xref: /openbmc/linux/drivers/gpu/drm/tegra/dc.c (revision 9fa996c5f003beae0d8ca323caf06a2b73e471ec)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 Avionic Design GmbH
4  * Copyright (C) 2012 NVIDIA CORPORATION.  All rights reserved.
5  */
6 
7 #include <linux/clk.h>
8 #include <linux/debugfs.h>
9 #include <linux/delay.h>
10 #include <linux/iommu.h>
11 #include <linux/module.h>
12 #include <linux/of_device.h>
13 #include <linux/pm_runtime.h>
14 #include <linux/reset.h>
15 
16 #include <soc/tegra/pmc.h>
17 
18 #include <drm/drm_atomic.h>
19 #include <drm/drm_atomic_helper.h>
20 #include <drm/drm_debugfs.h>
21 #include <drm/drm_fourcc.h>
22 #include <drm/drm_plane_helper.h>
23 #include <drm/drm_vblank.h>
24 
25 #include "dc.h"
26 #include "drm.h"
27 #include "gem.h"
28 #include "hub.h"
29 #include "plane.h"
30 
31 static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc,
32 					    struct drm_crtc_state *state);
33 
34 static void tegra_dc_stats_reset(struct tegra_dc_stats *stats)
35 {
36 	stats->frames = 0;
37 	stats->vblank = 0;
38 	stats->underflow = 0;
39 	stats->overflow = 0;
40 }
41 
42 /* Reads the active copy of a register. */
43 static u32 tegra_dc_readl_active(struct tegra_dc *dc, unsigned long offset)
44 {
45 	u32 value;
46 
47 	tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
48 	value = tegra_dc_readl(dc, offset);
49 	tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS);
50 
51 	return value;
52 }
53 
54 static inline unsigned int tegra_plane_offset(struct tegra_plane *plane,
55 					      unsigned int offset)
56 {
57 	if (offset >= 0x500 && offset <= 0x638) {
58 		offset = 0x000 + (offset - 0x500);
59 		return plane->offset + offset;
60 	}
61 
62 	if (offset >= 0x700 && offset <= 0x719) {
63 		offset = 0x180 + (offset - 0x700);
64 		return plane->offset + offset;
65 	}
66 
67 	if (offset >= 0x800 && offset <= 0x839) {
68 		offset = 0x1c0 + (offset - 0x800);
69 		return plane->offset + offset;
70 	}
71 
72 	dev_WARN(plane->dc->dev, "invalid offset: %x\n", offset);
73 
74 	return plane->offset + offset;
75 }
76 
77 static inline u32 tegra_plane_readl(struct tegra_plane *plane,
78 				    unsigned int offset)
79 {
80 	return tegra_dc_readl(plane->dc, tegra_plane_offset(plane, offset));
81 }
82 
83 static inline void tegra_plane_writel(struct tegra_plane *plane, u32 value,
84 				      unsigned int offset)
85 {
86 	tegra_dc_writel(plane->dc, value, tegra_plane_offset(plane, offset));
87 }
88 
89 bool tegra_dc_has_output(struct tegra_dc *dc, struct device *dev)
90 {
91 	struct device_node *np = dc->dev->of_node;
92 	struct of_phandle_iterator it;
93 	int err;
94 
95 	of_for_each_phandle(&it, err, np, "nvidia,outputs", NULL, 0)
96 		if (it.node == dev->of_node)
97 			return true;
98 
99 	return false;
100 }
101 
102 /*
103  * Double-buffered registers have two copies: ASSEMBLY and ACTIVE. When the
104  * *_ACT_REQ bits are set the ASSEMBLY copy is latched into the ACTIVE copy.
105  * Latching happens mmediately if the display controller is in STOP mode or
106  * on the next frame boundary otherwise.
107  *
108  * Triple-buffered registers have three copies: ASSEMBLY, ARM and ACTIVE. The
109  * ASSEMBLY copy is latched into the ARM copy immediately after *_UPDATE bits
110  * are written. When the *_ACT_REQ bits are written, the ARM copy is latched
111  * into the ACTIVE copy, either immediately if the display controller is in
112  * STOP mode, or at the next frame boundary otherwise.
113  */
114 void tegra_dc_commit(struct tegra_dc *dc)
115 {
116 	tegra_dc_writel(dc, GENERAL_ACT_REQ << 8, DC_CMD_STATE_CONTROL);
117 	tegra_dc_writel(dc, GENERAL_ACT_REQ, DC_CMD_STATE_CONTROL);
118 }
119 
120 static inline u32 compute_dda_inc(unsigned int in, unsigned int out, bool v,
121 				  unsigned int bpp)
122 {
123 	fixed20_12 outf = dfixed_init(out);
124 	fixed20_12 inf = dfixed_init(in);
125 	u32 dda_inc;
126 	int max;
127 
128 	if (v)
129 		max = 15;
130 	else {
131 		switch (bpp) {
132 		case 2:
133 			max = 8;
134 			break;
135 
136 		default:
137 			WARN_ON_ONCE(1);
138 			fallthrough;
139 		case 4:
140 			max = 4;
141 			break;
142 		}
143 	}
144 
145 	outf.full = max_t(u32, outf.full - dfixed_const(1), dfixed_const(1));
146 	inf.full -= dfixed_const(1);
147 
148 	dda_inc = dfixed_div(inf, outf);
149 	dda_inc = min_t(u32, dda_inc, dfixed_const(max));
150 
151 	return dda_inc;
152 }
153 
154 static inline u32 compute_initial_dda(unsigned int in)
155 {
156 	fixed20_12 inf = dfixed_init(in);
157 	return dfixed_frac(inf);
158 }
159 
160 static void tegra_plane_setup_blending_legacy(struct tegra_plane *plane)
161 {
162 	u32 background[3] = {
163 		BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
164 		BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
165 		BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
166 	};
167 	u32 foreground = BLEND_WEIGHT1(255) | BLEND_WEIGHT0(255) |
168 			 BLEND_COLOR_KEY_NONE;
169 	u32 blendnokey = BLEND_WEIGHT1(255) | BLEND_WEIGHT0(255);
170 	struct tegra_plane_state *state;
171 	u32 blending[2];
172 	unsigned int i;
173 
174 	/* disable blending for non-overlapping case */
175 	tegra_plane_writel(plane, blendnokey, DC_WIN_BLEND_NOKEY);
176 	tegra_plane_writel(plane, foreground, DC_WIN_BLEND_1WIN);
177 
178 	state = to_tegra_plane_state(plane->base.state);
179 
180 	if (state->opaque) {
181 		/*
182 		 * Since custom fix-weight blending isn't utilized and weight
183 		 * of top window is set to max, we can enforce dependent
184 		 * blending which in this case results in transparent bottom
185 		 * window if top window is opaque and if top window enables
186 		 * alpha blending, then bottom window is getting alpha value
187 		 * of 1 minus the sum of alpha components of the overlapping
188 		 * plane.
189 		 */
190 		background[0] |= BLEND_CONTROL_DEPENDENT;
191 		background[1] |= BLEND_CONTROL_DEPENDENT;
192 
193 		/*
194 		 * The region where three windows overlap is the intersection
195 		 * of the two regions where two windows overlap. It contributes
196 		 * to the area if all of the windows on top of it have an alpha
197 		 * component.
198 		 */
199 		switch (state->base.normalized_zpos) {
200 		case 0:
201 			if (state->blending[0].alpha &&
202 			    state->blending[1].alpha)
203 				background[2] |= BLEND_CONTROL_DEPENDENT;
204 			break;
205 
206 		case 1:
207 			background[2] |= BLEND_CONTROL_DEPENDENT;
208 			break;
209 		}
210 	} else {
211 		/*
212 		 * Enable alpha blending if pixel format has an alpha
213 		 * component.
214 		 */
215 		foreground |= BLEND_CONTROL_ALPHA;
216 
217 		/*
218 		 * If any of the windows on top of this window is opaque, it
219 		 * will completely conceal this window within that area. If
220 		 * top window has an alpha component, it is blended over the
221 		 * bottom window.
222 		 */
223 		for (i = 0; i < 2; i++) {
224 			if (state->blending[i].alpha &&
225 			    state->blending[i].top)
226 				background[i] |= BLEND_CONTROL_DEPENDENT;
227 		}
228 
229 		switch (state->base.normalized_zpos) {
230 		case 0:
231 			if (state->blending[0].alpha &&
232 			    state->blending[1].alpha)
233 				background[2] |= BLEND_CONTROL_DEPENDENT;
234 			break;
235 
236 		case 1:
237 			/*
238 			 * When both middle and topmost windows have an alpha,
239 			 * these windows a mixed together and then the result
240 			 * is blended over the bottom window.
241 			 */
242 			if (state->blending[0].alpha &&
243 			    state->blending[0].top)
244 				background[2] |= BLEND_CONTROL_ALPHA;
245 
246 			if (state->blending[1].alpha &&
247 			    state->blending[1].top)
248 				background[2] |= BLEND_CONTROL_ALPHA;
249 			break;
250 		}
251 	}
252 
253 	switch (state->base.normalized_zpos) {
254 	case 0:
255 		tegra_plane_writel(plane, background[0], DC_WIN_BLEND_2WIN_X);
256 		tegra_plane_writel(plane, background[1], DC_WIN_BLEND_2WIN_Y);
257 		tegra_plane_writel(plane, background[2], DC_WIN_BLEND_3WIN_XY);
258 		break;
259 
260 	case 1:
261 		/*
262 		 * If window B / C is topmost, then X / Y registers are
263 		 * matching the order of blending[...] state indices,
264 		 * otherwise a swap is required.
265 		 */
266 		if (!state->blending[0].top && state->blending[1].top) {
267 			blending[0] = foreground;
268 			blending[1] = background[1];
269 		} else {
270 			blending[0] = background[0];
271 			blending[1] = foreground;
272 		}
273 
274 		tegra_plane_writel(plane, blending[0], DC_WIN_BLEND_2WIN_X);
275 		tegra_plane_writel(plane, blending[1], DC_WIN_BLEND_2WIN_Y);
276 		tegra_plane_writel(plane, background[2], DC_WIN_BLEND_3WIN_XY);
277 		break;
278 
279 	case 2:
280 		tegra_plane_writel(plane, foreground, DC_WIN_BLEND_2WIN_X);
281 		tegra_plane_writel(plane, foreground, DC_WIN_BLEND_2WIN_Y);
282 		tegra_plane_writel(plane, foreground, DC_WIN_BLEND_3WIN_XY);
283 		break;
284 	}
285 }
286 
287 static void tegra_plane_setup_blending(struct tegra_plane *plane,
288 				       const struct tegra_dc_window *window)
289 {
290 	u32 value;
291 
292 	value = BLEND_FACTOR_DST_ALPHA_ZERO | BLEND_FACTOR_SRC_ALPHA_K2 |
293 		BLEND_FACTOR_DST_COLOR_NEG_K1_TIMES_SRC |
294 		BLEND_FACTOR_SRC_COLOR_K1_TIMES_SRC;
295 	tegra_plane_writel(plane, value, DC_WIN_BLEND_MATCH_SELECT);
296 
297 	value = BLEND_FACTOR_DST_ALPHA_ZERO | BLEND_FACTOR_SRC_ALPHA_K2 |
298 		BLEND_FACTOR_DST_COLOR_NEG_K1_TIMES_SRC |
299 		BLEND_FACTOR_SRC_COLOR_K1_TIMES_SRC;
300 	tegra_plane_writel(plane, value, DC_WIN_BLEND_NOMATCH_SELECT);
301 
302 	value = K2(255) | K1(255) | WINDOW_LAYER_DEPTH(255 - window->zpos);
303 	tegra_plane_writel(plane, value, DC_WIN_BLEND_LAYER_CONTROL);
304 }
305 
306 static bool
307 tegra_plane_use_horizontal_filtering(struct tegra_plane *plane,
308 				     const struct tegra_dc_window *window)
309 {
310 	struct tegra_dc *dc = plane->dc;
311 
312 	if (window->src.w == window->dst.w)
313 		return false;
314 
315 	if (plane->index == 0 && dc->soc->has_win_a_without_filters)
316 		return false;
317 
318 	return true;
319 }
320 
321 static bool
322 tegra_plane_use_vertical_filtering(struct tegra_plane *plane,
323 				   const struct tegra_dc_window *window)
324 {
325 	struct tegra_dc *dc = plane->dc;
326 
327 	if (window->src.h == window->dst.h)
328 		return false;
329 
330 	if (plane->index == 0 && dc->soc->has_win_a_without_filters)
331 		return false;
332 
333 	if (plane->index == 2 && dc->soc->has_win_c_without_vert_filter)
334 		return false;
335 
336 	return true;
337 }
338 
339 static void tegra_dc_setup_window(struct tegra_plane *plane,
340 				  const struct tegra_dc_window *window)
341 {
342 	unsigned h_offset, v_offset, h_size, v_size, h_dda, v_dda, bpp;
343 	struct tegra_dc *dc = plane->dc;
344 	bool yuv, planar;
345 	u32 value;
346 
347 	/*
348 	 * For YUV planar modes, the number of bytes per pixel takes into
349 	 * account only the luma component and therefore is 1.
350 	 */
351 	yuv = tegra_plane_format_is_yuv(window->format, &planar);
352 	if (!yuv)
353 		bpp = window->bits_per_pixel / 8;
354 	else
355 		bpp = planar ? 1 : 2;
356 
357 	tegra_plane_writel(plane, window->format, DC_WIN_COLOR_DEPTH);
358 	tegra_plane_writel(plane, window->swap, DC_WIN_BYTE_SWAP);
359 
360 	value = V_POSITION(window->dst.y) | H_POSITION(window->dst.x);
361 	tegra_plane_writel(plane, value, DC_WIN_POSITION);
362 
363 	value = V_SIZE(window->dst.h) | H_SIZE(window->dst.w);
364 	tegra_plane_writel(plane, value, DC_WIN_SIZE);
365 
366 	h_offset = window->src.x * bpp;
367 	v_offset = window->src.y;
368 	h_size = window->src.w * bpp;
369 	v_size = window->src.h;
370 
371 	if (window->reflect_x)
372 		h_offset += (window->src.w - 1) * bpp;
373 
374 	if (window->reflect_y)
375 		v_offset += window->src.h - 1;
376 
377 	value = V_PRESCALED_SIZE(v_size) | H_PRESCALED_SIZE(h_size);
378 	tegra_plane_writel(plane, value, DC_WIN_PRESCALED_SIZE);
379 
380 	/*
381 	 * For DDA computations the number of bytes per pixel for YUV planar
382 	 * modes needs to take into account all Y, U and V components.
