1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2012 Avionic Design GmbH 4 * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved. 5 */ 6 7 #include <linux/clk.h> 8 #include <linux/debugfs.h> 9 #include <linux/delay.h> 10 #include <linux/iommu.h> 11 #include <linux/module.h> 12 #include <linux/of_device.h> 13 #include <linux/pm_runtime.h> 14 #include <linux/reset.h> 15 16 #include <soc/tegra/pmc.h> 17 18 #include <drm/drm_atomic.h> 19 #include <drm/drm_atomic_helper.h> 20 #include <drm/drm_debugfs.h> 21 #include <drm/drm_fourcc.h> 22 #include <drm/drm_plane_helper.h> 23 #include <drm/drm_vblank.h> 24 25 #include "dc.h" 26 #include "drm.h" 27 #include "gem.h" 28 #include "hub.h" 29 #include "plane.h" 30 31 static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc, 32 struct drm_crtc_state *state); 33 34 static void tegra_dc_stats_reset(struct tegra_dc_stats *stats) 35 { 36 stats->frames = 0; 37 stats->vblank = 0; 38 stats->underflow = 0; 39 stats->overflow = 0; 40 } 41 42 /* Reads the active copy of a register. */ 43 static u32 tegra_dc_readl_active(struct tegra_dc *dc, unsigned long offset) 44 { 45 u32 value; 46 47 tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS); 48 value = tegra_dc_readl(dc, offset); 49 tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS); 50 51 return value; 52 } 53 54 static inline unsigned int tegra_plane_offset(struct tegra_plane *plane, 55 unsigned int offset) 56 { 57 if (offset >= 0x500 && offset <= 0x638) { 58 offset = 0x000 + (offset - 0x500); 59 return plane->offset + offset; 60 } 61 62 if (offset >= 0x700 && offset <= 0x719) { 63 offset = 0x180 + (offset - 0x700); 64 return plane->offset + offset; 65 } 66 67 if (offset >= 0x800 && offset <= 0x839) { 68 offset = 0x1c0 + (offset - 0x800); 69 return plane->offset + offset; 70 } 71 72 dev_WARN(plane->dc->dev, "invalid offset: %x\n", offset); 73 74 return plane->offset + offset; 75 } 76 77 static inline u32 tegra_plane_readl(struct tegra_plane *plane, 78 unsigned int offset) 79 { 80 return tegra_dc_readl(plane->dc, tegra_plane_offset(plane, offset)); 81 } 82 83 static inline void tegra_plane_writel(struct tegra_plane *plane, u32 value, 84 unsigned int offset) 85 { 86 tegra_dc_writel(plane->dc, value, tegra_plane_offset(plane, offset)); 87 } 88 89 bool tegra_dc_has_output(struct tegra_dc *dc, struct device *dev) 90 { 91 struct device_node *np = dc->dev->of_node; 92 struct of_phandle_iterator it; 93 int err; 94 95 of_for_each_phandle(&it, err, np, "nvidia,outputs", NULL, 0) 96 if (it.node == dev->of_node) 97 return true; 98 99 return false; 100 } 101 102 /* 103 * Double-buffered registers have two copies: ASSEMBLY and ACTIVE. When the 104 * *_ACT_REQ bits are set the ASSEMBLY copy is latched into the ACTIVE copy. 105 * Latching happens mmediately if the display controller is in STOP mode or 106 * on the next frame boundary otherwise. 107 * 108 * Triple-buffered registers have three copies: ASSEMBLY, ARM and ACTIVE. The 109 * ASSEMBLY copy is latched into the ARM copy immediately after *_UPDATE bits 110 * are written. When the *_ACT_REQ bits are written, the ARM copy is latched 111 * into the ACTIVE copy, either immediately if the display controller is in 112 * STOP mode, or at the next frame boundary otherwise. 113 */ 114 void tegra_dc_commit(struct tegra_dc *dc) 115 { 116 tegra_dc_writel(dc, GENERAL_ACT_REQ << 8, DC_CMD_STATE_CONTROL); 117 tegra_dc_writel(dc, GENERAL_ACT_REQ, DC_CMD_STATE_CONTROL); 118 } 119 120 static inline u32 compute_dda_inc(unsigned int in, unsigned int out, bool v, 121 unsigned int bpp) 122 { 123 fixed20_12 outf = dfixed_init(out); 124 fixed20_12 inf = dfixed_init(in); 125 u32 dda_inc; 126 int max; 127 128 if (v) 129 max = 15; 130 else { 131 switch (bpp) { 132 case 2: 133 max = 8; 134 break; 135 136 default: 137 WARN_ON_ONCE(1); 138 fallthrough; 139 case 4: 140 max = 4; 141 break; 142 } 143 } 144 145 outf.full = max_t(u32, outf.full - dfixed_const(1), dfixed_const(1)); 146 inf.full -= dfixed_const(1); 147 148 dda_inc = dfixed_div(inf, outf); 149 dda_inc = min_t(u32, dda_inc, dfixed_const(max)); 150 151 return dda_inc; 152 } 153 154 static inline u32 compute_initial_dda(unsigned int in) 155 { 156 fixed20_12 inf = dfixed_init(in); 157 return dfixed_frac(inf); 158 } 159 160 static void tegra_plane_setup_blending_legacy(struct tegra_plane *plane) 161 { 162 u32 background[3] = { 163 BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE, 164 BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE, 165 BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE, 166 }; 167 u32 foreground = BLEND_WEIGHT1(255) | BLEND_WEIGHT0(255) | 168 BLEND_COLOR_KEY_NONE; 169 u32 blendnokey = BLEND_WEIGHT1(255) | BLEND_WEIGHT0(255); 170 struct tegra_plane_state *state; 171 u32 blending[2]; 172 unsigned int i; 173 174 /* disable blending for non-overlapping case */ 175 tegra_plane_writel(plane, blendnokey, DC_WIN_BLEND_NOKEY); 176 tegra_plane_writel(plane, foreground, DC_WIN_BLEND_1WIN); 177 178 state = to_tegra_plane_state(plane->base.state); 179 180 if (state->opaque) { 181 /* 182 * Since custom fix-weight blending isn't utilized and weight 183 * of top window is set to max, we can enforce dependent 184 * blending which in this case results in transparent bottom 185 * window if top window is opaque and if top window enables 186 * alpha blending, then bottom window is getting alpha value 187 * of 1 minus the sum of alpha components of the overlapping 188 * plane. 189 */ 190 background[0] |= BLEND_CONTROL_DEPENDENT; 191 background[1] |= BLEND_CONTROL_DEPENDENT; 192 193 /* 194 * The region where three windows overlap is the intersection 195 * of the two regions where two windows overlap. It contributes 196 * to the area if all of the windows on top of it have an alpha 197 * component. 198 */ 199 switch (state->base.normalized_zpos) { 200 case 0: 201 if (state->blending[0].alpha && 202 state->blending[1].alpha) 203 background[2] |= BLEND_CONTROL_DEPENDENT; 204 break; 205 206 case 1: 207 background[2] |= BLEND_CONTROL_DEPENDENT; 208 break; 209 } 210 } else { 211 /* 212 * Enable alpha blending if pixel format has an alpha 213 * component. 214 */ 215 foreground |= BLEND_CONTROL_ALPHA; 216 217 /* 218 * If any of the windows on top of this window is opaque, it 219 * will completely conceal this window within that area. If 220 * top window has an alpha component, it is blended over the 221 * bottom window. 222 */ 223 for (i = 0; i < 2; i++) { 224 if (state->blending[i].alpha && 225 state->blending[i].top) 226 background[i] |= BLEND_CONTROL_DEPENDENT; 227 } 228 229 switch (state->base.normalized_zpos) { 230 case 0: 231 if (state->blending[0].alpha && 232 state->blending[1].alpha) 233 background[2] |= BLEND_CONTROL_DEPENDENT; 234 break; 235 236 case 1: 237 /* 238 * When both middle and topmost windows have an alpha, 239 * these windows a mixed together and then the result 240 * is blended over the bottom window. 241 */ 242 if (state->blending[0].alpha && 243 state->blending[0].top) 244 background[2] |= BLEND_CONTROL_ALPHA; 245 246 if (state->blending[1].alpha && 247 state->blending[1].top) 248 background[2] |= BLEND_CONTROL_ALPHA; 249 break; 250 } 251 } 252 253 switch (state->base.normalized_zpos) { 254 case 0: 255 tegra_plane_writel(plane, background[0], DC_WIN_BLEND_2WIN_X); 256 tegra_plane_writel(plane, background[1], DC_WIN_BLEND_2WIN_Y); 257 tegra_plane_writel(plane, background[2], DC_WIN_BLEND_3WIN_XY); 258 break; 259 260 case 1: 261 /* 262 * If window B / C is topmost, then X / Y registers are 263 * matching the order of blending[...] state indices, 264 * otherwise a swap is required. 265 */ 266 if (!state->blending[0].top && state->blending[1].top) { 267 blending[0] = foreground; 268 blending[1] = background[1]; 269 } else { 270 blending[0] = background[0]; 271 blending[1] = foreground; 272 } 273 274 tegra_plane_writel(plane, blending[0], DC_WIN_BLEND_2WIN_X); 275 tegra_plane_writel(plane, blending[1], DC_WIN_BLEND_2WIN_Y); 276 tegra_plane_writel(plane, background[2], DC_WIN_BLEND_3WIN_XY); 277 break; 278 279 case 2: 280 tegra_plane_writel(plane, foreground, DC_WIN_BLEND_2WIN_X); 281 tegra_plane_writel(plane, foreground, DC_WIN_BLEND_2WIN_Y); 282 tegra_plane_writel(plane, foreground, DC_WIN_BLEND_3WIN_XY); 283 break; 284 } 285 } 286 287 static void tegra_plane_setup_blending(struct tegra_plane *plane, 288 const struct tegra_dc_window *window) 289 { 290 u32 value; 291 292 value = BLEND_FACTOR_DST_ALPHA_ZERO | BLEND_FACTOR_SRC_ALPHA_K2 | 293 BLEND_FACTOR_DST_COLOR_NEG_K1_TIMES_SRC | 294 BLEND_FACTOR_SRC_COLOR_K1_TIMES_SRC; 295 tegra_plane_writel(plane, value, DC_WIN_BLEND_MATCH_SELECT); 296 297 value = BLEND_FACTOR_DST_ALPHA_ZERO | BLEND_FACTOR_SRC_ALPHA_K2 | 298 BLEND_FACTOR_DST_COLOR_NEG_K1_TIMES_SRC | 299 BLEND_FACTOR_SRC_COLOR_K1_TIMES_SRC; 300 tegra_plane_writel(plane, value, DC_WIN_BLEND_NOMATCH_SELECT); 301 302 value = K2(255) | K1(255) | WINDOW_LAYER_DEPTH(255 - window->zpos); 303 tegra_plane_writel(plane, value, DC_WIN_BLEND_LAYER_CONTROL); 304 } 305 306 static bool 307 tegra_plane_use_horizontal_filtering(struct tegra_plane *plane, 308 const struct tegra_dc_window *window) 309 { 310 struct tegra_dc *dc = plane->dc; 311 312 if (window->src.w == window->dst.w) 313 return false; 314 315 if (plane->index == 0 && dc->soc->has_win_a_without_filters) 316 return false; 317 318 return true; 319 } 320 321 static bool 322 tegra_plane_use_vertical_filtering(struct tegra_plane *plane, 323 const struct tegra_dc_window *window) 324 { 325 struct tegra_dc *dc = plane->dc; 326 327 if (window->src.h == window->dst.h) 328 return false; 329 330 if (plane->index == 0 && dc->soc->has_win_a_without_filters) 331 return false; 332 333 if (plane->index == 2 && dc->soc->has_win_c_without_vert_filter) 334 return false; 335 336 return true; 337 } 338 339 static void tegra_dc_setup_window(struct tegra_plane *plane, 340 const struct tegra_dc_window *window) 341 { 342 unsigned h_offset, v_offset, h_size, v_size, h_dda, v_dda, bpp; 343 struct tegra_dc *dc = plane->dc; 344 bool yuv, planar; 345 u32 value; 346 347 /* 348 * For YUV planar modes, the number of bytes per pixel takes into 349 * account only the luma component and therefore is 1. 350 */ 351 yuv = tegra_plane_format_is_yuv(window->format, &planar); 352 if (!yuv) 353 bpp = window->bits_per_pixel / 8; 354 else 355 bpp = planar ? 