xref: /openbmc/linux/drivers/gpu/drm/tegra/dc.c (revision afc98d90)
1 /*
2  * Copyright (C) 2012 Avionic Design GmbH
3  * Copyright (C) 2012 NVIDIA CORPORATION.  All rights reserved.
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  */
9 
10 #include <linux/clk.h>
11 #include <linux/debugfs.h>
12 #include <linux/reset.h>
13 
14 #include "dc.h"
15 #include "drm.h"
16 #include "gem.h"
17 
18 struct tegra_dc_soc_info {
19 	bool supports_interlacing;
20 };
21 
22 struct tegra_plane {
23 	struct drm_plane base;
24 	unsigned int index;
25 };
26 
27 static inline struct tegra_plane *to_tegra_plane(struct drm_plane *plane)
28 {
29 	return container_of(plane, struct tegra_plane, base);
30 }
31 
32 static int tegra_plane_update(struct drm_plane *plane, struct drm_crtc *crtc,
33 			      struct drm_framebuffer *fb, int crtc_x,
34 			      int crtc_y, unsigned int crtc_w,
35 			      unsigned int crtc_h, uint32_t src_x,
36 			      uint32_t src_y, uint32_t src_w, uint32_t src_h)
37 {
38 	struct tegra_plane *p = to_tegra_plane(plane);
39 	struct tegra_dc *dc = to_tegra_dc(crtc);
40 	struct tegra_dc_window window;
41 	unsigned int i;
42 
43 	memset(&window, 0, sizeof(window));
44 	window.src.x = src_x >> 16;
45 	window.src.y = src_y >> 16;
46 	window.src.w = src_w >> 16;
47 	window.src.h = src_h >> 16;
48 	window.dst.x = crtc_x;
49 	window.dst.y = crtc_y;
50 	window.dst.w = crtc_w;
51 	window.dst.h = crtc_h;
52 	window.format = tegra_dc_format(fb->pixel_format);
53 	window.bits_per_pixel = fb->bits_per_pixel;
54 	window.bottom_up = tegra_fb_is_bottom_up(fb);
55 	window.tiled = tegra_fb_is_tiled(fb);
56 
57 	for (i = 0; i < drm_format_num_planes(fb->pixel_format); i++) {
58 		struct tegra_bo *bo = tegra_fb_get_plane(fb, i);
59 
60 		window.base[i] = bo->paddr + fb->offsets[i];
61 
62 		/*
63 		 * Tegra doesn't support different strides for U and V planes
64 		 * so we display a warning if the user tries to display a
65 		 * framebuffer with such a configuration.
66 		 */
67 		if (i >= 2) {
68 			if (fb->pitches[i] != window.stride[1])
69 				DRM_ERROR("unsupported UV-plane configuration\n");
70 		} else {
71 			window.stride[i] = fb->pitches[i];
72 		}
73 	}
74 
75 	return tegra_dc_setup_window(dc, p->index, &window);
76 }
77 
78 static int tegra_plane_disable(struct drm_plane *plane)
79 {
80 	struct tegra_dc *dc = to_tegra_dc(plane->crtc);
81 	struct tegra_plane *p = to_tegra_plane(plane);
82 	unsigned long value;
83 
84 	if (!plane->crtc)
85 		return 0;
86 
87 	value = WINDOW_A_SELECT << p->index;
88 	tegra_dc_writel(dc, value, DC_CMD_DISPLAY_WINDOW_HEADER);
89 
90 	value = tegra_dc_readl(dc, DC_WIN_WIN_OPTIONS);
91 	value &= ~WIN_ENABLE;
92 	tegra_dc_writel(dc, value, DC_WIN_WIN_OPTIONS);
93 
94 	tegra_dc_writel(dc, WIN_A_UPDATE << p->index, DC_CMD_STATE_CONTROL);
95 	tegra_dc_writel(dc, WIN_A_ACT_REQ << p->index, DC_CMD_STATE_CONTROL);
96 
97 	return 0;
98 }
99 
100 static void tegra_plane_destroy(struct drm_plane *plane)
101 {
102 	struct tegra_plane *p = to_tegra_plane(plane);
103 
104 	tegra_plane_disable(plane);
105 	drm_plane_cleanup(plane);
106 	kfree(p);
107 }
108 
109 static const struct drm_plane_funcs tegra_plane_funcs = {
110 	.update_plane = tegra_plane_update,
111 	.disable_plane = tegra_plane_disable,
112 	.destroy = tegra_plane_destroy,
113 };
114 
115 static const uint32_t plane_formats[] = {
116 	DRM_FORMAT_XBGR8888,
117 	DRM_FORMAT_XRGB8888,
118 	DRM_FORMAT_RGB565,
119 	DRM_FORMAT_UYVY,
120 	DRM_FORMAT_YUV420,
121 	DRM_FORMAT_YUV422,
122 };
123 
124 static int tegra_dc_add_planes(struct drm_device *drm, struct tegra_dc *dc)
125 {
126 	unsigned int i;
127 	int err = 0;
128 
129 	for (i = 0; i < 2; i++) {
130 		struct tegra_plane *plane;
131 
132 		plane = kzalloc(sizeof(*plane), GFP_KERNEL);
133 		if (!plane)
134 			return -ENOMEM;
135 
136 		plane->index = 1 + i;
137 
138 		err = drm_plane_init(drm, &plane->base, 1 << dc->pipe,
139 				     &tegra_plane_funcs, plane_formats,
140 				     ARRAY_SIZE(plane_formats), false);
141 		if (err < 0) {
142 			kfree(plane);
143 			return err;
144 		}
145 	}
146 
147 	return 0;
148 }
149 
150 static int tegra_dc_set_base(struct tegra_dc *dc, int x, int y,
151 			     struct drm_framebuffer *fb)
152 {
153 	unsigned int format = tegra_dc_format(fb->pixel_format);
154 	struct tegra_bo *bo = tegra_fb_get_plane(fb, 0);
155 	unsigned int h_offset = 0, v_offset = 0;
156 	unsigned long value;
157 
158 	tegra_dc_writel(dc, WINDOW_A_SELECT, DC_CMD_DISPLAY_WINDOW_HEADER);
159 
160 	value = fb->offsets[0] + y * fb->pitches[0] +
161 		x * fb->bits_per_pixel / 8;
162 
163 	tegra_dc_writel(dc, bo->paddr + value, DC_WINBUF_START_ADDR);
164 	tegra_dc_writel(dc, fb->pitches[0], DC_WIN_LINE_STRIDE);
165 	tegra_dc_writel(dc, format, DC_WIN_COLOR_DEPTH);
166 
167 	if (tegra_fb_is_tiled(fb)) {
168 		value = DC_WIN_BUFFER_ADDR_MODE_TILE_UV |
169 			DC_WIN_BUFFER_ADDR_MODE_TILE;
170 	} else {
171 		value = DC_WIN_BUFFER_ADDR_MODE_LINEAR_UV |
172 			DC_WIN_BUFFER_ADDR_MODE_LINEAR;
173 	}
174 
175 	tegra_dc_writel(dc, value, DC_WIN_BUFFER_ADDR_MODE);
176 
177 	/* make sure bottom-up buffers are properly displayed */
178 	if (tegra_fb_is_bottom_up(fb)) {
179 		value = tegra_dc_readl(dc, DC_WIN_WIN_OPTIONS);
180 		value |= INVERT_V;
181 		tegra_dc_writel(dc, value, DC_WIN_WIN_OPTIONS);
182 
183 		v_offset += fb->height - 1;
184 	} else {
185 		value = tegra_dc_readl(dc, DC_WIN_WIN_OPTIONS);
186 		value &= ~INVERT_V;
187 		tegra_dc_writel(dc, value, DC_WIN_WIN_OPTIONS);
188 	}
189 
190 	tegra_dc_writel(dc, h_offset, DC_WINBUF_ADDR_H_OFFSET);
191 	tegra_dc_writel(dc, v_offset, DC_WINBUF_ADDR_V_OFFSET);
192 
193 	value = GENERAL_UPDATE | WIN_A_UPDATE;
194 	tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
195 
196 	value = GENERAL_ACT_REQ | WIN_A_ACT_REQ;
197 	tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
198 
199 	return 0;
200 }
201 
202 void tegra_dc_enable_vblank(struct tegra_dc *dc)
203 {
204 	unsigned long value, flags;
205 
206 	spin_lock_irqsave(&dc->lock, flags);
207 
208 	value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
209 	value |= VBLANK_INT;