383 	 */
384 	if (yuv && planar)
385 		bpp = 2;
386 
387 	h_dda = compute_dda_inc(window->src.w, window->dst.w, false, bpp);
388 	v_dda = compute_dda_inc(window->src.h, window->dst.h, true, bpp);
389 
390 	value = V_DDA_INC(v_dda) | H_DDA_INC(h_dda);
391 	tegra_plane_writel(plane, value, DC_WIN_DDA_INC);
392 
393 	h_dda = compute_initial_dda(window->src.x);
394 	v_dda = compute_initial_dda(window->src.y);
395 
396 	tegra_plane_writel(plane, h_dda, DC_WIN_H_INITIAL_DDA);
397 	tegra_plane_writel(plane, v_dda, DC_WIN_V_INITIAL_DDA);
398 
399 	tegra_plane_writel(plane, 0, DC_WIN_UV_BUF_STRIDE);
400 	tegra_plane_writel(plane, 0, DC_WIN_BUF_STRIDE);
401 
402 	tegra_plane_writel(plane, window->base[0], DC_WINBUF_START_ADDR);
403 
404 	if (yuv && planar) {
405 		tegra_plane_writel(plane, window->base[1], DC_WINBUF_START_ADDR_U);
406 		tegra_plane_writel(plane, window->base[2], DC_WINBUF_START_ADDR_V);
407 		value = window->stride[1] << 16 | window->stride[0];
408 		tegra_plane_writel(plane, value, DC_WIN_LINE_STRIDE);
409 	} else {
410 		tegra_plane_writel(plane, window->stride[0], DC_WIN_LINE_STRIDE);
411 	}
412 
413 	tegra_plane_writel(plane, h_offset, DC_WINBUF_ADDR_H_OFFSET);
414 	tegra_plane_writel(plane, v_offset, DC_WINBUF_ADDR_V_OFFSET);
415 
416 	if (dc->soc->supports_block_linear) {
417 		unsigned long height = window->tiling.value;
418 
419 		switch (window->tiling.mode) {
420 		case TEGRA_BO_TILING_MODE_PITCH:
421 			value = DC_WINBUF_SURFACE_KIND_PITCH;
422 			break;
423 
424 		case TEGRA_BO_TILING_MODE_TILED:
425 			value = DC_WINBUF_SURFACE_KIND_TILED;
426 			break;
427 
428 		case TEGRA_BO_TILING_MODE_BLOCK:
429 			value = DC_WINBUF_SURFACE_KIND_BLOCK_HEIGHT(height) |
430 				DC_WINBUF_SURFACE_KIND_BLOCK;
431 			break;
432 		}
433 
434 		tegra_plane_writel(plane, value, DC_WINBUF_SURFACE_KIND);
435 	} else {
436 		switch (window->tiling.mode) {
437 		case TEGRA_BO_TILING_MODE_PITCH:
438 			value = DC_WIN_BUFFER_ADDR_MODE_LINEAR_UV |
439 				DC_WIN_BUFFER_ADDR_MODE_LINEAR;
440 			break;
441 
442 		case TEGRA_BO_TILING_MODE_TILED:
443 			value = DC_WIN_BUFFER_ADDR_MODE_TILE_UV |
444 				DC_WIN_BUFFER_ADDR_MODE_TILE;
445 			break;
446 
447 		case TEGRA_BO_TILING_MODE_BLOCK:
448 			/*
449 			 * No need to handle this here because ->atomic_check
450 			 * will already have filtered it out.
451 			 */
452 			break;
453 		}
454 
455 		tegra_plane_writel(plane, value, DC_WIN_BUFFER_ADDR_MODE);
456 	}
457 
458 	value = WIN_ENABLE;
459 
460 	if (yuv) {
461 		/* setup default colorspace conversion coefficients */
462 		tegra_plane_writel(plane, 0x00f0, DC_WIN_CSC_YOF);
463 		tegra_plane_writel(plane, 0x012a, DC_WIN_CSC_KYRGB);
464 		tegra_plane_writel(plane, 0x0000, DC_WIN_CSC_KUR);
465 		tegra_plane_writel(plane, 0x0198, DC_WIN_CSC_KVR);
466 		tegra_plane_writel(plane, 0x039b, DC_WIN_CSC_KUG);
467 		tegra_plane_writel(plane, 0x032f, DC_WIN_CSC_KVG);
468 		tegra_plane_writel(plane, 0x0204, DC_WIN_CSC_KUB);
469 		tegra_plane_writel(plane, 0x0000, DC_WIN_CSC_KVB);
470 
471 		value |= CSC_ENABLE;
472 	} else if (window->bits_per_pixel < 24) {
473 		value |= COLOR_EXPAND;
474 	}
475 
476 	if (window->reflect_x)
477 		value |= H_DIRECTION;
478 
479 	if (window->reflect_y)
480 		value |= V_DIRECTION;
481 
482 	if (tegra_plane_use_horizontal_filtering(plane, window)) {
483 		/*
484 		 * Enable horizontal 6-tap filter and set filtering
485 		 * coefficients to the default values defined in TRM.
486 		 */
487 		tegra_plane_writel(plane, 0x00008000, DC_WIN_H_FILTER_P(0));
488 		tegra_plane_writel(plane, 0x3e087ce1, DC_WIN_H_FILTER_P(1));
489 		tegra_plane_writel(plane, 0x3b117ac1, DC_WIN_H_FILTER_P(2));
490 		tegra_plane_writel(plane, 0x591b73aa, DC_WIN_H_FILTER_P(3));
491 		tegra_plane_writel(plane, 0x57256d9a, DC_WIN_H_FILTER_P(4));
492 		tegra_plane_writel(plane, 0x552f668b, DC_WIN_H_FILTER_P(5));
493 		tegra_plane_writel(plane, 0x73385e8b, DC_WIN_H_FILTER_P(6));
494 		tegra_plane_writel(plane, 0x72435583, DC_WIN_H_FILTER_P(7));
495 		tegra_plane_writel(plane, 0x714c4c8b, DC_WIN_H_FILTER_P(8));
496 		tegra_plane_writel(plane, 0x70554393, DC_WIN_H_FILTER_P(9));
497 		tegra_plane_writel(plane, 0x715e389b, DC_WIN_H_FILTER_P(10));
498 		tegra_plane_writel(plane, 0x71662faa, DC_WIN_H_FILTER_P(11));
499 		tegra_plane_writel(plane, 0x536d25ba, DC_WIN_H_FILTER_P(12));
500 		tegra_plane_writel(plane, 0x55731bca, DC_WIN_H_FILTER_P(13));
501 		tegra_plane_writel(plane, 0x387a11d9, DC_WIN_H_FILTER_P(14));
502 		tegra_plane_writel(plane, 0x3c7c08f1, DC_WIN_H_FILTER_P(15));
503 
504 		value |= H_FILTER;
505 	}
506 
507 	if (tegra_plane_use_vertical_filtering(plane, window)) {
508 		unsigned int i, k;
509 
510 		/*
511 		 * Enable vertical 2-tap filter and set filtering
512 		 * coefficients to the default values defined in TRM.
513 		 */
514 		for (i = 0, k = 128; i < 16; i++, k -= 8)
515 			tegra_plane_writel(plane, k, DC_WIN_V_FILTER_P(i));
516 
517 		value |= V_FILTER;
518 	}
519 
520 	tegra_plane_writel(plane, value, DC_WIN_WIN_OPTIONS);
521 
522 	if (dc->soc->has_legacy_blending)
523 		tegra_plane_setup_blending_legacy(plane);
524 	else
525 		tegra_plane_setup_blending(plane, window);
526 }
527 
528 static const u32 tegra20_primary_formats[] = {
529 	DRM_FORMAT_ARGB4444,
530 	DRM_FORMAT_ARGB1555,
531 	DRM_FORMAT_RGB565,
532 	DRM_FORMAT_RGBA5551,
533 	DRM_FORMAT_ABGR8888,
534 	DRM_FORMAT_ARGB8888,
535 	/* non-native formats */
536 	DRM_FORMAT_XRGB1555,
537 	DRM_FORMAT_RGBX5551,
538 	DRM_FORMAT_XBGR8888,
539 	DRM_FORMAT_XRGB8888,
540 };
541 
542 static const u64 tegra20_modifiers[] = {
543 	DRM_FORMAT_MOD_LINEAR,
544 	DRM_FORMAT_MOD_NVIDIA_TEGRA_TILED,
545 	DRM_FORMAT_MOD_INVALID
546 };
547 
548 static const u32 tegra114_primary_formats[] = {
549 	DRM_FORMAT_ARGB4444,
550 	DRM_FORMAT_ARGB1555,
551 	DRM_FORMAT_RGB565,
552 	DRM_FORMAT_RGBA5551,
553 	DRM_FORMAT_ABGR8888,
554 	DRM_FORMAT_ARGB8888,
555 	/* new on Tegra114 */
556 	DRM_FORMAT_ABGR4444,
557 	DRM_FORMAT_ABGR1555,
558 	DRM_FORMAT_BGRA5551,
559 	DRM_FORMAT_XRGB1555,
560 	DRM_FORMAT_RGBX5551,
561 	DRM_FORMAT_XBGR1555,
562 	DRM_FORMAT_BGRX5551,
563 	DRM_FORMAT_BGR565,
564 	DRM_FORMAT_BGRA8888,
565 	DRM_FORMAT_RGBA8888,
566 	DRM_FORMAT_XRGB8888,
567 	DRM_FORMAT_XBGR8888,
568 };
569 
570 static const u32 tegra124_primary_formats[] = {
571 	DRM_FORMAT_ARGB4444,
572 	DRM_FORMAT_ARGB1555,
573 	DRM_FORMAT_RGB565,
574 	DRM_FORMAT_RGBA5551,
575 	DRM_FORMAT_ABGR8888,
576 	DRM_FORMAT_ARGB8888,
577 	/* new on Tegra114 */
578 	DRM_FORMAT_ABGR4444,
579 	DRM_FORMAT_ABGR1555,
580 	DRM_FORMAT_BGRA5551,
581 	DRM_FORMAT_XRGB1555,
582 	DRM_FORMAT_RGBX5551,
583 	DRM_FORMAT_XBGR1555,
584 	DRM_FORMAT_BGRX5551,
585 	DRM_FORMAT_BGR565,
586 	DRM_FORMAT_BGRA8888,
587 	DRM_FORMAT_RGBA8888,
588 	DRM_FORMAT_XRGB8888,
589 	DRM_FORMAT_XBGR8888,
590 	/* new on Tegra124 */
591 	DRM_FORMAT_RGBX8888,
592 	DRM_FORMAT_BGRX8888,
593 };
594 
595 static const u64 tegra124_modifiers[] = {
596 	DRM_FORMAT_MOD_LINEAR,
597 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(0),
598 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(1),
599 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(2),
600 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(3),
601 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(4),
602 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(5),
603 	DRM_FORMAT_MOD_INVALID
604 };
605 
606 static int tegra_plane_atomic_check(struct drm_plane *plane,
607 				    struct drm_atomic_state *state)
608 {
609 	struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state,
610 										 plane);
611 	struct tegra_plane_state *plane_state = to_tegra_plane_state(new_plane_state);
612 	unsigned int supported_rotation = DRM_MODE_ROTATE_0 |
613 					  DRM_MODE_REFLECT_X |
614 					  DRM_MODE_REFLECT_Y;
615 	unsigned int rotation = new_plane_state->rotation;
616 	struct tegra_bo_tiling *tiling = &plane_state->tiling;
617 	struct tegra_plane *tegra = to_tegra_plane(plane);
618 	struct tegra_dc *dc = to_tegra_dc(new_plane_state->crtc);
619 	int err;
620 
621 	/* no need for further checks if the plane is being disabled */
622 	if (!new_plane_state->crtc)
623 		return 0;
624 
625 	err = tegra_plane_format(new_plane_state->fb->format->format,
626 				 &plane_state->format,
627 				 &plane_state->swap);
628 	if (err < 0)
629 		return err;
630 
631 	/*
632 	 * Tegra20 and Tegra30 are special cases here because they support
633 	 * only variants of specific formats with an alpha component, but not
634 	 * the corresponding opaque formats. However, the opaque formats can
635 	 * be emulated by disabling alpha blending for the plane.
636 	 */
637 	if (dc->soc->has_legacy_blending) {
638 		err = tegra_plane_setup_legacy_state(tegra, plane_state);
639 		if (err < 0)
640 			return err;
641 	}
642 
643 	err = tegra_fb_get_tiling(new_plane_state->fb, tiling);
644 	if (err < 0)
645 		return err;
646 
647 	if (tiling->mode == TEGRA_BO_TILING_MODE_BLOCK &&
648 	    !dc->soc->supports_block_linear) {
649 		DRM_ERROR("hardware doesn't support block linear mode\n");
650 		return -EINVAL;
651 	}
652 
653 	/*
654 	 * Older userspace used custom BO flag in order to specify the Y
655 	 * reflection, while modern userspace uses the generic DRM rotation
656 	 * property in order to achieve the same result.  The legacy BO flag
657 	 * duplicates the DRM rotation property when both are set.
658 	 */
659 	if (tegra_fb_is_bottom_up(new_plane_state->fb))
660 		rotation |= DRM_MODE_REFLECT_Y;
661 
662 	rotation = drm_rotation_simplify(rotation, supported_rotation);
663 
664 	if (rotation & DRM_MODE_REFLECT_X)
665 		plane_state->reflect_x = true;
666 	else
667 		plane_state->reflect_x = false;
668 
669 	if (rotation & DRM_MODE_REFLECT_Y)
670 		plane_state->reflect_y = true;
671 	else
672 		plane_state->reflect_y = false;
673 
674 	/*
675 	 * Tegra doesn't support different strides for U and V planes so we
676 	 * error out if the user tries to display a framebuffer with such a
677 	 * configuration.
