xref: /openbmc/linux/drivers/gpu/drm/tegra/dc.c (revision a8da474e)
1 /*
2  * Copyright (C) 2012 Avionic Design GmbH
3  * Copyright (C) 2012 NVIDIA CORPORATION.  All rights reserved.
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  */
9 
10 #include <linux/clk.h>
11 #include <linux/debugfs.h>
12 #include <linux/iommu.h>
13 #include <linux/reset.h>
14 
15 #include <soc/tegra/pmc.h>
16 
17 #include "dc.h"
18 #include "drm.h"
19 #include "gem.h"
20 
21 #include <drm/drm_atomic.h>
22 #include <drm/drm_atomic_helper.h>
23 #include <drm/drm_plane_helper.h>
24 
25 struct tegra_dc_soc_info {
26 	bool supports_border_color;
27 	bool supports_interlacing;
28 	bool supports_cursor;
29 	bool supports_block_linear;
30 	unsigned int pitch_align;
31 	bool has_powergate;
32 };
33 
34 struct tegra_plane {
35 	struct drm_plane base;
36 	unsigned int index;
37 };
38 
39 static inline struct tegra_plane *to_tegra_plane(struct drm_plane *plane)
40 {
41 	return container_of(plane, struct tegra_plane, base);
42 }
43 
44 struct tegra_dc_state {
45 	struct drm_crtc_state base;
46 
47 	struct clk *clk;
48 	unsigned long pclk;
49 	unsigned int div;
50 
51 	u32 planes;
52 };
53 
54 static inline struct tegra_dc_state *to_dc_state(struct drm_crtc_state *state)
55 {
56 	if (state)
57 		return container_of(state, struct tegra_dc_state, base);
58 
59 	return NULL;
60 }
61 
62 struct tegra_plane_state {
63 	struct drm_plane_state base;
64 
65 	struct tegra_bo_tiling tiling;
66 	u32 format;
67 	u32 swap;
68 };
69 
70 static inline struct tegra_plane_state *
71 to_tegra_plane_state(struct drm_plane_state *state)
72 {
73 	if (state)
74 		return container_of(state, struct tegra_plane_state, base);
75 
76 	return NULL;
77 }
78 
79 static void tegra_dc_stats_reset(struct tegra_dc_stats *stats)
80 {
81 	stats->frames = 0;
82 	stats->vblank = 0;
83 	stats->underflow = 0;
84 	stats->overflow = 0;
85 }
86 
87 /*
88  * Reads the active copy of a register. This takes the dc->lock spinlock to
89  * prevent races with the VBLANK processing which also needs access to the
90  * active copy of some registers.
91  */
92 static u32 tegra_dc_readl_active(struct tegra_dc *dc, unsigned long offset)
93 {
94 	unsigned long flags;
95 	u32 value;
96 
97 	spin_lock_irqsave(&dc->lock, flags);
98 
99 	tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
100 	value = tegra_dc_readl(dc, offset);
101 	tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS);
102 
103 	spin_unlock_irqrestore(&dc->lock, flags);
104 	return value;
105 }
106 
107 /*
108  * Double-buffered registers have two copies: ASSEMBLY and ACTIVE. When the
109  * *_ACT_REQ bits are set the ASSEMBLY copy is latched into the ACTIVE copy.
110  * Latching happens mmediately if the display controller is in STOP mode or
111  * on the next frame boundary otherwise.
112  *
113  * Triple-buffered registers have three copies: ASSEMBLY, ARM and ACTIVE. The
114  * ASSEMBLY copy is latched into the ARM copy immediately after *_UPDATE bits
115  * are written. When the *_ACT_REQ bits are written, the ARM copy is latched
116  * into the ACTIVE copy, either immediately if the display controller is in
117  * STOP mode, or at the next frame boundary otherwise.
118  */
119 void tegra_dc_commit(struct tegra_dc *dc)
120 {
121 	tegra_dc_writel(dc, GENERAL_ACT_REQ << 8, DC_CMD_STATE_CONTROL);
122 	tegra_dc_writel(dc, GENERAL_ACT_REQ, DC_CMD_STATE_CONTROL);
123 }
124 
125 static int tegra_dc_format(u32 fourcc, u32 *format, u32 *swap)
126 {
127 	/* assume no swapping of fetched data */
128 	if (swap)
129 		*swap = BYTE_SWAP_NOSWAP;
130 
131 	switch (fourcc) {
132 	case DRM_FORMAT_XBGR8888:
133 		*format = WIN_COLOR_DEPTH_R8G8B8A8;
134 		break;
135 
136 	case DRM_FORMAT_XRGB8888:
137 		*format = WIN_COLOR_DEPTH_B8G8R8A8;
138 		break;
139 
140 	case DRM_FORMAT_RGB565:
141 		*format = WIN_COLOR_DEPTH_B5G6R5;
142 		break;
143 
144 	case DRM_FORMAT_UYVY:
145 		*format = WIN_COLOR_DEPTH_YCbCr422;
146 		break;
147 
148 	case DRM_FORMAT_YUYV:
149 		if (swap)
150 			*swap = BYTE_SWAP_SWAP2;
151 
152 		*format = WIN_COLOR_DEPTH_YCbCr422;
153 		break;
154 
155 	case DRM_FORMAT_YUV420:
156 		*format = WIN_COLOR_DEPTH_YCbCr420P;
157 		break;
158 
159 	case DRM_FORMAT_YUV422:
160 		*format = WIN_COLOR_DEPTH_YCbCr422P;
161 		break;
162 
163 	default:
164 		return -EINVAL;
165 	}
166 
167 	return 0;
168 }
169 
170 static bool tegra_dc_format_is_yuv(unsigned int format, bool *planar)
171 {
172 	switch (format) {
173 	case WIN_COLOR_DEPTH_YCbCr422:
174 	case WIN_COLOR_DEPTH_YUV422:
175 		if (planar)
176 			*planar = false;
177 
178 		return true;
179 
180 	case WIN_COLOR_DEPTH_YCbCr420P:
181 	case WIN_COLOR_DEPTH_YUV420P:
182 	case WIN_COLOR_DEPTH_YCbCr422P:
183 	case WIN_COLOR_DEPTH_YUV422P:
184 	case WIN_COLOR_DEPTH_YCbCr422R:
185 	case WIN_COLOR_DEPTH_YUV422R:
186 	case WIN_COLOR_DEPTH_YCbCr422RA:
187 	case WIN_COLOR_DEPTH_YUV422RA:
188 		if (planar)
189 			*planar = true;
190 
191 		return true;
192 	}
193 
194 	if (planar)
195 		*planar = false;
196 
197 	return false;
198 }
199 
200 static inline u32 compute_dda_inc(unsigned int in, unsigned int out, bool v,
201 				  unsigned int bpp)
202 {
203 	fixed20_12 outf = dfixed_init(out);
204 	fixed20_12 inf = dfixed_init(in);
205 	u32 dda_inc;
206 	int max;
207 
208 	if (v)
209 		max = 15;
210 	else {
211 		switch (bpp) {
212 		case 2:
213 			max = 8;
214 			break;
215 
216 		default:
217 			WARN_ON_ONCE(1);
218 			/* fallthrough */
219 		case 4:
220 			max = 4;
221 			break;
222 		}
223 	}
224 
225 	outf.full = max_t(u32, outf.full - dfixed_const(1), dfixed_const(1));
226 	inf.full -= dfixed_const(1);
227 
228 	dda_inc = dfixed_div(inf, outf);
229 	dda_inc = min_t(u32, dda_inc, dfixed_const(max));
230 
231 	return dda_inc;
232 }
233 
234 static inline u32 compute_initial_dda(unsigned int in)
235 {
236 	fixed20_12 inf = dfixed_init(in);
237 	return dfixed_frac(inf);
238 }
239 
240 static void tegra_dc_setup_window(struct tegra_dc *dc, unsigned int index,
241 				  const struct tegra_dc_window *window)
242 {
243 	unsigned h_offset, v_offset, h_size, v_size, h_dda, v_dda, bpp;
244 	unsigned long value, flags;
245 	bool yuv, planar;
246 
247 	/*
248 	 * For YUV planar modes, the number of bytes per pixel takes into
249 	 * account only the luma component and therefore is 1.
250 	 */
251 	yuv = tegra_dc_format_is_yuv(window->format, &planar);
252 	if (!yuv)
253 		bpp = window->bits_per_pixel / 8;
254 	else
255 		bpp = planar ? 1 : 2;
256 
257 	spin_lock_irqsave(&dc->lock, flags);
258 
259 	value = WINDOW_A_SELECT << index;
260 	tegra_dc_writel(dc, value, DC_CMD_DISPLAY_WINDOW_HEADER);
261 
262 	tegra_dc_writel(dc, window->format, DC_WIN_COLOR_DEPTH);
263 	tegra_dc_writel(dc, window->swap, DC_WIN_BYTE_SWAP);
264 
265 	value = V_POSITION(window->dst.y) | H_POSITION(window->dst.x);
266 	tegra_dc_writel(dc, value, DC_WIN_POSITION);
267 
268 	value = V_SIZE(window->dst.h) | H_SIZE(window->dst.w);
269 	tegra_dc_writel(dc, value, DC_WIN_SIZE);
270 
271 	h_offset = window->src.x * bpp;
272 	v_offset = window->src.y;
273 	h_size = window->src.w * bpp;
274 	v_size = window->src.h;
275 
276 	value = V_PRESCALED_SIZE(v_size) | H_PRESCALED_SIZE(h_size);
277 	tegra_dc_writel(dc, value, DC_WIN_PRESCALED_SIZE);
278 
279 	/*
280 	 * For DDA computations the number of bytes per pixel for YUV planar
281 	 * modes needs to take into account all Y, U and V components.