210 	tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
211 
212 	spin_unlock_irqrestore(&dc->lock, flags);
213 }
214 
215 void tegra_dc_disable_vblank(struct tegra_dc *dc)
216 {
217 	unsigned long value, flags;
218 
219 	spin_lock_irqsave(&dc->lock, flags);
220 
221 	value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
222 	value &= ~VBLANK_INT;
223 	tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
224 
225 	spin_unlock_irqrestore(&dc->lock, flags);
226 }
227 
228 static void tegra_dc_finish_page_flip(struct tegra_dc *dc)
229 {
230 	struct drm_device *drm = dc->base.dev;
231 	struct drm_crtc *crtc = &dc->base;
232 	unsigned long flags, base;
233 	struct tegra_bo *bo;
234 
235 	if (!dc->event)
236 		return;
237 
238 	bo = tegra_fb_get_plane(crtc->fb, 0);
239 
240 	/* check if new start address has been latched */
241 	tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
242 	base = tegra_dc_readl(dc, DC_WINBUF_START_ADDR);
243 	tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS);
244 
245 	if (base == bo->paddr + crtc->fb->offsets[0]) {
246 		spin_lock_irqsave(&drm->event_lock, flags);
247 		drm_send_vblank_event(drm, dc->pipe, dc->event);
248 		drm_vblank_put(drm, dc->pipe);
249 		dc->event = NULL;
250 		spin_unlock_irqrestore(&drm->event_lock, flags);
251 	}
252 }
253 
254 void tegra_dc_cancel_page_flip(struct drm_crtc *crtc, struct drm_file *file)
255 {
256 	struct tegra_dc *dc = to_tegra_dc(crtc);
257 	struct drm_device *drm = crtc->dev;
258 	unsigned long flags;
259 
260 	spin_lock_irqsave(&drm->event_lock, flags);
261 
262 	if (dc->event && dc->event->base.file_priv == file) {
263 		dc->event->base.destroy(&dc->event->base);
264 		drm_vblank_put(drm, dc->pipe);
265 		dc->event = NULL;
266 	}
267 
268 	spin_unlock_irqrestore(&drm->event_lock, flags);
269 }
270 
271 static int tegra_dc_page_flip(struct drm_crtc *crtc, struct drm_framebuffer *fb,
272 			      struct drm_pending_vblank_event *event, uint32_t page_flip_flags)
273 {
274 	struct tegra_dc *dc = to_tegra_dc(crtc);
275 	struct drm_device *drm = crtc->dev;
276 
277 	if (dc->event)
278 		return -EBUSY;
279 
280 	if (event) {
281 		event->pipe = dc->pipe;
282 		dc->event = event;
283 		drm_vblank_get(drm, dc->pipe);
284 	}
285 
286 	tegra_dc_set_base(dc, 0, 0, fb);
287 	crtc->fb = fb;
288 
289 	return 0;
290 }
291 
292 static void drm_crtc_clear(struct drm_crtc *crtc)
293 {
294 	memset(crtc, 0, sizeof(*crtc));
295 }
296 
297 static void tegra_dc_destroy(struct drm_crtc *crtc)
298 {
299 	drm_crtc_cleanup(crtc);
300 	drm_crtc_clear(crtc);
301 }
302 
303 static const struct drm_crtc_funcs tegra_crtc_funcs = {
304 	.page_flip = tegra_dc_page_flip,
305 	.set_config = drm_crtc_helper_set_config,
306 	.destroy = tegra_dc_destroy,
307 };
308 
309 static void tegra_crtc_disable(struct drm_crtc *crtc)
310 {
311 	struct tegra_dc *dc = to_tegra_dc(crtc);
312 	struct drm_device *drm = crtc->dev;
313 	struct drm_plane *plane;
314 
315 	list_for_each_entry(plane, &drm->mode_config.plane_list, head) {
316 		if (plane->crtc == crtc) {
317 			tegra_plane_disable(plane);
318 			plane->crtc = NULL;
319 
320 			if (plane->fb) {
321 				drm_framebuffer_unreference(plane->fb);
322 				plane->fb = NULL;
323 			}
324 		}
325 	}
326 
327 	drm_vblank_off(drm, dc->pipe);
328 }
329 
330 static bool tegra_crtc_mode_fixup(struct drm_crtc *crtc,
331 				  const struct drm_display_mode *mode,
332 				  struct drm_display_mode *adjusted)
333 {
334 	return true;
335 }
336 
337 static inline u32 compute_dda_inc(unsigned int in, unsigned int out, bool v,
338 				  unsigned int bpp)
339 {
340 	fixed20_12 outf = dfixed_init(out);
341 	fixed20_12 inf = dfixed_init(in);
342 	u32 dda_inc;
343 	int max;
344 
345 	if (v)
346 		max = 15;
347 	else {
348 		switch (bpp) {
349 		case 2:
350 			max = 8;
351 			break;
352 
353 		default:
354 			WARN_ON_ONCE(1);
355 			/* fallthrough */
356 		case 4:
357 			max = 4;
358 			break;
359 		}
360 	}
361 
362 	outf.full = max_t(u32, outf.full - dfixed_const(1), dfixed_const(1));
363 	inf.full -= dfixed_const(1);
364 
365 	dda_inc = dfixed_div(inf, outf);
366 	dda_inc = min_t(u32, dda_inc, dfixed_const(max));
367 
368 	return dda_inc;
369 }
370 
371 static inline u32 compute_initial_dda(unsigned int in)
372 {
373 	fixed20_12 inf = dfixed_init(in);
374 	return dfixed_frac(inf);
375 }
376 
377 static int tegra_dc_set_timings(struct tegra_dc *dc,
378 				struct drm_display_mode *mode)
379 {
380 	/* TODO: For HDMI compliance, h & v ref_to_sync should be set to 1 */
381 	unsigned int h_ref_to_sync = 0;
382 	unsigned int v_ref_to_sync = 0;
383 	unsigned long value;
384 
385 	tegra_dc_writel(dc, 0x0, DC_DISP_DISP_TIMING_OPTIONS);
386 
387 	value = (v_ref_to_sync << 16) | h_ref_to_sync;
388 	tegra_dc_writel(dc, value, DC_DISP_REF_TO_SYNC);
389 
390 	value = ((mode->vsync_end - mode->vsync_start) << 16) |
391 		((mode->hsync_end - mode->hsync_start) <<  0);
392 	tegra_dc_writel(dc, value, DC_DISP_SYNC_WIDTH);
393 
394 	value = ((mode->vtotal - mode->vsync_end) << 16) |
395 		((mode->htotal - mode->hsync_end) <<  0);
396 	tegra_dc_writel(dc, value, DC_DISP_BACK_PORCH);
397 
398 	value = ((mode->vsync_start - mode->vdisplay) << 16) |
399 		((mode->hsync_start - mode->hdisplay) <<  0);
400 	tegra_dc_writel(dc, value, DC_DISP_FRONT_PORCH);
401 
402 	value = (mode->vdisplay << 16) | mode->hdisplay;
403 	tegra_dc_writel(dc, value, DC_DISP_ACTIVE);
404 
405 	return 0;
406 }
407 
408 static int tegra_crtc_setup_clk(struct drm_crtc *crtc,
409 				struct drm_display_mode *mode,
410 				unsigned long *div)
411 {
412 	unsigned long pclk = mode->clock * 1000, rate;
413 	struct tegra_dc *dc = to_tegra_dc(crtc);
414 	struct tegra_output *output = NULL;
415 	struct drm_encoder *encoder;
416 	long err;
417 
418 	list_for_each_entry(encoder, &crtc->dev->mode_config.encoder_list, head)
419 		if (encoder->crtc == crtc) {
420 			output = encoder_to_output(encoder);
421 			break;
422 		}
423 
424 	if (!output)
425 		return -ENODEV;
426 
427 	/*
428 	 * This assumes that the display controller will divide its parent
429 	 * clock by 2 to generate the pixel clock.
