xref: /openbmc/linux/drivers/gpu/drm/tegra/dc.c (revision 53df89dd)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 Avionic Design GmbH
4  * Copyright (C) 2012 NVIDIA CORPORATION.  All rights reserved.
5  */
6 
7 #include <linux/clk.h>
8 #include <linux/debugfs.h>
9 #include <linux/delay.h>
10 #include <linux/iommu.h>
11 #include <linux/module.h>
12 #include <linux/of_device.h>
13 #include <linux/pm_runtime.h>
14 #include <linux/reset.h>
15 
16 #include <soc/tegra/pmc.h>
17 
18 #include <drm/drm_atomic.h>
19 #include <drm/drm_atomic_helper.h>
20 #include <drm/drm_debugfs.h>
21 #include <drm/drm_fourcc.h>
22 #include <drm/drm_plane_helper.h>
23 #include <drm/drm_vblank.h>
24 
25 #include "dc.h"
26 #include "drm.h"
27 #include "gem.h"
28 #include "hub.h"
29 #include "plane.h"
30 
31 static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc,
32 					    struct drm_crtc_state *state);
33 
34 static void tegra_dc_stats_reset(struct tegra_dc_stats *stats)
35 {
36 	stats->frames = 0;
37 	stats->vblank = 0;
38 	stats->underflow = 0;
39 	stats->overflow = 0;
40 }
41 
42 /* Reads the active copy of a register. */
43 static u32 tegra_dc_readl_active(struct tegra_dc *dc, unsigned long offset)
44 {
45 	u32 value;
46 
47 	tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
48 	value = tegra_dc_readl(dc, offset);
49 	tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS);
50 
51 	return value;
52 }
53 
54 static inline unsigned int tegra_plane_offset(struct tegra_plane *plane,
55 					      unsigned int offset)
56 {
57 	if (offset >= 0x500 && offset <= 0x638) {
58 		offset = 0x000 + (offset - 0x500);
59 		return plane->offset + offset;
60 	}
61 
62 	if (offset >= 0x700 && offset <= 0x719) {
63 		offset = 0x180 + (offset - 0x700);
64 		return plane->offset + offset;
65 	}
66 
67 	if (offset >= 0x800 && offset <= 0x839) {
68 		offset = 0x1c0 + (offset - 0x800);
69 		return plane->offset + offset;
70 	}
71 
72 	dev_WARN(plane->dc->dev, "invalid offset: %x\n", offset);
73 
74 	return plane->offset + offset;
75 }
76 
77 static inline u32 tegra_plane_readl(struct tegra_plane *plane,
78 				    unsigned int offset)
79 {
80 	return tegra_dc_readl(plane->dc, tegra_plane_offset(plane, offset));
81 }
82 
83 static inline void tegra_plane_writel(struct tegra_plane *plane, u32 value,
84 				      unsigned int offset)
85 {
86 	tegra_dc_writel(plane->dc, value, tegra_plane_offset(plane, offset));
87 }
88 
89 bool tegra_dc_has_output(struct tegra_dc *dc, struct device *dev)
90 {
91 	struct device_node *np = dc->dev->of_node;
92 	struct of_phandle_iterator it;
93 	int err;
94 
95 	of_for_each_phandle(&it, err, np, "nvidia,outputs", NULL, 0)
96 		if (it.node == dev->of_node)
97 			return true;
98 
99 	return false;
100 }
101 
102 /*
103  * Double-buffered registers have two copies: ASSEMBLY and ACTIVE. When the
104  * *_ACT_REQ bits are set the ASSEMBLY copy is latched into the ACTIVE copy.
105  * Latching happens mmediately if the display controller is in STOP mode or
106  * on the next frame boundary otherwise.
107  *
108  * Triple-buffered registers have three copies: ASSEMBLY, ARM and ACTIVE. The
109  * ASSEMBLY copy is latched into the ARM copy immediately after *_UPDATE bits
110  * are written. When the *_ACT_REQ bits are written, the ARM copy is latched
111  * into the ACTIVE copy, either immediately if the display controller is in
112  * STOP mode, or at the next frame boundary otherwise.
113  */
114 void tegra_dc_commit(struct tegra_dc *dc)
115 {
116 	tegra_dc_writel(dc, GENERAL_ACT_REQ << 8, DC_CMD_STATE_CONTROL);
117 	tegra_dc_writel(dc, GENERAL_ACT_REQ, DC_CMD_STATE_CONTROL);
118 }
119 
120 static inline u32 compute_dda_inc(unsigned int in, unsigned int out, bool v,
121 				  unsigned int bpp)
122 {
123 	fixed20_12 outf = dfixed_init(out);
124 	fixed20_12 inf = dfixed_init(in);
125 	u32 dda_inc;
126 	int max;
127 
128 	if (v)
129 		max = 15;
130 	else {
131 		switch (bpp) {
132 		case 2:
133 			max = 8;
134 			break;
135 
136 		default:
137 			WARN_ON_ONCE(1);
138 			fallthrough;
139 		case 4:
140 			max = 4;
141 			break;
142 		}
143 	}
144 
145 	outf.full = max_t(u32, outf.full - dfixed_const(1), dfixed_const(1));
146 	inf.full -= dfixed_const(1);
147 
148 	dda_inc = dfixed_div(inf, outf);
149 	dda_inc = min_t(u32, dda_inc, dfixed_const(max));
150 
151 	return dda_inc;
152 }
153 
154 static inline u32 compute_initial_dda(unsigned int in)
155 {
156 	fixed20_12 inf = dfixed_init(in);
157 	return dfixed_frac(inf);
158 }
159 
160 static void tegra_plane_setup_blending_legacy(struct tegra_plane *plane)
161 {
162 	u32 background[3] = {
163 		BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
164 		BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
165 		BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
166 	};
167 	u32 foreground = BLEND_WEIGHT1(255) | BLEND_WEIGHT0(255) |
168 			 BLEND_COLOR_KEY_NONE;
169 	u32 blendnokey = BLEND_WEIGHT1(255) | BLEND_WEIGHT0(255);
170 	struct tegra_plane_state *state;
171 	u32 blending[2];
172 	unsigned int i;
173 
174 	/* disable blending for non-overlapping case */
175 	tegra_plane_writel(plane, blendnokey, DC_WIN_BLEND_NOKEY);
176 	tegra_plane_writel(plane, foreground, DC_WIN_BLEND_1WIN);
177 
178 	state = to_tegra_plane_state(plane->base.state);
179 
180 	if (state->opaque) {
181 		/*
182 		 * Since custom fix-weight blending isn't utilized and weight
183 		 * of top window is set to max, we can enforce dependent
184 		 * blending which in this case results in transparent bottom
185 		 * window if top window is opaque and if top window enables
186 		 * alpha blending, then bottom window is getting alpha value
187 		 * of 1 minus the sum of alpha components of the overlapping
188 		 * plane.
189 		 */
190 		background[0] |= BLEND_CONTROL_DEPENDENT;
191 		background[1] |= BLEND_CONTROL_DEPENDENT;
192 
193 		/*
194 		 * The region where three windows overlap is the intersection
195 		 * of the two regions where two windows overlap. It contributes
196 		 * to the area if all of the windows on top of it have an alpha
197 		 * component.
198 		 */
199 		switch (state->base.normalized_zpos) {
200 		case 0:
201 			if (state->blending[0].alpha &&
202 			    state->blending[1].alpha)
203 				background[2] |= BLEND_CONTROL_DEPENDENT;
204 			break;
205 
206 		case 1:
207 			background[2] |= BLEND_CONTROL_DEPENDENT;
208 			break;
209 		}
210 	} else {
211 		/*
212 		 * Enable alpha blending if pixel format has an alpha
213 		 * component.
214 		 */
215 		foreground |= BLEND_CONTROL_ALPHA;
216 
217 		/*
218 		 * If any of the windows on top of this window is opaque, it
219 		 * will completely conceal this window within that area. If
220 		 * top window has an alpha component, it is blended over the
221 		 * bottom window.
222 		 */
223 		for (i = 0; i < 2; i++) {
224 			if (state->blending[i].alpha &&
225 			    state->blending[i].top)
226 				background[i] |= BLEND_CONTROL_DEPENDENT;
227 		}
228 
229 		switch (state->base.normalized_zpos) {
230 		case 0:
231 			if (state->blending[0].alpha &&
232 			    state->blending[1].alpha)
233 				background[2] |= BLEND_CONTROL_DEPENDENT;
234 			break;
235 
236 		case 1:
237 			/*
238 			 * When both middle and topmost windows have an alpha,
239 			 * these windows a mixed together and then the result
240 			 * is blended over the bottom window.
241 			 */
242 			if (state->blending[0].alpha &&
243 			    state->blending[0].top)
244 				background[2] |= BLEND_CONTROL_ALPHA;
245 
246 			if (state->blending[1].alpha &&
247 			    state->blending[1].top)
248 				background[2] |= BLEND_CONTROL_ALPHA;
249 			break;
250 		}
251 	}
252 
253 	switch (state->base.normalized_zpos) {
254 	case 0:
255 		tegra_plane_writel(plane, background[0], DC_WIN_BLEND_2WIN_X);
256 		tegra_plane_writel(plane, background[1], DC_WIN_BLEND_2WIN_Y);
257 		tegra_plane_writel(plane, background[2], DC_WIN_BLEND_3WIN_XY);
258 		break;
259 
260 	case 1:
261 		/*
262 		 * If window B / C is topmost, then X / Y registers are
263 		 * matching the order of blending[...] state indices,
264 		 * otherwise a swap is required.
265 		 */
266 		if (!state->blending[0].top && state->blending[1].top) {
267 			blending[0] = foreground;
268 			blending[1] = background[1];
269 		} else {
270 			blending[0] = background[0];
271 			blending[1] = foreground;
272 		}
273 
274 		tegra_plane_writel(plane, blending[0], DC_WIN_BLEND_2WIN_X);
275 		tegra_plane_writel(plane, blending[1], DC_WIN_BLEND_2WIN_Y);
276 		tegra_plane_writel(plane, background[2], DC_WIN_BLEND_3WIN_XY);
277 		break;
278 
279 	case 2:
280 		tegra_plane_writel(plane, foreground, DC_WIN_BLEND_2WIN_X);
281 		tegra_plane_writel(plane, foreground, DC_WIN_BLEND_2WIN_Y);
282 		tegra_plane_writel(plane, foreground, DC_WIN_BLEND_3WIN_XY);
283 		break;
284 	}
285 }
286 
287 static void tegra_plane_setup_blending(struct tegra_plane *plane,
288 				       const struct tegra_dc_window *window)
289 {
290 	u32 value;
291 
292 	value = BLEND_FACTOR_DST_ALPHA_ZERO | BLEND_FACTOR_SRC_ALPHA_K2 |
293 		BLEND_FACTOR_DST_COLOR_NEG_K1_TIMES_SRC |
294 		BLEND_FACTOR_SRC_COLOR_K1_TIMES_SRC;
295 	tegra_plane_writel(plane, value, DC_WIN_BLEND_MATCH_SELECT);
296 
297 	value = BLEND_FACTOR_DST_ALPHA_ZERO | BLEND_FACTOR_SRC_ALPHA_K2 |
298 		BLEND_FACTOR_DST_COLOR_NEG_K1_TIMES_SRC |
299 		BLEND_FACTOR_SRC_COLOR_K1_TIMES_SRC;
300 	tegra_plane_writel(plane, value, DC_WIN_BLEND_NOMATCH_SELECT);
301 
302 	value = K2(255) | K1(255) | WINDOW_LAYER_DEPTH(255 - window->zpos);
303 	tegra_plane_writel(plane, value, DC_WIN_BLEND_LAYER_CONTROL);
304 }
305 
306 static bool
307 tegra_plane_use_horizontal_filtering(struct tegra_plane *plane,
308 				     const struct tegra_dc_window *window)
309 {
310 	struct tegra_dc *dc = plane->dc;
311 
312 	if (window->src.w == window->dst.w)
313 		return false;
314 
315 	if (plane->index == 0 && dc->soc->has_win_a_without_filters)
316 		return false;
317 
318 	return true;
319 }
320 
321 static bool
322 tegra_plane_use_vertical_filtering(struct tegra_plane *plane,
323 				   const struct tegra_dc_window *window)
324 {
325 	struct tegra_dc *dc = plane->dc;
326 
327 	if (window->src.h == window->dst.h)
328 		return false;
329 
330 	if (plane->index == 0 && dc->soc->has_win_a_without_filters)
331 		return false;
332 
333 	if (plane->index == 2 && dc->soc->has_win_c_without_vert_filter)
334 		return false;
335 
336 	return true;
337 }
338 
339 static void tegra_dc_setup_window(struct tegra_plane *plane,
340 				  const struct tegra_dc_window *window)
341 {
342 	unsigned h_offset, v_offset, h_size, v_size, h_dda, v_dda, bpp;
343 	struct tegra_dc *dc = plane->dc;
344 	bool yuv, planar;
345 	u32 value;
346 
347 	/*
348 	 * For YUV planar modes, the number of bytes per pixel takes into
349 	 * account only the luma component and therefore is 1.
350 	 */
351 	yuv = tegra_plane_format_is_yuv(window->format, &planar);
352 	if (!yuv)
353 		bpp = window->bits_per_pixel / 8;
354 	else
355 		bpp = planar ? 1 : 2;
356 
357 	tegra_plane_writel(plane, window->format, DC_WIN_COLOR_DEPTH);
358 	tegra_plane_writel(plane, window->swap, DC_WIN_BYTE_SWAP);
359 
360 	value = V_POSITION(window->dst.y) | H_POSITION(window->dst.x);
361 	tegra_plane_writel(plane, value, DC_WIN_POSITION);
362 
363 	value = V_SIZE(window->dst.h) | H_SIZE(window->dst.w);
364 	tegra_plane_writel(plane, value, DC_WIN_SIZE);
365 
366 	h_offset = window->src.x * bpp;
367 	v_offset = window->src.y;
368 	h_size = window->src.w * bpp;
369 	v_size = window->src.h;
370 
371 	if (window->reflect_x)
372 		h_offset += (window->src.w - 1) * bpp;
373 
374 	if (window->reflect_y)
375 		v_offset += window->src.h - 1;
376 
377 	value = V_PRESCALED_SIZE(v_size) | H_PRESCALED_SIZE(h_size);
378 	tegra_plane_writel(plane, value, DC_WIN_PRESCALED_SIZE);
379 
380 	/*
381 	 * For DDA computations the number of bytes per pixel for YUV planar
382 	 * modes needs to take into account all Y, U and V components.
