xref: /openbmc/linux/drivers/gpu/drm/tegra/dc.c (revision 827634ad)
1 /*
2  * Copyright (C) 2012 Avionic Design GmbH
3  * Copyright (C) 2012 NVIDIA CORPORATION.  All rights reserved.
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  */
9 
10 #include <linux/clk.h>
11 #include <linux/debugfs.h>
12 #include <linux/iommu.h>
13 #include <linux/reset.h>
14 
15 #include <soc/tegra/pmc.h>
16 
17 #include "dc.h"
18 #include "drm.h"
19 #include "gem.h"
20 
21 #include <drm/drm_atomic.h>
22 #include <drm/drm_atomic_helper.h>
23 #include <drm/drm_plane_helper.h>
24 
25 struct tegra_dc_soc_info {
26 	bool supports_border_color;
27 	bool supports_interlacing;
28 	bool supports_cursor;
29 	bool supports_block_linear;
30 	unsigned int pitch_align;
31 	bool has_powergate;
32 };
33 
34 struct tegra_plane {
35 	struct drm_plane base;
36 	unsigned int index;
37 };
38 
39 static inline struct tegra_plane *to_tegra_plane(struct drm_plane *plane)
40 {
41 	return container_of(plane, struct tegra_plane, base);
42 }
43 
44 struct tegra_dc_state {
45 	struct drm_crtc_state base;
46 
47 	struct clk *clk;
48 	unsigned long pclk;
49 	unsigned int div;
50 
51 	u32 planes;
52 };
53 
54 static inline struct tegra_dc_state *to_dc_state(struct drm_crtc_state *state)
55 {
56 	if (state)
57 		return container_of(state, struct tegra_dc_state, base);
58 
59 	return NULL;
60 }
61 
62 struct tegra_plane_state {
63 	struct drm_plane_state base;
64 
65 	struct tegra_bo_tiling tiling;
66 	u32 format;
67 	u32 swap;
68 };
69 
70 static inline struct tegra_plane_state *
71 to_tegra_plane_state(struct drm_plane_state *state)
72 {
73 	if (state)
74 		return container_of(state, struct tegra_plane_state, base);
75 
76 	return NULL;
77 }
78 
79 /*
80  * Reads the active copy of a register. This takes the dc->lock spinlock to
81  * prevent races with the VBLANK processing which also needs access to the
82  * active copy of some registers.
83  */
84 static u32 tegra_dc_readl_active(struct tegra_dc *dc, unsigned long offset)
85 {
86 	unsigned long flags;
87 	u32 value;
88 
89 	spin_lock_irqsave(&dc->lock, flags);
90 
91 	tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
92 	value = tegra_dc_readl(dc, offset);
93 	tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS);
94 
95 	spin_unlock_irqrestore(&dc->lock, flags);
96 	return value;
97 }
98 
99 /*
100  * Double-buffered registers have two copies: ASSEMBLY and ACTIVE. When the
101  * *_ACT_REQ bits are set the ASSEMBLY copy is latched into the ACTIVE copy.
102  * Latching happens mmediately if the display controller is in STOP mode or
103  * on the next frame boundary otherwise.
104  *
105  * Triple-buffered registers have three copies: ASSEMBLY, ARM and ACTIVE. The
106  * ASSEMBLY copy is latched into the ARM copy immediately after *_UPDATE bits
107  * are written. When the *_ACT_REQ bits are written, the ARM copy is latched
108  * into the ACTIVE copy, either immediately if the display controller is in
109  * STOP mode, or at the next frame boundary otherwise.
110  */
111 void tegra_dc_commit(struct tegra_dc *dc)
112 {
113 	tegra_dc_writel(dc, GENERAL_ACT_REQ << 8, DC_CMD_STATE_CONTROL);
114 	tegra_dc_writel(dc, GENERAL_ACT_REQ, DC_CMD_STATE_CONTROL);
115 }
116 
117 static int tegra_dc_format(u32 fourcc, u32 *format, u32 *swap)
118 {
119 	/* assume no swapping of fetched data */
120 	if (swap)
121 		*swap = BYTE_SWAP_NOSWAP;
122 
123 	switch (fourcc) {
124 	case DRM_FORMAT_XBGR8888:
125 		*format = WIN_COLOR_DEPTH_R8G8B8A8;
126 		break;
127 
128 	case DRM_FORMAT_XRGB8888:
129 		*format = WIN_COLOR_DEPTH_B8G8R8A8;
130 		break;
131 
132 	case DRM_FORMAT_RGB565:
133 		*format = WIN_COLOR_DEPTH_B5G6R5;
134 		break;
135 
136 	case DRM_FORMAT_UYVY:
137 		*format = WIN_COLOR_DEPTH_YCbCr422;
138 		break;
139 
140 	case DRM_FORMAT_YUYV:
141 		if (swap)
142 			*swap = BYTE_SWAP_SWAP2;
143 
144 		*format = WIN_COLOR_DEPTH_YCbCr422;
145 		break;
146 
147 	case DRM_FORMAT_YUV420:
148 		*format = WIN_COLOR_DEPTH_YCbCr420P;
149 		break;
150 
151 	case DRM_FORMAT_YUV422:
152 		*format = WIN_COLOR_DEPTH_YCbCr422P;
153 		break;
154 
155 	default:
156 		return -EINVAL;
157 	}
158 
159 	return 0;
160 }
161 
162 static bool tegra_dc_format_is_yuv(unsigned int format, bool *planar)
163 {
164 	switch (format) {
165 	case WIN_COLOR_DEPTH_YCbCr422:
166 	case WIN_COLOR_DEPTH_YUV422:
167 		if (planar)
168 			*planar = false;
169 
170 		return true;
171 
172 	case WIN_COLOR_DEPTH_YCbCr420P:
173 	case WIN_COLOR_DEPTH_YUV420P:
174 	case WIN_COLOR_DEPTH_YCbCr422P:
175 	case WIN_COLOR_DEPTH_YUV422P:
176 	case WIN_COLOR_DEPTH_YCbCr422R:
177 	case WIN_COLOR_DEPTH_YUV422R:
178 	case WIN_COLOR_DEPTH_YCbCr422RA:
179 	case WIN_COLOR_DEPTH_YUV422RA:
180 		if (planar)
181 			*planar = true;
182 
183 		return true;
184 	}
185 
186 	if (planar)
187 		*planar = false;
188 
189 	return false;
190 }
191 
192 static inline u32 compute_dda_inc(unsigned int in, unsigned int out, bool v,
193 				  unsigned int bpp)
194 {
195 	fixed20_12 outf = dfixed_init(out);
196 	fixed20_12 inf = dfixed_init(in);
197 	u32 dda_inc;
198 	int max;
199 
200 	if (v)
201 		max = 15;
202 	else {
203 		switch (bpp) {
204 		case 2:
205 			max = 8;
206 			break;
207 
208 		default:
209 			WARN_ON_ONCE(1);
210 			/* fallthrough */
211 		case 4:
212 			max = 4;
213 			break;
214 		}
215 	}
216 
217 	outf.full = max_t(u32, outf.full - dfixed_const(1), dfixed_const(1));
218 	inf.full -= dfixed_const(1);
219 
220 	dda_inc = dfixed_div(inf, outf);
221 	dda_inc = min_t(u32, dda_inc, dfixed_const(max));
222 
223 	return dda_inc;
224 }
225 
226 static inline u32 compute_initial_dda(unsigned int in)
227 {
228 	fixed20_12 inf = dfixed_init(in);
229 	return dfixed_frac(inf);
230 }
231 
232 static void tegra_dc_setup_window(struct tegra_dc *dc, unsigned int index,
233 				  const struct tegra_dc_window *window)
234 {
235 	unsigned h_offset, v_offset, h_size, v_size, h_dda, v_dda, bpp;
236 	unsigned long value, flags;
237 	bool yuv, planar;
238 
239 	/*
240 	 * For YUV planar modes, the number of bytes per pixel takes into
241 	 * account only the luma component and therefore is 1.
242 	 */
243 	yuv = tegra_dc_format_is_yuv(window->format, &planar);
244 	if (!yuv)
245 		bpp = window->bits_per_pixel / 8;
246 	else
247 		bpp = planar ? 1 : 2;
248 
249 	spin_lock_irqsave(&dc->lock, flags);
250 
251 	value = WINDOW_A_SELECT << index;
252 	tegra_dc_writel(dc, value, DC_CMD_DISPLAY_WINDOW_HEADER);
253 
254 	tegra_dc_writel(dc, window->format, DC_WIN_COLOR_DEPTH);
255 	tegra_dc_writel(dc, window->swap, DC_WIN_BYTE_SWAP);
256 
257 	value = V_POSITION(window->dst.y) | H_POSITION(window->dst.x);
258 	tegra_dc_writel(dc, value, DC_WIN_POSITION);
259 
260 	value = V_SIZE(window->dst.h) | H_SIZE(window->dst.w);
261 	tegra_dc_writel(dc, value, DC_WIN_SIZE);
262 
263 	h_offset = window->src.x * bpp;
264 	v_offset = window->src.y;
265 	h_size = window->src.w * bpp;
266 	v_size = window->src.h;
267 
268 	value = V_PRESCALED_SIZE(v_size) | H_PRESCALED_SIZE(h_size);
269 	tegra_dc_writel(dc, value, DC_WIN_PRESCALED_SIZE);
270 
271 	/*
272 	 * For DDA computations the number of bytes per pixel for YUV planar
273 	 * modes needs to take into account all Y, U and V components.