282 	 */
283 	if (yuv && planar)
284 		bpp = 2;
285 
286 	h_dda = compute_dda_inc(window->src.w, window->dst.w, false, bpp);
287 	v_dda = compute_dda_inc(window->src.h, window->dst.h, true, bpp);
288 
289 	value = V_DDA_INC(v_dda) | H_DDA_INC(h_dda);
290 	tegra_dc_writel(dc, value, DC_WIN_DDA_INC);
291 
292 	h_dda = compute_initial_dda(window->src.x);
293 	v_dda = compute_initial_dda(window->src.y);
294 
295 	tegra_dc_writel(dc, h_dda, DC_WIN_H_INITIAL_DDA);
296 	tegra_dc_writel(dc, v_dda, DC_WIN_V_INITIAL_DDA);
297 
298 	tegra_dc_writel(dc, 0, DC_WIN_UV_BUF_STRIDE);
299 	tegra_dc_writel(dc, 0, DC_WIN_BUF_STRIDE);
300 
301 	tegra_dc_writel(dc, window->base[0], DC_WINBUF_START_ADDR);
302 
303 	if (yuv && planar) {
304 		tegra_dc_writel(dc, window->base[1], DC_WINBUF_START_ADDR_U);
305 		tegra_dc_writel(dc, window->base[2], DC_WINBUF_START_ADDR_V);
306 		value = window->stride[1] << 16 | window->stride[0];
307 		tegra_dc_writel(dc, value, DC_WIN_LINE_STRIDE);
308 	} else {
309 		tegra_dc_writel(dc, window->stride[0], DC_WIN_LINE_STRIDE);
310 	}
311 
312 	if (window->bottom_up)
313 		v_offset += window->src.h - 1;
314 
315 	tegra_dc_writel(dc, h_offset, DC_WINBUF_ADDR_H_OFFSET);
316 	tegra_dc_writel(dc, v_offset, DC_WINBUF_ADDR_V_OFFSET);
317 
318 	if (dc->soc->supports_block_linear) {
319 		unsigned long height = window->tiling.value;
320 
321 		switch (window->tiling.mode) {
322 		case TEGRA_BO_TILING_MODE_PITCH:
323 			value = DC_WINBUF_SURFACE_KIND_PITCH;
324 			break;
325 
326 		case TEGRA_BO_TILING_MODE_TILED:
327 			value = DC_WINBUF_SURFACE_KIND_TILED;
328 			break;
329 
330 		case TEGRA_BO_TILING_MODE_BLOCK:
331 			value = DC_WINBUF_SURFACE_KIND_BLOCK_HEIGHT(height) |
332 				DC_WINBUF_SURFACE_KIND_BLOCK;
333 			break;
334 		}
335 
336 		tegra_dc_writel(dc, value, DC_WINBUF_SURFACE_KIND);
337 	} else {
338 		switch (window->tiling.mode) {
339 		case TEGRA_BO_TILING_MODE_PITCH:
340 			value = DC_WIN_BUFFER_ADDR_MODE_LINEAR_UV |
341 				DC_WIN_BUFFER_ADDR_MODE_LINEAR;
342 			break;
343 
344 		case TEGRA_BO_TILING_MODE_TILED:
345 			value = DC_WIN_BUFFER_ADDR_MODE_TILE_UV |
346 				DC_WIN_BUFFER_ADDR_MODE_TILE;
347 			break;
348 
349 		case TEGRA_BO_TILING_MODE_BLOCK:
350 			/*
351 			 * No need to handle this here because ->atomic_check
352 			 * will already have filtered it out.
353 			 */
354 			break;
355 		}
356 
357 		tegra_dc_writel(dc, value, DC_WIN_BUFFER_ADDR_MODE);
358 	}
359 
360 	value = WIN_ENABLE;
361 
362 	if (yuv) {
363 		/* setup default colorspace conversion coefficients */
364 		tegra_dc_writel(dc, 0x00f0, DC_WIN_CSC_YOF);
365 		tegra_dc_writel(dc, 0x012a, DC_WIN_CSC_KYRGB);
366 		tegra_dc_writel(dc, 0x0000, DC_WIN_CSC_KUR);
367 		tegra_dc_writel(dc, 0x0198, DC_WIN_CSC_KVR);
368 		tegra_dc_writel(dc, 0x039b, DC_WIN_CSC_KUG);
369 		tegra_dc_writel(dc, 0x032f, DC_WIN_CSC_KVG);
370 		tegra_dc_writel(dc, 0x0204, DC_WIN_CSC_KUB);
371 		tegra_dc_writel(dc, 0x0000, DC_WIN_CSC_KVB);
372 
373 		value |= CSC_ENABLE;
374 	} else if (window->bits_per_pixel < 24) {
375 		value |= COLOR_EXPAND;
376 	}
377 
378 	if (window->bottom_up)
379 		value |= V_DIRECTION;
380 
381 	tegra_dc_writel(dc, value, DC_WIN_WIN_OPTIONS);
382 
383 	/*
384 	 * Disable blending and assume Window A is the bottom-most window,
385 	 * Window C is the top-most window and Window B is in the middle.
386 	 */
387 	tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_NOKEY);
388 	tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_1WIN);
389 
390 	switch (index) {
391 	case 0:
392 		tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_2WIN_X);
393 		tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_2WIN_Y);
394 		tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_3WIN_XY);
395 		break;
396 
397 	case 1:
398 		tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_2WIN_X);
399 		tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_2WIN_Y);
400 		tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_3WIN_XY);
401 		break;
402 
403 	case 2:
404 		tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_2WIN_X);
405 		tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_2WIN_Y);
406 		tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_3WIN_XY);
407 		break;
408 	}
409 
410 	spin_unlock_irqrestore(&dc->lock, flags);
411 }
412 
413 static void tegra_plane_destroy(struct drm_plane *plane)
414 {
415 	struct tegra_plane *p = to_tegra_plane(plane);
416 
417 	drm_plane_cleanup(plane);
418 	kfree(p);
419 }
420 
421 static const u32 tegra_primary_plane_formats[] = {
422 	DRM_FORMAT_XBGR8888,
423 	DRM_FORMAT_XRGB8888,
424 	DRM_FORMAT_RGB565,
425 };
426 
427 static void tegra_primary_plane_destroy(struct drm_plane *plane)
428 {
429 	tegra_plane_destroy(plane);
430 }
431 
432 static void tegra_plane_reset(struct drm_plane *plane)
433 {
434 	struct tegra_plane_state *state;
435 
436 	if (plane->state)
437 		__drm_atomic_helper_plane_destroy_state(plane, plane->state);
438 
439 	kfree(plane->state);
440 	plane->state = NULL;
441 
442 	state = kzalloc(sizeof(*state), GFP_KERNEL);
443 	if (state) {
444 		plane->state = &state->base;
445 		plane->state->plane = plane;
446 	}
447 }
448 
449 static struct drm_plane_state *tegra_plane_atomic_duplicate_state(struct drm_plane *plane)
450 {
451 	struct tegra_plane_state *state = to_tegra_plane_state(plane->state);
452 	struct tegra_plane_state *copy;
453 
454 	copy = kmalloc(sizeof(*copy), GFP_KERNEL);
455 	if (!copy)
456 		return NULL;
457 
458 	__drm_atomic_helper_plane_duplicate_state(plane, &copy->base);
459 	copy->tiling = state->tiling;
460 	copy->format = state->format;
461 	copy->swap = state->swap;
462 
463 	return &copy->base;
464 }
465 
466 static void tegra_plane_atomic_destroy_state(struct drm_plane *plane,
467 					     struct drm_plane_state *state)
468 {
469 	__drm_atomic_helper_plane_destroy_state(plane, state);
470 	kfree(state);
471 }
472 
473 static const struct drm_plane_funcs tegra_primary_plane_funcs = {
474 	.update_plane = drm_atomic_helper_update_plane,
475 	.disable_plane = drm_atomic_helper_disable_plane,
476 	.destroy = tegra_primary_plane_destroy,
477 	.reset = tegra_plane_reset,
478 	.atomic_duplicate_state = tegra_plane_atomic_duplicate_state,
479 	.atomic_destroy_state = tegra_plane_atomic_destroy_state,
480 };
481 
482 static int tegra_plane_prepare_fb(struct drm_plane *plane,
483 				  const struct drm_plane_state *new_state)
484 {
485 	return 0;
486 }
487 
488 static void tegra_plane_cleanup_fb(struct drm_plane *plane,
489 				   const struct drm_plane_state *old_fb)
490 {
491 }
492 
493 static int tegra_plane_state_add(struct tegra_plane *plane,
494 				 struct drm_plane_state *state)
495 {
496 	struct drm_crtc_state *crtc_state;
497 	struct tegra_dc_state *tegra;
498 
499 	/* Propagate errors from allocation or locking failures. */
500 	crtc_state = drm_atomic_get_crtc_state(state->state, state->crtc);
501 	if (IS_ERR(crtc_state))
502 		return PTR_ERR(crtc_state);
503 
504 	tegra = to_dc_state(crtc_state);
505 
506 	tegra->planes |= WIN_A_ACT_REQ << plane->index;
507 
508 	return 0;
509 }
510 
511 static int tegra_plane_atomic_check(struct drm_plane *plane,
512 				    struct drm_plane_state *state)
513 {
514 	struct tegra_plane_state *plane_state = to_tegra_plane_state(state);
515 	struct tegra_bo_tiling *tiling = &plane_state->tiling;
516 	struct tegra_plane *tegra = to_tegra_plane(plane);
517 	struct tegra_dc *dc = to_tegra_dc(state->crtc);
518 	int err;
519 
520 	/* no need for further checks if the plane is being disabled */
521 	if (!state->crtc)
522 		return 0;
523 
524 	err = tegra_dc_format(state->fb->pixel_format, &plane_state->format,
525 			      &plane_state->swap);
526 	if (err < 0)
527 		return err;
528 
529 	err = tegra_fb_get_tiling(state->fb, tiling);
530 	if (err < 0)
531 		return err;
532 
533 	if (tiling->mode == TEGRA_BO_TILING_MODE_BLOCK &&
534 	    !dc->soc->supports_block_linear) {
535 		DRM_ERROR("hardware doesn't support block linear mode\n");
536 		return -EINVAL;
537 	}
538 
539 	/*
540 	 * Tegra doesn't support different strides for U and V planes so we
541 	 * error out if the user tries to display a framebuffer with such a
542 	 * configuration.
