xref: /openbmc/linux/drivers/gpu/drm/tegra/dc.c (revision 8365a898)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 Avionic Design GmbH
4  * Copyright (C) 2012 NVIDIA CORPORATION.  All rights reserved.
5  */
6 
7 #include <linux/clk.h>
8 #include <linux/debugfs.h>
9 #include <linux/delay.h>
10 #include <linux/iommu.h>
11 #include <linux/module.h>
12 #include <linux/of_device.h>
13 #include <linux/pm_runtime.h>
14 #include <linux/reset.h>
15 
16 #include <soc/tegra/pmc.h>
17 
18 #include <drm/drm_atomic.h>
19 #include <drm/drm_atomic_helper.h>
20 #include <drm/drm_debugfs.h>
21 #include <drm/drm_fourcc.h>
22 #include <drm/drm_plane_helper.h>
23 #include <drm/drm_vblank.h>
24 
25 #include "dc.h"
26 #include "drm.h"
27 #include "gem.h"
28 #include "hub.h"
29 #include "plane.h"
30 
31 static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc,
32 					    struct drm_crtc_state *state);
33 
34 static void tegra_dc_stats_reset(struct tegra_dc_stats *stats)
35 {
36 	stats->frames = 0;
37 	stats->vblank = 0;
38 	stats->underflow = 0;
39 	stats->overflow = 0;
40 }
41 
42 /* Reads the active copy of a register. */
43 static u32 tegra_dc_readl_active(struct tegra_dc *dc, unsigned long offset)
44 {
45 	u32 value;
46 
47 	tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
48 	value = tegra_dc_readl(dc, offset);
49 	tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS);
50 
51 	return value;
52 }
53 
54 static inline unsigned int tegra_plane_offset(struct tegra_plane *plane,
55 					      unsigned int offset)
56 {
57 	if (offset >= 0x500 && offset <= 0x638) {
58 		offset = 0x000 + (offset - 0x500);
59 		return plane->offset + offset;
60 	}
61 
62 	if (offset >= 0x700 && offset <= 0x719) {
63 		offset = 0x180 + (offset - 0x700);
64 		return plane->offset + offset;
65 	}
66 
67 	if (offset >= 0x800 && offset <= 0x839) {
68 		offset = 0x1c0 + (offset - 0x800);
69 		return plane->offset + offset;
70 	}
71 
72 	dev_WARN(plane->dc->dev, "invalid offset: %x\n", offset);
73 
74 	return plane->offset + offset;
75 }
76 
77 static inline u32 tegra_plane_readl(struct tegra_plane *plane,
78 				    unsigned int offset)
79 {
80 	return tegra_dc_readl(plane->dc, tegra_plane_offset(plane, offset));
81 }
82 
83 static inline void tegra_plane_writel(struct tegra_plane *plane, u32 value,
84 				      unsigned int offset)
85 {
86 	tegra_dc_writel(plane->dc, value, tegra_plane_offset(plane, offset));
87 }
88 
89 bool tegra_dc_has_output(struct tegra_dc *dc, struct device *dev)
90 {
91 	struct device_node *np = dc->dev->of_node;
92 	struct of_phandle_iterator it;
93 	int err;
94 
95 	of_for_each_phandle(&it, err, np, "nvidia,outputs", NULL, 0)
96 		if (it.node == dev->of_node)
97 			return true;
98 
99 	return false;
100 }
101 
102 /*
103  * Double-buffered registers have two copies: ASSEMBLY and ACTIVE. When the
104  * *_ACT_REQ bits are set the ASSEMBLY copy is latched into the ACTIVE copy.
105  * Latching happens mmediately if the display controller is in STOP mode or
106  * on the next frame boundary otherwise.
107  *
108  * Triple-buffered registers have three copies: ASSEMBLY, ARM and ACTIVE. The
109  * ASSEMBLY copy is latched into the ARM copy immediately after *_UPDATE bits
110  * are written. When the *_ACT_REQ bits are written, the ARM copy is latched
111  * into the ACTIVE copy, either immediately if the display controller is in
112  * STOP mode, or at the next frame boundary otherwise.
113  */
114 void tegra_dc_commit(struct tegra_dc *dc)
115 {
116 	tegra_dc_writel(dc, GENERAL_ACT_REQ << 8, DC_CMD_STATE_CONTROL);
117 	tegra_dc_writel(dc, GENERAL_ACT_REQ, DC_CMD_STATE_CONTROL);
118 }
119 
120 static inline u32 compute_dda_inc(unsigned int in, unsigned int out, bool v,
121 				  unsigned int bpp)
122 {
123 	fixed20_12 outf = dfixed_init(out);
124 	fixed20_12 inf = dfixed_init(in);
125 	u32 dda_inc;
126 	int max;
127 
128 	if (v)
129 		max = 15;
130 	else {
131 		switch (bpp) {
132 		case 2:
133 			max = 8;
134 			break;
135 
136 		default:
137 			WARN_ON_ONCE(1);
138 			/* fallthrough */
139 		case 4:
140 			max = 4;
141 			break;
142 		}
143 	}
144 
145 	outf.full = max_t(u32, outf.full - dfixed_const(1), dfixed_const(1));
146 	inf.full -= dfixed_const(1);
147 
148 	dda_inc = dfixed_div(inf, outf);
149 	dda_inc = min_t(u32, dda_inc, dfixed_const(max));
150 
151 	return dda_inc;
152 }
153 
154 static inline u32 compute_initial_dda(unsigned int in)
155 {
156 	fixed20_12 inf = dfixed_init(in);
157 	return dfixed_frac(inf);
158 }
159 
160 static void tegra_plane_setup_blending_legacy(struct tegra_plane *plane)
161 {
162 	u32 background[3] = {
163 		BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
164 		BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
165 		BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
166 	};
167 	u32 foreground = BLEND_WEIGHT1(255) | BLEND_WEIGHT0(255) |
168 			 BLEND_COLOR_KEY_NONE;
169 	u32 blendnokey = BLEND_WEIGHT1(255) | BLEND_WEIGHT0(255);
170 	struct tegra_plane_state *state;
171 	u32 blending[2];
172 	unsigned int i;
173 
174 	/* disable blending for non-overlapping case */
175 	tegra_plane_writel(plane, blendnokey, DC_WIN_BLEND_NOKEY);
176 	tegra_plane_writel(plane, foreground, DC_WIN_BLEND_1WIN);
177 
178 	state = to_tegra_plane_state(plane->base.state);
179 
180 	if (state->opaque) {
181 		/*
182 		 * Since custom fix-weight blending isn't utilized and weight
183 		 * of top window is set to max, we can enforce dependent
184 		 * blending which in this case results in transparent bottom
185 		 * window if top window is opaque and if top window enables
186 		 * alpha blending, then bottom window is getting alpha value
187 		 * of 1 minus the sum of alpha components of the overlapping
188 		 * plane.
189 		 */
190 		background[0] |= BLEND_CONTROL_DEPENDENT;
191 		background[1] |= BLEND_CONTROL_DEPENDENT;
192 
193 		/*
194 		 * The region where three windows overlap is the intersection
195 		 * of the two regions where two windows overlap. It contributes
196 		 * to the area if all of the windows on top of it have an alpha
197 		 * component.
198 		 */
199 		switch (state->base.normalized_zpos) {
200 		case 0:
201 			if (state->blending[0].alpha &&
202 			    state->blending[1].alpha)
203 				background[2] |= BLEND_CONTROL_DEPENDENT;
204 			break;
205 
206 		case 1:
207 			background[2] |= BLEND_CONTROL_DEPENDENT;
208 			break;
209 		}
210 	} else {
211 		/*
212 		 * Enable alpha blending if pixel format has an alpha
213 		 * component.
214 		 */
215 		foreground |= BLEND_CONTROL_ALPHA;
216 
217 		/*
218 		 * If any of the windows on top of this window is opaque, it
219 		 * will completely conceal this window within that area. If
220 		 * top window has an alpha component, it is blended over the
221 		 * bottom window.
222 		 */
223 		for (i = 0; i < 2; i++) {
224 			if (state->blending[i].alpha &&
225 			    state->blending[i].top)
226 				background[i] |= BLEND_CONTROL_DEPENDENT;
227 		}
228 
229 		switch (state->base.normalized_zpos) {
230 		case 0:
231 			if (state->blending[0].alpha &&
232 			    state->blending[1].alpha)
233 				background[2] |= BLEND_CONTROL_DEPENDENT;
234 			break;
235 
236 		case 1:
237 			/*
238 			 * When both middle and topmost windows have an alpha,
239 			 * these windows a mixed together and then the result
240 			 * is blended over the bottom window.
241 			 */
242 			if (state->blending[0].alpha &&
243 			    state->blending[0].top)
244 				background[2] |= BLEND_CONTROL_ALPHA;
245 
246 			if (state->blending[1].alpha &&
247 			    state->blending[1].top)
248 				background[2] |= BLEND_CONTROL_ALPHA;
249 			break;
250 		}
251 	}
252 
253 	switch (state->base.normalized_zpos) {
254 	case 0:
255 		tegra_plane_writel(plane, background[0], DC_WIN_BLEND_2WIN_X);
256 		tegra_plane_writel(plane, background[1], DC_WIN_BLEND_2WIN_Y);
257 		tegra_plane_writel(plane, background[2], DC_WIN_BLEND_3WIN_XY);
258 		break;
259 
260 	case 1:
261 		/*
262 		 * If window B / C is topmost, then X / Y registers are
263 		 * matching the order of blending[...] state indices,
264 		 * otherwise a swap is required.
265 		 */
266 		if (!state->blending[0].top && state->blending[1].top) {
267 			blending[0] = foreground;
268 			blending[1] = background[1];
269 		} else {
270 			blending[0] = background[0];
271 			blending[1] = foreground;
272 		}
273 
274 		tegra_plane_writel(plane, blending[0], DC_WIN_BLEND_2WIN_X);
275 		tegra_plane_writel(plane, blending[1], DC_WIN_BLEND_2WIN_Y);
276 		tegra_plane_writel(plane, background[2], DC_WIN_BLEND_3WIN_XY);
277 		break;
278 
279 	case 2:
280 		tegra_plane_writel(plane, foreground, DC_WIN_BLEND_2WIN_X);
281 		tegra_plane_writel(plane, foreground, DC_WIN_BLEND_2WIN_Y);
282 		tegra_plane_writel(plane, foreground, DC_WIN_BLEND_3WIN_XY);
283 		break;
284 	}
285 }
286 
287 static void tegra_plane_setup_blending(struct tegra_plane *plane,
288 				       const struct tegra_dc_window *window)
289 {
290 	u32 value;
291 
292 	value = BLEND_FACTOR_DST_ALPHA_ZERO | BLEND_FACTOR_SRC_ALPHA_K2 |
293 		BLEND_FACTOR_DST_COLOR_NEG_K1_TIMES_SRC |
294 		BLEND_FACTOR_SRC_COLOR_K1_TIMES_SRC;
295 	tegra_plane_writel(plane, value, DC_WIN_BLEND_MATCH_SELECT);
296 
297 	value = BLEND_FACTOR_DST_ALPHA_ZERO | BLEND_FACTOR_SRC_ALPHA_K2 |
298 		BLEND_FACTOR_DST_COLOR_NEG_K1_TIMES_SRC |
299 		BLEND_FACTOR_SRC_COLOR_K1_TIMES_SRC;
300 	tegra_plane_writel(plane, value, DC_WIN_BLEND_NOMATCH_SELECT);
301 
302 	value = K2(255) | K1(255) | WINDOW_LAYER_DEPTH(255 - window->zpos);
303 	tegra_plane_writel(plane, value, DC_WIN_BLEND_LAYER_CONTROL);
304 }
305 
306 static bool
307 tegra_plane_use_horizontal_filtering(struct tegra_plane *plane,
308 				     const struct tegra_dc_window *window)
309 {
310 	struct tegra_dc *dc = plane->dc;
311 
312 	if (window->src.w == window->dst.w)
313 		return false;
314 
315 	if (plane->index == 0 && dc->soc->has_win_a_without_filters)
316 		return false;
317 
318 	return true;
319 }
320 
321 static bool
322 tegra_plane_use_vertical_filtering(struct tegra_plane *plane,
323 				   const struct tegra_dc_window *window)
324 {
325 	struct tegra_dc *dc = plane->dc;
326 
327 	if (window->src.h == window->dst.h)
328 		return false;
329 
330 	if (plane->index == 0 && dc->soc->has_win_a_without_filters)
331 		return false;
332 
333 	if (plane->index == 2 && dc->soc->has_win_c_without_vert_filter)
334 		return false;
335 
336 	return true;
337 }
338 
339 static void tegra_dc_setup_window(struct tegra_plane *plane,
340 				  const struct tegra_dc_window *window)
341 {
342 	unsigned h_offset, v_offset, h_size, v_size, h_dda, v_dda, bpp;
343 	struct tegra_dc *dc = plane->dc;
344 	bool yuv, planar;
345 	u32 value;
346 
347 	/*
348 	 * For YUV planar modes, the number of bytes per pixel takes into
349 	 * account only the luma component and therefore is 1.
350 	 */
351 	yuv = tegra_plane_format_is_yuv(window->format, &planar);
352 	if (!yuv)
353 		bpp = window->bits_per_pixel / 8;
354 	else
355 		bpp = planar ? 1 : 2;
356 
357 	tegra_plane_writel(plane, window->format, DC_WIN_COLOR_DEPTH);
358 	tegra_plane_writel(plane, window->swap, DC_WIN_BYTE_SWAP);
359 
360 	value = V_POSITION(window->dst.y) | H_POSITION(window->dst.x);
361 	tegra_plane_writel(plane, value, DC_WIN_POSITION);
362 
363 	value = V_SIZE(window->dst.h) | H_SIZE(window->dst.w);
364 	tegra_plane_writel(plane, value, DC_WIN_SIZE);
365 
366 	h_offset = window->src.x * bpp;
367 	v_offset = window->src.y;
368 	h_size = window->src.w * bpp;
369 	v_size = window->src.h;
370 
371 	value = V_PRESCALED_SIZE(v_size) | H_PRESCALED_SIZE(h_size);
372 	tegra_plane_writel(plane, value, DC_WIN_PRESCALED_SIZE);
373 
374 	/*
375 	 * For DDA computations the number of bytes per pixel for YUV planar
376 	 * modes needs to take into account all Y, U and V components.