274 	 */
275 	if (yuv && planar)
276 		bpp = 2;
277 
278 	h_dda = compute_dda_inc(window->src.w, window->dst.w, false, bpp);
279 	v_dda = compute_dda_inc(window->src.h, window->dst.h, true, bpp);
280 
281 	value = V_DDA_INC(v_dda) | H_DDA_INC(h_dda);
282 	tegra_dc_writel(dc, value, DC_WIN_DDA_INC);
283 
284 	h_dda = compute_initial_dda(window->src.x);
285 	v_dda = compute_initial_dda(window->src.y);
286 
287 	tegra_dc_writel(dc, h_dda, DC_WIN_H_INITIAL_DDA);
288 	tegra_dc_writel(dc, v_dda, DC_WIN_V_INITIAL_DDA);
289 
290 	tegra_dc_writel(dc, 0, DC_WIN_UV_BUF_STRIDE);
291 	tegra_dc_writel(dc, 0, DC_WIN_BUF_STRIDE);
292 
293 	tegra_dc_writel(dc, window->base[0], DC_WINBUF_START_ADDR);
294 
295 	if (yuv && planar) {
296 		tegra_dc_writel(dc, window->base[1], DC_WINBUF_START_ADDR_U);
297 		tegra_dc_writel(dc, window->base[2], DC_WINBUF_START_ADDR_V);
298 		value = window->stride[1] << 16 | window->stride[0];
299 		tegra_dc_writel(dc, value, DC_WIN_LINE_STRIDE);
300 	} else {
301 		tegra_dc_writel(dc, window->stride[0], DC_WIN_LINE_STRIDE);
302 	}
303 
304 	if (window->bottom_up)
305 		v_offset += window->src.h - 1;
306 
307 	tegra_dc_writel(dc, h_offset, DC_WINBUF_ADDR_H_OFFSET);
308 	tegra_dc_writel(dc, v_offset, DC_WINBUF_ADDR_V_OFFSET);
309 
310 	if (dc->soc->supports_block_linear) {
311 		unsigned long height = window->tiling.value;
312 
313 		switch (window->tiling.mode) {
314 		case TEGRA_BO_TILING_MODE_PITCH:
315 			value = DC_WINBUF_SURFACE_KIND_PITCH;
316 			break;
317 
318 		case TEGRA_BO_TILING_MODE_TILED:
319 			value = DC_WINBUF_SURFACE_KIND_TILED;
320 			break;
321 
322 		case TEGRA_BO_TILING_MODE_BLOCK:
323 			value = DC_WINBUF_SURFACE_KIND_BLOCK_HEIGHT(height) |
324 				DC_WINBUF_SURFACE_KIND_BLOCK;
325 			break;
326 		}
327 
328 		tegra_dc_writel(dc, value, DC_WINBUF_SURFACE_KIND);
329 	} else {
330 		switch (window->tiling.mode) {
331 		case TEGRA_BO_TILING_MODE_PITCH:
332 			value = DC_WIN_BUFFER_ADDR_MODE_LINEAR_UV |
333 				DC_WIN_BUFFER_ADDR_MODE_LINEAR;
334 			break;
335 
336 		case TEGRA_BO_TILING_MODE_TILED:
337 			value = DC_WIN_BUFFER_ADDR_MODE_TILE_UV |
338 				DC_WIN_BUFFER_ADDR_MODE_TILE;
339 			break;
340 
341 		case TEGRA_BO_TILING_MODE_BLOCK:
342 			/*
343 			 * No need to handle this here because ->atomic_check
344 			 * will already have filtered it out.
345 			 */
346 			break;
347 		}
348 
349 		tegra_dc_writel(dc, value, DC_WIN_BUFFER_ADDR_MODE);
350 	}
351 
352 	value = WIN_ENABLE;
353 
354 	if (yuv) {
355 		/* setup default colorspace conversion coefficients */
356 		tegra_dc_writel(dc, 0x00f0, DC_WIN_CSC_YOF);
357 		tegra_dc_writel(dc, 0x012a, DC_WIN_CSC_KYRGB);
358 		tegra_dc_writel(dc, 0x0000, DC_WIN_CSC_KUR);
359 		tegra_dc_writel(dc, 0x0198, DC_WIN_CSC_KVR);
360 		tegra_dc_writel(dc, 0x039b, DC_WIN_CSC_KUG);
361 		tegra_dc_writel(dc, 0x032f, DC_WIN_CSC_KVG);
362 		tegra_dc_writel(dc, 0x0204, DC_WIN_CSC_KUB);
363 		tegra_dc_writel(dc, 0x0000, DC_WIN_CSC_KVB);
364 
365 		value |= CSC_ENABLE;
366 	} else if (window->bits_per_pixel < 24) {
367 		value |= COLOR_EXPAND;
368 	}
369 
370 	if (window->bottom_up)
371 		value |= V_DIRECTION;
372 
373 	tegra_dc_writel(dc, value, DC_WIN_WIN_OPTIONS);
374 
375 	/*
376 	 * Disable blending and assume Window A is the bottom-most window,
377 	 * Window C is the top-most window and Window B is in the middle.
378 	 */
379 	tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_NOKEY);
380 	tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_1WIN);
381 
382 	switch (index) {
383 	case 0:
384 		tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_2WIN_X);
385 		tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_2WIN_Y);
386 		tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_3WIN_XY);
387 		break;
388 
389 	case 1:
390 		tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_2WIN_X);
391 		tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_2WIN_Y);
392 		tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_3WIN_XY);
393 		break;
394 
395 	case 2:
396 		tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_2WIN_X);
397 		tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_2WIN_Y);
398 		tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_3WIN_XY);
399 		break;
400 	}
401 
402 	spin_unlock_irqrestore(&dc->lock, flags);
403 }
404 
405 static void tegra_plane_destroy(struct drm_plane *plane)
406 {
407 	struct tegra_plane *p = to_tegra_plane(plane);
408 
409 	drm_plane_cleanup(plane);
410 	kfree(p);
411 }
412 
413 static const u32 tegra_primary_plane_formats[] = {
414 	DRM_FORMAT_XBGR8888,
415 	DRM_FORMAT_XRGB8888,
416 	DRM_FORMAT_RGB565,
417 };
418 
419 static void tegra_primary_plane_destroy(struct drm_plane *plane)
420 {
421 	tegra_plane_destroy(plane);
422 }
423 
424 static void tegra_plane_reset(struct drm_plane *plane)
425 {
426 	struct tegra_plane_state *state;
427 
428 	if (plane->state)
429 		__drm_atomic_helper_plane_destroy_state(plane, plane->state);
430 
431 	kfree(plane->state);
432 	plane->state = NULL;
433 
434 	state = kzalloc(sizeof(*state), GFP_KERNEL);
435 	if (state) {
436 		plane->state = &state->base;
437 		plane->state->plane = plane;
438 	}
439 }
440 
441 static struct drm_plane_state *tegra_plane_atomic_duplicate_state(struct drm_plane *plane)
442 {
443 	struct tegra_plane_state *state = to_tegra_plane_state(plane->state);
444 	struct tegra_plane_state *copy;
445 
446 	copy = kmalloc(sizeof(*copy), GFP_KERNEL);
447 	if (!copy)
448 		return NULL;
449 
450 	__drm_atomic_helper_plane_duplicate_state(plane, &copy->base);
451 	copy->tiling = state->tiling;
452 	copy->format = state->format;
453 	copy->swap = state->swap;
454 
455 	return &copy->base;
456 }
457 
458 static void tegra_plane_atomic_destroy_state(struct drm_plane *plane,
459 					     struct drm_plane_state *state)
460 {
461 	__drm_atomic_helper_plane_destroy_state(plane, state);
462 	kfree(state);
463 }
464 
465 static const struct drm_plane_funcs tegra_primary_plane_funcs = {
466 	.update_plane = drm_atomic_helper_update_plane,
467 	.disable_plane = drm_atomic_helper_disable_plane,
468 	.destroy = tegra_primary_plane_destroy,
469 	.reset = tegra_plane_reset,
470 	.atomic_duplicate_state = tegra_plane_atomic_duplicate_state,
471 	.atomic_destroy_state = tegra_plane_atomic_destroy_state,
472 };
473 
474 static int tegra_plane_prepare_fb(struct drm_plane *plane,
475 				  struct drm_framebuffer *fb,
476 				  const struct drm_plane_state *new_state)
477 {
478 	return 0;
479 }
480 
481 static void tegra_plane_cleanup_fb(struct drm_plane *plane,
482 				   struct drm_framebuffer *fb,
483 				   const struct drm_plane_state *old_fb)
484 {
485 }
486 
487 static int tegra_plane_state_add(struct tegra_plane *plane,
488 				 struct drm_plane_state *state)
489 {
490 	struct drm_crtc_state *crtc_state;
491 	struct tegra_dc_state *tegra;
492 
493 	/* Propagate errors from allocation or locking failures. */
494 	crtc_state = drm_atomic_get_crtc_state(state->state, state->crtc);
495 	if (IS_ERR(crtc_state))
496 		return PTR_ERR(crtc_state);
497 
498 	tegra = to_dc_state(crtc_state);
499 
500 	tegra->planes |= WIN_A_ACT_REQ << plane->index;
501 
502 	return 0;
503 }
504 
505 static int tegra_plane_atomic_check(struct drm_plane *plane,
506 				    struct drm_plane_state *state)
507 {
508 	struct tegra_plane_state *plane_state = to_tegra_plane_state(state);
509 	struct tegra_bo_tiling *tiling = &plane_state->tiling;
510 	struct tegra_plane *tegra = to_tegra_plane(plane);
511 	struct tegra_dc *dc = to_tegra_dc(state->crtc);
512 	int err;
513 
514 	/* no need for further checks if the plane is being disabled */
515 	if (!state->crtc)
516 		return 0;
517 
518 	err = tegra_dc_format(state->fb->pixel_format, &plane_state->format,
519 			      &plane_state->swap);
520 	if (err < 0)
521 		return err;
522 
523 	err = tegra_fb_get_tiling(state->fb, tiling);
524 	if (err < 0)
525 		return err;
526 
527 	if (tiling->mode == TEGRA_BO_TILING_MODE_BLOCK &&
528 	    !dc->soc->supports_block_linear) {
529 		DRM_ERROR("hardware doesn't support block linear mode\n");
530 		return -EINVAL;
531 	}
532 
533 	/*
534 	 * Tegra doesn't support different strides for U and V planes so we
535 	 * error out if the user tries to display a framebuffer with such a
536 	 * configuration.