543 	 */
544 	if (drm_format_num_planes(state->fb->pixel_format) > 2) {
545 		if (state->fb->pitches[2] != state->fb->pitches[1]) {
546 			DRM_ERROR("unsupported UV-plane configuration\n");
547 			return -EINVAL;
548 		}
549 	}
550 
551 	err = tegra_plane_state_add(tegra, state);
552 	if (err < 0)
553 		return err;
554 
555 	return 0;
556 }
557 
558 static void tegra_plane_atomic_update(struct drm_plane *plane,
559 				      struct drm_plane_state *old_state)
560 {
561 	struct tegra_plane_state *state = to_tegra_plane_state(plane->state);
562 	struct tegra_dc *dc = to_tegra_dc(plane->state->crtc);
563 	struct drm_framebuffer *fb = plane->state->fb;
564 	struct tegra_plane *p = to_tegra_plane(plane);
565 	struct tegra_dc_window window;
566 	unsigned int i;
567 
568 	/* rien ne va plus */
569 	if (!plane->state->crtc || !plane->state->fb)
570 		return;
571 
572 	memset(&window, 0, sizeof(window));
573 	window.src.x = plane->state->src_x >> 16;
574 	window.src.y = plane->state->src_y >> 16;
575 	window.src.w = plane->state->src_w >> 16;
576 	window.src.h = plane->state->src_h >> 16;
577 	window.dst.x = plane->state->crtc_x;
578 	window.dst.y = plane->state->crtc_y;
579 	window.dst.w = plane->state->crtc_w;
580 	window.dst.h = plane->state->crtc_h;
581 	window.bits_per_pixel = fb->bits_per_pixel;
582 	window.bottom_up = tegra_fb_is_bottom_up(fb);
583 
584 	/* copy from state */
585 	window.tiling = state->tiling;
586 	window.format = state->format;
587 	window.swap = state->swap;
588 
589 	for (i = 0; i < drm_format_num_planes(fb->pixel_format); i++) {
590 		struct tegra_bo *bo = tegra_fb_get_plane(fb, i);
591 
592 		window.base[i] = bo->paddr + fb->offsets[i];
593 		window.stride[i] = fb->pitches[i];
594 	}
595 
596 	tegra_dc_setup_window(dc, p->index, &window);
597 }
598 
599 static void tegra_plane_atomic_disable(struct drm_plane *plane,
600 				       struct drm_plane_state *old_state)
601 {
602 	struct tegra_plane *p = to_tegra_plane(plane);
603 	struct tegra_dc *dc;
604 	unsigned long flags;
605 	u32 value;
606 
607 	/* rien ne va plus */
608 	if (!old_state || !old_state->crtc)
609 		return;
610 
611 	dc = to_tegra_dc(old_state->crtc);
612 
613 	spin_lock_irqsave(&dc->lock, flags);
614 
615 	value = WINDOW_A_SELECT << p->index;
616 	tegra_dc_writel(dc, value, DC_CMD_DISPLAY_WINDOW_HEADER);
617 
618 	value = tegra_dc_readl(dc, DC_WIN_WIN_OPTIONS);
619 	value &= ~WIN_ENABLE;
620 	tegra_dc_writel(dc, value, DC_WIN_WIN_OPTIONS);
621 
622 	spin_unlock_irqrestore(&dc->lock, flags);
623 }
624 
625 static const struct drm_plane_helper_funcs tegra_primary_plane_helper_funcs = {
626 	.prepare_fb = tegra_plane_prepare_fb,
627 	.cleanup_fb = tegra_plane_cleanup_fb,
628 	.atomic_check = tegra_plane_atomic_check,
629 	.atomic_update = tegra_plane_atomic_update,
630 	.atomic_disable = tegra_plane_atomic_disable,
631 };
632 
633 static struct drm_plane *tegra_dc_primary_plane_create(struct drm_device *drm,
634 						       struct tegra_dc *dc)
635 {
636 	/*
637 	 * Ideally this would use drm_crtc_mask(), but that would require the
638 	 * CRTC to already be in the mode_config's list of CRTCs. However, it
639 	 * will only be added to that list in the drm_crtc_init_with_planes()
640 	 * (in tegra_dc_init()), which in turn requires registration of these
641 	 * planes. So we have ourselves a nice little chicken and egg problem
642 	 * here.
643 	 *
644 	 * We work around this by manually creating the mask from the number
645 	 * of CRTCs that have been registered, and should therefore always be
646 	 * the same as drm_crtc_index() after registration.
647 	 */
648 	unsigned long possible_crtcs = 1 << drm->mode_config.num_crtc;
649 	struct tegra_plane *plane;
650 	unsigned int num_formats;
651 	const u32 *formats;
652 	int err;
653 
654 	plane = kzalloc(sizeof(*plane), GFP_KERNEL);
655 	if (!plane)
656 		return ERR_PTR(-ENOMEM);
657 
658 	num_formats = ARRAY_SIZE(tegra_primary_plane_formats);
659 	formats = tegra_primary_plane_formats;
660 
661 	err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
662 				       &tegra_primary_plane_funcs, formats,
663 				       num_formats, DRM_PLANE_TYPE_PRIMARY);
664 	if (err < 0) {
665 		kfree(plane);
666 		return ERR_PTR(err);
667 	}
668 
669 	drm_plane_helper_add(&plane->base, &tegra_primary_plane_helper_funcs);
670 
671 	return &plane->base;
672 }
673 
674 static const u32 tegra_cursor_plane_formats[] = {
675 	DRM_FORMAT_RGBA8888,
676 };
677 
678 static int tegra_cursor_atomic_check(struct drm_plane *plane,
679 				     struct drm_plane_state *state)
680 {
681 	struct tegra_plane *tegra = to_tegra_plane(plane);
682 	int err;
683 
684 	/* no need for further checks if the plane is being disabled */
685 	if (!state->crtc)
686 		return 0;
687 
688 	/* scaling not supported for cursor */
689 	if ((state->src_w >> 16 != state->crtc_w) ||
690 	    (state->src_h >> 16 != state->crtc_h))
691 		return -EINVAL;
692 
693 	/* only square cursors supported */
694 	if (state->src_w != state->src_h)
695 		return -EINVAL;
696 
697 	if (state->crtc_w != 32 && state->crtc_w != 64 &&
698 	    state->crtc_w != 128 && state->crtc_w != 256)
699 		return -EINVAL;
700 
701 	err = tegra_plane_state_add(tegra, state);
702 	if (err < 0)
703 		return err;
704 
705 	return 0;
706 }
707 
708 static void tegra_cursor_atomic_update(struct drm_plane *plane,
709 				       struct drm_plane_state *old_state)
710 {
711 	struct tegra_bo *bo = tegra_fb_get_plane(plane->state->fb, 0);
712 	struct tegra_dc *dc = to_tegra_dc(plane->state->crtc);
713 	struct drm_plane_state *state = plane->state;
714 	u32 value = CURSOR_CLIP_DISPLAY;
715 
716 	/* rien ne va plus */
717 	if (!plane->state->crtc || !plane->state->fb)
718 		return;
719 
720 	switch (state->crtc_w) {
721 	case 32:
722 		value |= CURSOR_SIZE_32x32;
723 		break;
724 
725 	case 64:
726 		value |= CURSOR_SIZE_64x64;
727 		break;
728 
729 	case 128:
730 		value |= CURSOR_SIZE_128x128;
731 		break;
732 
733 	case 256:
734 		value |= CURSOR_SIZE_256x256;
735 		break;
736 
737 	default:
738 		WARN(1, "cursor size %ux%u not supported\n", state->crtc_w,
739 		     state->crtc_h);
740 		return;
741 	}
742 
743 	value |= (bo->paddr >> 10) & 0x3fffff;
744 	tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR);
745 
746 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
747 	value = (bo->paddr >> 32) & 0x3;
748 	tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR_HI);
749 #endif
750 
751 	/* enable cursor and set blend mode */
752 	value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
753 	value |= CURSOR_ENABLE;
754 	tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
755 
756 	value = tegra_dc_readl(dc, DC_DISP_BLEND_CURSOR_CONTROL);
757 	value &= ~CURSOR_DST_BLEND_MASK;
758 	value &= ~CURSOR_SRC_BLEND_MASK;
759 	value |= CURSOR_MODE_NORMAL;
760 	value |= CURSOR_DST_BLEND_NEG_K1_TIMES_SRC;
761 	value |= CURSOR_SRC_BLEND_K1_TIMES_SRC;
762 	value |= CURSOR_ALPHA;
763 	tegra_dc_writel(dc, value, DC_DISP_BLEND_CURSOR_CONTROL);
764 
765 	/* position the cursor */
766 	value = (state->crtc_y & 0x3fff) << 16 | (state->crtc_x & 0x3fff);
767 	tegra_dc_writel(dc, value, DC_DISP_CURSOR_POSITION);
768 }
769 
770 static void tegra_cursor_atomic_disable(struct drm_plane *plane,
771 					struct drm_plane_state *old_state)
772 {
773 	struct tegra_dc *dc;
774 	u32 value;
775 
776 	/* rien ne va plus */
777 	if (!old_state || !old_state->crtc)
778 		return;
779 
780 	dc = to_tegra_dc(old_state->crtc);
781 
782 	value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
783 	value &= ~CURSOR_ENABLE;
784 	tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
785 }
786 
787 static const struct drm_plane_funcs tegra_cursor_plane_funcs = {
788 	.update_plane = drm_atomic_helper_update_plane,
789 	.disable_plane = drm_atomic_helper_disable_plane,
790 	.destroy = tegra_plane_destroy,
791 	.reset = tegra_plane_reset,
792 	.atomic_duplicate_state = tegra_plane_atomic_duplicate_state,
793 	.atomic_destroy_state = tegra_plane_atomic_destroy_state,
794 };
795 
796 static const struct drm_plane_helper_funcs tegra_cursor_plane_helper_funcs = {
797 	.prepare_fb = tegra_plane_prepare_fb,
798 	.cleanup_fb = tegra_plane_cleanup_fb,
799 	.atomic_check = tegra_cursor_atomic_check,
800 	.atomic_update = tegra_cursor_atomic_update,
801 	.atomic_disable = tegra_cursor_atomic_disable,
802 };
803 
804 static struct drm_plane *tegra_dc_cursor_plane_create(struct drm_device *drm,
805 						      struct tegra_dc *dc)
806 {
807 	struct tegra_plane *plane;
808 	unsigned int num_formats;
809 	const u32 *formats;
810 	int err;
811 
812 	plane = kzalloc(sizeof(*plane), GFP_KERNEL);
813 	if (!plane)
814 		return ERR_PTR(-ENOMEM);
815 
816 	/*
817 	 * This index is kind of fake. The cursor isn't a regular plane, but
818 	 * its update and activation request bits in DC_CMD_STATE_CONTROL do
819 	 * use the same programming. Setting this fake index here allows the
820 	 * code in tegra_add_plane_state() to do the right thing without the
821 	 * need to special-casing the cursor plane.