678 	 */
679 	if (new_plane_state->fb->format->num_planes > 2) {
680 		if (new_plane_state->fb->pitches[2] != new_plane_state->fb->pitches[1]) {
681 			DRM_ERROR("unsupported UV-plane configuration\n");
682 			return -EINVAL;
683 		}
684 	}
685 
686 	err = tegra_plane_state_add(tegra, new_plane_state);
687 	if (err < 0)
688 		return err;
689 
690 	return 0;
691 }
692 
693 static void tegra_plane_atomic_disable(struct drm_plane *plane,
694 				       struct drm_atomic_state *state)
695 {
696 	struct drm_plane_state *old_state = drm_atomic_get_old_plane_state(state,
697 									   plane);
698 	struct tegra_plane *p = to_tegra_plane(plane);
699 	u32 value;
700 
701 	/* rien ne va plus */
702 	if (!old_state || !old_state->crtc)
703 		return;
704 
705 	value = tegra_plane_readl(p, DC_WIN_WIN_OPTIONS);
706 	value &= ~WIN_ENABLE;
707 	tegra_plane_writel(p, value, DC_WIN_WIN_OPTIONS);
708 }
709 
710 static void tegra_plane_atomic_update(struct drm_plane *plane,
711 				      struct drm_atomic_state *state)
712 {
713 	struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state,
714 									   plane);
715 	struct tegra_plane_state *tegra_plane_state = to_tegra_plane_state(new_state);
716 	struct drm_framebuffer *fb = new_state->fb;
717 	struct tegra_plane *p = to_tegra_plane(plane);
718 	struct tegra_dc_window window;
719 	unsigned int i;
720 
721 	/* rien ne va plus */
722 	if (!new_state->crtc || !new_state->fb)
723 		return;
724 
725 	if (!new_state->visible)
726 		return tegra_plane_atomic_disable(plane, state);
727 
728 	memset(&window, 0, sizeof(window));
729 	window.src.x = new_state->src.x1 >> 16;
730 	window.src.y = new_state->src.y1 >> 16;
731 	window.src.w = drm_rect_width(&new_state->src) >> 16;
732 	window.src.h = drm_rect_height(&new_state->src) >> 16;
733 	window.dst.x = new_state->dst.x1;
734 	window.dst.y = new_state->dst.y1;
735 	window.dst.w = drm_rect_width(&new_state->dst);
736 	window.dst.h = drm_rect_height(&new_state->dst);
737 	window.bits_per_pixel = fb->format->cpp[0] * 8;
738 	window.reflect_x = tegra_plane_state->reflect_x;
739 	window.reflect_y = tegra_plane_state->reflect_y;
740 
741 	/* copy from state */
742 	window.zpos = new_state->normalized_zpos;
743 	window.tiling = tegra_plane_state->tiling;
744 	window.format = tegra_plane_state->format;
745 	window.swap = tegra_plane_state->swap;
746 
747 	for (i = 0; i < fb->format->num_planes; i++) {
748 		window.base[i] = tegra_plane_state->iova[i] + fb->offsets[i];
749 
750 		/*
751 		 * Tegra uses a shared stride for UV planes. Framebuffers are
752 		 * already checked for this in the tegra_plane_atomic_check()
753 		 * function, so it's safe to ignore the V-plane pitch here.
754 		 */
755 		if (i < 2)
756 			window.stride[i] = fb->pitches[i];
757 	}
758 
759 	tegra_dc_setup_window(p, &window);
760 }
761 
762 static const struct drm_plane_helper_funcs tegra_plane_helper_funcs = {
763 	.prepare_fb = tegra_plane_prepare_fb,
764 	.cleanup_fb = tegra_plane_cleanup_fb,
765 	.atomic_check = tegra_plane_atomic_check,
766 	.atomic_disable = tegra_plane_atomic_disable,
767 	.atomic_update = tegra_plane_atomic_update,
768 };
769 
770 static unsigned long tegra_plane_get_possible_crtcs(struct drm_device *drm)
771 {
772 	/*
773 	 * Ideally this would use drm_crtc_mask(), but that would require the
774 	 * CRTC to already be in the mode_config's list of CRTCs. However, it
775 	 * will only be added to that list in the drm_crtc_init_with_planes()
776 	 * (in tegra_dc_init()), which in turn requires registration of these
777 	 * planes. So we have ourselves a nice little chicken and egg problem
778 	 * here.
779 	 *
780 	 * We work around this by manually creating the mask from the number
781 	 * of CRTCs that have been registered, and should therefore always be
782 	 * the same as drm_crtc_index() after registration.
783 	 */
784 	return 1 << drm->mode_config.num_crtc;
785 }
786 
787 static struct drm_plane *tegra_primary_plane_create(struct drm_device *drm,
788 						    struct tegra_dc *dc)
789 {
790 	unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
791 	enum drm_plane_type type = DRM_PLANE_TYPE_PRIMARY;
792 	struct tegra_plane *plane;
793 	unsigned int num_formats;
794 	const u64 *modifiers;
795 	const u32 *formats;
796 	int err;
797 
798 	plane = kzalloc(sizeof(*plane), GFP_KERNEL);
799 	if (!plane)
800 		return ERR_PTR(-ENOMEM);
801 
802 	/* Always use window A as primary window */
803 	plane->offset = 0xa00;
804 	plane->index = 0;
805 	plane->dc = dc;
806 
807 	num_formats = dc->soc->num_primary_formats;
808 	formats = dc->soc->primary_formats;
809 	modifiers = dc->soc->modifiers;
810 
811 	err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
812 				       &tegra_plane_funcs, formats,
813 				       num_formats, modifiers, type, NULL);
814 	if (err < 0) {
815 		kfree(plane);
816 		return ERR_PTR(err);
817 	}
818 
819 	drm_plane_helper_add(&plane->base, &tegra_plane_helper_funcs);
820 	drm_plane_create_zpos_property(&plane->base, plane->index, 0, 255);
821 
822 	err = drm_plane_create_rotation_property(&plane->base,
823 						 DRM_MODE_ROTATE_0,
824 						 DRM_MODE_ROTATE_0 |
825 						 DRM_MODE_ROTATE_180 |
826 						 DRM_MODE_REFLECT_X |
827 						 DRM_MODE_REFLECT_Y);
828 	if (err < 0)
829 		dev_err(dc->dev, "failed to create rotation property: %d\n",
830 			err);
831 
832 	return &plane->base;
833 }
834 
835 static const u32 tegra_legacy_cursor_plane_formats[] = {
836 	DRM_FORMAT_RGBA8888,
837 };
838 
839 static const u32 tegra_cursor_plane_formats[] = {
840 	DRM_FORMAT_ARGB8888,
841 };
842 
843 static int tegra_cursor_atomic_check(struct drm_plane *plane,
844 				     struct drm_atomic_state *state)
845 {
846 	struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state,
847 										 plane);
848 	struct tegra_plane *tegra = to_tegra_plane(plane);
849 	int err;
850 
851 	/* no need for further checks if the plane is being disabled */
852 	if (!new_plane_state->crtc)
853 		return 0;
854 
855 	/* scaling not supported for cursor */
856 	if ((new_plane_state->src_w >> 16 != new_plane_state->crtc_w) ||
857 	    (new_plane_state->src_h >> 16 != new_plane_state->crtc_h))
858 		return -EINVAL;
859 
860 	/* only square cursors supported */
861 	if (new_plane_state->src_w != new_plane_state->src_h)
862 		return -EINVAL;
863 
864 	if (new_plane_state->crtc_w != 32 && new_plane_state->crtc_w != 64 &&
865 	    new_plane_state->crtc_w != 128 && new_plane_state->crtc_w != 256)
866 		return -EINVAL;
867 
868 	err = tegra_plane_state_add(tegra, new_plane_state);
869 	if (err < 0)
870 		return err;
871 
872 	return 0;
873 }
874 
875 static void tegra_cursor_atomic_update(struct drm_plane *plane,
876 				       struct drm_atomic_state *state)
877 {
878 	struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state,
879 									   plane);
880 	struct tegra_plane_state *tegra_plane_state = to_tegra_plane_state(new_state);
881 	struct tegra_dc *dc = to_tegra_dc(new_state->crtc);
882 	struct tegra_drm *tegra = plane->dev->dev_private;
883 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
884 	u64 dma_mask = *dc->dev->dma_mask;
885 #endif
886 	unsigned int x, y;
887 	u32 value = 0;
888 
889 	/* rien ne va plus */
890 	if (!new_state->crtc || !new_state->fb)
891 		return;
892 
893 	/*
894 	 * Legacy display supports hardware clipping of the cursor, but
895 	 * nvdisplay relies on software to clip the cursor to the screen.
896 	 */
897 	if (!dc->soc->has_nvdisplay)
898 		value |= CURSOR_CLIP_DISPLAY;
899 
900 	switch (new_state->crtc_w) {
901 	case 32:
902 		value |= CURSOR_SIZE_32x32;
903 		break;
904 
905 	case 64:
906 		value |= CURSOR_SIZE_64x64;
907 		break;
908 
909 	case 128:
910 		value |= CURSOR_SIZE_128x128;
911 		break;
912 
913 	case 256:
914 		value |= CURSOR_SIZE_256x256;
915 		break;
916 
917 	default:
918 		WARN(1, "cursor size %ux%u not supported\n",
919 		     new_state->crtc_w, new_state->crtc_h);
920 		return;
921 	}
922 
923 	value |= (tegra_plane_state->iova[0] >> 10) & 0x3fffff;
924 	tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR);
925 
926 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
927 	value = (tegra_plane_state->iova[0] >> 32) & (dma_mask >> 32);
928 	tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR_HI);
929 #endif
930 
931 	/* enable cursor and set blend mode */
932 	value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
933 	value |= CURSOR_ENABLE;
934 	tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
935 
936 	value = tegra_dc_readl(dc, DC_DISP_BLEND_CURSOR_CONTROL);
937 	value &= ~CURSOR_DST_BLEND_MASK;
938 	value &= ~CURSOR_SRC_BLEND_MASK;
939 
940 	if (dc->soc->has_nvdisplay)
941 		value &= ~CURSOR_COMPOSITION_MODE_XOR;
942 	else
943 		value |= CURSOR_MODE_NORMAL;
944 
945 	value |= CURSOR_DST_BLEND_NEG_K1_TIMES_SRC;
946 	value |= CURSOR_SRC_BLEND_K1_TIMES_SRC;
947 	value |= CURSOR_ALPHA;
948 	tegra_dc_writel(dc, value, DC_DISP_BLEND_CURSOR_CONTROL);
949 
950 	/* nvdisplay relies on software for clipping */
951 	if (dc->soc->has_nvdisplay) {
952 		struct drm_rect src;
953 
954 		x = new_state->dst.x1;
955 		y = new_state->dst.y1;
956 
957 		drm_rect_fp_to_int(&src, &new_state->src);
958 
959 		value = (src.y1 & tegra->vmask) << 16 | (src.x1 & tegra->hmask);
960 		tegra_dc_writel(dc, value, DC_DISP_PCALC_HEAD_SET_CROPPED_POINT_IN_CURSOR);
961 
962 		value = (drm_rect_height(&src) & tegra->vmask) << 16 |
963 			(drm_rect_width(&src) & tegra->hmask);
964 		tegra_dc_writel(dc, value, DC_DISP_PCALC_HEAD_SET_CROPPED_SIZE_IN_CURSOR);
965 	} else {
966 		x = new_state->crtc_x;
967 		y = new_state->crtc_y;
968 	}
969 
970 	/* position the cursor */
971 	value = ((y & tegra->vmask) << 16) | (x & tegra->hmask);
972 	tegra_dc_writel(dc, value, DC_DISP_CURSOR_POSITION);
973 }
974 
975 static void tegra_cursor_atomic_disable(struct drm_plane *plane,
976 					struct drm_atomic_state *state)
977 {
978 	struct drm_plane_state *old_state = drm_atomic_get_old_plane_state(state,
979 									   plane);
980 	struct tegra_dc *dc;
981 	u32 value;
982 
983 	/* rien ne va plus */
984 	if (!old_state || !old_state->crtc)
985 		return;
986 
987 	dc = to_tegra_dc(old_state->crtc);
988 
989 	value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
990 	value &= ~CURSOR_ENABLE;
991 	tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
992 }
993 
994 static const struct drm_plane_helper_funcs tegra_cursor_plane_helper_funcs = {
995 	.prepare_fb = tegra_plane_prepare_fb,
996 	.cleanup_fb = tegra_plane_cleanup_fb,
997 	.atomic_check = tegra_cursor_atomic_check,
998 	.atomic_update = tegra_cursor_atomic_update,
999 	.atomic_disable = tegra_cursor_atomic_disable,
1000 };
1001 
1002 static struct drm_plane *tegra_dc_cursor_plane_create(struct drm_device *drm,
1003 						      struct tegra_dc *dc)
1004 {
1005 	unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
1006 	struct tegra_plane *plane;
1007 	unsigned int num_formats;
1008 	const u32 *formats;
1009 	int err;
1010 
1011 	plane = kzalloc(sizeof(*plane), GFP_KERNEL);
1012 	if (!plane)
1013 		return ERR_PTR(-ENOMEM);
1014 
1015 	/*
1016 	 * This index is kind of fake. The cursor isn't a regular plane, but
1017 	 * its update and activation request bits in DC_CMD_STATE_CONTROL do
1018 	 * use the same programming. Setting this fake index here allows the
1019 	 * code in tegra_add_plane_state() to do the right thing without the
1020 	 * need to special-casing the cursor plane.