537 	 */
538 	if (drm_format_num_planes(state->fb->pixel_format) > 2) {
539 		if (state->fb->pitches[2] != state->fb->pitches[1]) {
540 			DRM_ERROR("unsupported UV-plane configuration\n");
541 			return -EINVAL;
542 		}
543 	}
544 
545 	err = tegra_plane_state_add(tegra, state);
546 	if (err < 0)
547 		return err;
548 
549 	return 0;
550 }
551 
552 static void tegra_plane_atomic_update(struct drm_plane *plane,
553 				      struct drm_plane_state *old_state)
554 {
555 	struct tegra_plane_state *state = to_tegra_plane_state(plane->state);
556 	struct tegra_dc *dc = to_tegra_dc(plane->state->crtc);
557 	struct drm_framebuffer *fb = plane->state->fb;
558 	struct tegra_plane *p = to_tegra_plane(plane);
559 	struct tegra_dc_window window;
560 	unsigned int i;
561 
562 	/* rien ne va plus */
563 	if (!plane->state->crtc || !plane->state->fb)
564 		return;
565 
566 	memset(&window, 0, sizeof(window));
567 	window.src.x = plane->state->src_x >> 16;
568 	window.src.y = plane->state->src_y >> 16;
569 	window.src.w = plane->state->src_w >> 16;
570 	window.src.h = plane->state->src_h >> 16;
571 	window.dst.x = plane->state->crtc_x;
572 	window.dst.y = plane->state->crtc_y;
573 	window.dst.w = plane->state->crtc_w;
574 	window.dst.h = plane->state->crtc_h;
575 	window.bits_per_pixel = fb->bits_per_pixel;
576 	window.bottom_up = tegra_fb_is_bottom_up(fb);
577 
578 	/* copy from state */
579 	window.tiling = state->tiling;
580 	window.format = state->format;
581 	window.swap = state->swap;
582 
583 	for (i = 0; i < drm_format_num_planes(fb->pixel_format); i++) {
584 		struct tegra_bo *bo = tegra_fb_get_plane(fb, i);
585 
586 		window.base[i] = bo->paddr + fb->offsets[i];
587 		window.stride[i] = fb->pitches[i];
588 	}
589 
590 	tegra_dc_setup_window(dc, p->index, &window);
591 }
592 
593 static void tegra_plane_atomic_disable(struct drm_plane *plane,
594 				       struct drm_plane_state *old_state)
595 {
596 	struct tegra_plane *p = to_tegra_plane(plane);
597 	struct tegra_dc *dc;
598 	unsigned long flags;
599 	u32 value;
600 
601 	/* rien ne va plus */
602 	if (!old_state || !old_state->crtc)
603 		return;
604 
605 	dc = to_tegra_dc(old_state->crtc);
606 
607 	spin_lock_irqsave(&dc->lock, flags);
608 
609 	value = WINDOW_A_SELECT << p->index;
610 	tegra_dc_writel(dc, value, DC_CMD_DISPLAY_WINDOW_HEADER);
611 
612 	value = tegra_dc_readl(dc, DC_WIN_WIN_OPTIONS);
613 	value &= ~WIN_ENABLE;
614 	tegra_dc_writel(dc, value, DC_WIN_WIN_OPTIONS);
615 
616 	spin_unlock_irqrestore(&dc->lock, flags);
617 }
618 
619 static const struct drm_plane_helper_funcs tegra_primary_plane_helper_funcs = {
620 	.prepare_fb = tegra_plane_prepare_fb,
621 	.cleanup_fb = tegra_plane_cleanup_fb,
622 	.atomic_check = tegra_plane_atomic_check,
623 	.atomic_update = tegra_plane_atomic_update,
624 	.atomic_disable = tegra_plane_atomic_disable,
625 };
626 
627 static struct drm_plane *tegra_dc_primary_plane_create(struct drm_device *drm,
628 						       struct tegra_dc *dc)
629 {
630 	/*
631 	 * Ideally this would use drm_crtc_mask(), but that would require the
632 	 * CRTC to already be in the mode_config's list of CRTCs. However, it
633 	 * will only be added to that list in the drm_crtc_init_with_planes()
634 	 * (in tegra_dc_init()), which in turn requires registration of these
635 	 * planes. So we have ourselves a nice little chicken and egg problem
636 	 * here.
637 	 *
638 	 * We work around this by manually creating the mask from the number
639 	 * of CRTCs that have been registered, and should therefore always be
640 	 * the same as drm_crtc_index() after registration.
641 	 */
642 	unsigned long possible_crtcs = 1 << drm->mode_config.num_crtc;
643 	struct tegra_plane *plane;
644 	unsigned int num_formats;
645 	const u32 *formats;
646 	int err;
647 
648 	plane = kzalloc(sizeof(*plane), GFP_KERNEL);
649 	if (!plane)
650 		return ERR_PTR(-ENOMEM);
651 
652 	num_formats = ARRAY_SIZE(tegra_primary_plane_formats);
653 	formats = tegra_primary_plane_formats;
654 
655 	err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
656 				       &tegra_primary_plane_funcs, formats,
657 				       num_formats, DRM_PLANE_TYPE_PRIMARY);
658 	if (err < 0) {
659 		kfree(plane);
660 		return ERR_PTR(err);
661 	}
662 
663 	drm_plane_helper_add(&plane->base, &tegra_primary_plane_helper_funcs);
664 
665 	return &plane->base;
666 }
667 
668 static const u32 tegra_cursor_plane_formats[] = {
669 	DRM_FORMAT_RGBA8888,
670 };
671 
672 static int tegra_cursor_atomic_check(struct drm_plane *plane,
673 				     struct drm_plane_state *state)
674 {
675 	struct tegra_plane *tegra = to_tegra_plane(plane);
676 	int err;
677 
678 	/* no need for further checks if the plane is being disabled */
679 	if (!state->crtc)
680 		return 0;
681 
682 	/* scaling not supported for cursor */
683 	if ((state->src_w >> 16 != state->crtc_w) ||
684 	    (state->src_h >> 16 != state->crtc_h))
685 		return -EINVAL;
686 
687 	/* only square cursors supported */
688 	if (state->src_w != state->src_h)
689 		return -EINVAL;
690 
691 	if (state->crtc_w != 32 && state->crtc_w != 64 &&
692 	    state->crtc_w != 128 && state->crtc_w != 256)
693 		return -EINVAL;
694 
695 	err = tegra_plane_state_add(tegra, state);
696 	if (err < 0)
697 		return err;
698 
699 	return 0;
700 }
701 
702 static void tegra_cursor_atomic_update(struct drm_plane *plane,
703 				       struct drm_plane_state *old_state)
704 {
705 	struct tegra_bo *bo = tegra_fb_get_plane(plane->state->fb, 0);
706 	struct tegra_dc *dc = to_tegra_dc(plane->state->crtc);
707 	struct drm_plane_state *state = plane->state;
708 	u32 value = CURSOR_CLIP_DISPLAY;
709 
710 	/* rien ne va plus */
711 	if (!plane->state->crtc || !plane->state->fb)
712 		return;
713 
714 	switch (state->crtc_w) {
715 	case 32:
716 		value |= CURSOR_SIZE_32x32;
717 		break;
718 
719 	case 64:
720 		value |= CURSOR_SIZE_64x64;
721 		break;
722 
723 	case 128:
724 		value |= CURSOR_SIZE_128x128;
725 		break;
726 
727 	case 256:
728 		value |= CURSOR_SIZE_256x256;
729 		break;
730 
731 	default:
732 		WARN(1, "cursor size %ux%u not supported\n", state->crtc_w,
733 		     state->crtc_h);
734 		return;
735 	}
736 
737 	value |= (bo->paddr >> 10) & 0x3fffff;
738 	tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR);
739 
740 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
741 	value = (bo->paddr >> 32) & 0x3;
742 	tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR_HI);
743 #endif
744 
745 	/* enable cursor and set blend mode */
746 	value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
747 	value |= CURSOR_ENABLE;
748 	tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
749 
750 	value = tegra_dc_readl(dc, DC_DISP_BLEND_CURSOR_CONTROL);
751 	value &= ~CURSOR_DST_BLEND_MASK;
752 	value &= ~CURSOR_SRC_BLEND_MASK;
753 	value |= CURSOR_MODE_NORMAL;
754 	value |= CURSOR_DST_BLEND_NEG_K1_TIMES_SRC;
755 	value |= CURSOR_SRC_BLEND_K1_TIMES_SRC;
756 	value |= CURSOR_ALPHA;
757 	tegra_dc_writel(dc, value, DC_DISP_BLEND_CURSOR_CONTROL);
758 
759 	/* position the cursor */
760 	value = (state->crtc_y & 0x3fff) << 16 | (state->crtc_x & 0x3fff);
761 	tegra_dc_writel(dc, value, DC_DISP_CURSOR_POSITION);
762 
763 }
764 
765 static void tegra_cursor_atomic_disable(struct drm_plane *plane,
766 					struct drm_plane_state *old_state)
767 {
768 	struct tegra_dc *dc;
769 	u32 value;
770 
771 	/* rien ne va plus */
772 	if (!old_state || !old_state->crtc)
773 		return;
774 
775 	dc = to_tegra_dc(old_state->crtc);
776 
777 	value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
778 	value &= ~CURSOR_ENABLE;
779 	tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
780 }
781 
782 static const struct drm_plane_funcs tegra_cursor_plane_funcs = {
783 	.update_plane = drm_atomic_helper_update_plane,
784 	.disable_plane = drm_atomic_helper_disable_plane,
785 	.destroy = tegra_plane_destroy,
786 	.reset = tegra_plane_reset,
787 	.atomic_duplicate_state = tegra_plane_atomic_duplicate_state,
788 	.atomic_destroy_state = tegra_plane_atomic_destroy_state,
789 };
790 
791 static const struct drm_plane_helper_funcs tegra_cursor_plane_helper_funcs = {
792 	.prepare_fb = tegra_plane_prepare_fb,
793 	.cleanup_fb = tegra_plane_cleanup_fb,
794 	.atomic_check = tegra_cursor_atomic_check,
795 	.atomic_update = tegra_cursor_atomic_update,
796 	.atomic_disable = tegra_cursor_atomic_disable,
797 };
798 
799 static struct drm_plane *tegra_dc_cursor_plane_create(struct drm_device *drm,
800 						      struct tegra_dc *dc)
801 {
802 	struct tegra_plane *plane;
803 	unsigned int num_formats;
804 	const u32 *formats;
805 	int err;
806 
807 	plane = kzalloc(sizeof(*plane), GFP_KERNEL);
808 	if (!plane)
809 		return ERR_PTR(-ENOMEM);
810 
811 	/*
812 	 * We'll treat the cursor as an overlay plane with index 6 here so
813 	 * that the update and activation request bits in DC_CMD_STATE_CONTROL
814 	 * match up.
