xref: /openbmc/linux/drivers/gpu/drm/tegra/dc.c (revision 65417d9f)
1 /*
2  * Copyright (C) 2012 Avionic Design GmbH
3  * Copyright (C) 2012 NVIDIA CORPORATION.  All rights reserved.
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  */
9 
10 #include <linux/clk.h>
11 #include <linux/debugfs.h>
12 #include <linux/iommu.h>
13 #include <linux/of_device.h>
14 #include <linux/pm_runtime.h>
15 #include <linux/reset.h>
16 
17 #include <soc/tegra/pmc.h>
18 
19 #include "dc.h"
20 #include "drm.h"
21 #include "gem.h"
22 
23 #include <drm/drm_atomic.h>
24 #include <drm/drm_atomic_helper.h>
25 #include <drm/drm_plane_helper.h>
26 
27 struct tegra_plane {
28 	struct drm_plane base;
29 	unsigned int index;
30 };
31 
32 static inline struct tegra_plane *to_tegra_plane(struct drm_plane *plane)
33 {
34 	return container_of(plane, struct tegra_plane, base);
35 }
36 
37 struct tegra_dc_state {
38 	struct drm_crtc_state base;
39 
40 	struct clk *clk;
41 	unsigned long pclk;
42 	unsigned int div;
43 
44 	u32 planes;
45 };
46 
47 static inline struct tegra_dc_state *to_dc_state(struct drm_crtc_state *state)
48 {
49 	if (state)
50 		return container_of(state, struct tegra_dc_state, base);
51 
52 	return NULL;
53 }
54 
55 struct tegra_plane_state {
56 	struct drm_plane_state base;
57 
58 	struct tegra_bo_tiling tiling;
59 	u32 format;
60 	u32 swap;
61 };
62 
63 static inline struct tegra_plane_state *
64 to_tegra_plane_state(struct drm_plane_state *state)
65 {
66 	if (state)
67 		return container_of(state, struct tegra_plane_state, base);
68 
69 	return NULL;
70 }
71 
72 static void tegra_dc_stats_reset(struct tegra_dc_stats *stats)
73 {
74 	stats->frames = 0;
75 	stats->vblank = 0;
76 	stats->underflow = 0;
77 	stats->overflow = 0;
78 }
79 
80 /*
81  * Reads the active copy of a register. This takes the dc->lock spinlock to
82  * prevent races with the VBLANK processing which also needs access to the
83  * active copy of some registers.
84  */
85 static u32 tegra_dc_readl_active(struct tegra_dc *dc, unsigned long offset)
86 {
87 	unsigned long flags;
88 	u32 value;
89 
90 	spin_lock_irqsave(&dc->lock, flags);
91 
92 	tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
93 	value = tegra_dc_readl(dc, offset);
94 	tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS);
95 
96 	spin_unlock_irqrestore(&dc->lock, flags);
97 	return value;
98 }
99 
100 /*
101  * Double-buffered registers have two copies: ASSEMBLY and ACTIVE. When the
102  * *_ACT_REQ bits are set the ASSEMBLY copy is latched into the ACTIVE copy.
103  * Latching happens mmediately if the display controller is in STOP mode or
104  * on the next frame boundary otherwise.
105  *
106  * Triple-buffered registers have three copies: ASSEMBLY, ARM and ACTIVE. The
107  * ASSEMBLY copy is latched into the ARM copy immediately after *_UPDATE bits
108  * are written. When the *_ACT_REQ bits are written, the ARM copy is latched
109  * into the ACTIVE copy, either immediately if the display controller is in
110  * STOP mode, or at the next frame boundary otherwise.
111  */
112 void tegra_dc_commit(struct tegra_dc *dc)
113 {
114 	tegra_dc_writel(dc, GENERAL_ACT_REQ << 8, DC_CMD_STATE_CONTROL);
115 	tegra_dc_writel(dc, GENERAL_ACT_REQ, DC_CMD_STATE_CONTROL);
116 }
117 
118 static int tegra_dc_format(u32 fourcc, u32 *format, u32 *swap)
119 {
120 	/* assume no swapping of fetched data */
121 	if (swap)
122 		*swap = BYTE_SWAP_NOSWAP;
123 
124 	switch (fourcc) {
125 	case DRM_FORMAT_XBGR8888:
126 		*format = WIN_COLOR_DEPTH_R8G8B8A8;
127 		break;
128 
129 	case DRM_FORMAT_XRGB8888:
130 		*format = WIN_COLOR_DEPTH_B8G8R8A8;
131 		break;
132 
133 	case DRM_FORMAT_RGB565:
134 		*format = WIN_COLOR_DEPTH_B5G6R5;
135 		break;
136 
137 	case DRM_FORMAT_UYVY:
138 		*format = WIN_COLOR_DEPTH_YCbCr422;
139 		break;
140 
141 	case DRM_FORMAT_YUYV:
142 		if (swap)
143 			*swap = BYTE_SWAP_SWAP2;
144 
145 		*format = WIN_COLOR_DEPTH_YCbCr422;
146 		break;
147 
148 	case DRM_FORMAT_YUV420:
149 		*format = WIN_COLOR_DEPTH_YCbCr420P;
150 		break;
151 
152 	case DRM_FORMAT_YUV422:
153 		*format = WIN_COLOR_DEPTH_YCbCr422P;
154 		break;
155 
156 	default:
157 		return -EINVAL;
158 	}
159 
160 	return 0;
161 }
162 
163 static bool tegra_dc_format_is_yuv(unsigned int format, bool *planar)
164 {
165 	switch (format) {
166 	case WIN_COLOR_DEPTH_YCbCr422:
167 	case WIN_COLOR_DEPTH_YUV422:
168 		if (planar)
169 			*planar = false;
170 
171 		return true;
172 
173 	case WIN_COLOR_DEPTH_YCbCr420P:
174 	case WIN_COLOR_DEPTH_YUV420P:
175 	case WIN_COLOR_DEPTH_YCbCr422P:
176 	case WIN_COLOR_DEPTH_YUV422P:
177 	case WIN_COLOR_DEPTH_YCbCr422R:
178 	case WIN_COLOR_DEPTH_YUV422R:
179 	case WIN_COLOR_DEPTH_YCbCr422RA:
180 	case WIN_COLOR_DEPTH_YUV422RA:
181 		if (planar)
182 			*planar = true;
183 
184 		return true;
185 	}
186 
187 	if (planar)
188 		*planar = false;
189 
190 	return false;
191 }
192 
193 static inline u32 compute_dda_inc(unsigned int in, unsigned int out, bool v,
194 				  unsigned int bpp)
195 {
196 	fixed20_12 outf = dfixed_init(out);
197 	fixed20_12 inf = dfixed_init(in);
198 	u32 dda_inc;
199 	int max;
200 
201 	if (v)
202 		max = 15;
203 	else {
204 		switch (bpp) {
205 		case 2:
206 			max = 8;
207 			break;
208 
209 		default:
210 			WARN_ON_ONCE(1);
211 			/* fallthrough */
212 		case 4:
213 			max = 4;
214 			break;
215 		}
216 	}
217 
218 	outf.full = max_t(u32, outf.full - dfixed_const(1), dfixed_const(1));
219 	inf.full -= dfixed_const(1);
220 
221 	dda_inc = dfixed_div(inf, outf);
222 	dda_inc = min_t(u32, dda_inc, dfixed_const(max));
223 
224 	return dda_inc;
225 }
226 
227 static inline u32 compute_initial_dda(unsigned int in)
228 {
229 	fixed20_12 inf = dfixed_init(in);
230 	return dfixed_frac(inf);
231 }
232 
233 static void tegra_dc_setup_window(struct tegra_dc *dc, unsigned int index,
234 				  const struct tegra_dc_window *window)
235 {
236 	unsigned h_offset, v_offset, h_size, v_size, h_dda, v_dda, bpp;
237 	unsigned long value, flags;
238 	bool yuv, planar;
239 
240 	/*
241 	 * For YUV planar modes, the number of bytes per pixel takes into
242 	 * account only the luma component and therefore is 1.
243 	 */
244 	yuv = tegra_dc_format_is_yuv(window->format, &planar);
245 	if (!yuv)
246 		bpp = window->bits_per_pixel / 8;
247 	else
248 		bpp = planar ? 1 : 2;
249 
250 	spin_lock_irqsave(&dc->lock, flags);
251 
252 	value = WINDOW_A_SELECT << index;
253 	tegra_dc_writel(dc, value, DC_CMD_DISPLAY_WINDOW_HEADER);
254 
255 	tegra_dc_writel(dc, window->format, DC_WIN_COLOR_DEPTH);
256 	tegra_dc_writel(dc, window->swap, DC_WIN_BYTE_SWAP);
257 
258 	value = V_POSITION(window->dst.y) | H_POSITION(window->dst.x);
259 	tegra_dc_writel(dc, value, DC_WIN_POSITION);
260 
261 	value = V_SIZE(window->dst.h) | H_SIZE(window->dst.w);
262 	tegra_dc_writel(dc, value, DC_WIN_SIZE);
263 
264 	h_offset = window->src.x * bpp;
265 	v_offset = window->src.y;
266 	h_size = window->src.w * bpp;
267 	v_size = window->src.h;
268 
269 	value = V_PRESCALED_SIZE(v_size) | H_PRESCALED_SIZE(h_size);
270 	tegra_dc_writel(dc, value, DC_WIN_PRESCALED_SIZE);
271 
272 	/*
273 	 * For DDA computations the number of bytes per pixel for YUV planar
274 	 * modes needs to take into account all Y, U and V components.