1021 	 */
1022 	plane->index = 6;
1023 	plane->dc = dc;
1024 
1025 	if (!dc->soc->has_nvdisplay) {
1026 		num_formats = ARRAY_SIZE(tegra_legacy_cursor_plane_formats);
1027 		formats = tegra_legacy_cursor_plane_formats;
1028 	} else {
1029 		num_formats = ARRAY_SIZE(tegra_cursor_plane_formats);
1030 		formats = tegra_cursor_plane_formats;
1031 	}
1032 
1033 	err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
1034 				       &tegra_plane_funcs, formats,
1035 				       num_formats, NULL,
1036 				       DRM_PLANE_TYPE_CURSOR, NULL);
1037 	if (err < 0) {
1038 		kfree(plane);
1039 		return ERR_PTR(err);
1040 	}
1041 
1042 	drm_plane_helper_add(&plane->base, &tegra_cursor_plane_helper_funcs);
1043 	drm_plane_create_zpos_immutable_property(&plane->base, 255);
1044 
1045 	return &plane->base;
1046 }
1047 
1048 static const u32 tegra20_overlay_formats[] = {
1049 	DRM_FORMAT_ARGB4444,
1050 	DRM_FORMAT_ARGB1555,
1051 	DRM_FORMAT_RGB565,
1052 	DRM_FORMAT_RGBA5551,
1053 	DRM_FORMAT_ABGR8888,
1054 	DRM_FORMAT_ARGB8888,
1055 	/* non-native formats */
1056 	DRM_FORMAT_XRGB1555,
1057 	DRM_FORMAT_RGBX5551,
1058 	DRM_FORMAT_XBGR8888,
1059 	DRM_FORMAT_XRGB8888,
1060 	/* planar formats */
1061 	DRM_FORMAT_UYVY,
1062 	DRM_FORMAT_YUYV,
1063 	DRM_FORMAT_YUV420,
1064 	DRM_FORMAT_YUV422,
1065 };
1066 
1067 static const u32 tegra114_overlay_formats[] = {
1068 	DRM_FORMAT_ARGB4444,
1069 	DRM_FORMAT_ARGB1555,
1070 	DRM_FORMAT_RGB565,
1071 	DRM_FORMAT_RGBA5551,
1072 	DRM_FORMAT_ABGR8888,
1073 	DRM_FORMAT_ARGB8888,
1074 	/* new on Tegra114 */
1075 	DRM_FORMAT_ABGR4444,
1076 	DRM_FORMAT_ABGR1555,
1077 	DRM_FORMAT_BGRA5551,
1078 	DRM_FORMAT_XRGB1555,
1079 	DRM_FORMAT_RGBX5551,
1080 	DRM_FORMAT_XBGR1555,
1081 	DRM_FORMAT_BGRX5551,
1082 	DRM_FORMAT_BGR565,
1083 	DRM_FORMAT_BGRA8888,
1084 	DRM_FORMAT_RGBA8888,
1085 	DRM_FORMAT_XRGB8888,
1086 	DRM_FORMAT_XBGR8888,
1087 	/* planar formats */
1088 	DRM_FORMAT_UYVY,
1089 	DRM_FORMAT_YUYV,
1090 	DRM_FORMAT_YUV420,
1091 	DRM_FORMAT_YUV422,
1092 };
1093 
1094 static const u32 tegra124_overlay_formats[] = {
1095 	DRM_FORMAT_ARGB4444,
1096 	DRM_FORMAT_ARGB1555,
1097 	DRM_FORMAT_RGB565,
1098 	DRM_FORMAT_RGBA5551,
1099 	DRM_FORMAT_ABGR8888,
1100 	DRM_FORMAT_ARGB8888,
1101 	/* new on Tegra114 */
1102 	DRM_FORMAT_ABGR4444,
1103 	DRM_FORMAT_ABGR1555,
1104 	DRM_FORMAT_BGRA5551,
1105 	DRM_FORMAT_XRGB1555,
1106 	DRM_FORMAT_RGBX5551,
1107 	DRM_FORMAT_XBGR1555,
1108 	DRM_FORMAT_BGRX5551,
1109 	DRM_FORMAT_BGR565,
1110 	DRM_FORMAT_BGRA8888,
1111 	DRM_FORMAT_RGBA8888,
1112 	DRM_FORMAT_XRGB8888,
1113 	DRM_FORMAT_XBGR8888,
1114 	/* new on Tegra124 */
1115 	DRM_FORMAT_RGBX8888,
1116 	DRM_FORMAT_BGRX8888,
1117 	/* planar formats */
1118 	DRM_FORMAT_UYVY,
1119 	DRM_FORMAT_YUYV,
1120 	DRM_FORMAT_YUV420,
1121 	DRM_FORMAT_YUV422,
1122 };
1123 
1124 static struct drm_plane *tegra_dc_overlay_plane_create(struct drm_device *drm,
1125 						       struct tegra_dc *dc,
1126 						       unsigned int index,
1127 						       bool cursor)
1128 {
1129 	unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
1130 	struct tegra_plane *plane;
1131 	unsigned int num_formats;
1132 	enum drm_plane_type type;
1133 	const u32 *formats;
1134 	int err;
1135 
1136 	plane = kzalloc(sizeof(*plane), GFP_KERNEL);
1137 	if (!plane)
1138 		return ERR_PTR(-ENOMEM);
1139 
1140 	plane->offset = 0xa00 + 0x200 * index;
1141 	plane->index = index;
1142 	plane->dc = dc;
1143 
1144 	num_formats = dc->soc->num_overlay_formats;
1145 	formats = dc->soc->overlay_formats;
1146 
1147 	if (!cursor)
1148 		type = DRM_PLANE_TYPE_OVERLAY;
1149 	else
1150 		type = DRM_PLANE_TYPE_CURSOR;
1151 
1152 	err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
1153 				       &tegra_plane_funcs, formats,
1154 				       num_formats, NULL, type, NULL);
1155 	if (err < 0) {
1156 		kfree(plane);
1157 		return ERR_PTR(err);
1158 	}
1159 
1160 	drm_plane_helper_add(&plane->base, &tegra_plane_helper_funcs);
1161 	drm_plane_create_zpos_property(&plane->base, plane->index, 0, 255);
1162 
1163 	err = drm_plane_create_rotation_property(&plane->base,
1164 						 DRM_MODE_ROTATE_0,
1165 						 DRM_MODE_ROTATE_0 |
1166 						 DRM_MODE_ROTATE_180 |
1167 						 DRM_MODE_REFLECT_X |
1168 						 DRM_MODE_REFLECT_Y);
1169 	if (err < 0)
1170 		dev_err(dc->dev, "failed to create rotation property: %d\n",
1171 			err);
1172 
1173 	return &plane->base;
1174 }
1175 
1176 static struct drm_plane *tegra_dc_add_shared_planes(struct drm_device *drm,
1177 						    struct tegra_dc *dc)
1178 {
1179 	struct drm_plane *plane, *primary = NULL;
1180 	unsigned int i, j;
1181 
1182 	for (i = 0; i < dc->soc->num_wgrps; i++) {
1183 		const struct tegra_windowgroup_soc *wgrp = &dc->soc->wgrps[i];
1184 
1185 		if (wgrp->dc == dc->pipe) {
1186 			for (j = 0; j < wgrp->num_windows; j++) {
1187 				unsigned int index = wgrp->windows[j];
1188 
1189 				plane = tegra_shared_plane_create(drm, dc,
1190 								  wgrp->index,
1191 								  index);
1192 				if (IS_ERR(plane))
1193 					return plane;
1194 
1195 				/*
1196 				 * Choose the first shared plane owned by this
1197 				 * head as the primary plane.
1198 				 */
1199 				if (!primary) {
1200 					plane->type = DRM_PLANE_TYPE_PRIMARY;
1201 					primary = plane;
1202 				}
1203 			}
1204 		}
1205 	}
1206 
1207 	return primary;
1208 }
1209 
1210 static struct drm_plane *tegra_dc_add_planes(struct drm_device *drm,
1211 					     struct tegra_dc *dc)
1212 {
1213 	struct drm_plane *planes[2], *primary;
1214 	unsigned int planes_num;
1215 	unsigned int i;
1216 	int err;
1217 
1218 	primary = tegra_primary_plane_create(drm, dc);
1219 	if (IS_ERR(primary))
1220 		return primary;
1221 
1222 	if (dc->soc->supports_cursor)
1223 		planes_num = 2;
1224 	else
1225 		planes_num = 1;
1226 
1227 	for (i = 0; i < planes_num; i++) {
1228 		planes[i] = tegra_dc_overlay_plane_create(drm, dc, 1 + i,
1229 							  false);
1230 		if (IS_ERR(planes[i])) {
1231 			err = PTR_ERR(planes[i]);
1232 
1233 			while (i--)
1234 				tegra_plane_funcs.destroy(planes[i]);
1235 
1236 			tegra_plane_funcs.destroy(primary);
1237 			return ERR_PTR(err);
1238 		}
1239 	}
1240 
1241 	return primary;
1242 }
1243 
1244 static void tegra_dc_destroy(struct drm_crtc *crtc)
1245 {
1246 	drm_crtc_cleanup(crtc);
1247 }
1248 
1249 static void tegra_crtc_reset(struct drm_crtc *crtc)
1250 {
1251 	struct tegra_dc_state *state = kzalloc(sizeof(*state), GFP_KERNEL);
1252 
1253 	if (crtc->state)
1254 		tegra_crtc_atomic_destroy_state(crtc, crtc->state);
1255 
1256 	__drm_atomic_helper_crtc_reset(crtc, &state->base);
1257 }
1258 
1259 static struct drm_crtc_state *
1260 tegra_crtc_atomic_duplicate_state(struct drm_crtc *crtc)
1261 {
1262 	struct tegra_dc_state *state = to_dc_state(crtc->state);
1263 	struct tegra_dc_state *copy;
1264 
1265 	copy = kmalloc(sizeof(*copy), GFP_KERNEL);
1266 	if (!copy)
1267 		return NULL;
1268 
1269 	__drm_atomic_helper_crtc_duplicate_state(crtc, &copy->base);
1270 	copy->clk = state->clk;
1271 	copy->pclk = state->pclk;
1272 	copy->div = state->div;
1273 	copy->planes = state->planes;
1274 
1275 	return &copy->base;
1276 }
1277 
1278 static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc,
1279 					    struct drm_crtc_state *state)
1280 {
1281 	__drm_atomic_helper_crtc_destroy_state(state);
1282 	kfree(state);
1283 }
1284 
1285 #define DEBUGFS_REG32(_name) { .name = #_name, .offset = _name }
1286 
1287 static const struct debugfs_reg32 tegra_dc_regs[] = {
1288 	DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT),
1289 	DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT_CNTRL),
1290 	DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT_ERROR),
1291 	DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT),
1292 	DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT_CNTRL),
1293 	DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT_ERROR),
1294 	DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT),
1295 	DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT_CNTRL),
1296 	DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT_ERROR),
1297 	DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT),
1298 	DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT_CNTRL),
1299 	DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT_ERROR),
1300 	DEBUGFS_REG32(DC_CMD_CONT_SYNCPT_VSYNC),
1301 	DEBUGFS_REG32(DC_CMD_DISPLAY_COMMAND_OPTION0),
1302 	DEBUGFS_REG32(DC_CMD_DISPLAY_COMMAND),
1303 	DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE),
1304 	DEBUGFS_REG32(DC_CMD_DISPLAY_POWER_CONTROL),
1305 	DEBUGFS_REG32(DC_CMD_INT_STATUS),
1306 	DEBUGFS_REG32(DC_CMD_INT_MASK),
1307 	DEBUGFS_REG32(DC_CMD_INT_ENABLE),
1308 	DEBUGFS_REG32(DC_CMD_INT_TYPE),
1309 	DEBUGFS_REG32(DC_CMD_INT_POLARITY),
1310 	DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE1),
1311 	DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE2),
1312 	DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE3),
1313 	DEBUGFS_REG32(DC_CMD_STATE_ACCESS),
1314 	DEBUGFS_REG32(DC_CMD_STATE_CONTROL),
1315 	DEBUGFS_REG32(DC_CMD_DISPLAY_WINDOW_HEADER),
1316 	DEBUGFS_REG32(DC_CMD_REG_ACT_CONTROL),
1317 	DEBUGFS_REG32(DC_COM_CRC_CONTROL),
1318 	DEBUGFS_REG32(DC_COM_CRC_CHECKSUM),
1319 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(0)),
1320 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(1)),
1321 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(2)),
1322 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(3)),
1323 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(0)),
1324 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(1)),
1325 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(2)),
1326 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(3)),
1327 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(0)),
1328 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(1)),
1329 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(2)),
1330 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(3)),
1331 	DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(0)),
1332 	DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(1)),
1333 	DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(2)),
1334 	DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(3)),
1335 	DEBUGFS_REG32(DC_COM_PIN_INPUT_DATA(0)),
1336 	DEBUGFS_REG32(DC_COM_PIN_INPUT_DATA(1)),
1337 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(0)),
1338 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(1)),
1339 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(2)),
1340 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(3)),
1341 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(4)),
1342 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(5)),
1343 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(6)),
1344 	DEBUGFS_REG32(DC_COM_PIN_MISC_CONTROL),
1345 	DEBUGFS_REG32(DC_COM_PIN_PM0_CONTROL),
1346 	DEBUGFS_REG32(DC_COM_PIN_PM0_DUTY_CYCLE),
1347 	DEBUGFS_REG32(DC_COM_PIN_PM1_CONTROL),
1348 	DEBUGFS_REG32(DC_COM_PIN_PM1_DUTY_CYCLE),
1349 	DEBUGFS_REG32(DC_COM_SPI_CONTROL),
1350 	DEBUGFS_REG32(DC_COM_SPI_START_BYTE),
1351 	DEBUGFS_REG32(DC_COM_HSPI_WRITE_DATA_AB),
1352 	DEBUGFS_REG32(DC_COM_HSPI_WRITE_DATA_CD),
1353 	DEBUGFS_REG32(DC_COM_HSPI_CS_DC),
1354 	DEBUGFS_REG32(DC_COM_SCRATCH_REGISTER_A),
1355 	DEBUGFS_REG32(DC_COM_SCRATCH_REGISTER_B),
1356 	DEBUGFS_REG32(DC_COM_GPIO_CTRL),
1357 	DEBUGFS_REG32(DC_COM_GPIO_DEBOUNCE_COUNTER),
1358 	DEBUGFS_REG32(DC_COM_CRC_CHECKSUM_LATCHED),
1359 	DEBUGFS_REG32(DC_DISP_DISP_SIGNAL_OPTIONS0),
1360 	DEBUGFS_REG32(DC_DISP_DISP_SIGNAL_OPTIONS1),
1361 	DEBUGFS_REG32(DC_DISP_DISP_WIN_OPTIONS),
1362 	DEBUGFS_REG32(DC_DISP_DISP_MEM_HIGH_PRIORITY),
1363 	DEBUGFS_REG32(DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER),
1364 	DEBUGFS_REG32(DC_DISP_DISP_TIMING_OPTIONS),
1365 	DEBUGFS_REG32(DC_DISP_REF_TO_SYNC),
1366 	DEBUGFS_REG32(DC_DISP_SYNC_WIDTH),
1367 	DEBUGFS_REG32(DC_DISP_BACK_PORCH),
1368 	DEBUGFS_REG32(DC_DISP_ACTIVE),
1369 	DEBUGFS_REG32(DC_DISP_FRONT_PORCH),
1370 	DEBUGFS_REG32(DC_DISP_H_PULSE0_CONTROL),
1371 	DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_A),
1372 	DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_B),
1373 	DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_C),
1374 	DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_D),
1375 	DEBUGFS_REG32(DC_DISP_H_PULSE1_CONTROL),
1376 	DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_A),
1377 	DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_B),
1378 	DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_C),