1 : 2; 356 357 tegra_plane_writel(plane, window->format, DC_WIN_COLOR_DEPTH); 358 tegra_plane_writel(plane, window->swap, DC_WIN_BYTE_SWAP); 359 360 value = V_POSITION(window->dst.y) | H_POSITION(window->dst.x); 361 tegra_plane_writel(plane, value, DC_WIN_POSITION); 362 363 value = V_SIZE(window->dst.h) | H_SIZE(window->dst.w); 364 tegra_plane_writel(plane, value, DC_WIN_SIZE); 365 366 h_offset = window->src.x * bpp; 367 v_offset = window->src.y; 368 h_size = window->src.w * bpp; 369 v_size = window->src.h; 370 371 if (window->reflect_x) 372 h_offset += (window->src.w - 1) * bpp; 373 374 if (window->reflect_y) 375 v_offset += window->src.h - 1; 376 377 value = V_PRESCALED_SIZE(v_size) | H_PRESCALED_SIZE(h_size); 378 tegra_plane_writel(plane, value, DC_WIN_PRESCALED_SIZE); 379 380 /* 381 * For DDA computations the number of bytes per pixel for YUV planar 382 * modes needs to take into account all Y, U and V components. 383 */ 384 if (yuv && planar) 385 bpp = 2; 386 387 h_dda = compute_dda_inc(window->src.w, window->dst.w, false, bpp); 388 v_dda = compute_dda_inc(window->src.h, window->dst.h, true, bpp); 389 390 value = V_DDA_INC(v_dda) | H_DDA_INC(h_dda); 391 tegra_plane_writel(plane, value, DC_WIN_DDA_INC); 392 393 h_dda = compute_initial_dda(window->src.x); 394 v_dda = compute_initial_dda(window->src.y); 395 396 tegra_plane_writel(plane, h_dda, DC_WIN_H_INITIAL_DDA); 397 tegra_plane_writel(plane, v_dda, DC_WIN_V_INITIAL_DDA); 398 399 tegra_plane_writel(plane, 0, DC_WIN_UV_BUF_STRIDE); 400 tegra_plane_writel(plane, 0, DC_WIN_BUF_STRIDE); 401 402 tegra_plane_writel(plane, window->base[0], DC_WINBUF_START_ADDR); 403 404 if (yuv && planar) { 405 tegra_plane_writel(plane, window->base[1], DC_WINBUF_START_ADDR_U); 406 tegra_plane_writel(plane, window->base[2], DC_WINBUF_START_ADDR_V); 407 value = window->stride[1] << 16 | window->stride[0]; 408 tegra_plane_writel(plane, value, DC_WIN_LINE_STRIDE); 409 } else { 410 tegra_plane_writel(plane, window->stride[0], DC_WIN_LINE_STRIDE); 411 } 412 413 tegra_plane_writel(plane, h_offset, DC_WINBUF_ADDR_H_OFFSET); 414 tegra_plane_writel(plane, v_offset, DC_WINBUF_ADDR_V_OFFSET); 415 416 if (dc->soc->supports_block_linear) { 417 unsigned long height = window->tiling.value; 418 419 switch (window->tiling.mode) { 420 case TEGRA_BO_TILING_MODE_PITCH: 421 value = DC_WINBUF_SURFACE_KIND_PITCH; 422 break; 423 424 case TEGRA_BO_TILING_MODE_TILED: 425 value = DC_WINBUF_SURFACE_KIND_TILED; 426 break; 427 428 case TEGRA_BO_TILING_MODE_BLOCK: 429 value = DC_WINBUF_SURFACE_KIND_BLOCK_HEIGHT(height) | 430 DC_WINBUF_SURFACE_KIND_BLOCK; 431 break; 432 } 433 434 tegra_plane_writel(plane, value, DC_WINBUF_SURFACE_KIND); 435 } else { 436 switch (window->tiling.mode) { 437 case TEGRA_BO_TILING_MODE_PITCH: 438 value = DC_WIN_BUFFER_ADDR_MODE_LINEAR_UV | 439 DC_WIN_BUFFER_ADDR_MODE_LINEAR; 440 break; 441 442 case TEGRA_BO_TILING_MODE_TILED: 443 value = DC_WIN_BUFFER_ADDR_MODE_TILE_UV | 444 DC_WIN_BUFFER_ADDR_MODE_TILE; 445 break; 446 447 case TEGRA_BO_TILING_MODE_BLOCK: 448 /* 449 * No need to handle this here because ->atomic_check 450 * will already have filtered it out. 451 */ 452 break; 453 } 454 455 tegra_plane_writel(plane, value, DC_WIN_BUFFER_ADDR_MODE); 456 } 457 458 value = WIN_ENABLE; 459 460 if (yuv) { 461 /* setup default colorspace conversion coefficients */ 462 tegra_plane_writel(plane, 0x00f0, DC_WIN_CSC_YOF); 463 tegra_plane_writel(plane, 0x012a, DC_WIN_CSC_KYRGB); 464 tegra_plane_writel(plane, 0x0000, DC_WIN_CSC_KUR); 465 tegra_plane_writel(plane, 0x0198, DC_WIN_CSC_KVR); 466 tegra_plane_writel(plane, 0x039b, DC_WIN_CSC_KUG); 467 tegra_plane_writel(plane, 0x032f, DC_WIN_CSC_KVG); 468 tegra_plane_writel(plane, 0x0204, DC_WIN_CSC_KUB); 469 tegra_plane_writel(plane, 0x0000, DC_WIN_CSC_KVB); 470 471 value |= CSC_ENABLE; 472 } else if (window->bits_per_pixel < 24) { 473 value |= COLOR_EXPAND; 474 } 475 476 if (window->reflect_x) 477 value |= H_DIRECTION; 478 479 if (window->reflect_y) 480 value |= V_DIRECTION; 481 482 if (tegra_plane_use_horizontal_filtering(plane, window)) { 483 /* 484 * Enable horizontal 6-tap filter and set filtering 485 * coefficients to the default values defined in TRM. 486 */ 487 tegra_plane_writel(plane, 0x00008000, DC_WIN_H_FILTER_P(0)); 488 tegra_plane_writel(plane, 0x3e087ce1, DC_WIN_H_FILTER_P(1)); 489 tegra_plane_writel(plane, 0x3b117ac1, DC_WIN_H_FILTER_P(2)); 490 tegra_plane_writel(plane, 0x591b73aa, DC_WIN_H_FILTER_P(3)); 491 tegra_plane_writel(plane, 0x57256d9a, DC_WIN_H_FILTER_P(4)); 492 tegra_plane_writel(plane, 0x552f668b, DC_WIN_H_FILTER_P(5)); 493 tegra_plane_writel(plane, 0x73385e8b, DC_WIN_H_FILTER_P(6)); 494 tegra_plane_writel(plane, 0x72435583, DC_WIN_H_FILTER_P(7)); 495 tegra_plane_writel(plane, 0x714c4c8b, DC_WIN_H_FILTER_P(8)); 496 tegra_plane_writel(plane, 0x70554393, DC_WIN_H_FILTER_P(9)); 497 tegra_plane_writel(plane, 0x715e389b, DC_WIN_H_FILTER_P(10)); 498 tegra_plane_writel(plane, 0x71662faa, DC_WIN_H_FILTER_P(11)); 499 tegra_plane_writel(plane, 0x536d25ba, DC_WIN_H_FILTER_P(12)); 500 tegra_plane_writel(plane, 0x55731bca, DC_WIN_H_FILTER_P(13)); 501 tegra_plane_writel(plane, 0x387a11d9, DC_WIN_H_FILTER_P(14)); 502 tegra_plane_writel(plane, 0x3c7c08f1, DC_WIN_H_FILTER_P(15)); 503 504 value |= H_FILTER; 505 } 506 507 if (tegra_plane_use_vertical_filtering(plane, window)) { 508 unsigned int i, k; 509 510 /* 511 * Enable vertical 2-tap filter and set filtering 512 * coefficients to the default values defined in TRM. 513 */ 514 for (i = 0, k = 128; i < 16; i++, k -= 8) 515 tegra_plane_writel(plane, k, DC_WIN_V_FILTER_P(i)); 516 517 value |= V_FILTER; 518 } 519 520 tegra_plane_writel(plane, value, DC_WIN_WIN_OPTIONS); 521 522 if (dc->soc->has_legacy_blending) 523 tegra_plane_setup_blending_legacy(plane); 524 else 525 tegra_plane_setup_blending(plane, window); 526 } 527 528 static const u32 tegra20_primary_formats[] = { 529 DRM_FORMAT_ARGB4444, 530 DRM_FORMAT_ARGB1555, 531 DRM_FORMAT_RGB565, 532 DRM_FORMAT_RGBA5551, 533 DRM_FORMAT_ABGR8888, 534 DRM_FORMAT_ARGB8888, 535 /* non-native formats */ 536 DRM_FORMAT_XRGB1555, 537 DRM_FORMAT_RGBX5551, 538 DRM_FORMAT_XBGR8888, 539 DRM_FORMAT_XRGB8888, 540 }; 541 542 static const u64 tegra20_modifiers[] = { 543 DRM_FORMAT_MOD_LINEAR, 544 DRM_FORMAT_MOD_NVIDIA_TEGRA_TILED, 545 DRM_FORMAT_MOD_INVALID 546 }; 547 548 static const u32 tegra114_primary_formats[] = { 549 DRM_FORMAT_ARGB4444, 550 DRM_FORMAT_ARGB1555, 551 DRM_FORMAT_RGB565, 552 DRM_FORMAT_RGBA5551, 553 DRM_FORMAT_ABGR8888, 554 DRM_FORMAT_ARGB8888, 555 /* new on Tegra114 */ 556 DRM_FORMAT_ABGR4444, 557 DRM_FORMAT_ABGR1555, 558 DRM_FORMAT_BGRA5551, 559 DRM_FORMAT_XRGB1555, 560 DRM_FORMAT_RGBX5551, 561 DRM_FORMAT_XBGR1555, 562 DRM_FORMAT_BGRX5551, 563 DRM_FORMAT_BGR565, 564 DRM_FORMAT_BGRA8888, 565 DRM_FORMAT_RGBA8888, 566 DRM_FORMAT_XRGB8888, 567 DRM_FORMAT_XBGR8888, 568 }; 569 570 static const u32 tegra124_primary_formats[] = { 571 DRM_FORMAT_ARGB4444, 572 DRM_FORMAT_ARGB1555, 573 DRM_FORMAT_RGB565, 574 DRM_FORMAT_RGBA5551, 575 DRM_FORMAT_ABGR8888, 576 DRM_FORMAT_ARGB8888, 577 /* new on Tegra114 */ 578 DRM_FORMAT_ABGR4444, 579 DRM_FORMAT_ABGR1555, 580 DRM_FORMAT_BGRA5551, 581 DRM_FORMAT_XRGB1555, 582 DRM_FORMAT_RGBX5551, 583 DRM_FORMAT_XBGR1555, 584 DRM_FORMAT_BGRX5551, 585 DRM_FORMAT_BGR565, 586 DRM_FORMAT_BGRA8888, 587 DRM_FORMAT_RGBA8888, 588 DRM_FORMAT_XRGB8888, 589 DRM_FORMAT_XBGR8888, 590 /* new on Tegra124 */ 591 DRM_FORMAT_RGBX8888, 592 DRM_FORMAT_BGRX8888, 593 }; 594 595 static const u64 tegra124_modifiers[] = { 596 DRM_FORMAT_MOD_LINEAR, 597 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(0), 598 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(1), 599 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(2), 600 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(3), 601 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(4), 602 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(5), 603 DRM_FORMAT_MOD_INVALID 604 }; 605 606 static int tegra_plane_atomic_check(struct drm_plane *plane, 607 struct drm_plane_state *state) 608 { 609 struct tegra_plane_state *plane_state = to_tegra_plane_state(state); 610 unsigned int supported_rotation = DRM_MODE_ROTATE_0 | 611 DRM_MODE_REFLECT_X | 612 DRM_MODE_REFLECT_Y; 613 unsigned int rotation = state->rotation; 614 struct tegra_bo_tiling *tiling = &plane_state->tiling; 615 struct tegra_plane *tegra = to_tegra_plane(plane); 616 struct tegra_dc *dc = to_tegra_dc(state->crtc); 617 int err; 618 619 /* no need for further checks if the plane is being disabled */ 620 if (!state->crtc) 621 return 0; 622 623 err = tegra_plane_format(state->fb->format->format, 624 &plane_state->format, 625 &plane_state->swap); 626 if (err < 0) 627 return err; 628 629 /* 630 * Tegra20 and Tegra30 are special cases here because they support 631 * only variants of specific formats with an alpha component, but not 632 * the corresponding opaque formats. However, the opaque formats can 633 * be emulated by disabling alpha blending for the plane. 634 */ 635 if (dc->soc->has_legacy_blending) { 636 err = tegra_plane_setup_legacy_state(tegra, plane_state); 637 if (err < 0) 638 return err; 639 } 640 641 err = tegra_fb_get_tiling(state->fb, tiling); 642 if (err < 0) 643 return err; 644 645 if (tiling->mode == TEGRA_BO_TILING_MODE_BLOCK && 646 !dc->soc->supports_block_linear) { 647 DRM_ERROR("hardware doesn't support block linear mode\n"); 648 return -EINVAL; 649 } 650 651 /* 652 * Older userspace used custom BO flag in order to specify the Y 653 * reflection, while modern userspace uses the generic DRM rotation 654 * property in order to achieve the same result. The legacy BO flag 655 * duplicates the DRM rotation property when both are set. 656 */ 657 if (tegra_fb_is_bottom_up(state->fb)) 658 rotation |= DRM_MODE_REFLECT_Y; 659 660 rotation = drm_rotation_simplify(rotation, supported_rotation); 661 662 if (rotation & DRM_MODE_REFLECT_X) 663 plane_state->reflect_x = true; 664 else 665 plane_state->reflect_x = false; 666 667 if (rotation & DRM_MODE_REFLECT_Y) 668 plane_state->reflect_y = true; 669 else 670 plane_state->reflect_y = false; 671 672 /* 673 * Tegra doesn't support different strides for U and V planes so we 674 * error out if the user tries to display a framebuffer with such a 675 * configuration. 