383 	 */
384 	if (yuv && planar)
385 		bpp = 2;
386 
387 	h_dda = compute_dda_inc(window->src.w, window->dst.w, false, bpp);
388 	v_dda = compute_dda_inc(window->src.h, window->dst.h, true, bpp);
389 
390 	value = V_DDA_INC(v_dda) | H_DDA_INC(h_dda);
391 	tegra_plane_writel(plane, value, DC_WIN_DDA_INC);
392 
393 	h_dda = compute_initial_dda(window->src.x);
394 	v_dda = compute_initial_dda(window->src.y);
395 
396 	tegra_plane_writel(plane, h_dda, DC_WIN_H_INITIAL_DDA);
397 	tegra_plane_writel(plane, v_dda, DC_WIN_V_INITIAL_DDA);
398 
399 	tegra_plane_writel(plane, 0, DC_WIN_UV_BUF_STRIDE);
400 	tegra_plane_writel(plane, 0, DC_WIN_BUF_STRIDE);
401 
402 	tegra_plane_writel(plane, window->base[0], DC_WINBUF_START_ADDR);
403 
404 	if (yuv && planar) {
405 		tegra_plane_writel(plane, window->base[1], DC_WINBUF_START_ADDR_U);
406 		tegra_plane_writel(plane, window->base[2], DC_WINBUF_START_ADDR_V);
407 		value = window->stride[1] << 16 | window->stride[0];
408 		tegra_plane_writel(plane, value, DC_WIN_LINE_STRIDE);
409 	} else {
410 		tegra_plane_writel(plane, window->stride[0], DC_WIN_LINE_STRIDE);
411 	}
412 
413 	tegra_plane_writel(plane, h_offset, DC_WINBUF_ADDR_H_OFFSET);
414 	tegra_plane_writel(plane, v_offset, DC_WINBUF_ADDR_V_OFFSET);
415 
416 	if (dc->soc->supports_block_linear) {
417 		unsigned long height = window->tiling.value;
418 
419 		switch (window->tiling.mode) {
420 		case TEGRA_BO_TILING_MODE_PITCH:
421 			value = DC_WINBUF_SURFACE_KIND_PITCH;
422 			break;
423 
424 		case TEGRA_BO_TILING_MODE_TILED:
425 			value = DC_WINBUF_SURFACE_KIND_TILED;
426 			break;
427 
428 		case TEGRA_BO_TILING_MODE_BLOCK:
429 			value = DC_WINBUF_SURFACE_KIND_BLOCK_HEIGHT(height) |
430 				DC_WINBUF_SURFACE_KIND_BLOCK;
431 			break;
432 		}
433 
434 		tegra_plane_writel(plane, value, DC_WINBUF_SURFACE_KIND);
435 	} else {
436 		switch (window->tiling.mode) {
437 		case TEGRA_BO_TILING_MODE_PITCH:
438 			value = DC_WIN_BUFFER_ADDR_MODE_LINEAR_UV |
439 				DC_WIN_BUFFER_ADDR_MODE_LINEAR;
440 			break;
441 
442 		case TEGRA_BO_TILING_MODE_TILED:
443 			value = DC_WIN_BUFFER_ADDR_MODE_TILE_UV |
444 				DC_WIN_BUFFER_ADDR_MODE_TILE;
445 			break;
446 
447 		case TEGRA_BO_TILING_MODE_BLOCK:
448 			/*
449 			 * No need to handle this here because ->atomic_check
450 			 * will already have filtered it out.
451 			 */
452 			break;
453 		}
454 
455 		tegra_plane_writel(plane, value, DC_WIN_BUFFER_ADDR_MODE);
456 	}
457 
458 	value = WIN_ENABLE;
459 
460 	if (yuv) {
461 		/* setup default colorspace conversion coefficients */
462 		tegra_plane_writel(plane, 0x00f0, DC_WIN_CSC_YOF);
463 		tegra_plane_writel(plane, 0x012a, DC_WIN_CSC_KYRGB);
464 		tegra_plane_writel(plane, 0x0000, DC_WIN_CSC_KUR);
465 		tegra_plane_writel(plane, 0x0198, DC_WIN_CSC_KVR);
466 		tegra_plane_writel(plane, 0x039b, DC_WIN_CSC_KUG);
467 		tegra_plane_writel(plane, 0x032f, DC_WIN_CSC_KVG);
468 		tegra_plane_writel(plane, 0x0204, DC_WIN_CSC_KUB);
469 		tegra_plane_writel(plane, 0x0000, DC_WIN_CSC_KVB);
470 
471 		value |= CSC_ENABLE;
472 	} else if (window->bits_per_pixel < 24) {
473 		value |= COLOR_EXPAND;
474 	}
475 
476 	if (window->reflect_x)
477 		value |= H_DIRECTION;
478 
479 	if (window->reflect_y)
480 		value |= V_DIRECTION;
481 
482 	if (tegra_plane_use_horizontal_filtering(plane, window)) {
483 		/*
484 		 * Enable horizontal 6-tap filter and set filtering
485 		 * coefficients to the default values defined in TRM.
486 		 */
487 		tegra_plane_writel(plane, 0x00008000, DC_WIN_H_FILTER_P(0));
488 		tegra_plane_writel(plane, 0x3e087ce1, DC_WIN_H_FILTER_P(1));
489 		tegra_plane_writel(plane, 0x3b117ac1, DC_WIN_H_FILTER_P(2));
490 		tegra_plane_writel(plane, 0x591b73aa, DC_WIN_H_FILTER_P(3));
491 		tegra_plane_writel(plane, 0x57256d9a, DC_WIN_H_FILTER_P(4));
492 		tegra_plane_writel(plane, 0x552f668b, DC_WIN_H_FILTER_P(5));
493 		tegra_plane_writel(plane, 0x73385e8b, DC_WIN_H_FILTER_P(6));
494 		tegra_plane_writel(plane, 0x72435583, DC_WIN_H_FILTER_P(7));
495 		tegra_plane_writel(plane, 0x714c4c8b, DC_WIN_H_FILTER_P(8));
496 		tegra_plane_writel(plane, 0x70554393, DC_WIN_H_FILTER_P(9));
497 		tegra_plane_writel(plane, 0x715e389b, DC_WIN_H_FILTER_P(10));
498 		tegra_plane_writel(plane, 0x71662faa, DC_WIN_H_FILTER_P(11));
499 		tegra_plane_writel(plane, 0x536d25ba, DC_WIN_H_FILTER_P(12));
500 		tegra_plane_writel(plane, 0x55731bca, DC_WIN_H_FILTER_P(13));
501 		tegra_plane_writel(plane, 0x387a11d9, DC_WIN_H_FILTER_P(14));
502 		tegra_plane_writel(plane, 0x3c7c08f1, DC_WIN_H_FILTER_P(15));
503 
504 		value |= H_FILTER;
505 	}
506 
507 	if (tegra_plane_use_vertical_filtering(plane, window)) {
508 		unsigned int i, k;
509 
510 		/*
511 		 * Enable vertical 2-tap filter and set filtering
512 		 * coefficients to the default values defined in TRM.
513 		 */
514 		for (i = 0, k = 128; i < 16; i++, k -= 8)
515 			tegra_plane_writel(plane, k, DC_WIN_V_FILTER_P(i));
516 
517 		value |= V_FILTER;
518 	}
519 
520 	tegra_plane_writel(plane, value, DC_WIN_WIN_OPTIONS);
521 
522 	if (dc->soc->has_legacy_blending)
523 		tegra_plane_setup_blending_legacy(plane);
524 	else
525 		tegra_plane_setup_blending(plane, window);
526 }
527 
528 static const u32 tegra20_primary_formats[] = {
529 	DRM_FORMAT_ARGB4444,
530 	DRM_FORMAT_ARGB1555,
531 	DRM_FORMAT_RGB565,
532 	DRM_FORMAT_RGBA5551,
533 	DRM_FORMAT_ABGR8888,
534 	DRM_FORMAT_ARGB8888,
535 	/* non-native formats */
536 	DRM_FORMAT_XRGB1555,
537 	DRM_FORMAT_RGBX5551,
538 	DRM_FORMAT_XBGR8888,
539 	DRM_FORMAT_XRGB8888,
540 };
541 
542 static const u64 tegra20_modifiers[] = {
543 	DRM_FORMAT_MOD_LINEAR,
544 	DRM_FORMAT_MOD_NVIDIA_TEGRA_TILED,
545 	DRM_FORMAT_MOD_INVALID
546 };
547 
548 static const u32 tegra114_primary_formats[] = {
549 	DRM_FORMAT_ARGB4444,
550 	DRM_FORMAT_ARGB1555,
551 	DRM_FORMAT_RGB565,
552 	DRM_FORMAT_RGBA5551,
553 	DRM_FORMAT_ABGR8888,
554 	DRM_FORMAT_ARGB8888,
555 	/* new on Tegra114 */
556 	DRM_FORMAT_ABGR4444,
557 	DRM_FORMAT_ABGR1555,
558 	DRM_FORMAT_BGRA5551,
559 	DRM_FORMAT_XRGB1555,
560 	DRM_FORMAT_RGBX5551,
561 	DRM_FORMAT_XBGR1555,
562 	DRM_FORMAT_BGRX5551,
563 	DRM_FORMAT_BGR565,
564 	DRM_FORMAT_BGRA8888,
565 	DRM_FORMAT_RGBA8888,
566 	DRM_FORMAT_XRGB8888,
567 	DRM_FORMAT_XBGR8888,
568 };
569 
570 static const u32 tegra124_primary_formats[] = {
571 	DRM_FORMAT_ARGB4444,
572 	DRM_FORMAT_ARGB1555,
573 	DRM_FORMAT_RGB565,
574 	DRM_FORMAT_RGBA5551,
575 	DRM_FORMAT_ABGR8888,
576 	DRM_FORMAT_ARGB8888,
577 	/* new on Tegra114 */
578 	DRM_FORMAT_ABGR4444,
579 	DRM_FORMAT_ABGR1555,
580 	DRM_FORMAT_BGRA5551,
581 	DRM_FORMAT_XRGB1555,
582 	DRM_FORMAT_RGBX5551,
583 	DRM_FORMAT_XBGR1555,
584 	DRM_FORMAT_BGRX5551,
585 	DRM_FORMAT_BGR565,
586 	DRM_FORMAT_BGRA8888,
587 	DRM_FORMAT_RGBA8888,
588 	DRM_FORMAT_XRGB8888,
589 	DRM_FORMAT_XBGR8888,
590 	/* new on Tegra124 */
591 	DRM_FORMAT_RGBX8888,
592 	DRM_FORMAT_BGRX8888,
593 };
594 
595 static const u64 tegra124_modifiers[] = {
596 	DRM_FORMAT_MOD_LINEAR,
597 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(0),
598 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(1),
599 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(2),
600 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(3),
601 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(4),
602 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(5),
603 	DRM_FORMAT_MOD_INVALID
604 };
605 
606 static int tegra_plane_atomic_check(struct drm_plane *plane,
607 				    struct drm_atomic_state *state)
608 {
609 	struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state,
610 										 plane);
611 	struct tegra_plane_state *plane_state = to_tegra_plane_state(new_plane_state);
612 	unsigned int supported_rotation = DRM_MODE_ROTATE_0 |
613 					  DRM_MODE_REFLECT_X |
614 					  DRM_MODE_REFLECT_Y;
615 	unsigned int rotation = new_plane_state->rotation;
616 	struct tegra_bo_tiling *tiling = &plane_state->tiling;
617 	struct tegra_plane *tegra = to_tegra_plane(plane);
618 	struct tegra_dc *dc = to_tegra_dc(new_plane_state->crtc);
619 	int err;
620 
621 	/* no need for further checks if the plane is being disabled */
622 	if (!new_plane_state->crtc)
623 		return 0;
624 
625 	err = tegra_plane_format(new_plane_state->fb->format->format,
626 				 &plane_state->format,
627 				 &plane_state->swap);
628 	if (err < 0)
629 		return err;
630 
631 	/*
632 	 * Tegra20 and Tegra30 are special cases here because they support
633 	 * only variants of specific formats with an alpha component, but not
634 	 * the corresponding opaque formats. However, the opaque formats can
635 	 * be emulated by disabling alpha blending for the plane.
636 	 */
637 	if (dc->soc->has_legacy_blending) {
638 		err = tegra_plane_setup_legacy_state(tegra, plane_state);
639 		if (err < 0)
640 			return err;
641 	}
642 
643 	err = tegra_fb_get_tiling(new_plane_state->fb, tiling);
644 	if (err < 0)
645 		return err;
646 
647 	if (tiling->mode == TEGRA_BO_TILING_MODE_BLOCK &&
648 	    !dc->soc->supports_block_linear) {
649 		DRM_ERROR("hardware doesn't support block linear mode\n");
650 		return -EINVAL;
651 	}
652 
653 	/*
654 	 * Older userspace used custom BO flag in order to specify the Y
655 	 * reflection, while modern userspace uses the generic DRM rotation
656 	 * property in order to achieve the same result.  The legacy BO flag
657 	 * duplicates the DRM rotation property when both are set.
658 	 */
659 	if (tegra_fb_is_bottom_up(new_plane_state->fb))
660 		rotation |= DRM_MODE_REFLECT_Y;
661 
662 	rotation = drm_rotation_simplify(rotation, supported_rotation);
663 
664 	if (rotation & DRM_MODE_REFLECT_X)
665 		plane_state->reflect_x = true;
666 	else
667 		plane_state->reflect_x = false;
668 
669 	if (rotation & DRM_MODE_REFLECT_Y)
670 		plane_state->reflect_y = true;
671 	else
672 		plane_state->reflect_y = false;
673 
674 	/*
675 	 * Tegra doesn't support different strides for U and V planes so we
676 	 * error out if the user tries to display a framebuffer with such a
677 	 * configuration.
