1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2012 Avionic Design GmbH 4 * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved. 5 */ 6 7 #include <linux/clk.h> 8 #include <linux/debugfs.h> 9 #include <linux/delay.h> 10 #include <linux/iommu.h> 11 #include <linux/interconnect.h> 12 #include <linux/module.h> 13 #include <linux/of_device.h> 14 #include <linux/pm_runtime.h> 15 #include <linux/reset.h> 16 17 #include <soc/tegra/pmc.h> 18 19 #include <drm/drm_atomic.h> 20 #include <drm/drm_atomic_helper.h> 21 #include <drm/drm_debugfs.h> 22 #include <drm/drm_fourcc.h> 23 #include <drm/drm_plane_helper.h> 24 #include <drm/drm_vblank.h> 25 26 #include "dc.h" 27 #include "drm.h" 28 #include "gem.h" 29 #include "hub.h" 30 #include "plane.h" 31 32 static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc, 33 struct drm_crtc_state *state); 34 35 static void tegra_dc_stats_reset(struct tegra_dc_stats *stats) 36 { 37 stats->frames = 0; 38 stats->vblank = 0; 39 stats->underflow = 0; 40 stats->overflow = 0; 41 } 42 43 /* Reads the active copy of a register. */ 44 static u32 tegra_dc_readl_active(struct tegra_dc *dc, unsigned long offset) 45 { 46 u32 value; 47 48 tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS); 49 value = tegra_dc_readl(dc, offset); 50 tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS); 51 52 return value; 53 } 54 55 static inline unsigned int tegra_plane_offset(struct tegra_plane *plane, 56 unsigned int offset) 57 { 58 if (offset >= 0x500 && offset <= 0x638) { 59 offset = 0x000 + (offset - 0x500); 60 return plane->offset + offset; 61 } 62 63 if (offset >= 0x700 && offset <= 0x719) { 64 offset = 0x180 + (offset - 0x700); 65 return plane->offset + offset; 66 } 67 68 if (offset >= 0x800 && offset <= 0x839) { 69 offset = 0x1c0 + (offset - 0x800); 70 return plane->offset + offset; 71 } 72 73 dev_WARN(plane->dc->dev, "invalid offset: %x\n", offset); 74 75 return plane->offset + offset; 76 } 77 78 static inline u32 tegra_plane_readl(struct tegra_plane *plane, 79 unsigned int offset) 80 { 81 return tegra_dc_readl(plane->dc, tegra_plane_offset(plane, offset)); 82 } 83 84 static inline void tegra_plane_writel(struct tegra_plane *plane, u32 value, 85 unsigned int offset) 86 { 87 tegra_dc_writel(plane->dc, value, tegra_plane_offset(plane, offset)); 88 } 89 90 bool tegra_dc_has_output(struct tegra_dc *dc, struct device *dev) 91 { 92 struct device_node *np = dc->dev->of_node; 93 struct of_phandle_iterator it; 94 int err; 95 96 of_for_each_phandle(&it, err, np, "nvidia,outputs", NULL, 0) 97 if (it.node == dev->of_node) 98 return true; 99 100 return false; 101 } 102 103 /* 104 * Double-buffered registers have two copies: ASSEMBLY and ACTIVE. When the 105 * *_ACT_REQ bits are set the ASSEMBLY copy is latched into the ACTIVE copy. 106 * Latching happens mmediately if the display controller is in STOP mode or 107 * on the next frame boundary otherwise. 108 * 109 * Triple-buffered registers have three copies: ASSEMBLY, ARM and ACTIVE. The 110 * ASSEMBLY copy is latched into the ARM copy immediately after *_UPDATE bits 111 * are written. When the *_ACT_REQ bits are written, the ARM copy is latched 112 * into the ACTIVE copy, either immediately if the display controller is in 113 * STOP mode, or at the next frame boundary otherwise. 114 */ 115 void tegra_dc_commit(struct tegra_dc *dc) 116 { 117 tegra_dc_writel(dc, GENERAL_ACT_REQ << 8, DC_CMD_STATE_CONTROL); 118 tegra_dc_writel(dc, GENERAL_ACT_REQ, DC_CMD_STATE_CONTROL); 119 } 120 121 static inline u32 compute_dda_inc(unsigned int in, unsigned int out, bool v, 122 unsigned int bpp) 123 { 124 fixed20_12 outf = dfixed_init(out); 125 fixed20_12 inf = dfixed_init(in); 126 u32 dda_inc; 127 int max; 128 129 if (v) 130 max = 15; 131 else { 132 switch (bpp) { 133 case 2: 134 max = 8; 135 break; 136 137 default: 138 WARN_ON_ONCE(1); 139 fallthrough; 140 case 4: 141 max = 4; 142 break; 143 } 144 } 145 146 outf.full = max_t(u32, outf.full - dfixed_const(1), dfixed_const(1)); 147 inf.full -= dfixed_const(1); 148 149 dda_inc = dfixed_div(inf, outf); 150 dda_inc = min_t(u32, dda_inc, dfixed_const(max)); 151 152 return dda_inc; 153 } 154 155 static inline u32 compute_initial_dda(unsigned int in) 156 { 157 fixed20_12 inf = dfixed_init(in); 158 return dfixed_frac(inf); 159 } 160 161 static void tegra_plane_setup_blending_legacy(struct tegra_plane *plane) 162 { 163 u32 background[3] = { 164 BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE, 165 BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE, 166 BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE, 167 }; 168 u32 foreground = BLEND_WEIGHT1(255) | BLEND_WEIGHT0(255) | 169 BLEND_COLOR_KEY_NONE; 170 u32 blendnokey = BLEND_WEIGHT1(255) | BLEND_WEIGHT0(255); 171 struct tegra_plane_state *state; 172 u32 blending[2]; 173 unsigned int i; 174 175 /* disable blending for non-overlapping case */ 176 tegra_plane_writel(plane, blendnokey, DC_WIN_BLEND_NOKEY); 177 tegra_plane_writel(plane, foreground, DC_WIN_BLEND_1WIN); 178 179 state = to_tegra_plane_state(plane->base.state); 180 181 if (state->opaque) { 182 /* 183 * Since custom fix-weight blending isn't utilized and weight 184 * of top window is set to max, we can enforce dependent 185 * blending which in this case results in transparent bottom 186 * window if top window is opaque and if top window enables 187 * alpha blending, then bottom window is getting alpha value 188 * of 1 minus the sum of alpha components of the overlapping 189 * plane. 190 */ 191 background[0] |= BLEND_CONTROL_DEPENDENT; 192 background[1] |= BLEND_CONTROL_DEPENDENT; 193 194 /* 195 * The region where three windows overlap is the intersection 196 * of the two regions where two windows overlap. It contributes 197 * to the area if all of the windows on top of it have an alpha 198 * component. 199 */ 200 switch (state->base.normalized_zpos) { 201 case 0: 202 if (state->blending[0].alpha && 203 state->blending[1].alpha) 204 background[2] |= BLEND_CONTROL_DEPENDENT; 205 break; 206 207 case 1: 208 background[2] |= BLEND_CONTROL_DEPENDENT; 209 break; 210 } 211 } else { 212 /* 213 * Enable alpha blending if pixel format has an alpha 214 * component. 215 */ 216 foreground |= BLEND_CONTROL_ALPHA; 217 218 /* 219 * If any of the windows on top of this window is opaque, it 220 * will completely conceal this window within that area. If 221 * top window has an alpha component, it is blended over the 222 * bottom window. 223 */ 224 for (i = 0; i < 2; i++) { 225 if (state->blending[i].alpha && 226 state->blending[i].top) 227 background[i] |= BLEND_CONTROL_DEPENDENT; 228 } 229 230 switch (state->base.normalized_zpos) { 231 case 0: 232 if (state->blending[0].alpha && 233 state->blending[1].alpha) 234 background[2] |= BLEND_CONTROL_DEPENDENT; 235 break; 236 237 case 1: 238 /* 239 * When both middle and topmost windows have an alpha, 240 * these windows a mixed together and then the result 241 * is blended over the bottom window. 242 */ 243 if (state->blending[0].alpha && 244 state->blending[0].top) 245 background[2] |= BLEND_CONTROL_ALPHA; 246 247 if (state->blending[1].alpha && 248 state->blending[1].top) 249 background[2] |= BLEND_CONTROL_ALPHA; 250 break; 251 } 252 } 253 254 switch (state->base.normalized_zpos) { 255 case 0: 256 tegra_plane_writel(plane, background[0], DC_WIN_BLEND_2WIN_X); 257 tegra_plane_writel(plane, background[1], DC_WIN_BLEND_2WIN_Y); 258 tegra_plane_writel(plane, background[2], DC_WIN_BLEND_3WIN_XY); 259 break; 260 261 case 1: 262 /* 263 * If window B / C is topmost, then X / Y registers are 264 * matching the order of blending[...] state indices, 265 * otherwise a swap is required. 266 */ 267 if (!state->blending[0].top && state->blending[1].top) { 268 blending[0] = foreground; 269 blending[1] = background[1]; 270 } else { 271 blending[0] = background[0]; 272 blending[1] = foreground; 273 } 274 275 tegra_plane_writel(plane, blending[0], DC_WIN_BLEND_2WIN_X); 276 tegra_plane_writel(plane, blending[1], DC_WIN_BLEND_2WIN_Y); 277 tegra_plane_writel(plane, background[2], DC_WIN_BLEND_3WIN_XY); 278 break; 279 280 case 2: 281 tegra_plane_writel(plane, foreground, DC_WIN_BLEND_2WIN_X); 282 tegra_plane_writel(plane, foreground, DC_WIN_BLEND_2WIN_Y); 283 tegra_plane_writel(plane, foreground, DC_WIN_BLEND_3WIN_XY); 284 break; 285 } 286 } 287 288 static void tegra_plane_setup_blending(struct tegra_plane *plane, 289 const struct tegra_dc_window *window) 290 { 291 u32 value; 292 293 value = BLEND_FACTOR_DST_ALPHA_ZERO | BLEND_FACTOR_SRC_ALPHA_K2 | 294 BLEND_FACTOR_DST_COLOR_NEG_K1_TIMES_SRC | 295 BLEND_FACTOR_SRC_COLOR_K1_TIMES_SRC; 296 tegra_plane_writel(plane, value, DC_WIN_BLEND_MATCH_SELECT); 297 298 value = BLEND_FACTOR_DST_ALPHA_ZERO | BLEND_FACTOR_SRC_ALPHA_K2 | 299 BLEND_FACTOR_DST_COLOR_NEG_K1_TIMES_SRC | 300 BLEND_FACTOR_SRC_COLOR_K1_TIMES_SRC; 301 tegra_plane_writel(plane, value, DC_WIN_BLEND_NOMATCH_SELECT); 302 303 value = K2(255) | K1(255) | WINDOW_LAYER_DEPTH(255 - window->zpos); 304 tegra_plane_writel(plane, value, DC_WIN_BLEND_LAYER_CONTROL); 305 } 306 307 static bool 308 tegra_plane_use_horizontal_filtering(struct tegra_plane *plane, 309 const struct tegra_dc_window *window) 310 { 311 struct tegra_dc *dc = plane->dc; 312 313 if (window->src.w == window->dst.w) 314 return false; 315 316 if (plane->index == 0 && dc->soc->has_win_a_without_filters) 317 return false; 318 319 return true; 320 } 321 322 static bool 323 tegra_plane_use_vertical_filtering(struct tegra_plane *plane, 324 const struct tegra_dc_window *window) 325 { 326 struct tegra_dc *dc = plane->dc; 327 328 if (window->src.h == window->dst.h) 329 return false; 330 331 if (plane->index == 0 && dc->soc->has_win_a_without_filters) 332 return false; 333 334 if (plane->index == 2 && dc->soc->has_win_c_without_vert_filter) 335 return false; 336 337 return true; 338 } 339 340 static void tegra_dc_setup_window(struct tegra_plane *plane, 341 const struct tegra_dc_window *window) 342 { 343 unsigned h_offset, v_offset, h_size, v_size, h_dda, v_dda, bpp; 344 struct tegra_dc *dc = plane->dc; 345 bool yuv, planar; 346 u32 value; 347 348 /* 349 * For YUV planar modes, the number of bytes per pixel takes into 350 * account only the luma component and therefore is 1. 351 */ 352 yuv = tegra_plane_format_is_yuv(window->format, &planar, NULL); 353 if (!yuv) 354 bpp = window->bits_per_pixel / 8; 355 else 356 bpp = planar ? 1 : 2; 357 358 tegra_plane_writel(plane, window->format, DC_WIN_COLOR_DEPTH); 359 tegra_plane_writel(plane, window->swap, DC_WIN_BYTE_SWAP); 360 361 value = V_POSITION(window->dst.y) | H_POSITION(window->dst.x); 362 tegra_plane_writel(plane, value, DC_WIN_POSITION); 363 364 value = V_SIZE(window->dst.h) | H_SIZE(window->dst.w); 365 tegra_plane_writel(plane, value, DC_WIN_SIZE); 366 367 h_offset = window->src.x * bpp; 368 v_offset = window->src.y; 369 h_size = window->src.w * bpp; 370 v_size = window->src.h; 371 372 if (window->reflect_x) 373 h_offset += (window->src.w - 1) * bpp; 374 375 if (window->reflect_y) 376 v_offset += window->src.h - 1; 377 378 value = V_PRESCALED_SIZE(v_size) | H_PRESCALED_SIZE(h_size); 379 tegra_plane_writel(plane, value, DC_WIN_PRESCALED_SIZE); 380 381 /* 382 * For DDA computations the number of bytes per pixel for YUV planar 383 * modes needs to take into account all Y, U and V components. 