
687 	/* rien ne va plus */
688 	if (!plane->state->crtc || !plane->state->fb)
689 		return;
690 
691 	if (!plane->state->visible)
692 		return tegra_plane_atomic_disable(plane, old_state);
693 
694 	memset(&window, 0, sizeof(window));
695 	window.src.x = plane->state->src.x1 >> 16;
696 	window.src.y = plane->state->src.y1 >> 16;
697 	window.src.w = drm_rect_width(&plane->state->src) >> 16;
698 	window.src.h = drm_rect_height(&plane->state->src) >> 16;
699 	window.dst.x = plane->state->dst.x1;
700 	window.dst.y = plane->state->dst.y1;
701 	window.dst.w = drm_rect_width(&plane->state->dst);
702 	window.dst.h = drm_rect_height(&plane->state->dst);
703 	window.bits_per_pixel = fb->format->cpp[0] * 8;
704 	window.bottom_up = tegra_fb_is_bottom_up(fb) || state->bottom_up;
705 
706 	/* copy from state */
707 	window.zpos = plane->state->normalized_zpos;
708 	window.tiling = state->tiling;
709 	window.format = state->format;
710 	window.swap = state->swap;
711 
712 	for (i = 0; i < fb->format->num_planes; i++) {
713 		struct tegra_bo *bo = tegra_fb_get_plane(fb, i);
714 
715 		window.base[i] = bo->paddr + fb->offsets[i];
716 
717 		/*
718 		 * Tegra uses a shared stride for UV planes. Framebuffers are
719 		 * already checked for this in the tegra_plane_atomic_check()
720 		 * function, so it's safe to ignore the V-plane pitch here.
721 		 */
722 		if (i < 2)
723 			window.stride[i] = fb->pitches[i];
724 	}
725 
726 	tegra_dc_setup_window(p, &window);
727 }
728 
729 static const struct drm_plane_helper_funcs tegra_plane_helper_funcs = {
730 	.atomic_check = tegra_plane_atomic_check,
731 	.atomic_disable = tegra_plane_atomic_disable,
732 	.atomic_update = tegra_plane_atomic_update,
733 };
734 
735 static unsigned long tegra_plane_get_possible_crtcs(struct drm_device *drm)
736 {
737 	/*
738 	 * Ideally this would use drm_crtc_mask(), but that would require the
739 	 * CRTC to already be in the mode_config's list of CRTCs. However, it
740 	 * will only be added to that list in the drm_crtc_init_with_planes()
741 	 * (in tegra_dc_init()), which in turn requires registration of these
742 	 * planes. So we have ourselves a nice little chicken and egg problem
743 	 * here.
744 	 *
745 	 * We work around this by manually creating the mask from the number
746 	 * of CRTCs that have been registered, and should therefore always be
747 	 * the same as drm_crtc_index() after registration.
748 	 */
749 	return 1 << drm->mode_config.num_crtc;
750 }
751 
752 static struct drm_plane *tegra_primary_plane_create(struct drm_device *drm,
753 						    struct tegra_dc *dc)
754 {
755 	unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
756 	enum drm_plane_type type = DRM_PLANE_TYPE_PRIMARY;
757 	struct tegra_plane *plane;
758 	unsigned int num_formats;
759 	const u64 *modifiers;
760 	const u32 *formats;
761 	int err;
762 
763 	plane = kzalloc(sizeof(*plane), GFP_KERNEL);
764 	if (!plane)
765 		return ERR_PTR(-ENOMEM);
766 
767 	/* Always use window A as primary window */
768 	plane->offset = 0xa00;
769 	plane->index = 0;
770 	plane->dc = dc;
771 
772 	num_formats = dc->soc->num_primary_formats;
773 	formats = dc->soc->primary_formats;
774 	modifiers = dc->soc->modifiers;
775 
776 	err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
777 				       &tegra_plane_funcs, formats,
778 				       num_formats, modifiers, type, NULL);
779 	if (err < 0) {
780 		kfree(plane);
781 		return ERR_PTR(err);
782 	}
783 
784 	drm_plane_helper_add(&plane->base, &tegra_plane_helper_funcs);
785 	drm_plane_create_zpos_property(&plane->base, plane->index, 0, 255);
786 
787 	err = drm_plane_create_rotation_property(&plane->base,
788 						 DRM_MODE_ROTATE_0,
789 						 DRM_MODE_ROTATE_0 |
790 						 DRM_MODE_REFLECT_Y);
791 	if (err < 0)
792 		dev_err(dc->dev, "failed to create rotation property: %d\n",
793 			err);
794 
795 	return &plane->base;
796 }
797 
798 static const u32 tegra_cursor_plane_formats[] = {
799 	DRM_FORMAT_RGBA8888,
800 };
801 
802 static int tegra_cursor_atomic_check(struct drm_plane *plane,
803 				     struct drm_plane_state *state)
804 {
805 	struct tegra_plane *tegra = to_tegra_plane(plane);
806 	int err;
807 
808 	/* no need for further checks if the plane is being disabled */
809 	if (!state->crtc)
810 		return 0;
811 
812 	/* scaling not supported for cursor */
813 	if ((state->src_w >> 16 != state->crtc_w) ||
814 	    (state->src_h >> 16 != state->crtc_h))
815 		return -EINVAL;
816 
817 	/* only square cursors supported */
818 	if (state->src_w != state->src_h)
819 		return -EINVAL;
820 
821 	if (state->crtc_w != 32 && state->crtc_w != 64 &&
822 	    state->crtc_w != 128 && state->crtc_w != 256)
823 		return -EINVAL;
824 
825 	err = tegra_plane_state_add(tegra, state);
826 	if (err < 0)
827 		return err;
828 
829 	return 0;
830 }
831 
832 static void tegra_cursor_atomic_update(struct drm_plane *plane,
833 				       struct drm_plane_state *old_state)
834 {
835 	struct tegra_bo *bo = tegra_fb_get_plane(plane->state->fb, 0);
836 	struct tegra_dc *dc = to_tegra_dc(plane->state->crtc);
837 	struct drm_plane_state *state = plane->state;
838 	u32 value = CURSOR_CLIP_DISPLAY;
839 
840 	/* rien ne va plus */
841 	if (!plane->state->crtc || !plane->state->fb)
842 		return;
843 
844 	switch (state->crtc_w) {
845 	case 32:
846 		value |= CURSOR_SIZE_32x32;
847 		break;
848 
849 	case 64:
850 		value |= CURSOR_SIZE_64x64;
851 		break;
852 
853 	case 128:
854 		value |= CURSOR_SIZE_128x128;
855 		break;
856 
857 	case 256:
858 		value |= CURSOR_SIZE_256x256;
859 		break;
860 
861 	default:
862 		WARN(1, "cursor size %ux%u not supported\n", state->crtc_w,
863 		     state->crtc_h);
864 		return;
865 	}
866 
867 	value |= (bo->paddr >> 10) & 0x3fffff;
868 	tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR);
869 
870 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
871 	value = (bo->paddr >> 32) & 0x3;
872 	tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR_HI);
873 #endif
874 
875 	/* enable cursor and set blend mode */
876 	value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
877 	value |= CURSOR_ENABLE;
878 	tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
879 
880 	value = tegra_dc_readl(dc, DC_DISP_BLEND_CURSOR_CONTROL);
881 	value &= ~CURSOR_DST_BLEND_MASK;
882 	value &= ~CURSOR_SRC_BLEND_MASK;
883 	value |= CURSOR_MODE_NORMAL;
884 	value |= CURSOR_DST_BLEND_NEG_K1_TIMES_SRC;
885 	value |= CURSOR_SRC_BLEND_K1_TIMES_SRC;
886 	value |= CURSOR_ALPHA;
887 	tegra_dc_writel(dc, value, DC_DISP_BLEND_CURSOR_CONTROL);
888 
889 	/* position the cursor */
890 	value = (state->crtc_y & 0x3fff) << 16 | (state->crtc_x & 0x3fff);
891 	tegra_dc_writel(dc, value, DC_DISP_CURSOR_POSITION);
892 }
893 
894 static void tegra_cursor_atomic_disable(struct drm_plane *plane,
895 					struct drm_plane_state *old_state)
896 {
897 	struct tegra_dc *dc;
898 	u32 value;
899 
900 	/* rien ne va plus */
901 	if (!old_state || !old_state->crtc)
902 		return;
903 
904 	dc = to_tegra_dc(old_state->crtc);
905 
906 	value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
907 	value &= ~CURSOR_ENABLE;
908 	tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
909 }
910 
911 static const struct drm_plane_helper_funcs tegra_cursor_plane_helper_funcs = {
912 	.atomic_check = tegra_cursor_atomic_check,
913 	.atomic_update = tegra_cursor_atomic_update,
914 	.atomic_disable = tegra_cursor_atomic_disable,
915 };
916 
917 static struct drm_plane *tegra_dc_cursor_plane_create(struct drm_device *drm,
918 						      struct tegra_dc *dc)
919 {
920 	unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
921 	struct tegra_plane *plane;
922 	unsigned int num_formats;
923 	const u32 *formats;
924 	int err;
925 
926 	plane = kzalloc(sizeof(*plane), GFP_KERNEL);
927 	if (!plane)
928 		return ERR_PTR(-ENOMEM);
929 
930 	/*
931 	 * This index is kind of fake. The cursor isn't a regular plane, but
932 	 * its update and activation request bits in DC_CMD_STATE_CONTROL do
933 	 * use the same programming. Setting this fake index here allows the
934 	 * code in tegra_add_plane_state() to do the right thing without the
935 	 * need to special-casing the cursor plane.
