1 /* 2 * Copyright (C) 2012 Avionic Design GmbH 3 * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved. 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License version 2 as 7 * published by the Free Software Foundation. 8 */ 9 10 #include <linux/clk.h> 11 #include <linux/debugfs.h> 12 #include <linux/iommu.h> 13 #include <linux/of_device.h> 14 #include <linux/pm_runtime.h> 15 #include <linux/reset.h> 16 17 #include <soc/tegra/pmc.h> 18 19 #include "dc.h" 20 #include "drm.h" 21 #include "gem.h" 22 #include "hub.h" 23 #include "plane.h" 24 25 #include <drm/drm_atomic.h> 26 #include <drm/drm_atomic_helper.h> 27 #include <drm/drm_plane_helper.h> 28 29 static void tegra_dc_stats_reset(struct tegra_dc_stats *stats) 30 { 31 stats->frames = 0; 32 stats->vblank = 0; 33 stats->underflow = 0; 34 stats->overflow = 0; 35 } 36 37 /* Reads the active copy of a register. */ 38 static u32 tegra_dc_readl_active(struct tegra_dc *dc, unsigned long offset) 39 { 40 u32 value; 41 42 tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS); 43 value = tegra_dc_readl(dc, offset); 44 tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS); 45 46 return value; 47 } 48 49 static inline unsigned int tegra_plane_offset(struct tegra_plane *plane, 50 unsigned int offset) 51 { 52 if (offset >= 0x500 && offset <= 0x638) { 53 offset = 0x000 + (offset - 0x500); 54 return plane->offset + offset; 55 } 56 57 if (offset >= 0x700 && offset <= 0x719) { 58 offset = 0x180 + (offset - 0x700); 59 return plane->offset + offset; 60 } 61 62 if (offset >= 0x800 && offset <= 0x839) { 63 offset = 0x1c0 + (offset - 0x800); 64 return plane->offset + offset; 65 } 66 67 dev_WARN(plane->dc->dev, "invalid offset: %x\n", offset); 68 69 return plane->offset + offset; 70 } 71 72 static inline u32 tegra_plane_readl(struct tegra_plane *plane, 73 unsigned int offset) 74 { 75 return tegra_dc_readl(plane->dc, tegra_plane_offset(plane, offset)); 76 } 77 78 static inline void tegra_plane_writel(struct tegra_plane *plane, u32 value, 79 unsigned int offset) 80 { 81 tegra_dc_writel(plane->dc, value, tegra_plane_offset(plane, offset)); 82 } 83 84 bool tegra_dc_has_output(struct tegra_dc *dc, struct device *dev) 85 { 86 struct device_node *np = dc->dev->of_node; 87 struct of_phandle_iterator it; 88 int err; 89 90 of_for_each_phandle(&it, err, np, "nvidia,outputs", NULL, 0) 91 if (it.node == dev->of_node) 92 return true; 93 94 return false; 95 } 96 97 /* 98 * Double-buffered registers have two copies: ASSEMBLY and ACTIVE. When the 99 * *_ACT_REQ bits are set the ASSEMBLY copy is latched into the ACTIVE copy. 100 * Latching happens mmediately if the display controller is in STOP mode or 101 * on the next frame boundary otherwise. 102 * 103 * Triple-buffered registers have three copies: ASSEMBLY, ARM and ACTIVE. The 104 * ASSEMBLY copy is latched into the ARM copy immediately after *_UPDATE bits 105 * are written. When the *_ACT_REQ bits are written, the ARM copy is latched 106 * into the ACTIVE copy, either immediately if the display controller is in 107 * STOP mode, or at the next frame boundary otherwise. 108 */ 109 void tegra_dc_commit(struct tegra_dc *dc) 110 { 111 tegra_dc_writel(dc, GENERAL_ACT_REQ << 8, DC_CMD_STATE_CONTROL); 112 tegra_dc_writel(dc, GENERAL_ACT_REQ, DC_CMD_STATE_CONTROL); 113 } 114 115 static inline u32 compute_dda_inc(unsigned int in, unsigned int out, bool v, 116 unsigned int bpp) 117 { 118 fixed20_12 outf = dfixed_init(out); 119 fixed20_12 inf = dfixed_init(in); 120 u32 dda_inc; 121 int max; 122 123 if (v) 124 max = 15; 125 else { 126 switch (bpp) { 127 case 2: 128 max = 8; 129 break; 130 131 default: 132 WARN_ON_ONCE(1); 133 /* fallthrough */ 134 case 4: 135 max = 4; 136 break; 137 } 138 } 139 140 outf.full = max_t(u32, outf.full - dfixed_const(1), dfixed_const(1)); 141 inf.full -= dfixed_const(1); 142 143 dda_inc = dfixed_div(inf, outf); 144 dda_inc = min_t(u32, dda_inc, dfixed_const(max)); 145 146 return dda_inc; 147 } 148 149 static inline u32 compute_initial_dda(unsigned int in) 150 { 151 fixed20_12 inf = dfixed_init(in); 152 return dfixed_frac(inf); 153 } 154 155 static void tegra_plane_setup_blending_legacy(struct tegra_plane *plane) 156 { 157 u32 background[3] = { 158 BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE, 159 BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE, 160 BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE, 161 }; 162 u32 foreground = BLEND_WEIGHT1(255) | BLEND_WEIGHT0(255) | 163 BLEND_COLOR_KEY_NONE; 164 u32 blendnokey = BLEND_WEIGHT1(255) | BLEND_WEIGHT0(255); 165 struct tegra_plane_state *state; 166 u32 blending[2]; 167 unsigned int i; 168 169 /* disable blending for non-overlapping case */ 170 tegra_plane_writel(plane, blendnokey, DC_WIN_BLEND_NOKEY); 171 tegra_plane_writel(plane, foreground, DC_WIN_BLEND_1WIN); 172 173 state = to_tegra_plane_state(plane->base.state); 174 175 if (state->opaque) { 176 /* 177 * Since custom fix-weight blending isn't utilized and weight 178 * of top window is set to max, we can enforce dependent 179 * blending which in this case results in transparent bottom 180 * window if top window is opaque and if top window enables 181 * alpha blending, then bottom window is getting alpha value 182 * of 1 minus the sum of alpha components of the overlapping 183 * plane. 184 */ 185 background[0] |= BLEND_CONTROL_DEPENDENT; 186 background[1] |= BLEND_CONTROL_DEPENDENT; 187 188 /* 189 * The region where three windows overlap is the intersection 190 * of the two regions where two windows overlap. It contributes 191 * to the area if all of the windows on top of it have an alpha 192 * component. 193 */ 194 switch (state->base.normalized_zpos) { 195 case 0: 196 if (state->blending[0].alpha && 197 state->blending[1].alpha) 198 background[2] |= BLEND_CONTROL_DEPENDENT; 199 break; 200 201 case 1: 202 background[2] |= BLEND_CONTROL_DEPENDENT; 203 break; 204 } 205 } else { 206 /* 207 * Enable alpha blending if pixel format has an alpha 208 * component. 209 */ 210 foreground |= BLEND_CONTROL_ALPHA; 211 212 /* 213 * If any of the windows on top of this window is opaque, it 214 * will completely conceal this window within that area. If 215 * top window has an alpha component, it is blended over the 216 * bottom window. 217 */ 218 for (i = 0; i < 2; i++) { 219 if (state->blending[i].alpha && 220 state->blending[i].top) 221 background[i] |= BLEND_CONTROL_DEPENDENT; 222 } 223 224 switch (state->base.normalized_zpos) { 225 case 0: 226 if (state->blending[0].alpha && 227 state->blending[1].alpha) 228 background[2] |= BLEND_CONTROL_DEPENDENT; 229 break; 230 231 case 1: 232 /* 233 * When both middle and topmost windows have an alpha, 234 * these windows a mixed together and then the result 235 * is blended over the bottom window. 236 */ 237 if (state->blending[0].alpha && 238 state->blending[0].top) 239 background[2] |= BLEND_CONTROL_ALPHA; 240 241 if (state->blending[1].alpha && 242 state->blending[1].top) 243 background[2] |= BLEND_CONTROL_ALPHA; 244 break; 245 } 246 } 247 248 switch (state->base.normalized_zpos) { 249 case 0: 250 tegra_plane_writel(plane, background[0], DC_WIN_BLEND_2WIN_X); 251 tegra_plane_writel(plane, background[1], DC_WIN_BLEND_2WIN_Y); 252 tegra_plane_writel(plane, background[2], DC_WIN_BLEND_3WIN_XY); 253 break; 254 255 case 1: 256 /* 257 * If window B / C is topmost, then X / Y registers are 258 * matching the order of blending[...] state indices, 259 * otherwise a swap is required. 260 */ 261 if (!state->blending[0].top && state->blending[1].top) { 262 blending[0] = foreground; 263 blending[1] = background[1]; 264 } else { 265 blending[0] = background[0]; 266 blending[1] = foreground; 267 } 268 269 tegra_plane_writel(plane, blending[0], DC_WIN_BLEND_2WIN_X); 270 tegra_plane_writel(plane, blending[1], DC_WIN_BLEND_2WIN_Y); 271 tegra_plane_writel(plane, background[2], DC_WIN_BLEND_3WIN_XY); 272 break; 273 274 case 2: 275 tegra_plane_writel(plane, foreground, DC_WIN_BLEND_2WIN_X); 276 tegra_plane_writel(plane, foreground, DC_WIN_BLEND_2WIN_Y); 277 tegra_plane_writel(plane, foreground, DC_WIN_BLEND_3WIN_XY); 278 break; 279 } 280 } 281 282 static void tegra_plane_setup_blending(struct tegra_plane *plane, 283 const struct tegra_dc_window *window) 284 { 285 u32 value; 286 287 value = BLEND_FACTOR_DST_ALPHA_ZERO | BLEND_FACTOR_SRC_ALPHA_K2 | 288 BLEND_FACTOR_DST_COLOR_NEG_K1_TIMES_SRC | 289 BLEND_FACTOR_SRC_COLOR_K1_TIMES_SRC; 290 tegra_plane_writel(plane, value, DC_WIN_BLEND_MATCH_SELECT); 291 292 value = BLEND_FACTOR_DST_ALPHA_ZERO | BLEND_FACTOR_SRC_ALPHA_K2 | 293 BLEND_FACTOR_DST_COLOR_NEG_K1_TIMES_SRC | 294 BLEND_FACTOR_SRC_COLOR_K1_TIMES_SRC; 295 tegra_plane_writel(plane, value, DC_WIN_BLEND_NOMATCH_SELECT); 296 297 value = K2(255) | K1(255) | WINDOW_LAYER_DEPTH(255 - window->zpos); 298 tegra_plane_writel(plane, value, DC_WIN_BLEND_LAYER_CONTROL); 299 } 300 301 static bool 302 tegra_plane_use_horizontal_filtering(struct tegra_plane *plane, 303 const struct tegra_dc_window *window) 304 { 305 struct tegra_dc *dc = plane->dc; 306 307 if (window->src.w == window->dst.w) 308 return false; 309 310 if (plane->index == 0 && dc->soc->has_win_a_without_filters) 311 return false; 312 313 return true; 314 } 315 316 static bool 317 tegra_plane_use_vertical_filtering(struct tegra_plane *plane, 318 const struct tegra_dc_window *window) 319 { 320 struct tegra_dc *dc = plane->dc; 321 322 if (window->src.h == window->dst.h) 323 return false; 324 325 if (plane->index == 0 && dc->soc->has_win_a_without_filters) 326 return false; 327 328 if (plane->index == 2 && dc->soc->has_win_c_without_vert_filter) 329 return false; 330 331 return true; 332 } 333 334 static void tegra_dc_setup_window(struct tegra_plane *plane, 335 const struct tegra_dc_window *window) 336 { 337 unsigned h_offset, v_offset, h_size, v_size, h_dda, v_dda, bpp; 338 struct tegra_dc *dc = plane->dc; 339 bool yuv, planar; 340 u32 value; 341 342 /* 343 * For YUV planar modes, the number of bytes per pixel takes into 344 * account only the luma component and therefore is 1. 