822 	 */
823 	plane->index = 6;
824 
825 	num_formats = ARRAY_SIZE(tegra_cursor_plane_formats);
826 	formats = tegra_cursor_plane_formats;
827 
828 	err = drm_universal_plane_init(drm, &plane->base, 1 << dc->pipe,
829 				       &tegra_cursor_plane_funcs, formats,
830 				       num_formats, DRM_PLANE_TYPE_CURSOR);
831 	if (err < 0) {
832 		kfree(plane);
833 		return ERR_PTR(err);
834 	}
835 
836 	drm_plane_helper_add(&plane->base, &tegra_cursor_plane_helper_funcs);
837 
838 	return &plane->base;
839 }
840 
841 static void tegra_overlay_plane_destroy(struct drm_plane *plane)
842 {
843 	tegra_plane_destroy(plane);
844 }
845 
846 static const struct drm_plane_funcs tegra_overlay_plane_funcs = {
847 	.update_plane = drm_atomic_helper_update_plane,
848 	.disable_plane = drm_atomic_helper_disable_plane,
849 	.destroy = tegra_overlay_plane_destroy,
850 	.reset = tegra_plane_reset,
851 	.atomic_duplicate_state = tegra_plane_atomic_duplicate_state,
852 	.atomic_destroy_state = tegra_plane_atomic_destroy_state,
853 };
854 
855 static const uint32_t tegra_overlay_plane_formats[] = {
856 	DRM_FORMAT_XBGR8888,
857 	DRM_FORMAT_XRGB8888,
858 	DRM_FORMAT_RGB565,
859 	DRM_FORMAT_UYVY,
860 	DRM_FORMAT_YUYV,
861 	DRM_FORMAT_YUV420,
862 	DRM_FORMAT_YUV422,
863 };
864 
865 static const struct drm_plane_helper_funcs tegra_overlay_plane_helper_funcs = {
866 	.prepare_fb = tegra_plane_prepare_fb,
867 	.cleanup_fb = tegra_plane_cleanup_fb,
868 	.atomic_check = tegra_plane_atomic_check,
869 	.atomic_update = tegra_plane_atomic_update,
870 	.atomic_disable = tegra_plane_atomic_disable,
871 };
872 
873 static struct drm_plane *tegra_dc_overlay_plane_create(struct drm_device *drm,
874 						       struct tegra_dc *dc,
875 						       unsigned int index)
876 {
877 	struct tegra_plane *plane;
878 	unsigned int num_formats;
879 	const u32 *formats;
880 	int err;
881 
882 	plane = kzalloc(sizeof(*plane), GFP_KERNEL);
883 	if (!plane)
884 		return ERR_PTR(-ENOMEM);
885 
886 	plane->index = index;
887 
888 	num_formats = ARRAY_SIZE(tegra_overlay_plane_formats);
889 	formats = tegra_overlay_plane_formats;
890 
891 	err = drm_universal_plane_init(drm, &plane->base, 1 << dc->pipe,
892 				       &tegra_overlay_plane_funcs, formats,
893 				       num_formats, DRM_PLANE_TYPE_OVERLAY);
894 	if (err < 0) {
895 		kfree(plane);
896 		return ERR_PTR(err);
897 	}
898 
899 	drm_plane_helper_add(&plane->base, &tegra_overlay_plane_helper_funcs);
900 
901 	return &plane->base;
902 }
903 
904 static int tegra_dc_add_planes(struct drm_device *drm, struct tegra_dc *dc)
905 {
906 	struct drm_plane *plane;
907 	unsigned int i;
908 
909 	for (i = 0; i < 2; i++) {
910 		plane = tegra_dc_overlay_plane_create(drm, dc, 1 + i);
911 		if (IS_ERR(plane))
912 			return PTR_ERR(plane);
913 	}
914 
915 	return 0;
916 }
917 
918 u32 tegra_dc_get_vblank_counter(struct tegra_dc *dc)
919 {
920 	if (dc->syncpt)
921 		return host1x_syncpt_read(dc->syncpt);
922 
923 	/* fallback to software emulated VBLANK counter */
924 	return drm_crtc_vblank_count(&dc->base);
925 }
926 
927 void tegra_dc_enable_vblank(struct tegra_dc *dc)
928 {
929 	unsigned long value, flags;
930 
931 	spin_lock_irqsave(&dc->lock, flags);
932 
933 	value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
934 	value |= VBLANK_INT;
935 	tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
936 
937 	spin_unlock_irqrestore(&dc->lock, flags);
938 }
939 
940 void tegra_dc_disable_vblank(struct tegra_dc *dc)
941 {
942 	unsigned long value, flags;
943 
944 	spin_lock_irqsave(&dc->lock, flags);
945 
946 	value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
947 	value &= ~VBLANK_INT;
948 	tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
949 
950 	spin_unlock_irqrestore(&dc->lock, flags);
951 }
952 
953 static void tegra_dc_finish_page_flip(struct tegra_dc *dc)
954 {
955 	struct drm_device *drm = dc->base.dev;
956 	struct drm_crtc *crtc = &dc->base;
957 	unsigned long flags, base;
958 	struct tegra_bo *bo;
959 
960 	spin_lock_irqsave(&drm->event_lock, flags);
961 
962 	if (!dc->event) {
963 		spin_unlock_irqrestore(&drm->event_lock, flags);
964 		return;
965 	}
966 
967 	bo = tegra_fb_get_plane(crtc->primary->fb, 0);
968 
969 	spin_lock(&dc->lock);
970 
971 	/* check if new start address has been latched */
972 	tegra_dc_writel(dc, WINDOW_A_SELECT, DC_CMD_DISPLAY_WINDOW_HEADER);
973 	tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
974 	base = tegra_dc_readl(dc, DC_WINBUF_START_ADDR);
975 	tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS);
976 
977 	spin_unlock(&dc->lock);
978 
979 	if (base == bo->paddr + crtc->primary->fb->offsets[0]) {
980 		drm_crtc_send_vblank_event(crtc, dc->event);
981 		drm_crtc_vblank_put(crtc);
982 		dc->event = NULL;
983 	}
984 
985 	spin_unlock_irqrestore(&drm->event_lock, flags);
986 }
987 
988 void tegra_dc_cancel_page_flip(struct drm_crtc *crtc, struct drm_file *file)
989 {
990 	struct tegra_dc *dc = to_tegra_dc(crtc);
991 	struct drm_device *drm = crtc->dev;
992 	unsigned long flags;
993 
994 	spin_lock_irqsave(&drm->event_lock, flags);
995 
996 	if (dc->event && dc->event->base.file_priv == file) {
997 		dc->event->base.destroy(&dc->event->base);
998 		drm_crtc_vblank_put(crtc);
999 		dc->event = NULL;
1000 	}
1001 
1002 	spin_unlock_irqrestore(&drm->event_lock, flags);
1003 }
1004 
1005 static void tegra_dc_destroy(struct drm_crtc *crtc)
1006 {
1007 	drm_crtc_cleanup(crtc);
1008 }
1009 
1010 static void tegra_crtc_reset(struct drm_crtc *crtc)
1011 {
1012 	struct tegra_dc_state *state;
1013 
1014 	if (crtc->state)
1015 		__drm_atomic_helper_crtc_destroy_state(crtc, crtc->state);
1016 
1017 	kfree(crtc->state);
1018 	crtc->state = NULL;
1019 
1020 	state = kzalloc(sizeof(*state), GFP_KERNEL);
1021 	if (state) {
1022 		crtc->state = &state->base;
1023 		crtc->state->crtc = crtc;
1024 	}
1025 
1026 	drm_crtc_vblank_reset(crtc);
1027 }
1028 
1029 static struct drm_crtc_state *
1030 tegra_crtc_atomic_duplicate_state(struct drm_crtc *crtc)
1031 {
1032 	struct tegra_dc_state *state = to_dc_state(crtc->state);
1033 	struct tegra_dc_state *copy;
1034 
1035 	copy = kmalloc(sizeof(*copy), GFP_KERNEL);
1036 	if (!copy)
1037 		return NULL;
1038 
1039 	__drm_atomic_helper_crtc_duplicate_state(crtc, &copy->base);
1040 	copy->clk = state->clk;
1041 	copy->pclk = state->pclk;
1042 	copy->div = state->div;
1043 	copy->planes = state->planes;
1044 
1045 	return &copy->base;
1046 }
1047 
1048 static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc,
1049 					    struct drm_crtc_state *state)
1050 {
1051 	__drm_atomic_helper_crtc_destroy_state(crtc, state);
1052 	kfree(state);
1053 }
1054 
1055 static const struct drm_crtc_funcs tegra_crtc_funcs = {
1056 	.page_flip = drm_atomic_helper_page_flip,
1057 	.set_config = drm_atomic_helper_set_config,
1058 	.destroy = tegra_dc_destroy,
1059 	.reset = tegra_crtc_reset,
1060 	.atomic_duplicate_state = tegra_crtc_atomic_duplicate_state,
1061 	.atomic_destroy_state = tegra_crtc_atomic_destroy_state,
1062 };
1063 
1064 static int tegra_dc_set_timings(struct tegra_dc *dc,
1065 				struct drm_display_mode *mode)
1066 {
1067 	unsigned int h_ref_to_sync = 1;
1068 	unsigned int v_ref_to_sync = 1;
1069 	unsigned long value;
1070 
1071 	tegra_dc_writel(dc, 0x0, DC_DISP_DISP_TIMING_OPTIONS);
1072 
1073 	value = (v_ref_to_sync << 16) | h_ref_to_sync;
1074 	tegra_dc_writel(dc, value, DC_DISP_REF_TO_SYNC);
1075 
1076 	value = ((mode->vsync_end - mode->vsync_start) << 16) |
1077 		((mode->hsync_end - mode->hsync_start) <<  0);
1078 	tegra_dc_writel(dc, value, DC_DISP_SYNC_WIDTH);
1079 
1080 	value = ((mode->vtotal - mode->vsync_end) << 16) |
1081 		((mode->htotal - mode->hsync_end) <<  0);
1082 	tegra_dc_writel(dc, value, DC_DISP_BACK_PORCH);
1083 
1084 	value = ((mode->vsync_start - mode->vdisplay) << 16) |
1085 		((mode->hsync_start - mode->hdisplay) <<  0);
1086 	tegra_dc_writel(dc, value, DC_DISP_FRONT_PORCH);
1087 
1088 	value = (mode->vdisplay << 16) | mode->hdisplay;
1089 	tegra_dc_writel(dc, value, DC_DISP_ACTIVE);
1090 
1091 	return 0;
1092 }
1093 
1094 /**
1095  * tegra_dc_state_setup_clock - check clock settings and store them in atomic
1096  *     state
1097  * @dc: display controller
1098  * @crtc_state: CRTC atomic state
1099  * @clk: parent clock for display controller
1100  * @pclk: pixel clock
1101  * @div: shift clock divider
1102  *
1103  * Returns:
1104  * 0 on success or a negative error-code on failure.
1105  */
1106 int tegra_dc_state_setup_clock(struct tegra_dc *dc,
1107 			       struct drm_crtc_state *crtc_state,
1108 			       struct clk *clk, unsigned long pclk,
1109 			       unsigned int div)
1110 {
1111 	struct tegra_dc_state *state = to_dc_state(crtc_state);
1112 
1113 	if (!clk_has_parent(dc->clk, clk))
1114 		return -EINVAL;
1115 
1116 	state->clk = clk;
1117 	state->pclk = pclk;
1118 	state->div = div;
1119 
1120 	return 0;
1121 }
1122 
1123 static void tegra_dc_commit_state(struct tegra_dc *dc,
1124 				  struct tegra_dc_state *state)
1125 {
1126 	u32 value;
1127 	int err;
1128 
1129 	err = clk_set_parent(dc->clk, state->clk);
1130 	if (err < 0)
1131 		dev_err(dc->dev, "failed to set parent clock: %d\n", err);
1132 
1133 	/*
1134 	 * Outputs may not want to change the parent clock rate. This is only
1135 	 * relevant to Tegra20 where only a single display PLL is available.
1136 	 * Since that PLL would typically be used for HDMI, an internal LVDS
1137 	 * panel would need to be driven by some other clock such as PLL_P
1138 	 * which is shared with other peripherals. Changing the clock rate
1139 	 * should therefore be avoided.