384 */ 385 if (yuv && planar) 386 bpp = 2; 387 388 h_dda = compute_dda_inc(window->src.w, window->dst.w, false, bpp); 389 v_dda = compute_dda_inc(window->src.h, window->dst.h, true, bpp); 390 391 value = V_DDA_INC(v_dda) | H_DDA_INC(h_dda); 392 tegra_plane_writel(plane, value, DC_WIN_DDA_INC); 393 394 h_dda = compute_initial_dda(window->src.x); 395 v_dda = compute_initial_dda(window->src.y); 396 397 tegra_plane_writel(plane, h_dda, DC_WIN_H_INITIAL_DDA); 398 tegra_plane_writel(plane, v_dda, DC_WIN_V_INITIAL_DDA); 399 400 tegra_plane_writel(plane, 0, DC_WIN_UV_BUF_STRIDE); 401 tegra_plane_writel(plane, 0, DC_WIN_BUF_STRIDE); 402 403 tegra_plane_writel(plane, window->base[0], DC_WINBUF_START_ADDR); 404 405 if (yuv && planar) { 406 tegra_plane_writel(plane, window->base[1], DC_WINBUF_START_ADDR_U); 407 tegra_plane_writel(plane, window->base[2], DC_WINBUF_START_ADDR_V); 408 value = window->stride[1] << 16 | window->stride[0]; 409 tegra_plane_writel(plane, value, DC_WIN_LINE_STRIDE); 410 } else { 411 tegra_plane_writel(plane, window->stride[0], DC_WIN_LINE_STRIDE); 412 } 413 414 tegra_plane_writel(plane, h_offset, DC_WINBUF_ADDR_H_OFFSET); 415 tegra_plane_writel(plane, v_offset, DC_WINBUF_ADDR_V_OFFSET); 416 417 if (dc->soc->supports_block_linear) { 418 unsigned long height = window->tiling.value; 419 420 switch (window->tiling.mode) { 421 case TEGRA_BO_TILING_MODE_PITCH: 422 value = DC_WINBUF_SURFACE_KIND_PITCH; 423 break; 424 425 case TEGRA_BO_TILING_MODE_TILED: 426 value = DC_WINBUF_SURFACE_KIND_TILED; 427 break; 428 429 case TEGRA_BO_TILING_MODE_BLOCK: 430 value = DC_WINBUF_SURFACE_KIND_BLOCK_HEIGHT(height) | 431 DC_WINBUF_SURFACE_KIND_BLOCK; 432 break; 433 } 434 435 tegra_plane_writel(plane, value, DC_WINBUF_SURFACE_KIND); 436 } else { 437 switch (window->tiling.mode) { 438 case TEGRA_BO_TILING_MODE_PITCH: 439 value = DC_WIN_BUFFER_ADDR_MODE_LINEAR_UV | 440 DC_WIN_BUFFER_ADDR_MODE_LINEAR; 441 break; 442 443 case TEGRA_BO_TILING_MODE_TILED: 444 value = DC_WIN_BUFFER_ADDR_MODE_TILE_UV | 445 DC_WIN_BUFFER_ADDR_MODE_TILE; 446 break; 447 448 case TEGRA_BO_TILING_MODE_BLOCK: 449 /* 450 * No need to handle this here because ->atomic_check 451 * will already have filtered it out. 452 */ 453 break; 454 } 455 456 tegra_plane_writel(plane, value, DC_WIN_BUFFER_ADDR_MODE); 457 } 458 459 value = WIN_ENABLE; 460 461 if (yuv) { 462 /* setup default colorspace conversion coefficients */ 463 tegra_plane_writel(plane, 0x00f0, DC_WIN_CSC_YOF); 464 tegra_plane_writel(plane, 0x012a, DC_WIN_CSC_KYRGB); 465 tegra_plane_writel(plane, 0x0000, DC_WIN_CSC_KUR); 466 tegra_plane_writel(plane, 0x0198, DC_WIN_CSC_KVR); 467 tegra_plane_writel(plane, 0x039b, DC_WIN_CSC_KUG); 468 tegra_plane_writel(plane, 0x032f, DC_WIN_CSC_KVG); 469 tegra_plane_writel(plane, 0x0204, DC_WIN_CSC_KUB); 470 tegra_plane_writel(plane, 0x0000, DC_WIN_CSC_KVB); 471 472 value |= CSC_ENABLE; 473 } else if (window->bits_per_pixel < 24) { 474 value |= COLOR_EXPAND; 475 } 476 477 if (window->reflect_x) 478 value |= H_DIRECTION; 479 480 if (window->reflect_y) 481 value |= V_DIRECTION; 482 483 if (tegra_plane_use_horizontal_filtering(plane, window)) { 484 /* 485 * Enable horizontal 6-tap filter and set filtering 486 * coefficients to the default values defined in TRM. 487 */ 488 tegra_plane_writel(plane, 0x00008000, DC_WIN_H_FILTER_P(0)); 489 tegra_plane_writel(plane, 0x3e087ce1, DC_WIN_H_FILTER_P(1)); 490 tegra_plane_writel(plane, 0x3b117ac1, DC_WIN_H_FILTER_P(2)); 491 tegra_plane_writel(plane, 0x591b73aa, DC_WIN_H_FILTER_P(3)); 492 tegra_plane_writel(plane, 0x57256d9a, DC_WIN_H_FILTER_P(4)); 493 tegra_plane_writel(plane, 0x552f668b, DC_WIN_H_FILTER_P(5)); 494 tegra_plane_writel(plane, 0x73385e8b, DC_WIN_H_FILTER_P(6)); 495 tegra_plane_writel(plane, 0x72435583, DC_WIN_H_FILTER_P(7)); 496 tegra_plane_writel(plane, 0x714c4c8b, DC_WIN_H_FILTER_P(8)); 497 tegra_plane_writel(plane, 0x70554393, DC_WIN_H_FILTER_P(9)); 498 tegra_plane_writel(plane, 0x715e389b, DC_WIN_H_FILTER_P(10)); 499 tegra_plane_writel(plane, 0x71662faa, DC_WIN_H_FILTER_P(11)); 500 tegra_plane_writel(plane, 0x536d25ba, DC_WIN_H_FILTER_P(12)); 501 tegra_plane_writel(plane, 0x55731bca, DC_WIN_H_FILTER_P(13)); 502 tegra_plane_writel(plane, 0x387a11d9, DC_WIN_H_FILTER_P(14)); 503 tegra_plane_writel(plane, 0x3c7c08f1, DC_WIN_H_FILTER_P(15)); 504 505 value |= H_FILTER; 506 } 507 508 if (tegra_plane_use_vertical_filtering(plane, window)) { 509 unsigned int i, k; 510 511 /* 512 * Enable vertical 2-tap filter and set filtering 513 * coefficients to the default values defined in TRM. 514 */ 515 for (i = 0, k = 128; i < 16; i++, k -= 8) 516 tegra_plane_writel(plane, k, DC_WIN_V_FILTER_P(i)); 517 518 value |= V_FILTER; 519 } 520 521 tegra_plane_writel(plane, value, DC_WIN_WIN_OPTIONS); 522 523 if (dc->soc->has_legacy_blending) 524 tegra_plane_setup_blending_legacy(plane); 525 else 526 tegra_plane_setup_blending(plane, window); 527 } 528 529 static const u32 tegra20_primary_formats[] = { 530 DRM_FORMAT_ARGB4444, 531 DRM_FORMAT_ARGB1555, 532 DRM_FORMAT_RGB565, 533 DRM_FORMAT_RGBA5551, 534 DRM_FORMAT_ABGR8888, 535 DRM_FORMAT_ARGB8888, 536 /* non-native formats */ 537 DRM_FORMAT_XRGB1555, 538 DRM_FORMAT_RGBX5551, 539 DRM_FORMAT_XBGR8888, 540 DRM_FORMAT_XRGB8888, 541 }; 542 543 static const u64 tegra20_modifiers[] = { 544 DRM_FORMAT_MOD_LINEAR, 545 DRM_FORMAT_MOD_NVIDIA_TEGRA_TILED, 546 DRM_FORMAT_MOD_INVALID 547 }; 548 549 static const u32 tegra114_primary_formats[] = { 550 DRM_FORMAT_ARGB4444, 551 DRM_FORMAT_ARGB1555, 552 DRM_FORMAT_RGB565, 553 DRM_FORMAT_RGBA5551, 554 DRM_FORMAT_ABGR8888, 555 DRM_FORMAT_ARGB8888, 556 /* new on Tegra114 */ 557 DRM_FORMAT_ABGR4444, 558 DRM_FORMAT_ABGR1555, 559 DRM_FORMAT_BGRA5551, 560 DRM_FORMAT_XRGB1555, 561 DRM_FORMAT_RGBX5551, 562 DRM_FORMAT_XBGR1555, 563 DRM_FORMAT_BGRX5551, 564 DRM_FORMAT_BGR565, 565 DRM_FORMAT_BGRA8888, 566 DRM_FORMAT_RGBA8888, 567 DRM_FORMAT_XRGB8888, 568 DRM_FORMAT_XBGR8888, 569 }; 570 571 static const u32 tegra124_primary_formats[] = { 572 DRM_FORMAT_ARGB4444, 573 DRM_FORMAT_ARGB1555, 574 DRM_FORMAT_RGB565, 575 DRM_FORMAT_RGBA5551, 576 DRM_FORMAT_ABGR8888, 577 DRM_FORMAT_ARGB8888, 578 /* new on Tegra114 */ 579 DRM_FORMAT_ABGR4444, 580 DRM_FORMAT_ABGR1555, 581 DRM_FORMAT_BGRA5551, 582 DRM_FORMAT_XRGB1555, 583 DRM_FORMAT_RGBX5551, 584 DRM_FORMAT_XBGR1555, 585 DRM_FORMAT_BGRX5551, 586 DRM_FORMAT_BGR565, 587 DRM_FORMAT_BGRA8888, 588 DRM_FORMAT_RGBA8888, 589 DRM_FORMAT_XRGB8888, 590 DRM_FORMAT_XBGR8888, 591 /* new on Tegra124 */ 592 DRM_FORMAT_RGBX8888, 593 DRM_FORMAT_BGRX8888, 594 }; 595 596 static const u64 tegra124_modifiers[] = { 597 DRM_FORMAT_MOD_LINEAR, 598 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(0), 599 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(1), 600 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(2), 601 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(3), 602 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(4), 603 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(5), 604 DRM_FORMAT_MOD_INVALID 605 }; 606 607 static int tegra_plane_atomic_check(struct drm_plane *plane, 608 struct drm_atomic_state *state) 609 { 610 struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state, 611 plane); 612 struct tegra_plane_state *plane_state = to_tegra_plane_state(new_plane_state); 613 unsigned int supported_rotation = DRM_MODE_ROTATE_0 | 614 DRM_MODE_REFLECT_X | 615 DRM_MODE_REFLECT_Y; 616 unsigned int rotation = new_plane_state->rotation; 617 struct tegra_bo_tiling *tiling = &plane_state->tiling; 618 struct tegra_plane *tegra = to_tegra_plane(plane); 619 struct tegra_dc *dc = to_tegra_dc(new_plane_state->crtc); 620 int err; 621 622 plane_state->peak_memory_bandwidth = 0; 623 plane_state->avg_memory_bandwidth = 0; 624 625 /* no need for further checks if the plane is being disabled */ 626 if (!new_plane_state->crtc) { 627 plane_state->total_peak_memory_bandwidth = 0; 628 return 0; 629 } 630 631 err = tegra_plane_format(new_plane_state->fb->format->format, 632 &plane_state->format, 633 &plane_state->swap); 634 if (err < 0) 635 return err; 636 637 /* 638 * Tegra20 and Tegra30 are special cases here because they support 639 * only variants of specific formats with an alpha component, but not 640 * the corresponding opaque formats. However, the opaque formats can 641 * be emulated by disabling alpha blending for the plane. 642 */ 643 if (dc->soc->has_legacy_blending) { 644 err = tegra_plane_setup_legacy_state(tegra, plane_state); 645 if (err < 0) 646 return err; 647 } 648 649 err = tegra_fb_get_tiling(new_plane_state->fb, tiling); 650 if (err < 0) 651 return err; 652 653 if (tiling->mode == TEGRA_BO_TILING_MODE_BLOCK && 654 !dc->soc->supports_block_linear) { 655 DRM_ERROR("hardware doesn't support block linear mode\n"); 656 return -EINVAL; 657 } 658 659 /* 660 * Older userspace used custom BO flag in order to specify the Y 661 * reflection, while modern userspace uses the generic DRM rotation 662 * property in order to achieve the same result. The legacy BO flag 663 * duplicates the DRM rotation property when both are set. 664 */ 665 if (tegra_fb_is_bottom_up(new_plane_state->fb)) 666 rotation |= DRM_MODE_REFLECT_Y; 667 668 rotation = drm_rotation_simplify(rotation, supported_rotation); 669 670 if (rotation & DRM_MODE_REFLECT_X) 671 plane_state->reflect_x = true; 672 else 673 plane_state->reflect_x = false; 674 675 if (rotation & DRM_MODE_REFLECT_Y) 676 plane_state->reflect_y = true; 677 else 678 plane_state->reflect_y = false; 679 680 /* 681 * Tegra doesn't support different strides for U and V planes so we 682 * error out if the user tries to display a framebuffer with such a 683 * configuration. 684 */ 685 if (new_plane_state->fb->format->num_planes > 2) { 686 if (new_plane_state->fb->pitches[2] != new_plane_state->fb->pitches[1]) { 687 DRM_ERROR("unsupported UV-plane configuration\n"); 688 return -EINVAL; 689 } 690 } 691 692 err = tegra_plane_state_add(tegra, new_plane_state); 693 if (err < 0) 694 return err; 695 696 return 0; 697 } 698 699 static void tegra_plane_atomic_disable(struct drm_plane *plane, 700 struct drm_atomic_state *state) 701 { 702 struct drm_plane_state *old_state = drm_atomic_get_old_plane_state(state, 703 plane); 704 struct tegra_plane *p = to_tegra_plane(plane); 705 u32 value; 706 707 /* rien ne va plus */ 708 if (!old_state || !old_state->crtc) 709 return; 710 711 value = tegra_plane_readl(p, DC_WIN_WIN_OPTIONS); 712 value &= ~WIN_ENABLE; 713 tegra_plane_writel(p, value, DC_WIN_WIN_OPTIONS); 714 } 715 716 static void tegra_plane_atomic_update(struct drm_plane *plane, 717 struct drm_atomic_state *state) 718 { 719 struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state, 720 plane); 721 struct tegra_plane_state *tegra_plane_state = to_tegra_plane_state(new_state); 722 struct drm_framebuffer *fb = new_state->fb; 723 struct tegra_plane *p = to_tegra_plane(plane); 724 struct tegra_dc_window window; 725 unsigned int i; 726 727 /* rien ne va plus */ 728 if (!new_state->crtc || !new_state->fb) 729 return; 730 731 if (!new_state->visible) 732 return tegra_plane_atomic_disable(plane, state); 733 734 memset(&window, 0, sizeof(window)); 735 window.src.x = new_state->src.x1 >> 16; 736 window.src.y = new_state->src.y1 >> 16; 737 window.src.w = drm_rect_width(&new_state->src) >> 16; 738 window.src.h = drm_rect_height(&new_state->src) >> 16; 739 window.dst.x = new_state->dst.x1; 740 window.dst.y = new_state->dst.y1; 741 window.dst.w = drm_rect_width(&new_state->dst); 742 window.dst.h = drm_rect_height(&new_state->dst); 743 window.bits_per_pixel = fb->format->cpp[0] * 8; 744 window.reflect_x = tegra_plane_state->reflect_x; 745 window.reflect_y = tegra_plane_state->reflect_y; 746 747 /* copy from state */ 748 window.zpos = new_state->normalized_zpos; 749 window.tiling = tegra_plane_state->tiling; 750 window.format = tegra_plane_state->format; 751 window.swap = tegra_plane_state->swap; 752 753 for (i = 0; i < fb->format->num_planes; i++) { 754 window.base[i] = tegra_plane_state->iova[i] + fb->offsets[i]; 755 756 /* 757 * Tegra uses a shared stride for UV planes. Framebuffers are 758 * already checked for this in the tegra_plane_atomic_check() 759 * function, so it's safe to ignore the V-plane pitch here. 760 */ 761 if (i < 2) 762 window.stride[i] = fb->pitches[i]; 763 } 764 765 tegra_dc_setup_window(p, &window); 766 } 767 768 static const struct drm_plane_helper_funcs tegra_plane_helper_funcs = { 769 .prepare_fb = tegra_plane_prepare_fb, 770 .cleanup_fb = tegra_plane_cleanup_fb, 771 .atomic_check = tegra_plane_atomic_check, 772 .atomic_disable = tegra_plane_atomic_disable, 773 .atomic_update = tegra_plane_atomic_update, 774 }; 775 776 static unsigned long tegra_plane_get_possible_crtcs(struct drm_device *drm) 777 { 778 /* 779 * Ideally this would use drm_crtc_mask(), but that would require the 780 * CRTC to already be in the mode_config's list of CRTCs. However, it 781 * will only be added to that list in the drm_crtc_init_with_planes() 782 * (in tegra_dc_init()), which in turn requires registration of these 783 * planes. So we have ourselves a nice little chicken and egg problem 784 * here. 785 * 786 * We work around this by manually creating the mask from the number 787 * of CRTCs that have been registered, and should therefore always be 788 * the same as drm_crtc_index() after registration. 