815 	 */
816 	plane->index = 6;
817 
818 	num_formats = ARRAY_SIZE(tegra_cursor_plane_formats);
819 	formats = tegra_cursor_plane_formats;
820 
821 	err = drm_universal_plane_init(drm, &plane->base, 1 << dc->pipe,
822 				       &tegra_cursor_plane_funcs, formats,
823 				       num_formats, DRM_PLANE_TYPE_CURSOR);
824 	if (err < 0) {
825 		kfree(plane);
826 		return ERR_PTR(err);
827 	}
828 
829 	drm_plane_helper_add(&plane->base, &tegra_cursor_plane_helper_funcs);
830 
831 	return &plane->base;
832 }
833 
834 static void tegra_overlay_plane_destroy(struct drm_plane *plane)
835 {
836 	tegra_plane_destroy(plane);
837 }
838 
839 static const struct drm_plane_funcs tegra_overlay_plane_funcs = {
840 	.update_plane = drm_atomic_helper_update_plane,
841 	.disable_plane = drm_atomic_helper_disable_plane,
842 	.destroy = tegra_overlay_plane_destroy,
843 	.reset = tegra_plane_reset,
844 	.atomic_duplicate_state = tegra_plane_atomic_duplicate_state,
845 	.atomic_destroy_state = tegra_plane_atomic_destroy_state,
846 };
847 
848 static const uint32_t tegra_overlay_plane_formats[] = {
849 	DRM_FORMAT_XBGR8888,
850 	DRM_FORMAT_XRGB8888,
851 	DRM_FORMAT_RGB565,
852 	DRM_FORMAT_UYVY,
853 	DRM_FORMAT_YUYV,
854 	DRM_FORMAT_YUV420,
855 	DRM_FORMAT_YUV422,
856 };
857 
858 static const struct drm_plane_helper_funcs tegra_overlay_plane_helper_funcs = {
859 	.prepare_fb = tegra_plane_prepare_fb,
860 	.cleanup_fb = tegra_plane_cleanup_fb,
861 	.atomic_check = tegra_plane_atomic_check,
862 	.atomic_update = tegra_plane_atomic_update,
863 	.atomic_disable = tegra_plane_atomic_disable,
864 };
865 
866 static struct drm_plane *tegra_dc_overlay_plane_create(struct drm_device *drm,
867 						       struct tegra_dc *dc,
868 						       unsigned int index)
869 {
870 	struct tegra_plane *plane;
871 	unsigned int num_formats;
872 	const u32 *formats;
873 	int err;
874 
875 	plane = kzalloc(sizeof(*plane), GFP_KERNEL);
876 	if (!plane)
877 		return ERR_PTR(-ENOMEM);
878 
879 	plane->index = index;
880 
881 	num_formats = ARRAY_SIZE(tegra_overlay_plane_formats);
882 	formats = tegra_overlay_plane_formats;
883 
884 	err = drm_universal_plane_init(drm, &plane->base, 1 << dc->pipe,
885 				       &tegra_overlay_plane_funcs, formats,
886 				       num_formats, DRM_PLANE_TYPE_OVERLAY);
887 	if (err < 0) {
888 		kfree(plane);
889 		return ERR_PTR(err);
890 	}
891 
892 	drm_plane_helper_add(&plane->base, &tegra_overlay_plane_helper_funcs);
893 
894 	return &plane->base;
895 }
896 
897 static int tegra_dc_add_planes(struct drm_device *drm, struct tegra_dc *dc)
898 {
899 	struct drm_plane *plane;
900 	unsigned int i;
901 
902 	for (i = 0; i < 2; i++) {
903 		plane = tegra_dc_overlay_plane_create(drm, dc, 1 + i);
904 		if (IS_ERR(plane))
905 			return PTR_ERR(plane);
906 	}
907 
908 	return 0;
909 }
910 
911 u32 tegra_dc_get_vblank_counter(struct tegra_dc *dc)
912 {
913 	if (dc->syncpt)
914 		return host1x_syncpt_read(dc->syncpt);
915 
916 	/* fallback to software emulated VBLANK counter */
917 	return drm_crtc_vblank_count(&dc->base);
918 }
919 
920 void tegra_dc_enable_vblank(struct tegra_dc *dc)
921 {
922 	unsigned long value, flags;
923 
924 	spin_lock_irqsave(&dc->lock, flags);
925 
926 	value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
927 	value |= VBLANK_INT;
928 	tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
929 
930 	spin_unlock_irqrestore(&dc->lock, flags);
931 }
932 
933 void tegra_dc_disable_vblank(struct tegra_dc *dc)
934 {
935 	unsigned long value, flags;
936 
937 	spin_lock_irqsave(&dc->lock, flags);
938 
939 	value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
940 	value &= ~VBLANK_INT;
941 	tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
942 
943 	spin_unlock_irqrestore(&dc->lock, flags);
944 }
945 
946 static void tegra_dc_finish_page_flip(struct tegra_dc *dc)
947 {
948 	struct drm_device *drm = dc->base.dev;
949 	struct drm_crtc *crtc = &dc->base;
950 	unsigned long flags, base;
951 	struct tegra_bo *bo;
952 
953 	spin_lock_irqsave(&drm->event_lock, flags);
954 
955 	if (!dc->event) {
956 		spin_unlock_irqrestore(&drm->event_lock, flags);
957 		return;
958 	}
959 
960 	bo = tegra_fb_get_plane(crtc->primary->fb, 0);
961 
962 	spin_lock(&dc->lock);
963 
964 	/* check if new start address has been latched */
965 	tegra_dc_writel(dc, WINDOW_A_SELECT, DC_CMD_DISPLAY_WINDOW_HEADER);
966 	tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
967 	base = tegra_dc_readl(dc, DC_WINBUF_START_ADDR);
968 	tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS);
969 
970 	spin_unlock(&dc->lock);
971 
972 	if (base == bo->paddr + crtc->primary->fb->offsets[0]) {
973 		drm_crtc_send_vblank_event(crtc, dc->event);
974 		drm_crtc_vblank_put(crtc);
975 		dc->event = NULL;
976 	}
977 
978 	spin_unlock_irqrestore(&drm->event_lock, flags);
979 }
980 
981 void tegra_dc_cancel_page_flip(struct drm_crtc *crtc, struct drm_file *file)
982 {
983 	struct tegra_dc *dc = to_tegra_dc(crtc);
984 	struct drm_device *drm = crtc->dev;
985 	unsigned long flags;
986 
987 	spin_lock_irqsave(&drm->event_lock, flags);
988 
989 	if (dc->event && dc->event->base.file_priv == file) {
990 		dc->event->base.destroy(&dc->event->base);
991 		drm_crtc_vblank_put(crtc);
992 		dc->event = NULL;
993 	}
994 
995 	spin_unlock_irqrestore(&drm->event_lock, flags);
996 }
997 
998 static void tegra_dc_destroy(struct drm_crtc *crtc)
999 {
1000 	drm_crtc_cleanup(crtc);
1001 }
1002 
1003 static void tegra_crtc_reset(struct drm_crtc *crtc)
1004 {
1005 	struct tegra_dc_state *state;
1006 
1007 	if (crtc->state)
1008 		__drm_atomic_helper_crtc_destroy_state(crtc, crtc->state);
1009 
1010 	kfree(crtc->state);
1011 	crtc->state = NULL;
1012 
1013 	state = kzalloc(sizeof(*state), GFP_KERNEL);
1014 	if (state) {
1015 		crtc->state = &state->base;
1016 		crtc->state->crtc = crtc;
1017 	}
1018 }
1019 
1020 static struct drm_crtc_state *
1021 tegra_crtc_atomic_duplicate_state(struct drm_crtc *crtc)
1022 {
1023 	struct tegra_dc_state *state = to_dc_state(crtc->state);
1024 	struct tegra_dc_state *copy;
1025 
1026 	copy = kmalloc(sizeof(*copy), GFP_KERNEL);
1027 	if (!copy)
1028 		return NULL;
1029 
1030 	__drm_atomic_helper_crtc_duplicate_state(crtc, &copy->base);
1031 	copy->clk = state->clk;
1032 	copy->pclk = state->pclk;
1033 	copy->div = state->div;
1034 	copy->planes = state->planes;
1035 
1036 	return &copy->base;
1037 }
1038 
1039 static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc,
1040 					    struct drm_crtc_state *state)
1041 {
1042 	__drm_atomic_helper_crtc_destroy_state(crtc, state);
1043 	kfree(state);
1044 }
1045 
1046 static const struct drm_crtc_funcs tegra_crtc_funcs = {
1047 	.page_flip = drm_atomic_helper_page_flip,
1048 	.set_config = drm_atomic_helper_set_config,
1049 	.destroy = tegra_dc_destroy,
1050 	.reset = tegra_crtc_reset,
1051 	.atomic_duplicate_state = tegra_crtc_atomic_duplicate_state,
1052 	.atomic_destroy_state = tegra_crtc_atomic_destroy_state,
1053 };
1054 
1055 static void tegra_dc_stop(struct tegra_dc *dc)
1056 {
1057 	u32 value;
1058 
1059 	/* stop the display controller */
1060 	value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1061 	value &= ~DISP_CTRL_MODE_MASK;
1062 	tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1063 
1064 	tegra_dc_commit(dc);
1065 }
1066 
1067 static bool tegra_dc_idle(struct tegra_dc *dc)
1068 {
1069 	u32 value;
1070 
1071 	value = tegra_dc_readl_active(dc, DC_CMD_DISPLAY_COMMAND);
1072 
1073 	return (value & DISP_CTRL_MODE_MASK) == 0;
1074 }
1075 
1076 static int tegra_dc_wait_idle(struct tegra_dc *dc, unsigned long timeout)
1077 {
1078 	timeout = jiffies + msecs_to_jiffies(timeout);
1079 
1080 	while (time_before(jiffies, timeout)) {
1081 		if (tegra_dc_idle(dc))
1082 			return 0;
1083 
1084 		usleep_range(1000, 2000);
1085 	}
1086 
1087 	dev_dbg(dc->dev, "timeout waiting for DC to become idle\n");
1088 	return -ETIMEDOUT;
1089 }
1090 
1091 static void tegra_crtc_disable(struct drm_crtc *crtc)
1092 {
1093 	struct tegra_dc *dc = to_tegra_dc(crtc);
1094 	u32 value;
1095 
1096 	if (!tegra_dc_idle(dc)) {
1097 		tegra_dc_stop(dc);
1098 
1099 		/*
1100 		 * Ignore the return value, there isn't anything useful to do
1101 		 * in case this fails.
1102 		 */
1103 		tegra_dc_wait_idle(dc, 100);
1104 	}
1105 
1106 	/*
1107 	 * This should really be part of the RGB encoder driver, but clearing
1108 	 * these bits has the side-effect of stopping the display controller.
1109 	 * When that happens no VBLANK interrupts will be raised. At the same
1110 	 * time the encoder is disabled before the display controller, so the
1111 	 * above code is always going to timeout waiting for the controller
1112 	 * to go idle.
1113 	 *
1114 	 * Given the close coupling between the RGB encoder and the display
1115 	 * controller doing it here is still kind of okay. None of the other
1116 	 * encoder drivers require these bits to be cleared.
1117 	 *
1118 	 * XXX: Perhaps given that the display controller is switched off at
1119 	 * this point anyway maybe clearing these bits isn't even useful for
1120 	 * the RGB encoder?