275 	 */
276 	if (yuv && planar)
277 		bpp = 2;
278 
279 	h_dda = compute_dda_inc(window->src.w, window->dst.w, false, bpp);
280 	v_dda = compute_dda_inc(window->src.h, window->dst.h, true, bpp);
281 
282 	value = V_DDA_INC(v_dda) | H_DDA_INC(h_dda);
283 	tegra_dc_writel(dc, value, DC_WIN_DDA_INC);
284 
285 	h_dda = compute_initial_dda(window->src.x);
286 	v_dda = compute_initial_dda(window->src.y);
287 
288 	tegra_dc_writel(dc, h_dda, DC_WIN_H_INITIAL_DDA);
289 	tegra_dc_writel(dc, v_dda, DC_WIN_V_INITIAL_DDA);
290 
291 	tegra_dc_writel(dc, 0, DC_WIN_UV_BUF_STRIDE);
292 	tegra_dc_writel(dc, 0, DC_WIN_BUF_STRIDE);
293 
294 	tegra_dc_writel(dc, window->base[0], DC_WINBUF_START_ADDR);
295 
296 	if (yuv && planar) {
297 		tegra_dc_writel(dc, window->base[1], DC_WINBUF_START_ADDR_U);
298 		tegra_dc_writel(dc, window->base[2], DC_WINBUF_START_ADDR_V);
299 		value = window->stride[1] << 16 | window->stride[0];
300 		tegra_dc_writel(dc, value, DC_WIN_LINE_STRIDE);
301 	} else {
302 		tegra_dc_writel(dc, window->stride[0], DC_WIN_LINE_STRIDE);
303 	}
304 
305 	if (window->bottom_up)
306 		v_offset += window->src.h - 1;
307 
308 	tegra_dc_writel(dc, h_offset, DC_WINBUF_ADDR_H_OFFSET);
309 	tegra_dc_writel(dc, v_offset, DC_WINBUF_ADDR_V_OFFSET);
310 
311 	if (dc->soc->supports_block_linear) {
312 		unsigned long height = window->tiling.value;
313 
314 		switch (window->tiling.mode) {
315 		case TEGRA_BO_TILING_MODE_PITCH:
316 			value = DC_WINBUF_SURFACE_KIND_PITCH;
317 			break;
318 
319 		case TEGRA_BO_TILING_MODE_TILED:
320 			value = DC_WINBUF_SURFACE_KIND_TILED;
321 			break;
322 
323 		case TEGRA_BO_TILING_MODE_BLOCK:
324 			value = DC_WINBUF_SURFACE_KIND_BLOCK_HEIGHT(height) |
325 				DC_WINBUF_SURFACE_KIND_BLOCK;
326 			break;
327 		}
328 
329 		tegra_dc_writel(dc, value, DC_WINBUF_SURFACE_KIND);
330 	} else {
331 		switch (window->tiling.mode) {
332 		case TEGRA_BO_TILING_MODE_PITCH:
333 			value = DC_WIN_BUFFER_ADDR_MODE_LINEAR_UV |
334 				DC_WIN_BUFFER_ADDR_MODE_LINEAR;
335 			break;
336 
337 		case TEGRA_BO_TILING_MODE_TILED:
338 			value = DC_WIN_BUFFER_ADDR_MODE_TILE_UV |
339 				DC_WIN_BUFFER_ADDR_MODE_TILE;
340 			break;
341 
342 		case TEGRA_BO_TILING_MODE_BLOCK:
343 			/*
344 			 * No need to handle this here because ->atomic_check
345 			 * will already have filtered it out.
346 			 */
347 			break;
348 		}
349 
350 		tegra_dc_writel(dc, value, DC_WIN_BUFFER_ADDR_MODE);
351 	}
352 
353 	value = WIN_ENABLE;
354 
355 	if (yuv) {
356 		/* setup default colorspace conversion coefficients */
357 		tegra_dc_writel(dc, 0x00f0, DC_WIN_CSC_YOF);
358 		tegra_dc_writel(dc, 0x012a, DC_WIN_CSC_KYRGB);
359 		tegra_dc_writel(dc, 0x0000, DC_WIN_CSC_KUR);
360 		tegra_dc_writel(dc, 0x0198, DC_WIN_CSC_KVR);
361 		tegra_dc_writel(dc, 0x039b, DC_WIN_CSC_KUG);
362 		tegra_dc_writel(dc, 0x032f, DC_WIN_CSC_KVG);
363 		tegra_dc_writel(dc, 0x0204, DC_WIN_CSC_KUB);
364 		tegra_dc_writel(dc, 0x0000, DC_WIN_CSC_KVB);
365 
366 		value |= CSC_ENABLE;
367 	} else if (window->bits_per_pixel < 24) {
368 		value |= COLOR_EXPAND;
369 	}
370 
371 	if (window->bottom_up)
372 		value |= V_DIRECTION;
373 
374 	tegra_dc_writel(dc, value, DC_WIN_WIN_OPTIONS);
375 
376 	/*
377 	 * Disable blending and assume Window A is the bottom-most window,
378 	 * Window C is the top-most window and Window B is in the middle.
379 	 */
380 	tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_NOKEY);
381 	tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_1WIN);
382 
383 	switch (index) {
384 	case 0:
385 		tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_2WIN_X);
386 		tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_2WIN_Y);
387 		tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_3WIN_XY);
388 		break;
389 
390 	case 1:
391 		tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_2WIN_X);
392 		tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_2WIN_Y);
393 		tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_3WIN_XY);
394 		break;
395 
396 	case 2:
397 		tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_2WIN_X);
398 		tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_2WIN_Y);
399 		tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_3WIN_XY);
400 		break;
401 	}
402 
403 	spin_unlock_irqrestore(&dc->lock, flags);
404 }
405 
406 static void tegra_plane_destroy(struct drm_plane *plane)
407 {
408 	struct tegra_plane *p = to_tegra_plane(plane);
409 
410 	drm_plane_cleanup(plane);
411 	kfree(p);
412 }
413 
414 static const u32 tegra_primary_plane_formats[] = {
415 	DRM_FORMAT_XBGR8888,
416 	DRM_FORMAT_XRGB8888,
417 	DRM_FORMAT_RGB565,
418 };
419 
420 static void tegra_primary_plane_destroy(struct drm_plane *plane)
421 {
422 	tegra_plane_destroy(plane);
423 }
424 
425 static void tegra_plane_reset(struct drm_plane *plane)
426 {
427 	struct tegra_plane_state *state;
428 
429 	if (plane->state)
430 		__drm_atomic_helper_plane_destroy_state(plane->state);
431 
432 	kfree(plane->state);
433 	plane->state = NULL;
434 
435 	state = kzalloc(sizeof(*state), GFP_KERNEL);
436 	if (state) {
437 		plane->state = &state->base;
438 		plane->state->plane = plane;
439 	}
440 }
441 
442 static struct drm_plane_state *tegra_plane_atomic_duplicate_state(struct drm_plane *plane)
443 {
444 	struct tegra_plane_state *state = to_tegra_plane_state(plane->state);
445 	struct tegra_plane_state *copy;
446 
447 	copy = kmalloc(sizeof(*copy), GFP_KERNEL);
448 	if (!copy)
449 		return NULL;
450 
451 	__drm_atomic_helper_plane_duplicate_state(plane, &copy->base);
452 	copy->tiling = state->tiling;
453 	copy->format = state->format;
454 	copy->swap = state->swap;
455 
456 	return &copy->base;
457 }
458 
459 static void tegra_plane_atomic_destroy_state(struct drm_plane *plane,
460 					     struct drm_plane_state *state)
461 {
462 	__drm_atomic_helper_plane_destroy_state(state);
463 	kfree(state);
464 }
465 
466 static const struct drm_plane_funcs tegra_primary_plane_funcs = {
467 	.update_plane = drm_atomic_helper_update_plane,
468 	.disable_plane = drm_atomic_helper_disable_plane,
469 	.destroy = tegra_primary_plane_destroy,
470 	.reset = tegra_plane_reset,
471 	.atomic_duplicate_state = tegra_plane_atomic_duplicate_state,
472 	.atomic_destroy_state = tegra_plane_atomic_destroy_state,
473 };
474 
475 static int tegra_plane_state_add(struct tegra_plane *plane,
476 				 struct drm_plane_state *state)
477 {
478 	struct drm_crtc_state *crtc_state;
479 	struct tegra_dc_state *tegra;
480 	struct drm_rect clip;
481 	int err;
482 
483 	/* Propagate errors from allocation or locking failures. */
484 	crtc_state = drm_atomic_get_crtc_state(state->state, state->crtc);
485 	if (IS_ERR(crtc_state))
486 		return PTR_ERR(crtc_state);
487 
488 	clip.x1 = 0;
489 	clip.y1 = 0;
490 	clip.x2 = crtc_state->mode.hdisplay;
491 	clip.y2 = crtc_state->mode.vdisplay;
492 
493 	/* Check plane state for visibility and calculate clipping bounds */
494 	err = drm_atomic_helper_check_plane_state(state, crtc_state, &clip,
495 						  0, INT_MAX, true, true);
496 	if (err < 0)
497 		return err;
498 
499 	tegra = to_dc_state(crtc_state);
500 
501 	tegra->planes |= WIN_A_ACT_REQ << plane->index;
502 
503 	return 0;
504 }
505 
506 static int tegra_plane_atomic_check(struct drm_plane *plane,
507 				    struct drm_plane_state *state)
508 {
509 	struct tegra_plane_state *plane_state = to_tegra_plane_state(state);
510 	struct tegra_bo_tiling *tiling = &plane_state->tiling;
511 	struct tegra_plane *tegra = to_tegra_plane(plane);
512 	struct tegra_dc *dc = to_tegra_dc(state->crtc);
513 	int err;
514 
515 	/* no need for further checks if the plane is being disabled */
516 	if (!state->crtc)
517 		return 0;
518 
519 	err = tegra_dc_format(state->fb->format->format, &plane_state->format,
520 			      &plane_state->swap);
521 	if (err < 0)
522 		return err;
523 
524 	err = tegra_fb_get_tiling(state->fb, tiling);
525 	if (err < 0)
526 		return err;
527 
528 	if (tiling->mode == TEGRA_BO_TILING_MODE_BLOCK &&
529 	    !dc->soc->supports_block_linear) {
530 		DRM_ERROR("hardware doesn't support block linear mode\n");
531 		return -EINVAL;
532 	}
533 
534 	/*
535 	 * Tegra doesn't support different strides for U and V planes so we
536 	 * error out if the user tries to display a framebuffer with such a
537 	 * configuration.
538 	 */
539 	if (state->fb->format->num_planes > 2) {
540 		if (state->fb->pitches[2] != state->fb->pitches[1]) {
541 			DRM_ERROR("unsupported UV-plane configuration\n");
542 			return -EINVAL;
543 		}
544 	}
545 
546 	err = tegra_plane_state_add(tegra, state);
547 	if (err < 0)
548 		return err;
549 
550 	return 0;
551 }
552 
553 static void tegra_plane_atomic_disable(struct drm_plane *plane,
554 				       struct drm_plane_state *old_state)
555 {
556 	struct tegra_dc *dc = to_tegra_dc(old_state->crtc);
557 	struct tegra_plane *p = to_tegra_plane(plane);
558 	unsigned long flags;
559 	u32 value;
560 
561 	/* rien ne va plus */
562 	if (!old_state || !old_state->crtc)
563 		return;
564 
565 	spin_lock_irqsave(&dc->lock, flags);
566 
567 	value = WINDOW_A_SELECT << p->index;
568 	tegra_dc_writel(dc, value, DC_CMD_DISPLAY_WINDOW_HEADER);
569 
570 	value = tegra_dc_readl(dc, DC_WIN_WIN_OPTIONS);
571 	value &= ~WIN_ENABLE;
572 	tegra_dc_writel(dc, value, DC_WIN_WIN_OPTIONS);
573 
574 	spin_unlock_irqrestore(&dc->lock, flags);
575 }
576 
577 static void tegra_plane_atomic_update(struct drm_plane *plane,
578 				      struct drm_plane_state *old_state)
579 {
580 	struct tegra_plane_state *state = to_tegra_plane_state(plane->state);
581 	struct tegra_dc *dc = to_tegra_dc(plane->state->crtc);
582 	struct drm_framebuffer *fb = plane->state->fb;
583 	struct tegra_plane *p = to_tegra_plane(plane);
584 	struct tegra_dc_window window;
585 	unsigned int i;
586 
587 	/* rien ne va plus */
588 	if (!plane->state->crtc || !plane->state->fb)
589 		return;
590 
591 	if (!plane->state->visible)
592 		return tegra_plane_atomic_disable(plane, old_state);
593 
594 	memset(&window, 0, sizeof(window));
595 	window.src.x = plane->state->src.x1 >> 16;
596 	window.src.y = plane->state->src.y1 >> 16;
597 	window.src.w = drm_rect_width(&plane->state->src) >> 16;
598 	window.src.h = drm_rect_height(&plane->state->src) >> 16;
599 	window.dst.x = plane->state->dst.x1;
600 	window.dst.y = plane->state->dst.y1;
601 	window.dst.w = drm_rect_width(&plane->state->dst);
602 	window.dst.h = drm_rect_height(&plane->state->dst);
603 	window.bits_per_pixel = fb->format->cpp[0] * 8;
604 	window.bottom_up = tegra_fb_is_bottom_up(fb);
605 
606 	/* copy from state */
607 	window.tiling = state->tiling;
608 	window.format = state->format;
609 	window.swap = state->swap;
610 
611 	for (i = 0; i < fb->format->num_planes; i++) {
612 		struct tegra_bo *bo = tegra_fb_get_plane(fb, i);
613 
614 		window.base[i] = bo->paddr + fb->offsets[i];
615 
616 		/*
617 		 * Tegra uses a shared stride for UV planes. Framebuffers are
618 		 * already checked for this in the tegra_plane_atomic_check()
619 		 * function, so it's safe to ignore the V-plane pitch here.