1379 	DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_D),
1380 	DEBUGFS_REG32(DC_DISP_H_PULSE2_CONTROL),
1381 	DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_A),
1382 	DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_B),
1383 	DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_C),
1384 	DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_D),
1385 	DEBUGFS_REG32(DC_DISP_V_PULSE0_CONTROL),
1386 	DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_A),
1387 	DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_B),
1388 	DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_C),
1389 	DEBUGFS_REG32(DC_DISP_V_PULSE1_CONTROL),
1390 	DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_A),
1391 	DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_B),
1392 	DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_C),
1393 	DEBUGFS_REG32(DC_DISP_V_PULSE2_CONTROL),
1394 	DEBUGFS_REG32(DC_DISP_V_PULSE2_POSITION_A),
1395 	DEBUGFS_REG32(DC_DISP_V_PULSE3_CONTROL),
1396 	DEBUGFS_REG32(DC_DISP_V_PULSE3_POSITION_A),
1397 	DEBUGFS_REG32(DC_DISP_M0_CONTROL),
1398 	DEBUGFS_REG32(DC_DISP_M1_CONTROL),
1399 	DEBUGFS_REG32(DC_DISP_DI_CONTROL),
1400 	DEBUGFS_REG32(DC_DISP_PP_CONTROL),
1401 	DEBUGFS_REG32(DC_DISP_PP_SELECT_A),
1402 	DEBUGFS_REG32(DC_DISP_PP_SELECT_B),
1403 	DEBUGFS_REG32(DC_DISP_PP_SELECT_C),
1404 	DEBUGFS_REG32(DC_DISP_PP_SELECT_D),
1405 	DEBUGFS_REG32(DC_DISP_DISP_CLOCK_CONTROL),
1406 	DEBUGFS_REG32(DC_DISP_DISP_INTERFACE_CONTROL),
1407 	DEBUGFS_REG32(DC_DISP_DISP_COLOR_CONTROL),
1408 	DEBUGFS_REG32(DC_DISP_SHIFT_CLOCK_OPTIONS),
1409 	DEBUGFS_REG32(DC_DISP_DATA_ENABLE_OPTIONS),
1410 	DEBUGFS_REG32(DC_DISP_SERIAL_INTERFACE_OPTIONS),
1411 	DEBUGFS_REG32(DC_DISP_LCD_SPI_OPTIONS),
1412 	DEBUGFS_REG32(DC_DISP_BORDER_COLOR),
1413 	DEBUGFS_REG32(DC_DISP_COLOR_KEY0_LOWER),
1414 	DEBUGFS_REG32(DC_DISP_COLOR_KEY0_UPPER),
1415 	DEBUGFS_REG32(DC_DISP_COLOR_KEY1_LOWER),
1416 	DEBUGFS_REG32(DC_DISP_COLOR_KEY1_UPPER),
1417 	DEBUGFS_REG32(DC_DISP_CURSOR_FOREGROUND),
1418 	DEBUGFS_REG32(DC_DISP_CURSOR_BACKGROUND),
1419 	DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR),
1420 	DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR_NS),
1421 	DEBUGFS_REG32(DC_DISP_CURSOR_POSITION),
1422 	DEBUGFS_REG32(DC_DISP_CURSOR_POSITION_NS),
1423 	DEBUGFS_REG32(DC_DISP_INIT_SEQ_CONTROL),
1424 	DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_A),
1425 	DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_B),
1426 	DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_C),
1427 	DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_D),
1428 	DEBUGFS_REG32(DC_DISP_DC_MCCIF_FIFOCTRL),
1429 	DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY0A_HYST),
1430 	DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY0B_HYST),
1431 	DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY1A_HYST),
1432 	DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY1B_HYST),
1433 	DEBUGFS_REG32(DC_DISP_DAC_CRT_CTRL),
1434 	DEBUGFS_REG32(DC_DISP_DISP_MISC_CONTROL),
1435 	DEBUGFS_REG32(DC_DISP_SD_CONTROL),
1436 	DEBUGFS_REG32(DC_DISP_SD_CSC_COEFF),
1437 	DEBUGFS_REG32(DC_DISP_SD_LUT(0)),
1438 	DEBUGFS_REG32(DC_DISP_SD_LUT(1)),
1439 	DEBUGFS_REG32(DC_DISP_SD_LUT(2)),
1440 	DEBUGFS_REG32(DC_DISP_SD_LUT(3)),
1441 	DEBUGFS_REG32(DC_DISP_SD_LUT(4)),
1442 	DEBUGFS_REG32(DC_DISP_SD_LUT(5)),
1443 	DEBUGFS_REG32(DC_DISP_SD_LUT(6)),
1444 	DEBUGFS_REG32(DC_DISP_SD_LUT(7)),
1445 	DEBUGFS_REG32(DC_DISP_SD_LUT(8)),
1446 	DEBUGFS_REG32(DC_DISP_SD_FLICKER_CONTROL),
1447 	DEBUGFS_REG32(DC_DISP_DC_PIXEL_COUNT),
1448 	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(0)),
1449 	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(1)),
1450 	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(2)),
1451 	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(3)),
1452 	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(4)),
1453 	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(5)),
1454 	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(6)),
1455 	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(7)),
1456 	DEBUGFS_REG32(DC_DISP_SD_BL_TF(0)),
1457 	DEBUGFS_REG32(DC_DISP_SD_BL_TF(1)),
1458 	DEBUGFS_REG32(DC_DISP_SD_BL_TF(2)),
1459 	DEBUGFS_REG32(DC_DISP_SD_BL_TF(3)),
1460 	DEBUGFS_REG32(DC_DISP_SD_BL_CONTROL),
1461 	DEBUGFS_REG32(DC_DISP_SD_HW_K_VALUES),
1462 	DEBUGFS_REG32(DC_DISP_SD_MAN_K_VALUES),
1463 	DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR_HI),
1464 	DEBUGFS_REG32(DC_DISP_BLEND_CURSOR_CONTROL),
1465 	DEBUGFS_REG32(DC_WIN_WIN_OPTIONS),
1466 	DEBUGFS_REG32(DC_WIN_BYTE_SWAP),
1467 	DEBUGFS_REG32(DC_WIN_BUFFER_CONTROL),
1468 	DEBUGFS_REG32(DC_WIN_COLOR_DEPTH),
1469 	DEBUGFS_REG32(DC_WIN_POSITION),
1470 	DEBUGFS_REG32(DC_WIN_SIZE),
1471 	DEBUGFS_REG32(DC_WIN_PRESCALED_SIZE),
1472 	DEBUGFS_REG32(DC_WIN_H_INITIAL_DDA),
1473 	DEBUGFS_REG32(DC_WIN_V_INITIAL_DDA),
1474 	DEBUGFS_REG32(DC_WIN_DDA_INC),
1475 	DEBUGFS_REG32(DC_WIN_LINE_STRIDE),
1476 	DEBUGFS_REG32(DC_WIN_BUF_STRIDE),
1477 	DEBUGFS_REG32(DC_WIN_UV_BUF_STRIDE),
1478 	DEBUGFS_REG32(DC_WIN_BUFFER_ADDR_MODE),
1479 	DEBUGFS_REG32(DC_WIN_DV_CONTROL),
1480 	DEBUGFS_REG32(DC_WIN_BLEND_NOKEY),
1481 	DEBUGFS_REG32(DC_WIN_BLEND_1WIN),
1482 	DEBUGFS_REG32(DC_WIN_BLEND_2WIN_X),
1483 	DEBUGFS_REG32(DC_WIN_BLEND_2WIN_Y),
1484 	DEBUGFS_REG32(DC_WIN_BLEND_3WIN_XY),
1485 	DEBUGFS_REG32(DC_WIN_HP_FETCH_CONTROL),
1486 	DEBUGFS_REG32(DC_WINBUF_START_ADDR),
1487 	DEBUGFS_REG32(DC_WINBUF_START_ADDR_NS),
1488 	DEBUGFS_REG32(DC_WINBUF_START_ADDR_U),
1489 	DEBUGFS_REG32(DC_WINBUF_START_ADDR_U_NS),
1490 	DEBUGFS_REG32(DC_WINBUF_START_ADDR_V),
1491 	DEBUGFS_REG32(DC_WINBUF_START_ADDR_V_NS),
1492 	DEBUGFS_REG32(DC_WINBUF_ADDR_H_OFFSET),
1493 	DEBUGFS_REG32(DC_WINBUF_ADDR_H_OFFSET_NS),
1494 	DEBUGFS_REG32(DC_WINBUF_ADDR_V_OFFSET),
1495 	DEBUGFS_REG32(DC_WINBUF_ADDR_V_OFFSET_NS),
1496 	DEBUGFS_REG32(DC_WINBUF_UFLOW_STATUS),
1497 	DEBUGFS_REG32(DC_WINBUF_AD_UFLOW_STATUS),
1498 	DEBUGFS_REG32(DC_WINBUF_BD_UFLOW_STATUS),
1499 	DEBUGFS_REG32(DC_WINBUF_CD_UFLOW_STATUS),
1500 };
1501 
1502 static int tegra_dc_show_regs(struct seq_file *s, void *data)
1503 {
1504 	struct drm_info_node *node = s->private;
1505 	struct tegra_dc *dc = node->info_ent->data;
1506 	unsigned int i;
1507 	int err = 0;
1508 
1509 	drm_modeset_lock(&dc->base.mutex, NULL);
1510 
1511 	if (!dc->base.state->active) {
1512 		err = -EBUSY;
1513 		goto unlock;
1514 	}
1515 
1516 	for (i = 0; i < ARRAY_SIZE(tegra_dc_regs); i++) {
1517 		unsigned int offset = tegra_dc_regs[i].offset;
1518 
1519 		seq_printf(s, "%-40s %#05x %08x\n", tegra_dc_regs[i].name,
1520 			   offset, tegra_dc_readl(dc, offset));
1521 	}
1522 
1523 unlock:
1524 	drm_modeset_unlock(&dc->base.mutex);
1525 	return err;
1526 }
1527 
1528 static int tegra_dc_show_crc(struct seq_file *s, void *data)
1529 {
1530 	struct drm_info_node *node = s->private;
1531 	struct tegra_dc *dc = node->info_ent->data;
1532 	int err = 0;
1533 	u32 value;
1534 
1535 	drm_modeset_lock(&dc->base.mutex, NULL);
1536 
1537 	if (!dc->base.state->active) {
1538 		err = -EBUSY;
1539 		goto unlock;
1540 	}
1541 
1542 	value = DC_COM_CRC_CONTROL_ACTIVE_DATA | DC_COM_CRC_CONTROL_ENABLE;
1543 	tegra_dc_writel(dc, value, DC_COM_CRC_CONTROL);
1544 	tegra_dc_commit(dc);
1545 
1546 	drm_crtc_wait_one_vblank(&dc->base);
1547 	drm_crtc_wait_one_vblank(&dc->base);
1548 
1549 	value = tegra_dc_readl(dc, DC_COM_CRC_CHECKSUM);
1550 	seq_printf(s, "%08x\n", value);
1551 
1552 	tegra_dc_writel(dc, 0, DC_COM_CRC_CONTROL);
1553 
1554 unlock:
1555 	drm_modeset_unlock(&dc->base.mutex);
1556 	return err;
1557 }
1558 
1559 static int tegra_dc_show_stats(struct seq_file *s, void *data)
1560 {
1561 	struct drm_info_node *node = s->private;
1562 	struct tegra_dc *dc = node->info_ent->data;
1563 
1564 	seq_printf(s, "frames: %lu\n", dc->stats.frames);
1565 	seq_printf(s, "vblank: %lu\n", dc->stats.vblank);
1566 	seq_printf(s, "underflow: %lu\n", dc->stats.underflow);
1567 	seq_printf(s, "overflow: %lu\n", dc->stats.overflow);
1568 
1569 	return 0;
1570 }
1571 
1572 static struct drm_info_list debugfs_files[] = {
1573 	{ "regs", tegra_dc_show_regs, 0, NULL },
1574 	{ "crc", tegra_dc_show_crc, 0, NULL },
1575 	{ "stats", tegra_dc_show_stats, 0, NULL },
1576 };
1577 
1578 static int tegra_dc_late_register(struct drm_crtc *crtc)
1579 {
1580 	unsigned int i, count = ARRAY_SIZE(debugfs_files);
1581 	struct drm_minor *minor = crtc->dev->primary;
1582 	struct dentry *root;
1583 	struct tegra_dc *dc = to_tegra_dc(crtc);
1584 
1585 #ifdef CONFIG_DEBUG_FS
1586 	root = crtc->debugfs_entry;
1587 #else
1588 	root = NULL;
1589 #endif
1590 
1591 	dc->debugfs_files = kmemdup(debugfs_files, sizeof(debugfs_files),
1592 				    GFP_KERNEL);
1593 	if (!dc->debugfs_files)
1594 		return -ENOMEM;
1595 
1596 	for (i = 0; i < count; i++)
1597 		dc->debugfs_files[i].data = dc;
1598 
1599 	drm_debugfs_create_files(dc->debugfs_files, count, root, minor);
1600 
1601 	return 0;
1602 }
1603 
1604 static void tegra_dc_early_unregister(struct drm_crtc *crtc)
1605 {
1606 	unsigned int count = ARRAY_SIZE(debugfs_files);
1607 	struct drm_minor *minor = crtc->dev->primary;
1608 	struct tegra_dc *dc = to_tegra_dc(crtc);
1609 
1610 	drm_debugfs_remove_files(dc->debugfs_files, count, minor);
1611 	kfree(dc->debugfs_files);
1612 	dc->debugfs_files = NULL;
1613 }
1614 
1615 static u32 tegra_dc_get_vblank_counter(struct drm_crtc *crtc)
1616 {
1617 	struct tegra_dc *dc = to_tegra_dc(crtc);
1618 
1619 	/* XXX vblank syncpoints don't work with nvdisplay yet */
1620 	if (dc->syncpt && !dc->soc->has_nvdisplay)
1621 		return host1x_syncpt_read(dc->syncpt);
1622 
1623 	/* fallback to software emulated VBLANK counter */
1624 	return (u32)drm_crtc_vblank_count(&dc->base);
1625 }
1626 
1627 static int tegra_dc_enable_vblank(struct drm_crtc *crtc)
1628 {
1629 	struct tegra_dc *dc = to_tegra_dc(crtc);
1630 	u32 value;
1631 
1632 	value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
1633 	value |= VBLANK_INT;
1634 	tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1635 
1636 	return 0;
1637 }
1638 
1639 static void tegra_dc_disable_vblank(struct drm_crtc *crtc)
1640 {
1641 	struct tegra_dc *dc = to_tegra_dc(crtc);
1642 	u32 value;
1643 
1644 	value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
1645 	value &= ~VBLANK_INT;
1646 	tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1647 }
1648 
1649 static const struct drm_crtc_funcs tegra_crtc_funcs = {
1650 	.page_flip = drm_atomic_helper_page_flip,
1651 	.set_config = drm_atomic_helper_set_config,
1652 	.destroy = tegra_dc_destroy,
1653 	.reset = tegra_crtc_reset,
1654 	.atomic_duplicate_state = tegra_crtc_atomic_duplicate_state,
1655 	.atomic_destroy_state = tegra_crtc_atomic_destroy_state,
1656 	.late_register = tegra_dc_late_register,
1657 	.early_unregister = tegra_dc_early_unregister,
1658 	.get_vblank_counter = tegra_dc_get_vblank_counter,
1659 	.enable_vblank = tegra_dc_enable_vblank,
1660 	.disable_vblank = tegra_dc_disable_vblank,
1661 };
1662 
1663 static int tegra_dc_set_timings(struct tegra_dc *dc,
1664 				struct drm_display_mode *mode)
1665 {
1666 	unsigned int h_ref_to_sync = 1;
1667 	unsigned int v_ref_to_sync = 1;
1668 	unsigned long value;
1669 
1670 	if (!dc->soc->has_nvdisplay) {
1671 		tegra_dc_writel(dc, 0x0, DC_DISP_DISP_TIMING_OPTIONS);
1672 
1673 		value = (v_ref_to_sync << 16) | h_ref_to_sync;
1674 		tegra_dc_writel(dc, value, DC_DISP_REF_TO_SYNC);
1675 	}
1676 
1677 	value = ((mode->vsync_end - mode->vsync_start) << 16) |
1678 		((mode->hsync_end - mode->hsync_start) <<  0);
1679 	tegra_dc_writel(dc, value, DC_DISP_SYNC_WIDTH);
1680 
1681 	value = ((mode->vtotal - mode->vsync_end) << 16) |
1682 		((mode->htotal - mode->hsync_end) <<  0);
1683 	tegra_dc_writel(dc, value, DC_DISP_BACK_PORCH);
1684 
1685 	value = ((mode->vsync_start - mode->vdisplay) << 16) |
1686 		((mode->hsync_start - mode->hdisplay) <<  0);
1687 	tegra_dc_writel(dc, value, DC_DISP_FRONT_PORCH);
1688 
1689 	value = (mode->vdisplay << 16) | mode->hdisplay;
1690 	tegra_dc_writel(dc, value, DC_DISP_ACTIVE);
1691 
1692 	return 0;
1693 }
1694 
1695 /**
1696  * tegra_dc_state_setup_clock - check clock settings and store them in atomic
1697  *     state
1698  * @dc: display controller
1699  * @crtc_state: CRTC atomic state
1700  * @clk: parent clock for display controller
1701  * @pclk: pixel clock
1702  * @div: shift clock divider
1703  *
1704  * Returns:
1705  * 0 on success or a negative error-code on failure.