676 */ 677 if (state->fb->format->num_planes > 2) { 678 if (state->fb->pitches[2] != state->fb->pitches[1]) { 679 DRM_ERROR("unsupported UV-plane configuration\n"); 680 return -EINVAL; 681 } 682 } 683 684 err = tegra_plane_state_add(tegra, state); 685 if (err < 0) 686 return err; 687 688 return 0; 689 } 690 691 static void tegra_plane_atomic_disable(struct drm_plane *plane, 692 struct drm_plane_state *old_state) 693 { 694 struct tegra_plane *p = to_tegra_plane(plane); 695 u32 value; 696 697 /* rien ne va plus */ 698 if (!old_state || !old_state->crtc) 699 return; 700 701 value = tegra_plane_readl(p, DC_WIN_WIN_OPTIONS); 702 value &= ~WIN_ENABLE; 703 tegra_plane_writel(p, value, DC_WIN_WIN_OPTIONS); 704 } 705 706 static void tegra_plane_atomic_update(struct drm_plane *plane, 707 struct drm_plane_state *old_state) 708 { 709 struct tegra_plane_state *state = to_tegra_plane_state(plane->state); 710 struct drm_framebuffer *fb = plane->state->fb; 711 struct tegra_plane *p = to_tegra_plane(plane); 712 struct tegra_dc_window window; 713 unsigned int i; 714 715 /* rien ne va plus */ 716 if (!plane->state->crtc || !plane->state->fb) 717 return; 718 719 if (!plane->state->visible) 720 return tegra_plane_atomic_disable(plane, old_state); 721 722 memset(&window, 0, sizeof(window)); 723 window.src.x = plane->state->src.x1 >> 16; 724 window.src.y = plane->state->src.y1 >> 16; 725 window.src.w = drm_rect_width(&plane->state->src) >> 16; 726 window.src.h = drm_rect_height(&plane->state->src) >> 16; 727 window.dst.x = plane->state->dst.x1; 728 window.dst.y = plane->state->dst.y1; 729 window.dst.w = drm_rect_width(&plane->state->dst); 730 window.dst.h = drm_rect_height(&plane->state->dst); 731 window.bits_per_pixel = fb->format->cpp[0] * 8; 732 window.reflect_x = state->reflect_x; 733 window.reflect_y = state->reflect_y; 734 735 /* copy from state */ 736 window.zpos = plane->state->normalized_zpos; 737 window.tiling = state->tiling; 738 window.format = state->format; 739 window.swap = state->swap; 740 741 for (i = 0; i < fb->format->num_planes; i++) { 742 window.base[i] = state->iova[i] + fb->offsets[i]; 743 744 /* 745 * Tegra uses a shared stride for UV planes. Framebuffers are 746 * already checked for this in the tegra_plane_atomic_check() 747 * function, so it's safe to ignore the V-plane pitch here. 748 */ 749 if (i < 2) 750 window.stride[i] = fb->pitches[i]; 751 } 752 753 tegra_dc_setup_window(p, &window); 754 } 755 756 static const struct drm_plane_helper_funcs tegra_plane_helper_funcs = { 757 .prepare_fb = tegra_plane_prepare_fb, 758 .cleanup_fb = tegra_plane_cleanup_fb, 759 .atomic_check = tegra_plane_atomic_check, 760 .atomic_disable = tegra_plane_atomic_disable, 761 .atomic_update = tegra_plane_atomic_update, 762 }; 763 764 static unsigned long tegra_plane_get_possible_crtcs(struct drm_device *drm) 765 { 766 /* 767 * Ideally this would use drm_crtc_mask(), but that would require the 768 * CRTC to already be in the mode_config's list of CRTCs. However, it 769 * will only be added to that list in the drm_crtc_init_with_planes() 770 * (in tegra_dc_init()), which in turn requires registration of these 771 * planes. So we have ourselves a nice little chicken and egg problem 772 * here. 773 * 774 * We work around this by manually creating the mask from the number 775 * of CRTCs that have been registered, and should therefore always be 776 * the same as drm_crtc_index() after registration. 777 */ 778 return 1 << drm->mode_config.num_crtc; 779 } 780 781 static struct drm_plane *tegra_primary_plane_create(struct drm_device *drm, 782 struct tegra_dc *dc) 783 { 784 unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm); 785 enum drm_plane_type type = DRM_PLANE_TYPE_PRIMARY; 786 struct tegra_plane *plane; 787 unsigned int num_formats; 788 const u64 *modifiers; 789 const u32 *formats; 790 int err; 791 792 plane = kzalloc(sizeof(*plane), GFP_KERNEL); 793 if (!plane) 794 return ERR_PTR(-ENOMEM); 795 796 /* Always use window A as primary window */ 797 plane->offset = 0xa00; 798 plane->index = 0; 799 plane->dc = dc; 800 801 num_formats = dc->soc->num_primary_formats; 802 formats = dc->soc->primary_formats; 803 modifiers = dc->soc->modifiers; 804 805 err = drm_universal_plane_init(drm, &plane->base, possible_crtcs, 806 &tegra_plane_funcs, formats, 807 num_formats, modifiers, type, NULL); 808 if (err < 0) { 809 kfree(plane); 810 return ERR_PTR(err); 811 } 812 813 drm_plane_helper_add(&plane->base, &tegra_plane_helper_funcs); 814 drm_plane_create_zpos_property(&plane->base, plane->index, 0, 255); 815 816 err = drm_plane_create_rotation_property(&plane->base, 817 DRM_MODE_ROTATE_0, 818 DRM_MODE_ROTATE_0 | 819 DRM_MODE_ROTATE_180 | 820 DRM_MODE_REFLECT_X | 821 DRM_MODE_REFLECT_Y); 822 if (err < 0) 823 dev_err(dc->dev, "failed to create rotation property: %d\n", 824 err); 825 826 return &plane->base; 827 } 828 829 static const u32 tegra_cursor_plane_formats[] = { 830 DRM_FORMAT_RGBA8888, 831 }; 832 833 static int tegra_cursor_atomic_check(struct drm_plane *plane, 834 struct drm_plane_state *state) 835 { 836 struct tegra_plane *tegra = to_tegra_plane(plane); 837 int err; 838 839 /* no need for further checks if the plane is being disabled */ 840 if (!state->crtc) 841 return 0; 842 843 /* scaling not supported for cursor */ 844 if ((state->src_w >> 16 != state->crtc_w) || 845 (state->src_h >> 16 != state->crtc_h)) 846 return -EINVAL; 847 848 /* only square cursors supported */ 849 if (state->src_w != state->src_h) 850 return -EINVAL; 851 852 if (state->crtc_w != 32 && state->crtc_w != 64 && 853 state->crtc_w != 128 && state->crtc_w != 256) 854 return -EINVAL; 855 856 err = tegra_plane_state_add(tegra, state); 857 if (err < 0) 858 return err; 859 860 return 0; 861 } 862 863 static void tegra_cursor_atomic_update(struct drm_plane *plane, 864 struct drm_plane_state *old_state) 865 { 866 struct tegra_plane_state *state = to_tegra_plane_state(plane->state); 867 struct tegra_dc *dc = to_tegra_dc(plane->state->crtc); 868 u32 value = CURSOR_CLIP_DISPLAY; 869 870 /* rien ne va plus */ 871 if (!plane->state->crtc || !plane->state->fb) 872 return; 873 874 switch (plane->state->crtc_w) { 875 case 32: 876 value |= CURSOR_SIZE_32x32; 877 break; 878 879 case 64: 880 value |= CURSOR_SIZE_64x64; 881 break; 882 883 case 128: 884 value |= CURSOR_SIZE_128x128; 885 break; 886 887 case 256: 888 value |= CURSOR_SIZE_256x256; 889 break; 890 891 default: 892 WARN(1, "cursor size %ux%u not supported\n", 893 plane->state->crtc_w, plane->state->crtc_h); 894 return; 895 } 896 897 value |= (state->iova[0] >> 10) & 0x3fffff; 898 tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR); 899 900 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT 901 value = (state->iova[0] >> 32) & 0x3; 902 tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR_HI); 903 #endif 904 905 /* enable cursor and set blend mode */ 906 value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS); 907 value |= CURSOR_ENABLE; 908 tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS); 909 910 value = tegra_dc_readl(dc, DC_DISP_BLEND_CURSOR_CONTROL); 911 value &= ~CURSOR_DST_BLEND_MASK; 912 value &= ~CURSOR_SRC_BLEND_MASK; 913 value |= CURSOR_MODE_NORMAL; 914 value |= CURSOR_DST_BLEND_NEG_K1_TIMES_SRC; 915 value |= CURSOR_SRC_BLEND_K1_TIMES_SRC; 916 value |= CURSOR_ALPHA; 917 tegra_dc_writel(dc, value, DC_DISP_BLEND_CURSOR_CONTROL); 918 919 /* position the cursor */ 920 value = (plane->state->crtc_y & 0x3fff) << 16 | 921 (plane->state->crtc_x & 0x3fff); 922 tegra_dc_writel(dc, value, DC_DISP_CURSOR_POSITION); 923 } 924 925 static void tegra_cursor_atomic_disable(struct drm_plane *plane, 926 struct drm_plane_state *old_state) 927 { 928 struct tegra_dc *dc; 929 u32 value; 930 931 /* rien ne va plus */ 932 if (!old_state || !old_state->crtc) 933 return; 934 935 dc = to_tegra_dc(old_state->crtc); 936 937 value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS); 938 value &= ~CURSOR_ENABLE; 939 tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS); 940 } 941 942 static const struct drm_plane_helper_funcs tegra_cursor_plane_helper_funcs = { 943 .prepare_fb = tegra_plane_prepare_fb, 944 .cleanup_fb = tegra_plane_cleanup_fb, 945 .atomic_check = tegra_cursor_atomic_check, 946 .atomic_update = tegra_cursor_atomic_update, 947 .atomic_disable = tegra_cursor_atomic_disable, 948 }; 949 950 static struct drm_plane *tegra_dc_cursor_plane_create(struct drm_device *drm, 951 struct tegra_dc *dc) 952 { 953 unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm); 954 struct tegra_plane *plane; 955 unsigned int num_formats; 956 const u32 *formats; 957 int err; 958 959 plane = kzalloc(sizeof(*plane), GFP_KERNEL); 960 if (!plane) 961 return ERR_PTR(-ENOMEM); 962 963 /* 964 * This index is kind of fake. The cursor isn't a regular plane, but 965 * its update and activation request bits in DC_CMD_STATE_CONTROL do 966 * use the same programming. Setting this fake index here allows the 967 * code in tegra_add_plane_state() to do the right thing without the 968 * need to special-casing the cursor plane. 