1140 	 */
1141 	if (state->pclk > 0) {
1142 		err = clk_set_rate(state->clk, state->pclk);
1143 		if (err < 0)
1144 			dev_err(dc->dev,
1145 				"failed to set clock rate to %lu Hz\n",
1146 				state->pclk);
1147 	}
1148 
1149 	DRM_DEBUG_KMS("rate: %lu, div: %u\n", clk_get_rate(dc->clk),
1150 		      state->div);
1151 	DRM_DEBUG_KMS("pclk: %lu\n", state->pclk);
1152 
1153 	value = SHIFT_CLK_DIVIDER(state->div) | PIXEL_CLK_DIVIDER_PCD1;
1154 	tegra_dc_writel(dc, value, DC_DISP_DISP_CLOCK_CONTROL);
1155 }
1156 
1157 static void tegra_dc_stop(struct tegra_dc *dc)
1158 {
1159 	u32 value;
1160 
1161 	/* stop the display controller */
1162 	value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1163 	value &= ~DISP_CTRL_MODE_MASK;
1164 	tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1165 
1166 	tegra_dc_commit(dc);
1167 }
1168 
1169 static bool tegra_dc_idle(struct tegra_dc *dc)
1170 {
1171 	u32 value;
1172 
1173 	value = tegra_dc_readl_active(dc, DC_CMD_DISPLAY_COMMAND);
1174 
1175 	return (value & DISP_CTRL_MODE_MASK) == 0;
1176 }
1177 
1178 static int tegra_dc_wait_idle(struct tegra_dc *dc, unsigned long timeout)
1179 {
1180 	timeout = jiffies + msecs_to_jiffies(timeout);
1181 
1182 	while (time_before(jiffies, timeout)) {
1183 		if (tegra_dc_idle(dc))
1184 			return 0;
1185 
1186 		usleep_range(1000, 2000);
1187 	}
1188 
1189 	dev_dbg(dc->dev, "timeout waiting for DC to become idle\n");
1190 	return -ETIMEDOUT;
1191 }
1192 
1193 static void tegra_crtc_disable(struct drm_crtc *crtc)
1194 {
1195 	struct tegra_dc *dc = to_tegra_dc(crtc);
1196 	u32 value;
1197 
1198 	if (!tegra_dc_idle(dc)) {
1199 		tegra_dc_stop(dc);
1200 
1201 		/*
1202 		 * Ignore the return value, there isn't anything useful to do
1203 		 * in case this fails.
1204 		 */
1205 		tegra_dc_wait_idle(dc, 100);
1206 	}
1207 
1208 	/*
1209 	 * This should really be part of the RGB encoder driver, but clearing
1210 	 * these bits has the side-effect of stopping the display controller.
1211 	 * When that happens no VBLANK interrupts will be raised. At the same
1212 	 * time the encoder is disabled before the display controller, so the
1213 	 * above code is always going to timeout waiting for the controller
1214 	 * to go idle.
1215 	 *
1216 	 * Given the close coupling between the RGB encoder and the display
1217 	 * controller doing it here is still kind of okay. None of the other
1218 	 * encoder drivers require these bits to be cleared.
1219 	 *
1220 	 * XXX: Perhaps given that the display controller is switched off at
1221 	 * this point anyway maybe clearing these bits isn't even useful for
1222 	 * the RGB encoder?
1223 	 */
1224 	if (dc->rgb) {
1225 		value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
1226 		value &= ~(PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
1227 			   PW4_ENABLE | PM0_ENABLE | PM1_ENABLE);
1228 		tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
1229 	}
1230 
1231 	tegra_dc_stats_reset(&dc->stats);
1232 	drm_crtc_vblank_off(crtc);
1233 }
1234 
1235 static void tegra_crtc_enable(struct drm_crtc *crtc)
1236 {
1237 	struct drm_display_mode *mode = &crtc->state->adjusted_mode;
1238 	struct tegra_dc_state *state = to_dc_state(crtc->state);
1239 	struct tegra_dc *dc = to_tegra_dc(crtc);
1240 	u32 value;
1241 
1242 	tegra_dc_commit_state(dc, state);
1243 
1244 	/* program display mode */
1245 	tegra_dc_set_timings(dc, mode);
1246 
1247 	/* interlacing isn't supported yet, so disable it */
1248 	if (dc->soc->supports_interlacing) {
1249 		value = tegra_dc_readl(dc, DC_DISP_INTERLACE_CONTROL);
1250 		value &= ~INTERLACE_ENABLE;
1251 		tegra_dc_writel(dc, value, DC_DISP_INTERLACE_CONTROL);
1252 	}
1253 
1254 	value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1255 	value &= ~DISP_CTRL_MODE_MASK;
1256 	value |= DISP_CTRL_MODE_C_DISPLAY;
1257 	tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1258 
1259 	value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
1260 	value |= PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
1261 		 PW4_ENABLE | PM0_ENABLE | PM1_ENABLE;
1262 	tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
1263 
1264 	tegra_dc_commit(dc);
1265 
1266 	drm_crtc_vblank_on(crtc);
1267 }
1268 
1269 static int tegra_crtc_atomic_check(struct drm_crtc *crtc,
1270 				   struct drm_crtc_state *state)
1271 {
1272 	return 0;
1273 }
1274 
1275 static void tegra_crtc_atomic_begin(struct drm_crtc *crtc,
1276 				    struct drm_crtc_state *old_crtc_state)
1277 {
1278 	struct tegra_dc *dc = to_tegra_dc(crtc);
1279 
1280 	if (crtc->state->event) {
1281 		crtc->state->event->pipe = drm_crtc_index(crtc);
1282 
1283 		WARN_ON(drm_crtc_vblank_get(crtc) != 0);
1284 
1285 		dc->event = crtc->state->event;
1286 		crtc->state->event = NULL;
1287 	}
1288 }
1289 
1290 static void tegra_crtc_atomic_flush(struct drm_crtc *crtc,
1291 				    struct drm_crtc_state *old_crtc_state)
1292 {
1293 	struct tegra_dc_state *state = to_dc_state(crtc->state);
1294 	struct tegra_dc *dc = to_tegra_dc(crtc);
1295 
1296 	tegra_dc_writel(dc, state->planes << 8, DC_CMD_STATE_CONTROL);
1297 	tegra_dc_writel(dc, state->planes, DC_CMD_STATE_CONTROL);
1298 }
1299 
1300 static const struct drm_crtc_helper_funcs tegra_crtc_helper_funcs = {
1301 	.disable = tegra_crtc_disable,
1302 	.enable = tegra_crtc_enable,
1303 	.atomic_check = tegra_crtc_atomic_check,
1304 	.atomic_begin = tegra_crtc_atomic_begin,
1305 	.atomic_flush = tegra_crtc_atomic_flush,
1306 };
1307 
1308 static irqreturn_t tegra_dc_irq(int irq, void *data)
1309 {
1310 	struct tegra_dc *dc = data;
1311 	unsigned long status;
1312 
1313 	status = tegra_dc_readl(dc, DC_CMD_INT_STATUS);
1314 	tegra_dc_writel(dc, status, DC_CMD_INT_STATUS);
1315 
1316 	if (status & FRAME_END_INT) {
1317 		/*
1318 		dev_dbg(dc->dev, "%s(): frame end\n", __func__);
1319 		*/
1320 		dc->stats.frames++;
1321 	}
1322 
1323 	if (status & VBLANK_INT) {
1324 		/*
1325 		dev_dbg(dc->dev, "%s(): vertical blank\n", __func__);
1326 		*/
1327 		drm_crtc_handle_vblank(&dc->base);
1328 		tegra_dc_finish_page_flip(dc);
1329 		dc->stats.vblank++;
1330 	}
1331 
1332 	if (status & (WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT)) {
1333 		/*
1334 		dev_dbg(dc->dev, "%s(): underflow\n", __func__);
1335 		*/
1336 		dc->stats.underflow++;
1337 	}
1338 
1339 	if (status & (WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT)) {
1340 		/*
1341 		dev_dbg(dc->dev, "%s(): overflow\n", __func__);
1342 		*/
1343 		dc->stats.overflow++;
1344 	}
1345 
1346 	return IRQ_HANDLED;
1347 }
1348 
1349 static int tegra_dc_show_regs(struct seq_file *s, void *data)
1350 {
1351 	struct drm_info_node *node = s->private;
1352 	struct tegra_dc *dc = node->info_ent->data;
1353 	int err = 0;
1354 
1355 	drm_modeset_lock_crtc(&dc->base, NULL);
1356 
1357 	if (!dc->base.state->active) {
1358 		err = -EBUSY;
1359 		goto unlock;
1360 	}
1361 
1362 #define DUMP_REG(name)						\