377 	 */
378 	if (yuv && planar)
379 		bpp = 2;
380 
381 	h_dda = compute_dda_inc(window->src.w, window->dst.w, false, bpp);
382 	v_dda = compute_dda_inc(window->src.h, window->dst.h, true, bpp);
383 
384 	value = V_DDA_INC(v_dda) | H_DDA_INC(h_dda);
385 	tegra_plane_writel(plane, value, DC_WIN_DDA_INC);
386 
387 	h_dda = compute_initial_dda(window->src.x);
388 	v_dda = compute_initial_dda(window->src.y);
389 
390 	tegra_plane_writel(plane, h_dda, DC_WIN_H_INITIAL_DDA);
391 	tegra_plane_writel(plane, v_dda, DC_WIN_V_INITIAL_DDA);
392 
393 	tegra_plane_writel(plane, 0, DC_WIN_UV_BUF_STRIDE);
394 	tegra_plane_writel(plane, 0, DC_WIN_BUF_STRIDE);
395 
396 	tegra_plane_writel(plane, window->base[0], DC_WINBUF_START_ADDR);
397 
398 	if (yuv && planar) {
399 		tegra_plane_writel(plane, window->base[1], DC_WINBUF_START_ADDR_U);
400 		tegra_plane_writel(plane, window->base[2], DC_WINBUF_START_ADDR_V);
401 		value = window->stride[1] << 16 | window->stride[0];
402 		tegra_plane_writel(plane, value, DC_WIN_LINE_STRIDE);
403 	} else {
404 		tegra_plane_writel(plane, window->stride[0], DC_WIN_LINE_STRIDE);
405 	}
406 
407 	if (window->bottom_up)
408 		v_offset += window->src.h - 1;
409 
410 	tegra_plane_writel(plane, h_offset, DC_WINBUF_ADDR_H_OFFSET);
411 	tegra_plane_writel(plane, v_offset, DC_WINBUF_ADDR_V_OFFSET);
412 
413 	if (dc->soc->supports_block_linear) {
414 		unsigned long height = window->tiling.value;
415 
416 		switch (window->tiling.mode) {
417 		case TEGRA_BO_TILING_MODE_PITCH:
418 			value = DC_WINBUF_SURFACE_KIND_PITCH;
419 			break;
420 
421 		case TEGRA_BO_TILING_MODE_TILED:
422 			value = DC_WINBUF_SURFACE_KIND_TILED;
423 			break;
424 
425 		case TEGRA_BO_TILING_MODE_BLOCK:
426 			value = DC_WINBUF_SURFACE_KIND_BLOCK_HEIGHT(height) |
427 				DC_WINBUF_SURFACE_KIND_BLOCK;
428 			break;
429 		}
430 
431 		tegra_plane_writel(plane, value, DC_WINBUF_SURFACE_KIND);
432 	} else {
433 		switch (window->tiling.mode) {
434 		case TEGRA_BO_TILING_MODE_PITCH:
435 			value = DC_WIN_BUFFER_ADDR_MODE_LINEAR_UV |
436 				DC_WIN_BUFFER_ADDR_MODE_LINEAR;
437 			break;
438 
439 		case TEGRA_BO_TILING_MODE_TILED:
440 			value = DC_WIN_BUFFER_ADDR_MODE_TILE_UV |
441 				DC_WIN_BUFFER_ADDR_MODE_TILE;
442 			break;
443 
444 		case TEGRA_BO_TILING_MODE_BLOCK:
445 			/*
446 			 * No need to handle this here because ->atomic_check
447 			 * will already have filtered it out.
448 			 */
449 			break;
450 		}
451 
452 		tegra_plane_writel(plane, value, DC_WIN_BUFFER_ADDR_MODE);
453 	}
454 
455 	value = WIN_ENABLE;
456 
457 	if (yuv) {
458 		/* setup default colorspace conversion coefficients */
459 		tegra_plane_writel(plane, 0x00f0, DC_WIN_CSC_YOF);
460 		tegra_plane_writel(plane, 0x012a, DC_WIN_CSC_KYRGB);
461 		tegra_plane_writel(plane, 0x0000, DC_WIN_CSC_KUR);
462 		tegra_plane_writel(plane, 0x0198, DC_WIN_CSC_KVR);
463 		tegra_plane_writel(plane, 0x039b, DC_WIN_CSC_KUG);
464 		tegra_plane_writel(plane, 0x032f, DC_WIN_CSC_KVG);
465 		tegra_plane_writel(plane, 0x0204, DC_WIN_CSC_KUB);
466 		tegra_plane_writel(plane, 0x0000, DC_WIN_CSC_KVB);
467 
468 		value |= CSC_ENABLE;
469 	} else if (window->bits_per_pixel < 24) {
470 		value |= COLOR_EXPAND;
471 	}
472 
473 	if (window->bottom_up)
474 		value |= V_DIRECTION;
475 
476 	if (tegra_plane_use_horizontal_filtering(plane, window)) {
477 		/*
478 		 * Enable horizontal 6-tap filter and set filtering
479 		 * coefficients to the default values defined in TRM.
480 		 */
481 		tegra_plane_writel(plane, 0x00008000, DC_WIN_H_FILTER_P(0));
482 		tegra_plane_writel(plane, 0x3e087ce1, DC_WIN_H_FILTER_P(1));
483 		tegra_plane_writel(plane, 0x3b117ac1, DC_WIN_H_FILTER_P(2));
484 		tegra_plane_writel(plane, 0x591b73aa, DC_WIN_H_FILTER_P(3));
485 		tegra_plane_writel(plane, 0x57256d9a, DC_WIN_H_FILTER_P(4));
486 		tegra_plane_writel(plane, 0x552f668b, DC_WIN_H_FILTER_P(5));
487 		tegra_plane_writel(plane, 0x73385e8b, DC_WIN_H_FILTER_P(6));
488 		tegra_plane_writel(plane, 0x72435583, DC_WIN_H_FILTER_P(7));
489 		tegra_plane_writel(plane, 0x714c4c8b, DC_WIN_H_FILTER_P(8));
490 		tegra_plane_writel(plane, 0x70554393, DC_WIN_H_FILTER_P(9));
491 		tegra_plane_writel(plane, 0x715e389b, DC_WIN_H_FILTER_P(10));
492 		tegra_plane_writel(plane, 0x71662faa, DC_WIN_H_FILTER_P(11));
493 		tegra_plane_writel(plane, 0x536d25ba, DC_WIN_H_FILTER_P(12));
494 		tegra_plane_writel(plane, 0x55731bca, DC_WIN_H_FILTER_P(13));
495 		tegra_plane_writel(plane, 0x387a11d9, DC_WIN_H_FILTER_P(14));
496 		tegra_plane_writel(plane, 0x3c7c08f1, DC_WIN_H_FILTER_P(15));
497 
498 		value |= H_FILTER;
499 	}
500 
501 	if (tegra_plane_use_vertical_filtering(plane, window)) {
502 		unsigned int i, k;
503 
504 		/*
505 		 * Enable vertical 2-tap filter and set filtering
506 		 * coefficients to the default values defined in TRM.
507 		 */
508 		for (i = 0, k = 128; i < 16; i++, k -= 8)
509 			tegra_plane_writel(plane, k, DC_WIN_V_FILTER_P(i));
510 
511 		value |= V_FILTER;
512 	}
513 
514 	tegra_plane_writel(plane, value, DC_WIN_WIN_OPTIONS);
515 
516 	if (dc->soc->has_legacy_blending)
517 		tegra_plane_setup_blending_legacy(plane);
518 	else
519 		tegra_plane_setup_blending(plane, window);
520 }
521 
522 static const u32 tegra20_primary_formats[] = {
523 	DRM_FORMAT_ARGB4444,
524 	DRM_FORMAT_ARGB1555,
525 	DRM_FORMAT_RGB565,
526 	DRM_FORMAT_RGBA5551,
527 	DRM_FORMAT_ABGR8888,
528 	DRM_FORMAT_ARGB8888,
529 	/* non-native formats */
530 	DRM_FORMAT_XRGB1555,
531 	DRM_FORMAT_RGBX5551,
532 	DRM_FORMAT_XBGR8888,
533 	DRM_FORMAT_XRGB8888,
534 };
535 
536 static const u64 tegra20_modifiers[] = {
537 	DRM_FORMAT_MOD_LINEAR,
538 	DRM_FORMAT_MOD_NVIDIA_TEGRA_TILED,
539 	DRM_FORMAT_MOD_INVALID
540 };
541 
542 static const u32 tegra114_primary_formats[] = {
543 	DRM_FORMAT_ARGB4444,
544 	DRM_FORMAT_ARGB1555,
545 	DRM_FORMAT_RGB565,
546 	DRM_FORMAT_RGBA5551,
547 	DRM_FORMAT_ABGR8888,
548 	DRM_FORMAT_ARGB8888,
549 	/* new on Tegra114 */
550 	DRM_FORMAT_ABGR4444,
551 	DRM_FORMAT_ABGR1555,
552 	DRM_FORMAT_BGRA5551,
553 	DRM_FORMAT_XRGB1555,
554 	DRM_FORMAT_RGBX5551,
555 	DRM_FORMAT_XBGR1555,
556 	DRM_FORMAT_BGRX5551,
557 	DRM_FORMAT_BGR565,
558 	DRM_FORMAT_BGRA8888,
559 	DRM_FORMAT_RGBA8888,
560 	DRM_FORMAT_XRGB8888,
561 	DRM_FORMAT_XBGR8888,
562 };
563 
564 static const u32 tegra124_primary_formats[] = {
565 	DRM_FORMAT_ARGB4444,
566 	DRM_FORMAT_ARGB1555,
567 	DRM_FORMAT_RGB565,
568 	DRM_FORMAT_RGBA5551,
569 	DRM_FORMAT_ABGR8888,
570 	DRM_FORMAT_ARGB8888,
571 	/* new on Tegra114 */
572 	DRM_FORMAT_ABGR4444,
573 	DRM_FORMAT_ABGR1555,
574 	DRM_FORMAT_BGRA5551,
575 	DRM_FORMAT_XRGB1555,
576 	DRM_FORMAT_RGBX5551,
577 	DRM_FORMAT_XBGR1555,
578 	DRM_FORMAT_BGRX5551,
579 	DRM_FORMAT_BGR565,
580 	DRM_FORMAT_BGRA8888,
581 	DRM_FORMAT_RGBA8888,
582 	DRM_FORMAT_XRGB8888,
583 	DRM_FORMAT_XBGR8888,
584 	/* new on Tegra124 */
585 	DRM_FORMAT_RGBX8888,
586 	DRM_FORMAT_BGRX8888,
587 };
588 
589 static const u64 tegra124_modifiers[] = {
590 	DRM_FORMAT_MOD_LINEAR,
591 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(0),
592 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(1),
593 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(2),
594 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(3),
595 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(4),
596 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(5),
597 	DRM_FORMAT_MOD_INVALID
598 };
599 
600 static int tegra_plane_atomic_check(struct drm_plane *plane,
601 				    struct drm_plane_state *state)
602 {
603 	struct tegra_plane_state *plane_state = to_tegra_plane_state(state);
604 	unsigned int rotation = DRM_MODE_ROTATE_0 | DRM_MODE_REFLECT_Y;
605 	struct tegra_bo_tiling *tiling = &plane_state->tiling;
606 	struct tegra_plane *tegra = to_tegra_plane(plane);
607 	struct tegra_dc *dc = to_tegra_dc(state->crtc);
608 	int err;
609 
610 	/* no need for further checks if the plane is being disabled */
611 	if (!state->crtc)
612 		return 0;
613 
614 	err = tegra_plane_format(state->fb->format->format,
615 				 &plane_state->format,
616 				 &plane_state->swap);
617 	if (err < 0)
618 		return err;
619 
620 	/*
621 	 * Tegra20 and Tegra30 are special cases here because they support
622 	 * only variants of specific formats with an alpha component, but not
623 	 * the corresponding opaque formats. However, the opaque formats can
624 	 * be emulated by disabling alpha blending for the plane.
625 	 */
626 	if (dc->soc->has_legacy_blending) {
627 		err = tegra_plane_setup_legacy_state(tegra, plane_state);
628 		if (err < 0)
629 			return err;
630 	}
631 
632 	err = tegra_fb_get_tiling(state->fb, tiling);
633 	if (err < 0)
634 		return err;
635 
636 	if (tiling->mode == TEGRA_BO_TILING_MODE_BLOCK &&
637 	    !dc->soc->supports_block_linear) {
638 		DRM_ERROR("hardware doesn't support block linear mode\n");
639 		return -EINVAL;
640 	}
641 
642 	rotation = drm_rotation_simplify(state->rotation, rotation);
643 
644 	if (rotation & DRM_MODE_REFLECT_Y)
645 		plane_state->bottom_up = true;
646 	else
647 		plane_state->bottom_up = false;
648 
649 	/*
650 	 * Tegra doesn't support different strides for U and V planes so we
651 	 * error out if the user tries to display a framebuffer with such a
652 	 * configuration.