969 */ 970 plane->index = 6; 971 plane->dc = dc; 972 973 num_formats = ARRAY_SIZE(tegra_cursor_plane_formats); 974 formats = tegra_cursor_plane_formats; 975 976 err = drm_universal_plane_init(drm, &plane->base, possible_crtcs, 977 &tegra_plane_funcs, formats, 978 num_formats, NULL, 979 DRM_PLANE_TYPE_CURSOR, NULL); 980 if (err < 0) { 981 kfree(plane); 982 return ERR_PTR(err); 983 } 984 985 drm_plane_helper_add(&plane->base, &tegra_cursor_plane_helper_funcs); 986 drm_plane_create_zpos_immutable_property(&plane->base, 255); 987 988 return &plane->base; 989 } 990 991 static const u32 tegra20_overlay_formats[] = { 992 DRM_FORMAT_ARGB4444, 993 DRM_FORMAT_ARGB1555, 994 DRM_FORMAT_RGB565, 995 DRM_FORMAT_RGBA5551, 996 DRM_FORMAT_ABGR8888, 997 DRM_FORMAT_ARGB8888, 998 /* non-native formats */ 999 DRM_FORMAT_XRGB1555, 1000 DRM_FORMAT_RGBX5551, 1001 DRM_FORMAT_XBGR8888, 1002 DRM_FORMAT_XRGB8888, 1003 /* planar formats */ 1004 DRM_FORMAT_UYVY, 1005 DRM_FORMAT_YUYV, 1006 DRM_FORMAT_YUV420, 1007 DRM_FORMAT_YUV422, 1008 }; 1009 1010 static const u32 tegra114_overlay_formats[] = { 1011 DRM_FORMAT_ARGB4444, 1012 DRM_FORMAT_ARGB1555, 1013 DRM_FORMAT_RGB565, 1014 DRM_FORMAT_RGBA5551, 1015 DRM_FORMAT_ABGR8888, 1016 DRM_FORMAT_ARGB8888, 1017 /* new on Tegra114 */ 1018 DRM_FORMAT_ABGR4444, 1019 DRM_FORMAT_ABGR1555, 1020 DRM_FORMAT_BGRA5551, 1021 DRM_FORMAT_XRGB1555, 1022 DRM_FORMAT_RGBX5551, 1023 DRM_FORMAT_XBGR1555, 1024 DRM_FORMAT_BGRX5551, 1025 DRM_FORMAT_BGR565, 1026 DRM_FORMAT_BGRA8888, 1027 DRM_FORMAT_RGBA8888, 1028 DRM_FORMAT_XRGB8888, 1029 DRM_FORMAT_XBGR8888, 1030 /* planar formats */ 1031 DRM_FORMAT_UYVY, 1032 DRM_FORMAT_YUYV, 1033 DRM_FORMAT_YUV420, 1034 DRM_FORMAT_YUV422, 1035 }; 1036 1037 static const u32 tegra124_overlay_formats[] = { 1038 DRM_FORMAT_ARGB4444, 1039 DRM_FORMAT_ARGB1555, 1040 DRM_FORMAT_RGB565, 1041 DRM_FORMAT_RGBA5551, 1042 DRM_FORMAT_ABGR8888, 1043 DRM_FORMAT_ARGB8888, 1044 /* new on Tegra114 */ 1045 DRM_FORMAT_ABGR4444, 1046 DRM_FORMAT_ABGR1555, 1047 DRM_FORMAT_BGRA5551, 1048 DRM_FORMAT_XRGB1555, 1049 DRM_FORMAT_RGBX5551, 1050 DRM_FORMAT_XBGR1555, 1051 DRM_FORMAT_BGRX5551, 1052 DRM_FORMAT_BGR565, 1053 DRM_FORMAT_BGRA8888, 1054 DRM_FORMAT_RGBA8888, 1055 DRM_FORMAT_XRGB8888, 1056 DRM_FORMAT_XBGR8888, 1057 /* new on Tegra124 */ 1058 DRM_FORMAT_RGBX8888, 1059 DRM_FORMAT_BGRX8888, 1060 /* planar formats */ 1061 DRM_FORMAT_UYVY, 1062 DRM_FORMAT_YUYV, 1063 DRM_FORMAT_YUV420, 1064 DRM_FORMAT_YUV422, 1065 }; 1066 1067 static struct drm_plane *tegra_dc_overlay_plane_create(struct drm_device *drm, 1068 struct tegra_dc *dc, 1069 unsigned int index, 1070 bool cursor) 1071 { 1072 unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm); 1073 struct tegra_plane *plane; 1074 unsigned int num_formats; 1075 enum drm_plane_type type; 1076 const u32 *formats; 1077 int err; 1078 1079 plane = kzalloc(sizeof(*plane), GFP_KERNEL); 1080 if (!plane) 1081 return ERR_PTR(-ENOMEM); 1082 1083 plane->offset = 0xa00 + 0x200 * index; 1084 plane->index = index; 1085 plane->dc = dc; 1086 1087 num_formats = dc->soc->num_overlay_formats; 1088 formats = dc->soc->overlay_formats; 1089 1090 if (!cursor) 1091 type = DRM_PLANE_TYPE_OVERLAY; 1092 else 1093 type = DRM_PLANE_TYPE_CURSOR; 1094 1095 err = drm_universal_plane_init(drm, &plane->base, possible_crtcs, 1096 &tegra_plane_funcs, formats, 1097 num_formats, NULL, type, NULL); 1098 if (err < 0) { 1099 kfree(plane); 1100 return ERR_PTR(err); 1101 } 1102 1103 drm_plane_helper_add(&plane->base, &tegra_plane_helper_funcs); 1104 drm_plane_create_zpos_property(&plane->base, plane->index, 0, 255); 1105 1106 err = drm_plane_create_rotation_property(&plane->base, 1107 DRM_MODE_ROTATE_0, 1108 DRM_MODE_ROTATE_0 | 1109 DRM_MODE_ROTATE_180 | 1110 DRM_MODE_REFLECT_X | 1111 DRM_MODE_REFLECT_Y); 1112 if (err < 0) 1113 dev_err(dc->dev, "failed to create rotation property: %d\n", 1114 err); 1115 1116 return &plane->base; 1117 } 1118 1119 static struct drm_plane *tegra_dc_add_shared_planes(struct drm_device *drm, 1120 struct tegra_dc *dc) 1121 { 1122 struct drm_plane *plane, *primary = NULL; 1123 unsigned int i, j; 1124 1125 for (i = 0; i < dc->soc->num_wgrps; i++) { 1126 const struct tegra_windowgroup_soc *wgrp = &dc->soc->wgrps[i]; 1127 1128 if (wgrp->dc == dc->pipe) { 1129 for (j = 0; j < wgrp->num_windows; j++) { 1130 unsigned int index = wgrp->windows[j]; 1131 1132 plane = tegra_shared_plane_create(drm, dc, 1133 wgrp->index, 1134 index); 1135 if (IS_ERR(plane)) 1136 return plane; 1137 1138 /* 1139 * Choose the first shared plane owned by this 1140 * head as the primary plane. 1141 */ 1142 if (!primary) { 1143 plane->type = DRM_PLANE_TYPE_PRIMARY; 1144 primary = plane; 1145 } 1146 } 1147 } 1148 } 1149 1150 return primary; 1151 } 1152 1153 static struct drm_plane *tegra_dc_add_planes(struct drm_device *drm, 1154 struct tegra_dc *dc) 1155 { 1156 struct drm_plane *planes[2], *primary; 1157 unsigned int planes_num; 1158 unsigned int i; 1159 int err; 1160 1161 primary = tegra_primary_plane_create(drm, dc); 1162 if (IS_ERR(primary)) 1163 return primary; 1164 1165 if (dc->soc->supports_cursor) 1166 planes_num = 2; 1167 else 1168 planes_num = 1; 1169 1170 for (i = 0; i < planes_num; i++) { 1171 planes[i] = tegra_dc_overlay_plane_create(drm, dc, 1 + i, 1172 false); 1173 if (IS_ERR(planes[i])) { 1174 err = PTR_ERR(planes[i]); 1175 1176 while (i--) 1177 tegra_plane_funcs.destroy(planes[i]); 1178 1179 tegra_plane_funcs.destroy(primary); 1180 return ERR_PTR(err); 1181 } 1182 } 1183 1184 return primary; 1185 } 1186 1187 static void tegra_dc_destroy(struct drm_crtc *crtc) 1188 { 1189 drm_crtc_cleanup(crtc); 1190 } 1191 1192 static void tegra_crtc_reset(struct drm_crtc *crtc) 1193 { 1194 struct tegra_dc_state *state = kzalloc(sizeof(*state), GFP_KERNEL); 1195 1196 if (crtc->state) 1197 tegra_crtc_atomic_destroy_state(crtc, crtc->state); 1198 1199 __drm_atomic_helper_crtc_reset(crtc, &state->base); 1200 } 1201 1202 static struct drm_crtc_state * 1203 tegra_crtc_atomic_duplicate_state(struct drm_crtc *crtc) 1204 { 1205 struct tegra_dc_state *state = to_dc_state(crtc->state); 1206 struct tegra_dc_state *copy; 1207 1208 copy = kmalloc(sizeof(*copy), GFP_KERNEL); 1209 if (!copy) 1210 return NULL; 1211 1212 __drm_atomic_helper_crtc_duplicate_state(crtc, ©->base); 1213 copy->clk = state->clk; 1214 copy->pclk = state->pclk; 1215 copy->div = state->div; 1216 copy->planes = state->planes; 1217 1218 return ©->base; 1219 } 1220 1221 static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc, 1222 struct drm_crtc_state *state) 1223 { 1224 __drm_atomic_helper_crtc_destroy_state(state); 1225 kfree(state); 1226 } 1227 1228 #define DEBUGFS_REG32(_name) { .name = #_name, .offset = _name } 1229 1230 static const struct debugfs_reg32 tegra_dc_regs[] = { 1231 DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT), 1232 DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT_CNTRL), 1233 DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT_ERROR), 1234 DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT), 1235 DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT_CNTRL), 1236 DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT_ERROR), 1237 DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT), 1238 DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT_CNTRL), 1239 DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT_ERROR), 1240 DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT), 1241 DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT_CNTRL), 1242 DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT_ERROR), 1243 DEBUGFS_REG32(DC_CMD_CONT_SYNCPT_VSYNC), 1244 DEBUGFS_REG32(DC_CMD_DISPLAY_COMMAND_OPTION0), 1245 DEBUGFS_REG32(DC_CMD_DISPLAY_COMMAND), 1246 DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE), 1247 DEBUGFS_REG32(DC_CMD_DISPLAY_POWER_CONTROL), 1248 DEBUGFS_REG32(DC_CMD_INT_STATUS), 1249 DEBUGFS_REG32(DC_CMD_INT_MASK), 1250 DEBUGFS_REG32(DC_CMD_INT_ENABLE), 1251 DEBUGFS_REG32(DC_CMD_INT_TYPE), 1252 DEBUGFS_REG32(DC_CMD_INT_POLARITY), 1253 DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE1), 1254 DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE2), 1255 DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE3), 1256 DEBUGFS_REG32(DC_CMD_STATE_ACCESS), 1257 DEBUGFS_REG32(DC_CMD_STATE_CONTROL), 1258 DEBUGFS_REG32(DC_CMD_DISPLAY_WINDOW_HEADER), 1259 DEBUGFS_REG32(DC_CMD_REG_ACT_CONTROL), 1260 DEBUGFS_REG32(DC_COM_CRC_CONTROL), 1261 DEBUGFS_REG32(DC_COM_CRC_CHECKSUM), 1262 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(0)), 1263 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(1)), 1264 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(2)), 1265 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(3)), 1266 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(0)), 1267 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(1)), 1268 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(2)), 1269 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(3)), 1270 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(0)), 1271 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(1)), 1272 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(2)), 1273 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(3)), 1274 DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(0)), 1275 DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(1)), 1276 DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(2)), 1277 DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(3)), 1278 DEBUGFS_REG32(DC_COM_PIN_INPUT_DATA(0)), 1279 DEBUGFS_REG32(DC_COM_PIN_INPUT_DATA(1)), 1280 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(0)), 1281 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(1)), 1282 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(2)), 1283 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(3)), 1284 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(4)), 1285 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(5)), 1286 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(6)), 1287 DEBUGFS_REG32(DC_COM_PIN_MISC_CONTROL), 1288 DEBUGFS_REG32(DC_COM_PIN_PM0_CONTROL), 1289 DEBUGFS_REG32(DC_COM_PIN_PM0_DUTY_CYCLE), 1290 DEBUGFS_REG32(DC_COM_PIN_PM1_CONTROL), 1291 DEBUGFS_REG32(DC_COM_PIN_PM1_DUTY_CYCLE), 1292 DEBUGFS_REG32(DC_COM_SPI_CONTROL), 1293 DEBUGFS_REG32(DC_COM_SPI_START_BYTE), 1294 DEBUGFS_REG32(DC_COM_HSPI_WRITE_DATA_AB), 1295 DEBUGFS_REG32(DC_COM_HSPI_WRITE_DATA_CD), 1296 DEBUGFS_REG32(DC_COM_HSPI_CS_DC), 1297 DEBUGFS_REG32(DC_COM_SCRATCH_REGISTER_A), 1298 DEBUGFS_REG32(DC_COM_SCRATCH_REGISTER_B), 1299 DEBUGFS_REG32(DC_COM_GPIO_CTRL), 1300 DEBUGFS_REG32(DC_COM_GPIO_DEBOUNCE_COUNTER), 1301 DEBUGFS_REG32(DC_COM_CRC_CHECKSUM_LATCHED), 1302 DEBUGFS_REG32(DC_DISP_DISP_SIGNAL_OPTIONS0), 1303 DEBUGFS_REG32(DC_DISP_DISP_SIGNAL_OPTIONS1), 1304 DEBUGFS_REG32(DC_DISP_DISP_WIN_OPTIONS), 1305 DEBUGFS_REG32(DC_DISP_DISP_MEM_HIGH_PRIORITY), 1306 DEBUGFS_REG32(DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER), 1307 DEBUGFS_REG32(DC_DISP_DISP_TIMING_OPTIONS), 1308 DEBUGFS_REG32(DC_DISP_REF_TO_SYNC), 1309 DEBUGFS_REG32(DC_DISP_SYNC_WIDTH), 1310 DEBUGFS_REG32(DC_DISP_BACK_PORCH), 1311 DEBUGFS_REG32(DC_DISP_ACTIVE), 1312 DEBUGFS_REG32(DC_DISP_FRONT_PORCH), 1313 DEBUGFS_REG32(DC_DISP_H_PULSE0_CONTROL), 1314 DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_A), 1315 DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_B), 1316 DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_C), 1317 DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_D), 1318 DEBUGFS_REG32(DC_DISP_H_PULSE1_CONTROL), 1319 DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_A), 1320 DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_B), 1321 DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_C), 1322 DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_D), 