1706  */
1707 int tegra_dc_state_setup_clock(struct tegra_dc *dc,
1708 			       struct drm_crtc_state *crtc_state,
1709 			       struct clk *clk, unsigned long pclk,
1710 			       unsigned int div)
1711 {
1712 	struct tegra_dc_state *state = to_dc_state(crtc_state);
1713 
1714 	if (!clk_has_parent(dc->clk, clk))
1715 		return -EINVAL;
1716 
1717 	state->clk = clk;
1718 	state->pclk = pclk;
1719 	state->div = div;
1720 
1721 	return 0;
1722 }
1723 
1724 static void tegra_dc_commit_state(struct tegra_dc *dc,
1725 				  struct tegra_dc_state *state)
1726 {
1727 	u32 value;
1728 	int err;
1729 
1730 	err = clk_set_parent(dc->clk, state->clk);
1731 	if (err < 0)
1732 		dev_err(dc->dev, "failed to set parent clock: %d\n", err);
1733 
1734 	/*
1735 	 * Outputs may not want to change the parent clock rate. This is only
1736 	 * relevant to Tegra20 where only a single display PLL is available.
1737 	 * Since that PLL would typically be used for HDMI, an internal LVDS
1738 	 * panel would need to be driven by some other clock such as PLL_P
1739 	 * which is shared with other peripherals. Changing the clock rate
1740 	 * should therefore be avoided.
1741 	 */
1742 	if (state->pclk > 0) {
1743 		err = clk_set_rate(state->clk, state->pclk);
1744 		if (err < 0)
1745 			dev_err(dc->dev,
1746 				"failed to set clock rate to %lu Hz\n",
1747 				state->pclk);
1748 
1749 		err = clk_set_rate(dc->clk, state->pclk);
1750 		if (err < 0)
1751 			dev_err(dc->dev, "failed to set clock %pC to %lu Hz: %d\n",
1752 				dc->clk, state->pclk, err);
1753 	}
1754 
1755 	DRM_DEBUG_KMS("rate: %lu, div: %u\n", clk_get_rate(dc->clk),
1756 		      state->div);
1757 	DRM_DEBUG_KMS("pclk: %lu\n", state->pclk);
1758 
1759 	if (!dc->soc->has_nvdisplay) {
1760 		value = SHIFT_CLK_DIVIDER(state->div) | PIXEL_CLK_DIVIDER_PCD1;
1761 		tegra_dc_writel(dc, value, DC_DISP_DISP_CLOCK_CONTROL);
1762 	}
1763 }
1764 
1765 static void tegra_dc_stop(struct tegra_dc *dc)
1766 {
1767 	u32 value;
1768 
1769 	/* stop the display controller */
1770 	value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1771 	value &= ~DISP_CTRL_MODE_MASK;
1772 	tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1773 
1774 	tegra_dc_commit(dc);
1775 }
1776 
1777 static bool tegra_dc_idle(struct tegra_dc *dc)
1778 {
1779 	u32 value;
1780 
1781 	value = tegra_dc_readl_active(dc, DC_CMD_DISPLAY_COMMAND);
1782 
1783 	return (value & DISP_CTRL_MODE_MASK) == 0;
1784 }
1785 
1786 static int tegra_dc_wait_idle(struct tegra_dc *dc, unsigned long timeout)
1787 {
1788 	timeout = jiffies + msecs_to_jiffies(timeout);
1789 
1790 	while (time_before(jiffies, timeout)) {
1791 		if (tegra_dc_idle(dc))
1792 			return 0;
1793 
1794 		usleep_range(1000, 2000);
1795 	}
1796 
1797 	dev_dbg(dc->dev, "timeout waiting for DC to become idle\n");
1798 	return -ETIMEDOUT;
1799 }
1800 
1801 static void tegra_crtc_atomic_disable(struct drm_crtc *crtc,
1802 				      struct drm_atomic_state *state)
1803 {
1804 	struct tegra_dc *dc = to_tegra_dc(crtc);
1805 	u32 value;
1806 	int err;
1807 
1808 	if (!tegra_dc_idle(dc)) {
1809 		tegra_dc_stop(dc);
1810 
1811 		/*
1812 		 * Ignore the return value, there isn't anything useful to do
1813 		 * in case this fails.
1814 		 */
1815 		tegra_dc_wait_idle(dc, 100);
1816 	}
1817 
1818 	/*
1819 	 * This should really be part of the RGB encoder driver, but clearing
1820 	 * these bits has the side-effect of stopping the display controller.
1821 	 * When that happens no VBLANK interrupts will be raised. At the same
1822 	 * time the encoder is disabled before the display controller, so the
1823 	 * above code is always going to timeout waiting for the controller
1824 	 * to go idle.
1825 	 *
1826 	 * Given the close coupling between the RGB encoder and the display
1827 	 * controller doing it here is still kind of okay. None of the other
1828 	 * encoder drivers require these bits to be cleared.
1829 	 *
1830 	 * XXX: Perhaps given that the display controller is switched off at
1831 	 * this point anyway maybe clearing these bits isn't even useful for
1832 	 * the RGB encoder?
1833 	 */
1834 	if (dc->rgb) {
1835 		value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
1836 		value &= ~(PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
1837 			   PW4_ENABLE | PM0_ENABLE | PM1_ENABLE);
1838 		tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
1839 	}
1840 
1841 	tegra_dc_stats_reset(&dc->stats);
1842 	drm_crtc_vblank_off(crtc);
1843 
1844 	spin_lock_irq(&crtc->dev->event_lock);
1845 
1846 	if (crtc->state->event) {
1847 		drm_crtc_send_vblank_event(crtc, crtc->state->event);
1848 		crtc->state->event = NULL;
1849 	}
1850 
1851 	spin_unlock_irq(&crtc->dev->event_lock);
1852 
1853 	err = host1x_client_suspend(&dc->client);
1854 	if (err < 0)
1855 		dev_err(dc->dev, "failed to suspend: %d\n", err);
1856 }
1857 
1858 static void tegra_crtc_atomic_enable(struct drm_crtc *crtc,
1859 				     struct drm_atomic_state *state)
1860 {
1861 	struct drm_display_mode *mode = &crtc->state->adjusted_mode;
1862 	struct tegra_dc_state *crtc_state = to_dc_state(crtc->state);
1863 	struct tegra_dc *dc = to_tegra_dc(crtc);
1864 	u32 value;
1865 	int err;
1866 
1867 	err = host1x_client_resume(&dc->client);
1868 	if (err < 0) {
1869 		dev_err(dc->dev, "failed to resume: %d\n", err);
1870 		return;
1871 	}
1872 
1873 	/* initialize display controller */
1874 	if (dc->syncpt) {
1875 		u32 syncpt = host1x_syncpt_id(dc->syncpt), enable;
1876 
1877 		if (dc->soc->has_nvdisplay)
1878 			enable = 1 << 31;
1879 		else
1880 			enable = 1 << 8;
1881 
1882 		value = SYNCPT_CNTRL_NO_STALL;
1883 		tegra_dc_writel(dc, value, DC_CMD_GENERAL_INCR_SYNCPT_CNTRL);
1884 
1885 		value = enable | syncpt;
1886 		tegra_dc_writel(dc, value, DC_CMD_CONT_SYNCPT_VSYNC);
1887 	}
1888 
1889 	if (dc->soc->has_nvdisplay) {
1890 		value = DSC_TO_UF_INT | DSC_BBUF_UF_INT | DSC_RBUF_UF_INT |
1891 			DSC_OBUF_UF_INT;
1892 		tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
1893 
1894 		value = DSC_TO_UF_INT | DSC_BBUF_UF_INT | DSC_RBUF_UF_INT |
1895 			DSC_OBUF_UF_INT | SD3_BUCKET_WALK_DONE_INT |
1896 			HEAD_UF_INT | MSF_INT | REG_TMOUT_INT |
1897 			REGION_CRC_INT | V_PULSE2_INT | V_PULSE3_INT |
1898 			VBLANK_INT | FRAME_END_INT;
1899 		tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
1900 
1901 		value = SD3_BUCKET_WALK_DONE_INT | HEAD_UF_INT | VBLANK_INT |
1902 			FRAME_END_INT;
1903 		tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
1904 
1905 		value = HEAD_UF_INT | REG_TMOUT_INT | FRAME_END_INT;
1906 		tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1907 
1908 		tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
1909 	} else {
1910 		value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1911 			WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1912 		tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
1913 
1914 		value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1915 			WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1916 		tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
1917 
1918 		/* initialize timer */
1919 		value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(0x20) |
1920 			WINDOW_B_THRESHOLD(0x20) | WINDOW_C_THRESHOLD(0x20);
1921 		tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY);
1922 
1923 		value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(1) |
1924 			WINDOW_B_THRESHOLD(1) | WINDOW_C_THRESHOLD(1);
1925 		tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER);
1926 
1927 		value = VBLANK_INT | WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1928 			WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1929 		tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
1930 
1931 		value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1932 			WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1933 		tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1934 	}
1935 
1936 	if (dc->soc->supports_background_color)
1937 		tegra_dc_writel(dc, 0, DC_DISP_BLEND_BACKGROUND_COLOR);
1938 	else
1939 		tegra_dc_writel(dc, 0, DC_DISP_BORDER_COLOR);
1940 
1941 	/* apply PLL and pixel clock changes */
1942 	tegra_dc_commit_state(dc, crtc_state);
1943 
1944 	/* program display mode */
1945 	tegra_dc_set_timings(dc, mode);
1946 
1947 	/* interlacing isn't supported yet, so disable it */
1948 	if (dc->soc->supports_interlacing) {
1949 		value = tegra_dc_readl(dc, DC_DISP_INTERLACE_CONTROL);
1950 		value &= ~INTERLACE_ENABLE;
1951 		tegra_dc_writel(dc, value, DC_DISP_INTERLACE_CONTROL);
1952 	}
1953 
1954 	value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1955 	value &= ~DISP_CTRL_MODE_MASK;
1956 	value |= DISP_CTRL_MODE_C_DISPLAY;
1957 	tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1958 
1959 	if (!dc->soc->has_nvdisplay) {
1960 		value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
1961 		value |= PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
1962 			 PW4_ENABLE | PM0_ENABLE | PM1_ENABLE;
1963 		tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
1964 	}
1965 
1966 	/* enable underflow reporting and display red for missing pixels */
1967 	if (dc->soc->has_nvdisplay) {
1968 		value = UNDERFLOW_MODE_RED | UNDERFLOW_REPORT_ENABLE;
1969 		tegra_dc_writel(dc, value, DC_COM_RG_UNDERFLOW);
1970 	}
1971 
1972 	tegra_dc_commit(dc);
1973 
1974 	drm_crtc_vblank_on(crtc);
1975 }
1976 
1977 static void tegra_crtc_atomic_begin(struct drm_crtc *crtc,
1978 				    struct drm_atomic_state *state)
1979 {
1980 	unsigned long flags;
1981 
1982 	if (crtc->state->event) {
1983 		spin_lock_irqsave(&crtc->dev->event_lock, flags);
1984 
1985 		if (drm_crtc_vblank_get(crtc) != 0)
1986 			drm_crtc_send_vblank_event(crtc, crtc->state->event);
1987 		else
1988 			drm_crtc_arm_vblank_event(crtc, crtc->state->event);
1989 
1990 		spin_unlock_irqrestore(&crtc->dev->event_lock, flags);
1991 
1992 		crtc->state->event = NULL;
1993 	}
1994 }
1995 
1996 static void tegra_crtc_atomic_flush(struct drm_crtc *crtc,
1997 				    struct drm_atomic_state *state)
1998 {
1999 	struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
2000 									  crtc);
2001 	struct tegra_dc_state *dc_state = to_dc_state(crtc_state);
2002 	struct tegra_dc *dc = to_tegra_dc(crtc);
2003 	u32 value;
2004 
2005 	value = dc_state->planes << 8 | GENERAL_UPDATE;
2006 	tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
2007 	value = tegra_dc_readl(dc, DC_CMD_STATE_CONTROL);
2008 
2009 	value = dc_state->planes | GENERAL_ACT_REQ;
2010 	tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
2011 	value = tegra_dc_readl(dc, DC_CMD_STATE_CONTROL);
2012 }
2013 
2014 static const struct drm_crtc_helper_funcs tegra_crtc_helper_funcs = {
2015 	.atomic_begin = tegra_crtc_atomic_begin,
2016 	.atomic_flush = tegra_crtc_atomic_flush,
2017 	.atomic_enable = tegra_crtc_atomic_enable,
2018 	.atomic_disable = tegra_crtc_atomic_disable,
2019 };
2020 
2021 static irqreturn_t tegra_dc_irq(int irq, void *data)
2022 {
2023 	struct tegra_dc *dc = data;
2024 	unsigned long status;
2025 
2026 	status = tegra_dc_readl(dc, DC_CMD_INT_STATUS);
2027 	tegra_dc_writel(dc, status, DC_CMD_INT_STATUS);
2028 
2029 	if (status & FRAME_END_INT) {
2030 		/*
2031 		dev_dbg(dc->dev, "%s(): frame end\n", __func__);
2032 		*/
2033 		dc->stats.frames++;
2034 	}
2035 
2036 	if (status & VBLANK_INT) {
2037 		/*
2038 		dev_dbg(dc->dev, "%s(): vertical blank\n", __func__);
2039 		*/
2040 		drm_crtc_handle_vblank(&dc->base);
2041 		dc->stats.vblank++;
2042 	}
2043 
2044 	if (status & (WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT)) {
2045 		/*
2046 		dev_dbg(dc->dev, "%s(): underflow\n", __func__);
2047 		*/
2048 		dc->stats.underflow++;
2049 	}
2050 
2051 	if (status & (WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT)) {
2052 		/*
2053 		dev_dbg(dc->dev, "%s(): overflow\n", __func__);
2054 		*/
2055 		dc->stats.overflow++;
2056 	}
2057 
2058 	if (status & HEAD_UF_INT) {
2059 		dev_dbg_ratelimited(dc->dev, "%s(): head underflow\n", __func__);
2060 		dc->stats.underflow++;
2061 	}
2062 
2063 	return IRQ_HANDLED;
2064 }
2065 
2066 static bool tegra_dc_has_window_groups(struct tegra_dc *dc)
2067 {
2068 	unsigned int i;
2069 
2070 	if (!dc->soc->wgrps)
2071 		return true;
2072 
2073 	for (i = 0; i < dc->soc->num_wgrps; i++) {
2074 		const struct tegra_windowgroup_soc *wgrp = &dc->soc->wgrps[i];
2075 
2076 		if (wgrp->dc == dc->pipe && wgrp->num_windows > 0)
2077 			return true;
2078 	}
2079 
2080 	return false;
2081 }
2082 
2083 static int tegra_dc_early_init(struct host1x_client *client)
2084 {
2085 	struct drm_device *drm = dev_get_drvdata(client->host);
2086 	struct tegra_drm *tegra = drm->dev_private;
2087 
2088 	tegra->num_crtcs++;
2089 
2090 	return 0;
2091 }
2092 
2093 static int tegra_dc_init(struct host1x_client *client)
2094 {
2095 	struct drm_device *drm = dev_get_drvdata(client->host);
2096 	unsigned long flags = HOST1X_SYNCPT_CLIENT_MANAGED;
2097 	struct tegra_dc *dc = host1x_client_to_dc(client);
2098 	struct tegra_drm *tegra = drm->dev_private;
2099 	struct drm_plane *primary = NULL;
2100 	struct drm_plane *cursor = NULL;
2101 	int err;
2102 
2103 	/*
2104 	 * DC has been reset by now, so VBLANK syncpoint can be released
2105 	 * for general use.