620 		 */
621 		if (i < 2)
622 			window.stride[i] = fb->pitches[i];
623 	}
624 
625 	tegra_dc_setup_window(dc, p->index, &window);
626 }
627 
628 static const struct drm_plane_helper_funcs tegra_plane_helper_funcs = {
629 	.atomic_check = tegra_plane_atomic_check,
630 	.atomic_disable = tegra_plane_atomic_disable,
631 	.atomic_update = tegra_plane_atomic_update,
632 };
633 
634 static struct drm_plane *tegra_dc_primary_plane_create(struct drm_device *drm,
635 						       struct tegra_dc *dc)
636 {
637 	/*
638 	 * Ideally this would use drm_crtc_mask(), but that would require the
639 	 * CRTC to already be in the mode_config's list of CRTCs. However, it
640 	 * will only be added to that list in the drm_crtc_init_with_planes()
641 	 * (in tegra_dc_init()), which in turn requires registration of these
642 	 * planes. So we have ourselves a nice little chicken and egg problem
643 	 * here.
644 	 *
645 	 * We work around this by manually creating the mask from the number
646 	 * of CRTCs that have been registered, and should therefore always be
647 	 * the same as drm_crtc_index() after registration.
648 	 */
649 	unsigned long possible_crtcs = 1 << drm->mode_config.num_crtc;
650 	struct tegra_plane *plane;
651 	unsigned int num_formats;
652 	const u32 *formats;
653 	int err;
654 
655 	plane = kzalloc(sizeof(*plane), GFP_KERNEL);
656 	if (!plane)
657 		return ERR_PTR(-ENOMEM);
658 
659 	num_formats = ARRAY_SIZE(tegra_primary_plane_formats);
660 	formats = tegra_primary_plane_formats;
661 
662 	err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
663 				       &tegra_primary_plane_funcs, formats,
664 				       num_formats, NULL,
665 				       DRM_PLANE_TYPE_PRIMARY, NULL);
666 	if (err < 0) {
667 		kfree(plane);
668 		return ERR_PTR(err);
669 	}
670 
671 	drm_plane_helper_add(&plane->base, &tegra_plane_helper_funcs);
672 
673 	return &plane->base;
674 }
675 
676 static const u32 tegra_cursor_plane_formats[] = {
677 	DRM_FORMAT_RGBA8888,
678 };
679 
680 static int tegra_cursor_atomic_check(struct drm_plane *plane,
681 				     struct drm_plane_state *state)
682 {
683 	struct tegra_plane *tegra = to_tegra_plane(plane);
684 	int err;
685 
686 	/* no need for further checks if the plane is being disabled */
687 	if (!state->crtc)
688 		return 0;
689 
690 	/* scaling not supported for cursor */
691 	if ((state->src_w >> 16 != state->crtc_w) ||
692 	    (state->src_h >> 16 != state->crtc_h))
693 		return -EINVAL;
694 
695 	/* only square cursors supported */
696 	if (state->src_w != state->src_h)
697 		return -EINVAL;
698 
699 	if (state->crtc_w != 32 && state->crtc_w != 64 &&
700 	    state->crtc_w != 128 && state->crtc_w != 256)
701 		return -EINVAL;
702 
703 	err = tegra_plane_state_add(tegra, state);
704 	if (err < 0)
705 		return err;
706 
707 	return 0;
708 }
709 
710 static void tegra_cursor_atomic_update(struct drm_plane *plane,
711 				       struct drm_plane_state *old_state)
712 {
713 	struct tegra_bo *bo = tegra_fb_get_plane(plane->state->fb, 0);
714 	struct tegra_dc *dc = to_tegra_dc(plane->state->crtc);
715 	struct drm_plane_state *state = plane->state;
716 	u32 value = CURSOR_CLIP_DISPLAY;
717 
718 	/* rien ne va plus */
719 	if (!plane->state->crtc || !plane->state->fb)
720 		return;
721 
722 	switch (state->crtc_w) {
723 	case 32:
724 		value |= CURSOR_SIZE_32x32;
725 		break;
726 
727 	case 64:
728 		value |= CURSOR_SIZE_64x64;
729 		break;
730 
731 	case 128:
732 		value |= CURSOR_SIZE_128x128;
733 		break;
734 
735 	case 256:
736 		value |= CURSOR_SIZE_256x256;
737 		break;
738 
739 	default:
740 		WARN(1, "cursor size %ux%u not supported\n", state->crtc_w,
741 		     state->crtc_h);
742 		return;
743 	}
744 
745 	value |= (bo->paddr >> 10) & 0x3fffff;
746 	tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR);
747 
748 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
749 	value = (bo->paddr >> 32) & 0x3;
750 	tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR_HI);
751 #endif
752 
753 	/* enable cursor and set blend mode */
754 	value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
755 	value |= CURSOR_ENABLE;
756 	tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
757 
758 	value = tegra_dc_readl(dc, DC_DISP_BLEND_CURSOR_CONTROL);
759 	value &= ~CURSOR_DST_BLEND_MASK;
760 	value &= ~CURSOR_SRC_BLEND_MASK;
761 	value |= CURSOR_MODE_NORMAL;
762 	value |= CURSOR_DST_BLEND_NEG_K1_TIMES_SRC;
763 	value |= CURSOR_SRC_BLEND_K1_TIMES_SRC;
764 	value |= CURSOR_ALPHA;
765 	tegra_dc_writel(dc, value, DC_DISP_BLEND_CURSOR_CONTROL);
766 
767 	/* position the cursor */
768 	value = (state->crtc_y & 0x3fff) << 16 | (state->crtc_x & 0x3fff);
769 	tegra_dc_writel(dc, value, DC_DISP_CURSOR_POSITION);
770 }
771 
772 static void tegra_cursor_atomic_disable(struct drm_plane *plane,
773 					struct drm_plane_state *old_state)
774 {
775 	struct tegra_dc *dc;
776 	u32 value;
777 
778 	/* rien ne va plus */
779 	if (!old_state || !old_state->crtc)
780 		return;
781 
782 	dc = to_tegra_dc(old_state->crtc);
783 
784 	value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
785 	value &= ~CURSOR_ENABLE;
786 	tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
787 }
788 
789 static const struct drm_plane_funcs tegra_cursor_plane_funcs = {
790 	.update_plane = drm_atomic_helper_update_plane,
791 	.disable_plane = drm_atomic_helper_disable_plane,
792 	.destroy = tegra_plane_destroy,
793 	.reset = tegra_plane_reset,
794 	.atomic_duplicate_state = tegra_plane_atomic_duplicate_state,
795 	.atomic_destroy_state = tegra_plane_atomic_destroy_state,
796 };
797 
798 static const struct drm_plane_helper_funcs tegra_cursor_plane_helper_funcs = {
799 	.atomic_check = tegra_cursor_atomic_check,
800 	.atomic_update = tegra_cursor_atomic_update,
801 	.atomic_disable = tegra_cursor_atomic_disable,
802 };
803 
804 static struct drm_plane *tegra_dc_cursor_plane_create(struct drm_device *drm,
805 						      struct tegra_dc *dc)
806 {
807 	struct tegra_plane *plane;
808 	unsigned int num_formats;
809 	const u32 *formats;
810 	int err;
811 
812 	plane = kzalloc(sizeof(*plane), GFP_KERNEL);
813 	if (!plane)
814 		return ERR_PTR(-ENOMEM);
815 
816 	/*
817 	 * This index is kind of fake. The cursor isn't a regular plane, but
818 	 * its update and activation request bits in DC_CMD_STATE_CONTROL do
819 	 * use the same programming. Setting this fake index here allows the
820 	 * code in tegra_add_plane_state() to do the right thing without the
821 	 * need to special-casing the cursor plane.