653 	 */
654 	if (state->fb->format->num_planes > 2) {
655 		if (state->fb->pitches[2] != state->fb->pitches[1]) {
656 			DRM_ERROR("unsupported UV-plane configuration\n");
657 			return -EINVAL;
658 		}
659 	}
660 
661 	err = tegra_plane_state_add(tegra, state);
662 	if (err < 0)
663 		return err;
664 
665 	return 0;
666 }
667 
668 static void tegra_plane_atomic_disable(struct drm_plane *plane,
669 				       struct drm_plane_state *old_state)
670 {
671 	struct tegra_plane *p = to_tegra_plane(plane);
672 	u32 value;
673 
674 	/* rien ne va plus */
675 	if (!old_state || !old_state->crtc)
676 		return;
677 
678 	value = tegra_plane_readl(p, DC_WIN_WIN_OPTIONS);
679 	value &= ~WIN_ENABLE;
680 	tegra_plane_writel(p, value, DC_WIN_WIN_OPTIONS);
681 }
682 
683 static void tegra_plane_atomic_update(struct drm_plane *plane,
684 				      struct drm_plane_state *old_state)
685 {
686 	struct tegra_plane_state *state = to_tegra_plane_state(plane->state);
687 	struct drm_framebuffer *fb = plane->state->fb;
688 	struct tegra_plane *p = to_tegra_plane(plane);
689 	struct tegra_dc_window window;
690 	unsigned int i;
691 
692 	/* rien ne va plus */
693 	if (!plane->state->crtc || !plane->state->fb)
694 		return;
695 
696 	if (!plane->state->visible)
697 		return tegra_plane_atomic_disable(plane, old_state);
698 
699 	memset(&window, 0, sizeof(window));
700 	window.src.x = plane->state->src.x1 >> 16;
701 	window.src.y = plane->state->src.y1 >> 16;
702 	window.src.w = drm_rect_width(&plane->state->src) >> 16;
703 	window.src.h = drm_rect_height(&plane->state->src) >> 16;
704 	window.dst.x = plane->state->dst.x1;
705 	window.dst.y = plane->state->dst.y1;
706 	window.dst.w = drm_rect_width(&plane->state->dst);
707 	window.dst.h = drm_rect_height(&plane->state->dst);
708 	window.bits_per_pixel = fb->format->cpp[0] * 8;
709 	window.bottom_up = tegra_fb_is_bottom_up(fb) || state->bottom_up;
710 
711 	/* copy from state */
712 	window.zpos = plane->state->normalized_zpos;
713 	window.tiling = state->tiling;
714 	window.format = state->format;
715 	window.swap = state->swap;
716 
717 	for (i = 0; i < fb->format->num_planes; i++) {
718 		window.base[i] = state->iova[i] + fb->offsets[i];
719 
720 		/*
721 		 * Tegra uses a shared stride for UV planes. Framebuffers are
722 		 * already checked for this in the tegra_plane_atomic_check()
723 		 * function, so it's safe to ignore the V-plane pitch here.
724 		 */
725 		if (i < 2)
726 			window.stride[i] = fb->pitches[i];
727 	}
728 
729 	tegra_dc_setup_window(p, &window);
730 }
731 
732 static const struct drm_plane_helper_funcs tegra_plane_helper_funcs = {
733 	.prepare_fb = tegra_plane_prepare_fb,
734 	.cleanup_fb = tegra_plane_cleanup_fb,
735 	.atomic_check = tegra_plane_atomic_check,
736 	.atomic_disable = tegra_plane_atomic_disable,
737 	.atomic_update = tegra_plane_atomic_update,
738 };
739 
740 static unsigned long tegra_plane_get_possible_crtcs(struct drm_device *drm)
741 {
742 	/*
743 	 * Ideally this would use drm_crtc_mask(), but that would require the
744 	 * CRTC to already be in the mode_config's list of CRTCs. However, it
745 	 * will only be added to that list in the drm_crtc_init_with_planes()
746 	 * (in tegra_dc_init()), which in turn requires registration of these
747 	 * planes. So we have ourselves a nice little chicken and egg problem
748 	 * here.
749 	 *
750 	 * We work around this by manually creating the mask from the number
751 	 * of CRTCs that have been registered, and should therefore always be
752 	 * the same as drm_crtc_index() after registration.
753 	 */
754 	return 1 << drm->mode_config.num_crtc;
755 }
756 
757 static struct drm_plane *tegra_primary_plane_create(struct drm_device *drm,
758 						    struct tegra_dc *dc)
759 {
760 	unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
761 	enum drm_plane_type type = DRM_PLANE_TYPE_PRIMARY;
762 	struct tegra_plane *plane;
763 	unsigned int num_formats;
764 	const u64 *modifiers;
765 	const u32 *formats;
766 	int err;
767 
768 	plane = kzalloc(sizeof(*plane), GFP_KERNEL);
769 	if (!plane)
770 		return ERR_PTR(-ENOMEM);
771 
772 	/* Always use window A as primary window */
773 	plane->offset = 0xa00;
774 	plane->index = 0;
775 	plane->dc = dc;
776 
777 	num_formats = dc->soc->num_primary_formats;
778 	formats = dc->soc->primary_formats;
779 	modifiers = dc->soc->modifiers;
780 
781 	err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
782 				       &tegra_plane_funcs, formats,
783 				       num_formats, modifiers, type, NULL);
784 	if (err < 0) {
785 		kfree(plane);
786 		return ERR_PTR(err);
787 	}
788 
789 	drm_plane_helper_add(&plane->base, &tegra_plane_helper_funcs);
790 	drm_plane_create_zpos_property(&plane->base, plane->index, 0, 255);
791 
792 	err = drm_plane_create_rotation_property(&plane->base,
793 						 DRM_MODE_ROTATE_0,
794 						 DRM_MODE_ROTATE_0 |
795 						 DRM_MODE_REFLECT_Y);
796 	if (err < 0)
797 		dev_err(dc->dev, "failed to create rotation property: %d\n",
798 			err);
799 
800 	return &plane->base;
801 }
802 
803 static const u32 tegra_cursor_plane_formats[] = {
804 	DRM_FORMAT_RGBA8888,
805 };
806 
807 static int tegra_cursor_atomic_check(struct drm_plane *plane,
808 				     struct drm_plane_state *state)
809 {
810 	struct tegra_plane *tegra = to_tegra_plane(plane);
811 	int err;
812 
813 	/* no need for further checks if the plane is being disabled */
814 	if (!state->crtc)
815 		return 0;
816 
817 	/* scaling not supported for cursor */
818 	if ((state->src_w >> 16 != state->crtc_w) ||
819 	    (state->src_h >> 16 != state->crtc_h))
820 		return -EINVAL;
821 
822 	/* only square cursors supported */
823 	if (state->src_w != state->src_h)
824 		return -EINVAL;
825 
826 	if (state->crtc_w != 32 && state->crtc_w != 64 &&
827 	    state->crtc_w != 128 && state->crtc_w != 256)
828 		return -EINVAL;
829 
830 	err = tegra_plane_state_add(tegra, state);
831 	if (err < 0)
832 		return err;
833 
834 	return 0;
835 }
836 
837 static void tegra_cursor_atomic_update(struct drm_plane *plane,
838 				       struct drm_plane_state *old_state)
839 {
840 	struct tegra_plane_state *state = to_tegra_plane_state(plane->state);
841 	struct tegra_dc *dc = to_tegra_dc(plane->state->crtc);
842 	u32 value = CURSOR_CLIP_DISPLAY;
843 
844 	/* rien ne va plus */
845 	if (!plane->state->crtc || !plane->state->fb)
846 		return;
847 
848 	switch (plane->state->crtc_w) {
849 	case 32:
850 		value |= CURSOR_SIZE_32x32;
851 		break;
852 
853 	case 64:
854 		value |= CURSOR_SIZE_64x64;
855 		break;
856 
857 	case 128:
858 		value |= CURSOR_SIZE_128x128;
859 		break;
860 
861 	case 256:
862 		value |= CURSOR_SIZE_256x256;
863 		break;
864 
865 	default:
866 		WARN(1, "cursor size %ux%u not supported\n",
867 		     plane->state->crtc_w, plane->state->crtc_h);
868 		return;
869 	}
870 
871 	value |= (state->iova[0] >> 10) & 0x3fffff;
872 	tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR);
873 
874 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
875 	value = (state->iova[0] >> 32) & 0x3;
876 	tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR_HI);
877 #endif
878 
879 	/* enable cursor and set blend mode */
880 	value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
881 	value |= CURSOR_ENABLE;
882 	tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
883 
884 	value = tegra_dc_readl(dc, DC_DISP_BLEND_CURSOR_CONTROL);
885 	value &= ~CURSOR_DST_BLEND_MASK;
886 	value &= ~CURSOR_SRC_BLEND_MASK;
887 	value |= CURSOR_MODE_NORMAL;
888 	value |= CURSOR_DST_BLEND_NEG_K1_TIMES_SRC;
889 	value |= CURSOR_SRC_BLEND_K1_TIMES_SRC;
890 	value |= CURSOR_ALPHA;
891 	tegra_dc_writel(dc, value, DC_DISP_BLEND_CURSOR_CONTROL);
892 
893 	/* position the cursor */
894 	value = (plane->state->crtc_y & 0x3fff) << 16 |
895 		(plane->state->crtc_x & 0x3fff);
896 	tegra_dc_writel(dc, value, DC_DISP_CURSOR_POSITION);
897 }
898 
899 static void tegra_cursor_atomic_disable(struct drm_plane *plane,
900 					struct drm_plane_state *old_state)
901 {
902 	struct tegra_dc *dc;
903 	u32 value;
904 
905 	/* rien ne va plus */
906 	if (!old_state || !old_state->crtc)
907 		return;
908 
909 	dc = to_tegra_dc(old_state->crtc);
910 
911 	value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
912 	value &= ~CURSOR_ENABLE;
913 	tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
914 }
915 
916 static const struct drm_plane_helper_funcs tegra_cursor_plane_helper_funcs = {
917 	.prepare_fb = tegra_plane_prepare_fb,
918 	.cleanup_fb = tegra_plane_cleanup_fb,
919 	.atomic_check = tegra_cursor_atomic_check,
920 	.atomic_update = tegra_cursor_atomic_update,
921 	.atomic_disable = tegra_cursor_atomic_disable,
922 };
923 
924 static struct drm_plane *tegra_dc_cursor_plane_create(struct drm_device *drm,
925 						      struct tegra_dc *dc)
926 {
927 	unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
928 	struct tegra_plane *plane;
929 	unsigned int num_formats;
930 	const u32 *formats;
931 	int err;
932 
933 	plane = kzalloc(sizeof(*plane), GFP_KERNEL);
934 	if (!plane)
935 		return ERR_PTR(-ENOMEM);
936 
937 	/*
938 	 * This index is kind of fake. The cursor isn't a regular plane, but
939 	 * its update and activation request bits in DC_CMD_STATE_CONTROL do
940 	 * use the same programming. Setting this fake index here allows the
941 	 * code in tegra_add_plane_state() to do the right thing without the
942 	 * need to special-casing the cursor plane.