1121 	 */
1122 	if (dc->rgb) {
1123 		value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
1124 		value &= ~(PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
1125 			   PW4_ENABLE | PM0_ENABLE | PM1_ENABLE);
1126 		tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
1127 	}
1128 
1129 	drm_crtc_vblank_off(crtc);
1130 }
1131 
1132 static bool tegra_crtc_mode_fixup(struct drm_crtc *crtc,
1133 				  const struct drm_display_mode *mode,
1134 				  struct drm_display_mode *adjusted)
1135 {
1136 	return true;
1137 }
1138 
1139 static int tegra_dc_set_timings(struct tegra_dc *dc,
1140 				struct drm_display_mode *mode)
1141 {
1142 	unsigned int h_ref_to_sync = 1;
1143 	unsigned int v_ref_to_sync = 1;
1144 	unsigned long value;
1145 
1146 	tegra_dc_writel(dc, 0x0, DC_DISP_DISP_TIMING_OPTIONS);
1147 
1148 	value = (v_ref_to_sync << 16) | h_ref_to_sync;
1149 	tegra_dc_writel(dc, value, DC_DISP_REF_TO_SYNC);
1150 
1151 	value = ((mode->vsync_end - mode->vsync_start) << 16) |
1152 		((mode->hsync_end - mode->hsync_start) <<  0);
1153 	tegra_dc_writel(dc, value, DC_DISP_SYNC_WIDTH);
1154 
1155 	value = ((mode->vtotal - mode->vsync_end) << 16) |
1156 		((mode->htotal - mode->hsync_end) <<  0);
1157 	tegra_dc_writel(dc, value, DC_DISP_BACK_PORCH);
1158 
1159 	value = ((mode->vsync_start - mode->vdisplay) << 16) |
1160 		((mode->hsync_start - mode->hdisplay) <<  0);
1161 	tegra_dc_writel(dc, value, DC_DISP_FRONT_PORCH);
1162 
1163 	value = (mode->vdisplay << 16) | mode->hdisplay;
1164 	tegra_dc_writel(dc, value, DC_DISP_ACTIVE);
1165 
1166 	return 0;
1167 }
1168 
1169 /**
1170  * tegra_dc_state_setup_clock - check clock settings and store them in atomic
1171  *     state
1172  * @dc: display controller
1173  * @crtc_state: CRTC atomic state
1174  * @clk: parent clock for display controller
1175  * @pclk: pixel clock
1176  * @div: shift clock divider
1177  *
1178  * Returns:
1179  * 0 on success or a negative error-code on failure.
1180  */
1181 int tegra_dc_state_setup_clock(struct tegra_dc *dc,
1182 			       struct drm_crtc_state *crtc_state,
1183 			       struct clk *clk, unsigned long pclk,
1184 			       unsigned int div)
1185 {
1186 	struct tegra_dc_state *state = to_dc_state(crtc_state);
1187 
1188 	if (!clk_has_parent(dc->clk, clk))
1189 		return -EINVAL;
1190 
1191 	state->clk = clk;
1192 	state->pclk = pclk;
1193 	state->div = div;
1194 
1195 	return 0;
1196 }
1197 
1198 static void tegra_dc_commit_state(struct tegra_dc *dc,
1199 				  struct tegra_dc_state *state)
1200 {
1201 	u32 value;
1202 	int err;
1203 
1204 	err = clk_set_parent(dc->clk, state->clk);
1205 	if (err < 0)
1206 		dev_err(dc->dev, "failed to set parent clock: %d\n", err);
1207 
1208 	/*
1209 	 * Outputs may not want to change the parent clock rate. This is only
1210 	 * relevant to Tegra20 where only a single display PLL is available.
1211 	 * Since that PLL would typically be used for HDMI, an internal LVDS
1212 	 * panel would need to be driven by some other clock such as PLL_P
1213 	 * which is shared with other peripherals. Changing the clock rate
1214 	 * should therefore be avoided.
1215 	 */
1216 	if (state->pclk > 0) {
1217 		err = clk_set_rate(state->clk, state->pclk);
1218 		if (err < 0)
1219 			dev_err(dc->dev,
1220 				"failed to set clock rate to %lu Hz\n",
1221 				state->pclk);
1222 	}
1223 
1224 	DRM_DEBUG_KMS("rate: %lu, div: %u\n", clk_get_rate(dc->clk),
1225 		      state->div);
1226 	DRM_DEBUG_KMS("pclk: %lu\n", state->pclk);
1227 
1228 	value = SHIFT_CLK_DIVIDER(state->div) | PIXEL_CLK_DIVIDER_PCD1;
1229 	tegra_dc_writel(dc, value, DC_DISP_DISP_CLOCK_CONTROL);
1230 }
1231 
1232 static void tegra_crtc_mode_set_nofb(struct drm_crtc *crtc)
1233 {
1234 	struct drm_display_mode *mode = &crtc->state->adjusted_mode;
1235 	struct tegra_dc_state *state = to_dc_state(crtc->state);
1236 	struct tegra_dc *dc = to_tegra_dc(crtc);
1237 	u32 value;
1238 
1239 	tegra_dc_commit_state(dc, state);
1240 
1241 	/* program display mode */
1242 	tegra_dc_set_timings(dc, mode);
1243 
1244 	/* interlacing isn't supported yet, so disable it */
1245 	if (dc->soc->supports_interlacing) {
1246 		value = tegra_dc_readl(dc, DC_DISP_INTERLACE_CONTROL);
1247 		value &= ~INTERLACE_ENABLE;
1248 		tegra_dc_writel(dc, value, DC_DISP_INTERLACE_CONTROL);
1249 	}
1250 
1251 	value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1252 	value &= ~DISP_CTRL_MODE_MASK;
1253 	value |= DISP_CTRL_MODE_C_DISPLAY;
1254 	tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1255 
1256 	value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
1257 	value |= PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
1258 		 PW4_ENABLE | PM0_ENABLE | PM1_ENABLE;
1259 	tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
1260 
1261 	tegra_dc_commit(dc);
1262 }
1263 
1264 static void tegra_crtc_prepare(struct drm_crtc *crtc)
1265 {
1266 	drm_crtc_vblank_off(crtc);
1267 }
1268 
1269 static void tegra_crtc_commit(struct drm_crtc *crtc)
1270 {
1271 	drm_crtc_vblank_on(crtc);
1272 }
1273 
1274 static int tegra_crtc_atomic_check(struct drm_crtc *crtc,
1275 				   struct drm_crtc_state *state)
1276 {
1277 	return 0;
1278 }
1279 
1280 static void tegra_crtc_atomic_begin(struct drm_crtc *crtc)
1281 {
1282 	struct tegra_dc *dc = to_tegra_dc(crtc);
1283 
1284 	if (crtc->state->event) {
1285 		crtc->state->event->pipe = drm_crtc_index(crtc);
1286 
1287 		WARN_ON(drm_crtc_vblank_get(crtc) != 0);
1288 
1289 		dc->event = crtc->state->event;
1290 		crtc->state->event = NULL;
1291 	}
1292 }
1293 
1294 static void tegra_crtc_atomic_flush(struct drm_crtc *crtc)
1295 {
1296 	struct tegra_dc_state *state = to_dc_state(crtc->state);
1297 	struct tegra_dc *dc = to_tegra_dc(crtc);
1298 
1299 	tegra_dc_writel(dc, state->planes << 8, DC_CMD_STATE_CONTROL);
1300 	tegra_dc_writel(dc, state->planes, DC_CMD_STATE_CONTROL);
1301 }
1302 
1303 static const struct drm_crtc_helper_funcs tegra_crtc_helper_funcs = {
1304 	.disable = tegra_crtc_disable,
1305 	.mode_fixup = tegra_crtc_mode_fixup,
1306 	.mode_set_nofb = tegra_crtc_mode_set_nofb,
1307 	.prepare = tegra_crtc_prepare,
1308 	.commit = tegra_crtc_commit,
1309 	.atomic_check = tegra_crtc_atomic_check,
1310 	.atomic_begin = tegra_crtc_atomic_begin,
1311 	.atomic_flush = tegra_crtc_atomic_flush,
1312 };
1313 
1314 static irqreturn_t tegra_dc_irq(int irq, void *data)
1315 {
1316 	struct tegra_dc *dc = data;
1317 	unsigned long status;
1318 
1319 	status = tegra_dc_readl(dc, DC_CMD_INT_STATUS);