822 	 */
823 	plane->index = 6;
824 
825 	num_formats = ARRAY_SIZE(tegra_cursor_plane_formats);
826 	formats = tegra_cursor_plane_formats;
827 
828 	err = drm_universal_plane_init(drm, &plane->base, 1 << dc->pipe,
829 				       &tegra_cursor_plane_funcs, formats,
830 				       num_formats, NULL,
831 				       DRM_PLANE_TYPE_CURSOR, NULL);
832 	if (err < 0) {
833 		kfree(plane);
834 		return ERR_PTR(err);
835 	}
836 
837 	drm_plane_helper_add(&plane->base, &tegra_cursor_plane_helper_funcs);
838 
839 	return &plane->base;
840 }
841 
842 static void tegra_overlay_plane_destroy(struct drm_plane *plane)
843 {
844 	tegra_plane_destroy(plane);
845 }
846 
847 static const struct drm_plane_funcs tegra_overlay_plane_funcs = {
848 	.update_plane = drm_atomic_helper_update_plane,
849 	.disable_plane = drm_atomic_helper_disable_plane,
850 	.destroy = tegra_overlay_plane_destroy,
851 	.reset = tegra_plane_reset,
852 	.atomic_duplicate_state = tegra_plane_atomic_duplicate_state,
853 	.atomic_destroy_state = tegra_plane_atomic_destroy_state,
854 };
855 
856 static const uint32_t tegra_overlay_plane_formats[] = {
857 	DRM_FORMAT_XBGR8888,
858 	DRM_FORMAT_XRGB8888,
859 	DRM_FORMAT_RGB565,
860 	DRM_FORMAT_UYVY,
861 	DRM_FORMAT_YUYV,
862 	DRM_FORMAT_YUV420,
863 	DRM_FORMAT_YUV422,
864 };
865 
866 static struct drm_plane *tegra_dc_overlay_plane_create(struct drm_device *drm,
867 						       struct tegra_dc *dc,
868 						       unsigned int index)
869 {
870 	struct tegra_plane *plane;
871 	unsigned int num_formats;
872 	const u32 *formats;
873 	int err;
874 
875 	plane = kzalloc(sizeof(*plane), GFP_KERNEL);
876 	if (!plane)
877 		return ERR_PTR(-ENOMEM);
878 
879 	plane->index = index;
880 
881 	num_formats = ARRAY_SIZE(tegra_overlay_plane_formats);
882 	formats = tegra_overlay_plane_formats;
883 
884 	err = drm_universal_plane_init(drm, &plane->base, 1 << dc->pipe,
885 				       &tegra_overlay_plane_funcs, formats,
886 				       num_formats, NULL,
887 				       DRM_PLANE_TYPE_OVERLAY, NULL);
888 	if (err < 0) {
889 		kfree(plane);
890 		return ERR_PTR(err);
891 	}
892 
893 	drm_plane_helper_add(&plane->base, &tegra_plane_helper_funcs);
894 
895 	return &plane->base;
896 }
897 
898 static int tegra_dc_add_planes(struct drm_device *drm, struct tegra_dc *dc)
899 {
900 	struct drm_plane *plane;
901 	unsigned int i;
902 
903 	for (i = 0; i < 2; i++) {
904 		plane = tegra_dc_overlay_plane_create(drm, dc, 1 + i);
905 		if (IS_ERR(plane))
906 			return PTR_ERR(plane);
907 	}
908 
909 	return 0;
910 }
911 
912 static u32 tegra_dc_get_vblank_counter(struct drm_crtc *crtc)
913 {
914 	struct tegra_dc *dc = to_tegra_dc(crtc);
915 
916 	if (dc->syncpt)
917 		return host1x_syncpt_read(dc->syncpt);
918 
919 	/* fallback to software emulated VBLANK counter */
920 	return drm_crtc_vblank_count(&dc->base);
921 }
922 
923 static int tegra_dc_enable_vblank(struct drm_crtc *crtc)
924 {
925 	struct tegra_dc *dc = to_tegra_dc(crtc);
926 	unsigned long value, flags;
927 
928 	spin_lock_irqsave(&dc->lock, flags);
929 
930 	value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
931 	value |= VBLANK_INT;
932 	tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
933 
934 	spin_unlock_irqrestore(&dc->lock, flags);
935 
936 	return 0;
937 }
938 
939 static void tegra_dc_disable_vblank(struct drm_crtc *crtc)
940 {
941 	struct tegra_dc *dc = to_tegra_dc(crtc);
942 	unsigned long value, flags;
943 
944 	spin_lock_irqsave(&dc->lock, flags);
945 
946 	value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
947 	value &= ~VBLANK_INT;
948 	tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
949 
950 	spin_unlock_irqrestore(&dc->lock, flags);
951 }
952 
953 static void tegra_dc_finish_page_flip(struct tegra_dc *dc)
954 {
955 	struct drm_device *drm = dc->base.dev;
956 	struct drm_crtc *crtc = &dc->base;
957 	unsigned long flags, base;
958 	struct tegra_bo *bo;
959 
960 	spin_lock_irqsave(&drm->event_lock, flags);
961 
962 	if (!dc->event) {
963 		spin_unlock_irqrestore(&drm->event_lock, flags);
964 		return;
965 	}
966 
967 	bo = tegra_fb_get_plane(crtc->primary->fb, 0);
968 
969 	spin_lock(&dc->lock);
970 
971 	/* check if new start address has been latched */
972 	tegra_dc_writel(dc, WINDOW_A_SELECT, DC_CMD_DISPLAY_WINDOW_HEADER);
973 	tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
974 	base = tegra_dc_readl(dc, DC_WINBUF_START_ADDR);
975 	tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS);
976 
977 	spin_unlock(&dc->lock);
978 
979 	if (base == bo->paddr + crtc->primary->fb->offsets[0]) {
980 		drm_crtc_send_vblank_event(crtc, dc->event);
981 		drm_crtc_vblank_put(crtc);
982 		dc->event = NULL;
983 	}
984 
985 	spin_unlock_irqrestore(&drm->event_lock, flags);
986 }
987 
988 static void tegra_dc_destroy(struct drm_crtc *crtc)
989 {
990 	drm_crtc_cleanup(crtc);
991 }
992 
993 static void tegra_crtc_reset(struct drm_crtc *crtc)
994 {
995 	struct tegra_dc_state *state;
996 
997 	if (crtc->state)
998 		__drm_atomic_helper_crtc_destroy_state(crtc->state);
999 
1000 	kfree(crtc->state);
1001 	crtc->state = NULL;
1002 
1003 	state = kzalloc(sizeof(*state), GFP_KERNEL);
1004 	if (state) {
1005 		crtc->state = &state->base;
1006 		crtc->state->crtc = crtc;
1007 	}
1008 
1009 	drm_crtc_vblank_reset(crtc);
1010 }
1011 
1012 static struct drm_crtc_state *
1013 tegra_crtc_atomic_duplicate_state(struct drm_crtc *crtc)
1014 {
1015 	struct tegra_dc_state *state = to_dc_state(crtc->state);
1016 	struct tegra_dc_state *copy;
1017 
1018 	copy = kmalloc(sizeof(*copy), GFP_KERNEL);
1019 	if (!copy)
1020 		return NULL;
1021 
1022 	__drm_atomic_helper_crtc_duplicate_state(crtc, &copy->base);
1023 	copy->clk = state->clk;
1024 	copy->pclk = state->pclk;
1025 	copy->div = state->div;
1026 	copy->planes = state->planes;
1027 
1028 	return &copy->base;
1029 }
1030 
1031 static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc,
1032 					    struct drm_crtc_state *state)
1033 {
1034 	__drm_atomic_helper_crtc_destroy_state(state);
1035 	kfree(state);
1036 }
1037 
1038 static const struct drm_crtc_funcs tegra_crtc_funcs = {
1039 	.page_flip = drm_atomic_helper_page_flip,
1040 	.set_config = drm_atomic_helper_set_config,
1041 	.destroy = tegra_dc_destroy,
1042 	.reset = tegra_crtc_reset,
1043 	.atomic_duplicate_state = tegra_crtc_atomic_duplicate_state,
1044 	.atomic_destroy_state = tegra_crtc_atomic_destroy_state,
1045 	.get_vblank_counter = tegra_dc_get_vblank_counter,
1046 	.enable_vblank = tegra_dc_enable_vblank,
1047 	.disable_vblank = tegra_dc_disable_vblank,
1048 };
1049 
1050 static int tegra_dc_set_timings(struct tegra_dc *dc,
1051 				struct drm_display_mode *mode)
1052 {
1053 	unsigned int h_ref_to_sync = 1;
1054 	unsigned int v_ref_to_sync = 1;
1055 	unsigned long value;
1056 
1057 	tegra_dc_writel(dc, 0x0, DC_DISP_DISP_TIMING_OPTIONS);
1058 
1059 	value = (v_ref_to_sync << 16) | h_ref_to_sync;
1060 	tegra_dc_writel(dc, value, DC_DISP_REF_TO_SYNC);
1061 
1062 	value = ((mode->vsync_end - mode->vsync_start) << 16) |
1063 		((mode->hsync_end - mode->hsync_start) <<  0);
1064 	tegra_dc_writel(dc, value, DC_DISP_SYNC_WIDTH);
1065 
1066 	value = ((mode->vtotal - mode->vsync_end) << 16) |
1067 		((mode->htotal - mode->hsync_end) <<  0);
1068 	tegra_dc_writel(dc, value, DC_DISP_BACK_PORCH);
1069 
1070 	value = ((mode->vsync_start - mode->vdisplay) << 16) |
1071 		((mode->hsync_start - mode->hdisplay) <<  0);
1072 	tegra_dc_writel(dc, value, DC_DISP_FRONT_PORCH);
1073 
1074 	value = (mode->vdisplay << 16) | mode->hdisplay;
1075 	tegra_dc_writel(dc, value, DC_DISP_ACTIVE);
1076 
1077 	return 0;
1078 }
1079 
1080 /**
1081  * tegra_dc_state_setup_clock - check clock settings and store them in atomic
1082  *     state
1083  * @dc: display controller
1084  * @crtc_state: CRTC atomic state
1085  * @clk: parent clock for display controller
1086  * @pclk: pixel clock
1087  * @div: shift clock divider
1088  *
1089  * Returns:
1090  * 0 on success or a negative error-code on failure.
1091  */
1092 int tegra_dc_state_setup_clock(struct tegra_dc *dc,
1093 			       struct drm_crtc_state *crtc_state,
1094 			       struct clk *clk, unsigned long pclk,
1095 			       unsigned int div)
1096 {
1097 	struct tegra_dc_state *state = to_dc_state(crtc_state);
1098 
1099 	if (!clk_has_parent(dc->clk, clk))
1100 		return -EINVAL;
1101 
1102 	state->clk = clk;
1103 	state->pclk = pclk;
1104 	state->div = div;
1105 
1106 	return 0;
1107 }
1108 
1109 static void tegra_dc_commit_state(struct tegra_dc *dc,
1110 				  struct tegra_dc_state *state)
1111 {
1112 	u32 value;
1113 	int err;
1114 
1115 	err = clk_set_parent(dc->clk, state->clk);
1116 	if (err < 0)
1117 		dev_err(dc->dev, "failed to set parent clock: %d\n", err);
1118 
1119 	/*
1120 	 * Outputs may not want to change the parent clock rate. This is only
1121 	 * relevant to Tegra20 where only a single display PLL is available.
1122 	 * Since that PLL would typically be used for HDMI, an internal LVDS
1123 	 * panel would need to be driven by some other clock such as PLL_P
1124 	 * which is shared with other peripherals. Changing the clock rate
1125 	 * should therefore be avoided.
1126 	 */
1127 	if (state->pclk > 0) {
1128 		err = clk_set_rate(state->clk, state->pclk);
1129 		if (err < 0)
1130 			dev_err(dc->dev,
1131 				"failed to set clock rate to %lu Hz\n",
1132 				state->pclk);
1133 	}
1134 
1135 	DRM_DEBUG_KMS("rate: %lu, div: %u\n", clk_get_rate(dc->clk),
1136 		      state->div);
1137 	DRM_DEBUG_KMS("pclk: %lu\n", state->pclk);
1138 
1139 	value = SHIFT_CLK_DIVIDER(state->div) | PIXEL_CLK_DIVIDER_PCD1;
1140 	tegra_dc_writel(dc, value, DC_DISP_DISP_CLOCK_CONTROL);
1141 
1142 	err = clk_set_rate(dc->clk, state->pclk);
1143 	if (err < 0)
1144 		dev_err(dc->dev, "failed to set clock %pC to %lu Hz: %d\n",
1145 			dc->clk, state->pclk, err);
1146 }
1147 
1148 static void tegra_dc_stop(struct tegra_dc *dc)
1149 {
1150 	u32 value;
1151 
1152 	/* stop the display controller */
1153 	value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1154 	value &= ~DISP_CTRL_MODE_MASK;
1155 	tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1156 
1157 	tegra_dc_commit(dc);
1158 }
1159 
1160 static bool tegra_dc_idle(struct tegra_dc *dc)
1161 {
1162 	u32 value;
1163 
1164 	value = tegra_dc_readl_active(dc, DC_CMD_DISPLAY_COMMAND);
1165 
1166 	return (value & DISP_CTRL_MODE_MASK) == 0;
1167 }
1168 
1169 static int tegra_dc_wait_idle(struct tegra_dc *dc, unsigned long timeout)
1170 {
1171 	timeout = jiffies + msecs_to_jiffies(timeout);
1172 
1173 	while (time_before(jiffies, timeout)) {
1174 		if (tegra_dc_idle(dc))
1175 			return 0;
1176 
1177 		usleep_range(1000, 2000);
1178 	}
1179 
1180 	dev_dbg(dc->dev, "timeout waiting for DC to become idle\n");
1181 	return -ETIMEDOUT;
1182 }
1183 
1184 static void tegra_crtc_atomic_disable(struct drm_crtc *crtc,
1185 				      struct drm_crtc_state *old_state)
1186 {
1187 	struct tegra_dc *dc = to_tegra_dc(crtc);
1188 	u32 value;
1189 
1190 	if (!tegra_dc_idle(dc)) {
1191 		tegra_dc_stop(dc);
1192 
1193 		/*
1194 		 * Ignore the return value, there isn't anything useful to do
1195 		 * in case this fails.