430 	 */
431 	err = tegra_output_setup_clock(output, dc->clk, pclk * 2);
432 	if (err < 0) {
433 		dev_err(dc->dev, "failed to setup clock: %ld\n", err);
434 		return err;
435 	}
436 
437 	rate = clk_get_rate(dc->clk);
438 	*div = (rate * 2 / pclk) - 2;
439 
440 	DRM_DEBUG_KMS("rate: %lu, div: %lu\n", rate, *div);
441 
442 	return 0;
443 }
444 
445 static bool tegra_dc_format_is_yuv(unsigned int format, bool *planar)
446 {
447 	switch (format) {
448 	case WIN_COLOR_DEPTH_YCbCr422:
449 	case WIN_COLOR_DEPTH_YUV422:
450 		if (planar)
451 			*planar = false;
452 
453 		return true;
454 
455 	case WIN_COLOR_DEPTH_YCbCr420P:
456 	case WIN_COLOR_DEPTH_YUV420P:
457 	case WIN_COLOR_DEPTH_YCbCr422P:
458 	case WIN_COLOR_DEPTH_YUV422P:
459 	case WIN_COLOR_DEPTH_YCbCr422R:
460 	case WIN_COLOR_DEPTH_YUV422R:
461 	case WIN_COLOR_DEPTH_YCbCr422RA:
462 	case WIN_COLOR_DEPTH_YUV422RA:
463 		if (planar)
464 			*planar = true;
465 
466 		return true;
467 	}
468 
469 	return false;
470 }
471 
472 int tegra_dc_setup_window(struct tegra_dc *dc, unsigned int index,
473 			  const struct tegra_dc_window *window)
474 {
475 	unsigned h_offset, v_offset, h_size, v_size, h_dda, v_dda, bpp;
476 	unsigned long value;
477 	bool yuv, planar;
478 
479 	/*
480 	 * For YUV planar modes, the number of bytes per pixel takes into
481 	 * account only the luma component and therefore is 1.
482 	 */
483 	yuv = tegra_dc_format_is_yuv(window->format, &planar);
484 	if (!yuv)
485 		bpp = window->bits_per_pixel / 8;
486 	else
487 		bpp = planar ? 1 : 2;
488 
489 	value = WINDOW_A_SELECT << index;
490 	tegra_dc_writel(dc, value, DC_CMD_DISPLAY_WINDOW_HEADER);
491 
492 	tegra_dc_writel(dc, window->format, DC_WIN_COLOR_DEPTH);
493 	tegra_dc_writel(dc, 0, DC_WIN_BYTE_SWAP);
494 
495 	value = V_POSITION(window->dst.y) | H_POSITION(window->dst.x);
496 	tegra_dc_writel(dc, value, DC_WIN_POSITION);
497 
498 	value = V_SIZE(window->dst.h) | H_SIZE(window->dst.w);
499 	tegra_dc_writel(dc, value, DC_WIN_SIZE);
500 
501 	h_offset = window->src.x * bpp;
502 	v_offset = window->src.y;
503 	h_size = window->src.w * bpp;
504 	v_size = window->src.h;
505 
506 	value = V_PRESCALED_SIZE(v_size) | H_PRESCALED_SIZE(h_size);
507 	tegra_dc_writel(dc, value, DC_WIN_PRESCALED_SIZE);
508 
509 	/*
510 	 * For DDA computations the number of bytes per pixel for YUV planar
511 	 * modes needs to take into account all Y, U and V components.
512 	 */
513 	if (yuv && planar)
514 		bpp = 2;
515 
516 	h_dda = compute_dda_inc(window->src.w, window->dst.w, false, bpp);
517 	v_dda = compute_dda_inc(window->src.h, window->dst.h, true, bpp);
518 
519 	value = V_DDA_INC(v_dda) | H_DDA_INC(h_dda);
520 	tegra_dc_writel(dc, value, DC_WIN_DDA_INC);
521 
522 	h_dda = compute_initial_dda(window->src.x);
523 	v_dda = compute_initial_dda(window->src.y);
524 
525 	tegra_dc_writel(dc, h_dda, DC_WIN_H_INITIAL_DDA);
526 	tegra_dc_writel(dc, v_dda, DC_WIN_V_INITIAL_DDA);
527 
528 	tegra_dc_writel(dc, 0, DC_WIN_UV_BUF_STRIDE);
529 	tegra_dc_writel(dc, 0, DC_WIN_BUF_STRIDE);
530 
531 	tegra_dc_writel(dc, window->base[0], DC_WINBUF_START_ADDR);
532 
533 	if (yuv && planar) {
534 		tegra_dc_writel(dc, window->base[1], DC_WINBUF_START_ADDR_U);
535 		tegra_dc_writel(dc, window->base[2], DC_WINBUF_START_ADDR_V);
536 		value = window->stride[1] << 16 | window->stride[0];
537 		tegra_dc_writel(dc, value, DC_WIN_LINE_STRIDE);
538 	} else {
539 		tegra_dc_writel(dc, window->stride[0], DC_WIN_LINE_STRIDE);
540 	}
541 
542 	if (window->bottom_up)
543 		v_offset += window->src.h - 1;
544 
545 	tegra_dc_writel(dc, h_offset, DC_WINBUF_ADDR_H_OFFSET);
546 	tegra_dc_writel(dc, v_offset, DC_WINBUF_ADDR_V_OFFSET);
547 
548 	if (window->tiled) {
549 		value = DC_WIN_BUFFER_ADDR_MODE_TILE_UV |
550 			DC_WIN_BUFFER_ADDR_MODE_TILE;
551 	} else {
552 		value = DC_WIN_BUFFER_ADDR_MODE_LINEAR_UV |
553 			DC_WIN_BUFFER_ADDR_MODE_LINEAR;
554 	}
555 
556 	tegra_dc_writel(dc, value, DC_WIN_BUFFER_ADDR_MODE);
557 
558 	value = WIN_ENABLE;
559 
560 	if (yuv) {
561 		/* setup default colorspace conversion coefficients */
562 		tegra_dc_writel(dc, 0x00f0, DC_WIN_CSC_YOF);
563 		tegra_dc_writel(dc, 0x012a, DC_WIN_CSC_KYRGB);
564 		tegra_dc_writel(dc, 0x0000, DC_WIN_CSC_KUR);
565 		tegra_dc_writel(dc, 0x0198, DC_WIN_CSC_KVR);
566 		tegra_dc_writel(dc, 0x039b, DC_WIN_CSC_KUG);
567 		tegra_dc_writel(dc, 0x032f, DC_WIN_CSC_KVG);
568 		tegra_dc_writel(dc, 0x0204, DC_WIN_CSC_KUB);
569 		tegra_dc_writel(dc, 0x0000, DC_WIN_CSC_KVB);
570 
571 		value |= CSC_ENABLE;
572 	} else if (window->bits_per_pixel < 24) {
573 		value |= COLOR_EXPAND;
574 	}
575 
576 	if (window->bottom_up)
577 		value |= INVERT_V;
578 
579 	tegra_dc_writel(dc, value, DC_WIN_WIN_OPTIONS);
580 
581 	/*
582 	 * Disable blending and assume Window A is the bottom-most window,
583 	 * Window C is the top-most window and Window B is in the middle.