943 	 */
944 	plane->index = 6;
945 	plane->dc = dc;
946 
947 	num_formats = ARRAY_SIZE(tegra_cursor_plane_formats);
948 	formats = tegra_cursor_plane_formats;
949 
950 	err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
951 				       &tegra_plane_funcs, formats,
952 				       num_formats, NULL,
953 				       DRM_PLANE_TYPE_CURSOR, NULL);
954 	if (err < 0) {
955 		kfree(plane);
956 		return ERR_PTR(err);
957 	}
958 
959 	drm_plane_helper_add(&plane->base, &tegra_cursor_plane_helper_funcs);
960 	drm_plane_create_zpos_immutable_property(&plane->base, 255);
961 
962 	return &plane->base;
963 }
964 
965 static const u32 tegra20_overlay_formats[] = {
966 	DRM_FORMAT_ARGB4444,
967 	DRM_FORMAT_ARGB1555,
968 	DRM_FORMAT_RGB565,
969 	DRM_FORMAT_RGBA5551,
970 	DRM_FORMAT_ABGR8888,
971 	DRM_FORMAT_ARGB8888,
972 	/* non-native formats */
973 	DRM_FORMAT_XRGB1555,
974 	DRM_FORMAT_RGBX5551,
975 	DRM_FORMAT_XBGR8888,
976 	DRM_FORMAT_XRGB8888,
977 	/* planar formats */
978 	DRM_FORMAT_UYVY,
979 	DRM_FORMAT_YUYV,
980 	DRM_FORMAT_YUV420,
981 	DRM_FORMAT_YUV422,
982 };
983 
984 static const u32 tegra114_overlay_formats[] = {
985 	DRM_FORMAT_ARGB4444,
986 	DRM_FORMAT_ARGB1555,
987 	DRM_FORMAT_RGB565,
988 	DRM_FORMAT_RGBA5551,
989 	DRM_FORMAT_ABGR8888,
990 	DRM_FORMAT_ARGB8888,
991 	/* new on Tegra114 */
992 	DRM_FORMAT_ABGR4444,
993 	DRM_FORMAT_ABGR1555,
994 	DRM_FORMAT_BGRA5551,
995 	DRM_FORMAT_XRGB1555,
996 	DRM_FORMAT_RGBX5551,
997 	DRM_FORMAT_XBGR1555,
998 	DRM_FORMAT_BGRX5551,
999 	DRM_FORMAT_BGR565,
1000 	DRM_FORMAT_BGRA8888,
1001 	DRM_FORMAT_RGBA8888,
1002 	DRM_FORMAT_XRGB8888,
1003 	DRM_FORMAT_XBGR8888,
1004 	/* planar formats */
1005 	DRM_FORMAT_UYVY,
1006 	DRM_FORMAT_YUYV,
1007 	DRM_FORMAT_YUV420,
1008 	DRM_FORMAT_YUV422,
1009 };
1010 
1011 static const u32 tegra124_overlay_formats[] = {
1012 	DRM_FORMAT_ARGB4444,
1013 	DRM_FORMAT_ARGB1555,
1014 	DRM_FORMAT_RGB565,
1015 	DRM_FORMAT_RGBA5551,
1016 	DRM_FORMAT_ABGR8888,
1017 	DRM_FORMAT_ARGB8888,
1018 	/* new on Tegra114 */
1019 	DRM_FORMAT_ABGR4444,
1020 	DRM_FORMAT_ABGR1555,
1021 	DRM_FORMAT_BGRA5551,
1022 	DRM_FORMAT_XRGB1555,
1023 	DRM_FORMAT_RGBX5551,
1024 	DRM_FORMAT_XBGR1555,
1025 	DRM_FORMAT_BGRX5551,
1026 	DRM_FORMAT_BGR565,
1027 	DRM_FORMAT_BGRA8888,
1028 	DRM_FORMAT_RGBA8888,
1029 	DRM_FORMAT_XRGB8888,
1030 	DRM_FORMAT_XBGR8888,
1031 	/* new on Tegra124 */
1032 	DRM_FORMAT_RGBX8888,
1033 	DRM_FORMAT_BGRX8888,
1034 	/* planar formats */
1035 	DRM_FORMAT_UYVY,
1036 	DRM_FORMAT_YUYV,
1037 	DRM_FORMAT_YUV420,
1038 	DRM_FORMAT_YUV422,
1039 };
1040 
1041 static struct drm_plane *tegra_dc_overlay_plane_create(struct drm_device *drm,
1042 						       struct tegra_dc *dc,
1043 						       unsigned int index,
1044 						       bool cursor)
1045 {
1046 	unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
1047 	struct tegra_plane *plane;
1048 	unsigned int num_formats;
1049 	enum drm_plane_type type;
1050 	const u32 *formats;
1051 	int err;
1052 
1053 	plane = kzalloc(sizeof(*plane), GFP_KERNEL);
1054 	if (!plane)
1055 		return ERR_PTR(-ENOMEM);
1056 
1057 	plane->offset = 0xa00 + 0x200 * index;
1058 	plane->index = index;
1059 	plane->dc = dc;
1060 
1061 	num_formats = dc->soc->num_overlay_formats;
1062 	formats = dc->soc->overlay_formats;
1063 
1064 	if (!cursor)
1065 		type = DRM_PLANE_TYPE_OVERLAY;
1066 	else
1067 		type = DRM_PLANE_TYPE_CURSOR;
1068 
1069 	err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
1070 				       &tegra_plane_funcs, formats,
1071 				       num_formats, NULL, type, NULL);
1072 	if (err < 0) {
1073 		kfree(plane);
1074 		return ERR_PTR(err);
1075 	}
1076 
1077 	drm_plane_helper_add(&plane->base, &tegra_plane_helper_funcs);
1078 	drm_plane_create_zpos_property(&plane->base, plane->index, 0, 255);
1079 
1080 	err = drm_plane_create_rotation_property(&plane->base,
1081 						 DRM_MODE_ROTATE_0,
1082 						 DRM_MODE_ROTATE_0 |
1083 						 DRM_MODE_REFLECT_Y);
1084 	if (err < 0)
1085 		dev_err(dc->dev, "failed to create rotation property: %d\n",
1086 			err);
1087 
1088 	return &plane->base;
1089 }
1090 
1091 static struct drm_plane *tegra_dc_add_shared_planes(struct drm_device *drm,
1092 						    struct tegra_dc *dc)
1093 {
1094 	struct drm_plane *plane, *primary = NULL;
1095 	unsigned int i, j;
1096 
1097 	for (i = 0; i < dc->soc->num_wgrps; i++) {
1098 		const struct tegra_windowgroup_soc *wgrp = &dc->soc->wgrps[i];
1099 
1100 		if (wgrp->dc == dc->pipe) {
1101 			for (j = 0; j < wgrp->num_windows; j++) {
1102 				unsigned int index = wgrp->windows[j];
1103 
1104 				plane = tegra_shared_plane_create(drm, dc,
1105 								  wgrp->index,
1106 								  index);
1107 				if (IS_ERR(plane))
1108 					return plane;
1109 
1110 				/*
1111 				 * Choose the first shared plane owned by this
1112 				 * head as the primary plane.
1113 				 */
1114 				if (!primary) {
1115 					plane->type = DRM_PLANE_TYPE_PRIMARY;
1116 					primary = plane;
1117 				}
1118 			}
1119 		}
1120 	}
1121 
1122 	return primary;
1123 }
1124 
1125 static struct drm_plane *tegra_dc_add_planes(struct drm_device *drm,
1126 					     struct tegra_dc *dc)
1127 {
1128 	struct drm_plane *planes[2], *primary;
1129 	unsigned int planes_num;
1130 	unsigned int i;
1131 	int err;
1132 
1133 	primary = tegra_primary_plane_create(drm, dc);
1134 	if (IS_ERR(primary))
1135 		return primary;
1136 
1137 	if (dc->soc->supports_cursor)
1138 		planes_num = 2;
1139 	else
1140 		planes_num = 1;
1141 
1142 	for (i = 0; i < planes_num; i++) {
1143 		planes[i] = tegra_dc_overlay_plane_create(drm, dc, 1 + i,
1144 							  false);
1145 		if (IS_ERR(planes[i])) {
1146 			err = PTR_ERR(planes[i]);
1147 
1148 			while (i--)
1149 				tegra_plane_funcs.destroy(planes[i]);
1150 
1151 			tegra_plane_funcs.destroy(primary);
1152 			return ERR_PTR(err);
1153 		}
1154 	}
1155 
1156 	return primary;
1157 }
1158 
1159 static void tegra_dc_destroy(struct drm_crtc *crtc)
1160 {
1161 	drm_crtc_cleanup(crtc);
1162 }
1163 
1164 static void tegra_crtc_reset(struct drm_crtc *crtc)
1165 {
1166 	struct tegra_dc_state *state = kzalloc(sizeof(*state), GFP_KERNEL);
1167 
1168 	if (crtc->state)
1169 		tegra_crtc_atomic_destroy_state(crtc, crtc->state);
1170 
1171 	__drm_atomic_helper_crtc_reset(crtc, &state->base);
1172 	drm_crtc_vblank_reset(crtc);
1173 }
1174 
1175 static struct drm_crtc_state *
1176 tegra_crtc_atomic_duplicate_state(struct drm_crtc *crtc)
1177 {
1178 	struct tegra_dc_state *state = to_dc_state(crtc->state);
1179 	struct tegra_dc_state *copy;
1180 
1181 	copy = kmalloc(sizeof(*copy), GFP_KERNEL);
1182 	if (!copy)
1183 		return NULL;
1184 
1185 	__drm_atomic_helper_crtc_duplicate_state(crtc, &copy->base);
1186 	copy->clk = state->clk;
1187 	copy->pclk = state->pclk;
1188 	copy->div = state->div;
1189 	copy->planes = state->planes;
1190 
1191 	return &copy->base;
1192 }
1193 
1194 static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc,
1195 					    struct drm_crtc_state *state)
1196 {
1197 	__drm_atomic_helper_crtc_destroy_state(state);
1198 	kfree(state);
1199 }
1200 
1201 #define DEBUGFS_REG32(_name) { .name = #_name, .offset = _name }
1202 
1203 static const struct debugfs_reg32 tegra_dc_regs[] = {
1204 	DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT),
1205 	DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT_CNTRL),
1206 	DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT_ERROR),
1207 	DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT),
1208 	DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT_CNTRL),
1209 	DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT_ERROR),
1210 	DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT),
1211 	DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT_CNTRL),
1212 	DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT_ERROR),
1213 	DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT),
1214 	DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT_CNTRL),
1215 	DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT_ERROR),
1216 	DEBUGFS_REG32(DC_CMD_CONT_SYNCPT_VSYNC),
1217 	DEBUGFS_REG32(DC_CMD_DISPLAY_COMMAND_OPTION0),
1218 	DEBUGFS_REG32(DC_CMD_DISPLAY_COMMAND),
1219 	DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE),
1220 	DEBUGFS_REG32(DC_CMD_DISPLAY_POWER_CONTROL),
1221 	DEBUGFS_REG32(DC_CMD_INT_STATUS),
1222 	DEBUGFS_REG32(DC_CMD_INT_MASK),
1223 	DEBUGFS_REG32(DC_CMD_INT_ENABLE),
1224 	DEBUGFS_REG32(DC_CMD_INT_TYPE),
1225 	DEBUGFS_REG32(DC_CMD_INT_POLARITY),
1226 	DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE1),
1227 	DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE2),
1228 	DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE3),
1229 	DEBUGFS_REG32(DC_CMD_STATE_ACCESS),
1230 	DEBUGFS_REG32(DC_CMD_STATE_CONTROL),
1231 	DEBUGFS_REG32(DC_CMD_DISPLAY_WINDOW_HEADER),
1232 	DEBUGFS_REG32(DC_CMD_REG_ACT_CONTROL),
1233 	DEBUGFS_REG32(DC_COM_CRC_CONTROL),
1234 	DEBUGFS_REG32(DC_COM_CRC_CHECKSUM),
1235 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(0)),
1236 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(1)),
1237 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(2)),
1238 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(3)),
1239 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(0)),
1240 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(1)),
1241 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(2)),
1242 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(3)),
1243 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(0)),
1244 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(1)),
1245 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(2)),
1246 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(3)),
1247 	DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(0)),
1248 	DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(1)),
1249 	DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(2)),
1250 	DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(3)),
1251 	DEBUGFS_REG32(DC_COM_PIN_INPUT_DATA(0)),
1252 	DEBUGFS_REG32(DC_COM_PIN_INPUT_DATA(1)),
1253 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(0)),
1254 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(1)),
1255 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(2)),
1256 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(3)),
1257 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(4)),
1258 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(5)),
1259 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(6)),
1260 	DEBUGFS_REG32(DC_COM_PIN_MISC_CONTROL),
1261 	DEBUGFS_REG32(DC_COM_PIN_PM0_CONTROL),
1262 	DEBUGFS_REG32(DC_COM_PIN_PM0_DUTY_CYCLE),
1263 	DEBUGFS_REG32(DC_COM_PIN_PM1_CONTROL),
1264 	DEBUGFS_REG32(DC_COM_PIN_PM1_DUTY_CYCLE),
1265 	DEBUGFS_REG32(DC_COM_SPI_CONTROL),
1266 	DEBUGFS_REG32(DC_COM_SPI_START_BYTE),
1267 	DEBUGFS_REG32(DC_COM_HSPI_WRITE_DATA_AB),
1268 	DEBUGFS_REG32(DC_COM_HSPI_WRITE_DATA_CD),
1269 	DEBUGFS_REG32(DC_COM_HSPI_CS_DC),
1270 	DEBUGFS_REG32(DC_COM_SCRATCH_REGISTER_A),
1271 	DEBUGFS_REG32(DC_COM_SCRATCH_REGISTER_B),
1272 	DEBUGFS_REG32(DC_COM_GPIO_CTRL),
1273 	DEBUGFS_REG32(DC_COM_GPIO_DEBOUNCE_COUNTER),
1274 	DEBUGFS_REG32(DC_COM_CRC_CHECKSUM_LATCHED),
1275 	DEBUGFS_REG32(DC_DISP_DISP_SIGNAL_OPTIONS0),
1276 	DEBUGFS_REG32(DC_DISP_DISP_SIGNAL_OPTIONS1),
1277 	DEBUGFS_REG32(DC_DISP_DISP_WIN_OPTIONS),
1278 	DEBUGFS_REG32(DC_DISP_DISP_MEM_HIGH_PRIORITY),
1279 	DEBUGFS_REG32(DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER),
1280 	DEBUGFS_REG32(DC_DISP_DISP_TIMING_OPTIONS),
1281 	DEBUGFS_REG32(DC_DISP_REF_TO_SYNC),
1282 	DEBUGFS_REG32(DC_DISP_SYNC_WIDTH),
1283 	DEBUGFS_REG32(DC_DISP_BACK_PORCH),
1284 	DEBUGFS_REG32(DC_DISP_ACTIVE),
1285 	DEBUGFS_REG32(DC_DISP_FRONT_PORCH),
1286 	DEBUGFS_REG32(DC_DISP_H_PULSE0_CONTROL),
1287 	DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_A),
1288 	DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_B),
1289 	DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_C),
1290 	DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_D),
1291 	DEBUGFS_REG32(DC_DISP_H_PULSE1_CONTROL),
1292 	DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_A),
1293 	DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_B),
1294 	DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_C),
1295 	DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_D),
1296 	DEBUGFS_REG32(DC_DISP_H_PULSE2_CONTROL),