1196 		 */
1197 		tegra_dc_wait_idle(dc, 100);
1198 	}
1199 
1200 	/*
1201 	 * This should really be part of the RGB encoder driver, but clearing
1202 	 * these bits has the side-effect of stopping the display controller.
1203 	 * When that happens no VBLANK interrupts will be raised. At the same
1204 	 * time the encoder is disabled before the display controller, so the
1205 	 * above code is always going to timeout waiting for the controller
1206 	 * to go idle.
1207 	 *
1208 	 * Given the close coupling between the RGB encoder and the display
1209 	 * controller doing it here is still kind of okay. None of the other
1210 	 * encoder drivers require these bits to be cleared.
1211 	 *
1212 	 * XXX: Perhaps given that the display controller is switched off at
1213 	 * this point anyway maybe clearing these bits isn't even useful for
1214 	 * the RGB encoder?
1215 	 */
1216 	if (dc->rgb) {
1217 		value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
1218 		value &= ~(PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
1219 			   PW4_ENABLE | PM0_ENABLE | PM1_ENABLE);
1220 		tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
1221 	}
1222 
1223 	tegra_dc_stats_reset(&dc->stats);
1224 	drm_crtc_vblank_off(crtc);
1225 
1226 	pm_runtime_put_sync(dc->dev);
1227 }
1228 
1229 static void tegra_crtc_atomic_enable(struct drm_crtc *crtc,
1230 				     struct drm_crtc_state *old_state)
1231 {
1232 	struct drm_display_mode *mode = &crtc->state->adjusted_mode;
1233 	struct tegra_dc_state *state = to_dc_state(crtc->state);
1234 	struct tegra_dc *dc = to_tegra_dc(crtc);
1235 	u32 value;
1236 
1237 	pm_runtime_get_sync(dc->dev);
1238 
1239 	/* initialize display controller */
1240 	if (dc->syncpt) {
1241 		u32 syncpt = host1x_syncpt_id(dc->syncpt);
1242 
1243 		value = SYNCPT_CNTRL_NO_STALL;
1244 		tegra_dc_writel(dc, value, DC_CMD_GENERAL_INCR_SYNCPT_CNTRL);
1245 
1246 		value = SYNCPT_VSYNC_ENABLE | syncpt;
1247 		tegra_dc_writel(dc, value, DC_CMD_CONT_SYNCPT_VSYNC);
1248 	}
1249 
1250 	value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1251 		WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1252 	tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
1253 
1254 	value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1255 		WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1256 	tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
1257 
1258 	/* initialize timer */
1259 	value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(0x20) |
1260 		WINDOW_B_THRESHOLD(0x20) | WINDOW_C_THRESHOLD(0x20);
1261 	tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY);
1262 
1263 	value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(1) |
1264 		WINDOW_B_THRESHOLD(1) | WINDOW_C_THRESHOLD(1);
1265 	tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER);
1266 
1267 	value = VBLANK_INT | WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1268 		WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1269 	tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
1270 
1271 	value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1272 		WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1273 	tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1274 
1275 	if (dc->soc->supports_border_color)
1276 		tegra_dc_writel(dc, 0, DC_DISP_BORDER_COLOR);
1277 
1278 	/* apply PLL and pixel clock changes */
1279 	tegra_dc_commit_state(dc, state);
1280 
1281 	/* program display mode */
1282 	tegra_dc_set_timings(dc, mode);
1283 
1284 	/* interlacing isn't supported yet, so disable it */
1285 	if (dc->soc->supports_interlacing) {
1286 		value = tegra_dc_readl(dc, DC_DISP_INTERLACE_CONTROL);
1287 		value &= ~INTERLACE_ENABLE;
1288 		tegra_dc_writel(dc, value, DC_DISP_INTERLACE_CONTROL);
1289 	}
1290 
1291 	value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1292 	value &= ~DISP_CTRL_MODE_MASK;
1293 	value |= DISP_CTRL_MODE_C_DISPLAY;
1294 	tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1295 
1296 	value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
1297 	value |= PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
1298 		 PW4_ENABLE | PM0_ENABLE | PM1_ENABLE;
1299 	tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
1300 
1301 	tegra_dc_commit(dc);
1302 
1303 	drm_crtc_vblank_on(crtc);
1304 }
1305 
1306 static int tegra_crtc_atomic_check(struct drm_crtc *crtc,
1307 				   struct drm_crtc_state *state)
1308 {
1309 	return 0;
1310 }
1311 
1312 static void tegra_crtc_atomic_begin(struct drm_crtc *crtc,
1313 				    struct drm_crtc_state *old_crtc_state)
1314 {
1315 	struct tegra_dc *dc = to_tegra_dc(crtc);
1316 
1317 	if (crtc->state->event) {
1318 		crtc->state->event->pipe = drm_crtc_index(crtc);
1319 
1320 		WARN_ON(drm_crtc_vblank_get(crtc) != 0);
1321 
1322 		dc->event = crtc->state->event;
1323 		crtc->state->event = NULL;
1324 	}
1325 }
1326 
1327 static void tegra_crtc_atomic_flush(struct drm_crtc *crtc,
1328 				    struct drm_crtc_state *old_crtc_state)
1329 {
1330 	struct tegra_dc_state *state = to_dc_state(crtc->state);
1331 	struct tegra_dc *dc = to_tegra_dc(crtc);
1332 
1333 	tegra_dc_writel(dc, state->planes << 8, DC_CMD_STATE_CONTROL);
1334 	tegra_dc_writel(dc, state->planes, DC_CMD_STATE_CONTROL);
1335 }
1336 
1337 static const struct drm_crtc_helper_funcs tegra_crtc_helper_funcs = {
1338 	.atomic_check = tegra_crtc_atomic_check,
1339 	.atomic_begin = tegra_crtc_atomic_begin,
1340 	.atomic_flush = tegra_crtc_atomic_flush,
1341 	.atomic_enable = tegra_crtc_atomic_enable,
1342 	.atomic_disable = tegra_crtc_atomic_disable,
1343 };
1344 
1345 static irqreturn_t tegra_dc_irq(int irq, void *data)
1346 {
1347 	struct tegra_dc *dc = data;
1348 	unsigned long status;
1349 
1350 	status = tegra_dc_readl(dc, DC_CMD_INT_STATUS);
1351 	tegra_dc_writel(dc, status, DC_CMD_INT_STATUS);
1352 
1353 	if (status & FRAME_END_INT) {
1354 		/*
1355 		dev_dbg(dc->dev, "%s(): frame end\n", __func__);
1356 		*/
1357 		dc->stats.frames++;
1358 	}
1359 
1360 	if (status & VBLANK_INT) {
1361 		/*
1362 		dev_dbg(dc->dev, "%s(): vertical blank\n", __func__);
1363 		*/
1364 		drm_crtc_handle_vblank(&dc->base);
1365 		tegra_dc_finish_page_flip(dc);
1366 		dc->stats.vblank++;
1367 	}
1368 
1369 	if (status & (WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT)) {
1370 		/*
1371 		dev_dbg(dc->dev, "%s(): underflow\n", __func__);
1372 		*/
1373 		dc->stats.underflow++;
1374 	}
1375 
1376 	if (status & (WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT)) {
1377 		/*
1378 		dev_dbg(dc->dev, "%s(): overflow\n", __func__);
1379 		*/
1380 		dc->stats.overflow++;
1381 	}
1382 
1383 	return IRQ_HANDLED;
1384 }
1385 
1386 static int tegra_dc_show_regs(struct seq_file *s, void *data)
1387 {
1388 	struct drm_info_node *node = s->private;
1389 	struct tegra_dc *dc = node->info_ent->data;
1390 	int err = 0;
1391 
1392 	drm_modeset_lock(&dc->base.mutex, NULL);
1393 
1394 	if (!dc->base.state->active) {
1395 		err = -EBUSY;