1320 	tegra_dc_writel(dc, status, DC_CMD_INT_STATUS);
1321 
1322 	if (status & FRAME_END_INT) {
1323 		/*
1324 		dev_dbg(dc->dev, "%s(): frame end\n", __func__);
1325 		*/
1326 	}
1327 
1328 	if (status & VBLANK_INT) {
1329 		/*
1330 		dev_dbg(dc->dev, "%s(): vertical blank\n", __func__);
1331 		*/
1332 		drm_crtc_handle_vblank(&dc->base);
1333 		tegra_dc_finish_page_flip(dc);
1334 	}
1335 
1336 	if (status & (WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT)) {
1337 		/*
1338 		dev_dbg(dc->dev, "%s(): underflow\n", __func__);
1339 		*/
1340 	}
1341 
1342 	return IRQ_HANDLED;
1343 }
1344 
1345 static int tegra_dc_show_regs(struct seq_file *s, void *data)
1346 {
1347 	struct drm_info_node *node = s->private;
1348 	struct tegra_dc *dc = node->info_ent->data;
1349 
1350 #define DUMP_REG(name)						\
1351 	seq_printf(s, "%-40s %#05x %08x\n", #name, name,	\
1352 		   tegra_dc_readl(dc, name))
1353 
1354 	DUMP_REG(DC_CMD_GENERAL_INCR_SYNCPT);
1355 	DUMP_REG(DC_CMD_GENERAL_INCR_SYNCPT_CNTRL);
1356 	DUMP_REG(DC_CMD_GENERAL_INCR_SYNCPT_ERROR);
1357 	DUMP_REG(DC_CMD_WIN_A_INCR_SYNCPT);
1358 	DUMP_REG(DC_CMD_WIN_A_INCR_SYNCPT_CNTRL);
1359 	DUMP_REG(DC_CMD_WIN_A_INCR_SYNCPT_ERROR);
1360 	DUMP_REG(DC_CMD_WIN_B_INCR_SYNCPT);
1361 	DUMP_REG(DC_CMD_WIN_B_INCR_SYNCPT_CNTRL);
1362 	DUMP_REG(DC_CMD_WIN_B_INCR_SYNCPT_ERROR);
1363 	DUMP_REG(DC_CMD_WIN_C_INCR_SYNCPT);
1364 	DUMP_REG(DC_CMD_WIN_C_INCR_SYNCPT_CNTRL);
1365 	DUMP_REG(DC_CMD_WIN_C_INCR_SYNCPT_ERROR);
1366 	DUMP_REG(DC_CMD_CONT_SYNCPT_VSYNC);
1367 	DUMP_REG(DC_CMD_DISPLAY_COMMAND_OPTION0);
1368 	DUMP_REG(DC_CMD_DISPLAY_COMMAND);
1369 	DUMP_REG(DC_CMD_SIGNAL_RAISE);
1370 	DUMP_REG(DC_CMD_DISPLAY_POWER_CONTROL);
1371 	DUMP_REG(DC_CMD_INT_STATUS);
1372 	DUMP_REG(DC_CMD_INT_MASK);
1373 	DUMP_REG(DC_CMD_INT_ENABLE);
1374 	DUMP_REG(DC_CMD_INT_TYPE);
1375 	DUMP_REG(DC_CMD_INT_POLARITY);
1376 	DUMP_REG(DC_CMD_SIGNAL_RAISE1);
1377 	DUMP_REG(DC_CMD_SIGNAL_RAISE2);
1378 	DUMP_REG(DC_CMD_SIGNAL_RAISE3);
1379 	DUMP_REG(DC_CMD_STATE_ACCESS);
1380 	DUMP_REG(DC_CMD_STATE_CONTROL);
1381 	DUMP_REG(DC_CMD_DISPLAY_WINDOW_HEADER);
1382 	DUMP_REG(DC_CMD_REG_ACT_CONTROL);
1383 	DUMP_REG(DC_COM_CRC_CONTROL);
1384 	DUMP_REG(DC_COM_CRC_CHECKSUM);
1385 	DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(0));
1386 	DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(1));
1387 	DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(2));
1388 	DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(3));
1389 	DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(0));
1390 	DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(1));
1391 	DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(2));
1392 	DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(3));
1393 	DUMP_REG(DC_COM_PIN_OUTPUT_DATA(0));
1394 	DUMP_REG(DC_COM_PIN_OUTPUT_DATA(1));
1395 	DUMP_REG(DC_COM_PIN_OUTPUT_DATA(2));
1396 	DUMP_REG(DC_COM_PIN_OUTPUT_DATA(3));
1397 	DUMP_REG(DC_COM_PIN_INPUT_ENABLE(0));
1398 	DUMP_REG(DC_COM_PIN_INPUT_ENABLE(1));
1399 	DUMP_REG(DC_COM_PIN_INPUT_ENABLE(2));
1400 	DUMP_REG(DC_COM_PIN_INPUT_ENABLE(3));
1401 	DUMP_REG(DC_COM_PIN_INPUT_DATA(0));
1402 	DUMP_REG(DC_COM_PIN_INPUT_DATA(1));
1403 	DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(0));
1404 	DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(1));
1405 	DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(2));
1406 	DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(3));
1407 	DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(4));
1408 	DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(5));
1409 	DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(6));
1410 	DUMP_REG(DC_COM_PIN_MISC_CONTROL);
1411 	DUMP_REG(DC_COM_PIN_PM0_CONTROL);
1412 	DUMP_REG(DC_COM_PIN_PM0_DUTY_CYCLE);
1413 	DUMP_REG(DC_COM_PIN_PM1_CONTROL);
1414 	DUMP_REG(DC_COM_PIN_PM1_DUTY_CYCLE);
1415 	DUMP_REG(DC_COM_SPI_CONTROL);
1416 	DUMP_REG(DC_COM_SPI_START_BYTE);
1417 	DUMP_REG(DC_COM_HSPI_WRITE_DATA_AB);
1418 	DUMP_REG(DC_COM_HSPI_WRITE_DATA_CD);
1419 	DUMP_REG(DC_COM_HSPI_CS_DC);
1420 	DUMP_REG(DC_COM_SCRATCH_REGISTER_A);
1421 	DUMP_REG(DC_COM_SCRATCH_REGISTER_B);
1422 	DUMP_REG(DC_COM_GPIO_CTRL);
1423 	DUMP_REG(DC_COM_GPIO_DEBOUNCE_COUNTER);
1424 	DUMP_REG(DC_COM_CRC_CHECKSUM_LATCHED);
1425 	DUMP_REG(DC_DISP_DISP_SIGNAL_OPTIONS0);
1426 	DUMP_REG(DC_DISP_DISP_SIGNAL_OPTIONS1);
1427 	DUMP_REG(DC_DISP_DISP_WIN_OPTIONS);
1428 	DUMP_REG(DC_DISP_DISP_MEM_HIGH_PRIORITY);
1429 	DUMP_REG(DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER);
1430 	DUMP_REG(DC_DISP_DISP_TIMING_OPTIONS);
1431 	DUMP_REG(DC_DISP_REF_TO_SYNC);
1432 	DUMP_REG(DC_DISP_SYNC_WIDTH);
1433 	DUMP_REG(DC_DISP_BACK_PORCH);
1434 	DUMP_REG(DC_DISP_ACTIVE);
1435 	DUMP_REG(DC_DISP_FRONT_PORCH);
1436 	DUMP_REG(DC_DISP_H_PULSE0_CONTROL);
1437 	DUMP_REG(DC_DISP_H_PULSE0_POSITION_A);
1438 	DUMP_REG(DC_DISP_H_PULSE0_POSITION_B);
1439 	DUMP_REG(DC_DISP_H_PULSE0_POSITION_C);
1440 	DUMP_REG(DC_DISP_H_PULSE0_POSITION_D);
1441 	DUMP_REG(DC_DISP_H_PULSE1_CONTROL);
1442 	DUMP_REG(DC_DISP_H_PULSE1_POSITION_A);
1443 	DUMP_REG(DC_DISP_H_PULSE1_POSITION_B);
1444 	DUMP_REG(DC_DISP_H_PULSE1_POSITION_C);
1445 	DUMP_REG(DC_DISP_H_PULSE1_POSITION_D);
1446 	DUMP_REG(DC_DISP_H_PULSE2_CONTROL);
1447 	DUMP_REG(DC_DISP_H_PULSE2_POSITION_A);
1448 	DUMP_REG(DC_DISP_H_PULSE2_POSITION_B);
1449 	DUMP_REG(DC_DISP_H_PULSE2_POSITION_C);
1450 	DUMP_REG(DC_DISP_H_PULSE2_POSITION_D);
1451 	DUMP_REG(DC_DISP_V_PULSE0_CONTROL);
1452 	DUMP_REG(DC_DISP_V_PULSE0_POSITION_A);
1453 	DUMP_REG(DC_DISP_V_PULSE0_POSITION_B);
1454 	DUMP_REG(DC_DISP_V_PULSE0_POSITION_C);
1455 	DUMP_REG(DC_DISP_V_PULSE1_CONTROL);
1456 	DUMP_REG(DC_DISP_V_PULSE1_POSITION_A);
1457 	DUMP_REG(DC_DISP_V_PULSE1_POSITION_B);
1458 	DUMP_REG(DC_DISP_V_PULSE1_POSITION_C);
1459 	DUMP_REG(DC_DISP_V_PULSE2_CONTROL);
1460 	DUMP_REG(DC_DISP_V_PULSE2_POSITION_A);
1461 	DUMP_REG(DC_DISP_V_PULSE3_CONTROL);
1462 	DUMP_REG(DC_DISP_V_PULSE3_POSITION_A);
1463 	DUMP_REG(DC_DISP_M0_CONTROL);
1464 	DUMP_REG(DC_DISP_M1_CONTROL);
1465 	DUMP_REG(DC_DISP_DI_CONTROL);
1466 	DUMP_REG(DC_DISP_PP_CONTROL);
1467 	DUMP_REG(DC_DISP_PP_SELECT_A);
1468 	DUMP_REG(DC_DISP_PP_SELECT_B);
1469 	DUMP_REG(DC_DISP_PP_SELECT_C);
1470 	DUMP_REG(DC_DISP_PP_SELECT_D);
1471 	DUMP_REG(DC_DISP_DISP_CLOCK_CONTROL);
1472 	DUMP_REG(DC_DISP_DISP_INTERFACE_CONTROL);
1473 	DUMP_REG(DC_DISP_DISP_COLOR_CONTROL);
1474 	DUMP_REG(DC_DISP_SHIFT_CLOCK_OPTIONS);
1475 	DUMP_REG(DC_DISP_DATA_ENABLE_OPTIONS);
1476 	DUMP_REG(DC_DISP_SERIAL_INTERFACE_OPTIONS);
1477 	DUMP_REG(DC_DISP_LCD_SPI_OPTIONS);