2106 	 */
2107 	host1x_syncpt_release_vblank_reservation(client, 26 + dc->pipe);
2108 
2109 	/*
2110 	 * XXX do not register DCs with no window groups because we cannot
2111 	 * assign a primary plane to them, which in turn will cause KMS to
2112 	 * crash.
2113 	 */
2114 	if (!tegra_dc_has_window_groups(dc))
2115 		return 0;
2116 
2117 	/*
2118 	 * Set the display hub as the host1x client parent for the display
2119 	 * controller. This is needed for the runtime reference counting that
2120 	 * ensures the display hub is always powered when any of the display
2121 	 * controllers are.
2122 	 */
2123 	if (dc->soc->has_nvdisplay)
2124 		client->parent = &tegra->hub->client;
2125 
2126 	dc->syncpt = host1x_syncpt_request(client, flags);
2127 	if (!dc->syncpt)
2128 		dev_warn(dc->dev, "failed to allocate syncpoint\n");
2129 
2130 	err = host1x_client_iommu_attach(client);
2131 	if (err < 0 && err != -ENODEV) {
2132 		dev_err(client->dev, "failed to attach to domain: %d\n", err);
2133 		return err;
2134 	}
2135 
2136 	if (dc->soc->wgrps)
2137 		primary = tegra_dc_add_shared_planes(drm, dc);
2138 	else
2139 		primary = tegra_dc_add_planes(drm, dc);
2140 
2141 	if (IS_ERR(primary)) {
2142 		err = PTR_ERR(primary);
2143 		goto cleanup;
2144 	}
2145 
2146 	if (dc->soc->supports_cursor) {
2147 		cursor = tegra_dc_cursor_plane_create(drm, dc);
2148 		if (IS_ERR(cursor)) {
2149 			err = PTR_ERR(cursor);
2150 			goto cleanup;
2151 		}
2152 	} else {
2153 		/* dedicate one overlay to mouse cursor */
2154 		cursor = tegra_dc_overlay_plane_create(drm, dc, 2, true);
2155 		if (IS_ERR(cursor)) {
2156 			err = PTR_ERR(cursor);
2157 			goto cleanup;
2158 		}
2159 	}
2160 
2161 	err = drm_crtc_init_with_planes(drm, &dc->base, primary, cursor,
2162 					&tegra_crtc_funcs, NULL);
2163 	if (err < 0)
2164 		goto cleanup;
2165 
2166 	drm_crtc_helper_add(&dc->base, &tegra_crtc_helper_funcs);
2167 
2168 	/*
2169 	 * Keep track of the minimum pitch alignment across all display
2170 	 * controllers.
2171 	 */
2172 	if (dc->soc->pitch_align > tegra->pitch_align)
2173 		tegra->pitch_align = dc->soc->pitch_align;
2174 
2175 	/* track maximum resolution */
2176 	if (dc->soc->has_nvdisplay)
2177 		drm->mode_config.max_width = drm->mode_config.max_height = 16384;
2178 	else
2179 		drm->mode_config.max_width = drm->mode_config.max_height = 4096;
2180 
2181 	err = tegra_dc_rgb_init(drm, dc);
2182 	if (err < 0 && err != -ENODEV) {
2183 		dev_err(dc->dev, "failed to initialize RGB output: %d\n", err);
2184 		goto cleanup;
2185 	}
2186 
2187 	err = devm_request_irq(dc->dev, dc->irq, tegra_dc_irq, 0,
2188 			       dev_name(dc->dev), dc);
2189 	if (err < 0) {
2190 		dev_err(dc->dev, "failed to request IRQ#%u: %d\n", dc->irq,
2191 			err);
2192 		goto cleanup;
2193 	}
2194 
2195 	/*
2196 	 * Inherit the DMA parameters (such as maximum segment size) from the
2197 	 * parent host1x device.
2198 	 */
2199 	client->dev->dma_parms = client->host->dma_parms;
2200 
2201 	return 0;
2202 
2203 cleanup:
2204 	if (!IS_ERR_OR_NULL(cursor))
2205 		drm_plane_cleanup(cursor);
2206 
2207 	if (!IS_ERR(primary))
2208 		drm_plane_cleanup(primary);
2209 
2210 	host1x_client_iommu_detach(client);
2211 	host1x_syncpt_put(dc->syncpt);
2212 
2213 	return err;
2214 }
2215 
2216 static int tegra_dc_exit(struct host1x_client *client)
2217 {
2218 	struct tegra_dc *dc = host1x_client_to_dc(client);
2219 	int err;
2220 
2221 	if (!tegra_dc_has_window_groups(dc))
2222 		return 0;
2223 
2224 	/* avoid a dangling pointer just in case this disappears */
2225 	client->dev->dma_parms = NULL;
2226 
2227 	devm_free_irq(dc->dev, dc->irq, dc);
2228 
2229 	err = tegra_dc_rgb_exit(dc);
2230 	if (err) {
2231 		dev_err(dc->dev, "failed to shutdown RGB output: %d\n", err);
2232 		return err;
2233 	}
2234 
2235 	host1x_client_iommu_detach(client);
2236 	host1x_syncpt_put(dc->syncpt);
2237 
2238 	return 0;
2239 }
2240 
2241 static int tegra_dc_late_exit(struct host1x_client *client)
2242 {
2243 	struct drm_device *drm = dev_get_drvdata(client->host);
2244 	struct tegra_drm *tegra = drm->dev_private;
2245 
2246 	tegra->num_crtcs--;
2247 
2248 	return 0;
2249 }
2250 
2251 static int tegra_dc_runtime_suspend(struct host1x_client *client)
2252 {
2253 	struct tegra_dc *dc = host1x_client_to_dc(client);
2254 	struct device *dev = client->dev;
2255 	int err;
2256 
2257 	err = reset_control_assert(dc->rst);
2258 	if (err < 0) {
2259 		dev_err(dev, "failed to assert reset: %d\n", err);
2260 		return err;
2261 	}
2262 
2263 	if (dc->soc->has_powergate)
2264 		tegra_powergate_power_off(dc->powergate);
2265 
2266 	clk_disable_unprepare(dc->clk);
2267 	pm_runtime_put_sync(dev);
2268 
2269 	return 0;
2270 }
2271 
2272 static int tegra_dc_runtime_resume(struct host1x_client *client)
2273 {
2274 	struct tegra_dc *dc = host1x_client_to_dc(client);
2275 	struct device *dev = client->dev;
2276 	int err;
2277 
2278 	err = pm_runtime_resume_and_get(dev);
2279 	if (err < 0) {
2280 		dev_err(dev, "failed to get runtime PM: %d\n", err);
2281 		return err;
2282 	}
2283 
2284 	if (dc->soc->has_powergate) {
2285 		err = tegra_powergate_sequence_power_up(dc->powergate, dc->clk,
2286 							dc->rst);
2287 		if (err < 0) {
2288 			dev_err(dev, "failed to power partition: %d\n", err);
2289 			goto put_rpm;
2290 		}
2291 	} else {
2292 		err = clk_prepare_enable(dc->clk);
2293 		if (err < 0) {
2294 			dev_err(dev, "failed to enable clock: %d\n", err);
2295 			goto put_rpm;
2296 		}
2297 
2298 		err = reset_control_deassert(dc->rst);
2299 		if (err < 0) {
2300 			dev_err(dev, "failed to deassert reset: %d\n", err);
2301 			goto disable_clk;
2302 		}
2303 	}
2304 
2305 	return 0;
2306 
2307 disable_clk:
2308 	clk_disable_unprepare(dc->clk);
2309 put_rpm:
2310 	pm_runtime_put_sync(dev);
2311 	return err;
2312 }
2313 
2314 static const struct host1x_client_ops dc_client_ops = {
2315 	.early_init = tegra_dc_early_init,
2316 	.init = tegra_dc_init,
2317 	.exit = tegra_dc_exit,
2318 	.late_exit = tegra_dc_late_exit,
2319 	.suspend = tegra_dc_runtime_suspend,
2320 	.resume = tegra_dc_runtime_resume,
2321 };
2322 
2323 static const struct tegra_dc_soc_info tegra20_dc_soc_info = {
2324 	.supports_background_color = false,
2325 	.supports_interlacing = false,
2326 	.supports_cursor = false,
2327 	.supports_block_linear = false,
2328 	.supports_sector_layout = false,
2329 	.has_legacy_blending = true,
2330 	.pitch_align = 8,
2331 	.has_powergate = false,
2332 	.coupled_pm = true,
2333 	.has_nvdisplay = false,
2334 	.num_primary_formats = ARRAY_SIZE(tegra20_primary_formats),
2335 	.primary_formats = tegra20_primary_formats,
2336 	.num_overlay_formats = ARRAY_SIZE(tegra20_overlay_formats),
2337 	.overlay_formats = tegra20_overlay_formats,
2338 	.modifiers = tegra20_modifiers,
2339 	.has_win_a_without_filters = true,
2340 	.has_win_c_without_vert_filter = true,
2341 };
2342 
2343 static const struct tegra_dc_soc_info tegra30_dc_soc_info = {
2344 	.supports_background_color = false,
2345 	.supports_interlacing = false,
2346 	.supports_cursor = false,
2347 	.supports_block_linear = false,
2348 	.supports_sector_layout = false,
2349 	.has_legacy_blending = true,
2350 	.pitch_align = 8,
2351 	.has_powergate = false,
2352 	.coupled_pm = false,
2353 	.has_nvdisplay = false,
2354 	.num_primary_formats = ARRAY_SIZE(tegra20_primary_formats),
2355 	.primary_formats = tegra20_primary_formats,
2356 	.num_overlay_formats = ARRAY_SIZE(tegra20_overlay_formats),
2357 	.overlay_formats = tegra20_overlay_formats,
2358 	.modifiers = tegra20_modifiers,
2359 	.has_win_a_without_filters = false,
2360 	.has_win_c_without_vert_filter = false,
2361 };
2362 
2363 static const struct tegra_dc_soc_info tegra114_dc_soc_info = {
2364 	.supports_background_color = false,
2365 	.supports_interlacing = false,
2366 	.supports_cursor = false,
2367 	.supports_block_linear = false,
2368 	.supports_sector_layout = false,
2369 	.has_legacy_blending = true,
2370 	.pitch_align = 64,
2371 	.has_powergate = true,
2372 	.coupled_pm = false,
2373 	.has_nvdisplay = false,
2374 	.num_primary_formats = ARRAY_SIZE(tegra114_primary_formats),
2375 	.primary_formats = tegra114_primary_formats,
2376 	.num_overlay_formats = ARRAY_SIZE(tegra114_overlay_formats),
2377 	.overlay_formats = tegra114_overlay_formats,
2378 	.modifiers = tegra20_modifiers,
2379 	.has_win_a_without_filters = false,
2380 	.has_win_c_without_vert_filter = false,
2381 };
2382 
2383 static const struct tegra_dc_soc_info tegra124_dc_soc_info = {
2384 	.supports_background_color = true,
2385 	.supports_interlacing = true,
2386 	.supports_cursor = true,
2387 	.supports_block_linear = true,
2388 	.supports_sector_layout = false,
2389 	.has_legacy_blending = false,
2390 	.pitch_align = 64,
2391 	.has_powergate = true,
2392 	.coupled_pm = false,
2393 	.has_nvdisplay = false,
2394 	.num_primary_formats = ARRAY_SIZE(tegra124_primary_formats),
2395 	.primary_formats = tegra124_primary_formats,
2396 	.num_overlay_formats = ARRAY_SIZE(tegra124_overlay_formats),
2397 	.overlay_formats = tegra124_overlay_formats,
2398 	.modifiers = tegra124_modifiers,
2399 	.has_win_a_without_filters = false,
2400 	.has_win_c_without_vert_filter = false,
2401 };
2402 
2403 static const struct tegra_dc_soc_info tegra210_dc_soc_info = {
2404 	.supports_background_color = true,
2405 	.supports_interlacing = true,
2406 	.supports_cursor = true,
2407 	.supports_block_linear = true,
2408 	.supports_sector_layout = false,
2409 	.has_legacy_blending = false,
2410 	.pitch_align = 64,
2411 	.has_powergate = true,