789 */ 790 return 1 << drm->mode_config.num_crtc; 791 } 792 793 static struct drm_plane *tegra_primary_plane_create(struct drm_device *drm, 794 struct tegra_dc *dc) 795 { 796 unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm); 797 enum drm_plane_type type = DRM_PLANE_TYPE_PRIMARY; 798 struct tegra_plane *plane; 799 unsigned int num_formats; 800 const u64 *modifiers; 801 const u32 *formats; 802 int err; 803 804 plane = kzalloc(sizeof(*plane), GFP_KERNEL); 805 if (!plane) 806 return ERR_PTR(-ENOMEM); 807 808 /* Always use window A as primary window */ 809 plane->offset = 0xa00; 810 plane->index = 0; 811 plane->dc = dc; 812 813 num_formats = dc->soc->num_primary_formats; 814 formats = dc->soc->primary_formats; 815 modifiers = dc->soc->modifiers; 816 817 err = tegra_plane_interconnect_init(plane); 818 if (err) { 819 kfree(plane); 820 return ERR_PTR(err); 821 } 822 823 err = drm_universal_plane_init(drm, &plane->base, possible_crtcs, 824 &tegra_plane_funcs, formats, 825 num_formats, modifiers, type, NULL); 826 if (err < 0) { 827 kfree(plane); 828 return ERR_PTR(err); 829 } 830 831 drm_plane_helper_add(&plane->base, &tegra_plane_helper_funcs); 832 drm_plane_create_zpos_property(&plane->base, plane->index, 0, 255); 833 834 err = drm_plane_create_rotation_property(&plane->base, 835 DRM_MODE_ROTATE_0, 836 DRM_MODE_ROTATE_0 | 837 DRM_MODE_ROTATE_180 | 838 DRM_MODE_REFLECT_X | 839 DRM_MODE_REFLECT_Y); 840 if (err < 0) 841 dev_err(dc->dev, "failed to create rotation property: %d\n", 842 err); 843 844 return &plane->base; 845 } 846 847 static const u32 tegra_legacy_cursor_plane_formats[] = { 848 DRM_FORMAT_RGBA8888, 849 }; 850 851 static const u32 tegra_cursor_plane_formats[] = { 852 DRM_FORMAT_ARGB8888, 853 }; 854 855 static int tegra_cursor_atomic_check(struct drm_plane *plane, 856 struct drm_atomic_state *state) 857 { 858 struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state, 859 plane); 860 struct tegra_plane_state *plane_state = to_tegra_plane_state(new_plane_state); 861 struct tegra_plane *tegra = to_tegra_plane(plane); 862 int err; 863 864 plane_state->peak_memory_bandwidth = 0; 865 plane_state->avg_memory_bandwidth = 0; 866 867 /* no need for further checks if the plane is being disabled */ 868 if (!new_plane_state->crtc) { 869 plane_state->total_peak_memory_bandwidth = 0; 870 return 0; 871 } 872 873 /* scaling not supported for cursor */ 874 if ((new_plane_state->src_w >> 16 != new_plane_state->crtc_w) || 875 (new_plane_state->src_h >> 16 != new_plane_state->crtc_h)) 876 return -EINVAL; 877 878 /* only square cursors supported */ 879 if (new_plane_state->src_w != new_plane_state->src_h) 880 return -EINVAL; 881 882 if (new_plane_state->crtc_w != 32 && new_plane_state->crtc_w != 64 && 883 new_plane_state->crtc_w != 128 && new_plane_state->crtc_w != 256) 884 return -EINVAL; 885 886 err = tegra_plane_state_add(tegra, new_plane_state); 887 if (err < 0) 888 return err; 889 890 return 0; 891 } 892 893 static void tegra_cursor_atomic_update(struct drm_plane *plane, 894 struct drm_atomic_state *state) 895 { 896 struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state, 897 plane); 898 struct tegra_plane_state *tegra_plane_state = to_tegra_plane_state(new_state); 899 struct tegra_dc *dc = to_tegra_dc(new_state->crtc); 900 struct tegra_drm *tegra = plane->dev->dev_private; 901 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT 902 u64 dma_mask = *dc->dev->dma_mask; 903 #endif 904 unsigned int x, y; 905 u32 value = 0; 906 907 /* rien ne va plus */ 908 if (!new_state->crtc || !new_state->fb) 909 return; 910 911 /* 912 * Legacy display supports hardware clipping of the cursor, but 913 * nvdisplay relies on software to clip the cursor to the screen. 914 */ 915 if (!dc->soc->has_nvdisplay) 916 value |= CURSOR_CLIP_DISPLAY; 917 918 switch (new_state->crtc_w) { 919 case 32: 920 value |= CURSOR_SIZE_32x32; 921 break; 922 923 case 64: 924 value |= CURSOR_SIZE_64x64; 925 break; 926 927 case 128: 928 value |= CURSOR_SIZE_128x128; 929 break; 930 931 case 256: 932 value |= CURSOR_SIZE_256x256; 933 break; 934 935 default: 936 WARN(1, "cursor size %ux%u not supported\n", 937 new_state->crtc_w, new_state->crtc_h); 938 return; 939 } 940 941 value |= (tegra_plane_state->iova[0] >> 10) & 0x3fffff; 942 tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR); 943 944 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT 945 value = (tegra_plane_state->iova[0] >> 32) & (dma_mask >> 32); 946 tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR_HI); 947 #endif 948 949 /* enable cursor and set blend mode */ 950 value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS); 951 value |= CURSOR_ENABLE; 952 tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS); 953 954 value = tegra_dc_readl(dc, DC_DISP_BLEND_CURSOR_CONTROL); 955 value &= ~CURSOR_DST_BLEND_MASK; 956 value &= ~CURSOR_SRC_BLEND_MASK; 957 958 if (dc->soc->has_nvdisplay) 959 value &= ~CURSOR_COMPOSITION_MODE_XOR; 960 else 961 value |= CURSOR_MODE_NORMAL; 962 963 value |= CURSOR_DST_BLEND_NEG_K1_TIMES_SRC; 964 value |= CURSOR_SRC_BLEND_K1_TIMES_SRC; 965 value |= CURSOR_ALPHA; 966 tegra_dc_writel(dc, value, DC_DISP_BLEND_CURSOR_CONTROL); 967 968 /* nvdisplay relies on software for clipping */ 969 if (dc->soc->has_nvdisplay) { 970 struct drm_rect src; 971 972 x = new_state->dst.x1; 973 y = new_state->dst.y1; 974 975 drm_rect_fp_to_int(&src, &new_state->src); 976 977 value = (src.y1 & tegra->vmask) << 16 | (src.x1 & tegra->hmask); 978 tegra_dc_writel(dc, value, DC_DISP_PCALC_HEAD_SET_CROPPED_POINT_IN_CURSOR); 979 980 value = (drm_rect_height(&src) & tegra->vmask) << 16 | 981 (drm_rect_width(&src) & tegra->hmask); 982 tegra_dc_writel(dc, value, DC_DISP_PCALC_HEAD_SET_CROPPED_SIZE_IN_CURSOR); 983 } else { 984 x = new_state->crtc_x; 985 y = new_state->crtc_y; 986 } 987 988 /* position the cursor */ 989 value = ((y & tegra->vmask) << 16) | (x & tegra->hmask); 990 tegra_dc_writel(dc, value, DC_DISP_CURSOR_POSITION); 991 } 992 993 static void tegra_cursor_atomic_disable(struct drm_plane *plane, 994 struct drm_atomic_state *state) 995 { 996 struct drm_plane_state *old_state = drm_atomic_get_old_plane_state(state, 997 plane); 998 struct tegra_dc *dc; 999 u32 value; 1000 1001 /* rien ne va plus */ 1002 if (!old_state || !old_state->crtc) 1003 return; 1004 1005 dc = to_tegra_dc(old_state->crtc); 1006 1007 value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS); 1008 value &= ~CURSOR_ENABLE; 1009 tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS); 1010 } 1011 1012 static const struct drm_plane_helper_funcs tegra_cursor_plane_helper_funcs = { 1013 .prepare_fb = tegra_plane_prepare_fb, 1014 .cleanup_fb = tegra_plane_cleanup_fb, 1015 .atomic_check = tegra_cursor_atomic_check, 1016 .atomic_update = tegra_cursor_atomic_update, 1017 .atomic_disable = tegra_cursor_atomic_disable, 1018 }; 1019 1020 static const uint64_t linear_modifiers[] = { 1021 DRM_FORMAT_MOD_LINEAR, 1022 DRM_FORMAT_MOD_INVALID 1023 }; 1024 1025 static struct drm_plane *tegra_dc_cursor_plane_create(struct drm_device *drm, 1026 struct tegra_dc *dc) 1027 { 1028 unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm); 1029 struct tegra_plane *plane; 1030 unsigned int num_formats; 1031 const u32 *formats; 1032 int err; 1033 1034 plane = kzalloc(sizeof(*plane), GFP_KERNEL); 1035 if (!plane) 1036 return ERR_PTR(-ENOMEM); 1037 1038 /* 1039 * This index is kind of fake. The cursor isn't a regular plane, but 1040 * its update and activation request bits in DC_CMD_STATE_CONTROL do 1041 * use the same programming. Setting this fake index here allows the 1042 * code in tegra_add_plane_state() to do the right thing without the 1043 * need to special-casing the cursor plane. 1044 */ 1045 plane->index = 6; 1046 plane->dc = dc; 1047 1048 if (!dc->soc->has_nvdisplay) { 1049 num_formats = ARRAY_SIZE(tegra_legacy_cursor_plane_formats); 1050 formats = tegra_legacy_cursor_plane_formats; 1051 1052 err = tegra_plane_interconnect_init(plane); 1053 if (err) { 1054 kfree(plane); 1055 return ERR_PTR(err); 1056 } 1057 } else { 1058 num_formats = ARRAY_SIZE(tegra_cursor_plane_formats); 1059 formats = tegra_cursor_plane_formats; 1060 } 1061 1062 err = drm_universal_plane_init(drm, &plane->base, possible_crtcs, 1063 &tegra_plane_funcs, formats, 1064 num_formats, linear_modifiers, 1065 DRM_PLANE_TYPE_CURSOR, NULL); 1066 if (err < 0) { 1067 kfree(plane); 1068 return ERR_PTR(err); 1069 } 1070 1071 drm_plane_helper_add(&plane->base, &tegra_cursor_plane_helper_funcs); 1072 drm_plane_create_zpos_immutable_property(&plane->base, 255); 1073 1074 return &plane->base; 1075 } 1076 1077 static const u32 tegra20_overlay_formats[] = { 1078 DRM_FORMAT_ARGB4444, 1079 DRM_FORMAT_ARGB1555, 1080 DRM_FORMAT_RGB565, 1081 DRM_FORMAT_RGBA5551, 1082 DRM_FORMAT_ABGR8888, 1083 DRM_FORMAT_ARGB8888, 1084 /* non-native formats */ 1085 DRM_FORMAT_XRGB1555, 1086 DRM_FORMAT_RGBX5551, 1087 DRM_FORMAT_XBGR8888, 1088 DRM_FORMAT_XRGB8888, 1089 /* planar formats */ 1090 DRM_FORMAT_UYVY, 1091 DRM_FORMAT_YUYV, 1092 DRM_FORMAT_YUV420, 1093 DRM_FORMAT_YUV422, 1094 }; 1095 1096 static const u32 tegra114_overlay_formats[] = { 1097 DRM_FORMAT_ARGB4444, 1098 DRM_FORMAT_ARGB1555, 1099 DRM_FORMAT_RGB565, 1100 DRM_FORMAT_RGBA5551, 1101 DRM_FORMAT_ABGR8888, 1102 DRM_FORMAT_ARGB8888, 1103 /* new on Tegra114 */ 1104 DRM_FORMAT_ABGR4444, 1105 DRM_FORMAT_ABGR1555, 1106 DRM_FORMAT_BGRA5551, 1107 DRM_FORMAT_XRGB1555, 1108 DRM_FORMAT_RGBX5551, 1109 DRM_FORMAT_XBGR1555, 1110 DRM_FORMAT_BGRX5551, 1111 DRM_FORMAT_BGR565, 1112 DRM_FORMAT_BGRA8888, 1113 DRM_FORMAT_RGBA8888, 1114 DRM_FORMAT_XRGB8888, 1115 DRM_FORMAT_XBGR8888, 1116 /* planar formats */ 1117 DRM_FORMAT_UYVY, 1118 DRM_FORMAT_YUYV, 1119 DRM_FORMAT_YUV420, 1120 DRM_FORMAT_YUV422, 1121 }; 1122 1123 static const u32 tegra124_overlay_formats[] = { 1124 DRM_FORMAT_ARGB4444, 1125 DRM_FORMAT_ARGB1555, 1126 DRM_FORMAT_RGB565, 1127 DRM_FORMAT_RGBA5551, 1128 DRM_FORMAT_ABGR8888, 1129 DRM_FORMAT_ARGB8888, 1130 /* new on Tegra114 */ 1131 DRM_FORMAT_ABGR4444, 1132 DRM_FORMAT_ABGR1555, 1133 DRM_FORMAT_BGRA5551, 1134 DRM_FORMAT_XRGB1555, 1135 DRM_FORMAT_RGBX5551, 1136 DRM_FORMAT_XBGR1555, 1137 DRM_FORMAT_BGRX5551, 1138 DRM_FORMAT_BGR565, 1139 DRM_FORMAT_BGRA8888, 1140 DRM_FORMAT_RGBA8888, 1141 DRM_FORMAT_XRGB8888, 1142 DRM_FORMAT_XBGR8888, 1143 /* new on Tegra124 */ 1144 DRM_FORMAT_RGBX8888, 1145 DRM_FORMAT_BGRX8888, 1146 /* planar formats */ 1147 DRM_FORMAT_UYVY, 1148 DRM_FORMAT_YUYV, 1149 DRM_FORMAT_YUV420, 1150 DRM_FORMAT_YUV422, 1151 }; 1152 1153 static struct drm_plane *tegra_dc_overlay_plane_create(struct drm_device *drm, 1154 struct tegra_dc *dc, 1155 unsigned int index, 1156 bool cursor) 1157 { 1158 unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm); 1159 struct tegra_plane *plane; 1160 unsigned int num_formats; 1161 enum drm_plane_type type; 1162 const u32 *formats; 1163 int err; 1164 1165 plane = kzalloc(sizeof(*plane), GFP_KERNEL); 1166 if (!plane) 1167 return ERR_PTR(-ENOMEM); 1168 1169 plane->offset = 0xa00 + 0x200 * index; 1170 plane->index = index; 1171 plane->dc = dc; 1172 1173 num_formats = dc->soc->num_overlay_formats; 1174 formats = dc->soc->overlay_formats; 1175 1176 err = tegra_plane_interconnect_init(plane); 1177 if (err) { 1178 kfree(plane); 1179 return ERR_PTR(err); 1180 } 1181 1182 if (!cursor) 1183 type = DRM_PLANE_TYPE_OVERLAY; 1184 else 1185 type = DRM_PLANE_TYPE_CURSOR; 1186 1187 err = drm_universal_plane_init(drm, &plane->base, possible_crtcs, 1188 &tegra_plane_funcs, formats, 1189 num_formats, linear_modifiers, 1190 type, NULL); 1191 if (err < 0) { 1192 kfree(plane); 1193 return ERR_PTR(err); 1194 } 1195 1196 drm_plane_helper_add(&plane->base, &tegra_plane_helper_funcs); 1197 drm_plane_create_zpos_property(&plane->base, plane->index, 0, 255); 1198 1199 err = drm_plane_create_rotation_property(&plane->base, 1200 DRM_MODE_ROTATE_0, 1201 DRM_MODE_ROTATE_0 | 1202 DRM_MODE_ROTATE_180 | 1203 DRM_MODE_REFLECT_X | 1204 DRM_MODE_REFLECT_Y); 1205 if (err < 0) 1206 dev_err(dc->dev, "failed to create rotation property: %d\n", 1207 err); 1208 1209 return &plane->base; 1210 } 1211 1212 static struct drm_plane *tegra_dc_add_shared_planes(struct drm_device *drm, 1213 struct tegra_dc *dc) 1214 { 1215 struct drm_plane *plane, *primary = NULL; 1216 unsigned int i, j; 1217 1218 for (i = 0; i < dc->soc->num_wgrps; i++) { 1219 const struct tegra_windowgroup_soc *wgrp = &dc->soc->wgrps[i]; 1220 1221 if (wgrp->dc == dc->pipe) { 1222 for (j = 0; j < wgrp->num_windows; j++) { 1223 unsigned int index = wgrp->windows[j]; 1224 1225 plane = tegra_shared_plane_create(drm, dc, 1226 wgrp->index, 1227 index); 1228 if (IS_ERR(plane)) 1229 return plane; 1230 1231 /* 1232 * Choose the first shared plane owned by this 1233 * head as the primary plane. 