1297 	DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_A),
1298 	DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_B),
1299 	DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_C),
1300 	DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_D),
1301 	DEBUGFS_REG32(DC_DISP_V_PULSE0_CONTROL),
1302 	DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_A),
1303 	DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_B),
1304 	DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_C),
1305 	DEBUGFS_REG32(DC_DISP_V_PULSE1_CONTROL),
1306 	DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_A),
1307 	DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_B),
1308 	DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_C),
1309 	DEBUGFS_REG32(DC_DISP_V_PULSE2_CONTROL),
1310 	DEBUGFS_REG32(DC_DISP_V_PULSE2_POSITION_A),
1311 	DEBUGFS_REG32(DC_DISP_V_PULSE3_CONTROL),
1312 	DEBUGFS_REG32(DC_DISP_V_PULSE3_POSITION_A),
1313 	DEBUGFS_REG32(DC_DISP_M0_CONTROL),
1314 	DEBUGFS_REG32(DC_DISP_M1_CONTROL),
1315 	DEBUGFS_REG32(DC_DISP_DI_CONTROL),
1316 	DEBUGFS_REG32(DC_DISP_PP_CONTROL),
1317 	DEBUGFS_REG32(DC_DISP_PP_SELECT_A),
1318 	DEBUGFS_REG32(DC_DISP_PP_SELECT_B),
1319 	DEBUGFS_REG32(DC_DISP_PP_SELECT_C),
1320 	DEBUGFS_REG32(DC_DISP_PP_SELECT_D),
1321 	DEBUGFS_REG32(DC_DISP_DISP_CLOCK_CONTROL),
1322 	DEBUGFS_REG32(DC_DISP_DISP_INTERFACE_CONTROL),
1323 	DEBUGFS_REG32(DC_DISP_DISP_COLOR_CONTROL),
1324 	DEBUGFS_REG32(DC_DISP_SHIFT_CLOCK_OPTIONS),
1325 	DEBUGFS_REG32(DC_DISP_DATA_ENABLE_OPTIONS),
1326 	DEBUGFS_REG32(DC_DISP_SERIAL_INTERFACE_OPTIONS),
1327 	DEBUGFS_REG32(DC_DISP_LCD_SPI_OPTIONS),
1328 	DEBUGFS_REG32(DC_DISP_BORDER_COLOR),
1329 	DEBUGFS_REG32(DC_DISP_COLOR_KEY0_LOWER),
1330 	DEBUGFS_REG32(DC_DISP_COLOR_KEY0_UPPER),
1331 	DEBUGFS_REG32(DC_DISP_COLOR_KEY1_LOWER),
1332 	DEBUGFS_REG32(DC_DISP_COLOR_KEY1_UPPER),
1333 	DEBUGFS_REG32(DC_DISP_CURSOR_FOREGROUND),
1334 	DEBUGFS_REG32(DC_DISP_CURSOR_BACKGROUND),
1335 	DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR),
1336 	DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR_NS),
1337 	DEBUGFS_REG32(DC_DISP_CURSOR_POSITION),
1338 	DEBUGFS_REG32(DC_DISP_CURSOR_POSITION_NS),
1339 	DEBUGFS_REG32(DC_DISP_INIT_SEQ_CONTROL),
1340 	DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_A),
1341 	DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_B),
1342 	DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_C),
1343 	DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_D),
1344 	DEBUGFS_REG32(DC_DISP_DC_MCCIF_FIFOCTRL),
1345 	DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY0A_HYST),
1346 	DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY0B_HYST),
1347 	DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY1A_HYST),
1348 	DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY1B_HYST),
1349 	DEBUGFS_REG32(DC_DISP_DAC_CRT_CTRL),
1350 	DEBUGFS_REG32(DC_DISP_DISP_MISC_CONTROL),
1351 	DEBUGFS_REG32(DC_DISP_SD_CONTROL),
1352 	DEBUGFS_REG32(DC_DISP_SD_CSC_COEFF),
1353 	DEBUGFS_REG32(DC_DISP_SD_LUT(0)),
1354 	DEBUGFS_REG32(DC_DISP_SD_LUT(1)),
1355 	DEBUGFS_REG32(DC_DISP_SD_LUT(2)),
1356 	DEBUGFS_REG32(DC_DISP_SD_LUT(3)),
1357 	DEBUGFS_REG32(DC_DISP_SD_LUT(4)),
1358 	DEBUGFS_REG32(DC_DISP_SD_LUT(5)),
1359 	DEBUGFS_REG32(DC_DISP_SD_LUT(6)),
1360 	DEBUGFS_REG32(DC_DISP_SD_LUT(7)),
1361 	DEBUGFS_REG32(DC_DISP_SD_LUT(8)),
1362 	DEBUGFS_REG32(DC_DISP_SD_FLICKER_CONTROL),
1363 	DEBUGFS_REG32(DC_DISP_DC_PIXEL_COUNT),
1364 	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(0)),
1365 	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(1)),
1366 	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(2)),
1367 	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(3)),
1368 	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(4)),
1369 	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(5)),
1370 	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(6)),
1371 	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(7)),
1372 	DEBUGFS_REG32(DC_DISP_SD_BL_TF(0)),
1373 	DEBUGFS_REG32(DC_DISP_SD_BL_TF(1)),
1374 	DEBUGFS_REG32(DC_DISP_SD_BL_TF(2)),
1375 	DEBUGFS_REG32(DC_DISP_SD_BL_TF(3)),
1376 	DEBUGFS_REG32(DC_DISP_SD_BL_CONTROL),
1377 	DEBUGFS_REG32(DC_DISP_SD_HW_K_VALUES),
1378 	DEBUGFS_REG32(DC_DISP_SD_MAN_K_VALUES),
1379 	DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR_HI),
1380 	DEBUGFS_REG32(DC_DISP_BLEND_CURSOR_CONTROL),
1381 	DEBUGFS_REG32(DC_WIN_WIN_OPTIONS),
1382 	DEBUGFS_REG32(DC_WIN_BYTE_SWAP),
1383 	DEBUGFS_REG32(DC_WIN_BUFFER_CONTROL),
1384 	DEBUGFS_REG32(DC_WIN_COLOR_DEPTH),
1385 	DEBUGFS_REG32(DC_WIN_POSITION),
1386 	DEBUGFS_REG32(DC_WIN_SIZE),
1387 	DEBUGFS_REG32(DC_WIN_PRESCALED_SIZE),
1388 	DEBUGFS_REG32(DC_WIN_H_INITIAL_DDA),
1389 	DEBUGFS_REG32(DC_WIN_V_INITIAL_DDA),
1390 	DEBUGFS_REG32(DC_WIN_DDA_INC),
1391 	DEBUGFS_REG32(DC_WIN_LINE_STRIDE),
1392 	DEBUGFS_REG32(DC_WIN_BUF_STRIDE),
1393 	DEBUGFS_REG32(DC_WIN_UV_BUF_STRIDE),
1394 	DEBUGFS_REG32(DC_WIN_BUFFER_ADDR_MODE),
1395 	DEBUGFS_REG32(DC_WIN_DV_CONTROL),
1396 	DEBUGFS_REG32(DC_WIN_BLEND_NOKEY),
1397 	DEBUGFS_REG32(DC_WIN_BLEND_1WIN),
1398 	DEBUGFS_REG32(DC_WIN_BLEND_2WIN_X),
1399 	DEBUGFS_REG32(DC_WIN_BLEND_2WIN_Y),
1400 	DEBUGFS_REG32(DC_WIN_BLEND_3WIN_XY),
1401 	DEBUGFS_REG32(DC_WIN_HP_FETCH_CONTROL),
1402 	DEBUGFS_REG32(DC_WINBUF_START_ADDR),
1403 	DEBUGFS_REG32(DC_WINBUF_START_ADDR_NS),
1404 	DEBUGFS_REG32(DC_WINBUF_START_ADDR_U),
1405 	DEBUGFS_REG32(DC_WINBUF_START_ADDR_U_NS),
1406 	DEBUGFS_REG32(DC_WINBUF_START_ADDR_V),
1407 	DEBUGFS_REG32(DC_WINBUF_START_ADDR_V_NS),
1408 	DEBUGFS_REG32(DC_WINBUF_ADDR_H_OFFSET),
1409 	DEBUGFS_REG32(DC_WINBUF_ADDR_H_OFFSET_NS),
1410 	DEBUGFS_REG32(DC_WINBUF_ADDR_V_OFFSET),
1411 	DEBUGFS_REG32(DC_WINBUF_ADDR_V_OFFSET_NS),
1412 	DEBUGFS_REG32(DC_WINBUF_UFLOW_STATUS),
1413 	DEBUGFS_REG32(DC_WINBUF_AD_UFLOW_STATUS),
1414 	DEBUGFS_REG32(DC_WINBUF_BD_UFLOW_STATUS),
1415 	DEBUGFS_REG32(DC_WINBUF_CD_UFLOW_STATUS),
1416 };
1417 
1418 static int tegra_dc_show_regs(struct seq_file *s, void *data)
1419 {
1420 	struct drm_info_node *node = s->private;
1421 	struct tegra_dc *dc = node->info_ent->data;
1422 	unsigned int i;
1423 	int err = 0;
1424 
1425 	drm_modeset_lock(&dc->base.mutex, NULL);
1426 
1427 	if (!dc->base.state->active) {
1428 		err = -EBUSY;
1429 		goto unlock;
1430 	}
1431 
1432 	for (i = 0; i < ARRAY_SIZE(tegra_dc_regs); i++) {
1433 		unsigned int offset = tegra_dc_regs[i].offset;
1434 
1435 		seq_printf(s, "%-40s %#05x %08x\n", tegra_dc_regs[i].name,
1436 			   offset, tegra_dc_readl(dc, offset));
1437 	}
1438 
1439 unlock:
1440 	drm_modeset_unlock(&dc->base.mutex);
1441 	return err;
1442 }
1443 
1444 static int tegra_dc_show_crc(struct seq_file *s, void *data)
1445 {
1446 	struct drm_info_node *node = s->private;
1447 	struct tegra_dc *dc = node->info_ent->data;
1448 	int err = 0;
1449 	u32 value;
1450 
1451 	drm_modeset_lock(&dc->base.mutex, NULL);
1452 
1453 	if (!dc->base.state->active) {
1454 		err = -EBUSY;
1455 		goto unlock;
1456 	}
1457 
1458 	value = DC_COM_CRC_CONTROL_ACTIVE_DATA | DC_COM_CRC_CONTROL_ENABLE;
1459 	tegra_dc_writel(dc, value, DC_COM_CRC_CONTROL);
1460 	tegra_dc_commit(dc);
1461 
1462 	drm_crtc_wait_one_vblank(&dc->base);
1463 	drm_crtc_wait_one_vblank(&dc->base);
1464 
1465 	value = tegra_dc_readl(dc, DC_COM_CRC_CHECKSUM);
1466 	seq_printf(s, "%08x\n", value);
1467 
1468 	tegra_dc_writel(dc, 0, DC_COM_CRC_CONTROL);
1469 
1470 unlock:
1471 	drm_modeset_unlock(&dc->base.mutex);
1472 	return err;
1473 }
1474 
1475 static int tegra_dc_show_stats(struct seq_file *s, void *data)
1476 {
1477 	struct drm_info_node *node = s->private;
1478 	struct tegra_dc *dc = node->info_ent->data;
1479 
1480 	seq_printf(s, "frames: %lu\n", dc->stats.frames);
1481 	seq_printf(s, "vblank: %lu\n", dc->stats.vblank);
1482 	seq_printf(s, "underflow: %lu\n", dc->stats.underflow);
1483 	seq_printf(s, "overflow: %lu\n", dc->stats.overflow);
1484 
1485 	return 0;
1486 }
1487 
1488 static struct drm_info_list debugfs_files[] = {
1489 	{ "regs", tegra_dc_show_regs, 0, NULL },
1490 	{ "crc", tegra_dc_show_crc, 0, NULL },
1491 	{ "stats", tegra_dc_show_stats, 0, NULL },
1492 };
1493 
1494 static int tegra_dc_late_register(struct drm_crtc *crtc)
1495 {
1496 	unsigned int i, count = ARRAY_SIZE(debugfs_files);
1497 	struct drm_minor *minor = crtc->dev->primary;
1498 	struct dentry *root;
1499 	struct tegra_dc *dc = to_tegra_dc(crtc);
1500 
1501 #ifdef CONFIG_DEBUG_FS
1502 	root = crtc->debugfs_entry;
1503 #else
1504 	root = NULL;
1505 #endif
1506 
1507 	dc->debugfs_files = kmemdup(debugfs_files, sizeof(debugfs_files),
1508 				    GFP_KERNEL);
1509 	if (!dc->debugfs_files)
1510 		return -ENOMEM;
1511 
1512 	for (i = 0; i < count; i++)
1513 		dc->debugfs_files[i].data = dc;
1514 
1515 	drm_debugfs_create_files(dc->debugfs_files, count, root, minor);
1516 
1517 	return 0;
1518 }
1519 
1520 static void tegra_dc_early_unregister(struct drm_crtc *crtc)
1521 {
1522 	unsigned int count = ARRAY_SIZE(debugfs_files);
1523 	struct drm_minor *minor = crtc->dev->primary;
1524 	struct tegra_dc *dc = to_tegra_dc(crtc);
1525 
1526 	drm_debugfs_remove_files(dc->debugfs_files, count, minor);
1527 	kfree(dc->debugfs_files);
1528 	dc->debugfs_files = NULL;
1529 }
1530 
1531 static u32 tegra_dc_get_vblank_counter(struct drm_crtc *crtc)
1532 {
1533 	struct tegra_dc *dc = to_tegra_dc(crtc);
1534 
1535 	/* XXX vblank syncpoints don't work with nvdisplay yet */
1536 	if (dc->syncpt && !dc->soc->has_nvdisplay)
1537 		return host1x_syncpt_read(dc->syncpt);
1538 
1539 	/* fallback to software emulated VBLANK counter */
1540 	return (u32)drm_crtc_vblank_count(&dc->base);
1541 }
1542 
1543 static int tegra_dc_enable_vblank(struct drm_crtc *crtc)
1544 {
1545 	struct tegra_dc *dc = to_tegra_dc(crtc);
1546 	u32 value;
1547 
1548 	value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
1549 	value |= VBLANK_INT;
1550 	tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1551 
1552 	return 0;
1553 }
1554 
1555 static void tegra_dc_disable_vblank(struct drm_crtc *crtc)
1556 {
1557 	struct tegra_dc *dc = to_tegra_dc(crtc);
1558 	u32 value;
1559 
1560 	value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
1561 	value &= ~VBLANK_INT;
1562 	tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1563 }
1564 
1565 static const struct drm_crtc_funcs tegra_crtc_funcs = {
1566 	.page_flip = drm_atomic_helper_page_flip,
1567 	.set_config = drm_atomic_helper_set_config,
1568 	.destroy = tegra_dc_destroy,
1569 	.reset = tegra_crtc_reset,
1570 	.atomic_duplicate_state = tegra_crtc_atomic_duplicate_state,
1571 	.atomic_destroy_state = tegra_crtc_atomic_destroy_state,
1572 	.late_register = tegra_dc_late_register,
1573 	.early_unregister = tegra_dc_early_unregister,
1574 	.get_vblank_counter = tegra_dc_get_vblank_counter,
1575 	.enable_vblank = tegra_dc_enable_vblank,
1576 	.disable_vblank = tegra_dc_disable_vblank,
1577 };
1578 
1579 static int tegra_dc_set_timings(struct tegra_dc *dc,
1580 				struct drm_display_mode *mode)
1581 {
1582 	unsigned int h_ref_to_sync = 1;
1583 	unsigned int v_ref_to_sync = 1;
1584 	unsigned long value;
1585 
1586 	if (!dc->soc->has_nvdisplay) {
1587 		tegra_dc_writel(dc, 0x0, DC_DISP_DISP_TIMING_OPTIONS);
1588 
1589 		value = (v_ref_to_sync << 16) | h_ref_to_sync;
1590 		tegra_dc_writel(dc, value, DC_DISP_REF_TO_SYNC);
1591 	}
1592 
1593 	value = ((mode->vsync_end - mode->vsync_start) << 16) |
1594 		((mode->hsync_end - mode->hsync_start) <<  0);
1595 	tegra_dc_writel(dc, value, DC_DISP_SYNC_WIDTH);
1596 
1597 	value = ((mode->vtotal - mode->vsync_end) << 16) |
1598 		((mode->htotal - mode->hsync_end) <<  0);
1599 	tegra_dc_writel(dc, value, DC_DISP_BACK_PORCH);
1600 
1601 	value = ((mode->vsync_start - mode->vdisplay) << 16) |
1602 		((mode->hsync_start - mode->hdisplay) <<  0);
1603 	tegra_dc_writel(dc, value, DC_DISP_FRONT_PORCH);
1604 
1605 	value = (mode->vdisplay << 16) | mode->hdisplay;
1606 	tegra_dc_writel(dc, value, DC_DISP_ACTIVE);
1607 
1608 	return 0;
1609 }
1610 
1611 /**
1612  * tegra_dc_state_setup_clock - check clock settings and store them in atomic
1613  *     state
1614  * @dc: display controller
1615  * @crtc_state: CRTC atomic state
1616  * @clk: parent clock for display controller
1617  * @pclk: pixel clock
1618  * @div: shift clock divider
1619  *
1620  * Returns:
1621  * 0 on success or a negative error-code on failure.