1363 	seq_printf(s, "%-40s %#05x %08x\n", #name, name,	\
1364 		   tegra_dc_readl(dc, name))
1365 
1366 	DUMP_REG(DC_CMD_GENERAL_INCR_SYNCPT);
1367 	DUMP_REG(DC_CMD_GENERAL_INCR_SYNCPT_CNTRL);
1368 	DUMP_REG(DC_CMD_GENERAL_INCR_SYNCPT_ERROR);
1369 	DUMP_REG(DC_CMD_WIN_A_INCR_SYNCPT);
1370 	DUMP_REG(DC_CMD_WIN_A_INCR_SYNCPT_CNTRL);
1371 	DUMP_REG(DC_CMD_WIN_A_INCR_SYNCPT_ERROR);
1372 	DUMP_REG(DC_CMD_WIN_B_INCR_SYNCPT);
1373 	DUMP_REG(DC_CMD_WIN_B_INCR_SYNCPT_CNTRL);
1374 	DUMP_REG(DC_CMD_WIN_B_INCR_SYNCPT_ERROR);
1375 	DUMP_REG(DC_CMD_WIN_C_INCR_SYNCPT);
1376 	DUMP_REG(DC_CMD_WIN_C_INCR_SYNCPT_CNTRL);
1377 	DUMP_REG(DC_CMD_WIN_C_INCR_SYNCPT_ERROR);
1378 	DUMP_REG(DC_CMD_CONT_SYNCPT_VSYNC);
1379 	DUMP_REG(DC_CMD_DISPLAY_COMMAND_OPTION0);
1380 	DUMP_REG(DC_CMD_DISPLAY_COMMAND);
1381 	DUMP_REG(DC_CMD_SIGNAL_RAISE);
1382 	DUMP_REG(DC_CMD_DISPLAY_POWER_CONTROL);
1383 	DUMP_REG(DC_CMD_INT_STATUS);
1384 	DUMP_REG(DC_CMD_INT_MASK);
1385 	DUMP_REG(DC_CMD_INT_ENABLE);
1386 	DUMP_REG(DC_CMD_INT_TYPE);
1387 	DUMP_REG(DC_CMD_INT_POLARITY);
1388 	DUMP_REG(DC_CMD_SIGNAL_RAISE1);
1389 	DUMP_REG(DC_CMD_SIGNAL_RAISE2);
1390 	DUMP_REG(DC_CMD_SIGNAL_RAISE3);
1391 	DUMP_REG(DC_CMD_STATE_ACCESS);
1392 	DUMP_REG(DC_CMD_STATE_CONTROL);
1393 	DUMP_REG(DC_CMD_DISPLAY_WINDOW_HEADER);
1394 	DUMP_REG(DC_CMD_REG_ACT_CONTROL);
1395 	DUMP_REG(DC_COM_CRC_CONTROL);
1396 	DUMP_REG(DC_COM_CRC_CHECKSUM);
1397 	DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(0));
1398 	DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(1));
1399 	DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(2));
1400 	DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(3));
1401 	DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(0));
1402 	DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(1));
1403 	DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(2));
1404 	DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(3));
1405 	DUMP_REG(DC_COM_PIN_OUTPUT_DATA(0));
1406 	DUMP_REG(DC_COM_PIN_OUTPUT_DATA(1));
1407 	DUMP_REG(DC_COM_PIN_OUTPUT_DATA(2));
1408 	DUMP_REG(DC_COM_PIN_OUTPUT_DATA(3));
1409 	DUMP_REG(DC_COM_PIN_INPUT_ENABLE(0));
1410 	DUMP_REG(DC_COM_PIN_INPUT_ENABLE(1));
1411 	DUMP_REG(DC_COM_PIN_INPUT_ENABLE(2));
1412 	DUMP_REG(DC_COM_PIN_INPUT_ENABLE(3));
1413 	DUMP_REG(DC_COM_PIN_INPUT_DATA(0));
1414 	DUMP_REG(DC_COM_PIN_INPUT_DATA(1));
1415 	DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(0));
1416 	DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(1));
1417 	DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(2));
1418 	DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(3));
1419 	DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(4));
1420 	DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(5));
1421 	DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(6));
1422 	DUMP_REG(DC_COM_PIN_MISC_CONTROL);
1423 	DUMP_REG(DC_COM_PIN_PM0_CONTROL);
1424 	DUMP_REG(DC_COM_PIN_PM0_DUTY_CYCLE);
1425 	DUMP_REG(DC_COM_PIN_PM1_CONTROL);
1426 	DUMP_REG(DC_COM_PIN_PM1_DUTY_CYCLE);
1427 	DUMP_REG(DC_COM_SPI_CONTROL);
1428 	DUMP_REG(DC_COM_SPI_START_BYTE);
1429 	DUMP_REG(DC_COM_HSPI_WRITE_DATA_AB);
1430 	DUMP_REG(DC_COM_HSPI_WRITE_DATA_CD);
1431 	DUMP_REG(DC_COM_HSPI_CS_DC);
1432 	DUMP_REG(DC_COM_SCRATCH_REGISTER_A);
1433 	DUMP_REG(DC_COM_SCRATCH_REGISTER_B);
1434 	DUMP_REG(DC_COM_GPIO_CTRL);
1435 	DUMP_REG(DC_COM_GPIO_DEBOUNCE_COUNTER);
1436 	DUMP_REG(DC_COM_CRC_CHECKSUM_LATCHED);
1437 	DUMP_REG(DC_DISP_DISP_SIGNAL_OPTIONS0);
1438 	DUMP_REG(DC_DISP_DISP_SIGNAL_OPTIONS1);
1439 	DUMP_REG(DC_DISP_DISP_WIN_OPTIONS);
1440 	DUMP_REG(DC_DISP_DISP_MEM_HIGH_PRIORITY);
1441 	DUMP_REG(DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER);
1442 	DUMP_REG(DC_DISP_DISP_TIMING_OPTIONS);
1443 	DUMP_REG(DC_DISP_REF_TO_SYNC);
1444 	DUMP_REG(DC_DISP_SYNC_WIDTH);
1445 	DUMP_REG(DC_DISP_BACK_PORCH);
1446 	DUMP_REG(DC_DISP_ACTIVE);
1447 	DUMP_REG(DC_DISP_FRONT_PORCH);
1448 	DUMP_REG(DC_DISP_H_PULSE0_CONTROL);
1449 	DUMP_REG(DC_DISP_H_PULSE0_POSITION_A);
1450 	DUMP_REG(DC_DISP_H_PULSE0_POSITION_B);
1451 	DUMP_REG(DC_DISP_H_PULSE0_POSITION_C);
1452 	DUMP_REG(DC_DISP_H_PULSE0_POSITION_D);
1453 	DUMP_REG(DC_DISP_H_PULSE1_CONTROL);
1454 	DUMP_REG(DC_DISP_H_PULSE1_POSITION_A);
1455 	DUMP_REG(DC_DISP_H_PULSE1_POSITION_B);
1456 	DUMP_REG(DC_DISP_H_PULSE1_POSITION_C);
1457 	DUMP_REG(DC_DISP_H_PULSE1_POSITION_D);
1458 	DUMP_REG(DC_DISP_H_PULSE2_CONTROL);
1459 	DUMP_REG(DC_DISP_H_PULSE2_POSITION_A);
1460 	DUMP_REG(DC_DISP_H_PULSE2_POSITION_B);
1461 	DUMP_REG(DC_DISP_H_PULSE2_POSITION_C);
1462 	DUMP_REG(DC_DISP_H_PULSE2_POSITION_D);
1463 	DUMP_REG(DC_DISP_V_PULSE0_CONTROL);
1464 	DUMP_REG(DC_DISP_V_PULSE0_POSITION_A);
1465 	DUMP_REG(DC_DISP_V_PULSE0_POSITION_B);
1466 	DUMP_REG(DC_DISP_V_PULSE0_POSITION_C);
1467 	DUMP_REG(DC_DISP_V_PULSE1_CONTROL);
1468 	DUMP_REG(DC_DISP_V_PULSE1_POSITION_A);
1469 	DUMP_REG(DC_DISP_V_PULSE1_POSITION_B);
1470 	DUMP_REG(DC_DISP_V_PULSE1_POSITION_C);
1471 	DUMP_REG(DC_DISP_V_PULSE2_CONTROL);
1472 	DUMP_REG(DC_DISP_V_PULSE2_POSITION_A);
1473 	DUMP_REG(DC_DISP_V_PULSE3_CONTROL);
1474 	DUMP_REG(DC_DISP_V_PULSE3_POSITION_A);
1475 	DUMP_REG(DC_DISP_M0_CONTROL);
1476 	DUMP_REG(DC_DISP_M1_CONTROL);
1477 	DUMP_REG(DC_DISP_DI_CONTROL);
1478 	DUMP_REG(DC_DISP_PP_CONTROL);
1479 	DUMP_REG(DC_DISP_PP_SELECT_A);
1480 	DUMP_REG(DC_DISP_PP_SELECT_B);
1481 	DUMP_REG(DC_DISP_PP_SELECT_C);
1482 	DUMP_REG(DC_DISP_PP_SELECT_D);
1483 	DUMP_REG(DC_DISP_DISP_CLOCK_CONTROL);
1484 	DUMP_REG(DC_DISP_DISP_INTERFACE_CONTROL);
1485 	DUMP_REG(DC_DISP_DISP_COLOR_CONTROL);
1486 	DUMP_REG(DC_DISP_SHIFT_CLOCK_OPTIONS);
1487 	DUMP_REG(DC_DISP_DATA_ENABLE_OPTIONS);
1488 	DUMP_REG(DC_DISP_SERIAL_INTERFACE_OPTIONS);
1489 	DUMP_REG(DC_DISP_LCD_SPI_OPTIONS);
1490 	DUMP_REG(DC_DISP_BORDER_COLOR);
1491 	DUMP_REG(DC_DISP_COLOR_KEY0_LOWER);
1492 	DUMP_REG(DC_DISP_COLOR_KEY0_UPPER);
1493 	DUMP_REG(DC_DISP_COLOR_KEY1_LOWER);
1494 	DUMP_REG(DC_DISP_COLOR_KEY1_UPPER);
1495 	DUMP_REG(DC_DISP_CURSOR_FOREGROUND);
1496 	DUMP_REG(DC_DISP_CURSOR_BACKGROUND);
1497 	DUMP_REG(DC_DISP_CURSOR_START_ADDR);
1498 	DUMP_REG(DC_DISP_CURSOR_START_ADDR_NS);
1499 	DUMP_REG(DC_DISP_CURSOR_POSITION);
1500 	DUMP_REG(DC_DISP_CURSOR_POSITION_NS);
1501 	DUMP_REG(DC_DISP_INIT_SEQ_CONTROL);
1502 	DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_A);
1503 	DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_B);
1504 	DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_C);
1505 	DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_D);
1506 	DUMP_REG(DC_DISP_DC_MCCIF_FIFOCTRL);
1507 	DUMP_REG(DC_DISP_MCCIF_DISPLAY0A_HYST);
1508 	DUMP_REG(DC_DISP_MCCIF_DISPLAY0B_HYST);
1509 	DUMP_REG(DC_DISP_MCCIF_DISPLAY1A_HYST);
1510 	DUMP_REG(DC_DISP_MCCIF_DISPLAY1B_HYST);
1511 	DUMP_REG(DC_DISP_DAC_CRT_CTRL);
1512 	DUMP_REG(DC_DISP_DISP_MISC_CONTROL);
1513 	DUMP_REG(DC_DISP_SD_CONTROL);
1514 	DUMP_REG(DC_DISP_SD_CSC_COEFF);
1515 	DUMP_REG(DC_DISP_SD_LUT(0));
1516 	DUMP_REG(DC_DISP_SD_LUT(1));
1517 	DUMP_REG(DC_DISP_SD_LUT(2));