678 	 */
679 	if (new_plane_state->fb->format->num_planes > 2) {
680 		if (new_plane_state->fb->pitches[2] != new_plane_state->fb->pitches[1]) {
681 			DRM_ERROR("unsupported UV-plane configuration\n");
682 			return -EINVAL;
683 		}
684 	}
685 
686 	err = tegra_plane_state_add(tegra, new_plane_state);
687 	if (err < 0)
688 		return err;
689 
690 	return 0;
691 }
692 
693 static void tegra_plane_atomic_disable(struct drm_plane *plane,
694 				       struct drm_atomic_state *state)
695 {
696 	struct drm_plane_state *old_state = drm_atomic_get_old_plane_state(state,
697 									   plane);
698 	struct tegra_plane *p = to_tegra_plane(plane);
699 	u32 value;
700 
701 	/* rien ne va plus */
702 	if (!old_state || !old_state->crtc)
703 		return;
704 
705 	value = tegra_plane_readl(p, DC_WIN_WIN_OPTIONS);
706 	value &= ~WIN_ENABLE;
707 	tegra_plane_writel(p, value, DC_WIN_WIN_OPTIONS);
708 }
709 
710 static void tegra_plane_atomic_update(struct drm_plane *plane,
711 				      struct drm_atomic_state *state)
712 {
713 	struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state,
714 									   plane);
715 	struct tegra_plane_state *tegra_plane_state = to_tegra_plane_state(new_state);
716 	struct drm_framebuffer *fb = new_state->fb;
717 	struct tegra_plane *p = to_tegra_plane(plane);
718 	struct tegra_dc_window window;
719 	unsigned int i;
720 
721 	/* rien ne va plus */
722 	if (!new_state->crtc || !new_state->fb)
723 		return;
724 
725 	if (!new_state->visible)
726 		return tegra_plane_atomic_disable(plane, state);
727 
728 	memset(&window, 0, sizeof(window));
729 	window.src.x = new_state->src.x1 >> 16;
730 	window.src.y = new_state->src.y1 >> 16;
731 	window.src.w = drm_rect_width(&new_state->src) >> 16;
732 	window.src.h = drm_rect_height(&new_state->src) >> 16;
733 	window.dst.x = new_state->dst.x1;
734 	window.dst.y = new_state->dst.y1;
735 	window.dst.w = drm_rect_width(&new_state->dst);
736 	window.dst.h = drm_rect_height(&new_state->dst);
737 	window.bits_per_pixel = fb->format->cpp[0] * 8;
738 	window.reflect_x = tegra_plane_state->reflect_x;
739 	window.reflect_y = tegra_plane_state->reflect_y;
740 
741 	/* copy from state */
742 	window.zpos = new_state->normalized_zpos;
743 	window.tiling = tegra_plane_state->tiling;
744 	window.format = tegra_plane_state->format;
745 	window.swap = tegra_plane_state->swap;
746 
747 	for (i = 0; i < fb->format->num_planes; i++) {
748 		window.base[i] = tegra_plane_state->iova[i] + fb->offsets[i];
749 
750 		/*
751 		 * Tegra uses a shared stride for UV planes. Framebuffers are
752 		 * already checked for this in the tegra_plane_atomic_check()
753 		 * function, so it's safe to ignore the V-plane pitch here.
754 		 */
755 		if (i < 2)
756 			window.stride[i] = fb->pitches[i];
757 	}
758 
759 	tegra_dc_setup_window(p, &window);
760 }
761 
762 static const struct drm_plane_helper_funcs tegra_plane_helper_funcs = {
763 	.prepare_fb = tegra_plane_prepare_fb,
764 	.cleanup_fb = tegra_plane_cleanup_fb,
765 	.atomic_check = tegra_plane_atomic_check,
766 	.atomic_disable = tegra_plane_atomic_disable,
767 	.atomic_update = tegra_plane_atomic_update,
768 };
769 
770 static unsigned long tegra_plane_get_possible_crtcs(struct drm_device *drm)
771 {
772 	/*
773 	 * Ideally this would use drm_crtc_mask(), but that would require the
774 	 * CRTC to already be in the mode_config's list of CRTCs. However, it
775 	 * will only be added to that list in the drm_crtc_init_with_planes()
776 	 * (in tegra_dc_init()), which in turn requires registration of these
777 	 * planes. So we have ourselves a nice little chicken and egg problem
778 	 * here.
779 	 *
780 	 * We work around this by manually creating the mask from the number
781 	 * of CRTCs that have been registered, and should therefore always be
782 	 * the same as drm_crtc_index() after registration.
783 	 */
784 	return 1 << drm->mode_config.num_crtc;
785 }
786 
787 static struct drm_plane *tegra_primary_plane_create(struct drm_device *drm,
788 						    struct tegra_dc *dc)
789 {
790 	unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
791 	enum drm_plane_type type = DRM_PLANE_TYPE_PRIMARY;
792 	struct tegra_plane *plane;
793 	unsigned int num_formats;
794 	const u64 *modifiers;
795 	const u32 *formats;
796 	int err;
797 
798 	plane = kzalloc(sizeof(*plane), GFP_KERNEL);
799 	if (!plane)
800 		return ERR_PTR(-ENOMEM);
801 
802 	/* Always use window A as primary window */
803 	plane->offset = 0xa00;
804 	plane->index = 0;
805 	plane->dc = dc;
806 
807 	num_formats = dc->soc->num_primary_formats;
808 	formats = dc->soc->primary_formats;
809 	modifiers = dc->soc->modifiers;
810 
811 	err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
812 				       &tegra_plane_funcs, formats,
813 				       num_formats, modifiers, type, NULL);
814 	if (err < 0) {
815 		kfree(plane);
816 		return ERR_PTR(err);
817 	}
818 
819 	drm_plane_helper_add(&plane->base, &tegra_plane_helper_funcs);
820 	drm_plane_create_zpos_property(&plane->base, plane->index, 0, 255);
821 
822 	err = drm_plane_create_rotation_property(&plane->base,
823 						 DRM_MODE_ROTATE_0,
824 						 DRM_MODE_ROTATE_0 |
825 						 DRM_MODE_ROTATE_180 |
826 						 DRM_MODE_REFLECT_X |
827 						 DRM_MODE_REFLECT_Y);
828 	if (err < 0)
829 		dev_err(dc->dev, "failed to create rotation property: %d\n",
830 			err);
831 
832 	return &plane->base;
833 }
834 
835 static const u32 tegra_cursor_plane_formats[] = {
836 	DRM_FORMAT_RGBA8888,
837 };
838 
839 static int tegra_cursor_atomic_check(struct drm_plane *plane,
840 				     struct drm_atomic_state *state)
841 {
842 	struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state,
843 										 plane);
844 	struct tegra_plane *tegra = to_tegra_plane(plane);
845 	int err;
846 
847 	/* no need for further checks if the plane is being disabled */
848 	if (!new_plane_state->crtc)
849 		return 0;
850 
851 	/* scaling not supported for cursor */
852 	if ((new_plane_state->src_w >> 16 != new_plane_state->crtc_w) ||
853 	    (new_plane_state->src_h >> 16 != new_plane_state->crtc_h))
854 		return -EINVAL;
855 
856 	/* only square cursors supported */
857 	if (new_plane_state->src_w != new_plane_state->src_h)
858 		return -EINVAL;
859 
860 	if (new_plane_state->crtc_w != 32 && new_plane_state->crtc_w != 64 &&
861 	    new_plane_state->crtc_w != 128 && new_plane_state->crtc_w != 256)
862 		return -EINVAL;
863 
864 	err = tegra_plane_state_add(tegra, new_plane_state);
865 	if (err < 0)
866 		return err;
867 
868 	return 0;
869 }
870 
871 static void tegra_cursor_atomic_update(struct drm_plane *plane,
872 				       struct drm_atomic_state *state)
873 {
874 	struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state,
875 									   plane);
876 	struct tegra_plane_state *tegra_plane_state = to_tegra_plane_state(new_state);
877 	struct tegra_dc *dc = to_tegra_dc(new_state->crtc);
878 	u32 value = CURSOR_CLIP_DISPLAY;
879 
880 	/* rien ne va plus */
881 	if (!new_state->crtc || !new_state->fb)
882 		return;
883 
884 	switch (new_state->crtc_w) {
885 	case 32:
886 		value |= CURSOR_SIZE_32x32;
887 		break;
888 
889 	case 64:
890 		value |= CURSOR_SIZE_64x64;
891 		break;
892 
893 	case 128:
894 		value |= CURSOR_SIZE_128x128;
895 		break;
896 
897 	case 256:
898 		value |= CURSOR_SIZE_256x256;
899 		break;
900 
901 	default:
902 		WARN(1, "cursor size %ux%u not supported\n",
903 		     new_state->crtc_w, new_state->crtc_h);
904 		return;
905 	}
906 
907 	value |= (tegra_plane_state->iova[0] >> 10) & 0x3fffff;
908 	tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR);
909 
910 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
911 	value = (tegra_plane_state->iova[0] >> 32) & 0x3;
912 	tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR_HI);
913 #endif
914 
915 	/* enable cursor and set blend mode */
916 	value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
917 	value |= CURSOR_ENABLE;
918 	tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
919 
920 	value = tegra_dc_readl(dc, DC_DISP_BLEND_CURSOR_CONTROL);
921 	value &= ~CURSOR_DST_BLEND_MASK;
922 	value &= ~CURSOR_SRC_BLEND_MASK;
923 	value |= CURSOR_MODE_NORMAL;
924 	value |= CURSOR_DST_BLEND_NEG_K1_TIMES_SRC;
925 	value |= CURSOR_SRC_BLEND_K1_TIMES_SRC;
926 	value |= CURSOR_ALPHA;
927 	tegra_dc_writel(dc, value, DC_DISP_BLEND_CURSOR_CONTROL);
928 
929 	/* position the cursor */
930 	value = (new_state->crtc_y & 0x3fff) << 16 |
931 		(new_state->crtc_x & 0x3fff);
932 	tegra_dc_writel(dc, value, DC_DISP_CURSOR_POSITION);
933 }
934 
935 static void tegra_cursor_atomic_disable(struct drm_plane *plane,
936 					struct drm_atomic_state *state)
937 {
938 	struct drm_plane_state *old_state = drm_atomic_get_old_plane_state(state,
939 									   plane);
940 	struct tegra_dc *dc;
941 	u32 value;
942 
943 	/* rien ne va plus */
944 	if (!old_state || !old_state->crtc)
945 		return;
946 
947 	dc = to_tegra_dc(old_state->crtc);
948 
949 	value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
950 	value &= ~CURSOR_ENABLE;
951 	tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
952 }
953 
954 static const struct drm_plane_helper_funcs tegra_cursor_plane_helper_funcs = {
955 	.prepare_fb = tegra_plane_prepare_fb,
956 	.cleanup_fb = tegra_plane_cleanup_fb,
957 	.atomic_check = tegra_cursor_atomic_check,
958 	.atomic_update = tegra_cursor_atomic_update,
959 	.atomic_disable = tegra_cursor_atomic_disable,
960 };
961 
962 static struct drm_plane *tegra_dc_cursor_plane_create(struct drm_device *drm,
963 						      struct tegra_dc *dc)
964 {
965 	unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
966 	struct tegra_plane *plane;
967 	unsigned int num_formats;
968 	const u32 *formats;
969 	int err;
970 
971 	plane = kzalloc(sizeof(*plane), GFP_KERNEL);
972 	if (!plane)
973 		return ERR_PTR(-ENOMEM);
974 
975 	/*
976 	 * This index is kind of fake. The cursor isn't a regular plane, but
977 	 * its update and activation request bits in DC_CMD_STATE_CONTROL do
978 	 * use the same programming. Setting this fake index here allows the
979 	 * code in tegra_add_plane_state() to do the right thing without the
980 	 * need to special-casing the cursor plane.