2412 	.coupled_pm = false,
2413 	.has_nvdisplay = false,
2414 	.num_primary_formats = ARRAY_SIZE(tegra114_primary_formats),
2415 	.primary_formats = tegra114_primary_formats,
2416 	.num_overlay_formats = ARRAY_SIZE(tegra114_overlay_formats),
2417 	.overlay_formats = tegra114_overlay_formats,
2418 	.modifiers = tegra124_modifiers,
2419 	.has_win_a_without_filters = false,
2420 	.has_win_c_without_vert_filter = false,
2421 };
2422 
2423 static const struct tegra_windowgroup_soc tegra186_dc_wgrps[] = {
2424 	{
2425 		.index = 0,
2426 		.dc = 0,
2427 		.windows = (const unsigned int[]) { 0 },
2428 		.num_windows = 1,
2429 	}, {
2430 		.index = 1,
2431 		.dc = 1,
2432 		.windows = (const unsigned int[]) { 1 },
2433 		.num_windows = 1,
2434 	}, {
2435 		.index = 2,
2436 		.dc = 1,
2437 		.windows = (const unsigned int[]) { 2 },
2438 		.num_windows = 1,
2439 	}, {
2440 		.index = 3,
2441 		.dc = 2,
2442 		.windows = (const unsigned int[]) { 3 },
2443 		.num_windows = 1,
2444 	}, {
2445 		.index = 4,
2446 		.dc = 2,
2447 		.windows = (const unsigned int[]) { 4 },
2448 		.num_windows = 1,
2449 	}, {
2450 		.index = 5,
2451 		.dc = 2,
2452 		.windows = (const unsigned int[]) { 5 },
2453 		.num_windows = 1,
2454 	},
2455 };
2456 
2457 static const struct tegra_dc_soc_info tegra186_dc_soc_info = {
2458 	.supports_background_color = true,
2459 	.supports_interlacing = true,
2460 	.supports_cursor = true,
2461 	.supports_block_linear = true,
2462 	.supports_sector_layout = false,
2463 	.has_legacy_blending = false,
2464 	.pitch_align = 64,
2465 	.has_powergate = false,
2466 	.coupled_pm = false,
2467 	.has_nvdisplay = true,
2468 	.wgrps = tegra186_dc_wgrps,
2469 	.num_wgrps = ARRAY_SIZE(tegra186_dc_wgrps),
2470 };
2471 
2472 static const struct tegra_windowgroup_soc tegra194_dc_wgrps[] = {
2473 	{
2474 		.index = 0,
2475 		.dc = 0,
2476 		.windows = (const unsigned int[]) { 0 },
2477 		.num_windows = 1,
2478 	}, {
2479 		.index = 1,
2480 		.dc = 1,
2481 		.windows = (const unsigned int[]) { 1 },
2482 		.num_windows = 1,
2483 	}, {
2484 		.index = 2,
2485 		.dc = 1,
2486 		.windows = (const unsigned int[]) { 2 },
2487 		.num_windows = 1,
2488 	}, {
2489 		.index = 3,
2490 		.dc = 2,
2491 		.windows = (const unsigned int[]) { 3 },
2492 		.num_windows = 1,
2493 	}, {
2494 		.index = 4,
2495 		.dc = 2,
2496 		.windows = (const unsigned int[]) { 4 },
2497 		.num_windows = 1,
2498 	}, {
2499 		.index = 5,
2500 		.dc = 2,
2501 		.windows = (const unsigned int[]) { 5 },
2502 		.num_windows = 1,
2503 	},
2504 };
2505 
2506 static const struct tegra_dc_soc_info tegra194_dc_soc_info = {
2507 	.supports_background_color = true,
2508 	.supports_interlacing = true,
2509 	.supports_cursor = true,
2510 	.supports_block_linear = true,
2511 	.supports_sector_layout = true,
2512 	.has_legacy_blending = false,
2513 	.pitch_align = 64,
2514 	.has_powergate = false,
2515 	.coupled_pm = false,
2516 	.has_nvdisplay = true,
2517 	.wgrps = tegra194_dc_wgrps,
2518 	.num_wgrps = ARRAY_SIZE(tegra194_dc_wgrps),
2519 };
2520 
2521 static const struct of_device_id tegra_dc_of_match[] = {
2522 	{
2523 		.compatible = "nvidia,tegra194-dc",
2524 		.data = &tegra194_dc_soc_info,
2525 	}, {
2526 		.compatible = "nvidia,tegra186-dc",
2527 		.data = &tegra186_dc_soc_info,
2528 	}, {
2529 		.compatible = "nvidia,tegra210-dc",
2530 		.data = &tegra210_dc_soc_info,
2531 	}, {
2532 		.compatible = "nvidia,tegra124-dc",
2533 		.data = &tegra124_dc_soc_info,
2534 	}, {
2535 		.compatible = "nvidia,tegra114-dc",
2536 		.data = &tegra114_dc_soc_info,
2537 	}, {
2538 		.compatible = "nvidia,tegra30-dc",
2539 		.data = &tegra30_dc_soc_info,
2540 	}, {
2541 		.compatible = "nvidia,tegra20-dc",
2542 		.data = &tegra20_dc_soc_info,
2543 	}, {
2544 		/* sentinel */
2545 	}
2546 };
2547 MODULE_DEVICE_TABLE(of, tegra_dc_of_match);
2548 
2549 static int tegra_dc_parse_dt(struct tegra_dc *dc)
2550 {
2551 	struct device_node *np;
2552 	u32 value = 0;
2553 	int err;
2554 
2555 	err = of_property_read_u32(dc->dev->of_node, "nvidia,head", &value);
2556 	if (err < 0) {
2557 		dev_err(dc->dev, "missing \"nvidia,head\" property\n");
2558 
2559 		/*
2560 		 * If the nvidia,head property isn't present, try to find the
2561 		 * correct head number by looking up the position of this
2562 		 * display controller's node within the device tree. Assuming
2563 		 * that the nodes are ordered properly in the DTS file and
2564 		 * that the translation into a flattened device tree blob
2565 		 * preserves that ordering this will actually yield the right
2566 		 * head number.
2567 		 *
2568 		 * If those assumptions don't hold, this will still work for
2569 		 * cases where only a single display controller is used.
2570 		 */
2571 		for_each_matching_node(np, tegra_dc_of_match) {
2572 			if (np == dc->dev->of_node) {
2573 				of_node_put(np);
2574 				break;
2575 			}
2576 
2577 			value++;
2578 		}
2579 	}
2580 
2581 	dc->pipe = value;
2582 
2583 	return 0;
2584 }
2585 
2586 static int tegra_dc_match_by_pipe(struct device *dev, const void *data)
2587 {
2588 	struct tegra_dc *dc = dev_get_drvdata(dev);
2589 	unsigned int pipe = (unsigned long)(void *)data;
2590 
2591 	return dc->pipe == pipe;
2592 }
2593 
2594 static int tegra_dc_couple(struct tegra_dc *dc)
2595 {
2596 	/*
2597 	 * On Tegra20, DC1 requires DC0 to be taken out of reset in order to
2598 	 * be enabled, otherwise CPU hangs on writing to CMD_DISPLAY_COMMAND /
2599 	 * POWER_CONTROL registers during CRTC enabling.
2600 	 */
2601 	if (dc->soc->coupled_pm && dc->pipe == 1) {
2602 		struct device *companion;
2603 		struct tegra_dc *parent;
2604 
2605 		companion = driver_find_device(dc->dev->driver, NULL, (const void *)0,
2606 					       tegra_dc_match_by_pipe);
2607 		if (!companion)
2608 			return -EPROBE_DEFER;
2609 
2610 		parent = dev_get_drvdata(companion);
2611 		dc->client.parent = &parent->client;
2612 
2613 		dev_dbg(dc->dev, "coupled to %s\n", dev_name(companion));
2614 	}
2615 
2616 	return 0;
2617 }
2618 
2619 static int tegra_dc_probe(struct platform_device *pdev)
2620 {
2621 	u64 dma_mask = dma_get_mask(pdev->dev.parent);
2622 	struct tegra_dc *dc;
2623 	int err;
2624 
2625 	err = dma_coerce_mask_and_coherent(&pdev->dev, dma_mask);
2626 	if (err < 0) {
2627 		dev_err(&pdev->dev, "failed to set DMA mask: %d\n", err);
2628 		return err;
2629 	}
2630 
2631 	dc = devm_kzalloc(&pdev->dev, sizeof(*dc), GFP_KERNEL);
2632 	if (!dc)
2633 		return -ENOMEM;
2634 
2635 	dc->soc = of_device_get_match_data(&pdev->dev);
2636 
2637 	INIT_LIST_HEAD(&dc->list);
2638 	dc->dev = &pdev->dev;
2639 
2640 	err = tegra_dc_parse_dt(dc);
2641 	if (err < 0)
2642 		return err;
2643 
2644 	err = tegra_dc_couple(dc);
2645 	if (err < 0)
2646 		return err;
2647 
2648 	dc->clk = devm_clk_get(&pdev->dev, NULL);
2649 	if (IS_ERR(dc->clk)) {
2650 		dev_err(&pdev->dev, "failed to get clock\n");
2651 		return PTR_ERR(dc->clk);
2652 	}
2653 
2654 	dc->rst = devm_reset_control_get(&pdev->dev, "dc");
2655 	if (IS_ERR(dc->rst)) {
2656 		dev_err(&pdev->dev, "failed to get reset\n");
2657 		return PTR_ERR(dc->rst);
2658 	}
2659 
2660 	/* assert reset and disable clock */
2661 	err = clk_prepare_enable(dc->clk);
2662 	if (err < 0)
2663 		return err;
2664 
2665 	usleep_range(2000, 4000);
2666 
2667 	err = reset_control_assert(dc->rst);
2668 	if (err < 0)
2669 		return err;
2670 
2671 	usleep_range(2000, 4000);
2672 
2673 	clk_disable_unprepare(dc->clk);
2674 
2675 	if (dc->soc->has_powergate) {
2676 		if (dc->pipe == 0)
2677 			dc->powergate = TEGRA_POWERGATE_DIS;
2678 		else
2679 			dc->powergate = TEGRA_POWERGATE_DISB;
2680 
2681 		tegra_powergate_power_off(dc->powergate);
2682 	}
2683 
2684 	dc->regs = devm_platform_ioremap_resource(pdev, 0);
2685 	if (IS_ERR(dc->regs))
2686 		return PTR_ERR(dc->regs);
2687 
2688 	dc->irq = platform_get_irq(pdev, 0);
2689 	if (dc->irq < 0)
2690 		return -ENXIO;
2691 
2692 	err = tegra_dc_rgb_probe(dc);
2693 	if (err < 0 && err != -ENODEV) {
2694 		const char *level = KERN_ERR;
2695 
2696 		if (err == -EPROBE_DEFER)
2697 			level = KERN_DEBUG;
2698 
2699 		dev_printk(level, dc->dev, "failed to probe RGB output: %d\n",
2700 			   err);
2701 		return err;
2702 	}
2703 
2704 	platform_set_drvdata(pdev, dc);
2705 	pm_runtime_enable(&pdev->dev);
2706 
2707 	INIT_LIST_HEAD(&dc->client.list);
2708 	dc->client.ops = &dc_client_ops;
2709 	dc->client.dev = &pdev->dev;
2710 
2711 	err = host1x_client_register(&dc->client);
2712 	if (err < 0) {
2713 		dev_err(&pdev->dev, "failed to register host1x client: %d\n",
2714 			err);
2715 		goto disable_pm;
2716 	}
2717 
2718 	return 0;
2719 
2720 disable_pm:
2721 	pm_runtime_disable(&pdev->dev);
2722 	tegra_dc_rgb_remove(dc);
2723 
2724 	return err;
2725 }
2726 
2727 static int tegra_dc_remove(struct platform_device *pdev)
2728 {
2729 	struct tegra_dc *dc = platform_get_drvdata(pdev);
2730 	int err;
2731 
2732 	err = host1x_client_unregister(&dc->client);
2733 	if (err < 0) {
2734 		dev_err(&pdev->dev, "failed to unregister host1x client: %d\n",
2735 			err);
2736 		return err;
2737 	}
2738 
2739 	err = tegra_dc_rgb_remove(dc);
2740 	if (err < 0) {
2741 		dev_err(&pdev->dev, "failed to remove RGB output: %d\n", err);
2742 		return err;
2743 	}
2744 
2745 	pm_runtime_disable(&pdev->dev);
2746 
2747 	return 0;
2748 }
2749 
2750 struct platform_driver tegra_dc_driver = {
2751 	.driver = {
2752 		.name = "tegra-dc",
2753 		.of_match_table = tegra_dc_of_match,
2754 	},
2755 	.probe = tegra_dc_probe,
2756 	.remove = tegra_dc_remove,
2757 };
2758