936 	 */
937 	plane->index = 6;
938 	plane->dc = dc;
939 
940 	num_formats = ARRAY_SIZE(tegra_cursor_plane_formats);
941 	formats = tegra_cursor_plane_formats;
942 
943 	err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
944 				       &tegra_plane_funcs, formats,
945 				       num_formats, NULL,
946 				       DRM_PLANE_TYPE_CURSOR, NULL);
947 	if (err < 0) {
948 		kfree(plane);
949 		return ERR_PTR(err);
950 	}
951 
952 	drm_plane_helper_add(&plane->base, &tegra_cursor_plane_helper_funcs);
953 
954 	return &plane->base;
955 }
956 
957 static const u32 tegra20_overlay_formats[] = {
958 	DRM_FORMAT_ARGB4444,
959 	DRM_FORMAT_ARGB1555,
960 	DRM_FORMAT_RGB565,
961 	DRM_FORMAT_RGBA5551,
962 	DRM_FORMAT_ABGR8888,
963 	DRM_FORMAT_ARGB8888,
964 	/* non-native formats */
965 	DRM_FORMAT_XRGB1555,
966 	DRM_FORMAT_RGBX5551,
967 	DRM_FORMAT_XBGR8888,
968 	DRM_FORMAT_XRGB8888,
969 	/* planar formats */
970 	DRM_FORMAT_UYVY,
971 	DRM_FORMAT_YUYV,
972 	DRM_FORMAT_YUV420,
973 	DRM_FORMAT_YUV422,
974 };
975 
976 static const u32 tegra114_overlay_formats[] = {
977 	DRM_FORMAT_ARGB4444,
978 	DRM_FORMAT_ARGB1555,
979 	DRM_FORMAT_RGB565,
980 	DRM_FORMAT_RGBA5551,
981 	DRM_FORMAT_ABGR8888,
982 	DRM_FORMAT_ARGB8888,
983 	/* new on Tegra114 */
984 	DRM_FORMAT_ABGR4444,
985 	DRM_FORMAT_ABGR1555,
986 	DRM_FORMAT_BGRA5551,
987 	DRM_FORMAT_XRGB1555,
988 	DRM_FORMAT_RGBX5551,
989 	DRM_FORMAT_XBGR1555,
990 	DRM_FORMAT_BGRX5551,
991 	DRM_FORMAT_BGR565,
992 	DRM_FORMAT_BGRA8888,
993 	DRM_FORMAT_RGBA8888,
994 	DRM_FORMAT_XRGB8888,
995 	DRM_FORMAT_XBGR8888,
996 	/* planar formats */
997 	DRM_FORMAT_UYVY,
998 	DRM_FORMAT_YUYV,
999 	DRM_FORMAT_YUV420,
1000 	DRM_FORMAT_YUV422,
1001 };
1002 
1003 static const u32 tegra124_overlay_formats[] = {
1004 	DRM_FORMAT_ARGB4444,
1005 	DRM_FORMAT_ARGB1555,
1006 	DRM_FORMAT_RGB565,
1007 	DRM_FORMAT_RGBA5551,
1008 	DRM_FORMAT_ABGR8888,
1009 	DRM_FORMAT_ARGB8888,
1010 	/* new on Tegra114 */
1011 	DRM_FORMAT_ABGR4444,
1012 	DRM_FORMAT_ABGR1555,
1013 	DRM_FORMAT_BGRA5551,
1014 	DRM_FORMAT_XRGB1555,
1015 	DRM_FORMAT_RGBX5551,
1016 	DRM_FORMAT_XBGR1555,
1017 	DRM_FORMAT_BGRX5551,
1018 	DRM_FORMAT_BGR565,
1019 	DRM_FORMAT_BGRA8888,
1020 	DRM_FORMAT_RGBA8888,
1021 	DRM_FORMAT_XRGB8888,
1022 	DRM_FORMAT_XBGR8888,
1023 	/* new on Tegra124 */
1024 	DRM_FORMAT_RGBX8888,
1025 	DRM_FORMAT_BGRX8888,
1026 	/* planar formats */
1027 	DRM_FORMAT_UYVY,
1028 	DRM_FORMAT_YUYV,
1029 	DRM_FORMAT_YUV420,
1030 	DRM_FORMAT_YUV422,
1031 };
1032 
1033 static struct drm_plane *tegra_dc_overlay_plane_create(struct drm_device *drm,
1034 						       struct tegra_dc *dc,
1035 						       unsigned int index,
1036 						       bool cursor)
1037 {
1038 	unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
1039 	struct tegra_plane *plane;
1040 	unsigned int num_formats;
1041 	enum drm_plane_type type;
1042 	const u32 *formats;
1043 	int err;
1044 
1045 	plane = kzalloc(sizeof(*plane), GFP_KERNEL);
1046 	if (!plane)
1047 		return ERR_PTR(-ENOMEM);
1048 
1049 	plane->offset = 0xa00 + 0x200 * index;
1050 	plane->index = index;
1051 	plane->dc = dc;
1052 
1053 	num_formats = dc->soc->num_overlay_formats;
1054 	formats = dc->soc->overlay_formats;
1055 
1056 	if (!cursor)
1057 		type = DRM_PLANE_TYPE_OVERLAY;
1058 	else
1059 		type = DRM_PLANE_TYPE_CURSOR;
1060 
1061 	err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
1062 				       &tegra_plane_funcs, formats,
1063 				       num_formats, NULL, type, NULL);
1064 	if (err < 0) {
1065 		kfree(plane);
1066 		return ERR_PTR(err);
1067 	}
1068 
1069 	drm_plane_helper_add(&plane->base, &tegra_plane_helper_funcs);
1070 	drm_plane_create_zpos_property(&plane->base, plane->index, 0, 255);
1071 
1072 	err = drm_plane_create_rotation_property(&plane->base,
1073 						 DRM_MODE_ROTATE_0,
1074 						 DRM_MODE_ROTATE_0 |
1075 						 DRM_MODE_REFLECT_Y);
1076 	if (err < 0)
1077 		dev_err(dc->dev, "failed to create rotation property: %d\n",
1078 			err);
1079 
1080 	return &plane->base;
1081 }
1082 
1083 static struct drm_plane *tegra_dc_add_shared_planes(struct drm_device *drm,
1084 						    struct tegra_dc *dc)
1085 {
1086 	struct drm_plane *plane, *primary = NULL;
1087 	unsigned int i, j;
1088 
1089 	for (i = 0; i < dc->soc->num_wgrps; i++) {
1090 		const struct tegra_windowgroup_soc *wgrp = &dc->soc->wgrps[i];
1091 
1092 		if (wgrp->dc == dc->pipe) {
1093 			for (j = 0; j < wgrp->num_windows; j++) {
1094 				unsigned int index = wgrp->windows[j];
1095 
1096 				plane = tegra_shared_plane_create(drm, dc,
1097 								  wgrp->index,
1098 								  index);
1099 				if (IS_ERR(plane))
1100 					return plane;
1101 
1102 				/*
1103 				 * Choose the first shared plane owned by this
1104 				 * head as the primary plane.
1105 				 */
1106 				if (!primary) {
1107 					plane->type = DRM_PLANE_TYPE_PRIMARY;
1108 					primary = plane;
1109 				}
1110 			}
1111 		}
1112 	}
1113 
1114 	return primary;
1115 }
1116 
1117 static struct drm_plane *tegra_dc_add_planes(struct drm_device *drm,
1118 					     struct tegra_dc *dc)
1119 {
1120 	struct drm_plane *planes[2], *primary;
1121 	unsigned int planes_num;
1122 	unsigned int i;
1123 	int err;
1124 
1125 	primary = tegra_primary_plane_create(drm, dc);
1126 	if (IS_ERR(primary))
1127 		return primary;
1128 
1129 	if (dc->soc->supports_cursor)
1130 		planes_num = 2;
1131 	else
1132 		planes_num = 1;
1133 
1134 	for (i = 0; i < planes_num; i++) {
1135 		planes[i] = tegra_dc_overlay_plane_create(drm, dc, 1 + i,
1136 							  false);
1137 		if (IS_ERR(planes[i])) {
1138 			err = PTR_ERR(planes[i]);
1139 
1140 			while (i--)
1141 				tegra_plane_funcs.destroy(planes[i]);
1142 
1143 			tegra_plane_funcs.destroy(primary);
1144 			return ERR_PTR(err);
1145 		}
1146 	}
1147 
1148 	return primary;
1149 }
1150 
1151 static void tegra_dc_destroy(struct drm_crtc *crtc)
1152 {
1153 	drm_crtc_cleanup(crtc);
1154 }
1155 
1156 static void tegra_crtc_reset(struct drm_crtc *crtc)
1157 {
1158 	struct tegra_dc_state *state;
1159 
1160 	if (crtc->state)
1161 		__drm_atomic_helper_crtc_destroy_state(crtc->state);
1162 
1163 	kfree(crtc->state);
1164 	crtc->state = NULL;
1165 
1166 	state = kzalloc(sizeof(*state), GFP_KERNEL);
1167 	if (state) {
1168 		crtc->state = &state->base;
1169 		crtc->state->crtc = crtc;
1170 	}
1171 
1172 	drm_crtc_vblank_reset(crtc);
1173 }
1174 
1175 static struct drm_crtc_state *
1176 tegra_crtc_atomic_duplicate_state(struct drm_crtc *crtc)
1177 {
1178 	struct tegra_dc_state *state = to_dc_state(crtc->state);
1179 	struct tegra_dc_state *copy;
1180 
1181 	copy = kmalloc(sizeof(*copy), GFP_KERNEL);
1182 	if (!copy)
1183 		return NULL;
1184 
1185 	__drm_atomic_helper_crtc_duplicate_state(crtc, &copy->base);
1186 	copy->clk = state->clk;
1187 	copy->pclk = state->pclk;
1188 	copy->div = state->div;
1189 	copy->planes = state->planes;
1190 
1191 	return &copy->base;
1192 }
1193 
1194 static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc,
1195 					    struct drm_crtc_state *state)
1196 {
1197 	__drm_atomic_helper_crtc_destroy_state(state);
1198 	kfree(state);
1199 }
1200 
1201 #define DEBUGFS_REG32(_name) { .name = #_name, .offset = _name }
1202 
1203 static const struct debugfs_reg32 tegra_dc_regs[] = {
1204 	DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT),
1205 	DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT_CNTRL),
1206 	DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT_ERROR),
1207 	DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT),
1208 	DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT_CNTRL),
1209 	DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT_ERROR),
1210 	DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT),
1211 	DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT_CNTRL),
1212 	DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT_ERROR),
1213 	DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT),
1214 	DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT_CNTRL),
1215 	DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT_ERROR),
1216 	DEBUGFS_REG32(DC_CMD_CONT_SYNCPT_VSYNC),
1217 	DEBUGFS_REG32(DC_CMD_DISPLAY_COMMAND_OPTION0),
1218 	DEBUGFS_REG32(DC_CMD_DISPLAY_COMMAND),
1219 	DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE),
1220 	DEBUGFS_REG32(DC_CMD_DISPLAY_POWER_CONTROL),
1221 	DEBUGFS_REG32(DC_CMD_INT_STATUS),