345 */ 346 yuv = tegra_plane_format_is_yuv(window->format, &planar); 347 if (!yuv) 348 bpp = window->bits_per_pixel / 8; 349 else 350 bpp = planar ? 1 : 2; 351 352 tegra_plane_writel(plane, window->format, DC_WIN_COLOR_DEPTH); 353 tegra_plane_writel(plane, window->swap, DC_WIN_BYTE_SWAP); 354 355 value = V_POSITION(window->dst.y) | H_POSITION(window->dst.x); 356 tegra_plane_writel(plane, value, DC_WIN_POSITION); 357 358 value = V_SIZE(window->dst.h) | H_SIZE(window->dst.w); 359 tegra_plane_writel(plane, value, DC_WIN_SIZE); 360 361 h_offset = window->src.x * bpp; 362 v_offset = window->src.y; 363 h_size = window->src.w * bpp; 364 v_size = window->src.h; 365 366 value = V_PRESCALED_SIZE(v_size) | H_PRESCALED_SIZE(h_size); 367 tegra_plane_writel(plane, value, DC_WIN_PRESCALED_SIZE); 368 369 /* 370 * For DDA computations the number of bytes per pixel for YUV planar 371 * modes needs to take into account all Y, U and V components. 372 */ 373 if (yuv && planar) 374 bpp = 2; 375 376 h_dda = compute_dda_inc(window->src.w, window->dst.w, false, bpp); 377 v_dda = compute_dda_inc(window->src.h, window->dst.h, true, bpp); 378 379 value = V_DDA_INC(v_dda) | H_DDA_INC(h_dda); 380 tegra_plane_writel(plane, value, DC_WIN_DDA_INC); 381 382 h_dda = compute_initial_dda(window->src.x); 383 v_dda = compute_initial_dda(window->src.y); 384 385 tegra_plane_writel(plane, h_dda, DC_WIN_H_INITIAL_DDA); 386 tegra_plane_writel(plane, v_dda, DC_WIN_V_INITIAL_DDA); 387 388 tegra_plane_writel(plane, 0, DC_WIN_UV_BUF_STRIDE); 389 tegra_plane_writel(plane, 0, DC_WIN_BUF_STRIDE); 390 391 tegra_plane_writel(plane, window->base[0], DC_WINBUF_START_ADDR); 392 393 if (yuv && planar) { 394 tegra_plane_writel(plane, window->base[1], DC_WINBUF_START_ADDR_U); 395 tegra_plane_writel(plane, window->base[2], DC_WINBUF_START_ADDR_V); 396 value = window->stride[1] << 16 | window->stride[0]; 397 tegra_plane_writel(plane, value, DC_WIN_LINE_STRIDE); 398 } else { 399 tegra_plane_writel(plane, window->stride[0], DC_WIN_LINE_STRIDE); 400 } 401 402 if (window->bottom_up) 403 v_offset += window->src.h - 1; 404 405 tegra_plane_writel(plane, h_offset, DC_WINBUF_ADDR_H_OFFSET); 406 tegra_plane_writel(plane, v_offset, DC_WINBUF_ADDR_V_OFFSET); 407 408 if (dc->soc->supports_block_linear) { 409 unsigned long height = window->tiling.value; 410 411 switch (window->tiling.mode) { 412 case TEGRA_BO_TILING_MODE_PITCH: 413 value = DC_WINBUF_SURFACE_KIND_PITCH; 414 break; 415 416 case TEGRA_BO_TILING_MODE_TILED: 417 value = DC_WINBUF_SURFACE_KIND_TILED; 418 break; 419 420 case TEGRA_BO_TILING_MODE_BLOCK: 421 value = DC_WINBUF_SURFACE_KIND_BLOCK_HEIGHT(height) | 422 DC_WINBUF_SURFACE_KIND_BLOCK; 423 break; 424 } 425 426 tegra_plane_writel(plane, value, DC_WINBUF_SURFACE_KIND); 427 } else { 428 switch (window->tiling.mode) { 429 case TEGRA_BO_TILING_MODE_PITCH: 430 value = DC_WIN_BUFFER_ADDR_MODE_LINEAR_UV | 431 DC_WIN_BUFFER_ADDR_MODE_LINEAR; 432 break; 433 434 case TEGRA_BO_TILING_MODE_TILED: 435 value = DC_WIN_BUFFER_ADDR_MODE_TILE_UV | 436 DC_WIN_BUFFER_ADDR_MODE_TILE; 437 break; 438 439 case TEGRA_BO_TILING_MODE_BLOCK: 440 /* 441 * No need to handle this here because ->atomic_check 442 * will already have filtered it out. 443 */ 444 break; 445 } 446 447 tegra_plane_writel(plane, value, DC_WIN_BUFFER_ADDR_MODE); 448 } 449 450 value = WIN_ENABLE; 451 452 if (yuv) { 453 /* setup default colorspace conversion coefficients */ 454 tegra_plane_writel(plane, 0x00f0, DC_WIN_CSC_YOF); 455 tegra_plane_writel(plane, 0x012a, DC_WIN_CSC_KYRGB); 456 tegra_plane_writel(plane, 0x0000, DC_WIN_CSC_KUR); 457 tegra_plane_writel(plane, 0x0198, DC_WIN_CSC_KVR); 458 tegra_plane_writel(plane, 0x039b, DC_WIN_CSC_KUG); 459 tegra_plane_writel(plane, 0x032f, DC_WIN_CSC_KVG); 460 tegra_plane_writel(plane, 0x0204, DC_WIN_CSC_KUB); 461 tegra_plane_writel(plane, 0x0000, DC_WIN_CSC_KVB); 462 463 value |= CSC_ENABLE; 464 } else if (window->bits_per_pixel < 24) { 465 value |= COLOR_EXPAND; 466 } 467 468 if (window->bottom_up) 469 value |= V_DIRECTION; 470 471 if (tegra_plane_use_horizontal_filtering(plane, window)) { 472 /* 473 * Enable horizontal 6-tap filter and set filtering 474 * coefficients to the default values defined in TRM. 475 */ 476 tegra_plane_writel(plane, 0x00008000, DC_WIN_H_FILTER_P(0)); 477 tegra_plane_writel(plane, 0x3e087ce1, DC_WIN_H_FILTER_P(1)); 478 tegra_plane_writel(plane, 0x3b117ac1, DC_WIN_H_FILTER_P(2)); 479 tegra_plane_writel(plane, 0x591b73aa, DC_WIN_H_FILTER_P(3)); 480 tegra_plane_writel(plane, 0x57256d9a, DC_WIN_H_FILTER_P(4)); 481 tegra_plane_writel(plane, 0x552f668b, DC_WIN_H_FILTER_P(5)); 482 tegra_plane_writel(plane, 0x73385e8b, DC_WIN_H_FILTER_P(6)); 483 tegra_plane_writel(plane, 0x72435583, DC_WIN_H_FILTER_P(7)); 484 tegra_plane_writel(plane, 0x714c4c8b, DC_WIN_H_FILTER_P(8)); 485 tegra_plane_writel(plane, 0x70554393, DC_WIN_H_FILTER_P(9)); 486 tegra_plane_writel(plane, 0x715e389b, DC_WIN_H_FILTER_P(10)); 487 tegra_plane_writel(plane, 0x71662faa, DC_WIN_H_FILTER_P(11)); 488 tegra_plane_writel(plane, 0x536d25ba, DC_WIN_H_FILTER_P(12)); 489 tegra_plane_writel(plane, 0x55731bca, DC_WIN_H_FILTER_P(13)); 490 tegra_plane_writel(plane, 0x387a11d9, DC_WIN_H_FILTER_P(14)); 491 tegra_plane_writel(plane, 0x3c7c08f1, DC_WIN_H_FILTER_P(15)); 492 493 value |= H_FILTER; 494 } 495 496 if (tegra_plane_use_vertical_filtering(plane, window)) { 497 unsigned int i, k; 498 499 /* 500 * Enable vertical 2-tap filter and set filtering 501 * coefficients to the default values defined in TRM. 502 */ 503 for (i = 0, k = 128; i < 16; i++, k -= 8) 504 tegra_plane_writel(plane, k, DC_WIN_V_FILTER_P(i)); 505 506 value |= V_FILTER; 507 } 508 509 tegra_plane_writel(plane, value, DC_WIN_WIN_OPTIONS); 510 511 if (dc->soc->has_legacy_blending) 512 tegra_plane_setup_blending_legacy(plane); 513 else 514 tegra_plane_setup_blending(plane, window); 515 } 516 517 static const u32 tegra20_primary_formats[] = { 518 DRM_FORMAT_ARGB4444, 519 DRM_FORMAT_ARGB1555, 520 DRM_FORMAT_RGB565, 521 DRM_FORMAT_RGBA5551, 522 DRM_FORMAT_ABGR8888, 523 DRM_FORMAT_ARGB8888, 524 /* non-native formats */ 525 DRM_FORMAT_XRGB1555, 526 DRM_FORMAT_RGBX5551, 527 DRM_FORMAT_XBGR8888, 528 DRM_FORMAT_XRGB8888, 529 }; 530 531 static const u64 tegra20_modifiers[] = { 532 DRM_FORMAT_MOD_LINEAR, 533 DRM_FORMAT_MOD_NVIDIA_TEGRA_TILED, 534 DRM_FORMAT_MOD_INVALID 535 }; 536 537 static const u32 tegra114_primary_formats[] = { 538 DRM_FORMAT_ARGB4444, 539 DRM_FORMAT_ARGB1555, 540 DRM_FORMAT_RGB565, 541 DRM_FORMAT_RGBA5551, 542 DRM_FORMAT_ABGR8888, 543 DRM_FORMAT_ARGB8888, 544 /* new on Tegra114 */ 545 DRM_FORMAT_ABGR4444, 546 DRM_FORMAT_ABGR1555, 547 DRM_FORMAT_BGRA5551, 548 DRM_FORMAT_XRGB1555, 549 DRM_FORMAT_RGBX5551, 550 DRM_FORMAT_XBGR1555, 551 DRM_FORMAT_BGRX5551, 552 DRM_FORMAT_BGR565, 553 DRM_FORMAT_BGRA8888, 554 DRM_FORMAT_RGBA8888, 555 DRM_FORMAT_XRGB8888, 556 DRM_FORMAT_XBGR8888, 557 }; 558 559 static const u32 tegra124_primary_formats[] = { 560 DRM_FORMAT_ARGB4444, 561 DRM_FORMAT_ARGB1555, 562 DRM_FORMAT_RGB565, 563 DRM_FORMAT_RGBA5551, 564 DRM_FORMAT_ABGR8888, 565 DRM_FORMAT_ARGB8888, 566 /* new on Tegra114 */ 567 DRM_FORMAT_ABGR4444, 568 DRM_FORMAT_ABGR1555, 569 DRM_FORMAT_BGRA5551, 570 DRM_FORMAT_XRGB1555, 571 DRM_FORMAT_RGBX5551, 572 DRM_FORMAT_XBGR1555, 573 DRM_FORMAT_BGRX5551, 574 DRM_FORMAT_BGR565, 575 DRM_FORMAT_BGRA8888, 576 DRM_FORMAT_RGBA8888, 577 DRM_FORMAT_XRGB8888, 578 DRM_FORMAT_XBGR8888, 579 /* new on Tegra124 */ 580 DRM_FORMAT_RGBX8888, 581 DRM_FORMAT_BGRX8888, 582 }; 583 584 static const u64 tegra124_modifiers[] = { 585 DRM_FORMAT_MOD_LINEAR, 586 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(0), 587 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(1), 588 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(2), 589 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(3), 590 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(4), 591 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(5), 592 DRM_FORMAT_MOD_INVALID 593 }; 594 595 static int tegra_plane_atomic_check(struct drm_plane *plane, 596 struct drm_plane_state *state) 597 { 598 struct tegra_plane_state *plane_state = to_tegra_plane_state(state); 599 unsigned int rotation = DRM_MODE_ROTATE_0 | DRM_MODE_REFLECT_Y; 600 struct tegra_bo_tiling *tiling = &plane_state->tiling; 601 struct tegra_plane *tegra = to_tegra_plane(plane); 602 struct tegra_dc *dc = to_tegra_dc(state->crtc); 603 int err; 604 605 /* no need for further checks if the plane is being disabled */ 606 if (!state->crtc) 607 return 0; 608 609 err = tegra_plane_format(state->fb->format->format, 610 &plane_state->format, 611 &plane_state->swap); 612 if (err < 0) 613 return err; 614 615 /* 616 * Tegra20 and Tegra30 are special cases here because they support 617 * only variants of specific formats with an alpha component, but not 618 * the corresponding opaque formats. However, the opaque formats can 619 * be emulated by disabling alpha blending for the plane. 620 */ 621 if (dc->soc->has_legacy_blending) { 622 err = tegra_plane_setup_legacy_state(tegra, plane_state); 623 if (err < 0) 624 return err; 625 } 626 627 err = tegra_fb_get_tiling(state->fb, tiling); 628 if (err < 0) 629 return err; 630 631 if (tiling->mode == TEGRA_BO_TILING_MODE_BLOCK && 632 !dc->soc->supports_block_linear) { 633 DRM_ERROR("hardware doesn't support block linear mode\n"); 634 return -EINVAL; 635 } 636 637 rotation = drm_rotation_simplify(state->rotation, rotation); 638 639 if (rotation & DRM_MODE_REFLECT_Y) 640 plane_state->bottom_up = true; 641 else 642 plane_state->bottom_up = false; 643 644 /* 645 * Tegra doesn't support different strides for U and V planes so we 646 * error out if the user tries to display a framebuffer with such a 647 * configuration. 