1234 */ 1235 if (!primary) { 1236 plane->type = DRM_PLANE_TYPE_PRIMARY; 1237 primary = plane; 1238 } 1239 } 1240 } 1241 } 1242 1243 return primary; 1244 } 1245 1246 static struct drm_plane *tegra_dc_add_planes(struct drm_device *drm, 1247 struct tegra_dc *dc) 1248 { 1249 struct drm_plane *planes[2], *primary; 1250 unsigned int planes_num; 1251 unsigned int i; 1252 int err; 1253 1254 primary = tegra_primary_plane_create(drm, dc); 1255 if (IS_ERR(primary)) 1256 return primary; 1257 1258 if (dc->soc->supports_cursor) 1259 planes_num = 2; 1260 else 1261 planes_num = 1; 1262 1263 for (i = 0; i < planes_num; i++) { 1264 planes[i] = tegra_dc_overlay_plane_create(drm, dc, 1 + i, 1265 false); 1266 if (IS_ERR(planes[i])) { 1267 err = PTR_ERR(planes[i]); 1268 1269 while (i--) 1270 tegra_plane_funcs.destroy(planes[i]); 1271 1272 tegra_plane_funcs.destroy(primary); 1273 return ERR_PTR(err); 1274 } 1275 } 1276 1277 return primary; 1278 } 1279 1280 static void tegra_dc_destroy(struct drm_crtc *crtc) 1281 { 1282 drm_crtc_cleanup(crtc); 1283 } 1284 1285 static void tegra_crtc_reset(struct drm_crtc *crtc) 1286 { 1287 struct tegra_dc_state *state = kzalloc(sizeof(*state), GFP_KERNEL); 1288 1289 if (crtc->state) 1290 tegra_crtc_atomic_destroy_state(crtc, crtc->state); 1291 1292 __drm_atomic_helper_crtc_reset(crtc, &state->base); 1293 } 1294 1295 static struct drm_crtc_state * 1296 tegra_crtc_atomic_duplicate_state(struct drm_crtc *crtc) 1297 { 1298 struct tegra_dc_state *state = to_dc_state(crtc->state); 1299 struct tegra_dc_state *copy; 1300 1301 copy = kmalloc(sizeof(*copy), GFP_KERNEL); 1302 if (!copy) 1303 return NULL; 1304 1305 __drm_atomic_helper_crtc_duplicate_state(crtc, ©->base); 1306 copy->clk = state->clk; 1307 copy->pclk = state->pclk; 1308 copy->div = state->div; 1309 copy->planes = state->planes; 1310 1311 return ©->base; 1312 } 1313 1314 static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc, 1315 struct drm_crtc_state *state) 1316 { 1317 __drm_atomic_helper_crtc_destroy_state(state); 1318 kfree(state); 1319 } 1320 1321 #define DEBUGFS_REG32(_name) { .name = #_name, .offset = _name } 1322 1323 static const struct debugfs_reg32 tegra_dc_regs[] = { 1324 DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT), 1325 DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT_CNTRL), 1326 DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT_ERROR), 1327 DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT), 1328 DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT_CNTRL), 1329 DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT_ERROR), 1330 DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT), 1331 DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT_CNTRL), 1332 DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT_ERROR), 1333 DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT), 1334 DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT_CNTRL), 1335 DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT_ERROR), 1336 DEBUGFS_REG32(DC_CMD_CONT_SYNCPT_VSYNC), 1337 DEBUGFS_REG32(DC_CMD_DISPLAY_COMMAND_OPTION0), 1338 DEBUGFS_REG32(DC_CMD_DISPLAY_COMMAND), 1339 DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE), 1340 DEBUGFS_REG32(DC_CMD_DISPLAY_POWER_CONTROL), 1341 DEBUGFS_REG32(DC_CMD_INT_STATUS), 1342 DEBUGFS_REG32(DC_CMD_INT_MASK), 1343 DEBUGFS_REG32(DC_CMD_INT_ENABLE), 1344 DEBUGFS_REG32(DC_CMD_INT_TYPE), 1345 DEBUGFS_REG32(DC_CMD_INT_POLARITY), 1346 DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE1), 1347 DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE2), 1348 DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE3), 1349 DEBUGFS_REG32(DC_CMD_STATE_ACCESS), 1350 DEBUGFS_REG32(DC_CMD_STATE_CONTROL), 1351 DEBUGFS_REG32(DC_CMD_DISPLAY_WINDOW_HEADER), 1352 DEBUGFS_REG32(DC_CMD_REG_ACT_CONTROL), 1353 DEBUGFS_REG32(DC_COM_CRC_CONTROL), 1354 DEBUGFS_REG32(DC_COM_CRC_CHECKSUM), 1355 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(0)), 1356 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(1)), 1357 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(2)), 1358 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(3)), 1359 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(0)), 1360 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(1)), 1361 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(2)), 1362 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(3)), 1363 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(0)), 1364 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(1)), 1365 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(2)), 1366 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(3)), 1367 DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(0)), 1368 DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(1)), 1369 DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(2)), 1370 DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(3)), 1371 DEBUGFS_REG32(DC_COM_PIN_INPUT_DATA(0)), 1372 DEBUGFS_REG32(DC_COM_PIN_INPUT_DATA(1)), 1373 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(0)), 1374 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(1)), 1375 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(2)), 1376 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(3)), 1377 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(4)), 1378 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(5)), 1379 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(6)), 1380 DEBUGFS_REG32(DC_COM_PIN_MISC_CONTROL), 1381 DEBUGFS_REG32(DC_COM_PIN_PM0_CONTROL), 1382 DEBUGFS_REG32(DC_COM_PIN_PM0_DUTY_CYCLE), 1383 DEBUGFS_REG32(DC_COM_PIN_PM1_CONTROL), 1384 DEBUGFS_REG32(DC_COM_PIN_PM1_DUTY_CYCLE), 1385 DEBUGFS_REG32(DC_COM_SPI_CONTROL), 1386 DEBUGFS_REG32(DC_COM_SPI_START_BYTE), 1387 DEBUGFS_REG32(DC_COM_HSPI_WRITE_DATA_AB), 1388 DEBUGFS_REG32(DC_COM_HSPI_WRITE_DATA_CD), 1389 DEBUGFS_REG32(DC_COM_HSPI_CS_DC), 1390 DEBUGFS_REG32(DC_COM_SCRATCH_REGISTER_A), 1391 DEBUGFS_REG32(DC_COM_SCRATCH_REGISTER_B), 1392 DEBUGFS_REG32(DC_COM_GPIO_CTRL), 1393 DEBUGFS_REG32(DC_COM_GPIO_DEBOUNCE_COUNTER), 1394 DEBUGFS_REG32(DC_COM_CRC_CHECKSUM_LATCHED), 1395 DEBUGFS_REG32(DC_DISP_DISP_SIGNAL_OPTIONS0), 1396 DEBUGFS_REG32(DC_DISP_DISP_SIGNAL_OPTIONS1), 1397 DEBUGFS_REG32(DC_DISP_DISP_WIN_OPTIONS), 1398 DEBUGFS_REG32(DC_DISP_DISP_MEM_HIGH_PRIORITY), 1399 DEBUGFS_REG32(DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER), 1400 DEBUGFS_REG32(DC_DISP_DISP_TIMING_OPTIONS), 1401 DEBUGFS_REG32(DC_DISP_REF_TO_SYNC), 1402 DEBUGFS_REG32(DC_DISP_SYNC_WIDTH), 1403 DEBUGFS_REG32(DC_DISP_BACK_PORCH), 1404 DEBUGFS_REG32(DC_DISP_ACTIVE), 1405 DEBUGFS_REG32(DC_DISP_FRONT_PORCH), 1406 DEBUGFS_REG32(DC_DISP_H_PULSE0_CONTROL), 1407 DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_A), 1408 DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_B), 1409 DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_C), 1410 DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_D), 1411 DEBUGFS_REG32(DC_DISP_H_PULSE1_CONTROL), 1412 DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_A), 1413 DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_B), 1414 DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_C), 1415 DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_D), 1416 DEBUGFS_REG32(DC_DISP_H_PULSE2_CONTROL), 1417 DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_A), 1418 DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_B), 1419 DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_C), 1420 DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_D), 1421 DEBUGFS_REG32(DC_DISP_V_PULSE0_CONTROL), 1422 DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_A), 1423 DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_B), 1424 DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_C), 1425 DEBUGFS_REG32(DC_DISP_V_PULSE1_CONTROL), 1426 DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_A), 1427 DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_B), 1428 DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_C), 1429 DEBUGFS_REG32(DC_DISP_V_PULSE2_CONTROL), 1430 DEBUGFS_REG32(DC_DISP_V_PULSE2_POSITION_A), 1431 DEBUGFS_REG32(DC_DISP_V_PULSE3_CONTROL), 1432 DEBUGFS_REG32(DC_DISP_V_PULSE3_POSITION_A), 1433 DEBUGFS_REG32(DC_DISP_M0_CONTROL), 1434 DEBUGFS_REG32(DC_DISP_M1_CONTROL), 1435 DEBUGFS_REG32(DC_DISP_DI_CONTROL), 1436 DEBUGFS_REG32(DC_DISP_PP_CONTROL), 1437 DEBUGFS_REG32(DC_DISP_PP_SELECT_A), 1438 DEBUGFS_REG32(DC_DISP_PP_SELECT_B), 1439 DEBUGFS_REG32(DC_DISP_PP_SELECT_C), 1440 DEBUGFS_REG32(DC_DISP_PP_SELECT_D), 1441 DEBUGFS_REG32(DC_DISP_DISP_CLOCK_CONTROL), 1442 DEBUGFS_REG32(DC_DISP_DISP_INTERFACE_CONTROL), 1443 DEBUGFS_REG32(DC_DISP_DISP_COLOR_CONTROL), 1444 DEBUGFS_REG32(DC_DISP_SHIFT_CLOCK_OPTIONS), 1445 DEBUGFS_REG32(DC_DISP_DATA_ENABLE_OPTIONS), 1446 DEBUGFS_REG32(DC_DISP_SERIAL_INTERFACE_OPTIONS), 1447 DEBUGFS_REG32(DC_DISP_LCD_SPI_OPTIONS), 1448 DEBUGFS_REG32(DC_DISP_BORDER_COLOR), 1449 DEBUGFS_REG32(DC_DISP_COLOR_KEY0_LOWER), 1450 DEBUGFS_REG32(DC_DISP_COLOR_KEY0_UPPER), 1451 DEBUGFS_REG32(DC_DISP_COLOR_KEY1_LOWER), 1452 DEBUGFS_REG32(DC_DISP_COLOR_KEY1_UPPER), 1453 DEBUGFS_REG32(DC_DISP_CURSOR_FOREGROUND), 1454 DEBUGFS_REG32(DC_DISP_CURSOR_BACKGROUND), 1455 DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR), 1456 DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR_NS), 1457 DEBUGFS_REG32(DC_DISP_CURSOR_POSITION), 1458 DEBUGFS_REG32(DC_DISP_CURSOR_POSITION_NS), 1459 DEBUGFS_REG32(DC_DISP_INIT_SEQ_CONTROL), 1460 DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_A), 1461 DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_B), 1462 DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_C), 1463 DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_D), 1464 DEBUGFS_REG32(DC_DISP_DC_MCCIF_FIFOCTRL), 1465 DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY0A_HYST), 1466 DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY0B_HYST), 1467 DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY1A_HYST), 1468 DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY1B_HYST), 1469 DEBUGFS_REG32(DC_DISP_DAC_CRT_CTRL), 1470 DEBUGFS_REG32(DC_DISP_DISP_MISC_CONTROL), 1471 DEBUGFS_REG32(DC_DISP_SD_CONTROL), 1472 DEBUGFS_REG32(DC_DISP_SD_CSC_COEFF), 1473 DEBUGFS_REG32(DC_DISP_SD_LUT(0)), 1474 DEBUGFS_REG32(DC_DISP_SD_LUT(1)), 1475 DEBUGFS_REG32(DC_DISP_SD_LUT(2)), 1476 DEBUGFS_REG32(DC_DISP_SD_LUT(3)), 1477 DEBUGFS_REG32(DC_DISP_SD_LUT(4)), 1478 DEBUGFS_REG32(DC_DISP_SD_LUT(5)), 1479 DEBUGFS_REG32(DC_DISP_SD_LUT(6)), 1480 DEBUGFS_REG32(DC_DISP_SD_LUT(7)), 1481 DEBUGFS_REG32(DC_DISP_SD_LUT(8)), 1482 DEBUGFS_REG32(DC_DISP_SD_FLICKER_CONTROL), 1483 DEBUGFS_REG32(DC_DISP_DC_PIXEL_COUNT), 1484 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(0)), 1485 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(1)), 1486 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(2)), 1487 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(3)), 1488 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(4)), 1489 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(5)), 1490 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(6)), 1491 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(7)), 1492 DEBUGFS_REG32(DC_DISP_SD_BL_TF(0)), 1493 DEBUGFS_REG32(DC_DISP_SD_BL_TF(1)), 1494 DEBUGFS_REG32(DC_DISP_SD_BL_TF(2)), 1495 DEBUGFS_REG32(DC_DISP_SD_BL_TF(3)), 1496 DEBUGFS_REG32(DC_DISP_SD_BL_CONTROL), 1497 DEBUGFS_REG32(DC_DISP_SD_HW_K_VALUES), 1498 DEBUGFS_REG32(DC_DISP_SD_MAN_K_VALUES), 1499 DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR_HI), 1500 DEBUGFS_REG32(DC_DISP_BLEND_CURSOR_CONTROL), 1501 DEBUGFS_REG32(DC_WIN_WIN_OPTIONS), 1502 DEBUGFS_REG32(DC_WIN_BYTE_SWAP), 1503 DEBUGFS_REG32(DC_WIN_BUFFER_CONTROL), 1504 DEBUGFS_REG32(DC_WIN_COLOR_DEPTH), 1505 DEBUGFS_REG32(DC_WIN_POSITION), 1506 DEBUGFS_REG32(DC_WIN_SIZE), 1507 DEBUGFS_REG32(DC_WIN_PRESCALED_SIZE), 1508 DEBUGFS_REG32(DC_WIN_H_INITIAL_DDA), 1509 DEBUGFS_REG32(DC_WIN_V_INITIAL_DDA), 1510 DEBUGFS_REG32(DC_WIN_DDA_INC), 