1478 	DUMP_REG(DC_DISP_BORDER_COLOR);
1479 	DUMP_REG(DC_DISP_COLOR_KEY0_LOWER);
1480 	DUMP_REG(DC_DISP_COLOR_KEY0_UPPER);
1481 	DUMP_REG(DC_DISP_COLOR_KEY1_LOWER);
1482 	DUMP_REG(DC_DISP_COLOR_KEY1_UPPER);
1483 	DUMP_REG(DC_DISP_CURSOR_FOREGROUND);
1484 	DUMP_REG(DC_DISP_CURSOR_BACKGROUND);
1485 	DUMP_REG(DC_DISP_CURSOR_START_ADDR);
1486 	DUMP_REG(DC_DISP_CURSOR_START_ADDR_NS);
1487 	DUMP_REG(DC_DISP_CURSOR_POSITION);
1488 	DUMP_REG(DC_DISP_CURSOR_POSITION_NS);
1489 	DUMP_REG(DC_DISP_INIT_SEQ_CONTROL);
1490 	DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_A);
1491 	DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_B);
1492 	DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_C);
1493 	DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_D);
1494 	DUMP_REG(DC_DISP_DC_MCCIF_FIFOCTRL);
1495 	DUMP_REG(DC_DISP_MCCIF_DISPLAY0A_HYST);
1496 	DUMP_REG(DC_DISP_MCCIF_DISPLAY0B_HYST);
1497 	DUMP_REG(DC_DISP_MCCIF_DISPLAY1A_HYST);
1498 	DUMP_REG(DC_DISP_MCCIF_DISPLAY1B_HYST);
1499 	DUMP_REG(DC_DISP_DAC_CRT_CTRL);
1500 	DUMP_REG(DC_DISP_DISP_MISC_CONTROL);
1501 	DUMP_REG(DC_DISP_SD_CONTROL);
1502 	DUMP_REG(DC_DISP_SD_CSC_COEFF);
1503 	DUMP_REG(DC_DISP_SD_LUT(0));
1504 	DUMP_REG(DC_DISP_SD_LUT(1));
1505 	DUMP_REG(DC_DISP_SD_LUT(2));
1506 	DUMP_REG(DC_DISP_SD_LUT(3));
1507 	DUMP_REG(DC_DISP_SD_LUT(4));
1508 	DUMP_REG(DC_DISP_SD_LUT(5));
1509 	DUMP_REG(DC_DISP_SD_LUT(6));
1510 	DUMP_REG(DC_DISP_SD_LUT(7));
1511 	DUMP_REG(DC_DISP_SD_LUT(8));
1512 	DUMP_REG(DC_DISP_SD_FLICKER_CONTROL);
1513 	DUMP_REG(DC_DISP_DC_PIXEL_COUNT);
1514 	DUMP_REG(DC_DISP_SD_HISTOGRAM(0));
1515 	DUMP_REG(DC_DISP_SD_HISTOGRAM(1));
1516 	DUMP_REG(DC_DISP_SD_HISTOGRAM(2));
1517 	DUMP_REG(DC_DISP_SD_HISTOGRAM(3));
1518 	DUMP_REG(DC_DISP_SD_HISTOGRAM(4));
1519 	DUMP_REG(DC_DISP_SD_HISTOGRAM(5));
1520 	DUMP_REG(DC_DISP_SD_HISTOGRAM(6));
1521 	DUMP_REG(DC_DISP_SD_HISTOGRAM(7));
1522 	DUMP_REG(DC_DISP_SD_BL_TF(0));
1523 	DUMP_REG(DC_DISP_SD_BL_TF(1));
1524 	DUMP_REG(DC_DISP_SD_BL_TF(2));
1525 	DUMP_REG(DC_DISP_SD_BL_TF(3));
1526 	DUMP_REG(DC_DISP_SD_BL_CONTROL);
1527 	DUMP_REG(DC_DISP_SD_HW_K_VALUES);
1528 	DUMP_REG(DC_DISP_SD_MAN_K_VALUES);
1529 	DUMP_REG(DC_DISP_CURSOR_START_ADDR_HI);
1530 	DUMP_REG(DC_DISP_BLEND_CURSOR_CONTROL);
1531 	DUMP_REG(DC_WIN_WIN_OPTIONS);
1532 	DUMP_REG(DC_WIN_BYTE_SWAP);
1533 	DUMP_REG(DC_WIN_BUFFER_CONTROL);
1534 	DUMP_REG(DC_WIN_COLOR_DEPTH);
1535 	DUMP_REG(DC_WIN_POSITION);
1536 	DUMP_REG(DC_WIN_SIZE);
1537 	DUMP_REG(DC_WIN_PRESCALED_SIZE);
1538 	DUMP_REG(DC_WIN_H_INITIAL_DDA);
1539 	DUMP_REG(DC_WIN_V_INITIAL_DDA);
1540 	DUMP_REG(DC_WIN_DDA_INC);
1541 	DUMP_REG(DC_WIN_LINE_STRIDE);
1542 	DUMP_REG(DC_WIN_BUF_STRIDE);
1543 	DUMP_REG(DC_WIN_UV_BUF_STRIDE);
1544 	DUMP_REG(DC_WIN_BUFFER_ADDR_MODE);
1545 	DUMP_REG(DC_WIN_DV_CONTROL);
1546 	DUMP_REG(DC_WIN_BLEND_NOKEY);
1547 	DUMP_REG(DC_WIN_BLEND_1WIN);
1548 	DUMP_REG(DC_WIN_BLEND_2WIN_X);
1549 	DUMP_REG(DC_WIN_BLEND_2WIN_Y);
1550 	DUMP_REG(DC_WIN_BLEND_3WIN_XY);
1551 	DUMP_REG(DC_WIN_HP_FETCH_CONTROL);
1552 	DUMP_REG(DC_WINBUF_START_ADDR);
1553 	DUMP_REG(DC_WINBUF_START_ADDR_NS);
1554 	DUMP_REG(DC_WINBUF_START_ADDR_U);
1555 	DUMP_REG(DC_WINBUF_START_ADDR_U_NS);
1556 	DUMP_REG(DC_WINBUF_START_ADDR_V);
1557 	DUMP_REG(DC_WINBUF_START_ADDR_V_NS);
1558 	DUMP_REG(DC_WINBUF_ADDR_H_OFFSET);
1559 	DUMP_REG(DC_WINBUF_ADDR_H_OFFSET_NS);
1560 	DUMP_REG(DC_WINBUF_ADDR_V_OFFSET);
1561 	DUMP_REG(DC_WINBUF_ADDR_V_OFFSET_NS);
1562 	DUMP_REG(DC_WINBUF_UFLOW_STATUS);
1563 	DUMP_REG(DC_WINBUF_AD_UFLOW_STATUS);
1564 	DUMP_REG(DC_WINBUF_BD_UFLOW_STATUS);
1565 	DUMP_REG(DC_WINBUF_CD_UFLOW_STATUS);
1566 
1567 #undef DUMP_REG
1568 
1569 	return 0;
1570 }
1571 
1572 static struct drm_info_list debugfs_files[] = {
1573 	{ "regs", tegra_dc_show_regs, 0, NULL },
1574 };
1575 
1576 static int tegra_dc_debugfs_init(struct tegra_dc *dc, struct drm_minor *minor)
1577 {
1578 	unsigned int i;
1579 	char *name;
1580 	int err;
1581 
1582 	name = kasprintf(GFP_KERNEL, "dc.%d", dc->pipe);
1583 	dc->debugfs = debugfs_create_dir(name, minor->debugfs_root);
1584 	kfree(name);
1585 
1586 	if (!dc->debugfs)
1587 		return -ENOMEM;
1588 
1589 	dc->debugfs_files = kmemdup(debugfs_files, sizeof(debugfs_files),
1590 				    GFP_KERNEL);
1591 	if (!dc->debugfs_files) {
1592 		err = -ENOMEM;
1593 		goto remove;
1594 	}
1595 
1596 	for (i = 0; i < ARRAY_SIZE(debugfs_files); i++)
1597 		dc->debugfs_files[i].data = dc;
1598 
1599 	err = drm_debugfs_create_files(dc->debugfs_files,
1600 				       ARRAY_SIZE(debugfs_files),
1601 				       dc->debugfs, minor);
1602 	if (err < 0)
1603 		goto free;
1604 
1605 	dc->minor = minor;
1606 
1607 	return 0;
1608 
1609 free:
1610 	kfree(dc->debugfs_files);
1611 	dc->debugfs_files = NULL;
1612 remove:
1613 	debugfs_remove(dc->debugfs);
1614 	dc->debugfs = NULL;
1615 
1616 	return err;
1617 }
1618 
1619 static int tegra_dc_debugfs_exit(struct tegra_dc *dc)
1620 {
1621 	drm_debugfs_remove_files(dc->debugfs_files, ARRAY_SIZE(debugfs_files),
1622 				 dc->minor);
1623 	dc->minor = NULL;
1624 
1625 	kfree(dc->debugfs_files);
1626 	dc->debugfs_files = NULL;
1627 
1628 	debugfs_remove(dc->debugfs);
1629 	dc->debugfs = NULL;
1630 
1631 	return 0;
1632 }
1633 
1634 static int tegra_dc_init(struct host1x_client *client)
1635 {
1636 	struct drm_device *drm = dev_get_drvdata(client->parent);
1637 	struct tegra_dc *dc = host1x_client_to_dc(client);
1638 	struct tegra_drm *tegra = drm->dev_private;
1639 	struct drm_plane *primary = NULL;
1640 	struct drm_plane *cursor = NULL;
1641 	u32 value;
1642 	int err;
1643 
1644 	if (tegra->domain) {
1645 		err = iommu_attach_device(tegra->domain, dc->dev);
1646 		if (err < 0) {
1647 			dev_err(dc->dev, "failed to attach to domain: %d\n",
1648 				err);
1649 			return err;
1650 		}
1651 
1652 		dc->domain = tegra->domain;
1653 	}
1654 
1655 	primary = tegra_dc_primary_plane_create(drm, dc);
1656 	if (IS_ERR(primary)) {
1657 		err = PTR_ERR(primary);
1658 		goto cleanup;
1659 	}
1660 
1661 	if (dc->soc->supports_cursor) {
1662 		cursor = tegra_dc_cursor_plane_create(drm, dc);
1663 		if (IS_ERR(cursor)) {
1664 			err = PTR_ERR(cursor);
1665 			goto cleanup;
1666 		}
1667 	}
1668 
1669 	err = drm_crtc_init_with_planes(drm, &dc->base, primary, cursor,
1670 					&tegra_crtc_funcs);
1671 	if (err < 0)
1672 		goto cleanup;
1673 
1674 	drm_mode_crtc_set_gamma_size(&dc->base, 256);
1675 	drm_crtc_helper_add(&dc->base, &tegra_crtc_helper_funcs);
1676 
1677 	/*
1678 	 * Keep track of the minimum pitch alignment across all display
1679 	 * controllers.