1396 		goto unlock;
1397 	}
1398 
1399 #define DUMP_REG(name)						\
1400 	seq_printf(s, "%-40s %#05x %08x\n", #name, name,	\
1401 		   tegra_dc_readl(dc, name))
1402 
1403 	DUMP_REG(DC_CMD_GENERAL_INCR_SYNCPT);
1404 	DUMP_REG(DC_CMD_GENERAL_INCR_SYNCPT_CNTRL);
1405 	DUMP_REG(DC_CMD_GENERAL_INCR_SYNCPT_ERROR);
1406 	DUMP_REG(DC_CMD_WIN_A_INCR_SYNCPT);
1407 	DUMP_REG(DC_CMD_WIN_A_INCR_SYNCPT_CNTRL);
1408 	DUMP_REG(DC_CMD_WIN_A_INCR_SYNCPT_ERROR);
1409 	DUMP_REG(DC_CMD_WIN_B_INCR_SYNCPT);
1410 	DUMP_REG(DC_CMD_WIN_B_INCR_SYNCPT_CNTRL);
1411 	DUMP_REG(DC_CMD_WIN_B_INCR_SYNCPT_ERROR);
1412 	DUMP_REG(DC_CMD_WIN_C_INCR_SYNCPT);
1413 	DUMP_REG(DC_CMD_WIN_C_INCR_SYNCPT_CNTRL);
1414 	DUMP_REG(DC_CMD_WIN_C_INCR_SYNCPT_ERROR);
1415 	DUMP_REG(DC_CMD_CONT_SYNCPT_VSYNC);
1416 	DUMP_REG(DC_CMD_DISPLAY_COMMAND_OPTION0);
1417 	DUMP_REG(DC_CMD_DISPLAY_COMMAND);
1418 	DUMP_REG(DC_CMD_SIGNAL_RAISE);
1419 	DUMP_REG(DC_CMD_DISPLAY_POWER_CONTROL);
1420 	DUMP_REG(DC_CMD_INT_STATUS);
1421 	DUMP_REG(DC_CMD_INT_MASK);
1422 	DUMP_REG(DC_CMD_INT_ENABLE);
1423 	DUMP_REG(DC_CMD_INT_TYPE);
1424 	DUMP_REG(DC_CMD_INT_POLARITY);
1425 	DUMP_REG(DC_CMD_SIGNAL_RAISE1);
1426 	DUMP_REG(DC_CMD_SIGNAL_RAISE2);
1427 	DUMP_REG(DC_CMD_SIGNAL_RAISE3);
1428 	DUMP_REG(DC_CMD_STATE_ACCESS);
1429 	DUMP_REG(DC_CMD_STATE_CONTROL);
1430 	DUMP_REG(DC_CMD_DISPLAY_WINDOW_HEADER);
1431 	DUMP_REG(DC_CMD_REG_ACT_CONTROL);
1432 	DUMP_REG(DC_COM_CRC_CONTROL);
1433 	DUMP_REG(DC_COM_CRC_CHECKSUM);
1434 	DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(0));
1435 	DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(1));
1436 	DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(2));
1437 	DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(3));
1438 	DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(0));
1439 	DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(1));
1440 	DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(2));
1441 	DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(3));
1442 	DUMP_REG(DC_COM_PIN_OUTPUT_DATA(0));
1443 	DUMP_REG(DC_COM_PIN_OUTPUT_DATA(1));
1444 	DUMP_REG(DC_COM_PIN_OUTPUT_DATA(2));
1445 	DUMP_REG(DC_COM_PIN_OUTPUT_DATA(3));
1446 	DUMP_REG(DC_COM_PIN_INPUT_ENABLE(0));
1447 	DUMP_REG(DC_COM_PIN_INPUT_ENABLE(1));
1448 	DUMP_REG(DC_COM_PIN_INPUT_ENABLE(2));
1449 	DUMP_REG(DC_COM_PIN_INPUT_ENABLE(3));
1450 	DUMP_REG(DC_COM_PIN_INPUT_DATA(0));
1451 	DUMP_REG(DC_COM_PIN_INPUT_DATA(1));
1452 	DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(0));
1453 	DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(1));
1454 	DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(2));
1455 	DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(3));
1456 	DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(4));
1457 	DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(5));
1458 	DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(6));
1459 	DUMP_REG(DC_COM_PIN_MISC_CONTROL);
1460 	DUMP_REG(DC_COM_PIN_PM0_CONTROL);
1461 	DUMP_REG(DC_COM_PIN_PM0_DUTY_CYCLE);
1462 	DUMP_REG(DC_COM_PIN_PM1_CONTROL);
1463 	DUMP_REG(DC_COM_PIN_PM1_DUTY_CYCLE);
1464 	DUMP_REG(DC_COM_SPI_CONTROL);
1465 	DUMP_REG(DC_COM_SPI_START_BYTE);
1466 	DUMP_REG(DC_COM_HSPI_WRITE_DATA_AB);
1467 	DUMP_REG(DC_COM_HSPI_WRITE_DATA_CD);
1468 	DUMP_REG(DC_COM_HSPI_CS_DC);
1469 	DUMP_REG(DC_COM_SCRATCH_REGISTER_A);
1470 	DUMP_REG(DC_COM_SCRATCH_REGISTER_B);
1471 	DUMP_REG(DC_COM_GPIO_CTRL);
1472 	DUMP_REG(DC_COM_GPIO_DEBOUNCE_COUNTER);
1473 	DUMP_REG(DC_COM_CRC_CHECKSUM_LATCHED);
1474 	DUMP_REG(DC_DISP_DISP_SIGNAL_OPTIONS0);
1475 	DUMP_REG(DC_DISP_DISP_SIGNAL_OPTIONS1);
1476 	DUMP_REG(DC_DISP_DISP_WIN_OPTIONS);
1477 	DUMP_REG(DC_DISP_DISP_MEM_HIGH_PRIORITY);
1478 	DUMP_REG(DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER);
1479 	DUMP_REG(DC_DISP_DISP_TIMING_OPTIONS);
1480 	DUMP_REG(DC_DISP_REF_TO_SYNC);
1481 	DUMP_REG(DC_DISP_SYNC_WIDTH);
1482 	DUMP_REG(DC_DISP_BACK_PORCH);
1483 	DUMP_REG(DC_DISP_ACTIVE);
1484 	DUMP_REG(DC_DISP_FRONT_PORCH);
1485 	DUMP_REG(DC_DISP_H_PULSE0_CONTROL);
1486 	DUMP_REG(DC_DISP_H_PULSE0_POSITION_A);
1487 	DUMP_REG(DC_DISP_H_PULSE0_POSITION_B);
1488 	DUMP_REG(DC_DISP_H_PULSE0_POSITION_C);
1489 	DUMP_REG(DC_DISP_H_PULSE0_POSITION_D);
1490 	DUMP_REG(DC_DISP_H_PULSE1_CONTROL);
1491 	DUMP_REG(DC_DISP_H_PULSE1_POSITION_A);
1492 	DUMP_REG(DC_DISP_H_PULSE1_POSITION_B);
1493 	DUMP_REG(DC_DISP_H_PULSE1_POSITION_C);
1494 	DUMP_REG(DC_DISP_H_PULSE1_POSITION_D);
1495 	DUMP_REG(DC_DISP_H_PULSE2_CONTROL);
1496 	DUMP_REG(DC_DISP_H_PULSE2_POSITION_A);
1497 	DUMP_REG(DC_DISP_H_PULSE2_POSITION_B);
1498 	DUMP_REG(DC_DISP_H_PULSE2_POSITION_C);
1499 	DUMP_REG(DC_DISP_H_PULSE2_POSITION_D);
1500 	DUMP_REG(DC_DISP_V_PULSE0_CONTROL);
1501 	DUMP_REG(DC_DISP_V_PULSE0_POSITION_A);
1502 	DUMP_REG(DC_DISP_V_PULSE0_POSITION_B);
1503 	DUMP_REG(DC_DISP_V_PULSE0_POSITION_C);
1504 	DUMP_REG(DC_DISP_V_PULSE1_CONTROL);
1505 	DUMP_REG(DC_DISP_V_PULSE1_POSITION_A);
1506 	DUMP_REG(DC_DISP_V_PULSE1_POSITION_B);
1507 	DUMP_REG(DC_DISP_V_PULSE1_POSITION_C);
1508 	DUMP_REG(DC_DISP_V_PULSE2_CONTROL);
1509 	DUMP_REG(DC_DISP_V_PULSE2_POSITION_A);
1510 	DUMP_REG(DC_DISP_V_PULSE3_CONTROL);
1511 	DUMP_REG(DC_DISP_V_PULSE3_POSITION_A);
1512 	DUMP_REG(DC_DISP_M0_CONTROL);
1513 	DUMP_REG(DC_DISP_M1_CONTROL);
1514 	DUMP_REG(DC_DISP_DI_CONTROL);
1515 	DUMP_REG(DC_DISP_PP_CONTROL);
1516 	DUMP_REG(DC_DISP_PP_SELECT_A);
1517 	DUMP_REG(DC_DISP_PP_SELECT_B);
1518 	DUMP_REG(DC_DISP_PP_SELECT_C);
1519 	DUMP_REG(DC_DISP_PP_SELECT_D);
1520 	DUMP_REG(DC_DISP_DISP_CLOCK_CONTROL);
1521 	DUMP_REG(DC_DISP_DISP_INTERFACE_CONTROL);
1522 	DUMP_REG(DC_DISP_DISP_COLOR_CONTROL);
1523 	DUMP_REG(DC_DISP_SHIFT_CLOCK_OPTIONS);
1524 	DUMP_REG(DC_DISP_DATA_ENABLE_OPTIONS);
1525 	DUMP_REG(DC_DISP_SERIAL_INTERFACE_OPTIONS);
1526 	DUMP_REG(DC_DISP_LCD_SPI_OPTIONS);
1527 	DUMP_REG(DC_DISP_BORDER_COLOR);
1528 	DUMP_REG(DC_DISP_COLOR_KEY0_LOWER);
1529 	DUMP_REG(DC_DISP_COLOR_KEY0_UPPER);
1530 	DUMP_REG(DC_DISP_COLOR_KEY1_LOWER);
1531 	DUMP_REG(DC_DISP_COLOR_KEY1_UPPER);
1532 	DUMP_REG(DC_DISP_CURSOR_FOREGROUND);
1533 	DUMP_REG(DC_DISP_CURSOR_BACKGROUND);
1534 	DUMP_REG(DC_DISP_CURSOR_START_ADDR);
1535 	DUMP_REG(DC_DISP_CURSOR_START_ADDR_NS);
1536 	DUMP_REG(DC_DISP_CURSOR_POSITION);
1537 	DUMP_REG(DC_DISP_CURSOR_POSITION_NS);
1538 	DUMP_REG(DC_DISP_INIT_SEQ_CONTROL);
1539 	DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_A);
1540 	DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_B);
1541 	DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_C);
1542 	DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_D);
1543 	DUMP_REG(DC_DISP_DC_MCCIF_FIFOCTRL);
1544 	DUMP_REG(DC_DISP_MCCIF_DISPLAY0A_HYST);
1545 	DUMP_REG(DC_DISP_MCCIF_DISPLAY0B_HYST);
1546 	DUMP_REG(DC_DISP_MCCIF_DISPLAY1A_HYST);
1547 	DUMP_REG(DC_DISP_MCCIF_DISPLAY1B_HYST);
1548 	DUMP_REG(DC_DISP_DAC_CRT_CTRL);
1549 	DUMP_REG(DC_DISP_DISP_MISC_CONTROL);
1550 	DUMP_REG(DC_DISP_SD_CONTROL);
1551 	DUMP_REG(DC_DISP_SD_CSC_COEFF);