1222 	DEBUGFS_REG32(DC_CMD_INT_MASK),
1223 	DEBUGFS_REG32(DC_CMD_INT_ENABLE),
1224 	DEBUGFS_REG32(DC_CMD_INT_TYPE),
1225 	DEBUGFS_REG32(DC_CMD_INT_POLARITY),
1226 	DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE1),
1227 	DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE2),
1228 	DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE3),
1229 	DEBUGFS_REG32(DC_CMD_STATE_ACCESS),
1230 	DEBUGFS_REG32(DC_CMD_STATE_CONTROL),
1231 	DEBUGFS_REG32(DC_CMD_DISPLAY_WINDOW_HEADER),
1232 	DEBUGFS_REG32(DC_CMD_REG_ACT_CONTROL),
1233 	DEBUGFS_REG32(DC_COM_CRC_CONTROL),
1234 	DEBUGFS_REG32(DC_COM_CRC_CHECKSUM),
1235 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(0)),
1236 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(1)),
1237 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(2)),
1238 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(3)),
1239 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(0)),
1240 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(1)),
1241 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(2)),
1242 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(3)),
1243 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(0)),
1244 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(1)),
1245 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(2)),
1246 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(3)),
1247 	DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(0)),
1248 	DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(1)),
1249 	DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(2)),
1250 	DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(3)),
1251 	DEBUGFS_REG32(DC_COM_PIN_INPUT_DATA(0)),
1252 	DEBUGFS_REG32(DC_COM_PIN_INPUT_DATA(1)),
1253 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(0)),
1254 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(1)),
1255 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(2)),
1256 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(3)),
1257 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(4)),
1258 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(5)),
1259 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(6)),
1260 	DEBUGFS_REG32(DC_COM_PIN_MISC_CONTROL),
1261 	DEBUGFS_REG32(DC_COM_PIN_PM0_CONTROL),
1262 	DEBUGFS_REG32(DC_COM_PIN_PM0_DUTY_CYCLE),
1263 	DEBUGFS_REG32(DC_COM_PIN_PM1_CONTROL),
1264 	DEBUGFS_REG32(DC_COM_PIN_PM1_DUTY_CYCLE),
1265 	DEBUGFS_REG32(DC_COM_SPI_CONTROL),
1266 	DEBUGFS_REG32(DC_COM_SPI_START_BYTE),
1267 	DEBUGFS_REG32(DC_COM_HSPI_WRITE_DATA_AB),
1268 	DEBUGFS_REG32(DC_COM_HSPI_WRITE_DATA_CD),
1269 	DEBUGFS_REG32(DC_COM_HSPI_CS_DC),
1270 	DEBUGFS_REG32(DC_COM_SCRATCH_REGISTER_A),
1271 	DEBUGFS_REG32(DC_COM_SCRATCH_REGISTER_B),
1272 	DEBUGFS_REG32(DC_COM_GPIO_CTRL),
1273 	DEBUGFS_REG32(DC_COM_GPIO_DEBOUNCE_COUNTER),
1274 	DEBUGFS_REG32(DC_COM_CRC_CHECKSUM_LATCHED),
1275 	DEBUGFS_REG32(DC_DISP_DISP_SIGNAL_OPTIONS0),
1276 	DEBUGFS_REG32(DC_DISP_DISP_SIGNAL_OPTIONS1),
1277 	DEBUGFS_REG32(DC_DISP_DISP_WIN_OPTIONS),
1278 	DEBUGFS_REG32(DC_DISP_DISP_MEM_HIGH_PRIORITY),
1279 	DEBUGFS_REG32(DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER),
1280 	DEBUGFS_REG32(DC_DISP_DISP_TIMING_OPTIONS),
1281 	DEBUGFS_REG32(DC_DISP_REF_TO_SYNC),
1282 	DEBUGFS_REG32(DC_DISP_SYNC_WIDTH),
1283 	DEBUGFS_REG32(DC_DISP_BACK_PORCH),
1284 	DEBUGFS_REG32(DC_DISP_ACTIVE),
1285 	DEBUGFS_REG32(DC_DISP_FRONT_PORCH),
1286 	DEBUGFS_REG32(DC_DISP_H_PULSE0_CONTROL),
1287 	DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_A),
1288 	DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_B),
1289 	DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_C),
1290 	DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_D),
1291 	DEBUGFS_REG32(DC_DISP_H_PULSE1_CONTROL),
1292 	DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_A),
1293 	DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_B),
1294 	DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_C),
1295 	DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_D),
1296 	DEBUGFS_REG32(DC_DISP_H_PULSE2_CONTROL),
1297 	DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_A),
1298 	DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_B),
1299 	DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_C),
1300 	DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_D),
1301 	DEBUGFS_REG32(DC_DISP_V_PULSE0_CONTROL),
1302 	DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_A),
1303 	DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_B),
1304 	DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_C),
1305 	DEBUGFS_REG32(DC_DISP_V_PULSE1_CONTROL),
1306 	DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_A),
1307 	DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_B),
1308 	DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_C),
1309 	DEBUGFS_REG32(DC_DISP_V_PULSE2_CONTROL),
1310 	DEBUGFS_REG32(DC_DISP_V_PULSE2_POSITION_A),
1311 	DEBUGFS_REG32(DC_DISP_V_PULSE3_CONTROL),
1312 	DEBUGFS_REG32(DC_DISP_V_PULSE3_POSITION_A),
1313 	DEBUGFS_REG32(DC_DISP_M0_CONTROL),
1314 	DEBUGFS_REG32(DC_DISP_M1_CONTROL),
1315 	DEBUGFS_REG32(DC_DISP_DI_CONTROL),
1316 	DEBUGFS_REG32(DC_DISP_PP_CONTROL),
1317 	DEBUGFS_REG32(DC_DISP_PP_SELECT_A),
1318 	DEBUGFS_REG32(DC_DISP_PP_SELECT_B),
1319 	DEBUGFS_REG32(DC_DISP_PP_SELECT_C),
1320 	DEBUGFS_REG32(DC_DISP_PP_SELECT_D),
1321 	DEBUGFS_REG32(DC_DISP_DISP_CLOCK_CONTROL),
1322 	DEBUGFS_REG32(DC_DISP_DISP_INTERFACE_CONTROL),
1323 	DEBUGFS_REG32(DC_DISP_DISP_COLOR_CONTROL),
1324 	DEBUGFS_REG32(DC_DISP_SHIFT_CLOCK_OPTIONS),
1325 	DEBUGFS_REG32(DC_DISP_DATA_ENABLE_OPTIONS),
1326 	DEBUGFS_REG32(DC_DISP_SERIAL_INTERFACE_OPTIONS),
1327 	DEBUGFS_REG32(DC_DISP_LCD_SPI_OPTIONS),
1328 	DEBUGFS_REG32(DC_DISP_BORDER_COLOR),
1329 	DEBUGFS_REG32(DC_DISP_COLOR_KEY0_LOWER),
1330 	DEBUGFS_REG32(DC_DISP_COLOR_KEY0_UPPER),
1331 	DEBUGFS_REG32(DC_DISP_COLOR_KEY1_LOWER),
1332 	DEBUGFS_REG32(DC_DISP_COLOR_KEY1_UPPER),
1333 	DEBUGFS_REG32(DC_DISP_CURSOR_FOREGROUND),
1334 	DEBUGFS_REG32(DC_DISP_CURSOR_BACKGROUND),
1335 	DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR),
1336 	DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR_NS),
1337 	DEBUGFS_REG32(DC_DISP_CURSOR_POSITION),
1338 	DEBUGFS_REG32(DC_DISP_CURSOR_POSITION_NS),
1339 	DEBUGFS_REG32(DC_DISP_INIT_SEQ_CONTROL),
1340 	DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_A),
1341 	DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_B),
1342 	DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_C),
1343 	DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_D),
1344 	DEBUGFS_REG32(DC_DISP_DC_MCCIF_FIFOCTRL),
1345 	DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY0A_HYST),
1346 	DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY0B_HYST),
1347 	DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY1A_HYST),
1348 	DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY1B_HYST),
1349 	DEBUGFS_REG32(DC_DISP_DAC_CRT_CTRL),
1350 	DEBUGFS_REG32(DC_DISP_DISP_MISC_CONTROL),
1351 	DEBUGFS_REG32(DC_DISP_SD_CONTROL),
1352 	DEBUGFS_REG32(DC_DISP_SD_CSC_COEFF),
1353 	DEBUGFS_REG32(DC_DISP_SD_LUT(0)),
1354 	DEBUGFS_REG32(DC_DISP_SD_LUT(1)),
1355 	DEBUGFS_REG32(DC_DISP_SD_LUT(2)),
1356 	DEBUGFS_REG32(DC_DISP_SD_LUT(3)),
1357 	DEBUGFS_REG32(DC_DISP_SD_LUT(4)),
1358 	DEBUGFS_REG32(DC_DISP_SD_LUT(5)),
1359 	DEBUGFS_REG32(DC_DISP_SD_LUT(6)),
1360 	DEBUGFS_REG32(DC_DISP_SD_LUT(7)),
1361 	DEBUGFS_REG32(DC_DISP_SD_LUT(8)),
1362 	DEBUGFS_REG32(DC_DISP_SD_FLICKER_CONTROL),
1363 	DEBUGFS_REG32(DC_DISP_DC_PIXEL_COUNT),
1364 	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(0)),
1365 	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(1)),
1366 	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(2)),
1367 	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(3)),
1368 	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(4)),
1369 	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(5)),
1370 	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(6)),
1371 	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(7)),
1372 	DEBUGFS_REG32(DC_DISP_SD_BL_TF(0)),
1373 	DEBUGFS_REG32(DC_DISP_SD_BL_TF(1)),
1374 	DEBUGFS_REG32(DC_DISP_SD_BL_TF(2)),
1375 	DEBUGFS_REG32(DC_DISP_SD_BL_TF(3)),
1376 	DEBUGFS_REG32(DC_DISP_SD_BL_CONTROL),
1377 	DEBUGFS_REG32(DC_DISP_SD_HW_K_VALUES),