584 	 */
585 	tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_NOKEY);
586 	tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_1WIN);
587 
588 	switch (index) {
589 	case 0:
590 		tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_2WIN_X);
591 		tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_2WIN_Y);
592 		tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_3WIN_XY);
593 		break;
594 
595 	case 1:
596 		tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_2WIN_X);
597 		tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_2WIN_Y);
598 		tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_3WIN_XY);
599 		break;
600 
601 	case 2:
602 		tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_2WIN_X);
603 		tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_2WIN_Y);
604 		tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_3WIN_XY);
605 		break;
606 	}
607 
608 	tegra_dc_writel(dc, WIN_A_UPDATE << index, DC_CMD_STATE_CONTROL);
609 	tegra_dc_writel(dc, WIN_A_ACT_REQ << index, DC_CMD_STATE_CONTROL);
610 
611 	return 0;
612 }
613 
614 unsigned int tegra_dc_format(uint32_t format)
615 {
616 	switch (format) {
617 	case DRM_FORMAT_XBGR8888:
618 		return WIN_COLOR_DEPTH_R8G8B8A8;
619 
620 	case DRM_FORMAT_XRGB8888:
621 		return WIN_COLOR_DEPTH_B8G8R8A8;
622 
623 	case DRM_FORMAT_RGB565:
624 		return WIN_COLOR_DEPTH_B5G6R5;
625 
626 	case DRM_FORMAT_UYVY:
627 		return WIN_COLOR_DEPTH_YCbCr422;
628 
629 	case DRM_FORMAT_YUV420:
630 		return WIN_COLOR_DEPTH_YCbCr420P;
631 
632 	case DRM_FORMAT_YUV422:
633 		return WIN_COLOR_DEPTH_YCbCr422P;
634 
635 	default:
636 		break;
637 	}
638 
639 	WARN(1, "unsupported pixel format %u, using default\n", format);
640 	return WIN_COLOR_DEPTH_B8G8R8A8;
641 }
642 
643 static int tegra_crtc_mode_set(struct drm_crtc *crtc,
644 			       struct drm_display_mode *mode,
645 			       struct drm_display_mode *adjusted,
646 			       int x, int y, struct drm_framebuffer *old_fb)
647 {
648 	struct tegra_bo *bo = tegra_fb_get_plane(crtc->fb, 0);
649 	struct tegra_dc *dc = to_tegra_dc(crtc);
650 	struct tegra_dc_window window;
651 	unsigned long div, value;
652 	int err;
653 
654 	drm_vblank_pre_modeset(crtc->dev, dc->pipe);
655 
656 	err = tegra_crtc_setup_clk(crtc, mode, &div);
657 	if (err) {
658 		dev_err(dc->dev, "failed to setup clock for CRTC: %d\n", err);
659 		return err;
660 	}
661 
662 	/* program display mode */
663 	tegra_dc_set_timings(dc, mode);
664 
665 	/* interlacing isn't supported yet, so disable it */
666 	if (dc->soc->supports_interlacing) {
667 		value = tegra_dc_readl(dc, DC_DISP_INTERLACE_CONTROL);
668 		value &= ~INTERLACE_ENABLE;
669 		tegra_dc_writel(dc, value, DC_DISP_INTERLACE_CONTROL);
670 	}
671 
672 	value = SHIFT_CLK_DIVIDER(div) | PIXEL_CLK_DIVIDER_PCD1;
673 	tegra_dc_writel(dc, value, DC_DISP_DISP_CLOCK_CONTROL);
674 
675 	/* setup window parameters */
676 	memset(&window, 0, sizeof(window));
677 	window.src.x = 0;
678 	window.src.y = 0;
679 	window.src.w = mode->hdisplay;
680 	window.src.h = mode->vdisplay;
681 	window.dst.x = 0;
682 	window.dst.y = 0;
683 	window.dst.w = mode->hdisplay;
684 	window.dst.h = mode->vdisplay;
685 	window.format = tegra_dc_format(crtc->fb->pixel_format);
686 	window.bits_per_pixel = crtc->fb->bits_per_pixel;
687 	window.stride[0] = crtc->fb->pitches[0];
688 	window.base[0] = bo->paddr;
689 
690 	err = tegra_dc_setup_window(dc, 0, &window);
691 	if (err < 0)
692 		dev_err(dc->dev, "failed to enable root plane\n");
693 
694 	return 0;
695 }
696 
697 static int tegra_crtc_mode_set_base(struct drm_crtc *crtc, int x, int y,
698 				    struct drm_framebuffer *old_fb)
699 {
700 	struct tegra_dc *dc = to_tegra_dc(crtc);
701 
702 	return tegra_dc_set_base(dc, x, y, crtc->fb);
703 }
704 
705 static void tegra_crtc_prepare(struct drm_crtc *crtc)
706 {
707 	struct tegra_dc *dc = to_tegra_dc(crtc);
708 	unsigned int syncpt;
709 	unsigned long value;
710 
711 	/* hardware initialization */
712 	reset_control_deassert(dc->rst);
713 	usleep_range(10000, 20000);
714 
715 	if (dc->pipe)
716 		syncpt = SYNCPT_VBLANK1;
717 	else
718 		syncpt = SYNCPT_VBLANK0;
719 
720 	/* initialize display controller */
721 	tegra_dc_writel(dc, 0x00000100, DC_CMD_GENERAL_INCR_SYNCPT_CNTRL);
722 	tegra_dc_writel(dc, 0x100 | syncpt, DC_CMD_CONT_SYNCPT_VSYNC);
723 
724 	value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT | WIN_A_OF_INT;
725 	tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
726 
727 	value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
728 		WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
729 	tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
730 
731 	value = PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
732 		PW4_ENABLE | PM0_ENABLE | PM1_ENABLE;
733 	tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
734 
735 	/* initialize timer */