1680 	 */
1681 	if (dc->soc->pitch_align > tegra->pitch_align)
1682 		tegra->pitch_align = dc->soc->pitch_align;
1683 
1684 	err = tegra_dc_rgb_init(drm, dc);
1685 	if (err < 0 && err != -ENODEV) {
1686 		dev_err(dc->dev, "failed to initialize RGB output: %d\n", err);
1687 		goto cleanup;
1688 	}
1689 
1690 	err = tegra_dc_add_planes(drm, dc);
1691 	if (err < 0)
1692 		goto cleanup;
1693 
1694 	if (IS_ENABLED(CONFIG_DEBUG_FS)) {
1695 		err = tegra_dc_debugfs_init(dc, drm->primary);
1696 		if (err < 0)
1697 			dev_err(dc->dev, "debugfs setup failed: %d\n", err);
1698 	}
1699 
1700 	err = devm_request_irq(dc->dev, dc->irq, tegra_dc_irq, 0,
1701 			       dev_name(dc->dev), dc);
1702 	if (err < 0) {
1703 		dev_err(dc->dev, "failed to request IRQ#%u: %d\n", dc->irq,
1704 			err);
1705 		goto cleanup;
1706 	}
1707 
1708 	/* initialize display controller */
1709 	if (dc->syncpt) {
1710 		u32 syncpt = host1x_syncpt_id(dc->syncpt);
1711 
1712 		value = SYNCPT_CNTRL_NO_STALL;
1713 		tegra_dc_writel(dc, value, DC_CMD_GENERAL_INCR_SYNCPT_CNTRL);
1714 
1715 		value = SYNCPT_VSYNC_ENABLE | syncpt;
1716 		tegra_dc_writel(dc, value, DC_CMD_CONT_SYNCPT_VSYNC);
1717 	}
1718 
1719 	value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT | WIN_A_OF_INT;
1720 	tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
1721 
1722 	value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1723 		WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1724 	tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
1725 
1726 	/* initialize timer */
1727 	value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(0x20) |
1728 		WINDOW_B_THRESHOLD(0x20) | WINDOW_C_THRESHOLD(0x20);
1729 	tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY);
1730 
1731 	value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(1) |
1732 		WINDOW_B_THRESHOLD(1) | WINDOW_C_THRESHOLD(1);
1733 	tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER);
1734 
1735 	value = VBLANK_INT | WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT;
1736 	tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
1737 
1738 	value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT;
1739 	tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1740 
1741 	if (dc->soc->supports_border_color)
1742 		tegra_dc_writel(dc, 0, DC_DISP_BORDER_COLOR);
1743 
1744 	return 0;
1745 
1746 cleanup:
1747 	if (cursor)
1748 		drm_plane_cleanup(cursor);
1749 
1750 	if (primary)
1751 		drm_plane_cleanup(primary);
1752 
1753 	if (tegra->domain) {
1754 		iommu_detach_device(tegra->domain, dc->dev);
1755 		dc->domain = NULL;
1756 	}
1757 
1758 	return err;
1759 }
1760 
1761 static int tegra_dc_exit(struct host1x_client *client)
1762 {
1763 	struct tegra_dc *dc = host1x_client_to_dc(client);
1764 	int err;
1765 
1766 	devm_free_irq(dc->dev, dc->irq, dc);
1767 
1768 	if (IS_ENABLED(CONFIG_DEBUG_FS)) {
1769 		err = tegra_dc_debugfs_exit(dc);
1770 		if (err < 0)
1771 			dev_err(dc->dev, "debugfs cleanup failed: %d\n", err);
1772 	}
1773 
1774 	err = tegra_dc_rgb_exit(dc);
1775 	if (err) {
1776 		dev_err(dc->dev, "failed to shutdown RGB output: %d\n", err);
1777 		return err;
1778 	}
1779 
1780 	if (dc->domain) {
1781 		iommu_detach_device(dc->domain, dc->dev);
1782 		dc->domain = NULL;
1783 	}
1784 
1785 	return 0;
1786 }
1787 
1788 static const struct host1x_client_ops dc_client_ops = {
1789 	.init = tegra_dc_init,
1790 	.exit = tegra_dc_exit,
1791 };
1792 
1793 static const struct tegra_dc_soc_info tegra20_dc_soc_info = {
1794 	.supports_border_color = true,
1795 	.supports_interlacing = false,
1796 	.supports_cursor = false,
1797 	.supports_block_linear = false,
1798 	.pitch_align = 8,
1799 	.has_powergate = false,
1800 };
1801 
1802 static const struct tegra_dc_soc_info tegra30_dc_soc_info = {
1803 	.supports_border_color = true,
1804 	.supports_interlacing = false,
1805 	.supports_cursor = false,
1806 	.supports_block_linear = false,
1807 	.pitch_align = 8,
1808 	.has_powergate = false,
1809 };
1810 
1811 static const struct tegra_dc_soc_info tegra114_dc_soc_info = {
1812 	.supports_border_color = true,
1813 	.supports_interlacing = false,
1814 	.supports_cursor = false,
1815 	.supports_block_linear = false,
1816 	.pitch_align = 64,
1817 	.has_powergate = true,
1818 };
1819 
1820 static const struct tegra_dc_soc_info tegra124_dc_soc_info = {
1821 	.supports_border_color = false,
1822 	.supports_interlacing = true,
1823 	.supports_cursor = true,
1824 	.supports_block_linear = true,
1825 	.pitch_align = 64,
1826 	.has_powergate = true,
1827 };
1828 
1829 static const struct of_device_id tegra_dc_of_match[] = {
1830 	{
1831 		.compatible = "nvidia,tegra124-dc",
1832 		.data = &tegra124_dc_soc_info,
1833 	}, {
1834 		.compatible = "nvidia,tegra114-dc",
1835 		.data = &tegra114_dc_soc_info,
1836 	}, {
1837 		.compatible = "nvidia,tegra30-dc",
1838 		.data = &tegra30_dc_soc_info,
1839 	}, {
1840 		.compatible = "nvidia,tegra20-dc",
1841 		.data = &tegra20_dc_soc_info,
1842 	}, {
1843 		/* sentinel */
1844 	}
1845 };
1846 MODULE_DEVICE_TABLE(of, tegra_dc_of_match);
1847 
1848 static int tegra_dc_parse_dt(struct tegra_dc *dc)
1849 {
1850 	struct device_node *np;
1851 	u32 value = 0;
1852 	int err;
1853 
1854 	err = of_property_read_u32(dc->dev->of_node, "nvidia,head", &value);
1855 	if (err < 0) {
1856 		dev_err(dc->dev, "missing \"nvidia,head\" property\n");
1857 
1858 		/*
1859 		 * If the nvidia,head property isn't present, try to find the
1860 		 * correct head number by looking up the position of this
1861 		 * display controller's node within the device tree. Assuming
1862 		 * that the nodes are ordered properly in the DTS file and
1863 		 * that the translation into a flattened device tree blob
1864 		 * preserves that ordering this will actually yield the right
1865 		 * head number.
1866 		 *
1867 		 * If those assumptions don't hold, this will still work for
1868 		 * cases where only a single display controller is used.
1869 		 */
1870 		for_each_matching_node(np, tegra_dc_of_match) {
1871 			if (np == dc->dev->of_node)
1872 				break;
1873 
1874 			value++;
1875 		}
1876 	}
1877 
1878 	dc->pipe = value;
1879 
1880 	return 0;
1881 }
1882 
1883 static int tegra_dc_probe(struct platform_device *pdev)
1884 {
1885 	unsigned long flags = HOST1X_SYNCPT_CLIENT_MANAGED;
1886 	const struct of_device_id *id;
1887 	struct resource *regs;
1888 	struct tegra_dc *dc;
1889 	int err;
1890 
1891 	dc = devm_kzalloc(&pdev->dev, sizeof(*dc), GFP_KERNEL);
1892 	if (!dc)
1893 		return -ENOMEM;
1894 
1895 	id = of_match_node(tegra_dc_of_match, pdev->dev.of_node);
1896 	if (!id)
1897 		return -ENODEV;
1898 
1899 	spin_lock_init(&dc->lock);
1900 	INIT_LIST_HEAD(&dc->list);
1901 	dc->dev = &pdev->dev;
1902 	dc->soc = id->data;
1903 
1904 	err = tegra_dc_parse_dt(dc);
1905 	if (err < 0)
1906 		return err;
1907 
1908 	dc->clk = devm_clk_get(&pdev->dev, NULL);
1909 	if (IS_ERR(dc->clk)) {
1910 		dev_err(&pdev->dev, "failed to get clock\n");
1911 		return PTR_ERR(dc->clk);
1912 	}
1913 
1914 	dc->rst = devm_reset_control_get(&pdev->dev, "dc");
1915 	if (IS_ERR(dc->rst)) {
1916 		dev_err(&pdev->dev, "failed to get reset\n");
1917 		return PTR_ERR(dc->rst);
1918 	}
1919 
1920 	if (dc->soc->has_powergate) {
1921 		if (dc->pipe == 0)
1922 			dc->powergate = TEGRA_POWERGATE_DIS;
1923 		else
1924 			dc->powergate = TEGRA_POWERGATE_DISB;
1925 
1926 		err = tegra_powergate_sequence_power_up(dc->powergate, dc->clk,
1927 							dc->rst);
1928 		if (err < 0) {
1929 			dev_err(&pdev->dev, "failed to power partition: %d\n",
1930 				err);
1931 			return err;
1932 		}
1933 	} else {
1934 		err = clk_prepare_enable(dc->clk);
1935 		if (err < 0) {
1936 			dev_err(&pdev->dev, "failed to enable clock: %d\n",
1937 				err);
1938 			return err;
1939 		}
1940 
1941 		err = reset_control_deassert(dc->rst);
1942 		if (err < 0) {
1943 			dev_err(&pdev->dev, "failed to deassert reset: %d\n",
1944 				err);
1945 			return err;
1946 		}
1947 	}
1948 
1949 	regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1950 	dc->regs = devm_ioremap_resource(&pdev->dev, regs);
1951 	if (IS_ERR(dc->regs))
1952 		return PTR_ERR(dc->regs);
1953 
1954 	dc->irq = platform_get_irq(pdev, 0);
1955 	if (dc->irq < 0) {
1956 		dev_err(&pdev->dev, "failed to get IRQ\n");
1957 		return -ENXIO;
1958 	}
1959 
1960 	INIT_LIST_HEAD(&dc->client.list);
1961 	dc->client.ops = &dc_client_ops;
1962 	dc->client.dev = &pdev->dev;
1963 
1964 	err = tegra_dc_rgb_probe(dc);
1965 	if (err < 0 && err != -ENODEV) {
1966 		dev_err(&pdev->dev, "failed to probe RGB output: %d\n", err);
1967 		return err;
1968 	}
1969 
1970 	err = host1x_client_register(&dc->client);
1971 	if (err < 0) {
1972 		dev_err(&pdev->dev, "failed to register host1x client: %d\n",
1973 			err);
1974 		return err;
1975 	}
1976 
1977 	dc->syncpt = host1x_syncpt_request(&pdev->dev, flags);
1978 	if (!dc->syncpt)
1979 		dev_warn(&pdev->dev, "failed to allocate syncpoint\n");
1980 
1981 	platform_set_drvdata(pdev, dc);
1982 
1983 	return 0;
1984 }
1985 
1986 static int tegra_dc_remove(struct platform_device *pdev)
1987 {
1988 	struct tegra_dc *dc = platform_get_drvdata(pdev);
1989 	int err;
1990 
1991 	host1x_syncpt_free(dc->syncpt);
1992 
1993 	err = host1x_client_unregister(&dc->client);
1994 	if (err < 0) {
1995 		dev_err(&pdev->dev, "failed to unregister host1x client: %d\n",
1996 			err);
1997 		return err;
1998 	}
1999 
2000 	err = tegra_dc_rgb_remove(dc);
2001 	if (err < 0) {
2002 		dev_err(&pdev->dev, "failed to remove RGB output: %d\n", err);
2003 		return err;
2004 	}
2005 
2006 	reset_control_assert(dc->rst);
2007 
2008 	if (dc->soc->has_powergate)
2009 		tegra_powergate_power_off(dc->powergate);
2010 
2011 	clk_disable_unprepare(dc->clk);
2012 
2013 	return 0;
2014 }
2015 
2016 struct platform_driver tegra_dc_driver = {
2017 	.driver = {
2018 		.name = "tegra-dc",
2019 		.owner = THIS_MODULE,
2020 		.of_match_table = tegra_dc_of_match,
2021 	},
2022 	.probe = tegra_dc_probe,
2023 	.remove = tegra_dc_remove,
2024 };
2025