1622  */
1623 int tegra_dc_state_setup_clock(struct tegra_dc *dc,
1624 			       struct drm_crtc_state *crtc_state,
1625 			       struct clk *clk, unsigned long pclk,
1626 			       unsigned int div)
1627 {
1628 	struct tegra_dc_state *state = to_dc_state(crtc_state);
1629 
1630 	if (!clk_has_parent(dc->clk, clk))
1631 		return -EINVAL;
1632 
1633 	state->clk = clk;
1634 	state->pclk = pclk;
1635 	state->div = div;
1636 
1637 	return 0;
1638 }
1639 
1640 static void tegra_dc_commit_state(struct tegra_dc *dc,
1641 				  struct tegra_dc_state *state)
1642 {
1643 	u32 value;
1644 	int err;
1645 
1646 	err = clk_set_parent(dc->clk, state->clk);
1647 	if (err < 0)
1648 		dev_err(dc->dev, "failed to set parent clock: %d\n", err);
1649 
1650 	/*
1651 	 * Outputs may not want to change the parent clock rate. This is only
1652 	 * relevant to Tegra20 where only a single display PLL is available.
1653 	 * Since that PLL would typically be used for HDMI, an internal LVDS
1654 	 * panel would need to be driven by some other clock such as PLL_P
1655 	 * which is shared with other peripherals. Changing the clock rate
1656 	 * should therefore be avoided.
1657 	 */
1658 	if (state->pclk > 0) {
1659 		err = clk_set_rate(state->clk, state->pclk);
1660 		if (err < 0)
1661 			dev_err(dc->dev,
1662 				"failed to set clock rate to %lu Hz\n",
1663 				state->pclk);
1664 	}
1665 
1666 	DRM_DEBUG_KMS("rate: %lu, div: %u\n", clk_get_rate(dc->clk),
1667 		      state->div);
1668 	DRM_DEBUG_KMS("pclk: %lu\n", state->pclk);
1669 
1670 	if (!dc->soc->has_nvdisplay) {
1671 		value = SHIFT_CLK_DIVIDER(state->div) | PIXEL_CLK_DIVIDER_PCD1;
1672 		tegra_dc_writel(dc, value, DC_DISP_DISP_CLOCK_CONTROL);
1673 	}
1674 
1675 	err = clk_set_rate(dc->clk, state->pclk);
1676 	if (err < 0)
1677 		dev_err(dc->dev, "failed to set clock %pC to %lu Hz: %d\n",
1678 			dc->clk, state->pclk, err);
1679 }
1680 
1681 static void tegra_dc_stop(struct tegra_dc *dc)
1682 {
1683 	u32 value;
1684 
1685 	/* stop the display controller */
1686 	value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1687 	value &= ~DISP_CTRL_MODE_MASK;
1688 	tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1689 
1690 	tegra_dc_commit(dc);
1691 }
1692 
1693 static bool tegra_dc_idle(struct tegra_dc *dc)
1694 {
1695 	u32 value;
1696 
1697 	value = tegra_dc_readl_active(dc, DC_CMD_DISPLAY_COMMAND);
1698 
1699 	return (value & DISP_CTRL_MODE_MASK) == 0;
1700 }
1701 
1702 static int tegra_dc_wait_idle(struct tegra_dc *dc, unsigned long timeout)
1703 {
1704 	timeout = jiffies + msecs_to_jiffies(timeout);
1705 
1706 	while (time_before(jiffies, timeout)) {
1707 		if (tegra_dc_idle(dc))
1708 			return 0;
1709 
1710 		usleep_range(1000, 2000);
1711 	}
1712 
1713 	dev_dbg(dc->dev, "timeout waiting for DC to become idle\n");
1714 	return -ETIMEDOUT;
1715 }
1716 
1717 static void tegra_crtc_atomic_disable(struct drm_crtc *crtc,
1718 				      struct drm_crtc_state *old_state)
1719 {
1720 	struct tegra_dc *dc = to_tegra_dc(crtc);
1721 	u32 value;
1722 	int err;
1723 
1724 	if (!tegra_dc_idle(dc)) {
1725 		tegra_dc_stop(dc);
1726 
1727 		/*
1728 		 * Ignore the return value, there isn't anything useful to do
1729 		 * in case this fails.
1730 		 */
1731 		tegra_dc_wait_idle(dc, 100);
1732 	}
1733 
1734 	/*
1735 	 * This should really be part of the RGB encoder driver, but clearing
1736 	 * these bits has the side-effect of stopping the display controller.
1737 	 * When that happens no VBLANK interrupts will be raised. At the same
1738 	 * time the encoder is disabled before the display controller, so the
1739 	 * above code is always going to timeout waiting for the controller
1740 	 * to go idle.
1741 	 *
1742 	 * Given the close coupling between the RGB encoder and the display
1743 	 * controller doing it here is still kind of okay. None of the other
1744 	 * encoder drivers require these bits to be cleared.
1745 	 *
1746 	 * XXX: Perhaps given that the display controller is switched off at
1747 	 * this point anyway maybe clearing these bits isn't even useful for
1748 	 * the RGB encoder?
1749 	 */
1750 	if (dc->rgb) {
1751 		value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
1752 		value &= ~(PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
1753 			   PW4_ENABLE | PM0_ENABLE | PM1_ENABLE);
1754 		tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
1755 	}
1756 
1757 	tegra_dc_stats_reset(&dc->stats);
1758 	drm_crtc_vblank_off(crtc);
1759 
1760 	spin_lock_irq(&crtc->dev->event_lock);
1761 
1762 	if (crtc->state->event) {
1763 		drm_crtc_send_vblank_event(crtc, crtc->state->event);
1764 		crtc->state->event = NULL;
1765 	}
1766 
1767 	spin_unlock_irq(&crtc->dev->event_lock);
1768 
1769 	err = host1x_client_suspend(&dc->client);
1770 	if (err < 0)
1771 		dev_err(dc->dev, "failed to suspend: %d\n", err);
1772 }
1773 
1774 static void tegra_crtc_atomic_enable(struct drm_crtc *crtc,
1775 				     struct drm_crtc_state *old_state)
1776 {
1777 	struct drm_display_mode *mode = &crtc->state->adjusted_mode;
1778 	struct tegra_dc_state *state = to_dc_state(crtc->state);
1779 	struct tegra_dc *dc = to_tegra_dc(crtc);
1780 	u32 value;
1781 	int err;
1782 
1783 	err = host1x_client_resume(&dc->client);
1784 	if (err < 0) {
1785 		dev_err(dc->dev, "failed to resume: %d\n", err);
1786 		return;
1787 	}
1788 
1789 	/* initialize display controller */
1790 	if (dc->syncpt) {
1791 		u32 syncpt = host1x_syncpt_id(dc->syncpt), enable;
1792 
1793 		if (dc->soc->has_nvdisplay)
1794 			enable = 1 << 31;
1795 		else
1796 			enable = 1 << 8;
1797 
1798 		value = SYNCPT_CNTRL_NO_STALL;
1799 		tegra_dc_writel(dc, value, DC_CMD_GENERAL_INCR_SYNCPT_CNTRL);
1800 
1801 		value = enable | syncpt;
1802 		tegra_dc_writel(dc, value, DC_CMD_CONT_SYNCPT_VSYNC);
1803 	}
1804 
1805 	if (dc->soc->has_nvdisplay) {
1806 		value = DSC_TO_UF_INT | DSC_BBUF_UF_INT | DSC_RBUF_UF_INT |
1807 			DSC_OBUF_UF_INT;
1808 		tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
1809 
1810 		value = DSC_TO_UF_INT | DSC_BBUF_UF_INT | DSC_RBUF_UF_INT |
1811 			DSC_OBUF_UF_INT | SD3_BUCKET_WALK_DONE_INT |
1812 			HEAD_UF_INT | MSF_INT | REG_TMOUT_INT |
1813 			REGION_CRC_INT | V_PULSE2_INT | V_PULSE3_INT |
1814 			VBLANK_INT | FRAME_END_INT;
1815 		tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
1816 
1817 		value = SD3_BUCKET_WALK_DONE_INT | HEAD_UF_INT | VBLANK_INT |
1818 			FRAME_END_INT;
1819 		tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
1820 
1821 		value = HEAD_UF_INT | REG_TMOUT_INT | FRAME_END_INT;
1822 		tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1823 
1824 		tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
1825 	} else {
1826 		value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1827 			WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1828 		tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
1829 
1830 		value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1831 			WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1832 		tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
1833 
1834 		/* initialize timer */
1835 		value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(0x20) |
1836 			WINDOW_B_THRESHOLD(0x20) | WINDOW_C_THRESHOLD(0x20);
1837 		tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY);
1838 
1839 		value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(1) |
1840 			WINDOW_B_THRESHOLD(1) | WINDOW_C_THRESHOLD(1);
1841 		tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER);
1842 
1843 		value = VBLANK_INT | WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1844 			WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1845 		tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
1846 
1847 		value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1848 			WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1849 		tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1850 	}
1851 
1852 	if (dc->soc->supports_background_color)
1853 		tegra_dc_writel(dc, 0, DC_DISP_BLEND_BACKGROUND_COLOR);
1854 	else
1855 		tegra_dc_writel(dc, 0, DC_DISP_BORDER_COLOR);
1856 
1857 	/* apply PLL and pixel clock changes */
1858 	tegra_dc_commit_state(dc, state);
1859 
1860 	/* program display mode */
1861 	tegra_dc_set_timings(dc, mode);
1862 
1863 	/* interlacing isn't supported yet, so disable it */
1864 	if (dc->soc->supports_interlacing) {
1865 		value = tegra_dc_readl(dc, DC_DISP_INTERLACE_CONTROL);
1866 		value &= ~INTERLACE_ENABLE;
1867 		tegra_dc_writel(dc, value, DC_DISP_INTERLACE_CONTROL);
1868 	}
1869 
1870 	value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1871 	value &= ~DISP_CTRL_MODE_MASK;
1872 	value |= DISP_CTRL_MODE_C_DISPLAY;
1873 	tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1874 
1875 	if (!dc->soc->has_nvdisplay) {
1876 		value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
1877 		value |= PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
1878 			 PW4_ENABLE | PM0_ENABLE | PM1_ENABLE;
1879 		tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
1880 	}
1881 
1882 	/* enable underflow reporting and display red for missing pixels */
1883 	if (dc->soc->has_nvdisplay) {
1884 		value = UNDERFLOW_MODE_RED | UNDERFLOW_REPORT_ENABLE;
1885 		tegra_dc_writel(dc, value, DC_COM_RG_UNDERFLOW);
1886 	}
1887 
1888 	tegra_dc_commit(dc);
1889 
1890 	drm_crtc_vblank_on(crtc);
1891 }
1892 
1893 static void tegra_crtc_atomic_begin(struct drm_crtc *crtc,
1894 				    struct drm_crtc_state *old_crtc_state)
1895 {
1896 	unsigned long flags;
1897 
1898 	if (crtc->state->event) {
1899 		spin_lock_irqsave(&crtc->dev->event_lock, flags);
1900 
1901 		if (drm_crtc_vblank_get(crtc) != 0)
1902 			drm_crtc_send_vblank_event(crtc, crtc->state->event);
1903 		else
1904 			drm_crtc_arm_vblank_event(crtc, crtc->state->event);
1905 
1906 		spin_unlock_irqrestore(&crtc->dev->event_lock, flags);
1907 
1908 		crtc->state->event = NULL;
1909 	}
1910 }
1911 
1912 static void tegra_crtc_atomic_flush(struct drm_crtc *crtc,
1913 				    struct drm_crtc_state *old_crtc_state)
1914 {
1915 	struct tegra_dc_state *state = to_dc_state(crtc->state);
1916 	struct tegra_dc *dc = to_tegra_dc(crtc);
1917 	u32 value;
1918 
1919 	value = state->planes << 8 | GENERAL_UPDATE;
1920 	tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
1921 	value = tegra_dc_readl(dc, DC_CMD_STATE_CONTROL);
1922 
1923 	value = state->planes | GENERAL_ACT_REQ;
1924 	tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
1925 	value = tegra_dc_readl(dc, DC_CMD_STATE_CONTROL);
1926 }
1927 
1928 static const struct drm_crtc_helper_funcs tegra_crtc_helper_funcs = {
1929 	.atomic_begin = tegra_crtc_atomic_begin,
1930 	.atomic_flush = tegra_crtc_atomic_flush,
1931 	.atomic_enable = tegra_crtc_atomic_enable,
1932 	.atomic_disable = tegra_crtc_atomic_disable,
1933 };
1934 
1935 static irqreturn_t tegra_dc_irq(int irq, void *data)
1936 {
1937 	struct tegra_dc *dc = data;
1938 	unsigned long status;
1939 
1940 	status = tegra_dc_readl(dc, DC_CMD_INT_STATUS);
1941 	tegra_dc_writel(dc, status, DC_CMD_INT_STATUS);
1942 
1943 	if (status & FRAME_END_INT) {
1944 		/*
1945 		dev_dbg(dc->dev, "%s(): frame end\n", __func__);
1946 		*/
1947 		dc->stats.frames++;
1948 	}
1949 
1950 	if (status & VBLANK_INT) {
1951 		/*
1952 		dev_dbg(dc->dev, "%s(): vertical blank\n", __func__);
1953 		*/
1954 		drm_crtc_handle_vblank(&dc->base);
1955 		dc->stats.vblank++;
1956 	}
1957 
1958 	if (status & (WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT)) {
1959 		/*
1960 		dev_dbg(dc->dev, "%s(): underflow\n", __func__);
1961 		*/
1962 		dc->stats.underflow++;
1963 	}
1964 
1965 	if (status & (WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT)) {
1966 		/*
1967 		dev_dbg(dc->dev, "%s(): overflow\n", __func__);
1968 		*/
1969 		dc->stats.overflow++;
1970 	}
1971 
1972 	if (status & HEAD_UF_INT) {
1973 		dev_dbg_ratelimited(dc->dev, "%s(): head underflow\n", __func__);
1974 		dc->stats.underflow++;
1975 	}
1976 
1977 	return IRQ_HANDLED;
1978 }
1979 
1980 static bool tegra_dc_has_window_groups(struct tegra_dc *dc)
1981 {
1982 	unsigned int i;
1983 
1984 	if (!dc->soc->wgrps)
1985 		return true;
1986 
1987 	for (i = 0; i < dc->soc->num_wgrps; i++) {
1988 		const struct tegra_windowgroup_soc *wgrp = &dc->soc->wgrps[i];
1989 
1990 		if (wgrp->dc == dc->pipe && wgrp->num_windows > 0)
1991 			return true;
1992 	}
1993 
1994 	return false;
1995 }
1996 
1997 static int tegra_dc_init(struct host1x_client *client)
1998 {
1999 	struct drm_device *drm = dev_get_drvdata(client->host);
2000 	unsigned long flags = HOST1X_SYNCPT_CLIENT_MANAGED;
2001 	struct tegra_dc *dc = host1x_client_to_dc(client);
2002 	struct tegra_drm *tegra = drm->dev_private;
2003 	struct drm_plane *primary = NULL;
2004 	struct drm_plane *cursor = NULL;
2005 	int err;
2006 
2007 	/*
2008 	 * XXX do not register DCs with no window groups because we cannot
2009 	 * assign a primary plane to them, which in turn will cause KMS to
2010 	 * crash.