648 */ 649 if (state->fb->format->num_planes > 2) { 650 if (state->fb->pitches[2] != state->fb->pitches[1]) { 651 DRM_ERROR("unsupported UV-plane configuration\n"); 652 return -EINVAL; 653 } 654 } 655 656 err = tegra_plane_state_add(tegra, state); 657 if (err < 0) 658 return err; 659 660 return 0; 661 } 662 663 static void tegra_plane_atomic_disable(struct drm_plane *plane, 664 struct drm_plane_state *old_state) 665 { 666 struct tegra_plane *p = to_tegra_plane(plane); 667 u32 value; 668 669 /* rien ne va plus */ 670 if (!old_state || !old_state->crtc) 671 return; 672 673 value = tegra_plane_readl(p, DC_WIN_WIN_OPTIONS); 674 value &= ~WIN_ENABLE; 675 tegra_plane_writel(p, value, DC_WIN_WIN_OPTIONS); 676 } 677 678 static void tegra_plane_atomic_update(struct drm_plane *plane, 679 struct drm_plane_state *old_state) 680 { 681 struct tegra_plane_state *state = to_tegra_plane_state(plane->state); 682 struct drm_framebuffer *fb = plane->state->fb; 683 struct tegra_plane *p = to_tegra_plane(plane); 684 struct tegra_dc_window window; 685 unsigned int i; 686 687 /* rien ne va plus */ 688 if (!plane->state->crtc || !plane->state->fb) 689 return; 690 691 if (!plane->state->visible) 692 return tegra_plane_atomic_disable(plane, old_state); 693 694 memset(&window, 0, sizeof(window)); 695 window.src.x = plane->state->src.x1 >> 16; 696 window.src.y = plane->state->src.y1 >> 16; 697 window.src.w = drm_rect_width(&plane->state->src) >> 16; 698 window.src.h = drm_rect_height(&plane->state->src) >> 16; 699 window.dst.x = plane->state->dst.x1; 700 window.dst.y = plane->state->dst.y1; 701 window.dst.w = drm_rect_width(&plane->state->dst); 702 window.dst.h = drm_rect_height(&plane->state->dst); 703 window.bits_per_pixel = fb->format->cpp[0] * 8; 704 window.bottom_up = tegra_fb_is_bottom_up(fb) || state->bottom_up; 705 706 /* copy from state */ 707 window.zpos = plane->state->normalized_zpos; 708 window.tiling = state->tiling; 709 window.format = state->format; 710 window.swap = state->swap; 711 712 for (i = 0; i < fb->format->num_planes; i++) { 713 struct tegra_bo *bo = tegra_fb_get_plane(fb, i); 714 715 window.base[i] = bo->paddr + fb->offsets[i]; 716 717 /* 718 * Tegra uses a shared stride for UV planes. Framebuffers are 719 * already checked for this in the tegra_plane_atomic_check() 720 * function, so it's safe to ignore the V-plane pitch here. 721 */ 722 if (i < 2) 723 window.stride[i] = fb->pitches[i]; 724 } 725 726 tegra_dc_setup_window(p, &window); 727 } 728 729 static const struct drm_plane_helper_funcs tegra_plane_helper_funcs = { 730 .atomic_check = tegra_plane_atomic_check, 731 .atomic_disable = tegra_plane_atomic_disable, 732 .atomic_update = tegra_plane_atomic_update, 733 }; 734 735 static unsigned long tegra_plane_get_possible_crtcs(struct drm_device *drm) 736 { 737 /* 738 * Ideally this would use drm_crtc_mask(), but that would require the 739 * CRTC to already be in the mode_config's list of CRTCs. However, it 740 * will only be added to that list in the drm_crtc_init_with_planes() 741 * (in tegra_dc_init()), which in turn requires registration of these 742 * planes. So we have ourselves a nice little chicken and egg problem 743 * here. 744 * 745 * We work around this by manually creating the mask from the number 746 * of CRTCs that have been registered, and should therefore always be 747 * the same as drm_crtc_index() after registration. 748 */ 749 return 1 << drm->mode_config.num_crtc; 750 } 751 752 static struct drm_plane *tegra_primary_plane_create(struct drm_device *drm, 753 struct tegra_dc *dc) 754 { 755 unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm); 756 enum drm_plane_type type = DRM_PLANE_TYPE_PRIMARY; 757 struct tegra_plane *plane; 758 unsigned int num_formats; 759 const u64 *modifiers; 760 const u32 *formats; 761 int err; 762 763 plane = kzalloc(sizeof(*plane), GFP_KERNEL); 764 if (!plane) 765 return ERR_PTR(-ENOMEM); 766 767 /* Always use window A as primary window */ 768 plane->offset = 0xa00; 769 plane->index = 0; 770 plane->dc = dc; 771 772 num_formats = dc->soc->num_primary_formats; 773 formats = dc->soc->primary_formats; 774 modifiers = dc->soc->modifiers; 775 776 err = drm_universal_plane_init(drm, &plane->base, possible_crtcs, 777 &tegra_plane_funcs, formats, 778 num_formats, modifiers, type, NULL); 779 if (err < 0) { 780 kfree(plane); 781 return ERR_PTR(err); 782 } 783 784 drm_plane_helper_add(&plane->base, &tegra_plane_helper_funcs); 785 drm_plane_create_zpos_property(&plane->base, plane->index, 0, 255); 786 787 err = drm_plane_create_rotation_property(&plane->base, 788 DRM_MODE_ROTATE_0, 789 DRM_MODE_ROTATE_0 | 790 DRM_MODE_REFLECT_Y); 791 if (err < 0) 792 dev_err(dc->dev, "failed to create rotation property: %d\n", 793 err); 794 795 return &plane->base; 796 } 797 798 static const u32 tegra_cursor_plane_formats[] = { 799 DRM_FORMAT_RGBA8888, 800 }; 801 802 static int tegra_cursor_atomic_check(struct drm_plane *plane, 803 struct drm_plane_state *state) 804 { 805 struct tegra_plane *tegra = to_tegra_plane(plane); 806 int err; 807 808 /* no need for further checks if the plane is being disabled */ 809 if (!state->crtc) 810 return 0; 811 812 /* scaling not supported for cursor */ 813 if ((state->src_w >> 16 != state->crtc_w) || 814 (state->src_h >> 16 != state->crtc_h)) 815 return -EINVAL; 816 817 /* only square cursors supported */ 818 if (state->src_w != state->src_h) 819 return -EINVAL; 820 821 if (state->crtc_w != 32 && state->crtc_w != 64 && 822 state->crtc_w != 128 && state->crtc_w != 256) 823 return -EINVAL; 824 825 err = tegra_plane_state_add(tegra, state); 826 if (err < 0) 827 return err; 828 829 return 0; 830 } 831 832 static void tegra_cursor_atomic_update(struct drm_plane *plane, 833 struct drm_plane_state *old_state) 834 { 835 struct tegra_bo *bo = tegra_fb_get_plane(plane->state->fb, 0); 836 struct tegra_dc *dc = to_tegra_dc(plane->state->crtc); 837 struct drm_plane_state *state = plane->state; 838 u32 value = CURSOR_CLIP_DISPLAY; 839 840 /* rien ne va plus */ 841 if (!plane->state->crtc || !plane->state->fb) 842 return; 843 844 switch (state->crtc_w) { 845 case 32: 846 value |= CURSOR_SIZE_32x32; 847 break; 848 849 case 64: 850 value |= CURSOR_SIZE_64x64; 851 break; 852 853 case 128: 854 value |= CURSOR_SIZE_128x128; 855 break; 856 857 case 256: 858 value |= CURSOR_SIZE_256x256; 859 break; 860 861 default: 862 WARN(1, "cursor size %ux%u not supported\n", state->crtc_w, 863 state->crtc_h); 864 return; 865 } 866 867 value |= (bo->paddr >> 10) & 0x3fffff; 868 tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR); 869 870 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT 871 value = (bo->paddr >> 32) & 0x3; 872 tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR_HI); 873 #endif 874 875 /* enable cursor and set blend mode */ 876 value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS); 877 value |= CURSOR_ENABLE; 878 tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS); 879 880 value = tegra_dc_readl(dc, DC_DISP_BLEND_CURSOR_CONTROL); 881 value &= ~CURSOR_DST_BLEND_MASK; 882 value &= ~CURSOR_SRC_BLEND_MASK; 883 value |= CURSOR_MODE_NORMAL; 884 value |= CURSOR_DST_BLEND_NEG_K1_TIMES_SRC; 885 value |= CURSOR_SRC_BLEND_K1_TIMES_SRC; 886 value |= CURSOR_ALPHA; 887 tegra_dc_writel(dc, value, DC_DISP_BLEND_CURSOR_CONTROL); 888 889 /* position the cursor */ 890 value = (state->crtc_y & 0x3fff) << 16 | (state->crtc_x & 0x3fff); 891 tegra_dc_writel(dc, value, DC_DISP_CURSOR_POSITION); 892 } 893 894 static void tegra_cursor_atomic_disable(struct drm_plane *plane, 895 struct drm_plane_state *old_state) 896 { 897 struct tegra_dc *dc; 898 u32 value; 899 900 /* rien ne va plus */ 901 if (!old_state || !old_state->crtc) 902 return; 903 904 dc = to_tegra_dc(old_state->crtc); 905 906 value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS); 907 value &= ~CURSOR_ENABLE; 908 tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS); 909 } 910 911 static const struct drm_plane_helper_funcs tegra_cursor_plane_helper_funcs = { 912 .atomic_check = tegra_cursor_atomic_check, 913 .atomic_update = tegra_cursor_atomic_update, 914 .atomic_disable = tegra_cursor_atomic_disable, 915 }; 916 917 static struct drm_plane *tegra_dc_cursor_plane_create(struct drm_device *drm, 918 struct tegra_dc *dc) 919 { 920 unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm); 921 struct tegra_plane *plane; 922 unsigned int num_formats; 923 const u32 *formats; 924 int err; 925 926 plane = kzalloc(sizeof(*plane), GFP_KERNEL); 927 if (!plane) 928 return ERR_PTR(-ENOMEM); 929 930 /* 931 * This index is kind of fake. The cursor isn't a regular plane, but 932 * its update and activation request bits in DC_CMD_STATE_CONTROL do 933 * use the same programming. Setting this fake index here allows the 934 * code in tegra_add_plane_state() to do the right thing without the 935 * need to special-casing the cursor plane. 936 */ 937 plane->index = 6; 938 plane->dc = dc; 939 940 num_formats = ARRAY_SIZE(tegra_cursor_plane_formats); 941 formats = tegra_cursor_plane_formats; 942 943 err = drm_universal_plane_init(drm, &plane->base, possible_crtcs, 944 &tegra_plane_funcs, formats, 945 num_formats, NULL, 946 DRM_PLANE_TYPE_CURSOR, NULL); 947 if (err < 0) { 948 kfree(plane); 949 return ERR_PTR(err); 950 } 951 952 drm_plane_helper_add(&plane->base, &tegra_cursor_plane_helper_funcs); 953 954 return &plane->base; 955 } 956 957 static const u32 tegra20_overlay_formats[] = { 958 DRM_FORMAT_ARGB4444, 959 DRM_FORMAT_ARGB1555, 960 DRM_FORMAT_RGB565, 961 DRM_FORMAT_RGBA5551, 962 DRM_FORMAT_ABGR8888, 963 DRM_FORMAT_ARGB8888, 964 /* non-native formats */ 965 DRM_FORMAT_XRGB1555, 966 DRM_FORMAT_RGBX5551, 967 DRM_FORMAT_XBGR8888, 968 DRM_FORMAT_XRGB8888, 969 /* planar formats */ 970 DRM_FORMAT_UYVY, 971 DRM_FORMAT_YUYV, 972 DRM_FORMAT_YUV420, 973 DRM_FORMAT_YUV422, 974 }; 975 976 static const u32 tegra114_overlay_formats[] = { 977 DRM_FORMAT_ARGB4444, 978 DRM_FORMAT_ARGB1555, 979 DRM_FORMAT_RGB565, 980 DRM_FORMAT_RGBA5551, 981 DRM_FORMAT_ABGR8888, 982 DRM_FORMAT_ARGB8888, 983 /* new on Tegra114 */ 984 DRM_FORMAT_ABGR4444, 985 DRM_FORMAT_ABGR1555, 986 DRM_FORMAT_BGRA5551, 987 DRM_FORMAT_XRGB1555, 988 DRM_FORMAT_RGBX5551, 989 DRM_FORMAT_XBGR1555, 990 DRM_FORMAT_BGRX5551, 991 DRM_FORMAT_BGR565, 992 DRM_FORMAT_BGRA8888, 993 DRM_FORMAT_RGBA8888, 994 DRM_FORMAT_XRGB8888, 995 DRM_FORMAT_XBGR8888, 996 /* planar formats */ 997 DRM_FORMAT_UYVY, 998 DRM_FORMAT_YUYV, 999 DRM_FORMAT_YUV420, 1000 DRM_FORMAT_YUV422, 1001 }; 1002 1003 static