1323 DEBUGFS_REG32(DC_DISP_H_PULSE2_CONTROL), 1324 DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_A), 1325 DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_B), 1326 DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_C), 1327 DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_D), 1328 DEBUGFS_REG32(DC_DISP_V_PULSE0_CONTROL), 1329 DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_A), 1330 DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_B), 1331 DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_C), 1332 DEBUGFS_REG32(DC_DISP_V_PULSE1_CONTROL), 1333 DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_A), 1334 DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_B), 1335 DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_C), 1336 DEBUGFS_REG32(DC_DISP_V_PULSE2_CONTROL), 1337 DEBUGFS_REG32(DC_DISP_V_PULSE2_POSITION_A), 1338 DEBUGFS_REG32(DC_DISP_V_PULSE3_CONTROL), 1339 DEBUGFS_REG32(DC_DISP_V_PULSE3_POSITION_A), 1340 DEBUGFS_REG32(DC_DISP_M0_CONTROL), 1341 DEBUGFS_REG32(DC_DISP_M1_CONTROL), 1342 DEBUGFS_REG32(DC_DISP_DI_CONTROL), 1343 DEBUGFS_REG32(DC_DISP_PP_CONTROL), 1344 DEBUGFS_REG32(DC_DISP_PP_SELECT_A), 1345 DEBUGFS_REG32(DC_DISP_PP_SELECT_B), 1346 DEBUGFS_REG32(DC_DISP_PP_SELECT_C), 1347 DEBUGFS_REG32(DC_DISP_PP_SELECT_D), 1348 DEBUGFS_REG32(DC_DISP_DISP_CLOCK_CONTROL), 1349 DEBUGFS_REG32(DC_DISP_DISP_INTERFACE_CONTROL), 1350 DEBUGFS_REG32(DC_DISP_DISP_COLOR_CONTROL), 1351 DEBUGFS_REG32(DC_DISP_SHIFT_CLOCK_OPTIONS), 1352 DEBUGFS_REG32(DC_DISP_DATA_ENABLE_OPTIONS), 1353 DEBUGFS_REG32(DC_DISP_SERIAL_INTERFACE_OPTIONS), 1354 DEBUGFS_REG32(DC_DISP_LCD_SPI_OPTIONS), 1355 DEBUGFS_REG32(DC_DISP_BORDER_COLOR), 1356 DEBUGFS_REG32(DC_DISP_COLOR_KEY0_LOWER), 1357 DEBUGFS_REG32(DC_DISP_COLOR_KEY0_UPPER), 1358 DEBUGFS_REG32(DC_DISP_COLOR_KEY1_LOWER), 1359 DEBUGFS_REG32(DC_DISP_COLOR_KEY1_UPPER), 1360 DEBUGFS_REG32(DC_DISP_CURSOR_FOREGROUND), 1361 DEBUGFS_REG32(DC_DISP_CURSOR_BACKGROUND), 1362 DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR), 1363 DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR_NS), 1364 DEBUGFS_REG32(DC_DISP_CURSOR_POSITION), 1365 DEBUGFS_REG32(DC_DISP_CURSOR_POSITION_NS), 1366 DEBUGFS_REG32(DC_DISP_INIT_SEQ_CONTROL), 1367 DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_A), 1368 DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_B), 1369 DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_C), 1370 DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_D), 1371 DEBUGFS_REG32(DC_DISP_DC_MCCIF_FIFOCTRL), 1372 DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY0A_HYST), 1373 DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY0B_HYST), 1374 DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY1A_HYST), 1375 DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY1B_HYST), 1376 DEBUGFS_REG32(DC_DISP_DAC_CRT_CTRL), 1377 DEBUGFS_REG32(DC_DISP_DISP_MISC_CONTROL), 1378 DEBUGFS_REG32(DC_DISP_SD_CONTROL), 1379 DEBUGFS_REG32(DC_DISP_SD_CSC_COEFF), 1380 DEBUGFS_REG32(DC_DISP_SD_LUT(0)), 1381 DEBUGFS_REG32(DC_DISP_SD_LUT(1)), 1382 DEBUGFS_REG32(DC_DISP_SD_LUT(2)), 1383 DEBUGFS_REG32(DC_DISP_SD_LUT(3)), 1384 DEBUGFS_REG32(DC_DISP_SD_LUT(4)), 1385 DEBUGFS_REG32(DC_DISP_SD_LUT(5)), 1386 DEBUGFS_REG32(DC_DISP_SD_LUT(6)), 1387 DEBUGFS_REG32(DC_DISP_SD_LUT(7)), 1388 DEBUGFS_REG32(DC_DISP_SD_LUT(8)), 1389 DEBUGFS_REG32(DC_DISP_SD_FLICKER_CONTROL), 1390 DEBUGFS_REG32(DC_DISP_DC_PIXEL_COUNT), 1391 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(0)), 1392 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(1)), 1393 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(2)), 1394 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(3)), 1395 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(4)), 1396 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(5)), 1397 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(6)), 1398 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(7)), 1399 DEBUGFS_REG32(DC_DISP_SD_BL_TF(0)), 1400 DEBUGFS_REG32(DC_DISP_SD_BL_TF(1)), 1401 DEBUGFS_REG32(DC_DISP_SD_BL_TF(2)), 1402 DEBUGFS_REG32(DC_DISP_SD_BL_TF(3)), 1403 DEBUGFS_REG32(DC_DISP_SD_BL_CONTROL), 1404 DEBUGFS_REG32(DC_DISP_SD_HW_K_VALUES), 1405 DEBUGFS_REG32(DC_DISP_SD_MAN_K_VALUES), 1406 DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR_HI), 1407 DEBUGFS_REG32(DC_DISP_BLEND_CURSOR_CONTROL), 1408 DEBUGFS_REG32(DC_WIN_WIN_OPTIONS), 1409 DEBUGFS_REG32(DC_WIN_BYTE_SWAP), 1410 DEBUGFS_REG32(DC_WIN_BUFFER_CONTROL), 1411 DEBUGFS_REG32(DC_WIN_COLOR_DEPTH), 1412 DEBUGFS_REG32(DC_WIN_POSITION), 1413 DEBUGFS_REG32(DC_WIN_SIZE), 1414 DEBUGFS_REG32(DC_WIN_PRESCALED_SIZE), 1415 DEBUGFS_REG32(DC_WIN_H_INITIAL_DDA), 1416 DEBUGFS_REG32(DC_WIN_V_INITIAL_DDA), 1417 DEBUGFS_REG32(DC_WIN_DDA_INC), 1418 DEBUGFS_REG32(DC_WIN_LINE_STRIDE), 1419 DEBUGFS_REG32(DC_WIN_BUF_STRIDE), 1420 DEBUGFS_REG32(DC_WIN_UV_BUF_STRIDE), 1421 DEBUGFS_REG32(DC_WIN_BUFFER_ADDR_MODE), 1422 DEBUGFS_REG32(DC_WIN_DV_CONTROL), 1423 DEBUGFS_REG32(DC_WIN_BLEND_NOKEY), 1424 DEBUGFS_REG32(DC_WIN_BLEND_1WIN), 1425 DEBUGFS_REG32(DC_WIN_BLEND_2WIN_X), 1426 DEBUGFS_REG32(DC_WIN_BLEND_2WIN_Y), 1427 DEBUGFS_REG32(DC_WIN_BLEND_3WIN_XY), 1428 DEBUGFS_REG32(DC_WIN_HP_FETCH_CONTROL), 1429 DEBUGFS_REG32(DC_WINBUF_START_ADDR), 1430 DEBUGFS_REG32(DC_WINBUF_START_ADDR_NS), 1431 DEBUGFS_REG32(DC_WINBUF_START_ADDR_U), 1432 DEBUGFS_REG32(DC_WINBUF_START_ADDR_U_NS), 1433 DEBUGFS_REG32(DC_WINBUF_START_ADDR_V), 1434 DEBUGFS_REG32(DC_WINBUF_START_ADDR_V_NS), 1435 DEBUGFS_REG32(DC_WINBUF_ADDR_H_OFFSET), 1436 DEBUGFS_REG32(DC_WINBUF_ADDR_H_OFFSET_NS), 1437 DEBUGFS_REG32(DC_WINBUF_ADDR_V_OFFSET), 1438 DEBUGFS_REG32(DC_WINBUF_ADDR_V_OFFSET_NS), 1439 DEBUGFS_REG32(DC_WINBUF_UFLOW_STATUS), 1440 DEBUGFS_REG32(DC_WINBUF_AD_UFLOW_STATUS), 1441 DEBUGFS_REG32(DC_WINBUF_BD_UFLOW_STATUS), 1442 DEBUGFS_REG32(DC_WINBUF_CD_UFLOW_STATUS), 1443 }; 1444 1445 static int tegra_dc_show_regs(struct seq_file *s, void *data) 1446 { 1447 struct drm_info_node *node = s->private; 1448 struct tegra_dc *dc = node->info_ent->data; 1449 unsigned int i; 1450 int err = 0; 1451 1452 drm_modeset_lock(&dc->base.mutex, NULL); 1453 1454 if (!dc->base.state->active) { 1455 err = -EBUSY; 1456 goto unlock; 1457 } 1458 1459 for (i = 0; i < ARRAY_SIZE(tegra_dc_regs); i++) { 1460 unsigned int offset = tegra_dc_regs[i].offset; 1461 1462 seq_printf(s, "%-40s %#05x %08x\n", tegra_dc_regs[i].name, 1463 offset, tegra_dc_readl(dc, offset)); 1464 } 1465 1466 unlock: 1467 drm_modeset_unlock(&dc->base.mutex); 1468 return err; 1469 } 1470 1471 static int tegra_dc_show_crc(struct seq_file *s, void *data) 1472 { 1473 struct drm_info_node *node = s->private; 1474 struct tegra_dc *dc = node->info_ent->data; 1475 int err = 0; 1476 u32 value; 1477 1478 drm_modeset_lock(&dc->base.mutex, NULL); 1479 1480 if (!dc->base.state->active) { 1481 err = -EBUSY; 1482 goto unlock; 1483 } 1484 1485 value = DC_COM_CRC_CONTROL_ACTIVE_DATA | DC_COM_CRC_CONTROL_ENABLE; 1486 tegra_dc_writel(dc, value, DC_COM_CRC_CONTROL); 1487 tegra_dc_commit(dc); 1488 1489 drm_crtc_wait_one_vblank(&dc->base); 1490 drm_crtc_wait_one_vblank(&dc->base); 1491 1492 value = tegra_dc_readl(dc, DC_COM_CRC_CHECKSUM); 1493 seq_printf(s, "%08x\n", value); 1494 1495 tegra_dc_writel(dc, 0, DC_COM_CRC_CONTROL); 1496 1497 unlock: 1498 drm_modeset_unlock(&dc->base.mutex); 1499 return err; 1500 } 1501 1502 static int tegra_dc_show_stats(struct seq_file *s, void *data) 1503 { 1504 struct drm_info_node *node = s->private; 1505 struct tegra_dc *dc = node->info_ent->data; 1506 1507 seq_printf(s, "frames: %lu\n", dc->stats.frames); 1508 seq_printf(s, "vblank: %lu\n", dc->stats.vblank); 1509 seq_printf(s, "underflow: %lu\n", dc->stats.underflow); 1510 seq_printf(s, "overflow: %lu\n", dc->stats.overflow); 1511 1512 return 0; 1513 } 1514 1515 static struct drm_info_list debugfs_files[] = { 1516 { "regs", tegra_dc_show_regs, 0, NULL }, 1517 { "crc", tegra_dc_show_crc, 0, NULL }, 1518 { "stats", tegra_dc_show_stats, 0, NULL }, 1519 }; 1520 1521 static int tegra_dc_late_register(struct drm_crtc *crtc) 1522 { 1523 unsigned int i, count = ARRAY_SIZE(debugfs_files); 1524 struct drm_minor *minor = crtc->dev->primary; 1525 struct dentry *root; 1526 struct tegra_dc *dc = to_tegra_dc(crtc); 1527 1528 #ifdef CONFIG_DEBUG_FS 1529 root = crtc->debugfs_entry; 1530 #else 1531 root = NULL; 1532 #endif 1533 1534 dc->debugfs_files = kmemdup(debugfs_files, sizeof(debugfs_files), 1535 GFP_KERNEL); 1536 if (!dc->debugfs_files) 1537 return -ENOMEM; 1538 1539 for (i = 0; i < count; i++) 1540 dc->debugfs_files[i].data = dc; 1541 1542 drm_debugfs_create_files(dc->debugfs_files, count, root, minor); 1543 1544 return 0; 1545 } 1546 1547 static void tegra_dc_early_unregister(struct drm_crtc *crtc) 1548 { 1549 unsigned int count = ARRAY_SIZE(debugfs_files); 1550 struct drm_minor *minor = crtc->dev->primary; 1551 struct tegra_dc *dc = to_tegra_dc(crtc); 1552 1553 drm_debugfs_remove_files(dc->debugfs_files, count, minor); 1554 kfree(dc->debugfs_files); 1555 dc->debugfs_files = NULL; 1556 } 1557 1558 static u32 tegra_dc_get_vblank_counter(struct drm_crtc *crtc) 1559 { 1560 struct tegra_dc *dc = to_tegra_dc(crtc); 1561 1562 /* XXX vblank syncpoints don't work with nvdisplay yet */ 1563 if (dc->syncpt && !dc->soc->has_nvdisplay) 1564 return host1x_syncpt_read(dc->syncpt); 1565 1566 /* fallback to software emulated VBLANK counter */ 1567 return (u32)drm_crtc_vblank_count(&dc->base); 1568 } 1569 1570 static int tegra_dc_enable_vblank(struct drm_crtc *crtc) 1571 { 1572 struct tegra_dc *dc = to_tegra_dc(crtc); 1573 u32 value; 1574 1575 value = tegra_dc_readl(dc, DC_CMD_INT_MASK); 1576 value |= VBLANK_INT; 1577 tegra_dc_writel(dc, value, DC_CMD_INT_MASK); 1578 1579 return 0; 1580 } 1581 1582 static void tegra_dc_disable_vblank(struct drm_crtc *crtc) 1583 { 1584 struct tegra_dc *dc = to_tegra_dc(crtc); 1585 u32 value; 1586 1587 value = tegra_dc_readl(dc, DC_CMD_INT_MASK); 1588 value &= ~VBLANK_INT; 1589 tegra_dc_writel(dc, value, DC_CMD_INT_MASK); 1590 } 1591 1592 static const struct drm_crtc_funcs tegra_crtc_funcs = { 1593 .page_flip = drm_atomic_helper_page_flip, 1594 .set_config = drm_atomic_helper_set_config, 1595 .destroy = tegra_dc_destroy, 1596 .reset = tegra_crtc_reset, 1597 .atomic_duplicate_state = tegra_crtc_atomic_duplicate_state, 1598 .atomic_destroy_state = tegra_crtc_atomic_destroy_state, 1599 .late_register = tegra_dc_late_register, 