1378 	DEBUGFS_REG32(DC_DISP_SD_MAN_K_VALUES),
1379 	DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR_HI),
1380 	DEBUGFS_REG32(DC_DISP_BLEND_CURSOR_CONTROL),
1381 	DEBUGFS_REG32(DC_WIN_WIN_OPTIONS),
1382 	DEBUGFS_REG32(DC_WIN_BYTE_SWAP),
1383 	DEBUGFS_REG32(DC_WIN_BUFFER_CONTROL),
1384 	DEBUGFS_REG32(DC_WIN_COLOR_DEPTH),
1385 	DEBUGFS_REG32(DC_WIN_POSITION),
1386 	DEBUGFS_REG32(DC_WIN_SIZE),
1387 	DEBUGFS_REG32(DC_WIN_PRESCALED_SIZE),
1388 	DEBUGFS_REG32(DC_WIN_H_INITIAL_DDA),
1389 	DEBUGFS_REG32(DC_WIN_V_INITIAL_DDA),
1390 	DEBUGFS_REG32(DC_WIN_DDA_INC),
1391 	DEBUGFS_REG32(DC_WIN_LINE_STRIDE),
1392 	DEBUGFS_REG32(DC_WIN_BUF_STRIDE),
1393 	DEBUGFS_REG32(DC_WIN_UV_BUF_STRIDE),
1394 	DEBUGFS_REG32(DC_WIN_BUFFER_ADDR_MODE),
1395 	DEBUGFS_REG32(DC_WIN_DV_CONTROL),
1396 	DEBUGFS_REG32(DC_WIN_BLEND_NOKEY),
1397 	DEBUGFS_REG32(DC_WIN_BLEND_1WIN),
1398 	DEBUGFS_REG32(DC_WIN_BLEND_2WIN_X),
1399 	DEBUGFS_REG32(DC_WIN_BLEND_2WIN_Y),
1400 	DEBUGFS_REG32(DC_WIN_BLEND_3WIN_XY),
1401 	DEBUGFS_REG32(DC_WIN_HP_FETCH_CONTROL),
1402 	DEBUGFS_REG32(DC_WINBUF_START_ADDR),
1403 	DEBUGFS_REG32(DC_WINBUF_START_ADDR_NS),
1404 	DEBUGFS_REG32(DC_WINBUF_START_ADDR_U),
1405 	DEBUGFS_REG32(DC_WINBUF_START_ADDR_U_NS),
1406 	DEBUGFS_REG32(DC_WINBUF_START_ADDR_V),
1407 	DEBUGFS_REG32(DC_WINBUF_START_ADDR_V_NS),
1408 	DEBUGFS_REG32(DC_WINBUF_ADDR_H_OFFSET),
1409 	DEBUGFS_REG32(DC_WINBUF_ADDR_H_OFFSET_NS),
1410 	DEBUGFS_REG32(DC_WINBUF_ADDR_V_OFFSET),
1411 	DEBUGFS_REG32(DC_WINBUF_ADDR_V_OFFSET_NS),
1412 	DEBUGFS_REG32(DC_WINBUF_UFLOW_STATUS),
1413 	DEBUGFS_REG32(DC_WINBUF_AD_UFLOW_STATUS),
1414 	DEBUGFS_REG32(DC_WINBUF_BD_UFLOW_STATUS),
1415 	DEBUGFS_REG32(DC_WINBUF_CD_UFLOW_STATUS),
1416 };
1417 
1418 static int tegra_dc_show_regs(struct seq_file *s, void *data)
1419 {
1420 	struct drm_info_node *node = s->private;
1421 	struct tegra_dc *dc = node->info_ent->data;
1422 	unsigned int i;
1423 	int err = 0;
1424 
1425 	drm_modeset_lock(&dc->base.mutex, NULL);
1426 
1427 	if (!dc->base.state->active) {
1428 		err = -EBUSY;
1429 		goto unlock;
1430 	}
1431 
1432 	for (i = 0; i < ARRAY_SIZE(tegra_dc_regs); i++) {
1433 		unsigned int offset = tegra_dc_regs[i].offset;
1434 
1435 		seq_printf(s, "%-40s %#05x %08x\n", tegra_dc_regs[i].name,
1436 			   offset, tegra_dc_readl(dc, offset));
1437 	}
1438 
1439 unlock:
1440 	drm_modeset_unlock(&dc->base.mutex);
1441 	return err;
1442 }
1443 
1444 static int tegra_dc_show_crc(struct seq_file *s, void *data)
1445 {
1446 	struct drm_info_node *node = s->private;
1447 	struct tegra_dc *dc = node->info_ent->data;
1448 	int err = 0;
1449 	u32 value;
1450 
1451 	drm_modeset_lock(&dc->base.mutex, NULL);
1452 
1453 	if (!dc->base.state->active) {
1454 		err = -EBUSY;
1455 		goto unlock;
1456 	}
1457 
1458 	value = DC_COM_CRC_CONTROL_ACTIVE_DATA | DC_COM_CRC_CONTROL_ENABLE;
1459 	tegra_dc_writel(dc, value, DC_COM_CRC_CONTROL);
1460 	tegra_dc_commit(dc);
1461 
1462 	drm_crtc_wait_one_vblank(&dc->base);
1463 	drm_crtc_wait_one_vblank(&dc->base);
1464 
1465 	value = tegra_dc_readl(dc, DC_COM_CRC_CHECKSUM);
1466 	seq_printf(s, "%08x\n", value);
1467 
1468 	tegra_dc_writel(dc, 0, DC_COM_CRC_CONTROL);
1469 
1470 unlock:
1471 	drm_modeset_unlock(&dc->base.mutex);
1472 	return err;
1473 }
1474 
1475 static int tegra_dc_show_stats(struct seq_file *s, void *data)
1476 {
1477 	struct drm_info_node *node = s->private;
1478 	struct tegra_dc *dc = node->info_ent->data;
1479 
1480 	seq_printf(s, "frames: %lu\n", dc->stats.frames);
1481 	seq_printf(s, "vblank: %lu\n", dc->stats.vblank);
1482 	seq_printf(s, "underflow: %lu\n", dc->stats.underflow);
1483 	seq_printf(s, "overflow: %lu\n", dc->stats.overflow);
1484 
1485 	return 0;
1486 }
1487 
1488 static struct drm_info_list debugfs_files[] = {
1489 	{ "regs", tegra_dc_show_regs, 0, NULL },
1490 	{ "crc", tegra_dc_show_crc, 0, NULL },
1491 	{ "stats", tegra_dc_show_stats, 0, NULL },
1492 };
1493 
1494 static int tegra_dc_late_register(struct drm_crtc *crtc)
1495 {
1496 	unsigned int i, count = ARRAY_SIZE(debugfs_files);
1497 	struct drm_minor *minor = crtc->dev->primary;
1498 	struct dentry *root;
1499 	struct tegra_dc *dc = to_tegra_dc(crtc);
1500 	int err;
1501 
1502 #ifdef CONFIG_DEBUG_FS
1503 	root = crtc->debugfs_entry;
1504 #else
1505 	root = NULL;
1506 #endif
1507 
1508 	dc->debugfs_files = kmemdup(debugfs_files, sizeof(debugfs_files),
1509 				    GFP_KERNEL);
1510 	if (!dc->debugfs_files)
1511 		return -ENOMEM;
1512 
1513 	for (i = 0; i < count; i++)
1514 		dc->debugfs_files[i].data = dc;
1515 
1516 	err = drm_debugfs_create_files(dc->debugfs_files, count, root, minor);
1517 	if (err < 0)
1518 		goto free;
1519 
1520 	return 0;
1521 
1522 free:
1523 	kfree(dc->debugfs_files);
1524 	dc->debugfs_files = NULL;
1525 
1526 	return err;
1527 }
1528 
1529 static void tegra_dc_early_unregister(struct drm_crtc *crtc)
1530 {
1531 	unsigned int count = ARRAY_SIZE(debugfs_files);
1532 	struct drm_minor *minor = crtc->dev->primary;
1533 	struct tegra_dc *dc = to_tegra_dc(crtc);
1534 
1535 	drm_debugfs_remove_files(dc->debugfs_files, count, minor);
1536 	kfree(dc->debugfs_files);
1537 	dc->debugfs_files = NULL;
1538 }
1539 
1540 static u32 tegra_dc_get_vblank_counter(struct drm_crtc *crtc)
1541 {
1542 	struct tegra_dc *dc = to_tegra_dc(crtc);
1543 
1544 	/* XXX vblank syncpoints don't work with nvdisplay yet */
1545 	if (dc->syncpt && !dc->soc->has_nvdisplay)
1546 		return host1x_syncpt_read(dc->syncpt);
1547 
1548 	/* fallback to software emulated VBLANK counter */
1549 	return (u32)drm_crtc_vblank_count(&dc->base);
1550 }
1551 
1552 static int tegra_dc_enable_vblank(struct drm_crtc *crtc)
1553 {
1554 	struct tegra_dc *dc = to_tegra_dc(crtc);
1555 	u32 value;
1556 
1557 	value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
1558 	value |= VBLANK_INT;
1559 	tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1560 
1561 	return 0;
1562 }
1563 
1564 static void tegra_dc_disable_vblank(struct drm_crtc *crtc)
1565 {
1566 	struct tegra_dc *dc = to_tegra_dc(crtc);
1567 	u32 value;
1568 
1569 	value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
1570 	value &= ~VBLANK_INT;
1571 	tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1572 }
1573 
1574 static const struct drm_crtc_funcs tegra_crtc_funcs = {
1575 	.page_flip = drm_atomic_helper_page_flip,
1576 	.set_config = drm_atomic_helper_set_config,
1577 	.destroy = tegra_dc_destroy,
1578 	.reset = tegra_crtc_reset,
1579 	.atomic_duplicate_state = tegra_crtc_atomic_duplicate_state,
1580 	.atomic_destroy_state = tegra_crtc_atomic_destroy_state,
1581 	.late_register = tegra_dc_late_register,
1582 	.early_unregister = tegra_dc_early_unregister,
1583 	.get_vblank_counter = tegra_dc_get_vblank_counter,
1584 	.enable_vblank = tegra_dc_enable_vblank,
1585 	.disable_vblank = tegra_dc_disable_vblank,
1586 };
1587 
1588 static int tegra_dc_set_timings(struct tegra_dc *dc,
1589 				struct drm_display_mode *mode)
1590 {
1591 	unsigned int h_ref_to_sync = 1;
1592 	unsigned int v_ref_to_sync = 1;
1593 	unsigned long value;
1594 
1595 	if (!dc->soc->has_nvdisplay) {
1596 		tegra_dc_writel(dc, 0x0, DC_DISP_DISP_TIMING_OPTIONS);
1597 
1598 		value = (v_ref_to_sync << 16) | h_ref_to_sync;
1599 		tegra_dc_writel(dc, value, DC_DISP_REF_TO_SYNC);
1600 	}
1601 
1602 	value = ((mode->vsync_end - mode->vsync_start) << 16) |
1603 		((mode->hsync_end - mode->hsync_start) <<  0);
1604 	tegra_dc_writel(dc, value, DC_DISP_SYNC_WIDTH);
1605 
1606 	value = ((mode->vtotal - mode->vsync_end) << 16) |
1607 		((mode->htotal - mode->hsync_end) <<  0);
1608 	tegra_dc_writel(dc, value, DC_DISP_BACK_PORCH);
1609 
1610 	value = ((mode->vsync_start - mode->vdisplay) << 16) |
1611 		((mode->hsync_start - mode->hdisplay) <<  0);
1612 	tegra_dc_writel(dc, value, DC_DISP_FRONT_PORCH);
1613 
1614 	value = (mode->vdisplay << 16) | mode->hdisplay;
1615 	tegra_dc_writel(dc, value, DC_DISP_ACTIVE);
1616 
1617 	return 0;
1618 }
1619 
1620 /**
1621  * tegra_dc_state_setup_clock - check clock settings and store them in atomic
1622  *     state
1623  * @dc: display controller
1624  * @crtc_state: CRTC atomic state
1625  * @clk: parent clock for display controller
1626  * @pclk: pixel clock
1627  * @div: shift clock divider
1628  *
1629  * Returns:
1630  * 0 on success or a negative error-code on failure.