const u32 tegra124_overlay_formats[] = { 1004 DRM_FORMAT_ARGB4444, 1005 DRM_FORMAT_ARGB1555, 1006 DRM_FORMAT_RGB565, 1007 DRM_FORMAT_RGBA5551, 1008 DRM_FORMAT_ABGR8888, 1009 DRM_FORMAT_ARGB8888, 1010 /* new on Tegra114 */ 1011 DRM_FORMAT_ABGR4444, 1012 DRM_FORMAT_ABGR1555, 1013 DRM_FORMAT_BGRA5551, 1014 DRM_FORMAT_XRGB1555, 1015 DRM_FORMAT_RGBX5551, 1016 DRM_FORMAT_XBGR1555, 1017 DRM_FORMAT_BGRX5551, 1018 DRM_FORMAT_BGR565, 1019 DRM_FORMAT_BGRA8888, 1020 DRM_FORMAT_RGBA8888, 1021 DRM_FORMAT_XRGB8888, 1022 DRM_FORMAT_XBGR8888, 1023 /* new on Tegra124 */ 1024 DRM_FORMAT_RGBX8888, 1025 DRM_FORMAT_BGRX8888, 1026 /* planar formats */ 1027 DRM_FORMAT_UYVY, 1028 DRM_FORMAT_YUYV, 1029 DRM_FORMAT_YUV420, 1030 DRM_FORMAT_YUV422, 1031 }; 1032 1033 static struct drm_plane *tegra_dc_overlay_plane_create(struct drm_device *drm, 1034 struct tegra_dc *dc, 1035 unsigned int index, 1036 bool cursor) 1037 { 1038 unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm); 1039 struct tegra_plane *plane; 1040 unsigned int num_formats; 1041 enum drm_plane_type type; 1042 const u32 *formats; 1043 int err; 1044 1045 plane = kzalloc(sizeof(*plane), GFP_KERNEL); 1046 if (!plane) 1047 return ERR_PTR(-ENOMEM); 1048 1049 plane->offset = 0xa00 + 0x200 * index; 1050 plane->index = index; 1051 plane->dc = dc; 1052 1053 num_formats = dc->soc->num_overlay_formats; 1054 formats = dc->soc->overlay_formats; 1055 1056 if (!cursor) 1057 type = DRM_PLANE_TYPE_OVERLAY; 1058 else 1059 type = DRM_PLANE_TYPE_CURSOR; 1060 1061 err = drm_universal_plane_init(drm, &plane->base, possible_crtcs, 1062 &tegra_plane_funcs, formats, 1063 num_formats, NULL, type, NULL); 1064 if (err < 0) { 1065 kfree(plane); 1066 return ERR_PTR(err); 1067 } 1068 1069 drm_plane_helper_add(&plane->base, &tegra_plane_helper_funcs); 1070 drm_plane_create_zpos_property(&plane->base, plane->index, 0, 255); 1071 1072 err = drm_plane_create_rotation_property(&plane->base, 1073 DRM_MODE_ROTATE_0, 1074 DRM_MODE_ROTATE_0 | 1075 DRM_MODE_REFLECT_Y); 1076 if (err < 0) 1077 dev_err(dc->dev, "failed to create rotation property: %d\n", 1078 err); 1079 1080 return &plane->base; 1081 } 1082 1083 static struct drm_plane *tegra_dc_add_shared_planes(struct drm_device *drm, 1084 struct tegra_dc *dc) 1085 { 1086 struct drm_plane *plane, *primary = NULL; 1087 unsigned int i, j; 1088 1089 for (i = 0; i < dc->soc->num_wgrps; i++) { 1090 const struct tegra_windowgroup_soc *wgrp = &dc->soc->wgrps[i]; 1091 1092 if (wgrp->dc == dc->pipe) { 1093 for (j = 0; j < wgrp->num_windows; j++) { 1094 unsigned int index = wgrp->windows[j]; 1095 1096 plane = tegra_shared_plane_create(drm, dc, 1097 wgrp->index, 1098 index); 1099 if (IS_ERR(plane)) 1100 return plane; 1101 1102 /* 1103 * Choose the first shared plane owned by this 1104 * head as the primary plane. 1105 */ 1106 if (!primary) { 1107 plane->type = DRM_PLANE_TYPE_PRIMARY; 1108 primary = plane; 1109 } 1110 } 1111 } 1112 } 1113 1114 return primary; 1115 } 1116 1117 static struct drm_plane *tegra_dc_add_planes(struct drm_device *drm, 1118 struct tegra_dc *dc) 1119 { 1120 struct drm_plane *planes[2], *primary; 1121 unsigned int planes_num; 1122 unsigned int i; 1123 int err; 1124 1125 primary = tegra_primary_plane_create(drm, dc); 1126 if (IS_ERR(primary)) 1127 return primary; 1128 1129 if (dc->soc->supports_cursor) 1130 planes_num = 2; 1131 else 1132 planes_num = 1; 1133 1134 for (i = 0; i < planes_num; i++) { 1135 planes[i] = tegra_dc_overlay_plane_create(drm, dc, 1 + i, 1136 false); 1137 if (IS_ERR(planes[i])) { 1138 err = PTR_ERR(planes[i]); 1139 1140 while (i--) 1141 tegra_plane_funcs.destroy(planes[i]); 1142 1143 tegra_plane_funcs.destroy(primary); 1144 return ERR_PTR(err); 1145 } 1146 } 1147 1148 return primary; 1149 } 1150 1151 static void tegra_dc_destroy(struct drm_crtc *crtc) 1152 { 1153 drm_crtc_cleanup(crtc); 1154 } 1155 1156 static void tegra_crtc_reset(struct drm_crtc *crtc) 1157 { 1158 struct tegra_dc_state *state; 1159 1160 if (crtc->state) 1161 __drm_atomic_helper_crtc_destroy_state(crtc->state); 1162 1163 kfree(crtc->state); 1164 crtc->state = NULL; 1165 1166 state = kzalloc(sizeof(*state), GFP_KERNEL); 1167 if (state) { 1168 crtc->state = &state->base; 1169 crtc->state->crtc = crtc; 1170 } 1171 1172 drm_crtc_vblank_reset(crtc); 1173 } 1174 1175 static struct drm_crtc_state * 1176 tegra_crtc_atomic_duplicate_state(struct drm_crtc *crtc) 1177 { 1178 struct tegra_dc_state *state = to_dc_state(crtc->state); 1179 struct tegra_dc_state *copy; 1180 1181 copy = kmalloc(sizeof(*copy), GFP_KERNEL); 1182 if (!copy) 1183 return NULL; 1184 1185 __drm_atomic_helper_crtc_duplicate_state(crtc, ©->base); 1186 copy->clk = state->clk; 1187 copy->pclk = state->pclk; 1188 copy->div = state->div; 1189 copy->planes = state->planes; 1190 1191 return ©->base; 1192 } 1193 1194 static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc, 1195 struct drm_crtc_state *state) 1196 { 1197 __drm_atomic_helper_crtc_destroy_state(state); 1198 kfree(state); 1199 } 1200 1201 #define DEBUGFS_REG32(_name) { .name = #_name, .offset = _name } 1202 1203 static const struct debugfs_reg32 tegra_dc_regs[] = { 1204 DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT), 1205 DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT_CNTRL), 1206 DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT_ERROR), 1207 DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT), 1208 DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT_CNTRL), 1209 DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT_ERROR), 1210 DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT), 1211 DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT_CNTRL), 1212 DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT_ERROR), 1213 DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT), 1214 DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT_CNTRL), 1215 DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT_ERROR), 1216 DEBUGFS_REG32(DC_CMD_CONT_SYNCPT_VSYNC), 1217 DEBUGFS_REG32(DC_CMD_DISPLAY_COMMAND_OPTION0), 1218 DEBUGFS_REG32(DC_CMD_DISPLAY_COMMAND), 1219 DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE), 1220 DEBUGFS_REG32(DC_CMD_DISPLAY_POWER_CONTROL), 1221 DEBUGFS_REG32(DC_CMD_INT_STATUS), 1222 DEBUGFS_REG32(DC_CMD_INT_MASK), 1223 DEBUGFS_REG32(DC_CMD_INT_ENABLE), 1224 DEBUGFS_REG32(DC_CMD_INT_TYPE), 1225 DEBUGFS_REG32(DC_CMD_INT_POLARITY), 1226 DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE1), 1227 DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE2), 1228 DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE3), 1229 DEBUGFS_REG32(DC_CMD_STATE_ACCESS), 1230 DEBUGFS_REG32(DC_CMD_STATE_CONTROL), 1231 DEBUGFS_REG32(DC_CMD_DISPLAY_WINDOW_HEADER), 1232 DEBUGFS_REG32(DC_CMD_REG_ACT_CONTROL), 1233 DEBUGFS_REG32(DC_COM_CRC_CONTROL), 1234 DEBUGFS_REG32(DC_COM_CRC_CHECKSUM), 1235 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(0)), 1236 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(1)), 1237 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(2)), 1238 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(3)), 1239 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(0)), 1240 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(1)), 1241 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(2)), 1242 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(3)), 1243 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(0)), 1244 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(1)), 1245 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(2)), 1246 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(3)), 1247 DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(0)), 1248 DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(1)), 1249 DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(2)), 1250 DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(3)), 1251 DEBUGFS_REG32(DC_COM_PIN_INPUT_DATA(0)), 1252 DEBUGFS_REG32(DC_COM_PIN_INPUT_DATA(1)), 1253 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(0)), 1254 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(1)), 1255 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(2)), 1256 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(3)), 1257 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(4)), 1258 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(5)), 1259 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(6)), 1260 DEBUGFS_REG32(DC_COM_PIN_MISC_CONTROL), 1261 DEBUGFS_REG32(DC_COM_PIN_PM0_CONTROL), 1262 DEBUGFS_REG32(DC_COM_PIN_PM0_DUTY_CYCLE), 1263 DEBUGFS_REG32(DC_COM_PIN_PM1_CONTROL), 1264 DEBUGFS_REG32(DC_COM_PIN_PM1_DUTY_CYCLE), 1265 DEBUGFS_REG32(DC_COM_SPI_CONTROL), 1266 DEBUGFS_REG32(DC_COM_SPI_START_BYTE), 1267 DEBUGFS_REG32(DC_COM_HSPI_WRITE_DATA_AB), 1268 DEBUGFS_REG32(DC_COM_HSPI_WRITE_DATA_CD), 1269 DEBUGFS_REG32(DC_COM_HSPI_CS_DC), 1270 DEBUGFS_REG32(DC_COM_SCRATCH_REGISTER_A), 1271 DEBUGFS_REG32(DC_COM_SCRATCH_REGISTER_B), 1272 DEBUGFS_REG32(DC_COM_GPIO_CTRL), 1273 DEBUGFS_REG32(DC_COM_GPIO_DEBOUNCE_COUNTER), 1274 DEBUGFS_REG32(DC_COM_CRC_CHECKSUM_LATCHED), 1275 DEBUGFS_REG32(DC_DISP_DISP_SIGNAL_OPTIONS0), 1276 DEBUGFS_REG32(DC_DISP_DISP_SIGNAL_OPTIONS1), 1277 DEBUGFS_REG32(DC_DISP_DISP_WIN_OPTIONS), 1278 DEBUGFS_REG32(DC_DISP_DISP_MEM_HIGH_PRIORITY), 1279 DEBUGFS_REG32(DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER), 1280 DEBUGFS_REG32(DC_DISP_DISP_TIMING_OPTIONS), 1281 DEBUGFS_REG32(DC_DISP_REF_TO_SYNC), 1282 DEBUGFS_REG32(DC_DISP_SYNC_WIDTH), 1283 DEBUGFS_REG32(DC_DISP_BACK_PORCH), 1284 DEBUGFS_REG32(DC_DISP_ACTIVE), 1285 DEBUGFS_REG32(DC_DISP_FRONT_PORCH), 1286 DEBUGFS_REG32(DC_DISP_H_PULSE0_CONTROL), 1287 DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_A), 1288 DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_B), 1289 DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_C), 1290 DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_D), 1291 DEBUGFS_REG32(DC_DISP_H_PULSE1_CONTROL), 1292 DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_A), 1293 DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_B), 1294 DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_C), 1295 DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_D), 1296 DEBUGFS_REG32(DC_DISP_H_PULSE2_CONTROL), 1297 DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_A), 1298 DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_B), 1299 DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_C), 1300 DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_D), 1301 DEBUGFS_REG32(DC_DISP_V_PULSE0_CONTROL), 1302 DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_A), 1303 DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_B), 1304 DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_C), 1305 DEBUGFS_REG32(DC_DISP_V_PULSE1_CONTROL), 1306 DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_A), 1307 DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_B), 1308 DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_C), 1309 DEBUGFS_REG32(DC_DISP_V_PULSE2_CONTROL), 1310 DEBUGFS_REG32(DC_DISP_V_PULSE2_POSITION_A), 1311 DEBUGFS_REG32(DC_DISP_V_PULSE3_CONTROL), 1312 DEBUGFS_REG32(DC_DISP_V_PULSE3_POSITION_A), 1313 DEBUGFS_REG32(DC_DISP_M0_CONTROL), 1314 DEBUGFS_REG32(DC_DISP_M1_CONTROL), 1315 DEBUGFS_REG32(DC_DISP_DI_CONTROL), 1316 DEBUGFS_REG32(DC_DISP_PP_CONTROL), 1317 DEBUGFS_REG32(DC_DISP_PP_SELECT_A), 1318 DEBUGFS_REG32(DC_DISP_PP_SELECT_B), 1319 DEBUGFS_REG32(DC_DISP_PP_SELECT_C), 1320 DEBUGFS_REG32(DC_DISP_PP_SELECT_D), 1321 DEBUGFS_REG32(DC_DISP_DISP_CLOCK_CONTROL), 1322 DEBUGFS_REG32(DC_DISP_DISP_INTERFACE_CONTROL), 1323 DEBUGFS_REG32(DC_DISP_DISP_COLOR_CONTROL), 1324 DEBUGFS_REG32(DC_DISP_SHIFT_CLOCK_OPTIONS), 1325 DEBUGFS_REG32(DC_DISP_DATA_ENABLE_OPTIONS), 1326 DEBUGFS_REG32(DC_DISP_SERIAL_INTERFACE_OPTIONS), 1327 DEBUGFS_REG32(DC_DISP_LCD_SPI_OPTIONS), 1328 DEBUGFS_REG32(DC_DISP_BORDER_COLOR), 1329 DEBUGFS_REG32(DC_DISP_COLOR_KEY0_LOWER), 1330 DEBUGFS_REG32(DC_DISP_COLOR_KEY0_UPPER), 1331 DEBUGFS_REG32(DC_DISP_COLOR_KEY1_LOWER), 1332 DEBUGFS_REG32(DC_DISP_COLOR_KEY1_UPPER), 1333 DEBUGFS_REG32(DC_DISP_CURSOR_FOREGROUND), 1334 DEBUGFS_REG32(DC_DISP_CURSOR_BACKGROUND), 1335 DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR), 1336 DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR_NS), 1337 DEBUGFS_REG32(DC_DISP_CURSOR_POSITION), 1338 DEBUGFS_REG32(DC_DISP_CURSOR_POSITION_NS), 1339 DEBUGFS_REG32(DC_DISP_INIT_SEQ_CONTROL), 1340 DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_A), 1341 DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_B), 1342 DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_C), 1343 DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_D), 1344 DEBUGFS_REG32(DC_DISP_DC_MCCIF_FIFOCTRL), 1345 DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY0A_HYST), 1346 DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY0B_HYST), 1347 DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY1A_HYST), 1348 DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY1B_HYST), 1349 DEBUGFS_REG32(DC_DISP_DAC_CRT_CTRL), 1350 DEBUGFS_REG32(DC_DISP_DISP_MISC_CONTROL), 1351 DEBUGFS_REG32(DC_DISP_SD_CONTROL), 1352 DEBUGFS_REG32(DC_DISP_SD_CSC_COEFF), 1353 DEBUGFS_REG32(DC_DISP_SD_LUT(0)), 1354 DEBUGFS_REG32(DC_DISP_SD_LUT(1)), 1355 DEBUGFS_REG32(DC_DISP_SD_LUT(2)), 1356 DEBUGFS_REG32(DC_DISP_SD_LUT(3)), 1357 DEBUGFS_REG32(DC_DISP_SD_LUT(4)), 1358 DEBUGFS_REG32(DC_DISP_SD_LUT(5)), 1359 DEBUGFS_REG32(DC_DISP_SD_LUT(6)), 1360 DEBUGFS_REG32(DC_DISP_SD_LUT(7)), 1361 DEBUGFS_REG32(DC_DISP_SD_LUT(8)), 1362 DEBUGFS_REG32(DC_DISP_SD_FLICKER_CONTROL), 1363 DEBUGFS_REG32(DC_DISP_DC_PIXEL_COUNT), 1364 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(0)), 1365 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(1)), 1366 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(2)), 1367 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(3)), 1368 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(4)), 1369 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(5)), 1370 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(6)), 1371 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(7)), 1372 DEBUGFS_REG32(DC_DISP_SD_BL_TF(0)), 1373 DEBUGFS_REG32(DC_DISP_SD_BL_TF(1)), 1374 DEBUGFS_REG32(DC_DISP_SD_BL_TF(2)), 1375 DEBUGFS_REG32(DC_DISP_SD_BL_TF(3)), 1376 DEBUGFS_REG32(DC_DISP_SD_BL_CONTROL), 1377 DEBUGFS_REG32(DC_DISP_SD_HW_K_VALUES), 1378 DEBUGFS_REG32(DC_DISP_SD_MAN_K_VALUES), 1379 DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR_HI), 1380 DEBUGFS_REG32(DC_DISP_BLEND_CURSOR_CONTROL), 1381 DEBUGFS_REG32(DC_WIN_WIN_OPTIONS), 1382 DEBUGFS_REG32(DC_WIN_BYTE_SWAP), 1383 DEBUGFS_REG32(DC_WIN_BUFFER_CONTROL), 1384 DEBUGFS_REG32(DC_WIN_COLOR_DEPTH), 1385 DEBUGFS_REG32(DC_WIN_POSITION), 1386 DEBUGFS_REG32(DC_WIN_SIZE), 1387 DEBUGFS_REG32(DC_WIN_PRESCALED_SIZE), 1388 DEBUGFS_REG32(DC_WIN_H_INITIAL_DDA), 1389 DEBUGFS_REG32(DC_WIN_V_INITIAL_DDA), 1390 DEBUGFS_REG32(DC_WIN_DDA_INC), 1391 DEBUGFS_REG32(DC_WIN_LINE_STRIDE), 1392 DEBUGFS_REG32(DC_WIN_BUF_STRIDE), 1393 DEBUGFS_REG32(DC_WIN_UV_BUF_STRIDE), 1394 DEBUGFS_REG32(DC_WIN_BUFFER_ADDR_MODE), 1395 DEBUGFS_REG32(DC_WIN_DV_CONTROL), 1396 DEBUGFS_REG32(DC_WIN_BLEND_NOKEY), 1397 DEBUGFS_REG32(DC_WIN_BLEND_1WIN), 1398 DEBUGFS_REG32(DC_WIN_BLEND_2WIN_X), 1399 DEBUGFS_REG32(DC_WIN_BLEND_2WIN_Y), 1400 DEBUGFS_REG32(DC_WIN_BLEND_3WIN_XY), 1401 DEBUGFS_REG32(DC_WIN_HP_FETCH_CONTROL), 1402 DEBUGFS_REG32(DC_WINBUF_START_ADDR), 1403 DEBUGFS_REG32(DC_WINBUF_START_ADDR_NS), 1404 DEBUGFS_REG32(DC_WINBUF_START_ADDR_U), 1405 DEBUGFS_REG32(DC_WINBUF_START_ADDR_U_NS), 1406 DEBUGFS_REG32(DC_WINBUF_START_ADDR_V), 1407 DEBUGFS_REG32(DC_WINBUF_START_ADDR_V_NS), 1408 DEBUGFS_REG32(DC_WINBUF_ADDR_H_OFFSET), 1409 DEBUGFS_REG32(DC_WINBUF_ADDR_H_OFFSET_NS), 1410 DEBUGFS_REG32(DC_WINBUF_ADDR_V_OFFSET), 1411 DEBUGFS_REG32(DC_WINBUF_ADDR_V_OFFSET_NS), 1412 DEBUGFS_REG32(DC_WINBUF_UFLOW_STATUS), 1413 DEBUGFS_REG32(DC_WINBUF_AD_UFLOW_STATUS), 1414 DEBUGFS_REG32(DC_WINBUF_BD_UFLOW_STATUS), 1415 DEBUGFS_REG32(DC_WINBUF_CD_UFLOW_STATUS), 1416 }; 1417 1418 static int tegra_dc_show_regs(struct seq_file *s, void *data) 1419 { 1420 struct drm_info_node *node = s->private; 1421 struct tegra_dc *dc = node->info_ent->data; 1422 unsigned int i; 1423 int err = 0; 1424 1425 drm_modeset_lock(&dc->base.mutex, NULL); 1426 1427 if (!dc->base.state->active) { 1428 err = -EBUSY; 1429 goto unlock; 1430 } 1431 1432 for (i = 0; i < ARRAY_SIZE(tegra_dc_regs); i++) { 1433 unsigned int offset = tegra_dc_regs[i].offset; 1434 1435 seq_printf(s, "%-40s %#05x %08x\n", tegra_dc_regs[i].name, 1436 offset, tegra_dc_readl(dc, offset)); 1437 } 1438 1439 unlock: 1440 drm_modeset_unlock(&dc->base.mutex); 1441 return err; 1442 } 1443 1444 static int tegra_dc_show_crc(struct seq_file *s, void *data) 1445 { 1446 struct drm_info_node *node = s->private; 1447 struct tegra_dc *dc = node->info_ent->data; 1448 int err = 0; 1449 u32 value; 1450 1451 drm_modeset_lock(&dc->base.mutex, NULL); 1452 1453 if (!dc->base.state->active) { 1454 err = -EBUSY; 1455 goto unlock; 1456 } 1457 1458 value = DC_COM_CRC_CONTROL_ACTIVE_DATA | DC_COM_CRC_CONTROL_ENABLE; 1459 tegra_dc_writel(dc, value, DC_COM_CRC_CONTROL); 1460 tegra_dc_commit(dc); 1461 1462 drm_crtc_wait_one_vblank(&dc->base); 1463 drm_crtc_wait_one_vblank(&dc->base); 1464 1465 value = tegra_dc_readl(dc, DC_COM_CRC_CHECKSUM); 1466 seq_printf(s, "%08x\n", value); 1467 1468 tegra_dc_writel(dc, 0, DC_COM_CRC_CONTROL); 1469 1470 unlock: 1471 drm_modeset_unlock(&dc->base.mutex); 1472 return err; 1473 } 1474 1475 static int tegra_dc_show_stats(struct seq_file *s, void *data) 1476 { 1477 struct drm_info_node *node = s->private; 1478 struct tegra_dc *dc = node->info_ent->data; 1479 1480 seq_printf(s, "frames: %lu\n", dc->stats.frames); 1481 seq_printf(s, "vblank: %lu\n", dc->stats.vblank); 1482 seq_printf(s, "underflow: %lu\n", dc->stats.underflow); 1483 seq_printf(s, "overflow: %lu\n", dc->stats.overflow); 1484 1485 return 0; 1486 } 1487 1488 static struct drm_info_list debugfs_files[] = { 1489 { "regs", tegra_dc_show_regs, 0, NULL }, 1490 { "crc", tegra_dc_show_crc, 0, NULL }, 1491 { "stats", tegra_dc_show_stats, 0, NULL }, 1492 }; 1493 1494 static int tegra_dc_late_register(struct drm_crtc *crtc) 1495 { 1496 unsigned int i, count = ARRAY_SIZE(debugfs_files); 1497 struct drm_minor *minor = crtc->dev->primary; 1498 struct dentry *root; 1499 struct tegra_dc *dc = to_tegra_dc(crtc); 1500 int err; 1501 1502 #ifdef CONFIG_DEBUG_FS 1503 root = crtc->debugfs_entry; 1504 #else 1505 root = NULL; 1506 #endif 1507 1508 dc->debugfs_files = kmemdup(debugfs_files, sizeof(debugfs_files), 1509 GFP_KERNEL); 1510 if (!dc->debugfs_files) 1511 return -ENOMEM; 1512 1513 for (i = 0; i < count; i++) 1514 dc->debugfs_files[i].data = dc; 1515 1516 err = drm_debugfs_create_files(dc->debugfs_files, count, root, minor); 1517 if (err < 0) 1518 goto free; 1519 1520 return 0; 1521 1522 free: 1523 kfree(dc->debugfs_files); 1524 dc->debugfs_files = NULL; 1525 1526 return err; 1527 } 1528 1529 static void tegra_dc_early_unregister(struct drm_crtc *crtc) 1530 { 1531 unsigned int count = ARRAY_SIZE(debugfs_files); 1532 struct drm_minor *minor = crtc->dev->primary; 1533 struct tegra_dc *dc = to_tegra_dc(crtc); 1534 1535 drm_debugfs_remove_files(dc->debugfs_files, count, minor); 1536 kfree(dc->debugfs_files); 1537 dc->debugfs_files = NULL; 1538 } 1539 1540 static u32 tegra_dc_get_vblank_counter(struct drm_crtc *crtc) 1541 { 1542 struct tegra_dc *dc = to_tegra_dc(crtc); 1543 1544 /* XXX vblank syncpoints don't work with nvdisplay yet */ 1545 if (dc->syncpt && !dc->soc->has_nvdisplay) 1546 return host1x_syncpt_read(dc->syncpt); 1547 1548 /* fallback to software emulated VBLANK counter */ 1549 return (u32)drm_crtc_vblank_count(&dc->base); 1550 } 1551 1552 static int tegra_dc_enable_vblank(struct drm_crtc *crtc) 1553 { 1554 struct tegra_dc *dc = to_tegra_dc(crtc); 1555 u32 value; 1556 1557 value = tegra_dc_readl(dc, DC_CMD_INT_MASK); 1558 value |= VBLANK_INT; 1559 tegra_dc_writel(dc, value, DC_CMD_INT_MASK); 1560 1561 return 0; 1562 } 1563 1564 static void tegra_dc_disable_vblank(struct drm_crtc *crtc) 1565 { 1566 struct tegra_dc *dc = to_tegra_dc(crtc); 