1511 DEBUGFS_REG32(DC_WIN_LINE_STRIDE), 1512 DEBUGFS_REG32(DC_WIN_BUF_STRIDE), 1513 DEBUGFS_REG32(DC_WIN_UV_BUF_STRIDE), 1514 DEBUGFS_REG32(DC_WIN_BUFFER_ADDR_MODE), 1515 DEBUGFS_REG32(DC_WIN_DV_CONTROL), 1516 DEBUGFS_REG32(DC_WIN_BLEND_NOKEY), 1517 DEBUGFS_REG32(DC_WIN_BLEND_1WIN), 1518 DEBUGFS_REG32(DC_WIN_BLEND_2WIN_X), 1519 DEBUGFS_REG32(DC_WIN_BLEND_2WIN_Y), 1520 DEBUGFS_REG32(DC_WIN_BLEND_3WIN_XY), 1521 DEBUGFS_REG32(DC_WIN_HP_FETCH_CONTROL), 1522 DEBUGFS_REG32(DC_WINBUF_START_ADDR), 1523 DEBUGFS_REG32(DC_WINBUF_START_ADDR_NS), 1524 DEBUGFS_REG32(DC_WINBUF_START_ADDR_U), 1525 DEBUGFS_REG32(DC_WINBUF_START_ADDR_U_NS), 1526 DEBUGFS_REG32(DC_WINBUF_START_ADDR_V), 1527 DEBUGFS_REG32(DC_WINBUF_START_ADDR_V_NS), 1528 DEBUGFS_REG32(DC_WINBUF_ADDR_H_OFFSET), 1529 DEBUGFS_REG32(DC_WINBUF_ADDR_H_OFFSET_NS), 1530 DEBUGFS_REG32(DC_WINBUF_ADDR_V_OFFSET), 1531 DEBUGFS_REG32(DC_WINBUF_ADDR_V_OFFSET_NS), 1532 DEBUGFS_REG32(DC_WINBUF_UFLOW_STATUS), 1533 DEBUGFS_REG32(DC_WINBUF_AD_UFLOW_STATUS), 1534 DEBUGFS_REG32(DC_WINBUF_BD_UFLOW_STATUS), 1535 DEBUGFS_REG32(DC_WINBUF_CD_UFLOW_STATUS), 1536 }; 1537 1538 static int tegra_dc_show_regs(struct seq_file *s, void *data) 1539 { 1540 struct drm_info_node *node = s->private; 1541 struct tegra_dc *dc = node->info_ent->data; 1542 unsigned int i; 1543 int err = 0; 1544 1545 drm_modeset_lock(&dc->base.mutex, NULL); 1546 1547 if (!dc->base.state->active) { 1548 err = -EBUSY; 1549 goto unlock; 1550 } 1551 1552 for (i = 0; i < ARRAY_SIZE(tegra_dc_regs); i++) { 1553 unsigned int offset = tegra_dc_regs[i].offset; 1554 1555 seq_printf(s, "%-40s %#05x %08x\n", tegra_dc_regs[i].name, 1556 offset, tegra_dc_readl(dc, offset)); 1557 } 1558 1559 unlock: 1560 drm_modeset_unlock(&dc->base.mutex); 1561 return err; 1562 } 1563 1564 static int tegra_dc_show_crc(struct seq_file *s, void *data) 1565 { 1566 struct drm_info_node *node = s->private; 1567 struct tegra_dc *dc = node->info_ent->data; 1568 int err = 0; 1569 u32 value; 1570 1571 drm_modeset_lock(&dc->base.mutex, NULL); 1572 1573 if (!dc->base.state->active) { 1574 err = -EBUSY; 1575 goto unlock; 1576 } 1577 1578 value = DC_COM_CRC_CONTROL_ACTIVE_DATA | DC_COM_CRC_CONTROL_ENABLE; 1579 tegra_dc_writel(dc, value, DC_COM_CRC_CONTROL); 1580 tegra_dc_commit(dc); 1581 1582 drm_crtc_wait_one_vblank(&dc->base); 1583 drm_crtc_wait_one_vblank(&dc->base); 1584 1585 value = tegra_dc_readl(dc, DC_COM_CRC_CHECKSUM); 1586 seq_printf(s, "%08x\n", value); 1587 1588 tegra_dc_writel(dc, 0, DC_COM_CRC_CONTROL); 1589 1590 unlock: 1591 drm_modeset_unlock(&dc->base.mutex); 1592 return err; 1593 } 1594 1595 static int tegra_dc_show_stats(struct seq_file *s, void *data) 1596 { 1597 struct drm_info_node *node = s->private; 1598 struct tegra_dc *dc = node->info_ent->data; 1599 1600 seq_printf(s, "frames: %lu\n", dc->stats.frames); 1601 seq_printf(s, "vblank: %lu\n", dc->stats.vblank); 1602 seq_printf(s, "underflow: %lu\n", dc->stats.underflow); 1603 seq_printf(s, "overflow: %lu\n", dc->stats.overflow); 1604 1605 seq_printf(s, "frames total: %lu\n", dc->stats.frames_total); 1606 seq_printf(s, "vblank total: %lu\n", dc->stats.vblank_total); 1607 seq_printf(s, "underflow total: %lu\n", dc->stats.underflow_total); 1608 seq_printf(s, "overflow total: %lu\n", dc->stats.overflow_total); 1609 1610 return 0; 1611 } 1612 1613 static struct drm_info_list debugfs_files[] = { 1614 { "regs", tegra_dc_show_regs, 0, NULL }, 1615 { "crc", tegra_dc_show_crc, 0, NULL }, 1616 { "stats", tegra_dc_show_stats, 0, NULL }, 1617 }; 1618 1619 static int tegra_dc_late_register(struct drm_crtc *crtc) 1620 { 1621 unsigned int i, count = ARRAY_SIZE(debugfs_files); 1622 struct drm_minor *minor = crtc->dev->primary; 1623 struct dentry *root; 1624 struct tegra_dc *dc = to_tegra_dc(crtc); 1625 1626 #ifdef CONFIG_DEBUG_FS 1627 root = crtc->debugfs_entry; 1628 #else 1629 root = NULL; 1630 #endif 1631 1632 dc->debugfs_files = kmemdup(debugfs_files, sizeof(debugfs_files), 1633 GFP_KERNEL); 1634 if (!dc->debugfs_files) 1635 return -ENOMEM; 1636 1637 for (i = 0; i < count; i++) 1638 dc->debugfs_files[i].data = dc; 1639 1640 drm_debugfs_create_files(dc->debugfs_files, count, root, minor); 1641 1642 return 0; 1643 } 1644 1645 static void tegra_dc_early_unregister(struct drm_crtc *crtc) 1646 { 1647 unsigned int count = ARRAY_SIZE(debugfs_files); 1648 struct drm_minor *minor = crtc->dev->primary; 1649 struct tegra_dc *dc = to_tegra_dc(crtc); 1650 1651 drm_debugfs_remove_files(dc->debugfs_files, count, minor); 1652 kfree(dc->debugfs_files); 1653 dc->debugfs_files = NULL; 1654 } 1655 1656 static u32 tegra_dc_get_vblank_counter(struct drm_crtc *crtc) 1657 { 1658 struct tegra_dc *dc = to_tegra_dc(crtc); 1659 1660 /* XXX vblank syncpoints don't work with nvdisplay yet */ 1661 if (dc->syncpt && !dc->soc->has_nvdisplay) 1662 return host1x_syncpt_read(dc->syncpt); 1663 1664 /* fallback to software emulated VBLANK counter */ 1665 return (u32)drm_crtc_vblank_count(&dc->base); 1666 } 1667 1668 static int tegra_dc_enable_vblank(struct drm_crtc *crtc) 1669 { 1670 struct tegra_dc *dc = to_tegra_dc(crtc); 1671 u32 value; 1672 1673 value = tegra_dc_readl(dc, DC_CMD_INT_MASK); 1674 value |= VBLANK_INT; 1675 tegra_dc_writel(dc, value, DC_CMD_INT_MASK); 1676 1677 return 0; 1678 } 1679 1680 static void tegra_dc_disable_vblank(struct drm_crtc *crtc) 1681 { 1682 struct tegra_dc *dc = to_tegra_dc(crtc); 1683 u32 value; 1684 1685 value = tegra_dc_readl(dc, DC_CMD_INT_MASK); 1686 value &= ~VBLANK_INT; 1687 tegra_dc_writel(dc, value, DC_CMD_INT_MASK); 1688 } 1689 1690 static const struct drm_crtc_funcs tegra_crtc_funcs = { 1691 .page_flip = drm_atomic_helper_page_flip, 1692 .set_config = drm_atomic_helper_set_config, 1693 .destroy = tegra_dc_destroy, 1694 .reset = tegra_crtc_reset, 1695 .atomic_duplicate_state = tegra_crtc_atomic_duplicate_state, 1696 .atomic_destroy_state = tegra_crtc_atomic_destroy_state, 1697 .late_register = tegra_dc_late_register, 1698 .early_unregister = tegra_dc_early_unregister, 1699 .get_vblank_counter = tegra_dc_get_vblank_counter, 1700 .enable_vblank = tegra_dc_enable_vblank, 1701 .disable_vblank = tegra_dc_disable_vblank, 1702 }; 1703 1704 static int tegra_dc_set_timings(struct tegra_dc *dc, 1705 struct drm_display_mode *mode) 1706 { 1707 unsigned int h_ref_to_sync = 1; 1708 unsigned int v_ref_to_sync = 1; 1709 unsigned long value; 1710 1711 if (!dc->soc->has_nvdisplay) { 1712 tegra_dc_writel(dc, 0x0, DC_DISP_DISP_TIMING_OPTIONS); 1713 1714 value = (v_ref_to_sync << 16) | h_ref_to_sync; 1715 tegra_dc_writel(dc, value, DC_DISP_REF_TO_SYNC); 1716 } 1717 1718 value = ((mode->vsync_end - mode->vsync_start) << 16) | 1719 ((mode->hsync_end - mode->hsync_start) << 0); 1720 tegra_dc_writel(dc, value, DC_DISP_SYNC_WIDTH); 1721 1722 value = ((mode->vtotal - mode->vsync_end) << 16) | 1723 ((mode->htotal - mode->hsync_end) << 0); 1724 tegra_dc_writel(dc, value, DC_DISP_BACK_PORCH); 1725 1726 value = ((mode->vsync_start - mode->vdisplay) << 16) | 1727 ((mode->hsync_start - mode->hdisplay) << 0); 1728 tegra_dc_writel(dc, value, DC_DISP_FRONT_PORCH); 1729 1730 value = (mode->vdisplay << 16) | mode->hdisplay; 1731 tegra_dc_writel(dc, value, DC_DISP_ACTIVE); 1732 1733 return 0; 1734 } 1735 1736 /** 1737 * tegra_dc_state_setup_clock - check clock settings and store them in atomic 1738 * state 1739 * @dc: display controller 1740 * @crtc_state: CRTC atomic state 1741 * @clk: parent clock for display controller 1742 * @pclk: pixel clock 1743 * @div: shift clock divider 1744 * 1745 * Returns: 1746 * 0 on success or a negative error-code on failure. 1747 */ 1748 int tegra_dc_state_setup_clock(struct tegra_dc *dc, 1749 struct drm_crtc_state *crtc_state, 1750 struct clk *clk, unsigned long pclk, 1751 unsigned int div) 1752 { 1753 struct tegra_dc_state *state = to_dc_state(crtc_state); 1754 1755 if (!clk_has_parent(dc->clk, clk)) 1756 return -EINVAL; 1757 1758 state->clk = clk; 1759 state->pclk = pclk; 1760 state->div = div; 1761 1762 return 0; 1763 } 1764 1765 static void tegra_dc_commit_state(struct tegra_dc *dc, 1766 struct tegra_dc_state *state) 1767 { 1768 u32 value; 1769 int err; 1770 1771 err = clk_set_parent(dc->clk, state->clk); 1772 if (err < 0) 1773 dev_err(dc->dev, "failed to set parent clock: %d\n", err); 1774 1775 /* 1776 * Outputs may not want to change the parent clock rate. This is only 1777 * relevant to Tegra20 where only a single display PLL is available. 1778 * Since that PLL would typically be used for HDMI, an internal LVDS 1779 * panel would need to be driven by some other clock such as PLL_P 1780 * which is shared with other peripherals. Changing the clock rate 1781 * should therefore be avoided. 1782 */ 1783 if (state->pclk > 0) { 1784 err = clk_set_rate(state->clk, state->pclk); 1785 if (err < 0) 1786 dev_err(dc->dev, 1787 "failed to set clock rate to %lu Hz\n", 1788 state->pclk); 1789 1790 err = clk_set_rate(dc->clk, state->pclk); 1791 if (err < 0) 1792 dev_err(dc->dev, "failed to set clock %pC to %lu Hz: %d\n", 1793 dc->clk, state->pclk, err); 1794 } 1795 1796 DRM_DEBUG_KMS("rate: %lu, div: %u\n", clk_get_rate(dc->clk), 1797 state->div); 1798 DRM_DEBUG_KMS("pclk: %lu\n", state->pclk); 1799 1800 if (!dc->soc->has_nvdisplay) { 1801 value = SHIFT_CLK_DIVIDER(state->div) | PIXEL_CLK_DIVIDER_PCD1; 1802 tegra_dc_writel(dc, value, DC_DISP_DISP_CLOCK_CONTROL); 1803 } 1804 } 1805 1806 static void tegra_dc_stop(struct tegra_dc *dc) 1807 { 1808 u32 value; 1809 1810 /* stop the display controller */ 1811 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND); 1812 value &= ~DISP_CTRL_MODE_MASK; 1813 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND); 1814 1815 tegra_dc_commit(dc); 1816 } 1817 1818 static bool tegra_dc_idle(struct tegra_dc *dc) 1819 { 1820 u32 value; 1821 1822 value = tegra_dc_readl_active(dc, DC_CMD_DISPLAY_COMMAND); 1823 1824 return (value & DISP_CTRL_MODE_MASK) == 0; 1825 } 1826 1827 static int tegra_dc_wait_idle(struct tegra_dc *dc, unsigned long timeout) 1828 { 1829 timeout = jiffies + msecs_to_jiffies(timeout); 1830 1831 while (time_before(jiffies, timeout)) { 1832 if (tegra_dc_idle(dc)) 1833 return 0; 1834 1835 usleep_range(1000, 2000); 1836 } 1837 1838 dev_dbg(dc->dev, "timeout waiting for DC to become idle\n"); 1839 return -ETIMEDOUT; 1840 } 1841 1842 static void 1843 tegra_crtc_update_memory_bandwidth(struct drm_crtc *crtc, 1844 struct drm_atomic_state *state, 1845 bool prepare_bandwidth_transition) 1846 { 1847 const struct tegra_plane_state *old_tegra_state, *new_tegra_state; 1848 u32 i, new_avg_bw, old_avg_bw, new_peak_bw, old_peak_bw; 1849 const struct drm_plane_state *old_plane_state; 1850 const struct drm_crtc_state *old_crtc_state; 1851 struct tegra_dc_window window, old_window; 1852 struct tegra_dc *dc = to_tegra_dc(crtc); 1853 struct tegra_plane *tegra; 1854 struct drm_plane *plane; 1855 1856 if (dc->soc->has_nvdisplay) 1857 return; 1858 1859 old_crtc_state = drm_atomic_get_old_crtc_state(state, crtc); 1860 1861 if (!crtc->state->active) { 1862 if (!old_crtc_state->active) 1863 return; 1864 1865 /* 1866 * When CRTC is disabled on DPMS, the state of attached planes 1867 * is kept unchanged. Hence we need to enforce removal of the 1868 * bandwidths from the ICC paths. 1869 */ 1870 drm_atomic_crtc_for_each_plane(plane, crtc) { 1871 tegra = to_tegra_plane(plane); 1872 1873 icc_set_bw(tegra->icc_mem, 0, 0); 1874 icc_set_bw(tegra->icc_mem_vfilter, 0, 0); 1875 } 1876 1877 return; 1878 } 1879 1880 for_each_old_plane_in_state(old_crtc_state->state, plane, 1881 old_plane_state, i) { 1882 old_tegra_state = to_const_tegra_plane_state(old_plane_state); 1883 new_tegra_state = to_const_tegra_plane_state(plane->state); 1884 tegra = to_tegra_plane(plane); 1885 1886 /* 1887 * We're iterating over the global atomic state and it contains 1888 * planes from another CRTC, hence we need to filter out the 1889 * planes unrelated to this CRTC. 1890 */ 1891 if (tegra->dc != dc) 1892 continue; 1893 1894 new_avg_bw = new_tegra_state->avg_memory_bandwidth; 1895 old_avg_bw = old_tegra_state->avg_memory_bandwidth; 1896 1897 new_peak_bw = new_tegra_state->total_peak_memory_bandwidth; 1898 old_peak_bw = old_tegra_state->total_peak_memory_bandwidth; 1899 1900 /* 1901 * See the comment related to !crtc->state->active above, 1902 * which explains why bandwidths need to be updated when 1903 * CRTC is turning ON. 1904 */ 1905 if (new_avg_bw == old_avg_bw && new_peak_bw == old_peak_bw && 1906 old_crtc_state->active) 1907 continue; 1908 1909 window.src.h = drm_rect_height(&plane->state->src) >> 16; 1910 window.dst.h = drm_rect_height(&plane->state->dst); 1911 1912 old_window.src.h = drm_rect_height(&old_plane_state->src) >> 16; 1913 old_window.dst.h = drm_rect_height(&old_plane_state->dst); 1914 1915 /* 1916 * During the preparation phase (atomic_begin), the memory 1917 * freq should go high before the DC changes are committed 1918 * if bandwidth requirement goes up, otherwise memory freq 1919 * should to stay high if BW requirement goes down. The 1920 * opposite applies to the completion phase (post_commit). 