981 	 */
982 	plane->index = 6;
983 	plane->dc = dc;
984 
985 	num_formats = ARRAY_SIZE(tegra_cursor_plane_formats);
986 	formats = tegra_cursor_plane_formats;
987 
988 	err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
989 				       &tegra_plane_funcs, formats,
990 				       num_formats, NULL,
991 				       DRM_PLANE_TYPE_CURSOR, NULL);
992 	if (err < 0) {
993 		kfree(plane);
994 		return ERR_PTR(err);
995 	}
996 
997 	drm_plane_helper_add(&plane->base, &tegra_cursor_plane_helper_funcs);
998 	drm_plane_create_zpos_immutable_property(&plane->base, 255);
999 
1000 	return &plane->base;
1001 }
1002 
1003 static const u32 tegra20_overlay_formats[] = {
1004 	DRM_FORMAT_ARGB4444,
1005 	DRM_FORMAT_ARGB1555,
1006 	DRM_FORMAT_RGB565,
1007 	DRM_FORMAT_RGBA5551,
1008 	DRM_FORMAT_ABGR8888,
1009 	DRM_FORMAT_ARGB8888,
1010 	/* non-native formats */
1011 	DRM_FORMAT_XRGB1555,
1012 	DRM_FORMAT_RGBX5551,
1013 	DRM_FORMAT_XBGR8888,
1014 	DRM_FORMAT_XRGB8888,
1015 	/* planar formats */
1016 	DRM_FORMAT_UYVY,
1017 	DRM_FORMAT_YUYV,
1018 	DRM_FORMAT_YUV420,
1019 	DRM_FORMAT_YUV422,
1020 };
1021 
1022 static const u32 tegra114_overlay_formats[] = {
1023 	DRM_FORMAT_ARGB4444,
1024 	DRM_FORMAT_ARGB1555,
1025 	DRM_FORMAT_RGB565,
1026 	DRM_FORMAT_RGBA5551,
1027 	DRM_FORMAT_ABGR8888,
1028 	DRM_FORMAT_ARGB8888,
1029 	/* new on Tegra114 */
1030 	DRM_FORMAT_ABGR4444,
1031 	DRM_FORMAT_ABGR1555,
1032 	DRM_FORMAT_BGRA5551,
1033 	DRM_FORMAT_XRGB1555,
1034 	DRM_FORMAT_RGBX5551,
1035 	DRM_FORMAT_XBGR1555,
1036 	DRM_FORMAT_BGRX5551,
1037 	DRM_FORMAT_BGR565,
1038 	DRM_FORMAT_BGRA8888,
1039 	DRM_FORMAT_RGBA8888,
1040 	DRM_FORMAT_XRGB8888,
1041 	DRM_FORMAT_XBGR8888,
1042 	/* planar formats */
1043 	DRM_FORMAT_UYVY,
1044 	DRM_FORMAT_YUYV,
1045 	DRM_FORMAT_YUV420,
1046 	DRM_FORMAT_YUV422,
1047 };
1048 
1049 static const u32 tegra124_overlay_formats[] = {
1050 	DRM_FORMAT_ARGB4444,
1051 	DRM_FORMAT_ARGB1555,
1052 	DRM_FORMAT_RGB565,
1053 	DRM_FORMAT_RGBA5551,
1054 	DRM_FORMAT_ABGR8888,
1055 	DRM_FORMAT_ARGB8888,
1056 	/* new on Tegra114 */
1057 	DRM_FORMAT_ABGR4444,
1058 	DRM_FORMAT_ABGR1555,
1059 	DRM_FORMAT_BGRA5551,
1060 	DRM_FORMAT_XRGB1555,
1061 	DRM_FORMAT_RGBX5551,
1062 	DRM_FORMAT_XBGR1555,
1063 	DRM_FORMAT_BGRX5551,
1064 	DRM_FORMAT_BGR565,
1065 	DRM_FORMAT_BGRA8888,
1066 	DRM_FORMAT_RGBA8888,
1067 	DRM_FORMAT_XRGB8888,
1068 	DRM_FORMAT_XBGR8888,
1069 	/* new on Tegra124 */
1070 	DRM_FORMAT_RGBX8888,
1071 	DRM_FORMAT_BGRX8888,
1072 	/* planar formats */
1073 	DRM_FORMAT_UYVY,
1074 	DRM_FORMAT_YUYV,
1075 	DRM_FORMAT_YUV420,
1076 	DRM_FORMAT_YUV422,
1077 };
1078 
1079 static struct drm_plane *tegra_dc_overlay_plane_create(struct drm_device *drm,
1080 						       struct tegra_dc *dc,
1081 						       unsigned int index,
1082 						       bool cursor)
1083 {
1084 	unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
1085 	struct tegra_plane *plane;
1086 	unsigned int num_formats;
1087 	enum drm_plane_type type;
1088 	const u32 *formats;
1089 	int err;
1090 
1091 	plane = kzalloc(sizeof(*plane), GFP_KERNEL);
1092 	if (!plane)
1093 		return ERR_PTR(-ENOMEM);
1094 
1095 	plane->offset = 0xa00 + 0x200 * index;
1096 	plane->index = index;
1097 	plane->dc = dc;
1098 
1099 	num_formats = dc->soc->num_overlay_formats;
1100 	formats = dc->soc->overlay_formats;
1101 
1102 	if (!cursor)
1103 		type = DRM_PLANE_TYPE_OVERLAY;
1104 	else
1105 		type = DRM_PLANE_TYPE_CURSOR;
1106 
1107 	err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
1108 				       &tegra_plane_funcs, formats,
1109 				       num_formats, NULL, type, NULL);
1110 	if (err < 0) {
1111 		kfree(plane);
1112 		return ERR_PTR(err);
1113 	}
1114 
1115 	drm_plane_helper_add(&plane->base, &tegra_plane_helper_funcs);
1116 	drm_plane_create_zpos_property(&plane->base, plane->index, 0, 255);
1117 
1118 	err = drm_plane_create_rotation_property(&plane->base,
1119 						 DRM_MODE_ROTATE_0,
1120 						 DRM_MODE_ROTATE_0 |
1121 						 DRM_MODE_ROTATE_180 |
1122 						 DRM_MODE_REFLECT_X |
1123 						 DRM_MODE_REFLECT_Y);
1124 	if (err < 0)
1125 		dev_err(dc->dev, "failed to create rotation property: %d\n",
1126 			err);
1127 
1128 	return &plane->base;
1129 }
1130 
1131 static struct drm_plane *tegra_dc_add_shared_planes(struct drm_device *drm,
1132 						    struct tegra_dc *dc)
1133 {
1134 	struct drm_plane *plane, *primary = NULL;
1135 	unsigned int i, j;
1136 
1137 	for (i = 0; i < dc->soc->num_wgrps; i++) {
1138 		const struct tegra_windowgroup_soc *wgrp = &dc->soc->wgrps[i];
1139 
1140 		if (wgrp->dc == dc->pipe) {
1141 			for (j = 0; j < wgrp->num_windows; j++) {
1142 				unsigned int index = wgrp->windows[j];
1143 
1144 				plane = tegra_shared_plane_create(drm, dc,
1145 								  wgrp->index,
1146 								  index);
1147 				if (IS_ERR(plane))
1148 					return plane;
1149 
1150 				/*
1151 				 * Choose the first shared plane owned by this
1152 				 * head as the primary plane.
1153 				 */
1154 				if (!primary) {
1155 					plane->type = DRM_PLANE_TYPE_PRIMARY;
1156 					primary = plane;
1157 				}
1158 			}
1159 		}
1160 	}
1161 
1162 	return primary;
1163 }
1164 
1165 static struct drm_plane *tegra_dc_add_planes(struct drm_device *drm,
1166 					     struct tegra_dc *dc)
1167 {
1168 	struct drm_plane *planes[2], *primary;
1169 	unsigned int planes_num;
1170 	unsigned int i;
1171 	int err;
1172 
1173 	primary = tegra_primary_plane_create(drm, dc);
1174 	if (IS_ERR(primary))
1175 		return primary;
1176 
1177 	if (dc->soc->supports_cursor)
1178 		planes_num = 2;
1179 	else
1180 		planes_num = 1;
1181 
1182 	for (i = 0; i < planes_num; i++) {
1183 		planes[i] = tegra_dc_overlay_plane_create(drm, dc, 1 + i,
1184 							  false);
1185 		if (IS_ERR(planes[i])) {
1186 			err = PTR_ERR(planes[i]);
1187 
1188 			while (i--)
1189 				tegra_plane_funcs.destroy(planes[i]);
1190 
1191 			tegra_plane_funcs.destroy(primary);
1192 			return ERR_PTR(err);
1193 		}
1194 	}
1195 
1196 	return primary;
1197 }
1198 
1199 static void tegra_dc_destroy(struct drm_crtc *crtc)
1200 {
1201 	drm_crtc_cleanup(crtc);
1202 }
1203 
1204 static void tegra_crtc_reset(struct drm_crtc *crtc)
1205 {
1206 	struct tegra_dc_state *state = kzalloc(sizeof(*state), GFP_KERNEL);
1207 
1208 	if (crtc->state)
1209 		tegra_crtc_atomic_destroy_state(crtc, crtc->state);
1210 
1211 	__drm_atomic_helper_crtc_reset(crtc, &state->base);
1212 }
1213 
1214 static struct drm_crtc_state *
1215 tegra_crtc_atomic_duplicate_state(struct drm_crtc *crtc)
1216 {
1217 	struct tegra_dc_state *state = to_dc_state(crtc->state);
1218 	struct tegra_dc_state *copy;
1219 
1220 	copy = kmalloc(sizeof(*copy), GFP_KERNEL);
1221 	if (!copy)
1222 		return NULL;
1223 
1224 	__drm_atomic_helper_crtc_duplicate_state(crtc, &copy->base);
1225 	copy->clk = state->clk;
1226 	copy->pclk = state->pclk;
1227 	copy->div = state->div;
1228 	copy->planes = state->planes;
1229 
1230 	return &copy->base;
1231 }
1232 
1233 static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc,
1234 					    struct drm_crtc_state *state)
1235 {
1236 	__drm_atomic_helper_crtc_destroy_state(state);
1237 	kfree(state);
1238 }
1239 
1240 #define DEBUGFS_REG32(_name) { .name = #_name, .offset = _name }
1241 
1242 static const struct debugfs_reg32 tegra_dc_regs[] = {
1243 	DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT),
1244 	DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT_CNTRL),
1245 	DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT_ERROR),
1246 	DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT),
1247 	DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT_CNTRL),
1248 	DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT_ERROR),
1249 	DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT),
1250 	DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT_CNTRL),
1251 	DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT_ERROR),
1252 	DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT),
1253 	DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT_CNTRL),
1254 	DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT_ERROR),
1255 	DEBUGFS_REG32(DC_CMD_CONT_SYNCPT_VSYNC),
1256 	DEBUGFS_REG32(DC_CMD_DISPLAY_COMMAND_OPTION0),
1257 	DEBUGFS_REG32(DC_CMD_DISPLAY_COMMAND),
1258 	DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE),
1259 	DEBUGFS_REG32(DC_CMD_DISPLAY_POWER_CONTROL),
1260 	DEBUGFS_REG32(DC_CMD_INT_STATUS),
1261 	DEBUGFS_REG32(DC_CMD_INT_MASK),
1262 	DEBUGFS_REG32(DC_CMD_INT_ENABLE),
1263 	DEBUGFS_REG32(DC_CMD_INT_TYPE),
1264 	DEBUGFS_REG32(DC_CMD_INT_POLARITY),
1265 	DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE1),
1266 	DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE2),
1267 	DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE3),
1268 	DEBUGFS_REG32(DC_CMD_STATE_ACCESS),
1269 	DEBUGFS_REG32(DC_CMD_STATE_CONTROL),
1270 	DEBUGFS_REG32(DC_CMD_DISPLAY_WINDOW_HEADER),
1271 	DEBUGFS_REG32(DC_CMD_REG_ACT_CONTROL),
1272 	DEBUGFS_REG32(DC_COM_CRC_CONTROL),
1273 	DEBUGFS_REG32(DC_COM_CRC_CHECKSUM),
1274 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(0)),
1275 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(1)),
1276 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(2)),
1277 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(3)),
1278 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(0)),
1279 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(1)),
1280 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(2)),
1281 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(3)),
1282 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(0)),
1283 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(1)),
1284 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(2)),
1285 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(3)),
1286 	DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(0)),
1287 	DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(1)),
1288 	DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(2)),
1289 	DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(3)),
1290 	DEBUGFS_REG32(DC_COM_PIN_INPUT_DATA(0)),
1291 	DEBUGFS_REG32(DC_COM_PIN_INPUT_DATA(1)),
1292 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(0)),
1293 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(1)),
1294 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(2)),
1295 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(3)),
1296 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(4)),
1297 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(5)),
1298 	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(6)),
1299 	DEBUGFS_REG32(DC_COM_PIN_MISC_CONTROL),
1300 	DEBUGFS_REG32(DC_COM_PIN_PM0_CONTROL),
1301 	DEBUGFS_REG32(DC_COM_PIN_PM0_DUTY_CYCLE),
1302 	DEBUGFS_REG32(DC_COM_PIN_PM1_CONTROL),
1303 	DEBUGFS_REG32(DC_COM_PIN_PM1_DUTY_CYCLE),
1304 	DEBUGFS_REG32(DC_COM_SPI_CONTROL),
1305 	DEBUGFS_REG32(DC_COM_SPI_START_BYTE),
1306 	DEBUGFS_REG32(DC_COM_HSPI_WRITE_DATA_AB),
1307 	DEBUGFS_REG32(DC_COM_HSPI_WRITE_DATA_CD),
1308 	DEBUGFS_REG32(DC_COM_HSPI_CS_DC),
1309 	DEBUGFS_REG32(DC_COM_SCRATCH_REGISTER_A),
1310 	DEBUGFS_REG32(DC_COM_SCRATCH_REGISTER_B),
1311 	DEBUGFS_REG32(DC_COM_GPIO_CTRL),
1312 	DEBUGFS_REG32(DC_COM_GPIO_DEBOUNCE_COUNTER),
1313 	DEBUGFS_REG32(DC_COM_CRC_CHECKSUM_LATCHED),
1314 	DEBUGFS_REG32(DC_DISP_DISP_SIGNAL_OPTIONS0),
1315 	DEBUGFS_REG32(DC_DISP_DISP_SIGNAL_OPTIONS1),
1316 	DEBUGFS_REG32(DC_DISP_DISP_WIN_OPTIONS),
1317 	DEBUGFS_REG32(DC_DISP_DISP_MEM_HIGH_PRIORITY),
1318 	DEBUGFS_REG32(DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER),
1319 	DEBUGFS_REG32(DC_DISP_DISP_TIMING_OPTIONS),
1320 	DEBUGFS_REG32(DC_DISP_REF_TO_SYNC),
1321 	DEBUGFS_REG32(DC_DISP_SYNC_WIDTH),
1322 	DEBUGFS_REG32(DC_DISP_BACK_PORCH),
1323 	DEBUGFS_REG32(DC_DISP_ACTIVE),
1324 	DEBUGFS_REG32(DC_DISP_FRONT_PORCH),
1325 	DEBUGFS_REG32(DC_DISP_H_PULSE0_CONTROL),
1326 	DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_A),
1327 	DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_B),
1328 	DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_C),
1329 	DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_D),
1330 	DEBUGFS_REG32(DC_DISP_H_PULSE1_CONTROL),
1331 	DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_A),
1332 	DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_B),
1333 	DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_C),
1334 	DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_D),