1552 	DUMP_REG(DC_DISP_SD_LUT(0));
1553 	DUMP_REG(DC_DISP_SD_LUT(1));
1554 	DUMP_REG(DC_DISP_SD_LUT(2));
1555 	DUMP_REG(DC_DISP_SD_LUT(3));
1556 	DUMP_REG(DC_DISP_SD_LUT(4));
1557 	DUMP_REG(DC_DISP_SD_LUT(5));
1558 	DUMP_REG(DC_DISP_SD_LUT(6));
1559 	DUMP_REG(DC_DISP_SD_LUT(7));
1560 	DUMP_REG(DC_DISP_SD_LUT(8));
1561 	DUMP_REG(DC_DISP_SD_FLICKER_CONTROL);
1562 	DUMP_REG(DC_DISP_DC_PIXEL_COUNT);
1563 	DUMP_REG(DC_DISP_SD_HISTOGRAM(0));
1564 	DUMP_REG(DC_DISP_SD_HISTOGRAM(1));
1565 	DUMP_REG(DC_DISP_SD_HISTOGRAM(2));
1566 	DUMP_REG(DC_DISP_SD_HISTOGRAM(3));
1567 	DUMP_REG(DC_DISP_SD_HISTOGRAM(4));
1568 	DUMP_REG(DC_DISP_SD_HISTOGRAM(5));
1569 	DUMP_REG(DC_DISP_SD_HISTOGRAM(6));
1570 	DUMP_REG(DC_DISP_SD_HISTOGRAM(7));
1571 	DUMP_REG(DC_DISP_SD_BL_TF(0));
1572 	DUMP_REG(DC_DISP_SD_BL_TF(1));
1573 	DUMP_REG(DC_DISP_SD_BL_TF(2));
1574 	DUMP_REG(DC_DISP_SD_BL_TF(3));
1575 	DUMP_REG(DC_DISP_SD_BL_CONTROL);
1576 	DUMP_REG(DC_DISP_SD_HW_K_VALUES);
1577 	DUMP_REG(DC_DISP_SD_MAN_K_VALUES);
1578 	DUMP_REG(DC_DISP_CURSOR_START_ADDR_HI);
1579 	DUMP_REG(DC_DISP_BLEND_CURSOR_CONTROL);
1580 	DUMP_REG(DC_WIN_WIN_OPTIONS);
1581 	DUMP_REG(DC_WIN_BYTE_SWAP);
1582 	DUMP_REG(DC_WIN_BUFFER_CONTROL);
1583 	DUMP_REG(DC_WIN_COLOR_DEPTH);
1584 	DUMP_REG(DC_WIN_POSITION);
1585 	DUMP_REG(DC_WIN_SIZE);
1586 	DUMP_REG(DC_WIN_PRESCALED_SIZE);
1587 	DUMP_REG(DC_WIN_H_INITIAL_DDA);
1588 	DUMP_REG(DC_WIN_V_INITIAL_DDA);
1589 	DUMP_REG(DC_WIN_DDA_INC);
1590 	DUMP_REG(DC_WIN_LINE_STRIDE);
1591 	DUMP_REG(DC_WIN_BUF_STRIDE);
1592 	DUMP_REG(DC_WIN_UV_BUF_STRIDE);
1593 	DUMP_REG(DC_WIN_BUFFER_ADDR_MODE);
1594 	DUMP_REG(DC_WIN_DV_CONTROL);
1595 	DUMP_REG(DC_WIN_BLEND_NOKEY);
1596 	DUMP_REG(DC_WIN_BLEND_1WIN);
1597 	DUMP_REG(DC_WIN_BLEND_2WIN_X);
1598 	DUMP_REG(DC_WIN_BLEND_2WIN_Y);
1599 	DUMP_REG(DC_WIN_BLEND_3WIN_XY);
1600 	DUMP_REG(DC_WIN_HP_FETCH_CONTROL);
1601 	DUMP_REG(DC_WINBUF_START_ADDR);
1602 	DUMP_REG(DC_WINBUF_START_ADDR_NS);
1603 	DUMP_REG(DC_WINBUF_START_ADDR_U);
1604 	DUMP_REG(DC_WINBUF_START_ADDR_U_NS);
1605 	DUMP_REG(DC_WINBUF_START_ADDR_V);
1606 	DUMP_REG(DC_WINBUF_START_ADDR_V_NS);
1607 	DUMP_REG(DC_WINBUF_ADDR_H_OFFSET);
1608 	DUMP_REG(DC_WINBUF_ADDR_H_OFFSET_NS);
1609 	DUMP_REG(DC_WINBUF_ADDR_V_OFFSET);
1610 	DUMP_REG(DC_WINBUF_ADDR_V_OFFSET_NS);
1611 	DUMP_REG(DC_WINBUF_UFLOW_STATUS);
1612 	DUMP_REG(DC_WINBUF_AD_UFLOW_STATUS);
1613 	DUMP_REG(DC_WINBUF_BD_UFLOW_STATUS);
1614 	DUMP_REG(DC_WINBUF_CD_UFLOW_STATUS);
1615 
1616 #undef DUMP_REG
1617 
1618 unlock:
1619 	drm_modeset_unlock(&dc->base.mutex);
1620 	return err;
1621 }
1622 
1623 static int tegra_dc_show_crc(struct seq_file *s, void *data)
1624 {
1625 	struct drm_info_node *node = s->private;
1626 	struct tegra_dc *dc = node->info_ent->data;
1627 	int err = 0;
1628 	u32 value;
1629 
1630 	drm_modeset_lock(&dc->base.mutex, NULL);
1631 
1632 	if (!dc->base.state->active) {
1633 		err = -EBUSY;
1634 		goto unlock;
1635 	}
1636 
1637 	value = DC_COM_CRC_CONTROL_ACTIVE_DATA | DC_COM_CRC_CONTROL_ENABLE;
1638 	tegra_dc_writel(dc, value, DC_COM_CRC_CONTROL);
1639 	tegra_dc_commit(dc);
1640 
1641 	drm_crtc_wait_one_vblank(&dc->base);
1642 	drm_crtc_wait_one_vblank(&dc->base);
1643 
1644 	value = tegra_dc_readl(dc, DC_COM_CRC_CHECKSUM);
1645 	seq_printf(s, "%08x\n", value);
1646 
1647 	tegra_dc_writel(dc, 0, DC_COM_CRC_CONTROL);
1648 
1649 unlock:
1650 	drm_modeset_unlock(&dc->base.mutex);
1651 	return err;
1652 }
1653 
1654 static int tegra_dc_show_stats(struct seq_file *s, void *data)
1655 {
1656 	struct drm_info_node *node = s->private;
1657 	struct tegra_dc *dc = node->info_ent->data;
1658 
1659 	seq_printf(s, "frames: %lu\n", dc->stats.frames);
1660 	seq_printf(s, "vblank: %lu\n", dc->stats.vblank);
1661 	seq_printf(s, "underflow: %lu\n", dc->stats.underflow);
1662 	seq_printf(s, "overflow: %lu\n", dc->stats.overflow);
1663 
1664 	return 0;
1665 }
1666 
1667 static struct drm_info_list debugfs_files[] = {
1668 	{ "regs", tegra_dc_show_regs, 0, NULL },
1669 	{ "crc", tegra_dc_show_crc, 0, NULL },
1670 	{ "stats", tegra_dc_show_stats, 0, NULL },
1671 };
1672 
1673 static int tegra_dc_debugfs_init(struct tegra_dc *dc, struct drm_minor *minor)
1674 {
1675 	unsigned int i;
1676 	char *name;
1677 	int err;
1678 
1679 	name = kasprintf(GFP_KERNEL, "dc.%d", dc->pipe);
1680 	dc->debugfs = debugfs_create_dir(name, minor->debugfs_root);
1681 	kfree(name);
1682 
1683 	if (!dc->debugfs)
1684 		return -ENOMEM;
1685 
1686 	dc->debugfs_files = kmemdup(debugfs_files, sizeof(debugfs_files),
1687 				    GFP_KERNEL);
1688 	if (!dc->debugfs_files) {
1689 		err = -ENOMEM;
1690 		goto remove;
1691 	}
1692 
1693 	for (i = 0; i < ARRAY_SIZE(debugfs_files); i++)
1694 		dc->debugfs_files[i].data = dc;
1695 
1696 	err = drm_debugfs_create_files(dc->debugfs_files,
1697 				       ARRAY_SIZE(debugfs_files),
1698 				       dc->debugfs, minor);
1699 	if (err < 0)
1700 		goto free;
1701 
1702 	dc->minor = minor;
1703 
1704 	return 0;
1705 
1706 free:
1707 	kfree(dc->debugfs_files);
1708 	dc->debugfs_files = NULL;
1709 remove:
1710 	debugfs_remove(dc->debugfs);
1711 	dc->debugfs = NULL;
1712 
1713 	return err;
1714 }
1715 
1716 static int tegra_dc_debugfs_exit(struct tegra_dc *dc)
1717 {
1718 	drm_debugfs_remove_files(dc->debugfs_files, ARRAY_SIZE(debugfs_files),
1719 				 dc->minor);
1720 	dc->minor = NULL;
1721 
1722 	kfree(dc->debugfs_files);
1723 	dc->debugfs_files = NULL;
1724 
1725 	debugfs_remove(dc->debugfs);
1726 	dc->debugfs = NULL;
1727 
1728 	return 0;
1729 }
1730 
1731 static int tegra_dc_init(struct host1x_client *client)
1732 {
1733 	struct drm_device *drm = dev_get_drvdata(client->parent);
1734 	unsigned long flags = HOST1X_SYNCPT_CLIENT_MANAGED;
1735 	struct tegra_dc *dc = host1x_client_to_dc(client);
1736 	struct tegra_drm *tegra = drm->dev_private;
1737 	struct drm_plane *primary = NULL;
1738 	struct drm_plane *cursor = NULL;
1739 	int err;
1740 
1741 	dc->syncpt = host1x_syncpt_request(client, flags);
1742 	if (!dc->syncpt)
1743 		dev_warn(dc->dev, "failed to allocate syncpoint\n");
1744 
1745 	if (tegra->domain) {
1746 		err = iommu_attach_device(tegra->domain, dc->dev);
1747 		if (err < 0) {
1748 			dev_err(dc->dev, "failed to attach to domain: %d\n",
1749 				err);
1750 			return err;
1751 		}
1752 
1753 		dc->domain = tegra->domain;
1754 	}
1755 
1756 	primary = tegra_dc_primary_plane_create(drm, dc);
1757 	if (IS_ERR(primary)) {
1758 		err = PTR_ERR(primary);
1759 		goto cleanup;
1760 	}
1761 
1762 	if (dc->soc->supports_cursor) {
1763 		cursor = tegra_dc_cursor_plane_create(drm, dc);
1764 		if (IS_ERR(cursor)) {
1765 			err = PTR_ERR(cursor);
1766 			goto cleanup;
1767 		}
1768 	}
1769 
1770 	err = drm_crtc_init_with_planes(drm, &dc->base, primary, cursor,
1771 					&tegra_crtc_funcs, NULL);
1772 	if (err < 0)
1773 		goto cleanup;
1774 
1775 	drm_crtc_helper_add(&dc->base, &tegra_crtc_helper_funcs);
1776 
1777 	/*
1778 	 * Keep track of the minimum pitch alignment across all display
1779 	 * controllers.