1921 */ 1922 if (prepare_bandwidth_transition) { 1923 new_avg_bw = max(old_avg_bw, new_avg_bw); 1924 new_peak_bw = max(old_peak_bw, new_peak_bw); 1925 1926 if (tegra_plane_use_vertical_filtering(tegra, &old_window)) 1927 window = old_window; 1928 } 1929 1930 icc_set_bw(tegra->icc_mem, new_avg_bw, new_peak_bw); 1931 1932 if (tegra_plane_use_vertical_filtering(tegra, &window)) 1933 icc_set_bw(tegra->icc_mem_vfilter, new_avg_bw, new_peak_bw); 1934 else 1935 icc_set_bw(tegra->icc_mem_vfilter, 0, 0); 1936 } 1937 } 1938 1939 static void tegra_crtc_atomic_disable(struct drm_crtc *crtc, 1940 struct drm_atomic_state *state) 1941 { 1942 struct tegra_dc *dc = to_tegra_dc(crtc); 1943 u32 value; 1944 int err; 1945 1946 if (!tegra_dc_idle(dc)) { 1947 tegra_dc_stop(dc); 1948 1949 /* 1950 * Ignore the return value, there isn't anything useful to do 1951 * in case this fails. 1952 */ 1953 tegra_dc_wait_idle(dc, 100); 1954 } 1955 1956 /* 1957 * This should really be part of the RGB encoder driver, but clearing 1958 * these bits has the side-effect of stopping the display controller. 1959 * When that happens no VBLANK interrupts will be raised. At the same 1960 * time the encoder is disabled before the display controller, so the 1961 * above code is always going to timeout waiting for the controller 1962 * to go idle. 1963 * 1964 * Given the close coupling between the RGB encoder and the display 1965 * controller doing it here is still kind of okay. None of the other 1966 * encoder drivers require these bits to be cleared. 1967 * 1968 * XXX: Perhaps given that the display controller is switched off at 1969 * this point anyway maybe clearing these bits isn't even useful for 1970 * the RGB encoder? 1971 */ 1972 if (dc->rgb) { 1973 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL); 1974 value &= ~(PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE | 1975 PW4_ENABLE | PM0_ENABLE | PM1_ENABLE); 1976 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL); 1977 } 1978 1979 tegra_dc_stats_reset(&dc->stats); 1980 drm_crtc_vblank_off(crtc); 1981 1982 spin_lock_irq(&crtc->dev->event_lock); 1983 1984 if (crtc->state->event) { 1985 drm_crtc_send_vblank_event(crtc, crtc->state->event); 1986 crtc->state->event = NULL; 1987 } 1988 1989 spin_unlock_irq(&crtc->dev->event_lock); 1990 1991 err = host1x_client_suspend(&dc->client); 1992 if (err < 0) 1993 dev_err(dc->dev, "failed to suspend: %d\n", err); 1994 } 1995 1996 static void tegra_crtc_atomic_enable(struct drm_crtc *crtc, 1997 struct drm_atomic_state *state) 1998 { 1999 struct drm_display_mode *mode = &crtc->state->adjusted_mode; 2000 struct tegra_dc_state *crtc_state = to_dc_state(crtc->state); 2001 struct tegra_dc *dc = to_tegra_dc(crtc); 2002 u32 value; 2003 int err; 2004 2005 err = host1x_client_resume(&dc->client); 2006 if (err < 0) { 2007 dev_err(dc->dev, "failed to resume: %d\n", err); 2008 return; 2009 } 2010 2011 /* initialize display controller */ 2012 if (dc->syncpt) { 2013 u32 syncpt = host1x_syncpt_id(dc->syncpt), enable; 2014 2015 if (dc->soc->has_nvdisplay) 2016 enable = 1 << 31; 2017 else 2018 enable = 1 << 8; 2019 2020 value = SYNCPT_CNTRL_NO_STALL; 2021 tegra_dc_writel(dc, value, DC_CMD_GENERAL_INCR_SYNCPT_CNTRL); 2022 2023 value = enable | syncpt; 2024 tegra_dc_writel(dc, value, DC_CMD_CONT_SYNCPT_VSYNC); 2025 } 2026 2027 if (dc->soc->has_nvdisplay) { 2028 value = DSC_TO_UF_INT | DSC_BBUF_UF_INT | DSC_RBUF_UF_INT | 2029 DSC_OBUF_UF_INT; 2030 tegra_dc_writel(dc, value, DC_CMD_INT_TYPE); 2031 2032 value = DSC_TO_UF_INT | DSC_BBUF_UF_INT | DSC_RBUF_UF_INT | 2033 DSC_OBUF_UF_INT | SD3_BUCKET_WALK_DONE_INT | 2034 HEAD_UF_INT | MSF_INT | REG_TMOUT_INT | 2035 REGION_CRC_INT | V_PULSE2_INT | V_PULSE3_INT | 2036 VBLANK_INT | FRAME_END_INT; 2037 tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY); 2038 2039 value = SD3_BUCKET_WALK_DONE_INT | HEAD_UF_INT | VBLANK_INT | 2040 FRAME_END_INT; 2041 tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE); 2042 2043 value = HEAD_UF_INT | REG_TMOUT_INT | FRAME_END_INT; 2044 tegra_dc_writel(dc, value, DC_CMD_INT_MASK); 2045 2046 tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS); 2047 } else { 2048 value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT | 2049 WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT; 2050 tegra_dc_writel(dc, value, DC_CMD_INT_TYPE); 2051 2052 value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT | 2053 WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT; 2054 tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY); 2055 2056 /* initialize timer */ 2057 value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(0x20) | 2058 WINDOW_B_THRESHOLD(0x20) | WINDOW_C_THRESHOLD(0x20); 2059 tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY); 2060 2061 value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(1) | 2062 WINDOW_B_THRESHOLD(1) | WINDOW_C_THRESHOLD(1); 2063 tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER); 2064 2065 value = VBLANK_INT | WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT | 2066 WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT; 2067 tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE); 2068 2069 value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT | 2070 WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT; 2071 tegra_dc_writel(dc, value, DC_CMD_INT_MASK); 2072 } 2073 2074 if (dc->soc->supports_background_color) 2075 tegra_dc_writel(dc, 0, DC_DISP_BLEND_BACKGROUND_COLOR); 2076 else 2077 tegra_dc_writel(dc, 0, DC_DISP_BORDER_COLOR); 2078 2079 /* apply PLL and pixel clock changes */ 2080 tegra_dc_commit_state(dc, crtc_state); 2081 2082 /* program display mode */ 2083 tegra_dc_set_timings(dc, mode); 2084 2085 /* interlacing isn't supported yet, so disable it */ 2086 if (dc->soc->supports_interlacing) { 2087 value = tegra_dc_readl(dc, DC_DISP_INTERLACE_CONTROL); 2088 value &= ~INTERLACE_ENABLE; 2089 tegra_dc_writel(dc, value, DC_DISP_INTERLACE_CONTROL); 2090 } 2091 2092 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND); 2093 value &= ~DISP_CTRL_MODE_MASK; 2094 value |= DISP_CTRL_MODE_C_DISPLAY; 2095 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND); 2096 2097 if (!dc->soc->has_nvdisplay) { 2098 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL); 2099 value |= PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE | 2100 PW4_ENABLE | PM0_ENABLE | PM1_ENABLE; 2101 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL); 2102 } 2103 2104 /* enable underflow reporting and display red for missing pixels */ 2105 if (dc->soc->has_nvdisplay) { 2106 value = UNDERFLOW_MODE_RED | UNDERFLOW_REPORT_ENABLE; 2107 tegra_dc_writel(dc, value, DC_COM_RG_UNDERFLOW); 2108 } 2109 2110 tegra_dc_commit(dc); 2111 2112 drm_crtc_vblank_on(crtc); 2113 } 2114 2115 static void tegra_crtc_atomic_begin(struct drm_crtc *crtc, 2116 struct drm_atomic_state *state) 2117 { 2118 unsigned long flags; 2119 2120 tegra_crtc_update_memory_bandwidth(crtc, state, true); 2121 2122 if (crtc->state->event) { 2123 spin_lock_irqsave(&crtc->dev->event_lock, flags); 2124 2125 if (drm_crtc_vblank_get(crtc) != 0) 2126 drm_crtc_send_vblank_event(crtc, crtc->state->event); 2127 else 2128 drm_crtc_arm_vblank_event(crtc, crtc->state->event); 2129 2130 spin_unlock_irqrestore(&crtc->dev->event_lock, flags); 2131 2132 crtc->state->event = NULL; 2133 } 2134 } 2135 2136 static void tegra_crtc_atomic_flush(struct drm_crtc *crtc, 2137 struct drm_atomic_state *state) 2138 { 2139 struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state, 2140 crtc); 2141 struct tegra_dc_state *dc_state = to_dc_state(crtc_state); 2142 struct tegra_dc *dc = to_tegra_dc(crtc); 2143 u32 value; 2144 2145 value = dc_state->planes << 8 | GENERAL_UPDATE; 2146 tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL); 2147 value = tegra_dc_readl(dc, DC_CMD_STATE_CONTROL); 2148 2149 value = dc_state->planes | GENERAL_ACT_REQ; 2150 tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL); 2151 value = tegra_dc_readl(dc, DC_CMD_STATE_CONTROL); 2152 } 2153 2154 static bool tegra_plane_is_cursor(const struct drm_plane_state *state) 2155 { 2156 const struct tegra_dc_soc_info *soc = to_tegra_dc(state->crtc)->soc; 2157 const struct drm_format_info *fmt = state->fb->format; 2158 unsigned int src_w = drm_rect_width(&state->src) >> 16; 2159 unsigned int dst_w = drm_rect_width(&state->dst); 2160 2161 if (state->plane->type != DRM_PLANE_TYPE_CURSOR) 2162 return false; 2163 2164 if (soc->supports_cursor) 2165 return true; 2166 2167 if (src_w != dst_w || fmt->num_planes != 1 || src_w * fmt->cpp[0] > 256) 2168 return false; 2169 2170 return true; 2171 } 2172 2173 static unsigned long 2174 tegra_plane_overlap_mask(struct drm_crtc_state *state, 2175 const struct drm_plane_state *plane_state) 2176 { 2177 const struct drm_plane_state *other_state; 2178 const struct tegra_plane *tegra; 2179 unsigned long overlap_mask = 0; 2180 struct drm_plane *plane; 2181 struct drm_rect rect; 2182 2183 if (!plane_state->visible || !plane_state->fb) 2184 return 0; 2185 2186 /* 2187 * Data-prefetch FIFO will easily help to overcome temporal memory 2188 * pressure if other plane overlaps with the cursor plane. 2189 */ 2190 if (tegra_plane_is_cursor(plane_state)) 2191 return 0; 2192 2193 drm_atomic_crtc_state_for_each_plane_state(plane, other_state, state) { 2194 rect = plane_state->dst; 2195 2196 tegra = to_tegra_plane(other_state->plane); 2197 2198 if (!other_state->visible || !other_state->fb) 2199 continue; 2200 2201 /* 2202 * Ignore cursor plane overlaps because it's not practical to 2203 * assume that it contributes to the bandwidth in overlapping 2204 * area if window width is small. 2205 */ 2206 if (tegra_plane_is_cursor(other_state)) 2207 continue; 2208 2209 if (drm_rect_intersect(&rect, &other_state->dst)) 2210 overlap_mask |= BIT(tegra->index); 2211 } 2212 2213 return overlap_mask; 2214 } 2215 2216 static int tegra_crtc_calculate_memory_bandwidth(struct drm_crtc *crtc, 2217 struct drm_atomic_state *state) 2218 { 2219 ulong overlap_mask[TEGRA_DC_LEGACY_PLANES_NUM] = {}, mask; 2220 u32 plane_peak_bw[TEGRA_DC_LEGACY_PLANES_NUM] = {}; 2221 bool all_planes_overlap_simultaneously = true; 2222 const struct tegra_plane_state *tegra_state; 2223 const struct drm_plane_state *plane_state; 2224 struct tegra_dc *dc = to_tegra_dc(crtc); 2225 const struct drm_crtc_state *old_state; 2226 struct drm_crtc_state *new_state; 2227 struct tegra_plane *tegra; 2228 struct drm_plane *plane; 2229 2230 /* 2231 * The nv-display uses shared planes. The algorithm below assumes 2232 * maximum 3 planes per-CRTC, this assumption isn't applicable to 2233 * the nv-display. Note that T124 support has additional windows, 2234 * but currently they aren't supported by the driver. 2235 */ 2236 if (dc->soc->has_nvdisplay) 2237 return 0; 2238 2239 new_state = drm_atomic_get_new_crtc_state(state, crtc); 2240 old_state = drm_atomic_get_old_crtc_state(state, crtc); 2241 2242 /* 2243 * For overlapping planes pixel's data is fetched for each plane at 2244 * the same time, hence bandwidths are accumulated in this case. 2245 * This needs to be taken into account for calculating total bandwidth 2246 * consumed by all planes. 2247 * 2248 * Here we get the overlapping state of each plane, which is a 2249 * bitmask of plane indices telling with what planes there is an 2250 * overlap. Note that bitmask[plane] includes BIT(plane) in order 2251 * to make further code nicer and simpler. 