1335 	DEBUGFS_REG32(DC_DISP_H_PULSE2_CONTROL),
1336 	DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_A),
1337 	DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_B),
1338 	DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_C),
1339 	DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_D),
1340 	DEBUGFS_REG32(DC_DISP_V_PULSE0_CONTROL),
1341 	DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_A),
1342 	DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_B),
1343 	DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_C),
1344 	DEBUGFS_REG32(DC_DISP_V_PULSE1_CONTROL),
1345 	DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_A),
1346 	DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_B),
1347 	DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_C),
1348 	DEBUGFS_REG32(DC_DISP_V_PULSE2_CONTROL),
1349 	DEBUGFS_REG32(DC_DISP_V_PULSE2_POSITION_A),
1350 	DEBUGFS_REG32(DC_DISP_V_PULSE3_CONTROL),
1351 	DEBUGFS_REG32(DC_DISP_V_PULSE3_POSITION_A),
1352 	DEBUGFS_REG32(DC_DISP_M0_CONTROL),
1353 	DEBUGFS_REG32(DC_DISP_M1_CONTROL),
1354 	DEBUGFS_REG32(DC_DISP_DI_CONTROL),
1355 	DEBUGFS_REG32(DC_DISP_PP_CONTROL),
1356 	DEBUGFS_REG32(DC_DISP_PP_SELECT_A),
1357 	DEBUGFS_REG32(DC_DISP_PP_SELECT_B),
1358 	DEBUGFS_REG32(DC_DISP_PP_SELECT_C),
1359 	DEBUGFS_REG32(DC_DISP_PP_SELECT_D),
1360 	DEBUGFS_REG32(DC_DISP_DISP_CLOCK_CONTROL),
1361 	DEBUGFS_REG32(DC_DISP_DISP_INTERFACE_CONTROL),
1362 	DEBUGFS_REG32(DC_DISP_DISP_COLOR_CONTROL),
1363 	DEBUGFS_REG32(DC_DISP_SHIFT_CLOCK_OPTIONS),
1364 	DEBUGFS_REG32(DC_DISP_DATA_ENABLE_OPTIONS),
1365 	DEBUGFS_REG32(DC_DISP_SERIAL_INTERFACE_OPTIONS),
1366 	DEBUGFS_REG32(DC_DISP_LCD_SPI_OPTIONS),
1367 	DEBUGFS_REG32(DC_DISP_BORDER_COLOR),
1368 	DEBUGFS_REG32(DC_DISP_COLOR_KEY0_LOWER),
1369 	DEBUGFS_REG32(DC_DISP_COLOR_KEY0_UPPER),
1370 	DEBUGFS_REG32(DC_DISP_COLOR_KEY1_LOWER),
1371 	DEBUGFS_REG32(DC_DISP_COLOR_KEY1_UPPER),
1372 	DEBUGFS_REG32(DC_DISP_CURSOR_FOREGROUND),
1373 	DEBUGFS_REG32(DC_DISP_CURSOR_BACKGROUND),
1374 	DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR),
1375 	DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR_NS),
1376 	DEBUGFS_REG32(DC_DISP_CURSOR_POSITION),
1377 	DEBUGFS_REG32(DC_DISP_CURSOR_POSITION_NS),
1378 	DEBUGFS_REG32(DC_DISP_INIT_SEQ_CONTROL),
1379 	DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_A),
1380 	DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_B),
1381 	DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_C),
1382 	DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_D),
1383 	DEBUGFS_REG32(DC_DISP_DC_MCCIF_FIFOCTRL),
1384 	DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY0A_HYST),
1385 	DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY0B_HYST),
1386 	DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY1A_HYST),
1387 	DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY1B_HYST),
1388 	DEBUGFS_REG32(DC_DISP_DAC_CRT_CTRL),
1389 	DEBUGFS_REG32(DC_DISP_DISP_MISC_CONTROL),
1390 	DEBUGFS_REG32(DC_DISP_SD_CONTROL),
1391 	DEBUGFS_REG32(DC_DISP_SD_CSC_COEFF),
1392 	DEBUGFS_REG32(DC_DISP_SD_LUT(0)),
1393 	DEBUGFS_REG32(DC_DISP_SD_LUT(1)),
1394 	DEBUGFS_REG32(DC_DISP_SD_LUT(2)),
1395 	DEBUGFS_REG32(DC_DISP_SD_LUT(3)),
1396 	DEBUGFS_REG32(DC_DISP_SD_LUT(4)),
1397 	DEBUGFS_REG32(DC_DISP_SD_LUT(5)),
1398 	DEBUGFS_REG32(DC_DISP_SD_LUT(6)),
1399 	DEBUGFS_REG32(DC_DISP_SD_LUT(7)),
1400 	DEBUGFS_REG32(DC_DISP_SD_LUT(8)),
1401 	DEBUGFS_REG32(DC_DISP_SD_FLICKER_CONTROL),
1402 	DEBUGFS_REG32(DC_DISP_DC_PIXEL_COUNT),
1403 	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(0)),
1404 	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(1)),
1405 	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(2)),
1406 	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(3)),
1407 	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(4)),
1408 	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(5)),
1409 	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(6)),
1410 	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(7)),
1411 	DEBUGFS_REG32(DC_DISP_SD_BL_TF(0)),
1412 	DEBUGFS_REG32(DC_DISP_SD_BL_TF(1)),
1413 	DEBUGFS_REG32(DC_DISP_SD_BL_TF(2)),
1414 	DEBUGFS_REG32(DC_DISP_SD_BL_TF(3)),
1415 	DEBUGFS_REG32(DC_DISP_SD_BL_CONTROL),
1416 	DEBUGFS_REG32(DC_DISP_SD_HW_K_VALUES),
1417 	DEBUGFS_REG32(DC_DISP_SD_MAN_K_VALUES),
1418 	DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR_HI),
1419 	DEBUGFS_REG32(DC_DISP_BLEND_CURSOR_CONTROL),
1420 	DEBUGFS_REG32(DC_WIN_WIN_OPTIONS),
1421 	DEBUGFS_REG32(DC_WIN_BYTE_SWAP),
1422 	DEBUGFS_REG32(DC_WIN_BUFFER_CONTROL),
1423 	DEBUGFS_REG32(DC_WIN_COLOR_DEPTH),
1424 	DEBUGFS_REG32(DC_WIN_POSITION),
1425 	DEBUGFS_REG32(DC_WIN_SIZE),
1426 	DEBUGFS_REG32(DC_WIN_PRESCALED_SIZE),
1427 	DEBUGFS_REG32(DC_WIN_H_INITIAL_DDA),
1428 	DEBUGFS_REG32(DC_WIN_V_INITIAL_DDA),
1429 	DEBUGFS_REG32(DC_WIN_DDA_INC),
1430 	DEBUGFS_REG32(DC_WIN_LINE_STRIDE),
1431 	DEBUGFS_REG32(DC_WIN_BUF_STRIDE),
1432 	DEBUGFS_REG32(DC_WIN_UV_BUF_STRIDE),
1433 	DEBUGFS_REG32(DC_WIN_BUFFER_ADDR_MODE),
1434 	DEBUGFS_REG32(DC_WIN_DV_CONTROL),
1435 	DEBUGFS_REG32(DC_WIN_BLEND_NOKEY),
1436 	DEBUGFS_REG32(DC_WIN_BLEND_1WIN),
1437 	DEBUGFS_REG32(DC_WIN_BLEND_2WIN_X),
1438 	DEBUGFS_REG32(DC_WIN_BLEND_2WIN_Y),
1439 	DEBUGFS_REG32(DC_WIN_BLEND_3WIN_XY),
1440 	DEBUGFS_REG32(DC_WIN_HP_FETCH_CONTROL),
1441 	DEBUGFS_REG32(DC_WINBUF_START_ADDR),
1442 	DEBUGFS_REG32(DC_WINBUF_START_ADDR_NS),
1443 	DEBUGFS_REG32(DC_WINBUF_START_ADDR_U),
1444 	DEBUGFS_REG32(DC_WINBUF_START_ADDR_U_NS),
1445 	DEBUGFS_REG32(DC_WINBUF_START_ADDR_V),
1446 	DEBUGFS_REG32(DC_WINBUF_START_ADDR_V_NS),
1447 	DEBUGFS_REG32(DC_WINBUF_ADDR_H_OFFSET),
1448 	DEBUGFS_REG32(DC_WINBUF_ADDR_H_OFFSET_NS),
1449 	DEBUGFS_REG32(DC_WINBUF_ADDR_V_OFFSET),
1450 	DEBUGFS_REG32(DC_WINBUF_ADDR_V_OFFSET_NS),
1451 	DEBUGFS_REG32(DC_WINBUF_UFLOW_STATUS),
1452 	DEBUGFS_REG32(DC_WINBUF_AD_UFLOW_STATUS),
1453 	DEBUGFS_REG32(DC_WINBUF_BD_UFLOW_STATUS),
1454 	DEBUGFS_REG32(DC_WINBUF_CD_UFLOW_STATUS),
1455 };
1456 
1457 static int tegra_dc_show_regs(struct seq_file *s, void *data)
1458 {
1459 	struct drm_info_node *node = s->private;
1460 	struct tegra_dc *dc = node->info_ent->data;
1461 	unsigned int i;
1462 	int err = 0;
1463 
1464 	drm_modeset_lock(&dc->base.mutex, NULL);
1465 
1466 	if (!dc->base.state->active) {
1467 		err = -EBUSY;
1468 		goto unlock;
1469 	}
1470 
1471 	for (i = 0; i < ARRAY_SIZE(tegra_dc_regs); i++) {
1472 		unsigned int offset = tegra_dc_regs[i].offset;
1473 
1474 		seq_printf(s, "%-40s %#05x %08x\n", tegra_dc_regs[i].name,
1475 			   offset, tegra_dc_readl(dc, offset));
1476 	}
1477 
1478 unlock:
1479 	drm_modeset_unlock(&dc->base.mutex);
1480 	return err;
1481 }
1482 
1483 static int tegra_dc_show_crc(struct seq_file *s, void *data)
1484 {
1485 	struct drm_info_node *node = s->private;
1486 	struct tegra_dc *dc = node->info_ent->data;
1487 	int err = 0;
1488 	u32 value;
1489 
1490 	drm_modeset_lock(&dc->base.mutex, NULL);
1491 
1492 	if (!dc->base.state->active) {
1493 		err = -EBUSY;
1494 		goto unlock;
1495 	}
1496 
1497 	value = DC_COM_CRC_CONTROL_ACTIVE_DATA | DC_COM_CRC_CONTROL_ENABLE;
1498 	tegra_dc_writel(dc, value, DC_COM_CRC_CONTROL);
1499 	tegra_dc_commit(dc);
1500 
1501 	drm_crtc_wait_one_vblank(&dc->base);
1502 	drm_crtc_wait_one_vblank(&dc->base);
1503 
1504 	value = tegra_dc_readl(dc, DC_COM_CRC_CHECKSUM);
1505 	seq_printf(s, "%08x\n", value);
1506 
1507 	tegra_dc_writel(dc, 0, DC_COM_CRC_CONTROL);
1508 
1509 unlock:
1510 	drm_modeset_unlock(&dc->base.mutex);
1511 	return err;
1512 }
1513 
1514 static int tegra_dc_show_stats(struct seq_file *s, void *data)
1515 {
1516 	struct drm_info_node *node = s->private;
1517 	struct tegra_dc *dc = node->info_ent->data;
1518 
1519 	seq_printf(s, "frames: %lu\n", dc->stats.frames);
1520 	seq_printf(s, "vblank: %lu\n", dc->stats.vblank);
1521 	seq_printf(s, "underflow: %lu\n", dc->stats.underflow);
1522 	seq_printf(s, "overflow: %lu\n", dc->stats.overflow);
1523 
1524 	return 0;
1525 }
1526 
1527 static struct drm_info_list debugfs_files[] = {
1528 	{ "regs", tegra_dc_show_regs, 0, NULL },
1529 	{ "crc", tegra_dc_show_crc, 0, NULL },
1530 	{ "stats", tegra_dc_show_stats, 0, NULL },
1531 };
1532 
1533 static int tegra_dc_late_register(struct drm_crtc *crtc)
1534 {
1535 	unsigned int i, count = ARRAY_SIZE(debugfs_files);
1536 	struct drm_minor *minor = crtc->dev->primary;
1537 	struct dentry *root;
1538 	struct tegra_dc *dc = to_tegra_dc(crtc);
1539 
1540 #ifdef CONFIG_DEBUG_FS
1541 	root = crtc->debugfs_entry;
1542 #else
1543 	root = NULL;
1544 #endif
1545 
1546 	dc->debugfs_files = kmemdup(debugfs_files, sizeof(debugfs_files),
1547 				    GFP_KERNEL);
1548 	if (!dc->debugfs_files)
1549 		return -ENOMEM;
1550 
1551 	for (i = 0; i < count; i++)
1552 		dc->debugfs_files[i].data = dc;
1553 
1554 	drm_debugfs_create_files(dc->debugfs_files, count, root, minor);
1555 
1556 	return 0;
1557 }
1558 
1559 static void tegra_dc_early_unregister(struct drm_crtc *crtc)
1560 {
1561 	unsigned int count = ARRAY_SIZE(debugfs_files);
1562 	struct drm_minor *minor = crtc->dev->primary;
1563 	struct tegra_dc *dc = to_tegra_dc(crtc);
1564 
1565 	drm_debugfs_remove_files(dc->debugfs_files, count, minor);
1566 	kfree(dc->debugfs_files);
1567 	dc->debugfs_files = NULL;
1568 }
1569 
1570 static u32 tegra_dc_get_vblank_counter(struct drm_crtc *crtc)
1571 {
1572 	struct tegra_dc *dc = to_tegra_dc(crtc);
1573 
1574 	/* XXX vblank syncpoints don't work with nvdisplay yet */
1575 	if (dc->syncpt && !dc->soc->has_nvdisplay)
1576 		return host1x_syncpt_read(dc->syncpt);
1577 
1578 	/* fallback to software emulated VBLANK counter */
1579 	return (u32)drm_crtc_vblank_count(&dc->base);
1580 }
1581 
1582 static int tegra_dc_enable_vblank(struct drm_crtc *crtc)
1583 {
1584 	struct tegra_dc *dc = to_tegra_dc(crtc);
1585 	u32 value;
1586 
1587 	value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
1588 	value |= VBLANK_INT;
1589 	tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1590 
1591 	return 0;
1592 }
1593 
1594 static void tegra_dc_disable_vblank(struct drm_crtc *crtc)
1595 {
1596 	struct tegra_dc *dc = to_tegra_dc(crtc);
1597 	u32 value;
1598 
1599 	value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
1600 	value &= ~VBLANK_INT;
1601 	tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1602 }
1603 
1604 static const struct drm_crtc_funcs tegra_crtc_funcs = {
1605 	.page_flip = drm_atomic_helper_page_flip,
1606 	.set_config = drm_atomic_helper_set_config,
1607 	.destroy = tegra_dc_destroy,
1608 	.reset = tegra_crtc_reset,
1609 	.atomic_duplicate_state = tegra_crtc_atomic_duplicate_state,
1610 	.atomic_destroy_state = tegra_crtc_atomic_destroy_state,
1611 	.late_register = tegra_dc_late_register,
1612 	.early_unregister = tegra_dc_early_unregister,
1613 	.get_vblank_counter = tegra_dc_get_vblank_counter,
1614 	.enable_vblank = tegra_dc_enable_vblank,
1615 	.disable_vblank = tegra_dc_disable_vblank,
1616 };
1617 
1618 static int tegra_dc_set_timings(struct tegra_dc *dc,
1619 				struct drm_display_mode *mode)
1620 {
1621 	unsigned int h_ref_to_sync = 1;
1622 	unsigned int v_ref_to_sync = 1;
1623 	unsigned long value;
1624 
1625 	if (!dc->soc->has_nvdisplay) {
1626 		tegra_dc_writel(dc, 0x0, DC_DISP_DISP_TIMING_OPTIONS);
1627 
1628 		value = (v_ref_to_sync << 16) | h_ref_to_sync;
1629 		tegra_dc_writel(dc, value, DC_DISP_REF_TO_SYNC);
1630 	}
1631 
1632 	value = ((mode->vsync_end - mode->vsync_start) << 16) |
1633 		((mode->hsync_end - mode->hsync_start) <<  0);
1634 	tegra_dc_writel(dc, value, DC_DISP_SYNC_WIDTH);
1635 
1636 	value = ((mode->vtotal - mode->vsync_end) << 16) |
1637 		((mode->htotal - mode->hsync_end) <<  0);
1638 	tegra_dc_writel(dc, value, DC_DISP_BACK_PORCH);
1639 
1640 	value = ((mode->vsync_start - mode->vdisplay) << 16) |
1641 		((mode->hsync_start - mode->hdisplay) <<  0);
1642 	tegra_dc_writel(dc, value, DC_DISP_FRONT_PORCH);
1643 
1644 	value = (mode->vdisplay << 16) | mode->hdisplay;
1645 	tegra_dc_writel(dc, value, DC_DISP_ACTIVE);
1646 
1647 	return 0;
1648 }
1649 
1650 /**
1651  * tegra_dc_state_setup_clock - check clock settings and store them in atomic
1652  *     state
1653  * @dc: display controller
1654  * @crtc_state: CRTC atomic state
1655  * @clk: parent clock for display controller
1656  * @pclk: pixel clock
1657  * @div: shift clock divider
1658  *
1659  * Returns:
1660  * 0 on success or a negative error-code on failure.