1600 .early_unregister = tegra_dc_early_unregister, 1601 .get_vblank_counter = tegra_dc_get_vblank_counter, 1602 .enable_vblank = tegra_dc_enable_vblank, 1603 .disable_vblank = tegra_dc_disable_vblank, 1604 }; 1605 1606 static int tegra_dc_set_timings(struct tegra_dc *dc, 1607 struct drm_display_mode *mode) 1608 { 1609 unsigned int h_ref_to_sync = 1; 1610 unsigned int v_ref_to_sync = 1; 1611 unsigned long value; 1612 1613 if (!dc->soc->has_nvdisplay) { 1614 tegra_dc_writel(dc, 0x0, DC_DISP_DISP_TIMING_OPTIONS); 1615 1616 value = (v_ref_to_sync << 16) | h_ref_to_sync; 1617 tegra_dc_writel(dc, value, DC_DISP_REF_TO_SYNC); 1618 } 1619 1620 value = ((mode->vsync_end - mode->vsync_start) << 16) | 1621 ((mode->hsync_end - mode->hsync_start) << 0); 1622 tegra_dc_writel(dc, value, DC_DISP_SYNC_WIDTH); 1623 1624 value = ((mode->vtotal - mode->vsync_end) << 16) | 1625 ((mode->htotal - mode->hsync_end) << 0); 1626 tegra_dc_writel(dc, value, DC_DISP_BACK_PORCH); 1627 1628 value = ((mode->vsync_start - mode->vdisplay) << 16) | 1629 ((mode->hsync_start - mode->hdisplay) << 0); 1630 tegra_dc_writel(dc, value, DC_DISP_FRONT_PORCH); 1631 1632 value = (mode->vdisplay << 16) | mode->hdisplay; 1633 tegra_dc_writel(dc, value, DC_DISP_ACTIVE); 1634 1635 return 0; 1636 } 1637 1638 /** 1639 * tegra_dc_state_setup_clock - check clock settings and store them in atomic 1640 * state 1641 * @dc: display controller 1642 * @crtc_state: CRTC atomic state 1643 * @clk: parent clock for display controller 1644 * @pclk: pixel clock 1645 * @div: shift clock divider 1646 * 1647 * Returns: 1648 * 0 on success or a negative error-code on failure. 1649 */ 1650 int tegra_dc_state_setup_clock(struct tegra_dc *dc, 1651 struct drm_crtc_state *crtc_state, 1652 struct clk *clk, unsigned long pclk, 1653 unsigned int div) 1654 { 1655 struct tegra_dc_state *state = to_dc_state(crtc_state); 1656 1657 if (!clk_has_parent(dc->clk, clk)) 1658 return -EINVAL; 1659 1660 state->clk = clk; 1661 state->pclk = pclk; 1662 state->div = div; 1663 1664 return 0; 1665 } 1666 1667 static void tegra_dc_commit_state(struct tegra_dc *dc, 1668 struct tegra_dc_state *state) 1669 { 1670 u32 value; 1671 int err; 1672 1673 err = clk_set_parent(dc->clk, state->clk); 1674 if (err < 0) 1675 dev_err(dc->dev, "failed to set parent clock: %d\n", err); 1676 1677 /* 1678 * Outputs may not want to change the parent clock rate. This is only 1679 * relevant to Tegra20 where only a single display PLL is available. 1680 * Since that PLL would typically be used for HDMI, an internal LVDS 1681 * panel would need to be driven by some other clock such as PLL_P 1682 * which is shared with other peripherals. Changing the clock rate 1683 * should therefore be avoided. 1684 */ 1685 if (state->pclk > 0) { 1686 err = clk_set_rate(state->clk, state->pclk); 1687 if (err < 0) 1688 dev_err(dc->dev, 1689 "failed to set clock rate to %lu Hz\n", 1690 state->pclk); 1691 } 1692 1693 DRM_DEBUG_KMS("rate: %lu, div: %u\n", clk_get_rate(dc->clk), 1694 state->div); 1695 DRM_DEBUG_KMS("pclk: %lu\n", state->pclk); 1696 1697 if (!dc->soc->has_nvdisplay) { 1698 value = SHIFT_CLK_DIVIDER(state->div) | PIXEL_CLK_DIVIDER_PCD1; 1699 tegra_dc_writel(dc, value, DC_DISP_DISP_CLOCK_CONTROL); 1700 } 1701 1702 err = clk_set_rate(dc->clk, state->pclk); 1703 if (err < 0) 1704 dev_err(dc->dev, "failed to set clock %pC to %lu Hz: %d\n", 1705 dc->clk, state->pclk, err); 1706 } 1707 1708 static void tegra_dc_stop(struct tegra_dc *dc) 1709 { 1710 u32 value; 1711 1712 /* stop the display controller */ 1713 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND); 1714 value &= ~DISP_CTRL_MODE_MASK; 1715 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND); 1716 1717 tegra_dc_commit(dc); 1718 } 1719 1720 static bool tegra_dc_idle(struct tegra_dc *dc) 1721 { 1722 u32 value; 1723 1724 value = tegra_dc_readl_active(dc, DC_CMD_DISPLAY_COMMAND); 1725 1726 return (value & DISP_CTRL_MODE_MASK) == 0; 1727 } 1728 1729 static int tegra_dc_wait_idle(struct tegra_dc *dc, unsigned long timeout) 1730 { 1731 timeout = jiffies + msecs_to_jiffies(timeout); 1732 1733 while (time_before(jiffies, timeout)) { 1734 if (tegra_dc_idle(dc)) 1735 return 0; 1736 1737 usleep_range(1000, 2000); 1738 } 1739 1740 dev_dbg(dc->dev, "timeout waiting for DC to become idle\n"); 1741 return -ETIMEDOUT; 1742 } 1743 1744 static void tegra_crtc_atomic_disable(struct drm_crtc *crtc, 1745 struct drm_atomic_state *state) 1746 { 1747 struct tegra_dc *dc = to_tegra_dc(crtc); 1748 u32 value; 1749 int err; 1750 1751 if (!tegra_dc_idle(dc)) { 1752 tegra_dc_stop(dc); 1753 1754 /* 1755 * Ignore the return value, there isn't anything useful to do 1756 * in case this fails. 1757 */ 1758 tegra_dc_wait_idle(dc, 100); 1759 } 1760 1761 /* 1762 * This should really be part of the RGB encoder driver, but clearing 1763 * these bits has the side-effect of stopping the display controller. 1764 * When that happens no VBLANK interrupts will be raised. At the same 1765 * time the encoder is disabled before the display controller, so the 1766 * above code is always going to timeout waiting for the controller 1767 * to go idle. 1768 * 1769 * Given the close coupling between the RGB encoder and the display 1770 * controller doing it here is still kind of okay. None of the other 1771 * encoder drivers require these bits to be cleared. 1772 * 1773 * XXX: Perhaps given that the display controller is switched off at 1774 * this point anyway maybe clearing these bits isn't even useful for 1775 * the RGB encoder? 1776 */ 1777 if (dc->rgb) { 1778 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL); 1779 value &= ~(PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE | 1780 PW4_ENABLE | PM0_ENABLE | PM1_ENABLE); 1781 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL); 1782 } 1783 1784 tegra_dc_stats_reset(&dc->stats); 1785 drm_crtc_vblank_off(crtc); 1786 1787 spin_lock_irq(&crtc->dev->event_lock); 1788 1789 if (crtc->state->event) { 1790 drm_crtc_send_vblank_event(crtc, crtc->state->event); 1791 crtc->state->event = NULL; 1792 } 1793 1794 spin_unlock_irq(&crtc->dev->event_lock); 1795 1796 err = host1x_client_suspend(&dc->client); 1797 if (err < 0) 1798 dev_err(dc->dev, "failed to suspend: %d\n", err); 1799 } 1800 1801 static void tegra_crtc_atomic_enable(struct drm_crtc *crtc, 1802 struct drm_atomic_state *state) 1803 { 1804 struct drm_display_mode *mode = &crtc->state->adjusted_mode; 1805 struct tegra_dc_state *crtc_state = to_dc_state(crtc->state); 1806 struct tegra_dc *dc = to_tegra_dc(crtc); 1807 u32 value; 1808 int err; 1809 1810 err = host1x_client_resume(&dc->client); 1811 if (err < 0) { 1812 dev_err(dc->dev, "failed to resume: %d\n", err); 1813 return; 1814 } 1815 1816 /* initialize display controller */ 1817 if (dc->syncpt) { 1818 u32 syncpt = host1x_syncpt_id(dc->syncpt), enable; 1819 1820 if (dc->soc->has_nvdisplay) 1821 enable = 1 << 31; 1822 else 1823 enable = 1 << 8; 1824 1825 value = SYNCPT_CNTRL_NO_STALL; 1826 tegra_dc_writel(dc, value, DC_CMD_GENERAL_INCR_SYNCPT_CNTRL); 1827 1828 value = enable | syncpt; 1829 tegra_dc_writel(dc, value, DC_CMD_CONT_SYNCPT_VSYNC); 1830 } 1831 1832 if (dc->soc->has_nvdisplay) { 1833 value = DSC_TO_UF_INT | DSC_BBUF_UF_INT | DSC_RBUF_UF_INT | 1834 DSC_OBUF_UF_INT; 1835 tegra_dc_writel(dc, value, DC_CMD_INT_TYPE); 1836 1837 value = DSC_TO_UF_INT | DSC_BBUF_UF_INT | DSC_RBUF_UF_INT | 1838 DSC_OBUF_UF_INT | SD3_BUCKET_WALK_DONE_INT | 1839 HEAD_UF_INT | MSF_INT | REG_TMOUT_INT | 1840 REGION_CRC_INT | V_PULSE2_INT | V_PULSE3_INT | 1841 VBLANK_INT | FRAME_END_INT; 1842 tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY); 1843 1844 value = SD3_BUCKET_WALK_DONE_INT | HEAD_UF_INT | VBLANK_INT | 1845 FRAME_END_INT; 1846 tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE); 1847 1848 value = HEAD_UF_INT | REG_TMOUT_INT | FRAME_END_INT; 1849 tegra_dc_writel(dc, value, DC_CMD_INT_MASK); 1850 1851 tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS); 1852 } else { 1853 value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT | 1854 WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT; 1855 tegra_dc_writel(dc, value, DC_CMD_INT_TYPE); 1856 1857 value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT | 1858 WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT; 1859 tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY); 1860 1861 /* initialize timer */ 1862 value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(0x20) | 1863 WINDOW_B_THRESHOLD(0x20) | WINDOW_C_THRESHOLD(0x20); 1864 tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY); 1865 1866 value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(1) | 1867 WINDOW_B_THRESHOLD(1) | WINDOW_C_THRESHOLD(1); 1868 tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER); 1869 1870 value = VBLANK_INT | WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT | 1871 WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT; 1872 tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE); 1873 1874 value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT | 1875 WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT; 1876 tegra_dc_writel(dc, value, DC_CMD_INT_MASK); 1877 } 1878 1879 if (dc->soc->supports_background_color) 1880 tegra_dc_writel(dc, 0, DC_DISP_BLEND_BACKGROUND_COLOR); 1881 else 1882 tegra_dc_writel(dc, 0, DC_DISP_BORDER_COLOR); 1883 1884 /* apply PLL and pixel clock changes */ 1885 tegra_dc_commit_state(dc, crtc_state); 1886 1887 /* program display mode */ 1888 tegra_dc_set_timings(dc, mode); 1889 1890 /* interlacing isn't supported yet, so disable it */ 1891 if (dc->soc->supports_interlacing) { 1892 value = tegra_dc_readl(dc, DC_DISP_INTERLACE_CONTROL); 1893 value &= ~INTERLACE_ENABLE; 1894 tegra_dc_writel(dc, value, DC_DISP_INTERLACE_CONTROL); 1895 } 1896 1897 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND); 1898 value &= ~DISP_CTRL_MODE_MASK; 1899 value |= DISP_CTRL_MODE_C_DISPLAY; 1900 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND); 1901 1902 if (!dc->soc->has_nvdisplay) { 1903 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL); 1904 value |= PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE | 1905 PW4_ENABLE | PM0_ENABLE | PM1_ENABLE; 1906 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL); 1907 } 1908 1909 /* enable underflow reporting and display red for missing pixels */ 1910 if (dc->soc->has_nvdisplay) { 