1567 u32 value; 1568 1569 value = tegra_dc_readl(dc, DC_CMD_INT_MASK); 1570 value &= ~VBLANK_INT; 1571 tegra_dc_writel(dc, value, DC_CMD_INT_MASK); 1572 } 1573 1574 static const struct drm_crtc_funcs tegra_crtc_funcs = { 1575 .page_flip = drm_atomic_helper_page_flip, 1576 .set_config = drm_atomic_helper_set_config, 1577 .destroy = tegra_dc_destroy, 1578 .reset = tegra_crtc_reset, 1579 .atomic_duplicate_state = tegra_crtc_atomic_duplicate_state, 1580 .atomic_destroy_state = tegra_crtc_atomic_destroy_state, 1581 .late_register = tegra_dc_late_register, 1582 .early_unregister = tegra_dc_early_unregister, 1583 .get_vblank_counter = tegra_dc_get_vblank_counter, 1584 .enable_vblank = tegra_dc_enable_vblank, 1585 .disable_vblank = tegra_dc_disable_vblank, 1586 }; 1587 1588 static int tegra_dc_set_timings(struct tegra_dc *dc, 1589 struct drm_display_mode *mode) 1590 { 1591 unsigned int h_ref_to_sync = 1; 1592 unsigned int v_ref_to_sync = 1; 1593 unsigned long value; 1594 1595 if (!dc->soc->has_nvdisplay) { 1596 tegra_dc_writel(dc, 0x0, DC_DISP_DISP_TIMING_OPTIONS); 1597 1598 value = (v_ref_to_sync << 16) | h_ref_to_sync; 1599 tegra_dc_writel(dc, value, DC_DISP_REF_TO_SYNC); 1600 } 1601 1602 value = ((mode->vsync_end - mode->vsync_start) << 16) | 1603 ((mode->hsync_end - mode->hsync_start) << 0); 1604 tegra_dc_writel(dc, value, DC_DISP_SYNC_WIDTH); 1605 1606 value = ((mode->vtotal - mode->vsync_end) << 16) | 1607 ((mode->htotal - mode->hsync_end) << 0); 1608 tegra_dc_writel(dc, value, DC_DISP_BACK_PORCH); 1609 1610 value = ((mode->vsync_start - mode->vdisplay) << 16) | 1611 ((mode->hsync_start - mode->hdisplay) << 0); 1612 tegra_dc_writel(dc, value, DC_DISP_FRONT_PORCH); 1613 1614 value = (mode->vdisplay << 16) | mode->hdisplay; 1615 tegra_dc_writel(dc, value, DC_DISP_ACTIVE); 1616 1617 return 0; 1618 } 1619 1620 /** 1621 * tegra_dc_state_setup_clock - check clock settings and store them in atomic 1622 * state 1623 * @dc: display controller 1624 * @crtc_state: CRTC atomic state 1625 * @clk: parent clock for display controller 1626 * @pclk: pixel clock 1627 * @div: shift clock divider 1628 * 1629 * Returns: 1630 * 0 on success or a negative error-code on failure. 1631 */ 1632 int tegra_dc_state_setup_clock(struct tegra_dc *dc, 1633 struct drm_crtc_state *crtc_state, 1634 struct clk *clk, unsigned long pclk, 1635 unsigned int div) 1636 { 1637 struct tegra_dc_state *state = to_dc_state(crtc_state); 1638 1639 if (!clk_has_parent(dc->clk, clk)) 1640 return -EINVAL; 1641 1642 state->clk = clk; 1643 state->pclk = pclk; 1644 state->div = div; 1645 1646 return 0; 1647 } 1648 1649 static void tegra_dc_commit_state(struct tegra_dc *dc, 1650 struct tegra_dc_state *state) 1651 { 1652 u32 value; 1653 int err; 1654 1655 err = clk_set_parent(dc->clk, state->clk); 1656 if (err < 0) 1657 dev_err(dc->dev, "failed to set parent clock: %d\n", err); 1658 1659 /* 1660 * Outputs may not want to change the parent clock rate. This is only 1661 * relevant to Tegra20 where only a single display PLL is available. 1662 * Since that PLL would typically be used for HDMI, an internal LVDS 1663 * panel would need to be driven by some other clock such as PLL_P 1664 * which is shared with other peripherals. Changing the clock rate 1665 * should therefore be avoided. 1666 */ 1667 if (state->pclk > 0) { 1668 err = clk_set_rate(state->clk, state->pclk); 1669 if (err < 0) 1670 dev_err(dc->dev, 1671 "failed to set clock rate to %lu Hz\n", 1672 state->pclk); 1673 } 1674 1675 DRM_DEBUG_KMS("rate: %lu, div: %u\n", clk_get_rate(dc->clk), 1676 state->div); 1677 DRM_DEBUG_KMS("pclk: %lu\n", state->pclk); 1678 1679 if (!dc->soc->has_nvdisplay) { 1680 value = SHIFT_CLK_DIVIDER(state->div) | PIXEL_CLK_DIVIDER_PCD1; 1681 tegra_dc_writel(dc, value, DC_DISP_DISP_CLOCK_CONTROL); 1682 } 1683 1684 err = clk_set_rate(dc->clk, state->pclk); 1685 if (err < 0) 1686 dev_err(dc->dev, "failed to set clock %pC to %lu Hz: %d\n", 1687 dc->clk, state->pclk, err); 1688 } 1689 1690 static void tegra_dc_stop(struct tegra_dc *dc) 1691 { 1692 u32 value; 1693 1694 /* stop the display controller */ 1695 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND); 1696 value &= ~DISP_CTRL_MODE_MASK; 1697 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND); 1698 1699 tegra_dc_commit(dc); 1700 } 1701 1702 static bool tegra_dc_idle(struct tegra_dc *dc) 1703 { 1704 u32 value; 1705 1706 value = tegra_dc_readl_active(dc, DC_CMD_DISPLAY_COMMAND); 1707 1708 return (value & DISP_CTRL_MODE_MASK) == 0; 1709 } 1710 1711 static int tegra_dc_wait_idle(struct tegra_dc *dc, unsigned long timeout) 1712 { 1713 timeout = jiffies + msecs_to_jiffies(timeout); 1714 1715 while (time_before(jiffies, timeout)) { 1716 if (tegra_dc_idle(dc)) 1717 return 0; 1718 1719 usleep_range(1000, 2000); 1720 } 1721 1722 dev_dbg(dc->dev, "timeout waiting for DC to become idle\n"); 1723 return -ETIMEDOUT; 1724 } 1725 1726 static void tegra_crtc_atomic_disable(struct drm_crtc *crtc, 1727 struct drm_crtc_state *old_state) 1728 { 1729 struct tegra_dc *dc = to_tegra_dc(crtc); 1730 u32 value; 1731 1732 if (!tegra_dc_idle(dc)) { 1733 tegra_dc_stop(dc); 1734 1735 /* 1736 * Ignore the return value, there isn't anything useful to do 1737 * in case this fails. 1738 */ 1739 tegra_dc_wait_idle(dc, 100); 1740 } 1741 1742 /* 1743 * This should really be part of the RGB encoder driver, but clearing 1744 * these bits has the side-effect of stopping the display controller. 1745 * When that happens no VBLANK interrupts will be raised. At the same 1746 * time the encoder is disabled before the display controller, so the 1747 * above code is always going to timeout waiting for the controller 1748 * to go idle. 1749 * 1750 * Given the close coupling between the RGB encoder and the display 1751 * controller doing it here is still kind of okay. None of the other 1752 * encoder drivers require these bits to be cleared. 1753 * 1754 * XXX: Perhaps given that the display controller is switched off at 1755 * this point anyway maybe clearing these bits isn't even useful for 1756 * the RGB encoder? 1757 */ 1758 if (dc->rgb) { 1759 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL); 1760 value &= ~(PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE | 1761 PW4_ENABLE | PM0_ENABLE | PM1_ENABLE); 1762 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL); 1763 } 1764 1765 tegra_dc_stats_reset(&dc->stats); 1766 drm_crtc_vblank_off(crtc); 1767 1768 spin_lock_irq(&crtc->dev->event_lock); 1769 1770 if (crtc->state->event) { 1771 drm_crtc_send_vblank_event(crtc, crtc->state->event); 1772 crtc->state->event = NULL; 1773 } 1774 1775 spin_unlock_irq(&crtc->dev->event_lock); 1776 1777 pm_runtime_put_sync(dc->dev); 1778 } 1779 1780 static void tegra_crtc_atomic_enable(struct drm_crtc *crtc, 1781 struct drm_crtc_state *old_state) 1782 { 1783 struct drm_display_mode *mode = &crtc->state->adjusted_mode; 1784 struct tegra_dc_state *state = to_dc_state(crtc->state); 1785 struct tegra_dc *dc = to_tegra_dc(crtc); 1786 u32 value; 1787 1788 pm_runtime_get_sync(dc->dev); 1789 1790 /* initialize display controller */ 1791 if (dc->syncpt) { 1792 u32 syncpt = host1x_syncpt_id(dc->syncpt), enable; 1793 1794 if (dc->soc->has_nvdisplay) 1795 enable = 1 << 31; 1796 else 1797 enable = 1 << 8; 1798 1799 value = SYNCPT_CNTRL_NO_STALL; 1800 tegra_dc_writel(dc, value, DC_CMD_GENERAL_INCR_SYNCPT_CNTRL); 1801 1802 value = enable | syncpt; 1803 tegra_dc_writel(dc, value, DC_CMD_CONT_SYNCPT_VSYNC); 1804 } 1805 1806 if (dc->soc->has_nvdisplay) { 1807 value = DSC_TO_UF_INT | DSC_BBUF_UF_INT | DSC_RBUF_UF_INT | 1808 DSC_OBUF_UF_INT; 1809 tegra_dc_writel(dc, value, DC_CMD_INT_TYPE); 1810 1811 value = DSC_TO_UF_INT | DSC_BBUF_UF_INT | DSC_RBUF_UF_INT | 1812 DSC_OBUF_UF_INT | SD3_BUCKET_WALK_DONE_INT | 1813 HEAD_UF_INT | MSF_INT | REG_TMOUT_INT | 1814 REGION_CRC_INT | V_PULSE2_INT | V_PULSE3_INT | 1815 VBLANK_INT | FRAME_END_INT; 1816 tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY); 1817 1818 value = SD3_BUCKET_WALK_DONE_INT | HEAD_UF_INT | VBLANK_INT | 1819 FRAME_END_INT; 1820 tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE); 1821 1822 value = HEAD_UF_INT | REG_TMOUT_INT | FRAME_END_INT; 1823 tegra_dc_writel(dc, value, DC_CMD_INT_MASK); 1824 1825 tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS); 1826 } else { 1827 value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT | 1828 WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT; 1829 tegra_dc_writel(dc, value, DC_CMD_INT_TYPE); 1830 1831 value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT | 1832 WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT; 1833 tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY); 1834 1835 /* initialize timer */ 1836 value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(0x20) | 1837 WINDOW_B_THRESHOLD(0x20) | WINDOW_C_THRESHOLD(0x20); 1838 tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY); 1839 1840 value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(1) | 1841 WINDOW_B_THRESHOLD(1) | WINDOW_C_THRESHOLD(1); 1842 tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER); 1843 1844 value = VBLANK_INT | WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT | 1845 WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT; 1846 tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE); 1847 1848 value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT | 1849 WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT; 1850 tegra_dc_writel(dc, value, DC_CMD_INT_MASK); 1851 } 1852 1853 if (dc->soc->supports_background_color) 1854 tegra_dc_writel(dc, 0, DC_DISP_BLEND_BACKGROUND_COLOR); 1855 else 1856 tegra_dc_writel(dc, 0, DC_DISP_BORDER_COLOR); 1857 1858 /* apply PLL and pixel clock changes */ 1859 tegra_dc_commit_state(dc, state); 1860 1861 /* program display mode */ 1862 tegra_dc_set_timings(dc, mode); 1863 1864 /* interlacing isn't supported yet, so disable it */ 1865 if (dc->soc->supports_interlacing) { 1866 value = tegra_dc_readl(dc, DC_DISP_INTERLACE_CONTROL); 1867 value &= ~INTERLACE_ENABLE; 1868 tegra_dc_writel(dc, value, DC_DISP_INTERLACE_CONTROL); 