1661  */
1662 int tegra_dc_state_setup_clock(struct tegra_dc *dc,
1663 			       struct drm_crtc_state *crtc_state,
1664 			       struct clk *clk, unsigned long pclk,
1665 			       unsigned int div)
1666 {
1667 	struct tegra_dc_state *state = to_dc_state(crtc_state);
1668 
1669 	if (!clk_has_parent(dc->clk, clk))
1670 		return -EINVAL;
1671 
1672 	state->clk = clk;
1673 	state->pclk = pclk;
1674 	state->div = div;
1675 
1676 	return 0;
1677 }
1678 
1679 static void tegra_dc_commit_state(struct tegra_dc *dc,
1680 				  struct tegra_dc_state *state)
1681 {
1682 	u32 value;
1683 	int err;
1684 
1685 	err = clk_set_parent(dc->clk, state->clk);
1686 	if (err < 0)
1687 		dev_err(dc->dev, "failed to set parent clock: %d\n", err);
1688 
1689 	/*
1690 	 * Outputs may not want to change the parent clock rate. This is only
1691 	 * relevant to Tegra20 where only a single display PLL is available.
1692 	 * Since that PLL would typically be used for HDMI, an internal LVDS
1693 	 * panel would need to be driven by some other clock such as PLL_P
1694 	 * which is shared with other peripherals. Changing the clock rate
1695 	 * should therefore be avoided.
1696 	 */
1697 	if (state->pclk > 0) {
1698 		err = clk_set_rate(state->clk, state->pclk);
1699 		if (err < 0)
1700 			dev_err(dc->dev,
1701 				"failed to set clock rate to %lu Hz\n",
1702 				state->pclk);
1703 	}
1704 
1705 	DRM_DEBUG_KMS("rate: %lu, div: %u\n", clk_get_rate(dc->clk),
1706 		      state->div);
1707 	DRM_DEBUG_KMS("pclk: %lu\n", state->pclk);
1708 
1709 	if (!dc->soc->has_nvdisplay) {
1710 		value = SHIFT_CLK_DIVIDER(state->div) | PIXEL_CLK_DIVIDER_PCD1;
1711 		tegra_dc_writel(dc, value, DC_DISP_DISP_CLOCK_CONTROL);
1712 	}
1713 
1714 	err = clk_set_rate(dc->clk, state->pclk);
1715 	if (err < 0)
1716 		dev_err(dc->dev, "failed to set clock %pC to %lu Hz: %d\n",
1717 			dc->clk, state->pclk, err);
1718 }
1719 
1720 static void tegra_dc_stop(struct tegra_dc *dc)
1721 {
1722 	u32 value;
1723 
1724 	/* stop the display controller */
1725 	value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1726 	value &= ~DISP_CTRL_MODE_MASK;
1727 	tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1728 
1729 	tegra_dc_commit(dc);
1730 }
1731 
1732 static bool tegra_dc_idle(struct tegra_dc *dc)
1733 {
1734 	u32 value;
1735 
1736 	value = tegra_dc_readl_active(dc, DC_CMD_DISPLAY_COMMAND);
1737 
1738 	return (value & DISP_CTRL_MODE_MASK) == 0;
1739 }
1740 
1741 static int tegra_dc_wait_idle(struct tegra_dc *dc, unsigned long timeout)
1742 {
1743 	timeout = jiffies + msecs_to_jiffies(timeout);
1744 
1745 	while (time_before(jiffies, timeout)) {
1746 		if (tegra_dc_idle(dc))
1747 			return 0;
1748 
1749 		usleep_range(1000, 2000);
1750 	}
1751 
1752 	dev_dbg(dc->dev, "timeout waiting for DC to become idle\n");
1753 	return -ETIMEDOUT;
1754 }
1755 
1756 static void tegra_crtc_atomic_disable(struct drm_crtc *crtc,
1757 				      struct drm_atomic_state *state)
1758 {
1759 	struct tegra_dc *dc = to_tegra_dc(crtc);
1760 	u32 value;
1761 	int err;
1762 
1763 	if (!tegra_dc_idle(dc)) {
1764 		tegra_dc_stop(dc);
1765 
1766 		/*
1767 		 * Ignore the return value, there isn't anything useful to do
1768 		 * in case this fails.
1769 		 */
1770 		tegra_dc_wait_idle(dc, 100);
1771 	}
1772 
1773 	/*
1774 	 * This should really be part of the RGB encoder driver, but clearing
1775 	 * these bits has the side-effect of stopping the display controller.
1776 	 * When that happens no VBLANK interrupts will be raised. At the same
1777 	 * time the encoder is disabled before the display controller, so the
1778 	 * above code is always going to timeout waiting for the controller
1779 	 * to go idle.
1780 	 *
1781 	 * Given the close coupling between the RGB encoder and the display
1782 	 * controller doing it here is still kind of okay. None of the other
1783 	 * encoder drivers require these bits to be cleared.
1784 	 *
1785 	 * XXX: Perhaps given that the display controller is switched off at
1786 	 * this point anyway maybe clearing these bits isn't even useful for
1787 	 * the RGB encoder?
1788 	 */
1789 	if (dc->rgb) {
1790 		value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
1791 		value &= ~(PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
1792 			   PW4_ENABLE | PM0_ENABLE | PM1_ENABLE);
1793 		tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
1794 	}
1795 
1796 	tegra_dc_stats_reset(&dc->stats);
1797 	drm_crtc_vblank_off(crtc);
1798 
1799 	spin_lock_irq(&crtc->dev->event_lock);
1800 
1801 	if (crtc->state->event) {
1802 		drm_crtc_send_vblank_event(crtc, crtc->state->event);
1803 		crtc->state->event = NULL;
1804 	}
1805 
1806 	spin_unlock_irq(&crtc->dev->event_lock);
1807 
1808 	err = host1x_client_suspend(&dc->client);
1809 	if (err < 0)
1810 		dev_err(dc->dev, "failed to suspend: %d\n", err);
1811 }
1812 
1813 static void tegra_crtc_atomic_enable(struct drm_crtc *crtc,
1814 				     struct drm_atomic_state *state)
1815 {
1816 	struct drm_display_mode *mode = &crtc->state->adjusted_mode;
1817 	struct tegra_dc_state *crtc_state = to_dc_state(crtc->state);
1818 	struct tegra_dc *dc = to_tegra_dc(crtc);
1819 	u32 value;
1820 	int err;
1821 
1822 	err = host1x_client_resume(&dc->client);
1823 	if (err < 0) {
1824 		dev_err(dc->dev, "failed to resume: %d\n", err);
1825 		return;
1826 	}
1827 
1828 	/* initialize display controller */
1829 	if (dc->syncpt) {
1830 		u32 syncpt = host1x_syncpt_id(dc->syncpt), enable;
1831 
1832 		if (dc->soc->has_nvdisplay)
1833 			enable = 1 << 31;
1834 		else
1835 			enable = 1 << 8;
1836 
1837 		value = SYNCPT_CNTRL_NO_STALL;
1838 		tegra_dc_writel(dc, value, DC_CMD_GENERAL_INCR_SYNCPT_CNTRL);
1839 
1840 		value = enable | syncpt;
1841 		tegra_dc_writel(dc, value, DC_CMD_CONT_SYNCPT_VSYNC);
1842 	}
1843 
1844 	if (dc->soc->has_nvdisplay) {
1845 		value = DSC_TO_UF_INT | DSC_BBUF_UF_INT | DSC_RBUF_UF_INT |
1846 			DSC_OBUF_UF_INT;
1847 		tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
1848 
1849 		value = DSC_TO_UF_INT | DSC_BBUF_UF_INT | DSC_RBUF_UF_INT |
1850 			DSC_OBUF_UF_INT | SD3_BUCKET_WALK_DONE_INT |
1851 			HEAD_UF_INT | MSF_INT | REG_TMOUT_INT |
1852 			REGION_CRC_INT | V_PULSE2_INT | V_PULSE3_INT |
1853 			VBLANK_INT | FRAME_END_INT;
1854 		tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
1855 
1856 		value = SD3_BUCKET_WALK_DONE_INT | HEAD_UF_INT | VBLANK_INT |
1857 			FRAME_END_INT;
1858 		tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
1859 
1860 		value = HEAD_UF_INT | REG_TMOUT_INT | FRAME_END_INT;
1861 		tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1862 
1863 		tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
1864 	} else {
1865 		value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1866 			WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1867 		tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
1868 
1869 		value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1870 			WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1871 		tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
1872 
1873 		/* initialize timer */
1874 		value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(0x20) |
1875 			WINDOW_B_THRESHOLD(0x20) | WINDOW_C_THRESHOLD(0x20);
1876 		tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY);
1877 
1878 		value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(1) |
1879 			WINDOW_B_THRESHOLD(1) | WINDOW_C_THRESHOLD(1);
1880 		tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER);
1881 
1882 		value = VBLANK_INT | WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1883 			WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1884 		tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
1885 
1886 		value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1887 			WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1888 		tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1889 	}
1890 
1891 	if (dc->soc->supports_background_color)
1892 		tegra_dc_writel(dc, 0, DC_DISP_BLEND_BACKGROUND_COLOR);
1893 	else
1894 		tegra_dc_writel(dc, 0, DC_DISP_BORDER_COLOR);
1895 
1896 	/* apply PLL and pixel clock changes */
1897 	tegra_dc_commit_state(dc, crtc_state);
1898 
1899 	/* program display mode */
1900 	tegra_dc_set_timings(dc, mode);
1901 
1902 	/* interlacing isn't supported yet, so disable it */
1903 	if (dc->soc->supports_interlacing) {
1904 		value = tegra_dc_readl(dc, DC_DISP_INTERLACE_CONTROL);
1905 		value &= ~INTERLACE_ENABLE;
1906 		tegra_dc_writel(dc, value, DC_DISP_INTERLACE_CONTROL);
1907 	}
1908 
1909 	value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1910 	value &= ~DISP_CTRL_MODE_MASK;
1911 	value |= DISP_CTRL_MODE_C_DISPLAY;
1912 	tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1913 
1914 	if (!dc->soc->has_nvdisplay) {
1915 		value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
1916 		value |= PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
1917 			 PW4_ENABLE | PM0_ENABLE | PM1_ENABLE;
1918 		tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
1919 	}
1920 
1921 	/* enable underflow reporting and display red for missing pixels */
1922 	if (dc->soc->has_nvdisplay) {
1923 		value = UNDERFLOW_MODE_RED | UNDERFLOW_REPORT_ENABLE;
1924 		tegra_dc_writel(dc, value, DC_COM_RG_UNDERFLOW);
1925 	}
1926 
1927 	tegra_dc_commit(dc);
1928 
1929 	drm_crtc_vblank_on(crtc);
1930 }
1931 
1932 static void tegra_crtc_atomic_begin(struct drm_crtc *crtc,
1933 				    struct drm_atomic_state *state)
1934 {
1935 	unsigned long flags;
1936 
1937 	if (crtc->state->event) {
1938 		spin_lock_irqsave(&crtc->dev->event_lock, flags);
1939 
1940 		if (drm_crtc_vblank_get(crtc) != 0)
1941 			drm_crtc_send_vblank_event(crtc, crtc->state->event);
1942 		else
1943 			drm_crtc_arm_vblank_event(crtc, crtc->state->event);
1944 
1945 		spin_unlock_irqrestore(&crtc->dev->event_lock, flags);
1946 
1947 		crtc->state->event = NULL;
1948 	}
1949 }
1950 
1951 static void tegra_crtc_atomic_flush(struct drm_crtc *crtc,
1952 				    struct drm_atomic_state *state)
1953 {
1954 	struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
1955 									  crtc);
1956 	struct tegra_dc_state *dc_state = to_dc_state(crtc_state);
1957 	struct tegra_dc *dc = to_tegra_dc(crtc);
1958 	u32 value;
1959 
1960 	value = dc_state->planes << 8 | GENERAL_UPDATE;