1911 value = UNDERFLOW_MODE_RED | UNDERFLOW_REPORT_ENABLE; 1912 tegra_dc_writel(dc, value, DC_COM_RG_UNDERFLOW); 1913 } 1914 1915 tegra_dc_commit(dc); 1916 1917 drm_crtc_vblank_on(crtc); 1918 } 1919 1920 static void tegra_crtc_atomic_begin(struct drm_crtc *crtc, 1921 struct drm_atomic_state *state) 1922 { 1923 unsigned long flags; 1924 1925 if (crtc->state->event) { 1926 spin_lock_irqsave(&crtc->dev->event_lock, flags); 1927 1928 if (drm_crtc_vblank_get(crtc) != 0) 1929 drm_crtc_send_vblank_event(crtc, crtc->state->event); 1930 else 1931 drm_crtc_arm_vblank_event(crtc, crtc->state->event); 1932 1933 spin_unlock_irqrestore(&crtc->dev->event_lock, flags); 1934 1935 crtc->state->event = NULL; 1936 } 1937 } 1938 1939 static void tegra_crtc_atomic_flush(struct drm_crtc *crtc, 1940 struct drm_atomic_state *state) 1941 { 1942 struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state, 1943 crtc); 1944 struct tegra_dc_state *dc_state = to_dc_state(crtc_state); 1945 struct tegra_dc *dc = to_tegra_dc(crtc); 1946 u32 value; 1947 1948 value = dc_state->planes << 8 | GENERAL_UPDATE; 1949 tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL); 1950 value = tegra_dc_readl(dc, DC_CMD_STATE_CONTROL); 1951 1952 value = dc_state->planes | GENERAL_ACT_REQ; 1953 tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL); 1954 value = tegra_dc_readl(dc, DC_CMD_STATE_CONTROL); 1955 } 1956 1957 static const struct drm_crtc_helper_funcs tegra_crtc_helper_funcs = { 1958 .atomic_begin = tegra_crtc_atomic_begin, 1959 .atomic_flush = tegra_crtc_atomic_flush, 1960 .atomic_enable = tegra_crtc_atomic_enable, 1961 .atomic_disable = tegra_crtc_atomic_disable, 1962 }; 1963 1964 static irqreturn_t tegra_dc_irq(int irq, void *data) 1965 { 1966 struct tegra_dc *dc = data; 1967 unsigned long status; 1968 1969 status = tegra_dc_readl(dc, DC_CMD_INT_STATUS); 1970 tegra_dc_writel(dc, status, DC_CMD_INT_STATUS); 1971 1972 if (status & FRAME_END_INT) { 1973 /* 1974 dev_dbg(dc->dev, "%s(): frame end\n", __func__); 1975 */ 1976 dc->stats.frames++; 1977 } 1978 1979 if (status & VBLANK_INT) { 1980 /* 1981 dev_dbg(dc->dev, "%s(): vertical blank\n", __func__); 1982 */ 1983 drm_crtc_handle_vblank(&dc->base); 1984 dc->stats.vblank++; 1985 } 1986 1987 if (status & (WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT)) { 1988 /* 1989 dev_dbg(dc->dev, "%s(): underflow\n", __func__); 1990 */ 1991 dc->stats.underflow++; 1992 } 1993 1994 if (status & (WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT)) { 1995 /* 1996 dev_dbg(dc->dev, "%s(): overflow\n", __func__); 1997 */ 1998 dc->stats.overflow++; 1999 } 2000 2001 if (status & HEAD_UF_INT) { 2002 dev_dbg_ratelimited(dc->dev, "%s(): head underflow\n", __func__); 2003 dc->stats.underflow++; 2004 } 2005 2006 return IRQ_HANDLED; 2007 } 2008 2009 static bool tegra_dc_has_window_groups(struct tegra_dc *dc) 2010 { 2011 unsigned int i; 2012 2013 if (!dc->soc->wgrps) 2014 return true; 2015 2016 for (i = 0; i < dc->soc->num_wgrps; i++) { 2017 const struct tegra_windowgroup_soc *wgrp = &dc->soc->wgrps[i]; 2018 2019 if (wgrp->dc == dc->pipe && wgrp->num_windows > 0) 2020 return true; 2021 } 2022 2023 return false; 2024 } 2025 2026 static int tegra_dc_init(struct host1x_client *client) 2027 { 2028 struct drm_device *drm = dev_get_drvdata(client->host); 2029 unsigned long flags = HOST1X_SYNCPT_CLIENT_MANAGED; 2030 struct tegra_dc *dc = host1x_client_to_dc(client); 2031 struct tegra_drm *tegra = drm->dev_private; 2032 struct drm_plane *primary = NULL; 2033 struct drm_plane *cursor = NULL; 2034 int err; 2035 2036 /* 2037 * XXX do not register DCs with no window groups because we cannot 2038 * assign a primary plane to them, which in turn will cause KMS to 2039 * crash. 2040 */ 2041 if (!tegra_dc_has_window_groups(dc)) 2042 return 0; 2043 2044 /* 2045 * Set the display hub as the host1x client parent for the display 2046 * controller. This is needed for the runtime reference counting that 2047 * ensures the display hub is always powered when any of the display 2048 * controllers are. 2049 */ 2050 if (dc->soc->has_nvdisplay) 2051 client->parent = &tegra->hub->client; 2052 2053 dc->syncpt = host1x_syncpt_request(client, flags); 2054 if (!dc->syncpt) 2055 dev_warn(dc->dev, "failed to allocate syncpoint\n"); 2056 2057 err = host1x_client_iommu_attach(client); 2058 if (err < 0 && err != -ENODEV) { 2059 dev_err(client->dev, "failed to attach to domain: %d\n", err); 2060 return err; 2061 } 2062 2063 if (dc->soc->wgrps) 2064 primary = tegra_dc_add_shared_planes(drm, dc); 2065 else 2066 primary = tegra_dc_add_planes(drm, dc); 2067 2068 if (IS_ERR(primary)) { 2069 err = PTR_ERR(primary); 2070 goto cleanup; 2071 } 2072 2073 if (dc->soc->supports_cursor) { 2074 cursor = tegra_dc_cursor_plane_create(drm, dc); 2075 if (IS_ERR(cursor)) { 2076 err = PTR_ERR(cursor); 2077 goto cleanup; 2078 } 2079 } else { 2080 /* dedicate one overlay to mouse cursor */ 2081 cursor = tegra_dc_overlay_plane_create(drm, dc, 2, true); 2082 if (IS_ERR(cursor)) { 2083 err = PTR_ERR(cursor); 2084 goto cleanup; 2085 } 2086 } 2087 2088 err = drm_crtc_init_with_planes(drm, &dc->base, primary, cursor, 2089 &tegra_crtc_funcs, NULL); 2090 if (err < 0) 2091 goto cleanup; 2092 2093 drm_crtc_helper_add(&dc->base, &tegra_crtc_helper_funcs); 2094 2095 /* 2096 * Keep track of the minimum pitch alignment across all display 2097 * controllers. 2098 */ 2099 if (dc->soc->pitch_align > tegra->pitch_align) 2100 tegra->pitch_align = dc->soc->pitch_align; 2101 2102 err = tegra_dc_rgb_init(drm, dc); 2103 if (err < 0 && err != -ENODEV) { 2104 dev_err(dc->dev, "failed to initialize RGB output: %d\n", err); 2105 goto cleanup; 2106 } 2107 2108 err = devm_request_irq(dc->dev, dc->irq, tegra_dc_irq, 0, 2109 dev_name(dc->dev), dc); 2110 if (err < 0) { 2111 dev_err(dc->dev, "failed to request IRQ#%u: %d\n", dc->irq, 2112 err); 2113 goto cleanup; 2114 } 2115 2116 /* 2117 * Inherit the DMA parameters (such as maximum segment size) from the 2118 * parent host1x device. 2119 */ 2120 client->dev->dma_parms = client->host->dma_parms; 2121 2122 return 0; 2123 2124 cleanup: 2125 if (!IS_ERR_OR_NULL(cursor)) 2126 drm_plane_cleanup(cursor); 2127 2128 if (!IS_ERR(primary)) 2129 drm_plane_cleanup(primary); 2130 2131 host1x_client_iommu_detach(client); 2132 host1x_syncpt_free(dc->syncpt); 2133 2134 return err; 2135 } 2136 2137 static int tegra_dc_exit(struct host1x_client *client) 2138 { 2139 struct tegra_dc *dc = host1x_client_to_dc(client); 2140 int err; 2141 2142 if (!tegra_dc_has_window_groups(dc)) 2143 return 0; 2144 2145 /* avoid a dangling pointer just in case this disappears */ 2146 client->dev->dma_parms = NULL; 2147 2148 devm_free_irq(dc->dev, dc->irq, dc); 2149 2150 err = tegra_dc_rgb_exit(dc); 2151 if (err) { 2152 dev_err(dc->dev, "failed to shutdown RGB output: %d\n", err); 2153 return err; 2154 } 2155 2156 host1x_client_iommu_detach(client); 2157 host1x_syncpt_free(dc->syncpt); 2158 2159 return 0; 2160 } 2161 2162 static int tegra_dc_runtime_suspend(struct host1x_client *client) 2163 { 2164 struct tegra_dc *dc = host1x_client_to_dc(client); 2165 struct device *dev = client->dev; 2166 int err; 2167 2168 err = reset_control_assert(dc->rst); 2169 if (err < 0) { 2170 dev_err(dev, "failed to assert reset: %d\n", err); 2171 return err; 2172 } 2173 2174 if (dc->soc->has_powergate) 2175 tegra_powergate_power_off(dc->powergate); 2176 2177 clk_disable_unprepare(dc->clk); 2178 pm_runtime_put_sync(dev); 2179 2180 return 0; 2181 } 2182 2183 static int tegra_dc_runtime_resume(struct host1x_client *client) 2184 { 2185 struct tegra_dc *dc = host1x_client_to_dc(client); 2186 struct device *dev = client->dev; 2187 int err; 2188 2189 err = pm_runtime_resume_and_get(dev); 2190 if (err < 0) { 2191 dev_err(dev, "failed to get runtime PM: %d\n", err); 2192 return err; 2193 } 2194 2195 if (dc->soc->has_powergate) { 2196 err = tegra_powergate_sequence_power_up(dc->powergate, dc->clk, 2197 dc->rst); 2198 if (err < 0) { 2199 dev_err(dev, "failed to power partition: %d\n", err); 2200 goto put_rpm; 2201 } 2202 } else { 2203 err = clk_prepare_enable(dc->clk); 2204 if (err < 0) { 2205 dev_err(dev, "failed to enable clock: %d\n", err); 2206 goto put_rpm; 2207 } 2208 2209 err = reset_control_deassert(dc->rst); 2210 if (err < 0) { 2211 dev_err(dev, "failed to deassert reset: %d\n", err); 2212 goto disable_clk; 2213 } 2214 } 2215 2216 return 0; 2217 2218 disable_clk: 2219 clk_disable_unprepare(dc->clk); 2220 put_rpm: 2221 pm_runtime_put_sync(dev); 2222 return err; 2223 } 2224 2225 static const struct host1x_client_ops dc_client_ops = { 2226 .init = tegra_dc_init, 2227 .exit = tegra_dc_exit, 2228 .suspend = tegra_dc_runtime_suspend, 2229 .resume = tegra_dc_runtime_resume, 2230 }; 2231 2232 static const struct tegra_dc_soc_info tegra20_dc_soc_info = { 2233 .supports_background_color = false, 2234 .supports_interlacing = false, 2235 .supports_cursor = false, 2236 .supports_block_linear = false, 2237 .has_legacy_blending = true, 2238 .pitch_align = 8, 2239 .has_powergate = false, 2240 .coupled_pm = true, 2241 .has_nvdisplay = false, 2242 .num_primary_formats = ARRAY_SIZE(tegra20_primary_formats), 2243 .primary_formats = tegra20_primary_formats, 2244 .num_overlay_formats = ARRAY_SIZE(tegra20_overlay_formats), 2245 .overlay_formats = tegra20_overlay_formats, 2246 .modifiers = tegra20_modifiers, 2247 .has_win_a_without_filters = true, 2248 .has_win_c_without_vert_filter = true, 2249 }; 2250 2251 static const struct tegra_dc_soc_info tegra30_dc_soc_info = { 2252 .supports_background_color = false, 2253 .supports_interlacing = false, 2254 .supports_cursor = false, 2255 .supports_block_linear = false, 2256 .has_legacy_blending = true, 2257 .pitch_align = 8, 2258 .has_powergate = false, 2259 .coupled_pm = false, 2260 .has_nvdisplay = false, 2261 .num_primary_formats = ARRAY_SIZE(tegra20_primary_formats), 2262 .primary_formats = tegra20_primary_formats, 2263 .num_overlay_formats = ARRAY_SIZE(tegra20_overlay_formats), 2264 .overlay_formats = tegra20_overlay_formats, 2265 .modifiers = tegra20_modifiers, 2266 .has_win_a_without_filters = false, 2267 .has_win_c_without_vert_filter = false, 2268 }; 2269 2270 static const struct tegra_dc_soc_info tegra114_dc_soc_info = { 2271 .supports_background_color = false, 2272 .supports_interlacing = false, 2273 .supports_cursor = false, 2274 .supports_block_linear = false, 