736 	value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(0x20) |
737 		WINDOW_B_THRESHOLD(0x20) | WINDOW_C_THRESHOLD(0x20);
738 	tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY);
739 
740 	value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(1) |
741 		WINDOW_B_THRESHOLD(1) | WINDOW_C_THRESHOLD(1);
742 	tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER);
743 
744 	value = VBLANK_INT | WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT;
745 	tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
746 
747 	value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT;
748 	tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
749 }
750 
751 static void tegra_crtc_commit(struct drm_crtc *crtc)
752 {
753 	struct tegra_dc *dc = to_tegra_dc(crtc);
754 	unsigned long value;
755 
756 	value = GENERAL_UPDATE | WIN_A_UPDATE;
757 	tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
758 
759 	value = GENERAL_ACT_REQ | WIN_A_ACT_REQ;
760 	tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
761 
762 	drm_vblank_post_modeset(crtc->dev, dc->pipe);
763 }
764 
765 static void tegra_crtc_load_lut(struct drm_crtc *crtc)
766 {
767 }
768 
769 static const struct drm_crtc_helper_funcs tegra_crtc_helper_funcs = {
770 	.disable = tegra_crtc_disable,
771 	.mode_fixup = tegra_crtc_mode_fixup,
772 	.mode_set = tegra_crtc_mode_set,
773 	.mode_set_base = tegra_crtc_mode_set_base,
774 	.prepare = tegra_crtc_prepare,
775 	.commit = tegra_crtc_commit,
776 	.load_lut = tegra_crtc_load_lut,
777 };
778 
779 static irqreturn_t tegra_dc_irq(int irq, void *data)
780 {
781 	struct tegra_dc *dc = data;
782 	unsigned long status;
783 
784 	status = tegra_dc_readl(dc, DC_CMD_INT_STATUS);
785 	tegra_dc_writel(dc, status, DC_CMD_INT_STATUS);
786 
787 	if (status & FRAME_END_INT) {
788 		/*
789 		dev_dbg(dc->dev, "%s(): frame end\n", __func__);
790 		*/
791 	}
792 
793 	if (status & VBLANK_INT) {
794 		/*
795 		dev_dbg(dc->dev, "%s(): vertical blank\n", __func__);
796 		*/
797 		drm_handle_vblank(dc->base.dev, dc->pipe);
798 		tegra_dc_finish_page_flip(dc);
799 	}
800 
801 	if (status & (WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT)) {
802 		/*
803 		dev_dbg(dc->dev, "%s(): underflow\n", __func__);
804 		*/
805 	}
806 
807 	return IRQ_HANDLED;
808 }
809 
810 static int tegra_dc_show_regs(struct seq_file *s, void *data)
811 {
812 	struct drm_info_node *node = s->private;
813 	struct tegra_dc *dc = node->info_ent->data;
814 
815 #define DUMP_REG(name)						\
816 	seq_printf(s, "%-40s %#05x %08lx\n", #name, name,	\
817 		   tegra_dc_readl(dc, name))
818 
819 	DUMP_REG(DC_CMD_GENERAL_INCR_SYNCPT);
820 	DUMP_REG(DC_CMD_GENERAL_INCR_SYNCPT_CNTRL);
821 	DUMP_REG(DC_CMD_GENERAL_INCR_SYNCPT_ERROR);
822 	DUMP_REG(DC_CMD_WIN_A_INCR_SYNCPT);
823 	DUMP_REG(DC_CMD_WIN_A_INCR_SYNCPT_CNTRL);
824 	DUMP_REG(DC_CMD_WIN_A_INCR_SYNCPT_ERROR);
825 	DUMP_REG(DC_CMD_WIN_B_INCR_SYNCPT);
826 	DUMP_REG(DC_CMD_WIN_B_INCR_SYNCPT_CNTRL);
827 	DUMP_REG(DC_CMD_WIN_B_INCR_SYNCPT_ERROR);
828 	DUMP_REG(DC_CMD_WIN_C_INCR_SYNCPT);
829 	DUMP_REG(DC_CMD_WIN_C_INCR_SYNCPT_CNTRL);
830 	DUMP_REG(DC_CMD_WIN_C_INCR_SYNCPT_ERROR);
831 	DUMP_REG(DC_CMD_CONT_SYNCPT_VSYNC);
832 	DUMP_REG(DC_CMD_DISPLAY_COMMAND_OPTION0);
833 	DUMP_REG(DC_CMD_DISPLAY_COMMAND);
834 	DUMP_REG(DC_CMD_SIGNAL_RAISE);
835 	DUMP_REG(DC_CMD_DISPLAY_POWER_CONTROL);
836 	DUMP_REG(DC_CMD_INT_STATUS);
837 	DUMP_REG(DC_CMD_INT_MASK);
838 	DUMP_REG(DC_CMD_INT_ENABLE);
839 	DUMP_REG(DC_CMD_INT_TYPE);
840 	DUMP_REG(DC_CMD_INT_POLARITY);
841 	DUMP_REG(DC_CMD_SIGNAL_RAISE1);
842 	DUMP_REG(DC_CMD_SIGNAL_RAISE2);
843 	DUMP_REG(DC_CMD_SIGNAL_RAISE3);
844 	DUMP_REG(DC_CMD_STATE_ACCESS);
845 	DUMP_REG(DC_CMD_STATE_CONTROL);
846 	DUMP_REG(DC_CMD_DISPLAY_WINDOW_HEADER);
847 	DUMP_REG(DC_CMD_REG_ACT_CONTROL);
848 	DUMP_REG(DC_COM_CRC_CONTROL);
849 	DUMP_REG(DC_COM_CRC_CHECKSUM);
850 	DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(0));
851 	DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(1));
852 	DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(2));
853 	DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(3));
854 	DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(0));
855 	DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(1));
856 	DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(2));
857 	DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(3));
858 	DUMP_REG(DC_COM_PIN_OUTPUT_DATA(0));
859 	DUMP_REG(DC_COM_PIN_OUTPUT_DATA(1));
860 	DUMP_REG(DC_COM_PIN_OUTPUT_DATA(2));
861 	DUMP_REG(DC_COM_PIN_OUTPUT_DATA(3));
862 	DUMP_REG(DC_COM_PIN_INPUT_ENABLE(0));
863 	DUMP_REG(DC_COM_PIN_INPUT_ENABLE(1));
864 	DUMP_REG(DC_COM_PIN_INPUT_ENABLE(2));
865 	DUMP_REG(DC_COM_PIN_INPUT_ENABLE(3));
866 	DUMP_REG(DC_COM_PIN_INPUT_DATA(0));
867 	DUMP_REG(DC_COM_PIN_INPUT_DATA(1));
868 	DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(0));