1961 	tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
1962 	value = tegra_dc_readl(dc, DC_CMD_STATE_CONTROL);
1963 
1964 	value = dc_state->planes | GENERAL_ACT_REQ;
1965 	tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
1966 	value = tegra_dc_readl(dc, DC_CMD_STATE_CONTROL);
1967 }
1968 
1969 static const struct drm_crtc_helper_funcs tegra_crtc_helper_funcs = {
1970 	.atomic_begin = tegra_crtc_atomic_begin,
1971 	.atomic_flush = tegra_crtc_atomic_flush,
1972 	.atomic_enable = tegra_crtc_atomic_enable,
1973 	.atomic_disable = tegra_crtc_atomic_disable,
1974 };
1975 
1976 static irqreturn_t tegra_dc_irq(int irq, void *data)
1977 {
1978 	struct tegra_dc *dc = data;
1979 	unsigned long status;
1980 
1981 	status = tegra_dc_readl(dc, DC_CMD_INT_STATUS);
1982 	tegra_dc_writel(dc, status, DC_CMD_INT_STATUS);
1983 
1984 	if (status & FRAME_END_INT) {
1985 		/*
1986 		dev_dbg(dc->dev, "%s(): frame end\n", __func__);
1987 		*/
1988 		dc->stats.frames++;
1989 	}
1990 
1991 	if (status & VBLANK_INT) {
1992 		/*
1993 		dev_dbg(dc->dev, "%s(): vertical blank\n", __func__);
1994 		*/
1995 		drm_crtc_handle_vblank(&dc->base);
1996 		dc->stats.vblank++;
1997 	}
1998 
1999 	if (status & (WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT)) {
2000 		/*
2001 		dev_dbg(dc->dev, "%s(): underflow\n", __func__);
2002 		*/
2003 		dc->stats.underflow++;
2004 	}
2005 
2006 	if (status & (WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT)) {
2007 		/*
2008 		dev_dbg(dc->dev, "%s(): overflow\n", __func__);
2009 		*/
2010 		dc->stats.overflow++;
2011 	}
2012 
2013 	if (status & HEAD_UF_INT) {
2014 		dev_dbg_ratelimited(dc->dev, "%s(): head underflow\n", __func__);
2015 		dc->stats.underflow++;
2016 	}
2017 
2018 	return IRQ_HANDLED;
2019 }
2020 
2021 static bool tegra_dc_has_window_groups(struct tegra_dc *dc)
2022 {
2023 	unsigned int i;
2024 
2025 	if (!dc->soc->wgrps)
2026 		return true;
2027 
2028 	for (i = 0; i < dc->soc->num_wgrps; i++) {
2029 		const struct tegra_windowgroup_soc *wgrp = &dc->soc->wgrps[i];
2030 
2031 		if (wgrp->dc == dc->pipe && wgrp->num_windows > 0)
2032 			return true;
2033 	}
2034 
2035 	return false;
2036 }
2037 
2038 static int tegra_dc_init(struct host1x_client *client)
2039 {
2040 	struct drm_device *drm = dev_get_drvdata(client->host);
2041 	unsigned long flags = HOST1X_SYNCPT_CLIENT_MANAGED;
2042 	struct tegra_dc *dc = host1x_client_to_dc(client);
2043 	struct tegra_drm *tegra = drm->dev_private;
2044 	struct drm_plane *primary = NULL;
2045 	struct drm_plane *cursor = NULL;
2046 	int err;
2047 
2048 	/*
2049 	 * XXX do not register DCs with no window groups because we cannot
2050 	 * assign a primary plane to them, which in turn will cause KMS to
2051 	 * crash.
2052 	 */
2053 	if (!tegra_dc_has_window_groups(dc))
2054 		return 0;
2055 
2056 	/*
2057 	 * Set the display hub as the host1x client parent for the display
2058 	 * controller. This is needed for the runtime reference counting that
2059 	 * ensures the display hub is always powered when any of the display
2060 	 * controllers are.
2061 	 */
2062 	if (dc->soc->has_nvdisplay)
2063 		client->parent = &tegra->hub->client;
2064 
2065 	dc->syncpt = host1x_syncpt_request(client, flags);
2066 	if (!dc->syncpt)
2067 		dev_warn(dc->dev, "failed to allocate syncpoint\n");
2068 
2069 	err = host1x_client_iommu_attach(client);
2070 	if (err < 0 && err != -ENODEV) {
2071 		dev_err(client->dev, "failed to attach to domain: %d\n", err);
2072 		return err;
2073 	}
2074 
2075 	if (dc->soc->wgrps)
2076 		primary = tegra_dc_add_shared_planes(drm, dc);
2077 	else
2078 		primary = tegra_dc_add_planes(drm, dc);
2079 
2080 	if (IS_ERR(primary)) {
2081 		err = PTR_ERR(primary);
2082 		goto cleanup;
2083 	}
2084 
2085 	if (dc->soc->supports_cursor) {
2086 		cursor = tegra_dc_cursor_plane_create(drm, dc);
2087 		if (IS_ERR(cursor)) {
2088 			err = PTR_ERR(cursor);
2089 			goto cleanup;
2090 		}
2091 	} else {
2092 		/* dedicate one overlay to mouse cursor */
2093 		cursor = tegra_dc_overlay_plane_create(drm, dc, 2, true);
2094 		if (IS_ERR(cursor)) {
2095 			err = PTR_ERR(cursor);
2096 			goto cleanup;
2097 		}
2098 	}
2099 
2100 	err = drm_crtc_init_with_planes(drm, &dc->base, primary, cursor,
2101 					&tegra_crtc_funcs, NULL);
2102 	if (err < 0)
2103 		goto cleanup;
2104 
2105 	drm_crtc_helper_add(&dc->base, &tegra_crtc_helper_funcs);
2106 
2107 	/*
2108 	 * Keep track of the minimum pitch alignment across all display
2109 	 * controllers.
2110 	 */
2111 	if (dc->soc->pitch_align > tegra->pitch_align)
2112 		tegra->pitch_align = dc->soc->pitch_align;
2113 
2114 	err = tegra_dc_rgb_init(drm, dc);
2115 	if (err < 0 && err != -ENODEV) {
2116 		dev_err(dc->dev, "failed to initialize RGB output: %d\n", err);
2117 		goto cleanup;
2118 	}
2119 
2120 	err = devm_request_irq(dc->dev, dc->irq, tegra_dc_irq, 0,
2121 			       dev_name(dc->dev), dc);
2122 	if (err < 0) {
2123 		dev_err(dc->dev, "failed to request IRQ#%u: %d\n", dc->irq,
2124 			err);
2125 		goto cleanup;
2126 	}
2127 
2128 	/*
2129 	 * Inherit the DMA parameters (such as maximum segment size) from the
2130 	 * parent host1x device.
2131 	 */
2132 	client->dev->dma_parms = client->host->dma_parms;
2133 
2134 	return 0;
2135 
2136 cleanup:
2137 	if (!IS_ERR_OR_NULL(cursor))
2138 		drm_plane_cleanup(cursor);
2139 
2140 	if (!IS_ERR(primary))
2141 		drm_plane_cleanup(primary);
2142 
2143 	host1x_client_iommu_detach(client);
2144 	host1x_syncpt_free(dc->syncpt);
2145 
2146 	return err;
2147 }
2148 
2149 static int tegra_dc_exit(struct host1x_client *client)
2150 {
2151 	struct tegra_dc *dc = host1x_client_to_dc(client);
2152 	int err;
2153 
2154 	if (!tegra_dc_has_window_groups(dc))
2155 		return 0;
2156 
2157 	/* avoid a dangling pointer just in case this disappears */
2158 	client->dev->dma_parms = NULL;
2159 
2160 	devm_free_irq(dc->dev, dc->irq, dc);
2161 
2162 	err = tegra_dc_rgb_exit(dc);
2163 	if (err) {
2164 		dev_err(dc->dev, "failed to shutdown RGB output: %d\n", err);
2165 		return err;
2166 	}
2167 
2168 	host1x_client_iommu_detach(client);
2169 	host1x_syncpt_free(dc->syncpt);
2170 
2171 	return 0;
2172 }
2173 
2174 static int tegra_dc_runtime_suspend(struct host1x_client *client)
2175 {
2176 	struct tegra_dc *dc = host1x_client_to_dc(client);
2177 	struct device *dev = client->dev;
2178 	int err;
2179 
2180 	err = reset_control_assert(dc->rst);
2181 	if (err < 0) {
2182 		dev_err(dev, "failed to assert reset: %d\n", err);
2183 		return err;
2184 	}
2185 
2186 	if (dc->soc->has_powergate)
2187 		tegra_powergate_power_off(dc->powergate);
2188 
2189 	clk_disable_unprepare(dc->clk);
2190 	pm_runtime_put_sync(dev);
2191 
2192 	return 0;
2193 }
2194 
2195 static int tegra_dc_runtime_resume(struct host1x_client *client)
2196 {
2197 	struct tegra_dc *dc = host1x_client_to_dc(client);
2198 	struct device *dev = client->dev;
2199 	int err;
2200 
2201 	err = pm_runtime_resume_and_get(dev);
2202 	if (err < 0) {
2203 		dev_err(dev, "failed to get runtime PM: %d\n", err);
2204 		return err;
2205 	}
2206 
2207 	if (dc->soc->has_powergate) {
2208 		err = tegra_powergate_sequence_power_up(dc->powergate, dc->clk,
2209 							dc->rst);
2210 		if (err < 0) {
2211 			dev_err(dev, "failed to power partition: %d\n", err);
2212 			goto put_rpm;
2213 		}
2214 	} else {
2215 		err = clk_prepare_enable(dc->clk);
2216 		if (err < 0) {
2217 			dev_err(dev, "failed to enable clock: %d\n", err);
2218 			goto put_rpm;
2219 		}
2220 
2221 		err = reset_control_deassert(dc->rst);
2222 		if (err < 0) {
2223 			dev_err(dev, "failed to deassert reset: %d\n", err);
2224 			goto disable_clk;
2225 		}
2226 	}
2227 
2228 	return 0;
2229 
2230 disable_clk:
2231 	clk_disable_unprepare(dc->clk);
2232 put_rpm:
2233 	pm_runtime_put_sync(dev);
2234 	return err;
2235 }
2236 
2237 static const struct host1x_client_ops dc_client_ops = {
2238 	.init = tegra_dc_init,
2239 	.exit = tegra_dc_exit,
2240 	.suspend = tegra_dc_runtime_suspend,
2241 	.resume = tegra_dc_runtime_resume,
2242 };
2243 
2244 static const struct tegra_dc_soc_info tegra20_dc_soc_info = {
2245 	.supports_background_color = false,
2246 	.supports_interlacing = false,
2247 	.supports_cursor = false,
2248 	.supports_block_linear = false,
2249 	.has_legacy_blending = true,
2250 	.pitch_align = 8,
2251 	.has_powergate = false,
2252 	.coupled_pm = true,
2253 	.has_nvdisplay = false,
2254 	.num_primary_formats = ARRAY_SIZE(tegra20_primary_formats),
2255 	.primary_formats = tegra20_primary_formats,
2256 	.num_overlay_formats = ARRAY_SIZE(tegra20_overlay_formats),
2257 	.overlay_formats = tegra20_overlay_formats,
2258 	.modifiers = tegra20_modifiers,
2259 	.has_win_a_without_filters = true,
2260 	.has_win_c_without_vert_filter = true,
2261 };
2262 
2263 static const struct tegra_dc_soc_info tegra30_dc_soc_info = {
2264 	.supports_background_color = false,
2265 	.supports_interlacing = false,
2266 	.supports_cursor = false,
2267 	.supports_block_linear = false,
2268 	.has_legacy_blending = true,
2269 	.pitch_align = 8,
2270 	.has_powergate = false,
2271 	.coupled_pm = false,
2272 	.has_nvdisplay = false,
2273 	.num_primary_formats = ARRAY_SIZE(tegra20_primary_formats),
2274 	.primary_formats = tegra20_primary_formats,
2275 	.num_overlay_formats = ARRAY_SIZE(tegra20_overlay_formats),
2276 	.overlay_formats = tegra20_overlay_formats,
2277 	.modifiers = tegra20_modifiers,
2278 	.has_win_a_without_filters = false,
2279 	.has_win_c_without_vert_filter = false,
2280 };
2281 
2282 static const struct tegra_dc_soc_info tegra114_dc_soc_info = {
2283 	.supports_background_color = false,
2284 	.supports_interlacing = false,
2285 	.supports_cursor = false,
2286 	.supports_block_linear = false,
2287 	.has_legacy_blending = true,
2288 	.pitch_align = 64,
2289 	.has_powergate = true,
2290 	.coupled_pm = false,
2291 	.has_nvdisplay = false,
2292 	.num_primary_formats = ARRAY_SIZE(tegra114_primary_formats),
2293 	.primary_formats = tegra114_primary_formats,
2294 	.num_overlay_formats = ARRAY_SIZE(tegra114_overlay_formats),
2295 	.overlay_formats = tegra114_overlay_formats,
2296 	.modifiers = tegra20_modifiers,
2297 	.has_win_a_without_filters = false,
2298 	.has_win_c_without_vert_filter = false,
2299 };
2300 
2301 static const struct tegra_dc_soc_info tegra124_dc_soc_info = {