1631  */
1632 int tegra_dc_state_setup_clock(struct tegra_dc *dc,
1633 			       struct drm_crtc_state *crtc_state,
1634 			       struct clk *clk, unsigned long pclk,
1635 			       unsigned int div)
1636 {
1637 	struct tegra_dc_state *state = to_dc_state(crtc_state);
1638 
1639 	if (!clk_has_parent(dc->clk, clk))
1640 		return -EINVAL;
1641 
1642 	state->clk = clk;
1643 	state->pclk = pclk;
1644 	state->div = div;
1645 
1646 	return 0;
1647 }
1648 
1649 static void tegra_dc_commit_state(struct tegra_dc *dc,
1650 				  struct tegra_dc_state *state)
1651 {
1652 	u32 value;
1653 	int err;
1654 
1655 	err = clk_set_parent(dc->clk, state->clk);
1656 	if (err < 0)
1657 		dev_err(dc->dev, "failed to set parent clock: %d\n", err);
1658 
1659 	/*
1660 	 * Outputs may not want to change the parent clock rate. This is only
1661 	 * relevant to Tegra20 where only a single display PLL is available.
1662 	 * Since that PLL would typically be used for HDMI, an internal LVDS
1663 	 * panel would need to be driven by some other clock such as PLL_P
1664 	 * which is shared with other peripherals. Changing the clock rate
1665 	 * should therefore be avoided.
1666 	 */
1667 	if (state->pclk > 0) {
1668 		err = clk_set_rate(state->clk, state->pclk);
1669 		if (err < 0)
1670 			dev_err(dc->dev,
1671 				"failed to set clock rate to %lu Hz\n",
1672 				state->pclk);
1673 	}
1674 
1675 	DRM_DEBUG_KMS("rate: %lu, div: %u\n", clk_get_rate(dc->clk),
1676 		      state->div);
1677 	DRM_DEBUG_KMS("pclk: %lu\n", state->pclk);
1678 
1679 	if (!dc->soc->has_nvdisplay) {
1680 		value = SHIFT_CLK_DIVIDER(state->div) | PIXEL_CLK_DIVIDER_PCD1;
1681 		tegra_dc_writel(dc, value, DC_DISP_DISP_CLOCK_CONTROL);
1682 	}
1683 
1684 	err = clk_set_rate(dc->clk, state->pclk);
1685 	if (err < 0)
1686 		dev_err(dc->dev, "failed to set clock %pC to %lu Hz: %d\n",
1687 			dc->clk, state->pclk, err);
1688 }
1689 
1690 static void tegra_dc_stop(struct tegra_dc *dc)
1691 {
1692 	u32 value;
1693 
1694 	/* stop the display controller */
1695 	value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1696 	value &= ~DISP_CTRL_MODE_MASK;
1697 	tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1698 
1699 	tegra_dc_commit(dc);
1700 }
1701 
1702 static bool tegra_dc_idle(struct tegra_dc *dc)
1703 {
1704 	u32 value;
1705 
1706 	value = tegra_dc_readl_active(dc, DC_CMD_DISPLAY_COMMAND);
1707 
1708 	return (value & DISP_CTRL_MODE_MASK) == 0;
1709 }
1710 
1711 static int tegra_dc_wait_idle(struct tegra_dc *dc, unsigned long timeout)
1712 {
1713 	timeout = jiffies + msecs_to_jiffies(timeout);
1714 
1715 	while (time_before(jiffies, timeout)) {
1716 		if (tegra_dc_idle(dc))
1717 			return 0;
1718 
1719 		usleep_range(1000, 2000);
1720 	}
1721 
1722 	dev_dbg(dc->dev, "timeout waiting for DC to become idle\n");
1723 	return -ETIMEDOUT;
1724 }
1725 
1726 static void tegra_crtc_atomic_disable(struct drm_crtc *crtc,
1727 				      struct drm_crtc_state *old_state)
1728 {
1729 	struct tegra_dc *dc = to_tegra_dc(crtc);
1730 	u32 value;
1731 
1732 	if (!tegra_dc_idle(dc)) {
1733 		tegra_dc_stop(dc);
1734 
1735 		/*
1736 		 * Ignore the return value, there isn't anything useful to do
1737 		 * in case this fails.
1738 		 */
1739 		tegra_dc_wait_idle(dc, 100);
1740 	}
1741 
1742 	/*
1743 	 * This should really be part of the RGB encoder driver, but clearing
1744 	 * these bits has the side-effect of stopping the display controller.
1745 	 * When that happens no VBLANK interrupts will be raised. At the same
1746 	 * time the encoder is disabled before the display controller, so the
1747 	 * above code is always going to timeout waiting for the controller
1748 	 * to go idle.
1749 	 *
1750 	 * Given the close coupling between the RGB encoder and the display
1751 	 * controller doing it here is still kind of okay. None of the other
1752 	 * encoder drivers require these bits to be cleared.
1753 	 *
1754 	 * XXX: Perhaps given that the display controller is switched off at
1755 	 * this point anyway maybe clearing these bits isn't even useful for
1756 	 * the RGB encoder?