869 	DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(1));
870 	DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(2));
871 	DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(3));
872 	DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(4));
873 	DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(5));
874 	DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(6));
875 	DUMP_REG(DC_COM_PIN_MISC_CONTROL);
876 	DUMP_REG(DC_COM_PIN_PM0_CONTROL);
877 	DUMP_REG(DC_COM_PIN_PM0_DUTY_CYCLE);
878 	DUMP_REG(DC_COM_PIN_PM1_CONTROL);
879 	DUMP_REG(DC_COM_PIN_PM1_DUTY_CYCLE);
880 	DUMP_REG(DC_COM_SPI_CONTROL);
881 	DUMP_REG(DC_COM_SPI_START_BYTE);
882 	DUMP_REG(DC_COM_HSPI_WRITE_DATA_AB);
883 	DUMP_REG(DC_COM_HSPI_WRITE_DATA_CD);
884 	DUMP_REG(DC_COM_HSPI_CS_DC);
885 	DUMP_REG(DC_COM_SCRATCH_REGISTER_A);
886 	DUMP_REG(DC_COM_SCRATCH_REGISTER_B);
887 	DUMP_REG(DC_COM_GPIO_CTRL);
888 	DUMP_REG(DC_COM_GPIO_DEBOUNCE_COUNTER);
889 	DUMP_REG(DC_COM_CRC_CHECKSUM_LATCHED);
890 	DUMP_REG(DC_DISP_DISP_SIGNAL_OPTIONS0);
891 	DUMP_REG(DC_DISP_DISP_SIGNAL_OPTIONS1);
892 	DUMP_REG(DC_DISP_DISP_WIN_OPTIONS);
893 	DUMP_REG(DC_DISP_DISP_MEM_HIGH_PRIORITY);
894 	DUMP_REG(DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER);
895 	DUMP_REG(DC_DISP_DISP_TIMING_OPTIONS);
896 	DUMP_REG(DC_DISP_REF_TO_SYNC);
897 	DUMP_REG(DC_DISP_SYNC_WIDTH);
898 	DUMP_REG(DC_DISP_BACK_PORCH);
899 	DUMP_REG(DC_DISP_ACTIVE);
900 	DUMP_REG(DC_DISP_FRONT_PORCH);
901 	DUMP_REG(DC_DISP_H_PULSE0_CONTROL);
902 	DUMP_REG(DC_DISP_H_PULSE0_POSITION_A);
903 	DUMP_REG(DC_DISP_H_PULSE0_POSITION_B);
904 	DUMP_REG(DC_DISP_H_PULSE0_POSITION_C);
905 	DUMP_REG(DC_DISP_H_PULSE0_POSITION_D);
906 	DUMP_REG(DC_DISP_H_PULSE1_CONTROL);
907 	DUMP_REG(DC_DISP_H_PULSE1_POSITION_A);
908 	DUMP_REG(DC_DISP_H_PULSE1_POSITION_B);
909 	DUMP_REG(DC_DISP_H_PULSE1_POSITION_C);
910 	DUMP_REG(DC_DISP_H_PULSE1_POSITION_D);
911 	DUMP_REG(DC_DISP_H_PULSE2_CONTROL);
912 	DUMP_REG(DC_DISP_H_PULSE2_POSITION_A);
913 	DUMP_REG(DC_DISP_H_PULSE2_POSITION_B);
914 	DUMP_REG(DC_DISP_H_PULSE2_POSITION_C);
915 	DUMP_REG(DC_DISP_H_PULSE2_POSITION_D);
916 	DUMP_REG(DC_DISP_V_PULSE0_CONTROL);
917 	DUMP_REG(DC_DISP_V_PULSE0_POSITION_A);
918 	DUMP_REG(DC_DISP_V_PULSE0_POSITION_B);
919 	DUMP_REG(DC_DISP_V_PULSE0_POSITION_C);
920 	DUMP_REG(DC_DISP_V_PULSE1_CONTROL);
921 	DUMP_REG(DC_DISP_V_PULSE1_POSITION_A);
922 	DUMP_REG(DC_DISP_V_PULSE1_POSITION_B);
923 	DUMP_REG(DC_DISP_V_PULSE1_POSITION_C);
924 	DUMP_REG(DC_DISP_V_PULSE2_CONTROL);
925 	DUMP_REG(DC_DISP_V_PULSE2_POSITION_A);
926 	DUMP_REG(DC_DISP_V_PULSE3_CONTROL);
927 	DUMP_REG(DC_DISP_V_PULSE3_POSITION_A);
928 	DUMP_REG(DC_DISP_M0_CONTROL);
929 	DUMP_REG(DC_DISP_M1_CONTROL);
930 	DUMP_REG(DC_DISP_DI_CONTROL);
931 	DUMP_REG(DC_DISP_PP_CONTROL);
932 	DUMP_REG(DC_DISP_PP_SELECT_A);
933 	DUMP_REG(DC_DISP_PP_SELECT_B);
934 	DUMP_REG(DC_DISP_PP_SELECT_C);
935 	DUMP_REG(DC_DISP_PP_SELECT_D);
936 	DUMP_REG(DC_DISP_DISP_CLOCK_CONTROL);
937 	DUMP_REG(DC_DISP_DISP_INTERFACE_CONTROL);
938 	DUMP_REG(DC_DISP_DISP_COLOR_CONTROL);
939 	DUMP_REG(DC_DISP_SHIFT_CLOCK_OPTIONS);
940 	DUMP_REG(DC_DISP_DATA_ENABLE_OPTIONS);
941 	DUMP_REG(DC_DISP_SERIAL_INTERFACE_OPTIONS);
942 	DUMP_REG(DC_DISP_LCD_SPI_OPTIONS);
943 	DUMP_REG(DC_DISP_BORDER_COLOR);
944 	DUMP_REG(DC_DISP_COLOR_KEY0_LOWER);
945 	DUMP_REG(DC_DISP_COLOR_KEY0_UPPER);
946 	DUMP_REG(DC_DISP_COLOR_KEY1_LOWER);
947 	DUMP_REG(DC_DISP_COLOR_KEY1_UPPER);
948 	DUMP_REG(DC_DISP_CURSOR_FOREGROUND);
949 	DUMP_REG(DC_DISP_CURSOR_BACKGROUND);
950 	DUMP_REG(DC_DISP_CURSOR_START_ADDR);
951 	DUMP_REG(DC_DISP_CURSOR_START_ADDR_NS);
952 	DUMP_REG(DC_DISP_CURSOR_POSITION);
953 	DUMP_REG(DC_DISP_CURSOR_POSITION_NS);
954 	DUMP_REG(DC_DISP_INIT_SEQ_CONTROL);
955 	DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_A);
956 	DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_B);
957 	DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_C);
958 	DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_D);
959 	DUMP_REG(DC_DISP_DC_MCCIF_FIFOCTRL);
960 	DUMP_REG(DC_DISP_MCCIF_DISPLAY0A_HYST);
961 	DUMP_REG(DC_DISP_MCCIF_DISPLAY0B_HYST);
962 	DUMP_REG(DC_DISP_MCCIF_DISPLAY1A_HYST);
963 	DUMP_REG(DC_DISP_MCCIF_DISPLAY1B_HYST);
964 	DUMP_REG(DC_DISP_DAC_CRT_CTRL);
965 	DUMP_REG(DC_DISP_DISP_MISC_CONTROL);
966 	DUMP_REG(DC_DISP_SD_CONTROL);
967 	DUMP_REG(DC_DISP_SD_CSC_COEFF);
968 	DUMP_REG(DC_DISP_SD_LUT(0));
969 	DUMP_REG(DC_DISP_SD_LUT(1));
970 	DUMP_REG(DC_DISP_SD_LUT(2));
971 	DUMP_REG(DC_DISP_SD_LUT(3));
972 	DUMP_REG(DC_DISP_SD_LUT(4));
973 	DUMP_REG(DC_DISP_SD_LUT(5));
974 	DUMP_REG(DC_DISP_SD_LUT(6));
975 	DUMP_REG(DC_DISP_SD_LUT(7));
976 	DUMP_REG(DC_DISP_SD_LUT(8));
977 	DUMP_REG(DC_DISP_SD_FLICKER_CONTROL);
978 	DUMP_REG(DC_DISP_DC_PIXEL_COUNT);
979 	DUMP_REG(DC_DISP_SD_HISTOGRAM(0));
980 	DUMP_REG(DC_DISP_SD_HISTOGRAM(1));
981 	DUMP_REG(DC_DISP_SD_HISTOGRAM(2));
982 	DUMP_REG(DC_DISP_SD_HISTOGRAM(3));
983 	DUMP_REG(DC_DISP_SD_HISTOGRAM(4));