1518 	DUMP_REG(DC_DISP_SD_LUT(3));
1519 	DUMP_REG(DC_DISP_SD_LUT(4));
1520 	DUMP_REG(DC_DISP_SD_LUT(5));
1521 	DUMP_REG(DC_DISP_SD_LUT(6));
1522 	DUMP_REG(DC_DISP_SD_LUT(7));
1523 	DUMP_REG(DC_DISP_SD_LUT(8));
1524 	DUMP_REG(DC_DISP_SD_FLICKER_CONTROL);
1525 	DUMP_REG(DC_DISP_DC_PIXEL_COUNT);
1526 	DUMP_REG(DC_DISP_SD_HISTOGRAM(0));
1527 	DUMP_REG(DC_DISP_SD_HISTOGRAM(1));
1528 	DUMP_REG(DC_DISP_SD_HISTOGRAM(2));
1529 	DUMP_REG(DC_DISP_SD_HISTOGRAM(3));
1530 	DUMP_REG(DC_DISP_SD_HISTOGRAM(4));
1531 	DUMP_REG(DC_DISP_SD_HISTOGRAM(5));
1532 	DUMP_REG(DC_DISP_SD_HISTOGRAM(6));
1533 	DUMP_REG(DC_DISP_SD_HISTOGRAM(7));
1534 	DUMP_REG(DC_DISP_SD_BL_TF(0));
1535 	DUMP_REG(DC_DISP_SD_BL_TF(1));
1536 	DUMP_REG(DC_DISP_SD_BL_TF(2));
1537 	DUMP_REG(DC_DISP_SD_BL_TF(3));
1538 	DUMP_REG(DC_DISP_SD_BL_CONTROL);
1539 	DUMP_REG(DC_DISP_SD_HW_K_VALUES);
1540 	DUMP_REG(DC_DISP_SD_MAN_K_VALUES);
1541 	DUMP_REG(DC_DISP_CURSOR_START_ADDR_HI);
1542 	DUMP_REG(DC_DISP_BLEND_CURSOR_CONTROL);
1543 	DUMP_REG(DC_WIN_WIN_OPTIONS);
1544 	DUMP_REG(DC_WIN_BYTE_SWAP);
1545 	DUMP_REG(DC_WIN_BUFFER_CONTROL);
1546 	DUMP_REG(DC_WIN_COLOR_DEPTH);
1547 	DUMP_REG(DC_WIN_POSITION);
1548 	DUMP_REG(DC_WIN_SIZE);
1549 	DUMP_REG(DC_WIN_PRESCALED_SIZE);
1550 	DUMP_REG(DC_WIN_H_INITIAL_DDA);
1551 	DUMP_REG(DC_WIN_V_INITIAL_DDA);
1552 	DUMP_REG(DC_WIN_DDA_INC);
1553 	DUMP_REG(DC_WIN_LINE_STRIDE);
1554 	DUMP_REG(DC_WIN_BUF_STRIDE);
1555 	DUMP_REG(DC_WIN_UV_BUF_STRIDE);
1556 	DUMP_REG(DC_WIN_BUFFER_ADDR_MODE);
1557 	DUMP_REG(DC_WIN_DV_CONTROL);
1558 	DUMP_REG(DC_WIN_BLEND_NOKEY);
1559 	DUMP_REG(DC_WIN_BLEND_1WIN);
1560 	DUMP_REG(DC_WIN_BLEND_2WIN_X);
1561 	DUMP_REG(DC_WIN_BLEND_2WIN_Y);
1562 	DUMP_REG(DC_WIN_BLEND_3WIN_XY);
1563 	DUMP_REG(DC_WIN_HP_FETCH_CONTROL);
1564 	DUMP_REG(DC_WINBUF_START_ADDR);
1565 	DUMP_REG(DC_WINBUF_START_ADDR_NS);
1566 	DUMP_REG(DC_WINBUF_START_ADDR_U);
1567 	DUMP_REG(DC_WINBUF_START_ADDR_U_NS);
1568 	DUMP_REG(DC_WINBUF_START_ADDR_V);
1569 	DUMP_REG(DC_WINBUF_START_ADDR_V_NS);
1570 	DUMP_REG(DC_WINBUF_ADDR_H_OFFSET);
1571 	DUMP_REG(DC_WINBUF_ADDR_H_OFFSET_NS);
1572 	DUMP_REG(DC_WINBUF_ADDR_V_OFFSET);
1573 	DUMP_REG(DC_WINBUF_ADDR_V_OFFSET_NS);
1574 	DUMP_REG(DC_WINBUF_UFLOW_STATUS);
1575 	DUMP_REG(DC_WINBUF_AD_UFLOW_STATUS);
1576 	DUMP_REG(DC_WINBUF_BD_UFLOW_STATUS);
1577 	DUMP_REG(DC_WINBUF_CD_UFLOW_STATUS);
1578 
1579 #undef DUMP_REG
1580 
1581 unlock:
1582 	drm_modeset_unlock_crtc(&dc->base);
1583 	return err;
1584 }
1585 
1586 static int tegra_dc_show_crc(struct seq_file *s, void *data)
1587 {
1588 	struct drm_info_node *node = s->private;
1589 	struct tegra_dc *dc = node->info_ent->data;
1590 	int err = 0;
1591 	u32 value;
1592 
1593 	drm_modeset_lock_crtc(&dc->base, NULL);
1594 
1595 	if (!dc->base.state->active) {
1596 		err = -EBUSY;
1597 		goto unlock;
1598 	}
1599 
1600 	value = DC_COM_CRC_CONTROL_ACTIVE_DATA | DC_COM_CRC_CONTROL_ENABLE;
1601 	tegra_dc_writel(dc, value, DC_COM_CRC_CONTROL);
1602 	tegra_dc_commit(dc);
1603 
1604 	drm_crtc_wait_one_vblank(&dc->base);
1605 	drm_crtc_wait_one_vblank(&dc->base);
1606 
1607 	value = tegra_dc_readl(dc, DC_COM_CRC_CHECKSUM);
1608 	seq_printf(s, "%08x\n", value);
1609 
1610 	tegra_dc_writel(dc, 0, DC_COM_CRC_CONTROL);
1611 
1612 unlock:
1613 	drm_modeset_unlock_crtc(&dc->base);
1614 	return err;
1615 }
1616 
1617 static int tegra_dc_show_stats(struct seq_file *s, void *data)
1618 {
1619 	struct drm_info_node *node = s->private;
1620 	struct tegra_dc *dc = node->info_ent->data;
1621 
1622 	seq_printf(s, "frames: %lu\n", dc->stats.frames);
1623 	seq_printf(s, "vblank: %lu\n", dc->stats.vblank);
1624 	seq_printf(s, "underflow: %lu\n", dc->stats.underflow);
1625 	seq_printf(s, "overflow: %lu\n", dc->stats.overflow);
1626 
1627 	return 0;
1628 }
1629 
1630 static struct drm_info_list debugfs_files[] = {
1631 	{ "regs", tegra_dc_show_regs, 0, NULL },
1632 	{ "crc", tegra_dc_show_crc, 0, NULL },
1633 	{ "stats", tegra_dc_show_stats, 0, NULL },
1634 };
1635 
1636 static int tegra_dc_debugfs_init(struct tegra_dc *dc, struct drm_minor *minor)
1637 {
1638 	unsigned int i;
1639 	char *name;
1640 	int err;
1641 
1642 	name = kasprintf(GFP_KERNEL, "dc.%d", dc->pipe);
1643 	dc->debugfs = debugfs_create_dir(name, minor->debugfs_root);
1644 	kfree(name);
1645 
1646 	if (!dc->debugfs)
1647 		return -ENOMEM;
1648 
1649 	dc->debugfs_files = kmemdup(debugfs_files, sizeof(debugfs_files),
1650 				    GFP_KERNEL);
1651 	if (!dc->debugfs_files) {
1652 		err = -ENOMEM;
1653 		goto remove;
1654 	}
1655 
1656 	for (i = 0; i < ARRAY_SIZE(debugfs_files); i++)
1657 		dc->debugfs_files[i].data = dc;
1658 
1659 	err = drm_debugfs_create_files(dc->debugfs_files,
1660 				       ARRAY_SIZE(debugfs_files),
1661 				       dc->debugfs, minor);
1662 	if (err < 0)
1663 		goto free;
1664 
1665 	dc->minor = minor;
1666 
1667 	return 0;
1668 
1669 free:
1670 	kfree(dc->debugfs_files);
1671 	dc->debugfs_files = NULL;
1672 remove:
1673 	debugfs_remove(dc->debugfs);
1674 	dc->debugfs = NULL;
1675 
1676 	return err;
1677 }
1678 
1679 static int tegra_dc_debugfs_exit(struct tegra_dc *dc)
1680 {
1681 	drm_debugfs_remove_files(dc->debugfs_files, ARRAY_SIZE(debugfs_files),
1682 				 dc->minor);
1683 	dc->minor = NULL;
1684 
1685 	kfree(dc->debugfs_files);
1686 	dc->debugfs_files = NULL;
1687 
1688 	debugfs_remove(dc->debugfs);
1689 	dc->debugfs = NULL;
1690 
1691 	return 0;
1692 }
1693 
1694 static int tegra_dc_init(struct host1x_client *client)
1695 {
1696 	struct drm_device *drm = dev_get_drvdata(client->parent);
1697 	unsigned long flags = HOST1X_SYNCPT_CLIENT_MANAGED;
1698 	struct tegra_dc *dc = host1x_client_to_dc(client);
1699 	struct tegra_drm *tegra = drm->dev_private;
1700 	struct drm_plane *primary = NULL;
1701 	struct drm_plane *cursor = NULL;
1702 	u32 value;
1703 	int err;
1704 
1705 	dc->syncpt = host1x_syncpt_request(dc->dev, flags);
1706 	if (!dc->syncpt)
1707 		dev_warn(dc->dev, "failed to allocate syncpoint\n");
1708 
1709 	if (tegra->domain) {
1710 		err = iommu_attach_device(tegra->domain, dc->dev);
1711 		if (err < 0) {
1712 			dev_err(dc->dev, "failed to attach to domain: %d\n",
1713 				err);
1714 			return err;
1715 		}
1716 
1717 		dc->domain = tegra->domain;
1718 	}
1719 
1720 	primary = tegra_dc_primary_plane_create(drm, dc);
1721 	if (IS_ERR(primary)) {
1722 		err = PTR_ERR(primary);
1723 		goto cleanup;
1724 	}
1725 
1726 	if (dc->soc->supports_cursor) {
1727 		cursor = tegra_dc_cursor_plane_create(drm, dc);
1728 		if (IS_ERR(cursor)) {
1729 			err = PTR_ERR(cursor);
1730 			goto cleanup;
1731 		}
1732 	}
1733 
1734 	err = drm_crtc_init_with_planes(drm, &dc->base, primary, cursor,
1735 					&tegra_crtc_funcs);
1736 	if (err < 0)
1737 		goto cleanup;
1738 
1739 	drm_mode_crtc_set_gamma_size(&dc->base, 256);
1740 	drm_crtc_helper_add(&dc->base, &tegra_crtc_helper_funcs);
1741 
1742 	/*
1743 	 * Keep track of the minimum pitch alignment across all display
1744 	 * controllers.