1757 	 */
1758 	if (dc->rgb) {
1759 		value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
1760 		value &= ~(PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
1761 			   PW4_ENABLE | PM0_ENABLE | PM1_ENABLE);
1762 		tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
1763 	}
1764 
1765 	tegra_dc_stats_reset(&dc->stats);
1766 	drm_crtc_vblank_off(crtc);
1767 
1768 	spin_lock_irq(&crtc->dev->event_lock);
1769 
1770 	if (crtc->state->event) {
1771 		drm_crtc_send_vblank_event(crtc, crtc->state->event);
1772 		crtc->state->event = NULL;
1773 	}
1774 
1775 	spin_unlock_irq(&crtc->dev->event_lock);
1776 
1777 	pm_runtime_put_sync(dc->dev);
1778 }
1779 
1780 static void tegra_crtc_atomic_enable(struct drm_crtc *crtc,
1781 				     struct drm_crtc_state *old_state)
1782 {
1783 	struct drm_display_mode *mode = &crtc->state->adjusted_mode;
1784 	struct tegra_dc_state *state = to_dc_state(crtc->state);
1785 	struct tegra_dc *dc = to_tegra_dc(crtc);
1786 	u32 value;
1787 
1788 	pm_runtime_get_sync(dc->dev);
1789 
1790 	/* initialize display controller */
1791 	if (dc->syncpt) {
1792 		u32 syncpt = host1x_syncpt_id(dc->syncpt), enable;
1793 
1794 		if (dc->soc->has_nvdisplay)
1795 			enable = 1 << 31;
1796 		else
1797 			enable = 1 << 8;
1798 
1799 		value = SYNCPT_CNTRL_NO_STALL;
1800 		tegra_dc_writel(dc, value, DC_CMD_GENERAL_INCR_SYNCPT_CNTRL);
1801 
1802 		value = enable | syncpt;
1803 		tegra_dc_writel(dc, value, DC_CMD_CONT_SYNCPT_VSYNC);
1804 	}
1805 
1806 	if (dc->soc->has_nvdisplay) {
1807 		value = DSC_TO_UF_INT | DSC_BBUF_UF_INT | DSC_RBUF_UF_INT |
1808 			DSC_OBUF_UF_INT;
1809 		tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
1810 
1811 		value = DSC_TO_UF_INT | DSC_BBUF_UF_INT | DSC_RBUF_UF_INT |
1812 			DSC_OBUF_UF_INT | SD3_BUCKET_WALK_DONE_INT |
1813 			HEAD_UF_INT | MSF_INT | REG_TMOUT_INT |
1814 			REGION_CRC_INT | V_PULSE2_INT | V_PULSE3_INT |
1815 			VBLANK_INT | FRAME_END_INT;
1816 		tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
1817 
1818 		value = SD3_BUCKET_WALK_DONE_INT | HEAD_UF_INT | VBLANK_INT |
1819 			FRAME_END_INT;
1820 		tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
1821 
1822 		value = HEAD_UF_INT | REG_TMOUT_INT | FRAME_END_INT;
1823 		tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1824 
1825 		tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
1826 	} else {
1827 		value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1828 			WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1829 		tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
1830 
1831 		value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1832 			WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1833 		tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
1834 
1835 		/* initialize timer */
1836 		value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(0x20) |
1837 			WINDOW_B_THRESHOLD(0x20) | WINDOW_C_THRESHOLD(0x20);
1838 		tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY);
1839 
1840 		value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(1) |
1841 			WINDOW_B_THRESHOLD(1) | WINDOW_C_THRESHOLD(1);
1842 		tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER);
1843 
1844 		value = VBLANK_INT | WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1845 			WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1846 		tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
1847 
1848 		value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1849 			WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1850 		tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1851 	}
1852 
1853 	if (dc->soc->supports_background_color)
1854 		tegra_dc_writel(dc, 0, DC_DISP_BLEND_BACKGROUND_COLOR);
1855 	else
1856 		tegra_dc_writel(dc, 0, DC_DISP_BORDER_COLOR);
1857 
1858 	/* apply PLL and pixel clock changes */
1859 	tegra_dc_commit_state(dc, state);
1860 
1861 	/* program display mode */
1862 	tegra_dc_set_timings(dc, mode);
1863 
1864 	/* interlacing isn't supported yet, so disable it */
1865 	if (dc->soc->supports_interlacing) {
1866 		value = tegra_dc_readl(dc, DC_DISP_INTERLACE_CONTROL);
1867 		value &= ~INTERLACE_ENABLE;
1868 		tegra_dc_writel(dc, value, DC_DISP_INTERLACE_CONTROL);
1869 	}
1870 
1871 	value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1872 	value &= ~DISP_CTRL_MODE_MASK;
1873 	value |= DISP_CTRL_MODE_C_DISPLAY;
1874 	tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1875 
1876 	if (!dc->soc->has_nvdisplay) {
1877 		value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
1878 		value |= PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
1879 			 PW4_ENABLE | PM0_ENABLE | PM1_ENABLE;
1880 		tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
1881 	}
1882 
1883 	/* enable underflow reporting and display red for missing pixels */
1884 	if (dc->soc->has_nvdisplay) {
1885 		value = UNDERFLOW_MODE_RED | UNDERFLOW_REPORT_ENABLE;
1886 		tegra_dc_writel(dc, value, DC_COM_RG_UNDERFLOW);
1887 	}
1888 
1889 	tegra_dc_commit(dc);
1890 
1891 	drm_crtc_vblank_on(crtc);
1892 }
1893 
1894 static void tegra_crtc_atomic_begin(struct drm_crtc *crtc,
1895 				    struct drm_crtc_state *old_crtc_state)
1896 {
1897 	unsigned long flags;
1898 
1899 	if (crtc->state->event) {
1900 		spin_lock_irqsave(&crtc->dev->event_lock, flags);
1901 
1902 		if (drm_crtc_vblank_get(crtc) != 0)
1903 			drm_crtc_send_vblank_event(crtc, crtc->state->event);
1904 		else
1905 			drm_crtc_arm_vblank_event(crtc, crtc->state->event);
1906 
1907 		spin_unlock_irqrestore(&crtc->dev->event_lock, flags);
1908 
1909 		crtc->state->event = NULL;
1910 	}
1911 }
1912 
1913 static void tegra_crtc_atomic_flush(struct drm_crtc *crtc,
1914 				    struct drm_crtc_state *old_crtc_state)
1915 {
1916 	struct tegra_dc_state *state = to_dc_state(crtc->state);
1917 	struct tegra_dc *dc = to_tegra_dc(crtc);
1918 	u32 value;
1919 
1920 	value = state->planes << 8 | GENERAL_UPDATE;
1921 	tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
1922 	value = tegra_dc_readl(dc, DC_CMD_STATE_CONTROL);
1923 
1924 	value = state->planes | GENERAL_ACT_REQ;
1925 	tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
1926 	value = tegra_dc_readl(dc, DC_CMD_STATE_CONTROL);
1927 }
1928 
1929 static const struct drm_crtc_helper_funcs tegra_crtc_helper_funcs = {
1930 	.atomic_begin = tegra_crtc_atomic_begin,
1931 	.atomic_flush = tegra_crtc_atomic_flush,
1932 	.atomic_enable = tegra_crtc_atomic_enable,
1933 	.atomic_disable = tegra_crtc_atomic_disable,
1934 };
1935 
1936 static irqreturn_t tegra_dc_irq(int irq, void *data)
1937 {
1938 	struct tegra_dc *dc = data;
1939 	unsigned long status;
1940 
1941 	status = tegra_dc_readl(dc, DC_CMD_INT_STATUS);
1942 	tegra_dc_writel(dc, status, DC_CMD_INT_STATUS);
1943 
1944 	if (status & FRAME_END_INT) {
1945 		/*
1946 		dev_dbg(dc->dev, "%s(): frame end\n", __func__);
1947 		*/
1948 		dc->stats.frames++;
1949 	}
1950 
1951 	if (status & VBLANK_INT) {
1952 		/*
1953 		dev_dbg(dc->dev, "%s(): vertical blank\n", __func__);
1954 		*/
1955 		drm_crtc_handle_vblank(&dc->base);
1956 		dc->stats.vblank++;
1957 	}
1958 
1959 	if (status & (WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT)) {
1960 		/*
1961 		dev_dbg(dc->dev, "%s(): underflow\n", __func__);
1962 		*/
1963 		dc->stats.underflow++;
1964 	}
1965 
1966 	if (status & (WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT)) {
1967 		/*
1968 		dev_dbg(dc->dev, "%s(): overflow\n", __func__);
1969 		*/
1970 		dc->stats.overflow++;
1971 	}
1972 
1973 	if (status & HEAD_UF_INT) {
1974 		dev_dbg_ratelimited(dc->dev, "%s(): head underflow\n", __func__);
1975 		dc->stats.underflow++;
1976 	}
1977 
1978 	return IRQ_HANDLED;
1979 }
1980 
1981 static bool tegra_dc_has_window_groups(struct tegra_dc *dc)
1982 {
1983 	unsigned int i;
1984 
1985 	if (!dc->soc->wgrps)
1986 		return true;
1987 
1988 	for (i = 0; i < dc->soc->num_wgrps; i++) {
1989 		const struct tegra_windowgroup_soc *wgrp = &dc->soc->wgrps[i];
1990 
1991 		if (wgrp->dc == dc->pipe && wgrp->num_windows > 0)
1992 			return true;
1993 	}
1994 
1995 	return false;
1996 }
1997 
1998 static int tegra_dc_init(struct host1x_client *client)
1999 {
2000 	struct drm_device *drm = dev_get_drvdata(client->parent);
2001 	unsigned long flags = HOST1X_SYNCPT_CLIENT_MANAGED;
2002 	struct tegra_dc *dc = host1x_client_to_dc(client);
2003 	struct tegra_drm *tegra = drm->dev_private;
2004 	struct drm_plane *primary = NULL;
2005 	struct drm_plane *cursor = NULL;
2006 	int err;
2007 
2008 	/*
2009 	 * XXX do not register DCs with no window groups because we cannot
2010 	 * assign a primary plane to them, which in turn will cause KMS to
2011 	 * crash.
2012 	 */
2013 	if (!tegra_dc_has_window_groups(dc))
2014 		return 0;
2015 
2016 	dc->syncpt = host1x_syncpt_request(client, flags);
2017 	if (!dc->syncpt)
2018 		dev_warn(dc->dev, "failed to allocate syncpoint\n");
2019 
2020 	dc->group = host1x_client_iommu_attach(client, true);
2021 	if (IS_ERR(dc->group)) {
2022 		err = PTR_ERR(dc->group);
2023 		dev_err(client->dev, "failed to attach to domain: %d\n", err);
2024 		return err;
2025 	}
2026 
2027 	if (dc->soc->wgrps)
2028 		primary = tegra_dc_add_shared_planes(drm, dc);
2029 	else
2030 		primary = tegra_dc_add_planes(drm, dc);
2031 
2032 	if (IS_ERR(primary)) {
2033 		err = PTR_ERR(primary);
2034 		goto cleanup;
2035 	}
2036 
2037 	if (dc->soc->supports_cursor) {
2038 		cursor = tegra_dc_cursor_plane_create(drm, dc);
2039 		if (IS_ERR(cursor)) {
2040 			err = PTR_ERR(cursor);
2041 			goto cleanup;
2042 		}
2043 	} else {
2044 		/* dedicate one overlay to mouse cursor */
2045 		cursor = tegra_dc_overlay_plane_create(drm, dc, 2, true);
2046 		if (IS_ERR(cursor)) {
2047 			err = PTR_ERR(cursor);
2048 			goto cleanup;
2049 		}
2050 	}
2051 
2052 	err = drm_crtc_init_with_planes(drm, &dc->base, primary, cursor,
2053 					&tegra_crtc_funcs, NULL);
2054 	if (err < 0)
2055 		goto cleanup;
2056 
2057 	drm_crtc_helper_add(&dc->base, &tegra_crtc_helper_funcs);
2058 
2059 	/*
2060 	 * Keep track of the minimum pitch alignment across all display
2061 	 * controllers.