984 	DUMP_REG(DC_DISP_SD_HISTOGRAM(5));
985 	DUMP_REG(DC_DISP_SD_HISTOGRAM(6));
986 	DUMP_REG(DC_DISP_SD_HISTOGRAM(7));
987 	DUMP_REG(DC_DISP_SD_BL_TF(0));
988 	DUMP_REG(DC_DISP_SD_BL_TF(1));
989 	DUMP_REG(DC_DISP_SD_BL_TF(2));
990 	DUMP_REG(DC_DISP_SD_BL_TF(3));
991 	DUMP_REG(DC_DISP_SD_BL_CONTROL);
992 	DUMP_REG(DC_DISP_SD_HW_K_VALUES);
993 	DUMP_REG(DC_DISP_SD_MAN_K_VALUES);
994 	DUMP_REG(DC_WIN_WIN_OPTIONS);
995 	DUMP_REG(DC_WIN_BYTE_SWAP);
996 	DUMP_REG(DC_WIN_BUFFER_CONTROL);
997 	DUMP_REG(DC_WIN_COLOR_DEPTH);
998 	DUMP_REG(DC_WIN_POSITION);
999 	DUMP_REG(DC_WIN_SIZE);
1000 	DUMP_REG(DC_WIN_PRESCALED_SIZE);
1001 	DUMP_REG(DC_WIN_H_INITIAL_DDA);
1002 	DUMP_REG(DC_WIN_V_INITIAL_DDA);
1003 	DUMP_REG(DC_WIN_DDA_INC);
1004 	DUMP_REG(DC_WIN_LINE_STRIDE);
1005 	DUMP_REG(DC_WIN_BUF_STRIDE);
1006 	DUMP_REG(DC_WIN_UV_BUF_STRIDE);
1007 	DUMP_REG(DC_WIN_BUFFER_ADDR_MODE);
1008 	DUMP_REG(DC_WIN_DV_CONTROL);
1009 	DUMP_REG(DC_WIN_BLEND_NOKEY);
1010 	DUMP_REG(DC_WIN_BLEND_1WIN);
1011 	DUMP_REG(DC_WIN_BLEND_2WIN_X);
1012 	DUMP_REG(DC_WIN_BLEND_2WIN_Y);
1013 	DUMP_REG(DC_WIN_BLEND_3WIN_XY);
1014 	DUMP_REG(DC_WIN_HP_FETCH_CONTROL);
1015 	DUMP_REG(DC_WINBUF_START_ADDR);
1016 	DUMP_REG(DC_WINBUF_START_ADDR_NS);
1017 	DUMP_REG(DC_WINBUF_START_ADDR_U);
1018 	DUMP_REG(DC_WINBUF_START_ADDR_U_NS);
1019 	DUMP_REG(DC_WINBUF_START_ADDR_V);
1020 	DUMP_REG(DC_WINBUF_START_ADDR_V_NS);
1021 	DUMP_REG(DC_WINBUF_ADDR_H_OFFSET);
1022 	DUMP_REG(DC_WINBUF_ADDR_H_OFFSET_NS);
1023 	DUMP_REG(DC_WINBUF_ADDR_V_OFFSET);
1024 	DUMP_REG(DC_WINBUF_ADDR_V_OFFSET_NS);
1025 	DUMP_REG(DC_WINBUF_UFLOW_STATUS);
1026 	DUMP_REG(DC_WINBUF_AD_UFLOW_STATUS);
1027 	DUMP_REG(DC_WINBUF_BD_UFLOW_STATUS);
1028 	DUMP_REG(DC_WINBUF_CD_UFLOW_STATUS);
1029 
1030 #undef DUMP_REG
1031 
1032 	return 0;
1033 }
1034 
1035 static struct drm_info_list debugfs_files[] = {
1036 	{ "regs", tegra_dc_show_regs, 0, NULL },
1037 };
1038 
1039 static int tegra_dc_debugfs_init(struct tegra_dc *dc, struct drm_minor *minor)
1040 {
1041 	unsigned int i;
1042 	char *name;
1043 	int err;
1044 
1045 	name = kasprintf(GFP_KERNEL, "dc.%d", dc->pipe);
1046 	dc->debugfs = debugfs_create_dir(name, minor->debugfs_root);
1047 	kfree(name);
1048 
1049 	if (!dc->debugfs)
1050 		return -ENOMEM;
1051 
1052 	dc->debugfs_files = kmemdup(debugfs_files, sizeof(debugfs_files),
1053 				    GFP_KERNEL);
1054 	if (!dc->debugfs_files) {
1055 		err = -ENOMEM;
1056 		goto remove;
1057 	}
1058 
1059 	for (i = 0; i < ARRAY_SIZE(debugfs_files); i++)
1060 		dc->debugfs_files[i].data = dc;
1061 
1062 	err = drm_debugfs_create_files(dc->debugfs_files,
1063 				       ARRAY_SIZE(debugfs_files),
1064 				       dc->debugfs, minor);
1065 	if (err < 0)
1066 		goto free;
1067 
1068 	dc->minor = minor;
1069 
1070 	return 0;
1071 
1072 free:
1073 	kfree(dc->debugfs_files);
1074 	dc->debugfs_files = NULL;
1075 remove:
1076 	debugfs_remove(dc->debugfs);
1077 	dc->debugfs = NULL;
1078 
1079 	return err;
1080 }
1081 
1082 static int tegra_dc_debugfs_exit(struct tegra_dc *dc)
1083 {
1084 	drm_debugfs_remove_files(dc->debugfs_files, ARRAY_SIZE(debugfs_files),
1085 				 dc->minor);
1086 	dc->minor = NULL;
1087 
1088 	kfree(dc->debugfs_files);
1089 	dc->debugfs_files = NULL;
1090 
1091 	debugfs_remove(dc->debugfs);
1092 	dc->debugfs = NULL;
1093 
1094 	return 0;
1095 }
1096 
1097 static int tegra_dc_init(struct host1x_client *client)
1098 {
1099 	struct tegra_drm *tegra = dev_get_drvdata(client->parent);
1100 	struct tegra_dc *dc = host1x_client_to_dc(client);
1101 	int err;
1102 
1103 	drm_crtc_init(tegra->drm, &dc->base, &tegra_crtc_funcs);
1104 	drm_mode_crtc_set_gamma_size(&dc->base, 256);
1105 	drm_crtc_helper_add(&dc->base, &tegra_crtc_helper_funcs);
1106 
1107 	err = tegra_dc_rgb_init(tegra->drm, dc);
1108 	if (err < 0 && err != -ENODEV) {
1109 		dev_err(dc->dev, "failed to initialize RGB output: %d\n", err);
1110 		return err;
1111 	}
1112 
1113 	err = tegra_dc_add_planes(tegra->drm, dc);
1114 	if (err < 0)
1115 		return err;
1116 
1117 	if (IS_ENABLED(CONFIG_DEBUG_FS)) {
1118 		err = tegra_dc_debugfs_init(dc, tegra->drm->primary);
1119 		if (err < 0)
1120 			dev_err(dc->dev, "debugfs setup failed: %d\n", err);
1121 	}
1122 
1123 	err = devm_request_irq(dc->dev, dc->irq, tegra_dc_irq, 0,
1124 			       dev_name(dc->dev), dc);
1125 	if (err < 0) {
1126 		dev_err(dc->dev, "failed to request IRQ#%u: %d\n", dc->irq,
1127 			err);
1128 		return err;
1129 	}
1130 
1131 	return 0;
1132 }
1133 
1134 static int tegra_dc_exit(struct host1x_client *client)
1135 {
1136 	struct tegra_dc *dc = host1x_client_to_dc(client);
1137 	int err;
1138 
1139 	devm_free_irq(dc->dev, dc->irq, dc);
1140 
1141 	if (IS_ENABLED(CONFIG_DEBUG_FS)) {
1142 		err = tegra_dc_debugfs_exit(dc);
1143 		if (err < 0)
1144 			dev_err(dc->dev, "debugfs cleanup failed: %d\n", err);
1145 	}
1146 
1147 	err = tegra_dc_rgb_exit(dc);