1780 	 */
1781 	if (dc->soc->pitch_align > tegra->pitch_align)
1782 		tegra->pitch_align = dc->soc->pitch_align;
1783 
1784 	err = tegra_dc_rgb_init(drm, dc);
1785 	if (err < 0 && err != -ENODEV) {
1786 		dev_err(dc->dev, "failed to initialize RGB output: %d\n", err);
1787 		goto cleanup;
1788 	}
1789 
1790 	err = tegra_dc_add_planes(drm, dc);
1791 	if (err < 0)
1792 		goto cleanup;
1793 
1794 	if (IS_ENABLED(CONFIG_DEBUG_FS)) {
1795 		err = tegra_dc_debugfs_init(dc, drm->primary);
1796 		if (err < 0)
1797 			dev_err(dc->dev, "debugfs setup failed: %d\n", err);
1798 	}
1799 
1800 	err = devm_request_irq(dc->dev, dc->irq, tegra_dc_irq, 0,
1801 			       dev_name(dc->dev), dc);
1802 	if (err < 0) {
1803 		dev_err(dc->dev, "failed to request IRQ#%u: %d\n", dc->irq,
1804 			err);
1805 		goto cleanup;
1806 	}
1807 
1808 	return 0;
1809 
1810 cleanup:
1811 	if (cursor)
1812 		drm_plane_cleanup(cursor);
1813 
1814 	if (primary)
1815 		drm_plane_cleanup(primary);
1816 
1817 	if (tegra->domain) {
1818 		iommu_detach_device(tegra->domain, dc->dev);
1819 		dc->domain = NULL;
1820 	}
1821 
1822 	return err;
1823 }
1824 
1825 static int tegra_dc_exit(struct host1x_client *client)
1826 {
1827 	struct tegra_dc *dc = host1x_client_to_dc(client);
1828 	int err;
1829 
1830 	devm_free_irq(dc->dev, dc->irq, dc);
1831 
1832 	if (IS_ENABLED(CONFIG_DEBUG_FS)) {
1833 		err = tegra_dc_debugfs_exit(dc);
1834 		if (err < 0)
1835 			dev_err(dc->dev, "debugfs cleanup failed: %d\n", err);
1836 	}
1837 
1838 	err = tegra_dc_rgb_exit(dc);
1839 	if (err) {
1840 		dev_err(dc->dev, "failed to shutdown RGB output: %d\n", err);
1841 		return err;
1842 	}
1843 
1844 	if (dc->domain) {
1845 		iommu_detach_device(dc->domain, dc->dev);
1846 		dc->domain = NULL;
1847 	}
1848 
1849 	host1x_syncpt_free(dc->syncpt);
1850 
1851 	return 0;
1852 }
1853 
1854 static const struct host1x_client_ops dc_client_ops = {
1855 	.init = tegra_dc_init,
1856 	.exit = tegra_dc_exit,
1857 };
1858 
1859 static const struct tegra_dc_soc_info tegra20_dc_soc_info = {
1860 	.supports_border_color = true,
1861 	.supports_interlacing = false,
1862 	.supports_cursor = false,
1863 	.supports_block_linear = false,
1864 	.pitch_align = 8,
1865 	.has_powergate = false,
1866 	.broken_reset = true,
1867 };
1868 
1869 static const struct tegra_dc_soc_info tegra30_dc_soc_info = {
1870 	.supports_border_color = true,
1871 	.supports_interlacing = false,
1872 	.supports_cursor = false,
1873 	.supports_block_linear = false,
1874 	.pitch_align = 8,
1875 	.has_powergate = false,
1876 	.broken_reset = false,
1877 };
1878 
1879 static const struct tegra_dc_soc_info tegra114_dc_soc_info = {
1880 	.supports_border_color = true,
1881 	.supports_interlacing = false,
1882 	.supports_cursor = false,
1883 	.supports_block_linear = false,
1884 	.pitch_align = 64,
1885 	.has_powergate = true,
1886 	.broken_reset = false,
1887 };
1888 
1889 static const struct tegra_dc_soc_info tegra124_dc_soc_info = {
1890 	.supports_border_color = false,
1891 	.supports_interlacing = true,
1892 	.supports_cursor = true,
1893 	.supports_block_linear = true,
1894 	.pitch_align = 64,
1895 	.has_powergate = true,
1896 	.broken_reset = false,
1897 };
1898 
1899 static const struct tegra_dc_soc_info tegra210_dc_soc_info = {
1900 	.supports_border_color = false,
1901 	.supports_interlacing = true,
1902 	.supports_cursor = true,
1903 	.supports_block_linear = true,
1904 	.pitch_align = 64,
1905 	.has_powergate = true,
1906 	.broken_reset = false,
1907 };
1908 
1909 static const struct of_device_id tegra_dc_of_match[] = {
1910 	{
1911 		.compatible = "nvidia,tegra210-dc",
1912 		.data = &tegra210_dc_soc_info,
1913 	}, {
1914 		.compatible = "nvidia,tegra124-dc",
1915 		.data = &tegra124_dc_soc_info,
1916 	}, {
1917 		.compatible = "nvidia,tegra114-dc",
1918 		.data = &tegra114_dc_soc_info,
1919 	}, {
1920 		.compatible = "nvidia,tegra30-dc",
1921 		.data = &tegra30_dc_soc_info,
1922 	}, {
1923 		.compatible = "nvidia,tegra20-dc",
1924 		.data = &tegra20_dc_soc_info,
1925 	}, {
1926 		/* sentinel */
1927 	}
1928 };
1929 MODULE_DEVICE_TABLE(of, tegra_dc_of_match);
1930 
1931 static int tegra_dc_parse_dt(struct tegra_dc *dc)
1932 {
1933 	struct device_node *np;
1934 	u32 value = 0;
1935 	int err;
1936 
1937 	err = of_property_read_u32(dc->dev->of_node, "nvidia,head", &value);
1938 	if (err < 0) {
1939 		dev_err(dc->dev, "missing \"nvidia,head\" property\n");
1940 
1941 		/*
1942 		 * If the nvidia,head property isn't present, try to find the
1943 		 * correct head number by looking up the position of this
1944 		 * display controller's node within the device tree. Assuming
1945 		 * that the nodes are ordered properly in the DTS file and
1946 		 * that the translation into a flattened device tree blob
1947 		 * preserves that ordering this will actually yield the right
1948 		 * head number.
1949 		 *
1950 		 * If those assumptions don't hold, this will still work for
1951 		 * cases where only a single display controller is used.
1952 		 */
1953 		for_each_matching_node(np, tegra_dc_of_match) {
1954 			if (np == dc->dev->of_node) {
1955 				of_node_put(np);
1956 				break;
1957 			}
1958 
1959 			value++;
1960 		}
1961 	}
1962 
1963 	dc->pipe = value;
1964 
1965 	return 0;
1966 }
1967 
1968 static int tegra_dc_probe(struct platform_device *pdev)
1969 {
1970 	struct resource *regs;
1971 	struct tegra_dc *dc;
1972 	int err;
1973 
1974 	dc = devm_kzalloc(&pdev->dev, sizeof(*dc), GFP_KERNEL);
1975 	if (!dc)
1976 		return -ENOMEM;
1977 
1978 	dc->soc = of_device_get_match_data(&pdev->dev);
1979 
1980 	spin_lock_init(&dc->lock);
1981 	INIT_LIST_HEAD(&dc->list);
1982 	dc->dev = &pdev->dev;
1983 
1984 	err = tegra_dc_parse_dt(dc);
1985 	if (err < 0)
1986 		return err;
1987 
1988 	dc->clk = devm_clk_get(&pdev->dev, NULL);
1989 	if (IS_ERR(dc->clk)) {
1990 		dev_err(&pdev->dev, "failed to get clock\n");
1991 		return PTR_ERR(dc->clk);
1992 	}
1993 
1994 	dc->rst = devm_reset_control_get(&pdev->dev, "dc");
1995 	if (IS_ERR(dc->rst)) {
1996 		dev_err(&pdev->dev, "failed to get reset\n");
1997 		return PTR_ERR(dc->rst);
1998 	}
1999 
2000 	/* assert reset and disable clock */
2001 	if (!dc->soc->broken_reset) {
2002 		err = clk_prepare_enable(dc->clk);
2003 		if (err < 0)
2004 			return err;
2005 
2006 		usleep_range(2000, 4000);
2007 
2008 		err = reset_control_assert(dc->rst);
2009 		if (err < 0)
2010 			return err;
2011 
2012 		usleep_range(2000, 4000);
2013 
2014 		clk_disable_unprepare(dc->clk);
2015 	}
2016 
2017 	if (dc->soc->has_powergate) {
2018 		if (dc->pipe == 0)
2019 			dc->powergate = TEGRA_POWERGATE_DIS;
2020 		else
2021 			dc->powergate = TEGRA_POWERGATE_DISB;
2022 
2023 		tegra_powergate_power_off(dc->powergate);
2024 	}
2025 
2026 	regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2027 	dc->regs = devm_ioremap_resource(&pdev->dev, regs);
2028 	if (IS_ERR(dc->regs))
2029 		return PTR_ERR(dc->regs);
2030 
2031 	dc->irq = platform_get_irq(pdev, 0);
2032 	if (dc->irq < 0) {
2033 		dev_err(&pdev->dev, "failed to get IRQ\n");
2034 		return -ENXIO;
2035 	}
2036 
2037 	err = tegra_dc_rgb_probe(dc);
2038 	if (err < 0 && err != -ENODEV) {
2039 		dev_err(&pdev->dev, "failed to probe RGB output: %d\n", err);
2040 		return err;
2041 	}
2042 
2043 	platform_set_drvdata(pdev, dc);
2044 	pm_runtime_enable(&pdev->dev);
2045 
2046 	INIT_LIST_HEAD(&dc->client.list);
2047 	dc->client.ops = &dc_client_ops;
2048 	dc->client.dev = &pdev->dev;
2049 
2050 	err = host1x_client_register(&dc->client);
2051 	if (err < 0) {
2052 		dev_err(&pdev->dev, "failed to register host1x client: %d\n",
2053 			err);
2054 		return err;
2055 	}
2056 
2057 	return 0;
2058 }
2059 
2060 static int tegra_dc_remove(struct platform_device *pdev)
2061 {
2062 	struct tegra_dc *dc = platform_get_drvdata(pdev);
2063 	int err;
2064 
2065 	err = host1x_client_unregister(&dc->client);
2066 	if (err < 0) {
2067 		dev_err(&pdev->dev, "failed to unregister host1x client: %d\n",
2068 			err);
2069 		return err;
2070 	}
2071 
2072 	err = tegra_dc_rgb_remove(dc);
2073 	if (err < 0) {
2074 		dev_err(&pdev->dev, "failed to remove RGB output: %d\n", err);
2075 		return err;
2076 	}
2077 
2078 	pm_runtime_disable(&pdev->dev);
2079 
2080 	return 0;
2081 }
2082 
2083 #ifdef CONFIG_PM
2084 static int tegra_dc_suspend(struct device *dev)
2085 {
2086 	struct tegra_dc *dc = dev_get_drvdata(dev);
2087 	int err;
2088 
2089 	if (!dc->soc->broken_reset) {
2090 		err = reset_control_assert(dc->rst);
2091 		if (err < 0) {
2092 			dev_err(dev, "failed to assert reset: %d\n", err);
2093 			return err;
2094 		}
2095 	}
2096 
2097 	if (dc->soc->has_powergate)
2098 		tegra_powergate_power_off(dc->powergate);
2099 
2100 	clk_disable_unprepare(dc->clk);
2101 
2102 	return 0;
2103 }
2104 
2105 static int tegra_dc_resume(struct device *dev)
2106 {
2107 	struct tegra_dc *dc = dev_get_drvdata(dev);
2108 	int err;
2109 
2110 	if (dc->soc->has_powergate) {
2111 		err = tegra_powergate_sequence_power_up(dc->powergate, dc->clk,
2112 							dc->rst);
2113 		if (err < 0) {
2114 			dev_err(dev, "failed to power partition: %d\n", err);
2115 			return err;
2116 		}
2117 	} else {
2118 		err = clk_prepare_enable(dc->clk);
2119 		if (err < 0) {
2120 			dev_err(dev, "failed to enable clock: %d\n", err);
2121 			return err;
2122 		}
2123 
2124 		if (!dc->soc->broken_reset) {
2125 			err = reset_control_deassert(dc->rst);
2126 			if (err < 0) {
2127 				dev_err(dev,
2128 					"failed to deassert reset: %d\n", err);
2129 				return err;
2130 			}
2131 		}
2132 	}
2133 
2134 	return 0;
2135 }
2136 #endif
2137 
2138 static const struct dev_pm_ops tegra_dc_pm_ops = {
2139 	SET_RUNTIME_PM_OPS(tegra_dc_suspend, tegra_dc_resume, NULL)
2140 };
2141 
2142 struct platform_driver tegra_dc_driver = {
2143 	.driver = {
2144 		.name = "tegra-dc",
2145 		.of_match_table = tegra_dc_of_match,
2146 		.pm = &tegra_dc_pm_ops,
2147 	},
2148 	.probe = tegra_dc_probe,
2149 	.remove = tegra_dc_remove,
2150 };
2151