2011 	 */
2012 	if (!tegra_dc_has_window_groups(dc))
2013 		return 0;
2014 
2015 	/*
2016 	 * Set the display hub as the host1x client parent for the display
2017 	 * controller. This is needed for the runtime reference counting that
2018 	 * ensures the display hub is always powered when any of the display
2019 	 * controllers are.
2020 	 */
2021 	if (dc->soc->has_nvdisplay)
2022 		client->parent = &tegra->hub->client;
2023 
2024 	dc->syncpt = host1x_syncpt_request(client, flags);
2025 	if (!dc->syncpt)
2026 		dev_warn(dc->dev, "failed to allocate syncpoint\n");
2027 
2028 	err = host1x_client_iommu_attach(client);
2029 	if (err < 0 && err != -ENODEV) {
2030 		dev_err(client->dev, "failed to attach to domain: %d\n", err);
2031 		return err;
2032 	}
2033 
2034 	if (dc->soc->wgrps)
2035 		primary = tegra_dc_add_shared_planes(drm, dc);
2036 	else
2037 		primary = tegra_dc_add_planes(drm, dc);
2038 
2039 	if (IS_ERR(primary)) {
2040 		err = PTR_ERR(primary);
2041 		goto cleanup;
2042 	}
2043 
2044 	if (dc->soc->supports_cursor) {
2045 		cursor = tegra_dc_cursor_plane_create(drm, dc);
2046 		if (IS_ERR(cursor)) {
2047 			err = PTR_ERR(cursor);
2048 			goto cleanup;
2049 		}
2050 	} else {
2051 		/* dedicate one overlay to mouse cursor */
2052 		cursor = tegra_dc_overlay_plane_create(drm, dc, 2, true);
2053 		if (IS_ERR(cursor)) {
2054 			err = PTR_ERR(cursor);
2055 			goto cleanup;
2056 		}
2057 	}
2058 
2059 	err = drm_crtc_init_with_planes(drm, &dc->base, primary, cursor,
2060 					&tegra_crtc_funcs, NULL);
2061 	if (err < 0)
2062 		goto cleanup;
2063 
2064 	drm_crtc_helper_add(&dc->base, &tegra_crtc_helper_funcs);
2065 
2066 	/*
2067 	 * Keep track of the minimum pitch alignment across all display
2068 	 * controllers.
2069 	 */
2070 	if (dc->soc->pitch_align > tegra->pitch_align)
2071 		tegra->pitch_align = dc->soc->pitch_align;
2072 
2073 	err = tegra_dc_rgb_init(drm, dc);
2074 	if (err < 0 && err != -ENODEV) {
2075 		dev_err(dc->dev, "failed to initialize RGB output: %d\n", err);
2076 		goto cleanup;
2077 	}
2078 
2079 	err = devm_request_irq(dc->dev, dc->irq, tegra_dc_irq, 0,
2080 			       dev_name(dc->dev), dc);
2081 	if (err < 0) {
2082 		dev_err(dc->dev, "failed to request IRQ#%u: %d\n", dc->irq,
2083 			err);
2084 		goto cleanup;
2085 	}
2086 
2087 	/*
2088 	 * Inherit the DMA parameters (such as maximum segment size) from the
2089 	 * parent host1x device.
2090 	 */
2091 	client->dev->dma_parms = client->host->dma_parms;
2092 
2093 	return 0;
2094 
2095 cleanup:
2096 	if (!IS_ERR_OR_NULL(cursor))
2097 		drm_plane_cleanup(cursor);
2098 
2099 	if (!IS_ERR(primary))
2100 		drm_plane_cleanup(primary);
2101 
2102 	host1x_client_iommu_detach(client);
2103 	host1x_syncpt_free(dc->syncpt);
2104 
2105 	return err;
2106 }
2107 
2108 static int tegra_dc_exit(struct host1x_client *client)
2109 {
2110 	struct tegra_dc *dc = host1x_client_to_dc(client);
2111 	int err;
2112 
2113 	if (!tegra_dc_has_window_groups(dc))
2114 		return 0;
2115 
2116 	/* avoid a dangling pointer just in case this disappears */
2117 	client->dev->dma_parms = NULL;
2118 
2119 	devm_free_irq(dc->dev, dc->irq, dc);
2120 
2121 	err = tegra_dc_rgb_exit(dc);
2122 	if (err) {
2123 		dev_err(dc->dev, "failed to shutdown RGB output: %d\n", err);
2124 		return err;
2125 	}
2126 
2127 	host1x_client_iommu_detach(client);
2128 	host1x_syncpt_free(dc->syncpt);
2129 
2130 	return 0;
2131 }
2132 
2133 static int tegra_dc_runtime_suspend(struct host1x_client *client)
2134 {
2135 	struct tegra_dc *dc = host1x_client_to_dc(client);
2136 	struct device *dev = client->dev;
2137 	int err;
2138 
2139 	err = reset_control_assert(dc->rst);
2140 	if (err < 0) {
2141 		dev_err(dev, "failed to assert reset: %d\n", err);
2142 		return err;
2143 	}
2144 
2145 	if (dc->soc->has_powergate)
2146 		tegra_powergate_power_off(dc->powergate);
2147 
2148 	clk_disable_unprepare(dc->clk);
2149 	pm_runtime_put_sync(dev);
2150 
2151 	return 0;
2152 }
2153 
2154 static int tegra_dc_runtime_resume(struct host1x_client *client)
2155 {
2156 	struct tegra_dc *dc = host1x_client_to_dc(client);
2157 	struct device *dev = client->dev;
2158 	int err;
2159 
2160 	err = pm_runtime_get_sync(dev);
2161 	if (err < 0) {
2162 		dev_err(dev, "failed to get runtime PM: %d\n", err);
2163 		return err;
2164 	}
2165 
2166 	if (dc->soc->has_powergate) {
2167 		err = tegra_powergate_sequence_power_up(dc->powergate, dc->clk,
2168 							dc->rst);
2169 		if (err < 0) {
2170 			dev_err(dev, "failed to power partition: %d\n", err);
2171 			goto put_rpm;
2172 		}
2173 	} else {
2174 		err = clk_prepare_enable(dc->clk);
2175 		if (err < 0) {
2176 			dev_err(dev, "failed to enable clock: %d\n", err);
2177 			goto put_rpm;
2178 		}
2179 
2180 		err = reset_control_deassert(dc->rst);
2181 		if (err < 0) {
2182 			dev_err(dev, "failed to deassert reset: %d\n", err);
2183 			goto disable_clk;
2184 		}
2185 	}
2186 
2187 	return 0;
2188 
2189 disable_clk:
2190 	clk_disable_unprepare(dc->clk);
2191 put_rpm:
2192 	pm_runtime_put_sync(dev);
2193 	return err;
2194 }
2195 
2196 static const struct host1x_client_ops dc_client_ops = {
2197 	.init = tegra_dc_init,
2198 	.exit = tegra_dc_exit,
2199 	.suspend = tegra_dc_runtime_suspend,
2200 	.resume = tegra_dc_runtime_resume,
2201 };
2202 
2203 static const struct tegra_dc_soc_info tegra20_dc_soc_info = {
2204 	.supports_background_color = false,
2205 	.supports_interlacing = false,
2206 	.supports_cursor = false,
2207 	.supports_block_linear = false,
2208 	.has_legacy_blending = true,
2209 	.pitch_align = 8,
2210 	.has_powergate = false,
2211 	.coupled_pm = true,
2212 	.has_nvdisplay = false,
2213 	.num_primary_formats = ARRAY_SIZE(tegra20_primary_formats),
2214 	.primary_formats = tegra20_primary_formats,
2215 	.num_overlay_formats = ARRAY_SIZE(tegra20_overlay_formats),
2216 	.overlay_formats = tegra20_overlay_formats,
2217 	.modifiers = tegra20_modifiers,
2218 	.has_win_a_without_filters = true,
2219 	.has_win_c_without_vert_filter = true,
2220 };
2221 
2222 static const struct tegra_dc_soc_info tegra30_dc_soc_info = {
2223 	.supports_background_color = false,
2224 	.supports_interlacing = false,
2225 	.supports_cursor = false,
2226 	.supports_block_linear = false,
2227 	.has_legacy_blending = true,
2228 	.pitch_align = 8,
2229 	.has_powergate = false,
2230 	.coupled_pm = false,
2231 	.has_nvdisplay = false,
2232 	.num_primary_formats = ARRAY_SIZE(tegra20_primary_formats),
2233 	.primary_formats = tegra20_primary_formats,
2234 	.num_overlay_formats = ARRAY_SIZE(tegra20_overlay_formats),
2235 	.overlay_formats = tegra20_overlay_formats,
2236 	.modifiers = tegra20_modifiers,
2237 	.has_win_a_without_filters = false,
2238 	.has_win_c_without_vert_filter = false,
2239 };
2240 
2241 static const struct tegra_dc_soc_info tegra114_dc_soc_info = {
2242 	.supports_background_color = false,
2243 	.supports_interlacing = false,
2244 	.supports_cursor = false,
2245 	.supports_block_linear = false,
2246 	.has_legacy_blending = true,
2247 	.pitch_align = 64,
2248 	.has_powergate = true,
2249 	.coupled_pm = false,
2250 	.has_nvdisplay = false,
2251 	.num_primary_formats = ARRAY_SIZE(tegra114_primary_formats),
2252 	.primary_formats = tegra114_primary_formats,
2253 	.num_overlay_formats = ARRAY_SIZE(tegra114_overlay_formats),
2254 	.overlay_formats = tegra114_overlay_formats,
2255 	.modifiers = tegra20_modifiers,
2256 	.has_win_a_without_filters = false,
2257 	.has_win_c_without_vert_filter = false,
2258 };
2259 
2260 static const struct tegra_dc_soc_info tegra124_dc_soc_info = {
2261 	.supports_background_color = true,
2262 	.supports_interlacing = true,
2263 	.supports_cursor = true,
2264 	.supports_block_linear = true,
2265 	.has_legacy_blending = false,
2266 	.pitch_align = 64,
2267 	.has_powergate = true,
2268 	.coupled_pm = false,
2269 	.has_nvdisplay = false,
2270 	.num_primary_formats = ARRAY_SIZE(tegra124_primary_formats),
2271 	.primary_formats = tegra124_primary_formats,
2272 	.num_overlay_formats = ARRAY_SIZE(tegra124_overlay_formats),
2273 	.overlay_formats = tegra124_overlay_formats,
2274 	.modifiers = tegra124_modifiers,
2275 	.has_win_a_without_filters = false,
2276 	.has_win_c_without_vert_filter = false,
2277 };
2278 
2279 static const struct tegra_dc_soc_info tegra210_dc_soc_info = {
2280 	.supports_background_color = true,
2281 	.supports_interlacing = true,
2282 	.supports_cursor = true,
2283 	.supports_block_linear = true,
2284 	.has_legacy_blending = false,
2285 	.pitch_align = 64,
2286 	.has_powergate = true,
2287 	.coupled_pm = false,
2288 	.has_nvdisplay = false,
2289 	.num_primary_formats = ARRAY_SIZE(tegra114_primary_formats),
2290 	.primary_formats = tegra114_primary_formats,
2291 	.num_overlay_formats = ARRAY_SIZE(tegra114_overlay_formats),
2292 	.overlay_formats = tegra114_overlay_formats,
2293 	.modifiers = tegra124_modifiers,
2294 	.has_win_a_without_filters = false,
2295 	.has_win_c_without_vert_filter = false,
2296 };
2297 