2062 	 */
2063 	if (dc->soc->pitch_align > tegra->pitch_align)
2064 		tegra->pitch_align = dc->soc->pitch_align;
2065 
2066 	err = tegra_dc_rgb_init(drm, dc);
2067 	if (err < 0 && err != -ENODEV) {
2068 		dev_err(dc->dev, "failed to initialize RGB output: %d\n", err);
2069 		goto cleanup;
2070 	}
2071 
2072 	err = devm_request_irq(dc->dev, dc->irq, tegra_dc_irq, 0,
2073 			       dev_name(dc->dev), dc);
2074 	if (err < 0) {
2075 		dev_err(dc->dev, "failed to request IRQ#%u: %d\n", dc->irq,
2076 			err);
2077 		goto cleanup;
2078 	}
2079 
2080 	return 0;
2081 
2082 cleanup:
2083 	if (!IS_ERR_OR_NULL(cursor))
2084 		drm_plane_cleanup(cursor);
2085 
2086 	if (!IS_ERR(primary))
2087 		drm_plane_cleanup(primary);
2088 
2089 	host1x_client_iommu_detach(client, dc->group);
2090 	host1x_syncpt_free(dc->syncpt);
2091 
2092 	return err;
2093 }
2094 
2095 static int tegra_dc_exit(struct host1x_client *client)
2096 {
2097 	struct tegra_dc *dc = host1x_client_to_dc(client);
2098 	int err;
2099 
2100 	if (!tegra_dc_has_window_groups(dc))
2101 		return 0;
2102 
2103 	devm_free_irq(dc->dev, dc->irq, dc);
2104 
2105 	err = tegra_dc_rgb_exit(dc);
2106 	if (err) {
2107 		dev_err(dc->dev, "failed to shutdown RGB output: %d\n", err);
2108 		return err;
2109 	}
2110 
2111 	host1x_client_iommu_detach(client, dc->group);
2112 	host1x_syncpt_free(dc->syncpt);
2113 
2114 	return 0;
2115 }
2116 
2117 static const struct host1x_client_ops dc_client_ops = {
2118 	.init = tegra_dc_init,
2119 	.exit = tegra_dc_exit,
2120 };
2121 
2122 static const struct tegra_dc_soc_info tegra20_dc_soc_info = {
2123 	.supports_background_color = false,
2124 	.supports_interlacing = false,
2125 	.supports_cursor = false,
2126 	.supports_block_linear = false,
2127 	.has_legacy_blending = true,
2128 	.pitch_align = 8,
2129 	.has_powergate = false,
2130 	.coupled_pm = true,
2131 	.has_nvdisplay = false,
2132 	.num_primary_formats = ARRAY_SIZE(tegra20_primary_formats),
2133 	.primary_formats = tegra20_primary_formats,
2134 	.num_overlay_formats = ARRAY_SIZE(tegra20_overlay_formats),
2135 	.overlay_formats = tegra20_overlay_formats,
2136 	.modifiers = tegra20_modifiers,
2137 	.has_win_a_without_filters = true,
2138 	.has_win_c_without_vert_filter = true,
2139 };
2140 
2141 static const struct tegra_dc_soc_info tegra30_dc_soc_info = {
2142 	.supports_background_color = false,
2143 	.supports_interlacing = false,
2144 	.supports_cursor = false,
2145 	.supports_block_linear = false,
2146 	.has_legacy_blending = true,
2147 	.pitch_align = 8,
2148 	.has_powergate = false,
2149 	.coupled_pm = false,
2150 	.has_nvdisplay = false,
2151 	.num_primary_formats = ARRAY_SIZE(tegra20_primary_formats),
2152 	.primary_formats = tegra20_primary_formats,
2153 	.num_overlay_formats = ARRAY_SIZE(tegra20_overlay_formats),
2154 	.overlay_formats = tegra20_overlay_formats,
2155 	.modifiers = tegra20_modifiers,
2156 	.has_win_a_without_filters = false,
2157 	.has_win_c_without_vert_filter = false,
2158 };
2159 
2160 static const struct tegra_dc_soc_info tegra114_dc_soc_info = {
2161 	.supports_background_color = false,
2162 	.supports_interlacing = false,
2163 	.supports_cursor = false,
2164 	.supports_block_linear = false,
2165 	.has_legacy_blending = true,
2166 	.pitch_align = 64,
2167 	.has_powergate = true,
2168 	.coupled_pm = false,
2169 	.has_nvdisplay = false,
2170 	.num_primary_formats = ARRAY_SIZE(tegra114_primary_formats),
2171 	.primary_formats = tegra114_primary_formats,
2172 	.num_overlay_formats = ARRAY_SIZE(tegra114_overlay_formats),
2173 	.overlay_formats = tegra114_overlay_formats,
2174 	.modifiers = tegra20_modifiers,
2175 	.has_win_a_without_filters = false,
2176 	.has_win_c_without_vert_filter = false,
2177 };
2178 
2179 static const struct tegra_dc_soc_info tegra124_dc_soc_info = {
2180 	.supports_background_color = true,
2181 	.supports_interlacing = true,
2182 	.supports_cursor = true,
2183 	.supports_block_linear = true,
2184 	.has_legacy_blending = false,
2185 	.pitch_align = 64,
2186 	.has_powergate = true,
2187 	.coupled_pm = false,
2188 	.has_nvdisplay = false,
2189 	.num_primary_formats = ARRAY_SIZE(tegra124_primary_formats),
2190 	.primary_formats = tegra124_primary_formats,
2191 	.num_overlay_formats = ARRAY_SIZE(tegra124_overlay_formats),
2192 	.overlay_formats = tegra124_overlay_formats,
2193 	.modifiers = tegra124_modifiers,
2194 	.has_win_a_without_filters = false,
2195 	.has_win_c_without_vert_filter = false,
2196 };
2197 
2198 static const struct tegra_dc_soc_info tegra210_dc_soc_info = {
2199 	.supports_background_color = true,
2200 	.supports_interlacing = true,
2201 	.supports_cursor = true,
2202 	.supports_block_linear = true,
2203 	.has_legacy_blending = false,
2204 	.pitch_align = 64,
2205 	.has_powergate = true,
2206 	.coupled_pm = false,
2207 	.has_nvdisplay = false,
2208 	.num_primary_formats = ARRAY_SIZE(tegra114_primary_formats),
2209 	.primary_formats = tegra114_primary_formats,
2210 	.num_overlay_formats = ARRAY_SIZE(tegra114_overlay_formats),
2211 	.overlay_formats = tegra114_overlay_formats,
2212 	.modifiers = tegra124_modifiers,
2213 	.has_win_a_without_filters = false,
2214 	.has_win_c_without_vert_filter = false,
2215 };
2216 
2217 static const struct tegra_windowgroup_soc tegra186_dc_wgrps[] = {
2218 	{
2219 		.index = 0,
2220 		.dc = 0,
2221 		.windows = (const unsigned int[]) { 0 },
2222 		.num_windows = 1,
2223 	}, {
2224 		.index = 1,
2225 		.dc = 1,
2226 		.windows = (const unsigned int[]) { 1 },
2227 		.num_windows = 1,
2228 	}, {
2229 		.index = 2,
2230 		.dc = 1,
2231 		.windows = (const unsigned int[]) { 2 },
2232 		.num_windows = 1,
2233 	}, {
2234 		.index = 3,
2235 		.dc = 2,
2236 		.windows = (const unsigned int[]) { 3 },
2237 		.num_windows = 1,
2238 	}, {
2239 		.index = 4,
2240 		.dc = 2,
2241 		.windows = (const unsigned int[]) { 4 },
2242 		.num_windows = 1,
2243 	}, {
2244 		.index = 5,
2245 		.dc = 2,
2246 		.windows = (const unsigned int[]) { 5 },
2247 		.num_windows = 1,
2248 	},
2249 };
2250 
2251 static const struct tegra_dc_soc_info tegra186_dc_soc_info = {
2252 	.supports_background_color = true,
2253 	.supports_interlacing = true,
2254 	.supports_cursor = true,
2255 	.supports_block_linear = true,
2256 	.has_legacy_blending = false,
2257 	.pitch_align = 64,
2258 	.has_powergate = false,
2259 	.coupled_pm = false,
2260 	.has_nvdisplay = true,
2261 	.wgrps = tegra186_dc_wgrps,
2262 	.num_wgrps = ARRAY_SIZE(tegra186_dc_wgrps),
2263 };
2264 
2265 static const struct tegra_windowgroup_soc tegra194_dc_wgrps[] = {
2266 	{
2267 		.index = 0,
2268 		.dc = 0,
2269 		.windows = (const unsigned int[]) { 0 },
2270 		.num_windows = 1,
2271 	}, {
2272 		.index = 1,
2273 		.dc = 1,
2274 		.windows = (const unsigned int[]) { 1 },
2275 		.num_windows = 1,
2276 	}, {
2277 		.index = 2,
2278 		.dc = 1,
2279 		.windows = (const unsigned int[]) { 2 },
2280 		.num_windows = 1,
2281 	}, {
2282 		.index = 3,
2283 		.dc = 2,
2284 		.windows = (const unsigned int[]) { 3 },
2285 		.num_windows = 1,
2286 	}, {
2287 		.index = 4,
2288 		.dc = 2,
2289 		.windows = (const unsigned int[]) { 4 },
2290 		.num_windows = 1,
2291 	}, {
2292 		.index = 5,
2293 		.dc = 2,
2294 		.windows = (const unsigned int[]) { 5 },
2295 		.num_windows = 1,
2296 	},
2297 };
2298 
2299 static const struct tegra_dc_soc_info tegra194_dc_soc_info = {
2300 	.supports_background_color = true,
2301 	.supports_interlacing = true,
2302 	.supports_cursor = true,
2303 	.supports_block_linear = true,
2304 	.has_legacy_blending = false,
2305 	.pitch_align = 64,
2306 	.has_powergate = false,
2307 	.coupled_pm = false,
2308 	.has_nvdisplay = true,
2309 	.wgrps = tegra194_dc_wgrps,
2310 	.num_wgrps = ARRAY_SIZE(tegra194_dc_wgrps),
2311 };
2312 
2313 static const struct of_device_id tegra_dc_of_match[] = {
2314 	{
2315 		.compatible = "nvidia,tegra194-dc",
2316 		.data = &tegra194_dc_soc_info,
2317 	}, {
2318 		.compatible = "nvidia,tegra186-dc",
2319 		.data = &tegra186_dc_soc_info,
2320 	}, {
2321 		.compatible = "nvidia,tegra210-dc",
2322 		.data = &tegra210_dc_soc_info,
2323 	}, {
2324 		.compatible = "nvidia,tegra124-dc",
2325 		.data = &tegra124_dc_soc_info,
2326 	}, {
2327 		.compatible = "nvidia,tegra114-dc",
2328 		.data = &tegra114_dc_soc_info,
2329 	}, {
2330 		.compatible = "nvidia,tegra30-dc",
2331 		.data = &tegra30_dc_soc_info,
2332 	}, {
2333 		.compatible = "nvidia,tegra20-dc",
2334 		.data = &tegra20_dc_soc_info,
2335 	}, {
2336 		/* sentinel */
2337 	}
2338 };
2339 MODULE_DEVICE_TABLE(of, tegra_dc_of_match);
2340 
2341 static int tegra_dc_parse_dt(struct tegra_dc *dc)
2342 {
2343 	struct device_node *np;
2344 	u32 value = 0;
2345 	int err;
2346 
2347 	err = of_property_read_u32(dc->dev->of_node, "nvidia,head", &value);
2348 	if (err < 0) {
2349 		dev_err(dc->dev, "missing \"nvidia,head\" property\n");
2350 
2351 		/*
2352 		 * If the nvidia,head property isn't present, try to find the
2353 		 * correct head number by looking up the position of this
2354 		 * display controller's node within the device tree. Assuming
2355 		 * that the nodes are ordered properly in the DTS file and
2356 		 * that the translation into a flattened device tree blob
2357 		 * preserves that ordering this will actually yield the right
2358 		 * head number.