2275 .has_legacy_blending = true, 2276 .pitch_align = 64, 2277 .has_powergate = true, 2278 .coupled_pm = false, 2279 .has_nvdisplay = false, 2280 .num_primary_formats = ARRAY_SIZE(tegra114_primary_formats), 2281 .primary_formats = tegra114_primary_formats, 2282 .num_overlay_formats = ARRAY_SIZE(tegra114_overlay_formats), 2283 .overlay_formats = tegra114_overlay_formats, 2284 .modifiers = tegra20_modifiers, 2285 .has_win_a_without_filters = false, 2286 .has_win_c_without_vert_filter = false, 2287 }; 2288 2289 static const struct tegra_dc_soc_info tegra124_dc_soc_info = { 2290 .supports_background_color = true, 2291 .supports_interlacing = true, 2292 .supports_cursor = true, 2293 .supports_block_linear = true, 2294 .has_legacy_blending = false, 2295 .pitch_align = 64, 2296 .has_powergate = true, 2297 .coupled_pm = false, 2298 .has_nvdisplay = false, 2299 .num_primary_formats = ARRAY_SIZE(tegra124_primary_formats), 2300 .primary_formats = tegra124_primary_formats, 2301 .num_overlay_formats = ARRAY_SIZE(tegra124_overlay_formats), 2302 .overlay_formats = tegra124_overlay_formats, 2303 .modifiers = tegra124_modifiers, 2304 .has_win_a_without_filters = false, 2305 .has_win_c_without_vert_filter = false, 2306 }; 2307 2308 static const struct tegra_dc_soc_info tegra210_dc_soc_info = { 2309 .supports_background_color = true, 2310 .supports_interlacing = true, 2311 .supports_cursor = true, 2312 .supports_block_linear = true, 2313 .has_legacy_blending = false, 2314 .pitch_align = 64, 2315 .has_powergate = true, 2316 .coupled_pm = false, 2317 .has_nvdisplay = false, 2318 .num_primary_formats = ARRAY_SIZE(tegra114_primary_formats), 2319 .primary_formats = tegra114_primary_formats, 2320 .num_overlay_formats = ARRAY_SIZE(tegra114_overlay_formats), 2321 .overlay_formats = tegra114_overlay_formats, 2322 .modifiers = tegra124_modifiers, 2323 .has_win_a_without_filters = false, 2324 .has_win_c_without_vert_filter = false, 2325 }; 2326 2327 static const struct tegra_windowgroup_soc tegra186_dc_wgrps[] = { 2328 { 2329 .index = 0, 2330 .dc = 0, 2331 .windows = (const unsigned int[]) { 0 }, 2332 .num_windows = 1, 2333 }, { 2334 .index = 1, 2335 .dc = 1, 2336 .windows = (const unsigned int[]) { 1 }, 2337 .num_windows = 1, 2338 }, { 2339 .index = 2, 2340 .dc = 1, 2341 .windows = (const unsigned int[]) { 2 }, 2342 .num_windows = 1, 2343 }, { 2344 .index = 3, 2345 .dc = 2, 2346 .windows = (const unsigned int[]) { 3 }, 2347 .num_windows = 1, 2348 }, { 2349 .index = 4, 2350 .dc = 2, 2351 .windows = (const unsigned int[]) { 4 }, 2352 .num_windows = 1, 2353 }, { 2354 .index = 5, 2355 .dc = 2, 2356 .windows = (const unsigned int[]) { 5 }, 2357 .num_windows = 1, 2358 }, 2359 }; 2360 2361 static const struct tegra_dc_soc_info tegra186_dc_soc_info = { 2362 .supports_background_color = true, 2363 .supports_interlacing = true, 2364 .supports_cursor = true, 2365 .supports_block_linear = true, 2366 .has_legacy_blending = false, 2367 .pitch_align = 64, 2368 .has_powergate = false, 2369 .coupled_pm = false, 2370 .has_nvdisplay = true, 2371 .wgrps = tegra186_dc_wgrps, 2372 .num_wgrps = ARRAY_SIZE(tegra186_dc_wgrps), 2373 }; 2374 2375 static const struct tegra_windowgroup_soc tegra194_dc_wgrps[] = { 2376 { 2377 .index = 0, 2378 .dc = 0, 2379 .windows = (const unsigned int[]) { 0 }, 2380 .num_windows = 1, 2381 }, { 2382 .index = 1, 2383 .dc = 1, 2384 .windows = (const unsigned int[]) { 1 }, 2385 .num_windows = 1, 2386 }, { 2387 .index = 2, 2388 .dc = 1, 2389 .windows = (const unsigned int[]) { 2 }, 2390 .num_windows = 1, 2391 }, { 2392 .index = 3, 2393 .dc = 2, 2394 .windows = (const unsigned int[]) { 3 }, 2395 .num_windows = 1, 2396 }, { 2397 .index = 4, 2398 .dc = 2, 2399 .windows = (const unsigned int[]) { 4 }, 2400 .num_windows = 1, 2401 }, { 2402 .index = 5, 2403 .dc = 2, 2404 .windows = (const unsigned int[]) { 5 }, 2405 .num_windows = 1, 2406 }, 2407 }; 2408 2409 static const struct tegra_dc_soc_info tegra194_dc_soc_info = { 2410 .supports_background_color = true, 2411 .supports_interlacing = true, 2412 .supports_cursor = true, 2413 .supports_block_linear = true, 2414 .has_legacy_blending = false, 2415 .pitch_align = 64, 2416 .has_powergate = false, 2417 .coupled_pm = false, 2418 .has_nvdisplay = true, 2419 .wgrps = tegra194_dc_wgrps, 2420 .num_wgrps = ARRAY_SIZE(tegra194_dc_wgrps), 2421 }; 2422 2423 static const struct of_device_id tegra_dc_of_match[] = { 2424 { 2425 .compatible = "nvidia,tegra194-dc", 2426 .data = &tegra194_dc_soc_info, 2427 }, { 2428 .compatible = "nvidia,tegra186-dc", 2429 .data = &tegra186_dc_soc_info, 2430 }, { 2431 .compatible = "nvidia,tegra210-dc", 2432 .data = &tegra210_dc_soc_info, 2433 }, { 2434 .compatible = "nvidia,tegra124-dc", 2435 .data = &tegra124_dc_soc_info, 2436 }, { 2437 .compatible = "nvidia,tegra114-dc", 2438 .data = &tegra114_dc_soc_info, 2439 }, { 2440 .compatible = "nvidia,tegra30-dc", 2441 .data = &tegra30_dc_soc_info, 2442 }, { 2443 .compatible = "nvidia,tegra20-dc", 2444 .data = &tegra20_dc_soc_info, 2445 }, { 2446 /* sentinel */ 2447 } 2448 }; 2449 MODULE_DEVICE_TABLE(of, tegra_dc_of_match); 2450 2451 static int tegra_dc_parse_dt(struct tegra_dc *dc) 2452 { 2453 struct device_node *np; 2454 u32 value = 0; 2455 int err; 2456 2457 err = of_property_read_u32(dc->dev->of_node, "nvidia,head", &value); 2458 if (err < 0) { 2459 dev_err(dc->dev, "missing \"nvidia,head\" property\n"); 2460 2461 /* 2462 * If the nvidia,head property isn't present, try to find the 2463 * correct head number by looking up the position of this 2464 * display controller's node within the device tree. Assuming 2465 * that the nodes are ordered properly in the DTS file and 2466 * that the translation into a flattened device tree blob 2467 * preserves that ordering this will actually yield the right 2468 * head number. 2469 * 2470 * If those assumptions don't hold, this will still work for 2471 * cases where only a single display controller is used. 2472 */ 2473 for_each_matching_node(np, tegra_dc_of_match) { 2474 if (np == dc->dev->of_node) { 2475 of_node_put(np); 2476 break; 2477 } 2478 2479 value++; 2480 } 2481 } 2482 2483 dc->pipe = value; 2484 2485 return 0; 2486 } 2487 2488 static int tegra_dc_match_by_pipe(struct device *dev, const void *data) 2489 { 2490 struct tegra_dc *dc = dev_get_drvdata(dev); 2491 unsigned int pipe = (unsigned long)(void *)data; 2492 2493 return dc->pipe == pipe; 2494 } 2495 2496 static int tegra_dc_couple(struct tegra_dc *dc) 2497 { 2498 /* 2499 * On Tegra20, DC1 requires DC0 to be taken out of reset in order to 2500 * be enabled, otherwise CPU hangs on writing to CMD_DISPLAY_COMMAND / 2501 * POWER_CONTROL registers during CRTC enabling. 2502 */ 2503 if (dc->soc->coupled_pm && dc->pipe == 1) { 2504 u32 flags = DL_FLAG_PM_RUNTIME | DL_FLAG_AUTOREMOVE_CONSUMER; 2505 struct device_link *link; 2506 struct device *partner; 2507 2508 partner = driver_find_device(dc->dev->driver, NULL, NULL, 2509 tegra_dc_match_by_pipe); 2510 if (!partner) 2511 return -EPROBE_DEFER; 2512 2513 link = device_link_add(dc->dev, partner, flags); 2514 if (!link) { 2515 dev_err(dc->dev, "failed to link controllers\n"); 2516 return -EINVAL; 2517 } 2518 2519 dev_dbg(dc->dev, "coupled to %s\n", dev_name(partner)); 2520 } 2521 2522 return 0; 2523 } 2524 2525 static int tegra_dc_probe(struct platform_device *pdev) 2526 { 2527 struct tegra_dc *dc; 2528 int err; 2529 2530 dc = devm_kzalloc(&pdev->dev, sizeof(*dc), GFP_KERNEL); 2531 if (!dc) 2532 return -ENOMEM; 2533 2534 dc->soc = of_device_get_match_data(&pdev->dev); 2535 2536 INIT_LIST_HEAD(&dc->list); 2537 dc->dev = &pdev->dev; 2538 2539 err = tegra_dc_parse_dt(dc); 2540 if (err < 0) 2541 return err; 2542 2543 err = tegra_dc_couple(dc); 2544 if (err < 0) 2545 return err; 2546 2547 dc->clk = devm_clk_get(&pdev->dev, NULL); 2548 if (IS_ERR(dc->clk)) { 2549 dev_err(&pdev->dev, "failed to get clock\n"); 2550 return PTR_ERR(dc->clk); 2551 } 2552 2553 dc->rst = devm_reset_control_get(&pdev->dev, "dc"); 2554 if (IS_ERR(dc->rst)) { 2555 dev_err(&pdev->dev, "failed to get reset\n"); 2556 return PTR_ERR(dc->rst); 2557 } 2558 2559 /* assert reset and disable clock */ 2560 err = clk_prepare_enable(dc->clk); 2561 if (err < 0) 2562 return err; 2563 2564 usleep_range(2000, 4000); 2565 2566 err = reset_control_assert(dc->rst); 2567 if (err < 0) 2568 return err; 2569 2570 usleep_range(2000, 4000); 2571 2572 clk_disable_unprepare(dc->clk); 2573 2574 if (dc->soc->has_powergate) { 2575 if (dc->pipe == 0) 2576 dc->powergate = TEGRA_POWERGATE_DIS; 2577 else 2578 dc->powergate = TEGRA_POWERGATE_DISB; 2579 2580 tegra_powergate_power_off(dc->powergate); 2581 } 2582 2583 dc->regs = devm_platform_ioremap_resource(pdev, 0); 2584 if (IS_ERR(dc->regs)) 2585 return PTR_ERR(dc->regs); 2586 2587 dc->irq = platform_get_irq(pdev, 0); 2588 if (dc->irq < 0) 2589 return -ENXIO; 2590 2591 err = tegra_dc_rgb_probe(dc); 2592 if (err < 0 && err != -ENODEV) { 2593 const char *level = KERN_ERR; 2594 2595 if (err == -EPROBE_DEFER) 2596 level = KERN_DEBUG; 2597 2598 dev_printk(level, dc->dev, "failed to probe RGB output: %d\n", 2599 err); 2600 return err; 2601 } 2602 2603 platform_set_drvdata(pdev, dc); 2604 pm_runtime_enable(&pdev->dev); 2605 2606 INIT_LIST_HEAD(&dc->client.list); 2607 dc->client.ops = &dc_client_ops; 2608 dc->client.dev = &pdev->dev; 2609 2610 err = host1x_client_register(&dc->client); 2611 if (err < 0) { 2612 dev_err(&pdev->dev, "failed to register host1x client: %d\n", 2613 err); 2614 goto disable_pm; 2615 } 2616 2617 return 0; 2618 2619 disable_pm: 2620 pm_runtime_disable(&pdev->dev); 2621 tegra_dc_rgb_remove(dc); 2622 2623 return err; 2624 } 2625 2626 static int tegra_dc_remove(struct platform_device *pdev) 2627 { 2628 struct tegra_dc *dc = platform_get_drvdata(pdev); 2629 int err; 2630 2631 err = host1x_client_unregister(&dc->client); 2632 if (err < 0) { 2633 dev_err(&pdev->dev, "failed to unregister host1x client: %d\n", 2634 err); 2635 return err; 2636 } 2637 2638 err = tegra_dc_rgb_remove(dc); 2639 if (err < 0) { 2640 dev_err(&pdev->dev, "failed to remove RGB output: %d\n", err); 2641 return err; 2642 } 2643 2644 pm_runtime_disable(&pdev->dev); 2645 2646 return 0; 2647 } 2648 2649 struct platform_driver tegra_dc_driver = { 2650 .driver = { 2651 .name = "tegra-dc", 2652 .of_match_table = tegra_dc_of_match, 2653 }, 2654 .probe = tegra_dc_probe, 2655 .remove = tegra_dc_remove, 2656 }; 2657