2252 */ 2253 drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, new_state) { 2254 tegra_state = to_const_tegra_plane_state(plane_state); 2255 tegra = to_tegra_plane(plane); 2256 2257 if (WARN_ON_ONCE(tegra->index >= TEGRA_DC_LEGACY_PLANES_NUM)) 2258 return -EINVAL; 2259 2260 plane_peak_bw[tegra->index] = tegra_state->peak_memory_bandwidth; 2261 mask = tegra_plane_overlap_mask(new_state, plane_state); 2262 overlap_mask[tegra->index] = mask; 2263 2264 if (hweight_long(mask) != 3) 2265 all_planes_overlap_simultaneously = false; 2266 } 2267 2268 /* 2269 * Then we calculate maximum bandwidth of each plane state. 2270 * The bandwidth includes the plane BW + BW of the "simultaneously" 2271 * overlapping planes, where "simultaneously" means areas where DC 2272 * fetches from the planes simultaneously during of scan-out process. 2273 * 2274 * For example, if plane A overlaps with planes B and C, but B and C 2275 * don't overlap, then the peak bandwidth will be either in area where 2276 * A-and-B or A-and-C planes overlap. 2277 * 2278 * The plane_peak_bw[] contains peak memory bandwidth values of 2279 * each plane, this information is needed by interconnect provider 2280 * in order to set up latency allowance based on the peak BW, see 2281 * tegra_crtc_update_memory_bandwidth(). 2282 */ 2283 drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, new_state) { 2284 u32 i, old_peak_bw, new_peak_bw, overlap_bw = 0; 2285 2286 /* 2287 * Note that plane's atomic check doesn't touch the 2288 * total_peak_memory_bandwidth of enabled plane, hence the 2289 * current state contains the old bandwidth state from the 2290 * previous CRTC commit. 2291 */ 2292 tegra_state = to_const_tegra_plane_state(plane_state); 2293 tegra = to_tegra_plane(plane); 2294 2295 for_each_set_bit(i, &overlap_mask[tegra->index], 3) { 2296 if (i == tegra->index) 2297 continue; 2298 2299 if (all_planes_overlap_simultaneously) 2300 overlap_bw += plane_peak_bw[i]; 2301 else 2302 overlap_bw = max(overlap_bw, plane_peak_bw[i]); 2303 } 2304 2305 new_peak_bw = plane_peak_bw[tegra->index] + overlap_bw; 2306 old_peak_bw = tegra_state->total_peak_memory_bandwidth; 2307 2308 /* 2309 * If plane's peak bandwidth changed (for example plane isn't 2310 * overlapped anymore) and plane isn't in the atomic state, 2311 * then add plane to the state in order to have the bandwidth 2312 * updated. 2313 */ 2314 if (old_peak_bw != new_peak_bw) { 2315 struct tegra_plane_state *new_tegra_state; 2316 struct drm_plane_state *new_plane_state; 2317 2318 new_plane_state = drm_atomic_get_plane_state(state, plane); 2319 if (IS_ERR(new_plane_state)) 2320 return PTR_ERR(new_plane_state); 2321 2322 new_tegra_state = to_tegra_plane_state(new_plane_state); 2323 new_tegra_state->total_peak_memory_bandwidth = new_peak_bw; 2324 } 2325 } 2326 2327 return 0; 2328 } 2329 2330 static int tegra_crtc_atomic_check(struct drm_crtc *crtc, 2331 struct drm_atomic_state *state) 2332 { 2333 int err; 2334 2335 err = tegra_crtc_calculate_memory_bandwidth(crtc, state); 2336 if (err) 2337 return err; 2338 2339 return 0; 2340 } 2341 2342 void tegra_crtc_atomic_post_commit(struct drm_crtc *crtc, 2343 struct drm_atomic_state *state) 2344 { 2345 /* 2346 * Display bandwidth is allowed to go down only once hardware state 2347 * is known to be armed, i.e. state was committed and VBLANK event 2348 * received. 2349 */ 2350 tegra_crtc_update_memory_bandwidth(crtc, state, false); 2351 } 2352 2353 static const struct drm_crtc_helper_funcs tegra_crtc_helper_funcs = { 2354 .atomic_check = tegra_crtc_atomic_check, 2355 .atomic_begin = tegra_crtc_atomic_begin, 2356 .atomic_flush = tegra_crtc_atomic_flush, 2357 .atomic_enable = tegra_crtc_atomic_enable, 2358 .atomic_disable = tegra_crtc_atomic_disable, 2359 }; 2360 2361 static irqreturn_t tegra_dc_irq(int irq, void *data) 2362 { 2363 struct tegra_dc *dc = data; 2364 unsigned long status; 2365 2366 status = tegra_dc_readl(dc, DC_CMD_INT_STATUS); 2367 tegra_dc_writel(dc, status, DC_CMD_INT_STATUS); 2368 2369 if (status & FRAME_END_INT) { 2370 /* 2371 dev_dbg(dc->dev, "%s(): frame end\n", __func__); 2372 */ 2373 dc->stats.frames_total++; 2374 dc->stats.frames++; 2375 } 2376 2377 if (status & VBLANK_INT) { 2378 /* 2379 dev_dbg(dc->dev, "%s(): vertical blank\n", __func__); 2380 */ 2381 drm_crtc_handle_vblank(&dc->base); 2382 dc->stats.vblank_total++; 2383 dc->stats.vblank++; 2384 } 2385 2386 if (status & (WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT)) { 2387 /* 2388 dev_dbg(dc->dev, "%s(): underflow\n", __func__); 2389 */ 2390 dc->stats.underflow_total++; 2391 dc->stats.underflow++; 2392 } 2393 2394 if (status & (WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT)) { 2395 /* 2396 dev_dbg(dc->dev, "%s(): overflow\n", __func__); 2397 */ 2398 dc->stats.overflow_total++; 2399 dc->stats.overflow++; 2400 } 2401 2402 if (status & HEAD_UF_INT) { 2403 dev_dbg_ratelimited(dc->dev, "%s(): head underflow\n", __func__); 2404 dc->stats.underflow_total++; 2405 dc->stats.underflow++; 2406 } 2407 2408 return IRQ_HANDLED; 2409 } 2410 2411 static bool tegra_dc_has_window_groups(struct tegra_dc *dc) 2412 { 2413 unsigned int i; 2414 2415 if (!dc->soc->wgrps) 2416 return true; 2417 2418 for (i = 0; i < dc->soc->num_wgrps; i++) { 2419 const struct tegra_windowgroup_soc *wgrp = &dc->soc->wgrps[i]; 2420 2421 if (wgrp->dc == dc->pipe && wgrp->num_windows > 0) 2422 return true; 2423 } 2424 2425 return false; 2426 } 2427 2428 static int tegra_dc_early_init(struct host1x_client *client) 2429 { 2430 struct drm_device *drm = dev_get_drvdata(client->host); 2431 struct tegra_drm *tegra = drm->dev_private; 2432 2433 tegra->num_crtcs++; 2434 2435 return 0; 2436 } 2437 2438 static int tegra_dc_init(struct host1x_client *client) 2439 { 2440 struct drm_device *drm = dev_get_drvdata(client->host); 2441 unsigned long flags = HOST1X_SYNCPT_CLIENT_MANAGED; 2442 struct tegra_dc *dc = host1x_client_to_dc(client); 2443 struct tegra_drm *tegra = drm->dev_private; 2444 struct drm_plane *primary = NULL; 2445 struct drm_plane *cursor = NULL; 2446 int err; 2447 2448 /* 2449 * DC has been reset by now, so VBLANK syncpoint can be released 2450 * for general use. 2451 */ 2452 host1x_syncpt_release_vblank_reservation(client, 26 + dc->pipe); 2453 2454 /* 2455 * XXX do not register DCs with no window groups because we cannot 2456 * assign a primary plane to them, which in turn will cause KMS to 2457 * crash. 2458 */ 2459 if (!tegra_dc_has_window_groups(dc)) 2460 return 0; 2461 2462 /* 2463 * Set the display hub as the host1x client parent for the display 2464 * controller. This is needed for the runtime reference counting that 2465 * ensures the display hub is always powered when any of the display 2466 * controllers are. 2467 */ 2468 if (dc->soc->has_nvdisplay) 2469 client->parent = &tegra->hub->client; 2470 2471 dc->syncpt = host1x_syncpt_request(client, flags); 2472 if (!dc->syncpt) 2473 dev_warn(dc->dev, "failed to allocate syncpoint\n"); 2474 2475 err = host1x_client_iommu_attach(client); 2476 if (err < 0 && err != -ENODEV) { 2477 dev_err(client->dev, "failed to attach to domain: %d\n", err); 2478 return err; 2479 } 2480 2481 if (dc->soc->wgrps) 2482 primary = tegra_dc_add_shared_planes(drm, dc); 2483 else 2484 primary = tegra_dc_add_planes(drm, dc); 2485 2486 if (IS_ERR(primary)) { 2487 err = PTR_ERR(primary); 2488 goto cleanup; 2489 } 2490 2491 if (dc->soc->supports_cursor) { 2492 cursor = tegra_dc_cursor_plane_create(drm, dc); 2493 if (IS_ERR(cursor)) { 2494 err = PTR_ERR(cursor); 2495 goto cleanup; 2496 } 2497 } else { 2498 /* dedicate one overlay to mouse cursor */ 2499 cursor = tegra_dc_overlay_plane_create(drm, dc, 2, true); 2500 if (IS_ERR(cursor)) { 2501 err = PTR_ERR(cursor); 2502 goto cleanup; 2503 } 2504 } 2505 2506 err = drm_crtc_init_with_planes(drm, &dc->base, primary, cursor, 2507 &tegra_crtc_funcs, NULL); 2508 if (err < 0) 2509 goto cleanup; 2510 2511 drm_crtc_helper_add(&dc->base, &tegra_crtc_helper_funcs); 2512 2513 /* 2514 * Keep track of the minimum pitch alignment across all display 2515 * controllers. 2516 */ 2517 if (dc->soc->pitch_align > tegra->pitch_align) 2518 tegra->pitch_align = dc->soc->pitch_align; 2519 2520 /* track maximum resolution */ 2521 if (dc->soc->has_nvdisplay) 2522 drm->mode_config.max_width = drm->mode_config.max_height = 16384; 2523 else 2524 drm->mode_config.max_width = drm->mode_config.max_height = 4096; 2525 2526 err = tegra_dc_rgb_init(drm, dc); 2527 if (err < 0 && err != -ENODEV) { 2528 dev_err(dc->dev, "failed to initialize RGB output: %d\n", err); 2529 goto cleanup; 2530 } 2531 2532 err = devm_request_irq(dc->dev, dc->irq, tegra_dc_irq, 0, 2533 dev_name(dc->dev), dc); 2534 if (err < 0) { 2535 dev_err(dc->dev, "failed to request IRQ#%u: %d\n", dc->irq, 2536 err); 2537 goto cleanup; 2538 } 2539 2540 /* 2541 * Inherit the DMA parameters (such as maximum segment size) from the 2542 * parent host1x device. 2543 */ 2544 client->dev->dma_parms = client->host->dma_parms; 2545 2546 return 0; 2547 2548 cleanup: 2549 if (!IS_ERR_OR_NULL(cursor)) 2550 drm_plane_cleanup(cursor); 2551 2552 if (!IS_ERR(primary)) 2553 drm_plane_cleanup(primary); 2554 2555 host1x_client_iommu_detach(client); 2556 host1x_syncpt_put(dc->syncpt); 2557 2558 return err; 2559 } 2560 2561 static int tegra_dc_exit(struct host1x_client *client) 2562 { 2563 struct tegra_dc *dc = host1x_client_to_dc(client); 2564 int err; 2565 2566 if (!tegra_dc_has_window_groups(dc)) 2567 return 0; 2568 2569 /* avoid a dangling pointer just in case this disappears */ 2570 client->dev->dma_parms = NULL; 2571 2572 devm_free_irq(dc->dev, dc->irq, dc); 2573 2574 err = tegra_dc_rgb_exit(dc); 2575 if (err) { 2576 dev_err(dc->dev, "failed to shutdown RGB output: %d\n", err); 2577 return err; 2578 } 2579 2580 host1x_client_iommu_detach(client); 2581 host1x_syncpt_put(dc->syncpt); 2582 2583 return 0; 2584 } 2585 2586 static int tegra_dc_late_exit(struct host1x_client *client) 2587 { 2588 struct drm_device *drm = dev_get_drvdata(client->host); 2589 struct tegra_drm *tegra = drm->dev_private; 2590 2591 tegra->num_crtcs--; 2592 2593 return 0; 2594 } 2595 2596 static int tegra_dc_runtime_suspend(struct host1x_client *client) 2597 { 2598 struct tegra_dc *dc = host1x_client_to_dc(client); 2599 struct device *dev = client->dev; 2600 int err; 2601 2602 err = reset_control_assert(dc->rst); 2603 if (err < 0) { 2604 dev_err(dev, "failed to assert reset: %d\n", err); 2605 return err; 2606 } 2607 2608 if (dc->soc->has_powergate) 2609 tegra_powergate_power_off(dc->powergate); 2610 2611 clk_disable_unprepare(dc->clk); 2612 pm_runtime_put_sync(dev); 2613 2614 return 0; 2615 } 2616 2617 static int tegra_dc_runtime_resume(struct host1x_client *client) 2618 { 2619 struct tegra_dc *dc = host1x_client_to_dc(client); 2620 struct device *dev = client->dev; 2621 int err; 2622 2623 err = pm_runtime_resume_and_get(dev); 2624 if (err < 0) { 2625 dev_err(dev, "failed to get runtime PM: %d\n", err); 2626 return err; 2627 } 2628 2629 if (dc->soc->has_powergate) { 2630 err = tegra_powergate_sequence_power_up(dc->powergate, dc->clk, 2631 dc->rst); 2632 if (err < 0) { 2633 dev_err(dev, "failed to power partition: %d\n", err); 2634 goto put_rpm; 2635 } 2636 } else { 2637 err = clk_prepare_enable(dc->clk); 2638 if (err < 0) { 2639 dev_err(dev, "failed to enable clock: %d\n", err); 2640 goto put_rpm; 2641 } 2642 2643 err = reset_control_deassert(dc->rst); 2644 if (err < 0) { 2645 dev_err(dev, "failed to deassert reset: %d\n", err); 2646 goto disable_clk; 2647 } 2648 } 2649 2650 return 0; 2651 2652 disable_clk: 2653 clk_disable_unprepare(dc->clk); 2654 put_rpm: 2655 pm_runtime_put_sync(dev); 2656 return err; 2657 } 2658 2659 static const struct host1x_client_ops dc_client_ops = { 2660 .early_init = tegra_dc_early_init, 2661 .init = tegra_dc_init, 2662 .exit = tegra_dc_exit, 2663 .late_exit = tegra_dc_late_exit, 2664 .suspend = tegra_dc_runtime_suspend, 2665 .resume = tegra_dc_runtime_resume, 2666 }; 2667 2668 static const struct tegra_dc_soc_info tegra20_dc_soc_info = { 2669 .supports_background_color = false, 2670 .supports_interlacing = false, 2671 .supports_cursor = false, 2672 .supports_block_linear = false, 2673 .supports_sector_layout = false, 2674 .has_legacy_blending = true, 2675 .pitch_align = 8, 2676 .has_powergate = false, 2677 .coupled_pm = true, 2678 .has_nvdisplay = false, 2679 .num_primary_formats = ARRAY_SIZE(tegra20_primary_formats), 2680 .primary_formats = tegra20_primary_formats, 2681 .num_overlay_formats = ARRAY_SIZE(tegra20_overlay_formats), 2682 .overlay_formats = tegra20_overlay_formats, 2683 .modifiers = tegra20_modifiers, 2684 .has_win_a_without_filters = true, 2685 .has_win_b_vfilter_mem_client = true, 2686 .has_win_c_without_vert_filter = true, 2687 .plane_tiled_memory_bandwidth_x2 = false, 2688 }; 2689 2690 static const struct tegra_dc_soc_info tegra30_dc_soc_info = { 2691 .supports_background_color = false, 2692 .supports_interlacing = false, 2693 .supports_cursor = false, 2694 .supports_block_linear = false, 2695 .supports_sector_layout = false, 2696 .has_legacy_blending = true, 2697 .pitch_align = 8, 2698 .has_powergate = false, 2699 .coupled_pm = false, 2700 .has_nvdisplay = false, 2701 .num_primary_formats = ARRAY_SIZE(tegra20_primary_formats), 2702 .primary_formats = tegra20_primary_formats, 2703 .num_overlay_formats = ARRAY_SIZE(tegra20_overlay_formats), 2704 .overlay_formats = tegra20_overlay_formats, 2705 .modifiers = tegra20_modifiers, 2706 .has_win_a_without_filters = false, 2707 .has_win_b_vfilter_mem_client = true, 2708 .has_win_c_without_vert_filter = false, 2709 .plane_tiled_memory_bandwidth_x2 = true, 2710 }; 2711 2712 static const struct tegra_dc_soc_info tegra114_dc_soc_info = { 2713 .supports_background_color = false, 2714 .supports_interlacing = false, 2715 .supports_cursor = false, 2716 .supports_block_linear = false, 2717 .supports_sector_layout = false, 2718 .has_legacy_blending = true, 2719 .pitch_align = 64, 2720 .has_powergate = true, 2721 .coupled_pm = false, 2722 .has_nvdisplay = false, 2723 .num_primary_formats = ARRAY_SIZE(tegra114_primary_formats), 2724 .primary_formats = tegra114_primary_formats, 2725 .num_overlay_formats = ARRAY_SIZE(tegra114_overlay_formats), 2726 .overlay_formats = tegra114_overlay_formats, 2727 .modifiers = tegra20_modifiers, 2728 .has_win_a_without_filters = false, 2729 .has_win_b_vfilter_mem_client = false, 2730 .has_win_c_without_vert_filter = false, 2731 .plane_tiled_memory_bandwidth_x2 = true, 2732 }; 2733 2734 static const struct tegra_dc_soc_info tegra124_dc_soc_info = { 2735 .supports_background_color = true, 2736 .supports_interlacing = true, 2737 .supports_cursor = true, 2738 .supports_block_linear = true, 2739 .supports_sector_layout = false, 2740 .has_legacy_blending = false, 2741 .pitch_align = 64, 2742 .has_powergate = true, 2743 .coupled_pm = false, 2744 .has_nvdisplay = false, 2745 .num_primary_formats = ARRAY_SIZE(tegra124_primary_formats), 2746 .primary_formats = tegra124_primary_formats, 2747 .num_overlay_formats = ARRAY_SIZE(tegra124_overlay_formats), 2748 .overlay_formats = tegra124_overlay_formats, 2749 .modifiers = tegra124_modifiers, 2750 .has_win_a_without_filters = false, 2751 .has_win_b_vfilter_mem_client = false, 2752 .has_win_c_without_vert_filter = false, 2753 .plane_tiled_memory_bandwidth_x2 = false, 2754 }; 2755 2756 static const struct tegra_dc_soc_info tegra210_dc_soc_info = { 2757 .supports_background_color = true, 2758 .supports_interlacing = true, 2759 .supports_cursor = true, 2760 .supports_block_linear = true, 2761 .supports_sector_layout = false, 2762 .has_legacy_blending = false, 2763 .pitch_align = 64, 2764 .has_powergate = true, 2765 .coupled_pm = false, 2766 .has_nvdisplay = false, 2767 .num_primary_formats = ARRAY_SIZE(tegra114_primary_formats), 2768 .primary_formats = tegra114_primary_formats, 2769 .num_overlay_formats = ARRAY_SIZE(tegra114_overlay_formats), 2770 .overlay_formats = tegra114_overlay_formats, 2771 .modifiers = tegra124_modifiers, 2772 .has_win_a_without_filters = false, 2773 .has_win_b_vfilter_mem_client = false, 2774 .has_win_c_without_vert_filter = false, 2775 .plane_tiled_memory_bandwidth_x2 = false, 2776 }; 2777 2778 static const struct tegra_windowgroup_soc tegra186_dc_wgrps[] = { 2779 { 2780 .index = 0, 2781 .dc = 0, 2782 .windows = (const unsigned int[]) { 0 }, 2783 .num_windows = 1, 2784 }, { 2785 .index = 1, 2786 .dc = 1, 2787 .windows = (const unsigned int[]) { 1 }, 2788 .num_windows = 1, 2789 }, { 2790 .index = 2, 2791 .dc = 1, 2792 .windows = (const unsigned int[]) { 2 }, 2793 .num_windows = 1, 2794 }, { 2795 .index = 3, 2796 .dc = 2, 2797 .windows = (const unsigned int[]) { 3 }, 2798 .num_windows = 1, 2799 }, { 2800 .index = 4, 2801 .dc = 2, 2802 .windows = (const unsigned int[]) { 4 }, 2803 .num_windows = 1, 2804 }, { 2805 .index = 5, 2806 .dc = 2, 2807 .windows = (const unsigned int[]) { 5 }, 2808 .num_windows = 1, 2809 }, 2810 }; 2811 2812 static const struct tegra_dc_soc_info tegra186_dc_soc_info = { 2813 .supports_background_color = true, 2814 .supports_interlacing = true, 2815 .supports_cursor = true, 2816 .supports_block_linear = true, 2817 .supports_sector_layout = false, 2818 .has_legacy_blending = false, 2819 .pitch_align = 64, 2820 .has_powergate = false, 2821 .coupled_pm = false, 2822 .has_nvdisplay = true, 2823 .wgrps = tegra186_dc_wgrps, 2824 .num_wgrps = ARRAY_SIZE(tegra186_dc_wgrps), 2825 .plane_tiled_memory_bandwidth_x2 = false, 2826 }; 2827 2828 static const struct tegra_windowgroup_soc tegra194_dc_wgrps[] = { 2829 { 2830 .index = 0, 2831 .dc = 0, 2832 .windows = (const unsigned int[]) { 0 }, 2833 .num_windows = 1, 2834 }, { 2835 .index = 1, 2836 .dc = 1, 2837 .windows = (const unsigned int[]) { 1 }, 2838 .num_windows = 1, 2839 }, { 2840 .index = 2, 2841 .dc = 1, 2842 .windows = (const unsigned int[]) { 2 }, 2843 .num_windows = 1, 2844 }, { 2845 .index = 3, 2846 .dc = 2, 2847 .windows = (const unsigned int[]) { 3 }, 2848 .num_windows = 1, 2849 }, { 2850 .index = 4, 2851 .dc = 2, 2852 .windows = (const unsigned int[]) { 4 }, 2853 .num_windows = 1, 2854 }, { 2855 .index = 5, 2856 .dc = 2, 2857 .windows = (const unsigned int[]) { 5 }, 2858 .num_windows = 1, 2859 }, 2860 }; 2861 2862 static const struct tegra_dc_soc_info tegra194_dc_soc_info = { 2863 .supports_background_color = true, 2864 .supports_interlacing = true, 2865 .supports_cursor = true, 2866 .supports_block_linear = true, 2867 .supports_sector_layout = true, 2868 .has_legacy_blending = false, 2869 .pitch_align = 64, 2870 .has_powergate = false, 2871 .coupled_pm = false, 2872 .has_nvdisplay = true, 2873 .wgrps = tegra194_dc_wgrps, 2874 .num_wgrps = ARRAY_SIZE(tegra194_dc_wgrps), 2875 .plane_tiled_memory_bandwidth_x2 = false, 2876 }; 2877 2878 static const struct of_device_id tegra_dc_of_match[] = { 2879 { 2880 .compatible = "nvidia,tegra194-dc", 2881 .data = &tegra194_dc_soc_info, 2882 }, { 2883 .compatible = "nvidia,tegra186-dc", 2884 .data = &tegra186_dc_soc_info, 2885 }, { 2886 .compatible = "nvidia,tegra210-dc", 2887 .data = &tegra210_dc_soc_info, 2888 }, { 2889 .compatible = "nvidia,tegra124-dc", 2890 .data = &tegra124_dc_soc_info, 2891 }, { 2892 .compatible = "nvidia,tegra114-dc", 2893 .data = &tegra114_dc_soc_info, 2894 }, { 2895 .compatible = "nvidia,tegra30-dc", 2896 .data = &tegra30_dc_soc_info, 2897 }, { 2898 .compatible = "nvidia,tegra20-dc", 2899 .data = &tegra20_dc_soc_info, 2900 }, { 2901 /* sentinel */ 2902 } 2903 }; 2904 MODULE_DEVICE_TABLE(of, tegra_dc_of_match); 2905 2906 static int tegra_dc_parse_dt(struct tegra_dc *dc) 2907 { 2908 struct device_node *np; 2909 u32 value = 0; 2910 int err; 2911 2912 err = of_property_read_u32(dc->dev->of_node, "nvidia,head", &value); 2913 if (err < 0) { 2914 dev_err(dc->dev, "missing \"nvidia,head\" property\n"); 2915 2916 /* 2917 * If the nvidia,head property isn't present, try to find the 2918 * correct head number by looking up the position of this 2919 * display controller's node within the device tree. Assuming 2920 * that the nodes are ordered properly in the DTS file and 2921 * that the translation into a flattened device tree blob 2922 * preserves that ordering this will actually yield the right 2923 * head number. 2924 * 2925 * If those assumptions don't hold, this will still work for 2926 * cases where only a single display controller is used. 2927 */ 2928 for_each_matching_node(np, tegra_dc_of_match) { 2929 if (np == dc->dev->of_node) { 2930 of_node_put(np); 2931 break; 2932 } 2933 2934 value++; 2935 } 2936 } 2937 2938 dc->pipe = value; 2939 2940 return 0; 2941 } 2942 2943 static int tegra_dc_match_by_pipe(struct device *dev, const void *data) 2944 { 2945 struct tegra_dc *dc = dev_get_drvdata(dev); 2946 unsigned int pipe = (unsigned long)(void *)data; 2947 2948 return dc->pipe == pipe; 2949 } 2950 2951 static int tegra_dc_couple(struct tegra_dc *dc) 2952 { 2953 /* 2954 * On Tegra20, DC1 requires DC0 to be taken out of reset in order to 2955 * be enabled, otherwise CPU hangs on writing to CMD_DISPLAY_COMMAND / 2956 * POWER_CONTROL registers during CRTC enabling. 2957 */ 2958 if (dc->soc->coupled_pm && dc->pipe == 1) { 2959 struct device *companion; 2960 struct tegra_dc *parent; 2961 2962 companion = driver_find_device(dc->dev->driver, NULL, (const void *)0, 2963 tegra_dc_match_by_pipe); 2964 if (!companion) 2965 return -EPROBE_DEFER; 2966 2967 parent = dev_get_drvdata(companion); 2968 dc->client.parent = &parent->client; 2969 2970 dev_dbg(dc->dev, "coupled to %s\n", dev_name(companion)); 2971 } 2972 2973 return 0; 2974 } 2975 2976 static int tegra_dc_probe(struct platform_device *pdev) 2977 { 2978 u64 dma_mask = dma_get_mask(pdev->dev.parent); 2979 struct tegra_dc *dc; 2980 int err; 2981 2982 err = dma_coerce_mask_and_coherent(&pdev->dev, dma_mask); 2983 if (err < 0) { 2984 dev_err(&pdev->dev, "failed to set DMA mask: %d\n", err); 2985 return err; 2986 } 2987 2988 dc = devm_kzalloc(&pdev->dev, sizeof(*dc), GFP_KERNEL); 2989 if (!dc) 2990 return -ENOMEM; 2991 2992 dc->soc = of_device_get_match_data(&pdev->dev); 2993 2994 INIT_LIST_HEAD(&dc->list); 2995 dc->dev = &pdev->dev; 2996 2997 err = tegra_dc_parse_dt(dc); 2998 if (err < 0) 2999 return err; 3000 3001 err = tegra_dc_couple(dc); 3002 if (err < 0) 3003 return err; 3004 3005 dc->clk = devm_clk_get(&pdev->dev, NULL); 3006 if (IS_ERR(dc->clk)) { 3007 dev_err(&pdev->dev, "failed to get clock\n"); 3008 return PTR_ERR(dc->clk); 3009 } 3010 3011 dc->rst = devm_reset_control_get(&pdev->dev, "dc"); 3012 if (IS_ERR(dc->rst)) { 3013 dev_err(&pdev->dev, "failed to get reset\n"); 3014 return PTR_ERR(dc->rst); 3015 } 3016 3017 /* assert reset and disable clock */ 3018 err = clk_prepare_enable(dc->clk); 3019 if (err < 0) 3020 return err; 3021 3022 usleep_range(2000, 4000); 3023 3024 err = reset_control_assert(dc->rst); 3025 if (err < 0) 3026 return err; 3027 3028 usleep_range(2000, 4000); 3029 3030 clk_disable_unprepare(dc->clk); 3031 3032 if (dc->soc->has_powergate) { 3033 if (dc->pipe == 0) 3034 dc->powergate = TEGRA_POWERGATE_DIS; 3035 else 3036 dc->powergate = TEGRA_POWERGATE_DISB; 3037 3038 tegra_powergate_power_off(dc->powergate); 3039 } 3040 3041 dc->regs = devm_platform_ioremap_resource(pdev, 0); 3042 if (IS_ERR(dc->regs)) 3043 return PTR_ERR(dc->regs); 3044 3045 dc->irq = platform_get_irq(pdev, 0); 3046 if (dc->irq < 0) 3047 return -ENXIO; 3048 3049 err = tegra_dc_rgb_probe(dc); 3050 if (err < 0 && err != -ENODEV) { 3051 const char *level = KERN_ERR; 3052 3053 if (err == -EPROBE_DEFER) 3054 level = KERN_DEBUG; 3055 3056 dev_printk(level, dc->dev, "failed to probe RGB output: %d\n", 3057 err); 3058 return err; 3059 } 3060 3061 platform_set_drvdata(pdev, dc); 3062 pm_runtime_enable(&pdev->dev); 3063 3064 INIT_LIST_HEAD(&dc->client.list); 3065 dc->client.ops = &dc_client_ops; 3066 dc->client.dev = &pdev->dev; 3067 3068 err = host1x_client_register(&dc->client); 3069 if (err < 0) { 3070 dev_err(&pdev->dev, "failed to register host1x client: %d\n", 3071 err); 3072 goto disable_pm; 3073 } 3074 3075 return 0; 3076 3077 disable_pm: 3078 pm_runtime_disable(&pdev->dev); 3079 tegra_dc_rgb_remove(dc); 3080 3081 return err; 3082 } 3083 3084 static int tegra_dc_remove(struct platform_device *pdev) 3085 { 3086 struct tegra_dc *dc = platform_get_drvdata(pdev); 3087 int err; 3088 3089 err = host1x_client_unregister(&dc->client); 3090 if (err < 0) { 3091 dev_err(&pdev->dev, "failed to unregister host1x client: %d\n", 3092 err); 3093 return err; 3094 } 3095 3096 err = tegra_dc_rgb_remove(dc); 3097 if (err < 0) { 3098 dev_err(&pdev->dev, "failed to remove RGB output: %d\n", err); 3099 return err; 3100 } 3101 3102 pm_runtime_disable(&pdev->dev); 3103 3104 return 0; 3105 } 3106 3107 struct platform_driver tegra_dc_driver = { 3108 .driver = { 3109 .name = "tegra-dc", 3110 .of_match_table = tegra_dc_of_match, 3111 }, 3112 .probe = tegra_dc_probe, 3113 .remove = tegra_dc_remove, 3114 }; 3115