2302 	.supports_background_color = true,
2303 	.supports_interlacing = true,
2304 	.supports_cursor = true,
2305 	.supports_block_linear = true,
2306 	.has_legacy_blending = false,
2307 	.pitch_align = 64,
2308 	.has_powergate = true,
2309 	.coupled_pm = false,
2310 	.has_nvdisplay = false,
2311 	.num_primary_formats = ARRAY_SIZE(tegra124_primary_formats),
2312 	.primary_formats = tegra124_primary_formats,
2313 	.num_overlay_formats = ARRAY_SIZE(tegra124_overlay_formats),
2314 	.overlay_formats = tegra124_overlay_formats,
2315 	.modifiers = tegra124_modifiers,
2316 	.has_win_a_without_filters = false,
2317 	.has_win_c_without_vert_filter = false,
2318 };
2319 
2320 static const struct tegra_dc_soc_info tegra210_dc_soc_info = {
2321 	.supports_background_color = true,
2322 	.supports_interlacing = true,
2323 	.supports_cursor = true,
2324 	.supports_block_linear = true,
2325 	.has_legacy_blending = false,
2326 	.pitch_align = 64,
2327 	.has_powergate = true,
2328 	.coupled_pm = false,
2329 	.has_nvdisplay = false,
2330 	.num_primary_formats = ARRAY_SIZE(tegra114_primary_formats),
2331 	.primary_formats = tegra114_primary_formats,
2332 	.num_overlay_formats = ARRAY_SIZE(tegra114_overlay_formats),
2333 	.overlay_formats = tegra114_overlay_formats,
2334 	.modifiers = tegra124_modifiers,
2335 	.has_win_a_without_filters = false,
2336 	.has_win_c_without_vert_filter = false,
2337 };
2338 
2339 static const struct tegra_windowgroup_soc tegra186_dc_wgrps[] = {
2340 	{
2341 		.index = 0,
2342 		.dc = 0,
2343 		.windows = (const unsigned int[]) { 0 },
2344 		.num_windows = 1,
2345 	}, {
2346 		.index = 1,
2347 		.dc = 1,
2348 		.windows = (const unsigned int[]) { 1 },
2349 		.num_windows = 1,
2350 	}, {
2351 		.index = 2,
2352 		.dc = 1,
2353 		.windows = (const unsigned int[]) { 2 },
2354 		.num_windows = 1,
2355 	}, {
2356 		.index = 3,
2357 		.dc = 2,
2358 		.windows = (const unsigned int[]) { 3 },
2359 		.num_windows = 1,
2360 	}, {
2361 		.index = 4,
2362 		.dc = 2,
2363 		.windows = (const unsigned int[]) { 4 },
2364 		.num_windows = 1,
2365 	}, {
2366 		.index = 5,
2367 		.dc = 2,
2368 		.windows = (const unsigned int[]) { 5 },
2369 		.num_windows = 1,
2370 	},
2371 };
2372 
2373 static const struct tegra_dc_soc_info tegra186_dc_soc_info = {
2374 	.supports_background_color = true,
2375 	.supports_interlacing = true,
2376 	.supports_cursor = true,
2377 	.supports_block_linear = true,
2378 	.has_legacy_blending = false,
2379 	.pitch_align = 64,
2380 	.has_powergate = false,
2381 	.coupled_pm = false,
2382 	.has_nvdisplay = true,
2383 	.wgrps = tegra186_dc_wgrps,
2384 	.num_wgrps = ARRAY_SIZE(tegra186_dc_wgrps),
2385 };
2386 
2387 static const struct tegra_windowgroup_soc tegra194_dc_wgrps[] = {
2388 	{
2389 		.index = 0,
2390 		.dc = 0,
2391 		.windows = (const unsigned int[]) { 0 },
2392 		.num_windows = 1,
2393 	}, {
2394 		.index = 1,
2395 		.dc = 1,
2396 		.windows = (const unsigned int[]) { 1 },
2397 		.num_windows = 1,
2398 	}, {
2399 		.index = 2,
2400 		.dc = 1,
2401 		.windows = (const unsigned int[]) { 2 },
2402 		.num_windows = 1,
2403 	}, {
2404 		.index = 3,
2405 		.dc = 2,
2406 		.windows = (const unsigned int[]) { 3 },
2407 		.num_windows = 1,
2408 	}, {
2409 		.index = 4,
2410 		.dc = 2,
2411 		.windows = (const unsigned int[]) { 4 },
2412 		.num_windows = 1,
2413 	}, {
2414 		.index = 5,
2415 		.dc = 2,
2416 		.windows = (const unsigned int[]) { 5 },
2417 		.num_windows = 1,
2418 	},
2419 };
2420 
2421 static const struct tegra_dc_soc_info tegra194_dc_soc_info = {
2422 	.supports_background_color = true,
2423 	.supports_interlacing = true,
2424 	.supports_cursor = true,
2425 	.supports_block_linear = true,
2426 	.has_legacy_blending = false,
2427 	.pitch_align = 64,
2428 	.has_powergate = false,
2429 	.coupled_pm = false,
2430 	.has_nvdisplay = true,
2431 	.wgrps = tegra194_dc_wgrps,
2432 	.num_wgrps = ARRAY_SIZE(tegra194_dc_wgrps),
2433 };
2434 
2435 static const struct of_device_id tegra_dc_of_match[] = {
2436 	{
2437 		.compatible = "nvidia,tegra194-dc",
2438 		.data = &tegra194_dc_soc_info,
2439 	}, {
2440 		.compatible = "nvidia,tegra186-dc",
2441 		.data = &tegra186_dc_soc_info,
2442 	}, {
2443 		.compatible = "nvidia,tegra210-dc",
2444 		.data = &tegra210_dc_soc_info,
2445 	}, {
2446 		.compatible = "nvidia,tegra124-dc",
2447 		.data = &tegra124_dc_soc_info,
2448 	}, {
2449 		.compatible = "nvidia,tegra114-dc",
2450 		.data = &tegra114_dc_soc_info,
2451 	}, {
2452 		.compatible = "nvidia,tegra30-dc",
2453 		.data = &tegra30_dc_soc_info,
2454 	}, {
2455 		.compatible = "nvidia,tegra20-dc",
2456 		.data = &tegra20_dc_soc_info,
2457 	}, {
2458 		/* sentinel */
2459 	}
2460 };
2461 MODULE_DEVICE_TABLE(of, tegra_dc_of_match);
2462 
2463 static int tegra_dc_parse_dt(struct tegra_dc *dc)
2464 {
2465 	struct device_node *np;
2466 	u32 value = 0;
2467 	int err;
2468 
2469 	err = of_property_read_u32(dc->dev->of_node, "nvidia,head", &value);
2470 	if (err < 0) {
2471 		dev_err(dc->dev, "missing \"nvidia,head\" property\n");
2472 
2473 		/*
2474 		 * If the nvidia,head property isn't present, try to find the
2475 		 * correct head number by looking up the position of this
2476 		 * display controller's node within the device tree. Assuming
2477 		 * that the nodes are ordered properly in the DTS file and
2478 		 * that the translation into a flattened device tree blob
2479 		 * preserves that ordering this will actually yield the right
2480 		 * head number.
2481 		 *
2482 		 * If those assumptions don't hold, this will still work for
2483 		 * cases where only a single display controller is used.
2484 		 */
2485 		for_each_matching_node(np, tegra_dc_of_match) {
2486 			if (np == dc->dev->of_node) {
2487 				of_node_put(np);
2488 				break;
2489 			}
2490 
2491 			value++;
2492 		}
2493 	}
2494 
2495 	dc->pipe = value;
2496 
2497 	return 0;
2498 }
2499 
2500 static int tegra_dc_match_by_pipe(struct device *dev, const void *data)
2501 {
2502 	struct tegra_dc *dc = dev_get_drvdata(dev);
2503 	unsigned int pipe = (unsigned long)(void *)data;
2504 
2505 	return dc->pipe == pipe;
2506 }
2507 
2508 static int tegra_dc_couple(struct tegra_dc *dc)
2509 {
2510 	/*
2511 	 * On Tegra20, DC1 requires DC0 to be taken out of reset in order to
2512 	 * be enabled, otherwise CPU hangs on writing to CMD_DISPLAY_COMMAND /
2513 	 * POWER_CONTROL registers during CRTC enabling.
2514 	 */
2515 	if (dc->soc->coupled_pm && dc->pipe == 1) {
2516 		u32 flags = DL_FLAG_PM_RUNTIME | DL_FLAG_AUTOREMOVE_CONSUMER;
2517 		struct device_link *link;
2518 		struct device *partner;
2519 
2520 		partner = driver_find_device(dc->dev->driver, NULL, NULL,
2521 					     tegra_dc_match_by_pipe);
2522 		if (!partner)
2523 			return -EPROBE_DEFER;
2524 
2525 		link = device_link_add(dc->dev, partner, flags);
2526 		if (!link) {
2527 			dev_err(dc->dev, "failed to link controllers\n");
2528 			return -EINVAL;
2529 		}
2530 
2531 		dev_dbg(dc->dev, "coupled to %s\n", dev_name(partner));
2532 	}
2533 
2534 	return 0;
2535 }
2536 
2537 static int tegra_dc_probe(struct platform_device *pdev)
2538 {
2539 	struct tegra_dc *dc;
2540 	int err;
2541 
2542 	dc = devm_kzalloc(&pdev->dev, sizeof(*dc), GFP_KERNEL);
2543 	if (!dc)
2544 		return -ENOMEM;
2545 
2546 	dc->soc = of_device_get_match_data(&pdev->dev);
2547 
2548 	INIT_LIST_HEAD(&dc->list);
2549 	dc->dev = &pdev->dev;
2550 
2551 	err = tegra_dc_parse_dt(dc);
2552 	if (err < 0)
2553 		return err;
2554 
2555 	err = tegra_dc_couple(dc);
2556 	if (err < 0)
2557 		return err;
2558 
2559 	dc->clk = devm_clk_get(&pdev->dev, NULL);
2560 	if (IS_ERR(dc->clk)) {
2561 		dev_err(&pdev->dev, "failed to get clock\n");
2562 		return PTR_ERR(dc->clk);
2563 	}
2564 
2565 	dc->rst = devm_reset_control_get(&pdev->dev, "dc");
2566 	if (IS_ERR(dc->rst)) {
2567 		dev_err(&pdev->dev, "failed to get reset\n");
2568 		return PTR_ERR(dc->rst);
2569 	}
2570 
2571 	/* assert reset and disable clock */
2572 	err = clk_prepare_enable(dc->clk);
2573 	if (err < 0)
2574 		return err;
2575 
2576 	usleep_range(2000, 4000);
2577 
2578 	err = reset_control_assert(dc->rst);
2579 	if (err < 0)
2580 		return err;
2581 
2582 	usleep_range(2000, 4000);
2583 
2584 	clk_disable_unprepare(dc->clk);
2585 
2586 	if (dc->soc->has_powergate) {
2587 		if (dc->pipe == 0)
2588 			dc->powergate = TEGRA_POWERGATE_DIS;
2589 		else
2590 			dc->powergate = TEGRA_POWERGATE_DISB;
2591 
2592 		tegra_powergate_power_off(dc->powergate);
2593 	}
2594 
2595 	dc->regs = devm_platform_ioremap_resource(pdev, 0);
2596 	if (IS_ERR(dc->regs))
2597 		return PTR_ERR(dc->regs);
2598 
2599 	dc->irq = platform_get_irq(pdev, 0);
2600 	if (dc->irq < 0)
2601 		return -ENXIO;
2602 
2603 	err = tegra_dc_rgb_probe(dc);
2604 	if (err < 0 && err != -ENODEV) {
2605 		const char *level = KERN_ERR;
2606 
2607 		if (err == -EPROBE_DEFER)
2608 			level = KERN_DEBUG;
2609 
2610 		dev_printk(level, dc->dev, "failed to probe RGB output: %d\n",
2611 			   err);
2612 		return err;
2613 	}
2614 
2615 	platform_set_drvdata(pdev, dc);
2616 	pm_runtime_enable(&pdev->dev);
2617 
2618 	INIT_LIST_HEAD(&dc->client.list);
2619 	dc->client.ops = &dc_client_ops;
2620 	dc->client.dev = &pdev->dev;
2621 
2622 	err = host1x_client_register(&dc->client);
2623 	if (err < 0) {
2624 		dev_err(&pdev->dev, "failed to register host1x client: %d\n",
2625 			err);
2626 		goto disable_pm;
2627 	}
2628 
2629 	return 0;
2630 
2631 disable_pm:
2632 	pm_runtime_disable(&pdev->dev);
2633 	tegra_dc_rgb_remove(dc);
2634 
2635 	return err;
2636 }
2637 
2638 static int tegra_dc_remove(struct platform_device *pdev)
2639 {
2640 	struct tegra_dc *dc = platform_get_drvdata(pdev);
2641 	int err;
2642 
2643 	err = host1x_client_unregister(&dc->client);
2644 	if (err < 0) {
2645 		dev_err(&pdev->dev, "failed to unregister host1x client: %d\n",
2646 			err);
2647 		return err;
2648 	}
2649 
2650 	err = tegra_dc_rgb_remove(dc);
2651 	if (err < 0) {
2652 		dev_err(&pdev->dev, "failed to remove RGB output: %d\n", err);
2653 		return err;
2654 	}
2655 
2656 	pm_runtime_disable(&pdev->dev);
2657 
2658 	return 0;
2659 }
2660 
2661 struct platform_driver tegra_dc_driver = {
2662 	.driver = {
2663 		.name = "tegra-dc",
2664 		.of_match_table = tegra_dc_of_match,
2665 	},
2666 	.probe = tegra_dc_probe,
2667 	.remove = tegra_dc_remove,
2668 };
2669