1745 	 */
1746 	if (dc->soc->pitch_align > tegra->pitch_align)
1747 		tegra->pitch_align = dc->soc->pitch_align;
1748 
1749 	err = tegra_dc_rgb_init(drm, dc);
1750 	if (err < 0 && err != -ENODEV) {
1751 		dev_err(dc->dev, "failed to initialize RGB output: %d\n", err);
1752 		goto cleanup;
1753 	}
1754 
1755 	err = tegra_dc_add_planes(drm, dc);
1756 	if (err < 0)
1757 		goto cleanup;
1758 
1759 	if (IS_ENABLED(CONFIG_DEBUG_FS)) {
1760 		err = tegra_dc_debugfs_init(dc, drm->primary);
1761 		if (err < 0)
1762 			dev_err(dc->dev, "debugfs setup failed: %d\n", err);
1763 	}
1764 
1765 	err = devm_request_irq(dc->dev, dc->irq, tegra_dc_irq, 0,
1766 			       dev_name(dc->dev), dc);
1767 	if (err < 0) {
1768 		dev_err(dc->dev, "failed to request IRQ#%u: %d\n", dc->irq,
1769 			err);
1770 		goto cleanup;
1771 	}
1772 
1773 	/* initialize display controller */
1774 	if (dc->syncpt) {
1775 		u32 syncpt = host1x_syncpt_id(dc->syncpt);
1776 
1777 		value = SYNCPT_CNTRL_NO_STALL;
1778 		tegra_dc_writel(dc, value, DC_CMD_GENERAL_INCR_SYNCPT_CNTRL);
1779 
1780 		value = SYNCPT_VSYNC_ENABLE | syncpt;
1781 		tegra_dc_writel(dc, value, DC_CMD_CONT_SYNCPT_VSYNC);
1782 	}
1783 
1784 	value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1785 		WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1786 	tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
1787 
1788 	value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1789 		WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1790 	tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
1791 
1792 	/* initialize timer */
1793 	value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(0x20) |
1794 		WINDOW_B_THRESHOLD(0x20) | WINDOW_C_THRESHOLD(0x20);
1795 	tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY);
1796 
1797 	value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(1) |
1798 		WINDOW_B_THRESHOLD(1) | WINDOW_C_THRESHOLD(1);
1799 	tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER);
1800 
1801 	value = VBLANK_INT | WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1802 		WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1803 	tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
1804 
1805 	value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1806 		WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1807 	tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1808 
1809 	if (dc->soc->supports_border_color)
1810 		tegra_dc_writel(dc, 0, DC_DISP_BORDER_COLOR);
1811 
1812 	tegra_dc_stats_reset(&dc->stats);
1813 
1814 	return 0;
1815 
1816 cleanup:
1817 	if (cursor)
1818 		drm_plane_cleanup(cursor);
1819 
1820 	if (primary)
1821 		drm_plane_cleanup(primary);
1822 
1823 	if (tegra->domain) {
1824 		iommu_detach_device(tegra->domain, dc->dev);
1825 		dc->domain = NULL;
1826 	}
1827 
1828 	return err;
1829 }
1830 
1831 static int tegra_dc_exit(struct host1x_client *client)
1832 {
1833 	struct tegra_dc *dc = host1x_client_to_dc(client);
1834 	int err;
1835 
1836 	devm_free_irq(dc->dev, dc->irq, dc);
1837 
1838 	if (IS_ENABLED(CONFIG_DEBUG_FS)) {
1839 		err = tegra_dc_debugfs_exit(dc);
1840 		if (err < 0)
1841 			dev_err(dc->dev, "debugfs cleanup failed: %d\n", err);
1842 	}
1843 
1844 	err = tegra_dc_rgb_exit(dc);
1845 	if (err) {
1846 		dev_err(dc->dev, "failed to shutdown RGB output: %d\n", err);
1847 		return err;
1848 	}
1849 
1850 	if (dc->domain) {
1851 		iommu_detach_device(dc->domain, dc->dev);
1852 		dc->domain = NULL;
1853 	}
1854 
1855 	host1x_syncpt_free(dc->syncpt);
1856 
1857 	return 0;
1858 }
1859 
1860 static const struct host1x_client_ops dc_client_ops = {
1861 	.init = tegra_dc_init,
1862 	.exit = tegra_dc_exit,
1863 };
1864 
1865 static const struct tegra_dc_soc_info tegra20_dc_soc_info = {
1866 	.supports_border_color = true,
1867 	.supports_interlacing = false,
1868 	.supports_cursor = false,
1869 	.supports_block_linear = false,
1870 	.pitch_align = 8,
1871 	.has_powergate = false,
1872 };
1873 
1874 static const struct tegra_dc_soc_info tegra30_dc_soc_info = {
1875 	.supports_border_color = true,
1876 	.supports_interlacing = false,
1877 	.supports_cursor = false,
1878 	.supports_block_linear = false,
1879 	.pitch_align = 8,
1880 	.has_powergate = false,
1881 };
1882 
1883 static const struct tegra_dc_soc_info tegra114_dc_soc_info = {
1884 	.supports_border_color = true,
1885 	.supports_interlacing = false,
1886 	.supports_cursor = false,
1887 	.supports_block_linear = false,
1888 	.pitch_align = 64,
1889 	.has_powergate = true,
1890 };
1891 
1892 static const struct tegra_dc_soc_info tegra124_dc_soc_info = {
1893 	.supports_border_color = false,
1894 	.supports_interlacing = true,
1895 	.supports_cursor = true,
1896 	.supports_block_linear = true,
1897 	.pitch_align = 64,
1898 	.has_powergate = true,
1899 };
1900 
1901 static const struct tegra_dc_soc_info tegra210_dc_soc_info = {
1902 	.supports_border_color = false,
1903 	.supports_interlacing = true,
1904 	.supports_cursor = true,
1905 	.supports_block_linear = true,
1906 	.pitch_align = 64,
1907 	.has_powergate = true,
1908 };
1909 
1910 static const struct of_device_id tegra_dc_of_match[] = {
1911 	{
1912 		.compatible = "nvidia,tegra210-dc",
1913 		.data = &tegra210_dc_soc_info,
1914 	}, {
1915 		.compatible = "nvidia,tegra124-dc",
1916 		.data = &tegra124_dc_soc_info,
1917 	}, {
1918 		.compatible = "nvidia,tegra114-dc",
1919 		.data = &tegra114_dc_soc_info,
1920 	}, {
1921 		.compatible = "nvidia,tegra30-dc",
1922 		.data = &tegra30_dc_soc_info,
1923 	}, {
1924 		.compatible = "nvidia,tegra20-dc",
1925 		.data = &tegra20_dc_soc_info,
1926 	}, {
1927 		/* sentinel */
1928 	}
1929 };
1930 MODULE_DEVICE_TABLE(of, tegra_dc_of_match);
1931 
1932 static int tegra_dc_parse_dt(struct tegra_dc *dc)
1933 {
1934 	struct device_node *np;
1935 	u32 value = 0;
1936 	int err;
1937 
1938 	err = of_property_read_u32(dc->dev->of_node, "nvidia,head", &value);
1939 	if (err < 0) {
1940 		dev_err(dc->dev, "missing \"nvidia,head\" property\n");
1941 
1942 		/*
1943 		 * If the nvidia,head property isn't present, try to find the
1944 		 * correct head number by looking up the position of this
1945 		 * display controller's node within the device tree. Assuming
1946 		 * that the nodes are ordered properly in the DTS file and
1947 		 * that the translation into a flattened device tree blob
1948 		 * preserves that ordering this will actually yield the right
1949 		 * head number.
1950 		 *
1951 		 * If those assumptions don't hold, this will still work for
1952 		 * cases where only a single display controller is used.
1953 		 */
1954 		for_each_matching_node(np, tegra_dc_of_match) {
1955 			if (np == dc->dev->of_node)
1956 				break;
1957 
1958 			value++;
1959 		}
1960 	}
1961 
1962 	dc->pipe = value;
1963 
1964 	return 0;
1965 }
1966 
1967 static int tegra_dc_probe(struct platform_device *pdev)
1968 {
1969 	const struct of_device_id *id;
1970 	struct resource *regs;
1971 	struct tegra_dc *dc;
1972 	int err;
1973 
1974 	dc = devm_kzalloc(&pdev->dev, sizeof(*dc), GFP_KERNEL);
1975 	if (!dc)
1976 		return -ENOMEM;
1977 
1978 	id = of_match_node(tegra_dc_of_match, pdev->dev.of_node);
1979 	if (!id)
1980 		return -ENODEV;
1981 
1982 	spin_lock_init(&dc->lock);
1983 	INIT_LIST_HEAD(&dc->list);
1984 	dc->dev = &pdev->dev;
1985 	dc->soc = id->data;
1986 
1987 	err = tegra_dc_parse_dt(dc);
1988 	if (err < 0)
1989 		return err;
1990 
1991 	dc->clk = devm_clk_get(&pdev->dev, NULL);
1992 	if (IS_ERR(dc->clk)) {
1993 		dev_err(&pdev->dev, "failed to get clock\n");
1994 		return PTR_ERR(dc->clk);
1995 	}
1996 
1997 	dc->rst = devm_reset_control_get(&pdev->dev, "dc");
1998 	if (IS_ERR(dc->rst)) {
1999 		dev_err(&pdev->dev, "failed to get reset\n");
2000 		return PTR_ERR(dc->rst);
2001 	}
2002 
2003 	if (dc->soc->has_powergate) {
2004 		if (dc->pipe == 0)
2005 			dc->powergate = TEGRA_POWERGATE_DIS;
2006 		else
2007 			dc->powergate = TEGRA_POWERGATE_DISB;
2008 
2009 		err = tegra_powergate_sequence_power_up(dc->powergate, dc->clk,
2010 							dc->rst);
2011 		if (err < 0) {
2012 			dev_err(&pdev->dev, "failed to power partition: %d\n",
2013 				err);
2014 			return err;
2015 		}
2016 	} else {
2017 		err = clk_prepare_enable(dc->clk);
2018 		if (err < 0) {
2019 			dev_err(&pdev->dev, "failed to enable clock: %d\n",
2020 				err);
2021 			return err;
2022 		}
2023 
2024 		err = reset_control_deassert(dc->rst);
2025 		if (err < 0) {
2026 			dev_err(&pdev->dev, "failed to deassert reset: %d\n",
2027 				err);
2028 			return err;
2029 		}
2030 	}
2031 
2032 	regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2033 	dc->regs = devm_ioremap_resource(&pdev->dev, regs);
2034 	if (IS_ERR(dc->regs))
2035 		return PTR_ERR(dc->regs);
2036 
2037 	dc->irq = platform_get_irq(pdev, 0);
2038 	if (dc->irq < 0) {
2039 		dev_err(&pdev->dev, "failed to get IRQ\n");
2040 		return -ENXIO;
2041 	}
2042 
2043 	INIT_LIST_HEAD(&dc->client.list);
2044 	dc->client.ops = &dc_client_ops;
2045 	dc->client.dev = &pdev->dev;
2046 
2047 	err = tegra_dc_rgb_probe(dc);
2048 	if (err < 0 && err != -ENODEV) {
2049 		dev_err(&pdev->dev, "failed to probe RGB output: %d\n", err);
2050 		return err;
2051 	}
2052 
2053 	err = host1x_client_register(&dc->client);
2054 	if (err < 0) {
2055 		dev_err(&pdev->dev, "failed to register host1x client: %d\n",
2056 			err);
2057 		return err;
2058 	}
2059 
2060 	platform_set_drvdata(pdev, dc);
2061 
2062 	return 0;
2063 }
2064 
2065 static int tegra_dc_remove(struct platform_device *pdev)
2066 {
2067 	struct tegra_dc *dc = platform_get_drvdata(pdev);
2068 	int err;
2069 
2070 	err = host1x_client_unregister(&dc->client);
2071 	if (err < 0) {
2072 		dev_err(&pdev->dev, "failed to unregister host1x client: %d\n",
2073 			err);
2074 		return err;
2075 	}
2076 
2077 	err = tegra_dc_rgb_remove(dc);
2078 	if (err < 0) {
2079 		dev_err(&pdev->dev, "failed to remove RGB output: %d\n", err);
2080 		return err;
2081 	}
2082 
2083 	reset_control_assert(dc->rst);
2084 
2085 	if (dc->soc->has_powergate)
2086 		tegra_powergate_power_off(dc->powergate);
2087 
2088 	clk_disable_unprepare(dc->clk);
2089 
2090 	return 0;
2091 }
2092 
2093 struct platform_driver tegra_dc_driver = {
2094 	.driver = {
2095 		.name = "tegra-dc",
2096 		.of_match_table = tegra_dc_of_match,
2097 	},
2098 	.probe = tegra_dc_probe,
2099 	.remove = tegra_dc_remove,
2100 };
2101