1148 	if (err) {
1149 		dev_err(dc->dev, "failed to shutdown RGB output: %d\n", err);
1150 		return err;
1151 	}
1152 
1153 	return 0;
1154 }
1155 
1156 static const struct host1x_client_ops dc_client_ops = {
1157 	.init = tegra_dc_init,
1158 	.exit = tegra_dc_exit,
1159 };
1160 
1161 static const struct tegra_dc_soc_info tegra20_dc_soc_info = {
1162 	.supports_interlacing = false,
1163 };
1164 
1165 static const struct tegra_dc_soc_info tegra30_dc_soc_info = {
1166 	.supports_interlacing = false,
1167 };
1168 
1169 static const struct tegra_dc_soc_info tegra124_dc_soc_info = {
1170 	.supports_interlacing = true,
1171 };
1172 
1173 static const struct of_device_id tegra_dc_of_match[] = {
1174 	{
1175 		.compatible = "nvidia,tegra124-dc",
1176 		.data = &tegra124_dc_soc_info,
1177 	}, {
1178 		.compatible = "nvidia,tegra30-dc",
1179 		.data = &tegra30_dc_soc_info,
1180 	}, {
1181 		.compatible = "nvidia,tegra20-dc",
1182 		.data = &tegra20_dc_soc_info,
1183 	}, {
1184 		/* sentinel */
1185 	}
1186 };
1187 
1188 static int tegra_dc_parse_dt(struct tegra_dc *dc)
1189 {
1190 	struct device_node *np;
1191 	u32 value = 0;
1192 	int err;
1193 
1194 	err = of_property_read_u32(dc->dev->of_node, "nvidia,head", &value);
1195 	if (err < 0) {
1196 		dev_err(dc->dev, "missing \"nvidia,head\" property\n");
1197 
1198 		/*
1199 		 * If the nvidia,head property isn't present, try to find the
1200 		 * correct head number by looking up the position of this
1201 		 * display controller's node within the device tree. Assuming
1202 		 * that the nodes are ordered properly in the DTS file and
1203 		 * that the translation into a flattened device tree blob
1204 		 * preserves that ordering this will actually yield the right
1205 		 * head number.
1206 		 *
1207 		 * If those assumptions don't hold, this will still work for
1208 		 * cases where only a single display controller is used.
1209 		 */
1210 		for_each_matching_node(np, tegra_dc_of_match) {
1211 			if (np == dc->dev->of_node)
1212 				break;
1213 
1214 			value++;
1215 		}
1216 	}
1217 
1218 	dc->pipe = value;
1219 
1220 	return 0;
1221 }
1222 
1223 static int tegra_dc_probe(struct platform_device *pdev)
1224 {
1225 	const struct of_device_id *id;
1226 	struct resource *regs;
1227 	struct tegra_dc *dc;
1228 	int err;
1229 
1230 	dc = devm_kzalloc(&pdev->dev, sizeof(*dc), GFP_KERNEL);
1231 	if (!dc)
1232 		return -ENOMEM;
1233 
1234 	id = of_match_node(tegra_dc_of_match, pdev->dev.of_node);
1235 	if (!id)
1236 		return -ENODEV;
1237 
1238 	spin_lock_init(&dc->lock);
1239 	INIT_LIST_HEAD(&dc->list);
1240 	dc->dev = &pdev->dev;
1241 	dc->soc = id->data;
1242 
1243 	err = tegra_dc_parse_dt(dc);
1244 	if (err < 0)
1245 		return err;
1246 
1247 	dc->clk = devm_clk_get(&pdev->dev, NULL);
1248 	if (IS_ERR(dc->clk)) {
1249 		dev_err(&pdev->dev, "failed to get clock\n");
1250 		return PTR_ERR(dc->clk);
1251 	}
1252 
1253 	dc->rst = devm_reset_control_get(&pdev->dev, "dc");
1254 	if (IS_ERR(dc->rst)) {
1255 		dev_err(&pdev->dev, "failed to get reset\n");
1256 		return PTR_ERR(dc->rst);
1257 	}
1258 
1259 	err = clk_prepare_enable(dc->clk);
1260 	if (err < 0)
1261 		return err;
1262 
1263 	regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1264 	dc->regs = devm_ioremap_resource(&pdev->dev, regs);
1265 	if (IS_ERR(dc->regs))
1266 		return PTR_ERR(dc->regs);
1267 
1268 	dc->irq = platform_get_irq(pdev, 0);
1269 	if (dc->irq < 0) {
1270 		dev_err(&pdev->dev, "failed to get IRQ\n");
1271 		return -ENXIO;
1272 	}
1273 
1274 	INIT_LIST_HEAD(&dc->client.list);
1275 	dc->client.ops = &dc_client_ops;
1276 	dc->client.dev = &pdev->dev;
1277 
1278 	err = tegra_dc_rgb_probe(dc);
1279 	if (err < 0 && err != -ENODEV) {
1280 		dev_err(&pdev->dev, "failed to probe RGB output: %d\n", err);
1281 		return err;
1282 	}
1283 
1284 	err = host1x_client_register(&dc->client);
1285 	if (err < 0) {
1286 		dev_err(&pdev->dev, "failed to register host1x client: %d\n",
1287 			err);
1288 		return err;
1289 	}
1290 
1291 	platform_set_drvdata(pdev, dc);
1292 
1293 	return 0;
1294 }
1295 
1296 static int tegra_dc_remove(struct platform_device *pdev)
1297 {
1298 	struct tegra_dc *dc = platform_get_drvdata(pdev);
1299 	int err;
1300 
1301 	err = host1x_client_unregister(&dc->client);
1302 	if (err < 0) {
1303 		dev_err(&pdev->dev, "failed to unregister host1x client: %d\n",
1304 			err);
1305 		return err;
1306 	}
1307 
1308 	err = tegra_dc_rgb_remove(dc);
1309 	if (err < 0) {
1310 		dev_err(&pdev->dev, "failed to remove RGB output: %d\n", err);
1311 		return err;
1312 	}
1313 
1314 	clk_disable_unprepare(dc->clk);
1315 
1316 	return 0;
1317 }
1318 
1319 struct platform_driver tegra_dc_driver = {
1320 	.driver = {
1321 		.name = "tegra-dc",
1322 		.owner = THIS_MODULE,
1323 		.of_match_table = tegra_dc_of_match,
1324 	},
1325 	.probe = tegra_dc_probe,
1326 	.remove = tegra_dc_remove,
1327 };
1328