2359 		 *
2360 		 * If those assumptions don't hold, this will still work for
2361 		 * cases where only a single display controller is used.
2362 		 */
2363 		for_each_matching_node(np, tegra_dc_of_match) {
2364 			if (np == dc->dev->of_node) {
2365 				of_node_put(np);
2366 				break;
2367 			}
2368 
2369 			value++;
2370 		}
2371 	}
2372 
2373 	dc->pipe = value;
2374 
2375 	return 0;
2376 }
2377 
2378 static int tegra_dc_match_by_pipe(struct device *dev, void *data)
2379 {
2380 	struct tegra_dc *dc = dev_get_drvdata(dev);
2381 	unsigned int pipe = (unsigned long)data;
2382 
2383 	return dc->pipe == pipe;
2384 }
2385 
2386 static int tegra_dc_couple(struct tegra_dc *dc)
2387 {
2388 	/*
2389 	 * On Tegra20, DC1 requires DC0 to be taken out of reset in order to
2390 	 * be enabled, otherwise CPU hangs on writing to CMD_DISPLAY_COMMAND /
2391 	 * POWER_CONTROL registers during CRTC enabling.
2392 	 */
2393 	if (dc->soc->coupled_pm && dc->pipe == 1) {
2394 		u32 flags = DL_FLAG_PM_RUNTIME | DL_FLAG_AUTOREMOVE_CONSUMER;
2395 		struct device_link *link;
2396 		struct device *partner;
2397 
2398 		partner = driver_find_device(dc->dev->driver, NULL, NULL,
2399 					     tegra_dc_match_by_pipe);
2400 		if (!partner)
2401 			return -EPROBE_DEFER;
2402 
2403 		link = device_link_add(dc->dev, partner, flags);
2404 		if (!link) {
2405 			dev_err(dc->dev, "failed to link controllers\n");
2406 			return -EINVAL;
2407 		}
2408 
2409 		dev_dbg(dc->dev, "coupled to %s\n", dev_name(partner));
2410 	}
2411 
2412 	return 0;
2413 }
2414 
2415 static int tegra_dc_probe(struct platform_device *pdev)
2416 {
2417 	struct resource *regs;
2418 	struct tegra_dc *dc;
2419 	int err;
2420 
2421 	dc = devm_kzalloc(&pdev->dev, sizeof(*dc), GFP_KERNEL);
2422 	if (!dc)
2423 		return -ENOMEM;
2424 
2425 	dc->soc = of_device_get_match_data(&pdev->dev);
2426 
2427 	INIT_LIST_HEAD(&dc->list);
2428 	dc->dev = &pdev->dev;
2429 
2430 	err = tegra_dc_parse_dt(dc);
2431 	if (err < 0)
2432 		return err;
2433 
2434 	err = tegra_dc_couple(dc);
2435 	if (err < 0)
2436 		return err;
2437 
2438 	dc->clk = devm_clk_get(&pdev->dev, NULL);
2439 	if (IS_ERR(dc->clk)) {
2440 		dev_err(&pdev->dev, "failed to get clock\n");
2441 		return PTR_ERR(dc->clk);
2442 	}
2443 
2444 	dc->rst = devm_reset_control_get(&pdev->dev, "dc");
2445 	if (IS_ERR(dc->rst)) {
2446 		dev_err(&pdev->dev, "failed to get reset\n");
2447 		return PTR_ERR(dc->rst);
2448 	}
2449 
2450 	/* assert reset and disable clock */
2451 	err = clk_prepare_enable(dc->clk);
2452 	if (err < 0)
2453 		return err;
2454 
2455 	usleep_range(2000, 4000);
2456 
2457 	err = reset_control_assert(dc->rst);
2458 	if (err < 0)
2459 		return err;
2460 
2461 	usleep_range(2000, 4000);
2462 
2463 	clk_disable_unprepare(dc->clk);
2464 
2465 	if (dc->soc->has_powergate) {
2466 		if (dc->pipe == 0)
2467 			dc->powergate = TEGRA_POWERGATE_DIS;
2468 		else
2469 			dc->powergate = TEGRA_POWERGATE_DISB;
2470 
2471 		tegra_powergate_power_off(dc->powergate);
2472 	}
2473 
2474 	regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2475 	dc->regs = devm_ioremap_resource(&pdev->dev, regs);
2476 	if (IS_ERR(dc->regs))
2477 		return PTR_ERR(dc->regs);
2478 
2479 	dc->irq = platform_get_irq(pdev, 0);
2480 	if (dc->irq < 0) {
2481 		dev_err(&pdev->dev, "failed to get IRQ\n");
2482 		return -ENXIO;
2483 	}
2484 
2485 	err = tegra_dc_rgb_probe(dc);
2486 	if (err < 0 && err != -ENODEV) {
2487 		dev_err(&pdev->dev, "failed to probe RGB output: %d\n", err);
2488 		return err;
2489 	}
2490 
2491 	platform_set_drvdata(pdev, dc);
2492 	pm_runtime_enable(&pdev->dev);
2493 
2494 	INIT_LIST_HEAD(&dc->client.list);
2495 	dc->client.ops = &dc_client_ops;
2496 	dc->client.dev = &pdev->dev;
2497 
2498 	err = host1x_client_register(&dc->client);
2499 	if (err < 0) {
2500 		dev_err(&pdev->dev, "failed to register host1x client: %d\n",
2501 			err);
2502 		return err;
2503 	}
2504 
2505 	return 0;
2506 }
2507 
2508 static int tegra_dc_remove(struct platform_device *pdev)
2509 {
2510 	struct tegra_dc *dc = platform_get_drvdata(pdev);
2511 	int err;
2512 
2513 	err = host1x_client_unregister(&dc->client);
2514 	if (err < 0) {
2515 		dev_err(&pdev->dev, "failed to unregister host1x client: %d\n",
2516 			err);
2517 		return err;
2518 	}
2519 
2520 	err = tegra_dc_rgb_remove(dc);
2521 	if (err < 0) {
2522 		dev_err(&pdev->dev, "failed to remove RGB output: %d\n", err);
2523 		return err;
2524 	}
2525 
2526 	pm_runtime_disable(&pdev->dev);
2527 
2528 	return 0;
2529 }
2530 
2531 #ifdef CONFIG_PM
2532 static int tegra_dc_suspend(struct device *dev)
2533 {
2534 	struct tegra_dc *dc = dev_get_drvdata(dev);
2535 	int err;
2536 
2537 	err = reset_control_assert(dc->rst);
2538 	if (err < 0) {
2539 		dev_err(dev, "failed to assert reset: %d\n", err);
2540 		return err;
2541 	}
2542 
2543 	if (dc->soc->has_powergate)
2544 		tegra_powergate_power_off(dc->powergate);
2545 
2546 	clk_disable_unprepare(dc->clk);
2547 
2548 	return 0;
2549 }
2550 
2551 static int tegra_dc_resume(struct device *dev)
2552 {
2553 	struct tegra_dc *dc = dev_get_drvdata(dev);
2554 	int err;
2555 
2556 	if (dc->soc->has_powergate) {
2557 		err = tegra_powergate_sequence_power_up(dc->powergate, dc->clk,
2558 							dc->rst);
2559 		if (err < 0) {
2560 			dev_err(dev, "failed to power partition: %d\n", err);
2561 			return err;
2562 		}
2563 	} else {
2564 		err = clk_prepare_enable(dc->clk);
2565 		if (err < 0) {
2566 			dev_err(dev, "failed to enable clock: %d\n", err);
2567 			return err;
2568 		}
2569 
2570 		err = reset_control_deassert(dc->rst);
2571 		if (err < 0) {
2572 			dev_err(dev, "failed to deassert reset: %d\n", err);
2573 			return err;
2574 		}
2575 	}
2576 
2577 	return 0;
2578 }
2579 #endif
2580 
2581 static const struct dev_pm_ops tegra_dc_pm_ops = {
2582 	SET_RUNTIME_PM_OPS(tegra_dc_suspend, tegra_dc_resume, NULL)
2583 };
2584 
2585 struct platform_driver tegra_dc_driver = {
2586 	.driver = {
2587 		.name = "tegra-dc",
2588 		.of_match_table = tegra_dc_of_match,
2589 		.pm = &tegra_dc_pm_ops,
2590 	},
2591 	.probe = tegra_dc_probe,
2592 	.remove = tegra_dc_remove,
2593 };
2594