1869 } 1870 1871 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND); 1872 value &= ~DISP_CTRL_MODE_MASK; 1873 value |= DISP_CTRL_MODE_C_DISPLAY; 1874 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND); 1875 1876 if (!dc->soc->has_nvdisplay) { 1877 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL); 1878 value |= PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE | 1879 PW4_ENABLE | PM0_ENABLE | PM1_ENABLE; 1880 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL); 1881 } 1882 1883 /* enable underflow reporting and display red for missing pixels */ 1884 if (dc->soc->has_nvdisplay) { 1885 value = UNDERFLOW_MODE_RED | UNDERFLOW_REPORT_ENABLE; 1886 tegra_dc_writel(dc, value, DC_COM_RG_UNDERFLOW); 1887 } 1888 1889 tegra_dc_commit(dc); 1890 1891 drm_crtc_vblank_on(crtc); 1892 } 1893 1894 static void tegra_crtc_atomic_begin(struct drm_crtc *crtc, 1895 struct drm_crtc_state *old_crtc_state) 1896 { 1897 unsigned long flags; 1898 1899 if (crtc->state->event) { 1900 spin_lock_irqsave(&crtc->dev->event_lock, flags); 1901 1902 if (drm_crtc_vblank_get(crtc) != 0) 1903 drm_crtc_send_vblank_event(crtc, crtc->state->event); 1904 else 1905 drm_crtc_arm_vblank_event(crtc, crtc->state->event); 1906 1907 spin_unlock_irqrestore(&crtc->dev->event_lock, flags); 1908 1909 crtc->state->event = NULL; 1910 } 1911 } 1912 1913 static void tegra_crtc_atomic_flush(struct drm_crtc *crtc, 1914 struct drm_crtc_state *old_crtc_state) 1915 { 1916 struct tegra_dc_state *state = to_dc_state(crtc->state); 1917 struct tegra_dc *dc = to_tegra_dc(crtc); 1918 u32 value; 1919 1920 value = state->planes << 8 | GENERAL_UPDATE; 1921 tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL); 1922 value = tegra_dc_readl(dc, DC_CMD_STATE_CONTROL); 1923 1924 value = state->planes | GENERAL_ACT_REQ; 1925 tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL); 1926 value = tegra_dc_readl(dc, DC_CMD_STATE_CONTROL); 1927 } 1928 1929 static const struct drm_crtc_helper_funcs tegra_crtc_helper_funcs = { 1930 .atomic_begin = tegra_crtc_atomic_begin, 1931 .atomic_flush = tegra_crtc_atomic_flush, 1932 .atomic_enable = tegra_crtc_atomic_enable, 1933 .atomic_disable = tegra_crtc_atomic_disable, 1934 }; 1935 1936 static irqreturn_t tegra_dc_irq(int irq, void *data) 1937 { 1938 struct tegra_dc *dc = data; 1939 unsigned long status; 1940 1941 status = tegra_dc_readl(dc, DC_CMD_INT_STATUS); 1942 tegra_dc_writel(dc, status, DC_CMD_INT_STATUS); 1943 1944 if (status & FRAME_END_INT) { 1945 /* 1946 dev_dbg(dc->dev, "%s(): frame end\n", __func__); 1947 */ 1948 dc->stats.frames++; 1949 } 1950 1951 if (status & VBLANK_INT) { 1952 /* 1953 dev_dbg(dc->dev, "%s(): vertical blank\n", __func__); 1954 */ 1955 drm_crtc_handle_vblank(&dc->base); 1956 dc->stats.vblank++; 1957 } 1958 1959 if (status & (WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT)) { 1960 /* 1961 dev_dbg(dc->dev, "%s(): underflow\n", __func__); 1962 */ 1963 dc->stats.underflow++; 1964 } 1965 1966 if (status & (WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT)) { 1967 /* 1968 dev_dbg(dc->dev, "%s(): overflow\n", __func__); 1969 */ 1970 dc->stats.overflow++; 1971 } 1972 1973 if (status & HEAD_UF_INT) { 1974 dev_dbg_ratelimited(dc->dev, "%s(): head underflow\n", __func__); 1975 dc->stats.underflow++; 1976 } 1977 1978 return IRQ_HANDLED; 1979 } 1980 1981 static int tegra_dc_init(struct host1x_client *client) 1982 { 1983 struct drm_device *drm = dev_get_drvdata(client->parent); 1984 unsigned long flags = HOST1X_SYNCPT_CLIENT_MANAGED; 1985 struct tegra_dc *dc = host1x_client_to_dc(client); 1986 struct tegra_drm *tegra = drm->dev_private; 1987 struct drm_plane *primary = NULL; 1988 struct drm_plane *cursor = NULL; 1989 int err; 1990 1991 /* 1992 * XXX do not register DCs with no window groups because we cannot 1993 * assign a primary plane to them, which in turn will cause KMS to 1994 * crash. 1995 */ 1996 if (dc->soc->wgrps) { 1997 bool has_wgrps = false; 1998 unsigned int i; 1999 2000 for (i = 0; i < dc->soc->num_wgrps; i++) { 2001 const struct tegra_windowgroup_soc *wgrp = &dc->soc->wgrps[i]; 2002 2003 if (wgrp->dc == dc->pipe && wgrp->num_windows > 0) { 2004 has_wgrps = true; 2005 break; 2006 } 2007 } 2008 2009 if (!has_wgrps) 2010 return 0; 2011 } 2012 2013 dc->syncpt = host1x_syncpt_request(client, flags); 2014 if (!dc->syncpt) 2015 dev_warn(dc->dev, "failed to allocate syncpoint\n"); 2016 2017 dc->group = host1x_client_iommu_attach(client, true); 2018 if (IS_ERR(dc->group)) { 2019 err = PTR_ERR(dc->group); 2020 dev_err(client->dev, "failed to attach to domain: %d\n", err); 2021 return err; 2022 } 2023 2024 if (dc->soc->wgrps) 2025 primary = tegra_dc_add_shared_planes(drm, dc); 2026 else 2027 primary = tegra_dc_add_planes(drm, dc); 2028 2029 if (IS_ERR(primary)) { 2030 err = PTR_ERR(primary); 2031 goto cleanup; 2032 } 2033 2034 if (dc->soc->supports_cursor) { 2035 cursor = tegra_dc_cursor_plane_create(drm, dc); 2036 if (IS_ERR(cursor)) { 2037 err = PTR_ERR(cursor); 2038 goto cleanup; 2039 } 2040 } else { 2041 /* dedicate one overlay to mouse cursor */ 2042 cursor = tegra_dc_overlay_plane_create(drm, dc, 2, true); 2043 if (IS_ERR(cursor)) { 2044 err = PTR_ERR(cursor); 2045 goto cleanup; 2046 } 2047 } 2048 2049 err = drm_crtc_init_with_planes(drm, &dc->base, primary, cursor, 2050 &tegra_crtc_funcs, NULL); 2051 if (err < 0) 2052 goto cleanup; 2053 2054 drm_crtc_helper_add(&dc->base, &tegra_crtc_helper_funcs); 2055 2056 /* 2057 * Keep track of the minimum pitch alignment across all display 2058 * controllers. 2059 */ 2060 if (dc->soc->pitch_align > tegra->pitch_align) 2061 tegra->pitch_align = dc->soc->pitch_align; 2062 2063 err = tegra_dc_rgb_init(drm, dc); 2064 if (err < 0 && err != -ENODEV) { 2065 dev_err(dc->dev, "failed to initialize RGB output: %d\n", err); 2066 goto cleanup; 2067 } 2068 2069 err = devm_request_irq(dc->dev, dc->irq, tegra_dc_irq, 0, 2070 dev_name(dc->dev), dc); 2071 if (err < 0) { 2072 dev_err(dc->dev, "failed to request IRQ#%u: %d\n", dc->irq, 2073 err); 2074 goto cleanup; 2075 } 2076 2077 return 0; 2078 2079 cleanup: 2080 if (!IS_ERR_OR_NULL(cursor)) 2081 drm_plane_cleanup(cursor); 2082 2083 if (!IS_ERR(primary)) 2084 drm_plane_cleanup(primary); 2085 2086 host1x_client_iommu_detach(client, dc->group); 2087 host1x_syncpt_free(dc->syncpt); 2088 2089 return err; 2090 } 2091 2092 static int tegra_dc_exit(struct host1x_client *client) 2093 { 2094 struct tegra_dc *dc = host1x_client_to_dc(client); 2095 int err; 2096 2097 devm_free_irq(dc->dev, dc->irq, dc); 2098 2099 err = tegra_dc_rgb_exit(dc); 2100 if (err) { 2101 dev_err(dc->dev, "failed to shutdown RGB output: %d\n", err); 2102 return err; 2103 } 2104 2105 host1x_client_iommu_detach(client, dc->group); 2106 host1x_syncpt_free(dc->syncpt); 2107 2108 return 0; 2109 } 2110 2111 static const struct host1x_client_ops dc_client_ops = { 2112 .init = tegra_dc_init, 2113 .exit = tegra_dc_exit, 2114 }; 2115 2116 static const struct tegra_dc_soc_info tegra20_dc_soc_info = { 2117 .supports_background_color = false, 2118 .supports_interlacing = false, 2119 .supports_cursor = false, 2120 .supports_block_linear = false, 2121 .has_legacy_blending = true, 2122 .pitch_align = 8, 2123 .has_powergate = false, 2124 .coupled_pm = true, 2125 .has_nvdisplay = false, 2126 .num_primary_formats = ARRAY_SIZE(tegra20_primary_formats), 2127 .primary_formats = tegra20_primary_formats, 2128 .num_overlay_formats = ARRAY_SIZE(tegra20_overlay_formats), 2129 .overlay_formats = tegra20_overlay_formats, 2130 .modifiers = tegra20_modifiers, 2131 .has_win_a_without_filters = true, 2132 .has_win_c_without_vert_filter = true, 2133 }; 2134 2135 static const struct tegra_dc_soc_info tegra30_dc_soc_info = { 2136 .supports_background_color = false, 2137 .supports_interlacing = false, 2138 .supports_cursor = false, 2139 .supports_block_linear = false, 2140 .has_legacy_blending = true, 2141 .pitch_align = 8, 2142 .has_powergate = false, 2143 .coupled_pm = false, 2144 .has_nvdisplay = false, 2145 .num_primary_formats = ARRAY_SIZE(tegra20_primary_formats), 2146 .primary_formats = tegra20_primary_formats, 2147 .num_overlay_formats = ARRAY_SIZE(tegra20_overlay_formats), 2148 .overlay_formats = tegra20_overlay_formats, 2149 .modifiers = tegra20_modifiers, 2150 .has_win_a_without_filters = false, 2151 .has_win_c_without_vert_filter = false, 2152 }; 2153 2154 static const struct tegra_dc_soc_info tegra114_dc_soc_info = { 2155 .supports_background_color = false, 2156 .supports_interlacing = false, 2157 .supports_cursor = false, 2158 .supports_block_linear = false, 2159 .has_legacy_blending = true, 2160 .pitch_align = 64, 2161 .has_powergate = true, 2162 .coupled_pm = false, 2163 .has_nvdisplay = false, 2164 .num_primary_formats = ARRAY_SIZE(tegra114_primary_formats), 2165 .primary_formats = tegra114_primary_formats, 2166 .num_overlay_formats = ARRAY_SIZE(tegra114_overlay_formats), 2167 .overlay_formats = tegra114_overlay_formats, 2168 .modifiers = tegra20_modifiers, 2169 .has_win_a_without_filters = false, 2170 .has_win_c_without_vert_filter = false, 2171 }; 2172 2173 static const struct tegra_dc_soc_info tegra124_dc_soc_info = { 2174 .supports_background_color = true, 2175 .supports_interlacing = true, 2176 .supports_cursor = true, 2177 .supports_block_linear = true, 2178 .has_legacy_blending = false, 2179 .pitch_align = 64, 2180 .has_powergate = true, 2181 .coupled_pm = false, 2182 .has_nvdisplay = false, 2183 .num_primary_formats = ARRAY_SIZE(tegra124_primary_formats), 2184 .primary_formats = tegra124_primary_formats, 2185 .num_overlay_formats = ARRAY_SIZE(tegra124_overlay_formats), 2186 .overlay_formats = tegra124_overlay_formats, 2187 .modifiers = tegra124_modifiers, 2188 .has_win_a_without_filters = false, 2189 .has_win_c_without_vert_filter = false, 2190 }; 2191 2192 static const struct tegra_dc_soc_info tegra210_dc_soc_info = { 2193 .supports_background_color = true, 2194 .supports_interlacing = true, 2195 .supports_cursor = true, 2196 .supports_block_linear = true, 2197 .has_legacy_blending = false, 2198 .pitch_align = 64, 2199 .has_powergate = true, 2200 .coupled_pm = false, 2201 .has_nvdisplay = false, 2202 .num_primary_formats = ARRAY_SIZE(tegra114_primary_formats), 2203 .primary_formats = tegra114_primary_formats, 2204 .num_overlay_formats = ARRAY_SIZE(tegra114_overlay_formats), 2205 .overlay_formats = tegra114_overlay_formats, 2206 .modifiers = tegra124_modifiers, 2207 .has_win_a_without_filters = false, 2208 .has_win_c_without_vert_filter = false, 2209 }; 2210 2211 static const struct tegra_windowgroup_soc tegra186_dc_wgrps[] = { 2212 { 2213 .index = 0, 2214 .dc = 0, 2215 .windows = (const unsigned int[]) { 0 }, 2216 .num_windows = 1, 2217 }, { 2218 .index = 1, 2219 .dc = 1, 2220 .windows = (const unsigned int[]) { 1 }, 2221 .num_windows = 1, 2222 }, { 2223 .index = 2, 2224 .dc = 1, 2225 .windows = (const unsigned int[]) { 2 }, 2226 .num_windows = 1, 2227 }, { 2228 .index = 3, 2229 .dc = 2, 2230 .windows = (const unsigned int[]) { 3 }, 2231 .num_windows = 1, 2232 }, { 2233 .index = 4, 2234 .dc = 2, 2235 .windows = (const unsigned int[]) { 4 }, 2236 .num_windows = 1, 2237 }, { 2238 .index = 5, 2239 .dc = 2, 2240 .windows = (const unsigned int[]) { 5 }, 2241 .num_windows = 1, 2242 }, 2243 }; 2244 2245 static const struct tegra_dc_soc_info tegra186_dc_soc_info = { 2246 .supports_background_color = true, 2247 .supports_interlacing = true, 2248 .supports_cursor = true, 2249 .supports_block_linear = true, 2250 .has_legacy_blending = false, 2251 .pitch_align = 64, 2252 .has_powergate = false, 2253 .coupled_pm = false, 2254 .has_nvdisplay = true, 2255 .wgrps = tegra186_dc_wgrps, 2256 .num_wgrps = ARRAY_SIZE(tegra186_dc_wgrps), 2257 }; 2258 2259 static const struct tegra_windowgroup_soc tegra194_dc_wgrps[] = { 2260 { 2261 .index = 0, 2262 .dc = 0, 2263 .windows = (const unsigned int[]) { 0 }, 2264 .num_windows = 1, 2265 }, { 2266 .index = 1, 2267 .dc = 1, 2268 .windows = (const unsigned int[]) { 1 }, 2269 .num_windows = 1, 2270 }, { 2271 .index = 2, 2272 .dc = 1, 2273 .windows = (const unsigned int[]) { 2 }, 2274 .num_windows = 1, 2275 }, { 2276 .index = 3, 2277 .dc = 2, 2278 .windows = (const unsigned int[]) { 3 }, 2279 .num_windows = 1, 2280 }, { 2281 .index = 4, 2282 .dc = 2, 2283 .windows = (const unsigned int[]) { 4 }, 2284 .num_windows = 1, 2285 }, { 2286 .index = 5, 2287 .dc = 2, 2288 .windows = (const unsigned int[]) { 5 }, 2289 .num_windows = 1, 2290 }, 2291 }; 2292 2293 static const struct tegra_dc_soc_info tegra194_dc_soc_info = { 2294 .supports_background_color = true, 2295 .supports_interlacing = true, 2296 .supports_cursor = true, 2297 .supports_block_linear = true, 2298 .has_legacy_blending = false, 2299 .pitch_align = 64, 2300 .has_powergate = false, 2301 .coupled_pm = false, 2302 .has_nvdisplay = true, 2303 .wgrps = tegra194_dc_wgrps, 2304 .num_wgrps = ARRAY_SIZE(tegra194_dc_wgrps), 2305 }; 2306 2307 static const struct of_device_id tegra_dc_of_match[] = { 2308 { 2309 .compatible = "nvidia,tegra194-dc", 2310 .data = &tegra194_dc_soc_info, 2311 }, { 2312 .compatible = "nvidia,tegra186-dc", 2313 .data = &tegra186_dc_soc_info, 2314 }, { 2315 .compatible = "nvidia,tegra210-dc", 2316 .data = &tegra210_dc_soc_info, 2317 }, { 2318 .compatible = "nvidia,tegra124-dc", 2319 .data = &tegra124_dc_soc_info, 2320 }, { 2321 .compatible = "nvidia,tegra114-dc", 2322 .data = &tegra114_dc_soc_info, 2323 }, { 2324 .compatible = "nvidia,tegra30-dc", 2325 .data = &tegra30_dc_soc_info, 2326 }, { 2327 .compatible = "nvidia,tegra20-dc", 2328 .data = &tegra20_dc_soc_info, 2329 }, { 2330 /* sentinel */ 2331 } 2332 }; 2333 MODULE_DEVICE_TABLE(of, tegra_dc_of_match); 2334 2335 static int tegra_dc_parse_dt(struct tegra_dc *dc) 2336 { 2337 struct device_node *np; 2338 u32 value = 0; 2339 int err; 2340 2341 err = of_property_read_u32(dc->dev->of_node, "nvidia,head", &value); 2342 if (err < 0) { 2343 dev_err(dc->dev, "missing \"nvidia,head\" property\n"); 2344 2345 /* 2346 * If the nvidia,head property isn't present, try to find the 2347 * correct head number by looking up the position of this 2348 * display controller's node within the device tree. Assuming 2349 * that the nodes are ordered properly in the DTS file and 2350 * that the translation into a flattened device tree blob 2351 * preserves that ordering this will actually yield the right 2352 * head number. 2353 * 2354 * If those assumptions don't hold, this will still work for 2355 * cases where only a single display controller is used. 2356 */ 2357 for_each_matching_node(np, tegra_dc_of_match) { 2358 if (np == dc->dev->of_node) { 2359 of_node_put(np); 2360 break; 2361 } 2362 2363 value++; 2364 } 2365 } 2366 2367 dc->pipe = value; 2368 2369 return 0; 2370 } 2371 2372 static int tegra_dc_match_by_pipe(struct device *dev, void *data) 2373 { 2374 struct tegra_dc *dc = dev_get_drvdata(dev); 2375 unsigned int pipe = (unsigned long)data; 2376 2377 return dc->pipe == pipe; 2378 } 2379 2380 static int tegra_dc_couple(struct tegra_dc *dc) 2381 { 2382 /* 2383 * On Tegra20, DC1 requires DC0 to be taken out of reset in order to 2384 * be enabled, otherwise CPU hangs on writing to CMD_DISPLAY_COMMAND / 2385 * POWER_CONTROL registers during CRTC enabling. 2386 */ 2387 if (dc->soc->coupled_pm && dc->pipe == 1) { 2388 u32 flags = DL_FLAG_PM_RUNTIME | DL_FLAG_AUTOREMOVE_CONSUMER; 2389 struct device_link *link; 2390 struct device *partner; 2391 2392 partner = driver_find_device(dc->dev->driver, NULL, NULL, 2393 tegra_dc_match_by_pipe); 2394 if (!partner) 2395 return -EPROBE_DEFER; 2396 2397 link = device_link_add(dc->dev, partner, flags); 2398 if (!link) { 2399 dev_err(dc->dev, "failed to link controllers\n"); 2400 return -EINVAL; 2401 } 2402 2403 dev_dbg(dc->dev, "coupled to %s\n", dev_name(partner)); 2404 } 2405 2406 return 0; 2407 } 2408 2409 static int tegra_dc_probe(struct platform_device *pdev) 2410 { 2411 struct resource *regs; 2412 struct tegra_dc *dc; 2413 int err; 2414 2415 dc = devm_kzalloc(&pdev->dev, sizeof(*dc), GFP_KERNEL); 2416 if (!dc) 2417 return -ENOMEM; 2418 2419 dc->soc = of_device_get_match_data(&pdev->dev); 2420 2421 INIT_LIST_HEAD(&dc->list); 2422 dc->dev = &pdev->dev; 2423 2424 err = tegra_dc_parse_dt(dc); 2425 if (err < 0) 2426 return err; 2427 2428 err = tegra_dc_couple(dc); 2429 if (err < 0) 2430 return err; 2431 2432 dc->clk = devm_clk_get(&pdev->dev, NULL); 2433 if (IS_ERR(dc->clk)) { 2434 dev_err(&pdev->dev, "failed to get clock\n"); 2435 return PTR_ERR(dc->clk); 2436 } 2437 2438 dc->rst = devm_reset_control_get(&pdev->dev, "dc"); 2439 if (IS_ERR(dc->rst)) { 2440 dev_err(&pdev->dev, "failed to get reset\n"); 2441 return PTR_ERR(dc->rst); 2442 } 2443 2444 /* assert reset and disable clock */ 2445 err = clk_prepare_enable(dc->clk); 2446 if (err < 0) 2447 return err; 2448 2449 usleep_range(2000, 4000); 2450 2451 err = reset_control_assert(dc->rst); 2452 if (err < 0) 2453 return err; 2454 2455 usleep_range(2000, 4000); 2456 2457 clk_disable_unprepare(dc->clk); 2458 2459 if (dc->soc->has_powergate) { 2460 if (dc->pipe == 0) 2461 dc->powergate = TEGRA_POWERGATE_DIS; 2462 else 2463 dc->powergate = TEGRA_POWERGATE_DISB; 2464 2465 tegra_powergate_power_off(dc->powergate); 2466 } 2467 2468 regs = platform_get_resource(pdev, IORESOURCE_MEM, 0); 2469 dc->regs = devm_ioremap_resource(&pdev->dev, regs); 2470 if (IS_ERR(dc->regs)) 2471 return PTR_ERR(dc->regs); 2472 2473 dc->irq = platform_get_irq(pdev, 0); 2474 if (dc->irq < 0) { 2475 dev_err(&pdev->dev, "failed to get IRQ\n"); 2476 return -ENXIO; 2477 } 2478 2479 err = tegra_dc_rgb_probe(dc); 2480 if (err < 0 && err != -ENODEV) { 2481 dev_err(&pdev->dev, "failed to probe RGB output: %d\n", err); 2482 return err; 2483 } 2484 2485 platform_set_drvdata(pdev, dc); 2486 pm_runtime_enable(&pdev->dev); 2487 2488 INIT_LIST_HEAD(&dc->client.list); 2489 dc->client.ops = &dc_client_ops; 2490 dc->client.dev = &pdev->dev; 2491 2492 err = host1x_client_register(&dc->client); 2493 if (err < 0) { 2494 dev_err(&pdev->dev, "failed to register host1x client: %d\n", 2495 err); 2496 return err; 2497 } 2498 2499 return 0; 2500 } 2501 2502 static int tegra_dc_remove(struct platform_device *pdev) 2503 { 2504 struct tegra_dc *dc = platform_get_drvdata(pdev); 2505 int err; 2506 2507 err = host1x_client_unregister(&dc->client); 2508 if (err < 0) { 2509 dev_err(&pdev->dev, "failed to unregister host1x client: %d\n", 2510 err); 2511 return err; 2512 } 2513 2514 err = tegra_dc_rgb_remove(dc); 2515 if (err < 0) { 2516 dev_err(&pdev->dev, "failed to remove RGB output: %d\n", err); 2517 return err; 2518 } 2519 2520 pm_runtime_disable(&pdev->dev); 2521 2522 return 0; 2523 } 2524 2525 #ifdef CONFIG_PM 2526 static int tegra_dc_suspend(struct device *dev) 2527 { 2528 struct tegra_dc *dc = dev_get_drvdata(dev); 2529 int err; 2530 2531 err = reset_control_assert(dc->rst); 2532 if (err < 0) { 2533 dev_err(dev, "failed to assert reset: %d\n", err); 2534 return err; 2535 } 2536 2537 if (dc->soc->has_powergate) 2538 tegra_powergate_power_off(dc->powergate); 2539 2540 clk_disable_unprepare(dc->clk); 2541 2542 return 0; 2543 } 2544 2545 static int tegra_dc_resume(struct device *dev) 2546 { 2547 struct tegra_dc *dc = dev_get_drvdata(dev); 2548 int err; 2549 2550 if (dc->soc->has_powergate) { 2551 err = tegra_powergate_sequence_power_up(dc->powergate, dc->clk, 2552 dc->rst); 2553 if (err < 0) { 2554 dev_err(dev, "failed to power partition: %d\n", err); 2555 return err; 2556 } 2557 } else { 2558 err = clk_prepare_enable(dc->clk); 2559 if (err < 0) { 2560 dev_err(dev, "failed to enable clock: %d\n", err); 2561 return err; 2562 } 2563 2564 err = reset_control_deassert(dc->rst); 2565 if (err < 0) { 2566 dev_err(dev, "failed to deassert reset: %d\n", err); 2567 return err; 2568 } 2569 } 2570 2571 return 0; 2572 } 2573 #endif 2574 2575 static const struct dev_pm_ops tegra_dc_pm_ops = { 2576 SET_RUNTIME_PM_OPS(tegra_dc_suspend, tegra_dc_resume, NULL) 2577 }; 2578 2579 struct platform_driver tegra_dc_driver = { 2580 .driver = { 2581 .name = "tegra-dc", 2582 .of_match_table = tegra_dc_of_match, 2583 .pm = &tegra_dc_pm_ops, 2584 }, 2585 .probe = tegra_dc_probe, 2586 .remove = tegra_dc_remove, 2587 }; 2588