2298 static const struct tegra_windowgroup_soc tegra186_dc_wgrps[] = {
2299 	{
2300 		.index = 0,
2301 		.dc = 0,
2302 		.windows = (const unsigned int[]) { 0 },
2303 		.num_windows = 1,
2304 	}, {
2305 		.index = 1,
2306 		.dc = 1,
2307 		.windows = (const unsigned int[]) { 1 },
2308 		.num_windows = 1,
2309 	}, {
2310 		.index = 2,
2311 		.dc = 1,
2312 		.windows = (const unsigned int[]) { 2 },
2313 		.num_windows = 1,
2314 	}, {
2315 		.index = 3,
2316 		.dc = 2,
2317 		.windows = (const unsigned int[]) { 3 },
2318 		.num_windows = 1,
2319 	}, {
2320 		.index = 4,
2321 		.dc = 2,
2322 		.windows = (const unsigned int[]) { 4 },
2323 		.num_windows = 1,
2324 	}, {
2325 		.index = 5,
2326 		.dc = 2,
2327 		.windows = (const unsigned int[]) { 5 },
2328 		.num_windows = 1,
2329 	},
2330 };
2331 
2332 static const struct tegra_dc_soc_info tegra186_dc_soc_info = {
2333 	.supports_background_color = true,
2334 	.supports_interlacing = true,
2335 	.supports_cursor = true,
2336 	.supports_block_linear = true,
2337 	.has_legacy_blending = false,
2338 	.pitch_align = 64,
2339 	.has_powergate = false,
2340 	.coupled_pm = false,
2341 	.has_nvdisplay = true,
2342 	.wgrps = tegra186_dc_wgrps,
2343 	.num_wgrps = ARRAY_SIZE(tegra186_dc_wgrps),
2344 };
2345 
2346 static const struct tegra_windowgroup_soc tegra194_dc_wgrps[] = {
2347 	{
2348 		.index = 0,
2349 		.dc = 0,
2350 		.windows = (const unsigned int[]) { 0 },
2351 		.num_windows = 1,
2352 	}, {
2353 		.index = 1,
2354 		.dc = 1,
2355 		.windows = (const unsigned int[]) { 1 },
2356 		.num_windows = 1,
2357 	}, {
2358 		.index = 2,
2359 		.dc = 1,
2360 		.windows = (const unsigned int[]) { 2 },
2361 		.num_windows = 1,
2362 	}, {
2363 		.index = 3,
2364 		.dc = 2,
2365 		.windows = (const unsigned int[]) { 3 },
2366 		.num_windows = 1,
2367 	}, {
2368 		.index = 4,
2369 		.dc = 2,
2370 		.windows = (const unsigned int[]) { 4 },
2371 		.num_windows = 1,
2372 	}, {
2373 		.index = 5,
2374 		.dc = 2,
2375 		.windows = (const unsigned int[]) { 5 },
2376 		.num_windows = 1,
2377 	},
2378 };
2379 
2380 static const struct tegra_dc_soc_info tegra194_dc_soc_info = {
2381 	.supports_background_color = true,
2382 	.supports_interlacing = true,
2383 	.supports_cursor = true,
2384 	.supports_block_linear = true,
2385 	.has_legacy_blending = false,
2386 	.pitch_align = 64,
2387 	.has_powergate = false,
2388 	.coupled_pm = false,
2389 	.has_nvdisplay = true,
2390 	.wgrps = tegra194_dc_wgrps,
2391 	.num_wgrps = ARRAY_SIZE(tegra194_dc_wgrps),
2392 };
2393 
2394 static const struct of_device_id tegra_dc_of_match[] = {
2395 	{
2396 		.compatible = "nvidia,tegra194-dc",
2397 		.data = &tegra194_dc_soc_info,
2398 	}, {
2399 		.compatible = "nvidia,tegra186-dc",
2400 		.data = &tegra186_dc_soc_info,
2401 	}, {
2402 		.compatible = "nvidia,tegra210-dc",
2403 		.data = &tegra210_dc_soc_info,
2404 	}, {
2405 		.compatible = "nvidia,tegra124-dc",
2406 		.data = &tegra124_dc_soc_info,
2407 	}, {
2408 		.compatible = "nvidia,tegra114-dc",
2409 		.data = &tegra114_dc_soc_info,
2410 	}, {
2411 		.compatible = "nvidia,tegra30-dc",
2412 		.data = &tegra30_dc_soc_info,
2413 	}, {
2414 		.compatible = "nvidia,tegra20-dc",
2415 		.data = &tegra20_dc_soc_info,
2416 	}, {
2417 		/* sentinel */
2418 	}
2419 };
2420 MODULE_DEVICE_TABLE(of, tegra_dc_of_match);
2421 
2422 static int tegra_dc_parse_dt(struct tegra_dc *dc)
2423 {
2424 	struct device_node *np;
2425 	u32 value = 0;
2426 	int err;
2427 
2428 	err = of_property_read_u32(dc->dev->of_node, "nvidia,head", &value);
2429 	if (err < 0) {
2430 		dev_err(dc->dev, "missing \"nvidia,head\" property\n");
2431 
2432 		/*
2433 		 * If the nvidia,head property isn't present, try to find the
2434 		 * correct head number by looking up the position of this
2435 		 * display controller's node within the device tree. Assuming
2436 		 * that the nodes are ordered properly in the DTS file and
2437 		 * that the translation into a flattened device tree blob
2438 		 * preserves that ordering this will actually yield the right
2439 		 * head number.
2440 		 *
2441 		 * If those assumptions don't hold, this will still work for
2442 		 * cases where only a single display controller is used.
2443 		 */
2444 		for_each_matching_node(np, tegra_dc_of_match) {
2445 			if (np == dc->dev->of_node) {
2446 				of_node_put(np);
2447 				break;
2448 			}
2449 
2450 			value++;
2451 		}
2452 	}
2453 
2454 	dc->pipe = value;
2455 
2456 	return 0;
2457 }
2458 
2459 static int tegra_dc_match_by_pipe(struct device *dev, const void *data)
2460 {
2461 	struct tegra_dc *dc = dev_get_drvdata(dev);
2462 	unsigned int pipe = (unsigned long)(void *)data;
2463 
2464 	return dc->pipe == pipe;
2465 }
2466 
2467 static int tegra_dc_couple(struct tegra_dc *dc)
2468 {
2469 	/*
2470 	 * On Tegra20, DC1 requires DC0 to be taken out of reset in order to
2471 	 * be enabled, otherwise CPU hangs on writing to CMD_DISPLAY_COMMAND /
2472 	 * POWER_CONTROL registers during CRTC enabling.
2473 	 */
2474 	if (dc->soc->coupled_pm && dc->pipe == 1) {
2475 		u32 flags = DL_FLAG_PM_RUNTIME | DL_FLAG_AUTOREMOVE_CONSUMER;
2476 		struct device_link *link;
2477 		struct device *partner;
2478 
2479 		partner = driver_find_device(dc->dev->driver, NULL, NULL,
2480 					     tegra_dc_match_by_pipe);
2481 		if (!partner)
2482 			return -EPROBE_DEFER;
2483 
2484 		link = device_link_add(dc->dev, partner, flags);
2485 		if (!link) {
2486 			dev_err(dc->dev, "failed to link controllers\n");
2487 			return -EINVAL;
2488 		}
2489 
2490 		dev_dbg(dc->dev, "coupled to %s\n", dev_name(partner));
2491 	}
2492 
2493 	return 0;
2494 }
2495 
2496 static int tegra_dc_probe(struct platform_device *pdev)
2497 {
2498 	struct tegra_dc *dc;
2499 	int err;
2500 
2501 	dc = devm_kzalloc(&pdev->dev, sizeof(*dc), GFP_KERNEL);
2502 	if (!dc)
2503 		return -ENOMEM;
2504 
2505 	dc->soc = of_device_get_match_data(&pdev->dev);
2506 
2507 	INIT_LIST_HEAD(&dc->list);
2508 	dc->dev = &pdev->dev;
2509 
2510 	err = tegra_dc_parse_dt(dc);
2511 	if (err < 0)
2512 		return err;
2513 
2514 	err = tegra_dc_couple(dc);
2515 	if (err < 0)
2516 		return err;
2517 
2518 	dc->clk = devm_clk_get(&pdev->dev, NULL);
2519 	if (IS_ERR(dc->clk)) {
2520 		dev_err(&pdev->dev, "failed to get clock\n");
2521 		return PTR_ERR(dc->clk);
2522 	}
2523 
2524 	dc->rst = devm_reset_control_get(&pdev->dev, "dc");
2525 	if (IS_ERR(dc->rst)) {
2526 		dev_err(&pdev->dev, "failed to get reset\n");
2527 		return PTR_ERR(dc->rst);
2528 	}
2529 
2530 	/* assert reset and disable clock */
2531 	err = clk_prepare_enable(dc->clk);
2532 	if (err < 0)
2533 		return err;
2534 
2535 	usleep_range(2000, 4000);
2536 
2537 	err = reset_control_assert(dc->rst);
2538 	if (err < 0)
2539 		return err;
2540 
2541 	usleep_range(2000, 4000);
2542 
2543 	clk_disable_unprepare(dc->clk);
2544 
2545 	if (dc->soc->has_powergate) {
2546 		if (dc->pipe == 0)
2547 			dc->powergate = TEGRA_POWERGATE_DIS;
2548 		else
2549 			dc->powergate = TEGRA_POWERGATE_DISB;
2550 
2551 		tegra_powergate_power_off(dc->powergate);
2552 	}
2553 
2554 	dc->regs = devm_platform_ioremap_resource(pdev, 0);
2555 	if (IS_ERR(dc->regs))
2556 		return PTR_ERR(dc->regs);
2557 
2558 	dc->irq = platform_get_irq(pdev, 0);
2559 	if (dc->irq < 0) {
2560 		dev_err(&pdev->dev, "failed to get IRQ\n");
2561 		return -ENXIO;
2562 	}
2563 
2564 	err = tegra_dc_rgb_probe(dc);
2565 	if (err < 0 && err != -ENODEV) {
2566 		const char *level = KERN_ERR;
2567 
2568 		if (err == -EPROBE_DEFER)
2569 			level = KERN_DEBUG;
2570 
2571 		dev_printk(level, dc->dev, "failed to probe RGB output: %d\n",
2572 			   err);
2573 		return err;
2574 	}
2575 
2576 	platform_set_drvdata(pdev, dc);
2577 	pm_runtime_enable(&pdev->dev);
2578 
2579 	INIT_LIST_HEAD(&dc->client.list);
2580 	dc->client.ops = &dc_client_ops;
2581 	dc->client.dev = &pdev->dev;
2582 
2583 	err = host1x_client_register(&dc->client);
2584 	if (err < 0) {
2585 		dev_err(&pdev->dev, "failed to register host1x client: %d\n",
2586 			err);
2587 		goto disable_pm;
2588 	}
2589 
2590 	return 0;
2591 
2592 disable_pm:
2593 	pm_runtime_disable(&pdev->dev);
2594 	tegra_dc_rgb_remove(dc);
2595 
2596 	return err;
2597 }
2598 
2599 static int tegra_dc_remove(struct platform_device *pdev)
2600 {
2601 	struct tegra_dc *dc = platform_get_drvdata(pdev);
2602 	int err;
2603 
2604 	err = host1x_client_unregister(&dc->client);
2605 	if (err < 0) {
2606 		dev_err(&pdev->dev, "failed to unregister host1x client: %d\n",
2607 			err);
2608 		return err;
2609 	}
2610 
2611 	err = tegra_dc_rgb_remove(dc);
2612 	if (err < 0) {
2613 		dev_err(&pdev->dev, "failed to remove RGB output: %d\n", err);
2614 		return err;
2615 	}
2616 
2617 	pm_runtime_disable(&pdev->dev);
2618 
2619 	return 0;
2620 }
2621 
2622 struct platform_driver tegra_dc_driver = {
2623 	.driver = {
2624 		.name = "tegra-dc",
2625 		.of_match_table = tegra_dc_of_match,
2626 	},
2627 	.probe = tegra_dc_probe,
2628 	.remove = tegra_dc_remove,
2629 };
2630